WO2018228168A1 - 图像处理方法及相关产品 - Google Patents
图像处理方法及相关产品 Download PDFInfo
- Publication number
- WO2018228168A1 WO2018228168A1 PCT/CN2018/088452 CN2018088452W WO2018228168A1 WO 2018228168 A1 WO2018228168 A1 WO 2018228168A1 CN 2018088452 W CN2018088452 W CN 2018088452W WO 2018228168 A1 WO2018228168 A1 WO 2018228168A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sets
- shooting parameter
- image
- target
- shooting
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/72—Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
- H04M1/724—User interfaces specially adapted for cordless or mobile telephones
- H04M1/72448—User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/80—Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/95—Computational photography systems, e.g. light-field imaging systems
- H04N23/951—Computational photography systems, e.g. light-field imaging systems by using two or more images to influence resolution, frame rate or aspect ratio
Definitions
- the present application relates to the field of electronic device technologies, and in particular, to an image processing method and related products.
- photographing is an important application of smart phones, which is very popular among users. Since smartphone photos are not intelligent enough under normal circumstances, it is often the smartphone that shoots according to the default setting parameters. As a result, it is difficult for smartphones to shoot. User favorite image.
- the embodiment of the present application provides an image processing method and related products, which can adaptively acquire shooting parameters, thereby making it easy to capture an image of a user's preference.
- the target image set includes N images, and the N is an integer greater than 1;
- the N sets of shooting parameter sets are synthesized to obtain M target shooting parameter sets, and the M is a positive integer smaller than the N.
- an image processing apparatus including:
- a first acquiring unit configured to acquire a target image set, where the target image set includes N images, and the N is an integer greater than 1;
- a second acquiring unit configured to acquire a shooting parameter corresponding to each image in the N images, to obtain the N sets of shooting parameter sets, where each shooting parameter set corresponds to multiple shooting parameters;
- a synthesizing unit configured to synthesize the N sets of shooting parameter sets to obtain M target shooting parameter sets, where the M is a positive integer smaller than the N.
- an embodiment of the present application provides an electronic device, a processor and a memory, and one or more programs, where the one or more programs are stored in the memory, and configured to be processed by the processing Executed, the program includes instructions for some or all of the steps described in the first aspect of the embodiments of the present application.
- an embodiment of the present application provides a computer readable storage medium, wherein the computer readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute as implemented in the present application.
- an embodiment of the present application provides a computer program product, where the computer program product includes a non-transitory computer readable storage medium storing a computer program, the computer program being operative to cause a computer to execute Apply some or all of the steps described in the first aspect of the embodiment.
- the computer program product can be a software installation package.
- the target image set is acquired, the target image set includes N images, and N is an integer greater than 1, and the shooting parameters corresponding to each image in the N images are obtained, and N sets of shooting parameter sets are obtained.
- Each shooting parameter set corresponds to a plurality of shooting parameters, and the N sets of shooting parameter sets are synthesized to obtain M target shooting parameter sets, and M is a positive integer smaller than N, so that an image of interest to the user can be obtained and passed through
- the shooting parameters are combined to obtain shooting parameters for specific scenes. In this way, the shooting parameters can be adaptively acquired, and the user's favorite image can be easily photographed.
- FIG. 1 is a schematic flow chart of an image processing method disclosed in an embodiment of the present application.
- FIG. 2 is another schematic flowchart of an image processing method disclosed in an embodiment of the present application.
- FIG. 3 is a schematic structural diagram of an image processing apparatus according to an embodiment of the present application.
- FIG. 3b is a schematic structural diagram of a first acquiring unit of the image processing apparatus described in FIG. 3a disclosed in the embodiment of the present application;
- FIG. 3c is still another schematic structural diagram of a first acquiring unit of the image processing apparatus described in FIG. 3a disclosed in the embodiment of the present application;
- FIG. 3d is a schematic structural diagram of a synthesizing unit of the image processing apparatus described in FIG. 3a disclosed in the embodiment of the present application;
- FIG. 4 is a schematic structural diagram of an electronic device disclosed in an embodiment of the present application.
- FIG. 5 is a schematic structural diagram of another electronic device disclosed in the embodiment of the present application.
- references to "an embodiment” herein mean that a particular feature, structure, or characteristic described in connection with the embodiments can be included in at least one embodiment of the present application.
- the appearances of the phrases in various places in the specification are not necessarily referring to the same embodiments, and are not exclusive or alternative embodiments that are mutually exclusive. Those skilled in the art will understand and implicitly understand that the embodiments described herein can be combined with other embodiments.
- the electronic device involved in the embodiments of the present application may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem, and various forms of user devices (user Equipment, UE), mobile station (MS), terminal device, etc.
- user Equipment user Equipment
- MS mobile station
- terminal device etc.
- the devices mentioned above are collectively referred to as electronic devices.
- the embodiments of the present application are described in detail below.
- the electronic device in the embodiment of the present application may be installed with an artificial intelligence module (AI), and the artificial intelligence module may be separately installed in the electronic device, for example, the processor calls the AI module to implement artificial intelligence.
- AI artificial intelligence module
- the processor calls the AI module to implement artificial intelligence.
- the processor can also be integrated with the processor.
- the processor is equivalent to the AI module.
- the artificial intelligence module can be a quantum chip, or a high-density silicon integrated circuit, and the AI module can store a machine learning algorithm for training user habits (for example, collecting user preferences, favorite images), and The user uses the habit of deep learning, thereby achieving the purpose of intelligently controlling the electronic device through the AI module.
- FIG. 1 is a schematic flowchart diagram of an embodiment of an image processing method according to an embodiment of the present application.
- the image processing method described in this embodiment includes the following steps:
- the target image set may include at least one of the following images: an image for collecting, an image for sending a circle of friends, an image for sending to a social friend, and an image for multiple viewing by the user (the number of views is greater than a preset)
- the number of views, the default number of views can be set by the system default or the user can set it, etc.
- the target image set may contain N images, and N is an integer greater than 1.
- acquiring the target image set may include the following steps:
- the image corresponding to the control instruction that meets the preset condition in the album is composed of the target image set.
- the above control command may be at least one of the following: a view instruction, a send instruction, a favorite instruction, a delete instruction, a P picture instruction (PS (PhotoShop) processing on an image), and the like. Therefore, each image in the album can be monitored. For example, when the user views an image, the viewing instruction of the image can be monitored. For example, when the user collects an image, the image can be monitored.
- the favorite instruction for example, when the user forwards an image, can monitor the sending instruction for the image.
- Preset conditions can be set by the user or the system defaults. For example, the preset condition may be that the control instruction is a favorite instruction, and for example, the preset condition may be that the control instruction is a sending instruction.
- the electronic device has an album, and the image corresponding to the control instruction in the album that meets the preset condition is formed into a target image set.
- the user's favorite image can be distinguished by the user's operation on the photo. For example, some users like bright colors, and the probability of implementing a collection or a circle of friends for a vivid type of image is large. For example, if some users like to be light, the probability of implementing a collection or a circle of friends for an elegant type of image is Larger.
- the user does not care about the way the image is processed. However, by the preference for the image, the user can enjoy the color temperature and white balance processing effect. In this way, the user's preference for the image can be reflected to some extent.
- acquiring the target image set may include the following steps:
- the above M images may be all images of a preset time period, or all images stored in the electronic device.
- the above preset time period can be set by the user or the system defaults.
- the preset time period is set, considering that the user's preferences will change with the passage of time. For example, the current preference and the preferences of a few years ago will exist. Certain differences, in order to cater to user preferences, a preset time period can be set in advance.
- the above preset image quality threshold may be set by the user or the system defaults.
- the image quality evaluation can be performed on each of the M images in the album, and M image quality evaluation values are obtained, M is an integer greater than or equal to N, and further, the M image quality evaluation values are selected to be larger than Predetermining the image quality evaluation value of the image quality threshold, obtaining N image quality evaluation values, and obtaining corresponding images thereof, to obtain the target image set.
- step B1 image quality evaluation is performed on each of the M images in the album, and the following manner may be adopted:
- Image quality evaluation is performed on each of the M images in the album using at least one image quality evaluation index.
- the image quality evaluation indicators may include, but are not limited to, average gray level, mean square error, entropy, edge retention, signal to noise ratio, etc., when image quality evaluation is performed on an image by using multiple image quality evaluation values,
- Each image quality evaluation index also corresponds to a weight.
- each image quality evaluation index can obtain an evaluation result when the image quality is evaluated.
- the weighting operation is performed, and the final image quality evaluation value is obtained.
- Image quality can be evaluated by using 2 to 10 image quality evaluation indicators. Specifically, the number of image quality evaluation indicators and which indicator are selected are determined according to specific implementation conditions. Of course, it is also necessary to select image quality evaluation indicators in combination with specific scenes, and the image quality indicators in the dark environment and the image quality evaluation in the bright environment may be different.
- an image quality evaluation index may be used for evaluation.
- the image quality evaluation value is processed by entropy processing, and the entropy is larger, indicating that the image quality is higher.
- the smaller the entropy the worse the image quality.
- the image may be evaluated by using multiple image quality evaluation indicators, and the plurality of image quality evaluation indicators may be set when the image quality is evaluated.
- the weight of each image quality evaluation index in the image quality evaluation index may obtain a plurality of image quality evaluation values, and the final image quality evaluation value may be obtained according to the plurality of image quality evaluation values and corresponding weights, for example, three images
- the quality evaluation indicators are: A index, B index and C index.
- the weight of A is a1
- the weight of B is a2
- the weight of C is a3.
- A, B and C are used to evaluate the image quality of an image
- a The corresponding image quality evaluation value is b1
- the image quality evaluation value corresponding to B is b2
- the image quality evaluation value corresponding to C is b3
- the final image quality evaluation value a1b1+a2b2+a3b3.
- the larger the image quality evaluation value the better the image quality.
- Each of the N images corresponds to a plurality of shooting parameters, and the plurality of shooting parameters can be understood as a shooting parameter set, so that N sets of shooting parameters can be obtained for N images.
- the shooting parameter is a camera or a parameter or an environmental parameter of the camera image when the camera is photographed
- the shooting parameters may include, but are not limited to, a sensitivity ISO value, an exposure time length, a focal length, a white balance parameter, a luminous flux, an ambient brightness, and a weather. , altitude, geographical location, anti-shake parameters, and more.
- the number of shooting parameters corresponding to each image can also be different. For example, sometimes the camera needs a flash, and sometimes the camera does not require a flash.
- the exposure duration is: the time interval from the shutter opening to the closing, during which the object can leave an image on the film.
- Sensitivity ISO value is a numerical representation of sensitivity to light.
- Luminous flux refers to the derived amount of radiant flux evaluated according to internationally defined standard human visual characteristics. Specifically, luminous flux refers to the radiant power that can be felt by the human eye, which is equal to the radiation of a certain band per unit time.
- the N sets of shooting parameter sets are respectively for N different images, and thus, the N sets of shooting parameter sets can be synthesized, the purpose of which is to obtain a shooting parameter set that can be targeted for a certain type of image, that is, each The shooting parameter set corresponds to one scene, and M target shooting parameter sets are obtained, where M is a positive integer less than or equal to N.
- step 33 synthesizing the shooting parameter sets corresponding to each of the M sets, and obtaining the M target shooting parameter sets, may be performed as follows:
- the set includes a plurality of sets of shooting parameters
- each shooting parameter set includes a plurality of shooting parameters
- the plurality of sets of shooting parameter sets in each set may be linearly simulated.
- a plurality of fitted shooting parameters are obtained, and the plurality of fitting shooting parameters constitute a target shooting parameter set corresponding to each set.
- the target image set is acquired, the target image set includes N images, and N is an integer greater than 1, and the shooting parameters corresponding to each image in the N images are acquired, and N sets of shooting parameter sets are obtained.
- Each shooting parameter set corresponds to a plurality of shooting parameters, and the N sets of shooting parameter sets are combined to obtain M target shooting parameter sets, and M is a positive integer smaller than N, so that the user can use the image according to the image or the image quality.
- the images that are considered to be good are obtained, and the shooting parameters corresponding to the images are combined to obtain the shooting parameters for the specific scene.
- the shooting parameters can be adaptively acquired, and the user's favorite image can be easily photographed.
- 201 Acquire a target image set, where the target image set includes N images, and the N is an integer greater than 1.
- the current environmental parameters may include, but are not limited to, ambient brightness, weather, geographic location, and the like, and the current environmental parameters may be acquired after receiving the photographing instruction.
- the ambient brightness can be detected by an ambient light sensor that is provided by the electronic device
- the weather can be obtained by the weather application of the electronic device
- the geographical location can be obtained by the electronic device.
- the target image set is acquired, the target image set includes N images, and N is an integer greater than 1, and the shooting parameters corresponding to each image in the N images are obtained, and N sets of shooting parameter sets are obtained.
- Each shooting parameter set corresponds to a plurality of shooting parameters, and the N sets of shooting parameter sets are synthesized to obtain M target shooting parameter sets, M is a positive integer smaller than N, and further, the environment can be acquired when the photographing instruction is received.
- FIG. 3a is a schematic structural diagram of an image processing apparatus according to this embodiment.
- the image processing apparatus is applied to an electronic device, and the image processing apparatus includes a first obtaining unit 301, a second obtaining unit 302, and a synthesizing unit 303, as follows:
- a first acquiring unit 301 configured to acquire a target image set, where the target image set includes N images, and the N is an integer greater than 1;
- the second acquiring unit 302 is configured to acquire the shooting parameters corresponding to each of the N images, and obtain the N sets of shooting parameter sets, where each shooting parameter set corresponds to multiple shooting parameters;
- the synthesizing unit 303 is configured to synthesize the N sets of shooting parameter sets to obtain M target shooting parameter sets, where the M is a positive integer smaller than the N.
- FIG. 3b is a specific refinement structure of the first obtaining unit 301 of the image processing apparatus described in FIG. 3a, and the first obtaining unit 301 may include: a monitoring module 3011 and a first acquiring module. 3012, as follows:
- the monitoring module 3011 is configured to monitor a control instruction of each image in the album
- the first obtaining module 3012 is configured to compose an image corresponding to the control instruction that meets the preset condition in the album into the target image set.
- FIG. 3c is a specific refinement structure of the first acquiring unit 301 of the image processing apparatus described in FIG. 3a, and the first obtaining unit 301 may include: an evaluating module 3013 and a selecting module 3014, details as follows:
- the evaluation module 3013 is configured to perform image quality evaluation on each of the M images in the album to obtain the M image quality evaluation values, where the M is an integer greater than or equal to N;
- the selecting module 3014 is configured to select an image quality evaluation value that is greater than a preset image quality threshold from the M image quality evaluation values, obtain the N image quality evaluation values, and obtain a corresponding image to obtain the target. Image set.
- FIG. 3d is a specific refinement structure of the synthesizing unit 303 of the image processing apparatus described in FIG. 3a, and the synthesizing unit 303 may include: a second obtaining module 3031, a dividing module 3032, and a synthesizing module. 3033, as follows:
- the second obtaining module 3031 is configured to obtain an ambient brightness corresponding to each set of shooting parameter sets in the N sets of shooting parameter sets, to obtain the N ambient brightness values;
- a dividing module 3032 configured to divide the N ambient brightness values into brightness levels, and obtain a shooting parameter set corresponding to each brightness level to obtain the M sets;
- the synthesizing module 3033 is configured to synthesize a shooting parameter set corresponding to each of the M sets to obtain the M target shooting parameter sets.
- synthesizing module 3033 is specifically configured to:
- FIG. 3e is still another modified structure of the image processing apparatus described in FIG. 3a, which may further include: a receiving unit 304 and a photographing unit, compared with the image processing apparatus described in FIG. 3a. 305, as follows:
- the receiving unit 304 is configured to synthesize the N sets of shooting parameter sets in the synthesizing unit 303, obtain the M target shooting parameter sets, and obtain the current environment parameters when receiving the photographing instruction;
- FIG. 4 is an electronic device according to an embodiment of the present application, including: a processor and a memory; and one or more programs, where the one or more programs are stored in the memory and are Configuring to be executed by the processor, the program comprising instructions for performing the following steps;
- the target image set includes N images, and the N is an integer greater than 1;
- the N sets of shooting parameter sets are synthesized to obtain M target shooting parameter sets, and the M is a positive integer smaller than the N.
- An image corresponding to the control instruction in the album that meets the preset condition is composed of the target image set.
- the instructions in the program are specifically configured to perform the following steps:
- the instructions in the program are specifically used to perform the following steps:
- the embodiment of the present application further provides another electronic device. As shown in FIG. 5, for the convenience of description, only the parts related to the embodiment of the present application are shown. If the specific technical details are not disclosed, refer to the method of the embodiment of the present application. section.
- the electronic device may be any terminal device including a mobile phone, a tablet computer, a PDA (Personal Digital Assistant), a POS (Point of Sales), an in-vehicle computer, and the like, and the electronic device is used as a mobile phone as an example:
- FIG. 5 is a block diagram showing a partial structure of a mobile phone related to an electronic device provided by an embodiment of the present application.
- the mobile phone includes: a radio frequency (RF) circuit 910, a memory 920, an input unit 930, a sensor 950, an audio circuit 960, a wireless fidelity (WiFi) module 970, a processor 980, and a power supply 990.
- RF radio frequency
- the structure of the handset shown in FIG. 5 does not constitute a limitation to the handset, and may include more or less components than those illustrated, or some components may be combined, or different components may be arranged.
- the processor 980 obtains a target image set, where the target image set includes N images, and the N is an integer greater than 1; acquiring shooting parameters corresponding to each image in the N images, to obtain the N a group shooting parameter set, each shooting parameter set corresponding to a plurality of shooting parameters; combining the N sets of shooting parameter sets to obtain M target shooting parameter sets, wherein the M is a positive integer smaller than the N.
- the processor 980 is the control center of the handset, which connects various portions of the entire handset using various interfaces and lines, by executing or executing software programs and/or modules stored in the memory 920, and invoking data stored in the memory 920, executing The phone's various functions and processing data, so that the overall monitoring of the phone.
- the processor 980 may include one or more processing units; optionally, the processor 980 may integrate a processor and a modem processor, where the processor mainly processes an operating system, a user interface, an application, and the like.
- the modem processor primarily handles wireless communications. It will be appreciated that the above described modem processor may also not be integrated into the processor 980.
- the above wireless communication may use any communication standard or protocol, including but not limited to global system of mobile communication (GSM), general packet radio service (GPRS), code division multiple access (code division) Multiple access (CDMA), wideband code division multiple access (WCDMA), long term evolution (LTE), e-mail, short messaging service (SMS), and the like.
- GSM global system of mobile communication
- GPRS general packet radio service
- CDMA code division multiple access
- WCDMA wideband code division multiple access
- LTE long term evolution
- SMS short messaging service
- the mobile phone can be used to identify the gesture of the mobile phone (such as horizontal and vertical screen switching, related Game, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.; as for the mobile phone can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, no longer Narration.
- the gesture of the mobile phone such as horizontal and vertical screen switching, related Game, magnetometer attitude calibration
- vibration recognition related functions such as pedometer, tapping
- the mobile phone can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, no longer Narration.
- An audio circuit 960, a speaker 961, and a microphone 962 can provide an audio interface between the user and the handset.
- the audio circuit 960 can transmit the converted electrical data of the received audio data to the speaker 961 for conversion to the sound signal by the speaker 961; on the other hand, the microphone 962 converts the collected sound signal into an electrical signal by the audio circuit 960. After receiving, it is converted into audio data, and then processed by the audio data playback processor 980, sent to the other mobile phone via the RF circuit 910, or played back to the memory 920 for further processing.
- WiFi is a short-range wireless transmission technology
- the mobile phone can help users to send and receive emails, browse web pages, and access streaming media through the WiFi module 970, which provides users with wireless broadband Internet access.
- FIG. 5 shows the WiFi module 970, it can be understood that it does not belong to the essential configuration of the mobile phone, and may be omitted as needed within the scope of not changing the essence of the invention.
- the handset also includes a power supply 990 (such as a battery) that supplies power to the various components.
- a power supply 990 (such as a battery) that supplies power to the various components.
- the power supply can be logically coupled to the processor 980 through a power management system to manage charging, discharging, and power management functions through the power management system.
- the mobile phone may further include a camera, a Bluetooth module, and the like, and details are not described herein again.
- each step method flow can be implemented based on the structure of the mobile phone.
- each unit function can be implemented based on the structure of the mobile phone.
- the embodiment of the present application further provides a computer storage medium, wherein the computer storage medium stores a computer program for electronic data exchange, the computer program causing the computer to execute part of any image processing method as described in the above method embodiment. Or all steps.
- the embodiment of the present application further provides a computer program product, comprising: a non-transitory computer readable storage medium storing a computer program, the computer program being operative to cause a computer to perform the operations as recited in the foregoing method embodiments Some or all of the steps of any image processing method.
- the disclosed apparatus may be implemented in other ways.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
- each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the above integrated unit can be implemented in the form of hardware or in the form of a software program module.
- the integrated unit if implemented in the form of a software program module and sold or used as a standalone product, may be stored in a computer readable memory.
- a computer readable memory A number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
- the foregoing memory includes: a U disk, a read-only memory (ROM), a random access memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like, which can store program codes.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Signal Processing (AREA)
- Computing Systems (AREA)
- Multimedia (AREA)
- Human Computer Interaction (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Studio Devices (AREA)
- Image Processing (AREA)
Abstract
本申请实施例公开了一种图像处理方法及相关产品,该方法包括:获取目标图像集,所述目标图像集中包含N张图像,所述N为大于1的整数;获取所述N张图像中每一图像对应的拍摄参数,得到所述N组拍摄参数集,每一拍摄参数集对应多个拍摄参数;对所述N组拍摄参数集进行合成,得到M个目标拍摄参数集,所述M为小于所述N的正整数。采用本申请实施例可获取用户感兴趣的图像,并通过对其拍摄参数进行合成,得到针对具体场景的拍摄参数,如此,可以自适应获取拍摄参数,容易拍出用户喜好的图像。
Description
本申请要求2017年6月14日递交的发明名称为“图像处理方法及相关产品”的申请号201710448682.6的在先申请优先权,上述在先申请的内容以引入的方式并入本文本中。
本申请涉及电子设备技术领域,具体涉及一种图像处理方法及相关产品。
随着智能手机的大量普及应用,智能手机能够支持的应用越来越多,功能越来越强大,智能手机向着多样化、个性化的方向发展,成为用户生活中不可缺少的电子用品。越来越多的研究表明,软件如何运行以及用户如何使用智能手机,是决定系统能耗和效率的关键要素。
目前,拍照作为智能手机的一项重要应用,深得用户喜爱,由于通常情况下,智能手机拍照不够智能化,往往是智能手机根据默认的设置参数进行拍摄,如此,导致智能手机较难拍出用户喜好的图像。
发明内容
本申请实施例提供了一种图像处理方法及相关产品,可以自适应获取拍摄参数,从而,容易拍出用户喜好的图像。
第一方面,本申请实施例提供一种图像处理方法,包括:
获取目标图像集,所述目标图像集中包含N张图像,所述N为大于1的整数;
获取所述N张图像中每一图像对应的拍摄参数,得到所述N组拍摄参数集,每一拍摄参数集对应多个拍摄参数;
对所述N组拍摄参数集进行合成,得到M个目标拍摄参数集,所述M为小于所述N的正整数。
第二方面,本申请实施例提供了一种图像处理装置,包括:
第一获取单元,用于获取目标图像集,所述目标图像集中包含N张图像, 所述N为大于1的整数;
第二获取单元,用于获取所述N张图像中每一图像对应的拍摄参数,得到所述N组拍摄参数集,每一拍摄参数集对应多个拍摄参数;
合成单元,用于对所述N组拍摄参数集进行合成,得到M个目标拍摄参数集,所述M为小于所述N的正整数。
第三方面,本申请实施例提供了一种电子设备,处理器和存储器;以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置成由所述处理器执行,所述程序包括用于本申请实施例第一方面中所描述的部分或全部步骤的指令。
第四方面,本申请实施例提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如本申请实施例第一方面中所描述的部分或全部步骤。
第五方面,本申请实施例提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如本申请实施例第一方面中所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
实施本申请实施例,具有如下有益效果:
可以看出,本申请实施例中,获取目标图像集,目标图像集中包含N张图像,N为大于1的整数,获取N张图像中每一图像对应的拍摄参数,得到N组拍摄参数集,每一拍摄参数集对应多个拍摄参数,对N组拍摄参数集进行合成,得到M个目标拍摄参数集,M为小于N的正整数,从而,可获取用户感兴趣的图像,并通过对其拍摄参数进行合成,得到针对具体场景的拍摄参数,如此,可以自适应获取拍摄参数,容易拍出用户喜好的图像。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例公开的一种图像处理方法的流程示意图;
图2是本申请实施例公开的一种图像处理方法的又一流程示意图;
图3a是本申请实施例公开的一种图像处理装置的结构示意图;
图3b是本申请实施例公开的图3a所描述的图像处理装置的第一获取单元的结构示意图;
图3c是本申请实施例公开的图3a所描述的图像处理装置的第一获取单元的又一结构示意图;
图3d是本申请实施例公开的图3a所描述的图像处理装置的合成单元的结构示意图;
图3e是本申请实施例公开的图3a所描述的图像处理装置的另一结构示意图;
图4是本申请实施例公开的一种电子设备的结构示意图;
图5是本申请实施例公开的另一种电子设备的结构示意图。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请实施例所涉及到的电子设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(user equipment,UE),移动台(mobile station,MS),终端设备(terminal device)等等。为方便描述,上面提到的设备统称为电子设备。下面对本申请实施例进行详细介绍。
可选地,本申请实施例中的电子设备可安装有人工智能模块(artificial intelligence,AI),该人工智能模块可单独于处理器安装在电子设备中,例如,处理器调用AI模块实现人工智能,当然,也可以与处理器集成在一起,这时候,处理器就相当于AI模块。该人工智能模块可为量子芯片,或者,高密度硅集成电路,AI模块中可存储有机器学习算法,用于对用户使用习惯(例如,收集用户的喜好,喜好的图像)进行训练,以及对用户使用习惯进行深度学习,从而,通过AI模块达到对电子设备进行智能化控制的目的。
请参阅图1,为本申请实施例提供的一种图像处理方法的实施例流程示意图。本实施例中所描述的图像处理方法,包括以下步骤:
101、获取目标图像集,所述目标图像集中包含N张图像,所述N为大于1的整数。
其中,目标图像集中可包含以下图像中的至少一种:用于收藏的图像、用于发朋友圈的图像、用于发送给社交好友的图像、用户多次查看的图像(查看次数大于预设查看次数的图像,预设查看次数可由系统默认或者用户自行设置)等等。目标图像集中可包含N张图像,N为大于1的整数。
可选地,上述步骤101中,获取目标图像集,可包括如下步骤:
A1)、对相册中的每一图像的控制指令进行监控;
A2)、将所述相册中符合预设条件的控制指令对应的图像组成所述目标图像集。
其中,上述控制指令可为以下至少一种:查看指令,发送指令,收藏指令,删除指令,P图指令(对图像进行PS(PhotoShop)处理)等等。因而,可对相册中的每一图像进行监控,例如,用户查看某一图像时,则可监控到对该图像的查看指令,又例如,用户收藏某一图像时,则可监控到对该图像的收藏指令,又例如,用户转发某一图像时,则可监控到对该图像的发送指令。预设条 件可由用户自行设置或者系统默认。例如,预设条件可为控制指令为收藏指令,又例如,预设条件可为控制指令为发送指令。通常情况下,电子设备都有相册,可将相册中符合预设条件的控制指令对应的图像组成目标图像集,如此,可通过用户对照片的操作,分辨出用户喜好的图像。例如,有的用户喜欢鲜艳,则其对鲜艳类型的图像实施收藏或者发朋友圈的概率较大,又例如,有的用户喜欢淡雅,则其对淡雅类型的图像实施收藏或者发朋友圈的概率较大。另外,很多时候,用户不用关心对图像的处理方式,但是,通过对图像的偏好,可得到用户喜欢的色温、白平衡的处理效果。如此,可在一定程度上,折射出用户对图像的喜好。
可选地,上述步骤101中,获取目标图像集,可包括如下步骤:
B1)、对相册中的M张图像中的每一图像进行图像质量评价,得到所述M个图像质量评价值,所述M为大于1的整数;
B2)、从所述M个图像质量评价值中选取大于预设图像质量阈值的图像质量评价值,得到所述N个图像质量评价值,并获取其对应的图像,得到所述目标图像集。
其中,上述M张图像可为预设时间段的所有图像,或者,为电子设备中存储的所有图像。上述预设时间段可由用户自行设置或者系统默认,之所以设置预设时间段,考虑到随着时间的推移,用户的喜好也会改变,例如,现在的喜好,与几年前的喜好会存在一定的差异,为了迎合用户喜好的改变,可预先设置一个预设时间段。上述预设图像质量阈值可由用户自行设置或者系统默认。因而,可对相册中的M张图像中的每一图像进行图像质量评价,得到M个图像质量评价值,M为大于或等于N的整数,再者,从M个图像质量评价值中选取大于预设图像质量阈值的图像质量评价值,得到N个图像质量评价值,并获取其对应的图像,得到所述目标图像集。
进一步地,上述步骤B1中,对相册中的M张图像中的每一图像进行图像质量评价,可采用下述方式:
采用至少一个图像质量评价指标对相册中的M张图像中的每一图像进行图像质量评价。
其中,上述图像质量评价指标可包括但不仅限于:平均灰度、均方差、熵、边缘保持度、信噪比等等,在采用多个图像质量评价值对某一图像进行图像质 量评价时,每一图像质量评价指标也对应一个权重,如此,每一图像质量评价指标对照片进行图像质量评价时,均可得到一个评价结果,最终,进行加权运算,也就得到最终的图像质量评价值。
需要说明的是,由于采用单一评价指标对图像质量进行评价时,具有一定的局限性,因此,可采用多个图像质量评价指标对图像质量进行评价,当然,对图像质量进行评价时,并非图像质量评价指标越多越好,因为图像质量评价指标越多,图像质量评价过程的计算复杂度越高,也不见得图像质量评价效果越好,因此,在对图像质量评价要求较高的情况下,可采用2~10个图像质量评价指标对图像质量进行评价。具体地,选取图像质量评价指标的个数及哪个指标,依据具体实现情况而定。当然,也得结合具体地场景选取图像质量评价指标,在暗环境下进行图像质量评价和亮环境下进行图像质量评价选取的图像质量指标可不一样。
可选地,在对图像质量评价精度要求不高的情况下,可用一个图像质量评价指标进行评价,例如,以熵对待处理图像进行图像质量评价值,可认为熵越大,则说明图像质量越好,相反地,熵越小,则说明图像质量越差。
可选地,在对图像质量评价精度要求较高的情况下,可以采用多个图像质量评价指标对图像进行评价,在多个图像质量评价指标对图像进行图像质量评价时,可设置该多个图像质量评价指标中每一图像质量评价指标的权重,可得到多个图像质量评价值,根据该多个图像质量评价值及其对应的权重可得到最终的图像质量评价值,例如,三个图像质量评价指标分别为:A指标、B指标和C指标,A的权重为a1,B的权重为a2,C的权重为a3,采用A、B和C对某一图像进行图像质量评价时,A对应的图像质量评价值为b1,B对应的图像质量评价值为b2,C对应的图像质量评价值为b3,那么,最后的图像质量评价值=a1b1+a2b2+a3b3。通常情况下,图像质量评价值越大,说明图像质量越好。
102、获取所述N张图像中每一图像对应的拍摄参数,得到所述N组拍摄参数集,每一拍摄参数集对应多个拍摄参数。
其中,N张图像中每一图像对应多个拍摄参数,该多个拍摄参数可理解为一个拍摄参数集,于是,N张图像可得到N组拍摄参数集。
可选地,拍摄参数为拍照时候,调节摄像头或者处理拍照图像的参数或者 环境参数,拍摄参数可包括但不仅限于:感光度ISO值、曝光时长、焦距、白平衡参数、光通量、环境亮度、天气、海拔、地理位置、防抖参数等等。当然,每一图像对应的拍摄参数个数也可以不一样,例如,有的时候拍照需要闪光灯,有的时候拍照不需要闪光灯。其中,曝光时长为:从快门打开到关闭的时间间隔,在这一段时间内,物体可以在底片上留下影像。感光度ISO值是用数字表示对光线的敏感度,ISO感光度越高,表示对光线的敏感度越强。高ISO感光度适合拍摄低光照及运动物体,但是图像可能包含噪点并且显得颗粒感增大,低ISO感光度虽然不适合拍摄低光照及运动物体,但图像更细腻。光通量是指按照国际规定的标准人眼视觉特性评价的辐射通量的导出量,具体地,光通量(luminous flux)指人眼所能感觉到的辐射功率,它等于单位时间内某一波段的辐射能量和该波段的相对视见率的乘积,由于人眼对不同波长光的相对视见率不同,所以不同波长光的辐射功率相等时,其光通量并不相等,当然,在亮光环境情况下,光通量较小,在弱光环境下,光通量较大。白平衡参数用来调节白平衡效果的参数。
103、对所述N组拍摄参数集进行合成,得到M个目标拍摄参数集,所述M为小于所述N的正整数。
其中,N组拍摄参数集分别针对N张不同的图像而言,因而,可对N组拍摄参数集进行合成处理,其目的在于,得到可针对某一类图像的拍摄参数集,即,每一拍摄参数集对应一个场景,得到M个目标拍摄参数集,M为小于或等于N的正整数。
可选地,上述步骤103中,对所述N组拍摄参数集进行合成,得到M个目标拍摄参数集,包括:
31)、获取所述N组拍摄参数集中每一组拍摄参数集对应的环境亮度,得到所述N个环境亮度值;
32)、将所述N个环境亮度值进行亮度等级划分,并获取每一亮度等级对应的拍摄参数集,得到所述M个集合;
33)、对所述M个集合中每一集合对应的拍摄参数集进行合成,得到所述M个目标拍摄参数集。
其中,可获取N组拍摄参数集中每一组拍摄参数集对应的环境亮度,可得到N个环境亮度值,可对该N个环境亮度值进行亮度等级划分,并获取每 一亮度等级对应的拍摄参数集,于是得到M个集合,对M个集合中的每一集合对应的拍摄参数集进行合成,可得到M个目标拍摄参数集。如此,可得到每一亮度等级对应的拍摄参数集,于是,在检测到环境亮度处于某个亮度等级,则可调用相应的拍摄参数集进行拍摄。
可选地,上述步骤33,对所述M个集合中每一集合对应的拍摄参数集进行合成,得到所述M个目标拍摄参数集,可按照如下方式执行:
对集合i中K组拍摄参数集中每一拍摄参数进行线性拟合,得到多个拟合拍摄参数,将其组成所述集合i为对应的目标拍摄参数集,所述集合i为所述M个集合中的任一个,所述K为正整数。
其中,对于M个集合中的每一集合而言,其包含多组拍摄参数集,每一拍摄参数集包含多个拍摄参数,于是,可对每一集合中的多组拍摄参数集进行线性拟合,得到多个拟合拍摄参数,该多个拟合拍摄参数则构成该每一集合对应的目标拍摄参数集。
可以看出,上述本申请实施例中,获取目标图像集,目标图像集中包含N张图像,N为大于1的整数,获取N张图像中每一图像对应的拍摄参数,得到N组拍摄参数集,每一拍摄参数集对应多个拍摄参数,对N组拍摄参数集进行合成,得到M个目标拍摄参数集,M为小于N的正整数,从而,可根据用户对图像的使用情况或者图像质量评价,得到认为好的图像,并对这些图像对应的拍摄参数进行合成,得到针对具体场景的拍摄参数,如此,可以自适应获取拍摄参数,容易拍出用户喜好的图像。
请参阅图2,为本申请实施例提供的一种图像推荐方法的实施例流程示意图。本实施例中所描述的图像推荐方法,包括以下步骤:
201、获取目标图像集,所述目标图像集中包含N张图像,所述N为大于1的整数。
202、获取所述N张图像中每一图像对应的拍摄参数,得到所述N组拍摄参数集,每一拍摄参数集对应多个拍摄参数。
203、对所述N组拍摄参数集进行合成,得到M个目标拍摄参数集,所述M为小于所述N的正整数。
其中,上述步骤201-步骤203可参照图1所描述的图像处理方法的相应步 骤,在此不再赘述。
204、在接收到拍照指令时,获取当前环境参数。
其中,当前环境参数可包括但不仅限于:环境亮度、天气、地理位置等等,在接收到拍照指令之后,可获取当前环境参数。例如,环境亮度可由电子设备自带的环境光传感器检测到,天气可由电子设备的天气应用获取,地理位置可由电子设备进行定位得到。
205、根据所述当前环境参数从所述M个目标拍摄参数集中选取一组目标拍摄参数集,并根据该目标拍照参数集进行拍照。
其中,不同的环境参数对应不同的目标拍摄参数集,可根据当前环境参数获取与之对应的目标拍摄参数集,并根据该目标拍摄参数集进行拍照。
可以看出,本申请实施例中,获取目标图像集,目标图像集中包含N张图像,N为大于1的整数,获取N张图像中每一图像对应的拍摄参数,得到N组拍摄参数集,每一拍摄参数集对应多个拍摄参数,对N组拍摄参数集进行合成,得到M个目标拍摄参数集,M为小于N的正整数,进而,可在接收到拍照指令的情况下,获取环境参数对应的拍摄参数集进行拍照,从而,可获取用户感兴趣的图像,并通过对其拍摄参数进行合成,得到针对具体场景的拍摄参数,并选取与环境对应的拍摄参数进行拍照,可得到与环境相宜的照片,如此,可以自适应获取拍摄参数,容易拍出用户喜好的图像。
请参阅图3a,图3a是本实施例提供的一种图像处理装置的结构示意图。该图像处理装置应用于电子设备,所述图像处理装置包括第一获取单元301、第二获取单元302和合成单元303,具体如下:
第一获取单元301,用于获取目标图像集,所述目标图像集中包含N张图像,所述N为大于1的整数;
第二获取单元302,用于获取所述N张图像中每一图像对应的拍摄参数,得到所述N组拍摄参数集,每一拍摄参数集对应多个拍摄参数;
合成单元303,用于对所述N组拍摄参数集进行合成,得到M个目标拍摄参数集,所述M为小于所述N的正整数。
可选地,如图3b,图3b为图3a中所描述的图像处理装置的第一获取单元301的具体细化结构,所述第一获取单元301可包括:监控模块3011和第 一获取模块3012,具体如下:
监控模块3011,用于对相册中的每一图像的控制指令进行监控;
第一获取模块3012,用于将所述相册中符合预设条件的控制指令对应的图像组成所述目标图像集。
可选地,如图3c,图3c为图3a中所描述的图像处理装置的第一获取单元301的具体细化结构,所述第一获取单元301可包括:评价模块3013和选取模块3014,具体如下:
评价模块3013,用于对相册中的M张图像中的每一图像进行图像质量评价,得到所述M个图像质量评价值,所述M为大于或等于N的整数;
选取模块3014,用于从所述M个图像质量评价值中选取大于预设图像质量阈值的图像质量评价值,得到所述N个图像质量评价值,并获取其对应的图像,得到所述目标图像集。
可选地,如图3d,图3d为图3a中所描述的图像处理装置的合成单元303的具体细化结构,所述合成单元303可包括:第二获取模块3031、划分模块3032和合成模块3033,具体如下:
第二获取模块3031,用于获取所述N组拍摄参数集中每一组拍摄参数集对应的环境亮度,得到所述N个环境亮度值;
划分模块3032,用于将所述N个环境亮度值进行亮度等级划分,并获取每一亮度等级对应的拍摄参数集,得到所述M个集合;
合成模块3033,用于对所述M个集合中每一集合对应的拍摄参数集进行合成,得到所述M个目标拍摄参数集。
可选地,所述合成模块3033具体用于:
对集合i中K组拍摄参数集中每一拍摄参数进行线性拟合,得到多个拟合拍摄参数,将其组成所述集合i为对应的目标拍摄参数集,所述集合i为所述M个集合中的任一个,所述K为正整数。
可选地,如图3e,图3e为图3a中所描述的图像处理装置的又一变型结构,其与图3a所描述的图像处理装置相比较,其还可以包括:接收单元304和拍照单元305,具体如下:
接收单元304,用于在所述合成单元303对所述N组拍摄参数集进行合成,得到M个目标拍摄参数集之后,在接收到拍照指令时,获取当前环境参数;
拍照单元305,用于根据所述当前环境参数从所述M个目标拍摄参数集中选取一组目标拍摄参数集,并根据该目标拍照参数集进行拍照。
可以理解的是,本实施例的图像处理装置的各程序模块的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
请参阅图4,图4是本申请实施例提供的一种电子设备,包括:处理器和存储器;以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置成由所述处理器执行,所述程序包括用于执行以下步骤的指令;
获取目标图像集,所述目标图像集中包含N张图像,所述N为大于1的整数;
获取所述N张图像中每一图像对应的拍摄参数,得到所述N组拍摄参数集,每一拍摄参数集对应多个拍摄参数;
对所述N组拍摄参数集进行合成,得到M个目标拍摄参数集,所述M为小于所述N的正整数。
在一个可能的示例中,在所述获取目标图像集方面,所述程序中的指令具体用于执行以下步骤:
对相册中的每一图像的控制指令进行监控;
将所述相册中符合预设条件的控制指令对应的图像组成所述目标图像集。
在一个可能的示例中,在所述获取目标图像集方面,所述程序中的指令具体用于执行以下步骤:
对相册中的M张图像中的每一图像进行图像质量评价,得到所述M个图像质量评价值,所述M为大于或等于N的整数;
从所述M个图像质量评价值中选取大于预设图像质量阈值的图像质量评价值,得到所述N个图像质量评价值,并获取其对应的图像,得到所述目标图像集。
在一个可能的示例中,在所述对所述N组拍摄参数集进行合成,得到M个目标拍摄参数集方面,所述程序中的指令具体用于执行以下步骤:
获取所述N组拍摄参数集中每一组拍摄参数集对应的环境亮度,得到所述N个环境亮度值;
将所述N个环境亮度值进行亮度等级划分,并获取每一亮度等级对应的拍摄参数集,得到所述M个集合;
对所述M个集合中每一集合对应的拍摄参数集进行合成,得到所述M个目标拍摄参数集。
在一个可能的示例中,在所述对所述M个集合中每一集合对应的拍摄参数集进行合成,得到所述M个目标拍摄参数集方面,所述程序中的指令具体用于执行以下步骤:
对集合i中K组拍摄参数集中每一拍摄参数进行线性拟合,得到多个拟合拍摄参数,将其组成所述集合i为对应的目标拍摄参数集,所述集合i为所述M个集合中的任一个,所述K为正整数;
在一个可能的示例中,在所述对所述N组拍摄参数集进行合成,得到M个目标拍摄参数集方面之后,所述程序中的指令具体还用于执行以下步骤:
在接收到拍照指令时,获取当前环境参数;
根据所述当前环境参数从所述M个目标拍摄参数集中选取一组目标拍摄参数集,并根据该目标拍照参数集进行拍照。
本申请实施例还提供了另一种电子设备,如图5所示,为了便于说明,仅示出了与本申请实施例相关的部分,具体技术细节未揭示的,请参照本申请实施例方法部分。该电子设备可以为包括手机、平板电脑、PDA(Personal Digital Assistant,个人数字助理)、POS(Point of Sales,销售终端)、车载电脑等任意终端设备,以电子设备为手机为例:
图5示出的是与本申请实施例提供的电子设备相关的手机的部分结构的框图。参考图5,手机包括:射频(Radio Frequency,RF)电路910、存储器920、输入单元930、传感器950、音频电路960、无线保真(wireless fidelity,WiFi)模块970、处理器980、以及电源990等部件。本领域技术人员可以理解,图5中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图5对手机的各个构成部件进行具体的介绍:
输入单元930可用于接收输入的数字或字符信息,以及产生与手机的用户 设置以及功能控制有关的键信号输入。具体地,输入单元930可包括触控显示屏933、生物识别装置931以及其他输入设备932。生物识别装置931可为人脸识别装置、虹膜识别装置或者指纹识别装置。输入单元930还可以包括其他输入设备932。具体地,其他输入设备932可以包括但不限于物理按键、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。其中,所述处理器980获取目标图像集,所述目标图像集中包含N张图像,所述N为大于1的整数;获取所述N张图像中每一图像对应的拍摄参数,得到所述N组拍摄参数集,每一拍摄参数集对应多个拍摄参数;对所述N组拍摄参数集进行合成,得到M个目标拍摄参数集,所述M为小于所述N的正整数。
处理器980是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器920内的软件程序和/或模块,以及调用存储在存储器920内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器980可包括一个或多个处理单元;可选的,处理器980可集成处理器和调制解调处理器,其中,处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器980中。
此外,存储器920可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。RF电路910可用于信息的接收和发送。通常,RF电路910包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(low noise amplifier,LNA)、双工器等。此外,RF电路910还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(global system of mobile communication,GSM)、通用分组无线服务(general packet radio service,GPRS)、码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、长期演进(long term evolution,LTE)、电子邮件、短消息服务(short messaging service,SMS)等。
手机还可包括至少一种传感器950,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光 传感器可根据环境光线的明暗来调节触控显示屏的亮度,接近传感器可在手机移动到耳边时,关闭触控显示屏和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路960、扬声器961,传声器962可提供用户与手机之间的音频接口。音频电路960可将接收到的音频数据转换后的电信号,传输到扬声器961,由扬声器961转换为声音信号播放;另一方面,传声器962将收集的声音信号转换为电信号,由音频电路960接收后转换为音频数据,再将音频数据播放处理器980处理后,经RF电路910以发送给比如另一手机,或者将音频数据播放至存储器920以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块970可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图5示出了WiFi模块970,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
手机还包括给各个部件供电的电源990(比如电池),可选的,电源可以通过电源管理系统与处理器980逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管未示出,手机还可以包括摄像头、蓝牙模块等,在此不再赘述。
前述图1~图2所示的实施例中,各步骤方法流程可以基于该手机的结构实现。
前述图3a~图3e、以及图4所示的实施例中,各单元功能可以基于该手机的结构实现。
本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质存储用于电子数据交换的计算机程序,该计算机程序使得计算机执行如上述方法实施例中记载的任何一种图像处理方法的部分或全部步骤。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计 算机执行如上述方法实施例中记载的任何一种图像处理方法的部分或全部步骤。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于可选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。
所述集成的单元如果以软件程序模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储 器包括:U盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、只读存储器、随机存取器、磁盘或光盘等。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。
Claims (20)
- 一种图像处理方法,其特征在于,包括:获取目标图像集,所述目标图像集中包含N张图像,所述N为大于1的整数;获取所述N张图像中每一图像对应的拍摄参数,得到所述N组拍摄参数集,每一拍摄参数集对应多个拍摄参数;对所述N组拍摄参数集进行合成,得到M个目标拍摄参数集,所述M为小于所述N的正整数。
- 根据权利要求1所述的方法,其特征在于,所述获取目标图像集,包括:对相册中的每一图像的控制指令进行监控;将所述相册中符合预设条件的控制指令对应的图像组成所述目标图像集。
- 根据权利要求1所述的方法,其特征在于,所述获取目标图像集,包括:对相册中的M张图像中的每一图像进行图像质量评价,得到所述M个图像质量评价值,所述M为大于或等于N的整数;从所述M个图像质量评价值中选取大于预设图像质量阈值的图像质量评价值,得到所述N个图像质量评价值,并获取其对应的图像,得到所述目标图像集。
- 根据权利要求3所述的方法,其特征在于,所述对相册中的M张图像中的每一图像进行图像质量评价,包括:采用至少一个图像质量评价指标对相册中的M张图像中的每一图像进行图像质量评价。
- 根据权利要求1至4任一项所述的方法,其特征在于,所述对所述N组拍摄参数集进行合成,得到M个目标拍摄参数集,包括:获取所述N组拍摄参数集中每一组拍摄参数集对应的环境亮度,得到所述N个环境亮度值;将所述N个环境亮度值进行亮度等级划分,并获取每一亮度等级对应的 拍摄参数集,得到所述M个集合;对所述M个集合中每一集合对应的拍摄参数集进行合成,得到所述M个目标拍摄参数集。
- 根据权利要求5所述的方法,其特征在于,所述对所述M个集合中每一集合对应的拍摄参数集进行合成,得到所述M个目标拍摄参数集,包括:对集合i中K组拍摄参数集中每一拍摄参数进行线性拟合,得到多个拟合拍摄参数,将其组成所述集合i为对应的目标拍摄参数集,所述集合i为所述M个集合中的任一个,所述K为正整数。
- 根据权利要求1至6任一项所述的方法,其特征在于,在所述对所述N组拍摄参数集进行合成,得到M个目标拍摄参数集之后,所述方法还包括:在接收到拍照指令时,获取当前环境参数;根据所述当前环境参数从所述M个目标拍摄参数集中选取一组目标拍摄参数集,并根据该目标拍照参数集进行拍照。
- 根据权利要求7所述的方法,其特征在于,所述当前环境参数为以下至少一种:环境亮度、天气、地理位置。
- 根据权利要求1至8任一项所述的方法,其特征在于,所述拍摄参数为以下至少一种:感光度ISO值、曝光时长、焦距、白平衡参数、光通量、环境亮度、天气、海拔、地理位置、防抖参数。
- 一种图像处理装置,其特征在于,包括:第一获取单元,用于获取目标图像集,所述目标图像集中包含N张图像,所述N为大于1的整数;第二获取单元,用于获取所述N张图像中每一图像对应的拍摄参数,得到所述N组拍摄参数集,每一拍摄参数集对应多个拍摄参数;合成单元,用于对所述N组拍摄参数集进行合成,得到M个目标拍摄参数集,所述M为小于所述N的正整数。
- 根据权利要求10所述的装置,其特征在于,所述第一获取单元包括:监控模块,用于对相册中的每一图像的控制指令进行监控;第一获取模块,用于将所述相册中符合预设条件的控制指令对应的图像组成所述目标图像集。
- 根据权利要求10所述的装置,其特征在于,所述第一获取单元包括:评价模块,用于对相册中的M张图像中的每一图像进行图像质量评价,得到所述M个图像质量评价值,所述M为大于或等于N的整数;选取模块,用于从所述M个图像质量评价值中选取大于预设图像质量阈值的图像质量评价值,得到所述N个图像质量评价值,并获取其对应的图像,得到所述目标图像集。
- 根据权利要求12所述的装置,其特征在于,所述评价模块具体用于:采用至少一个图像质量评价指标对相册中的M张图像中的每一图像进行图像质量评价。
- 根据权利要求10至13任一项所述的装置,其特征在于,所述合成单元包括:第二获取模块,用于获取所述N组拍摄参数集中每一组拍摄参数集对应的环境亮度,得到所述N个环境亮度值;划分模块,用于将所述N个环境亮度值进行亮度等级划分,并获取每一亮度等级对应的拍摄参数集,得到所述M个集合;合成模块,用于对所述M个集合中每一集合对应的拍摄参数集进行合成,得到所述M个目标拍摄参数集。
- 根据权利要求14所述的装置,其特征在于,所述合成模块具体用于:对集合i中K组拍摄参数集中每一拍摄参数进行线性拟合,得到多个拟合拍摄参数,将其组成所述集合i为对应的目标拍摄参数集,所述集合i为所述M个集合中的任一个,所述K为正整数。
- 根据权利要求10至15任一项所述的装置,其特征在于,所述装置还包括:接收单元,用于在所述对所述N组拍摄参数集进行合成,得到M个目标拍摄参数集之后,在接收到拍照指令时,获取当前环境参数;拍照单元,用于根据所述当前环境参数从所述M个目标拍摄参数集中选取一组目标拍摄参数集,并根据该目标拍照参数集进行拍照。
- 根据权利要求10至16任一项所述的装置,其特征在于,所述拍摄参数为以下至少一种:感光度ISO值、曝光时长、焦距、白平衡参数、光通量、 环境亮度、天气、海拔、地理位置、防抖参数。
- 一种电子设备,其特征在于,包括:处理器和存储器;以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置成由所述处理器执行,所述程序包括用于执行如权利要求1-9任一项所描述的方法的指令。
- 一种计算机可读存储介质,其特征在于,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-9任一项所述的方法。
- 一种计算机程序产品,其特征在于,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如权利要求1-9任一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710448682.6A CN107332981B (zh) | 2017-06-14 | 2017-06-14 | 图像处理方法及相关产品 |
CN201710448682.6 | 2017-06-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018228168A1 true WO2018228168A1 (zh) | 2018-12-20 |
Family
ID=60195081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/088452 WO2018228168A1 (zh) | 2017-06-14 | 2018-05-25 | 图像处理方法及相关产品 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107332981B (zh) |
WO (1) | WO2018228168A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111104910A (zh) * | 2019-12-20 | 2020-05-05 | 上海寒武纪信息科技有限公司 | 垃圾投递行为监督方法及相关产品 |
CN111125399A (zh) * | 2019-12-20 | 2020-05-08 | 维沃移动通信有限公司 | 图片选择方法及电子设备 |
CN111143703A (zh) * | 2019-12-19 | 2020-05-12 | 上海寒武纪信息科技有限公司 | 智能线路推荐方法及相关产品 |
CN112749722A (zh) * | 2019-10-31 | 2021-05-04 | 深圳云天励飞技术有限公司 | 一种模型分发管理方法及其相关产品 |
CN114938427A (zh) * | 2022-05-12 | 2022-08-23 | 北京字跳网络技术有限公司 | 媒体内容的拍摄方法、装置、设备、存储介质和程序产品 |
CN116033285A (zh) * | 2022-12-27 | 2023-04-28 | 芯原微电子(上海)股份有限公司 | 调试参数确定方法、装置、电子设备及存储介质 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107332981B (zh) * | 2017-06-14 | 2019-07-19 | Oppo广东移动通信有限公司 | 图像处理方法及相关产品 |
CN108322648B (zh) * | 2018-02-02 | 2020-06-30 | Oppo广东移动通信有限公司 | 图像处理方法和装置、电子设备、计算机可读存储介质 |
CN108989555B (zh) * | 2018-07-10 | 2021-06-04 | Oppo广东移动通信有限公司 | 图像处理方法及相关产品 |
CN112840635A (zh) | 2018-10-15 | 2021-05-25 | 华为技术有限公司 | 智能拍照方法、系统及相关装置 |
CN112308815B (zh) * | 2019-07-31 | 2024-10-01 | 北京金山云网络技术有限公司 | 图像显示方法、装置、服务器、客户端及可读存储介质 |
CN110995999A (zh) * | 2019-12-12 | 2020-04-10 | 北京小米智能科技有限公司 | 动态照片拍摄方法及装置 |
CN111327824B (zh) * | 2020-03-02 | 2022-04-22 | Oppo广东移动通信有限公司 | 拍摄参数的选择方法、装置、存储介质及电子设备 |
CN111782845A (zh) * | 2020-08-17 | 2020-10-16 | Oppo(重庆)智能科技有限公司 | 一种图像调整方法、图像调整装置及移动终端 |
CN114041769A (zh) * | 2021-11-25 | 2022-02-15 | 深圳市商汤科技有限公司 | 心率测量方法及装置、电子设备及计算机可读存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105578027A (zh) * | 2015-07-28 | 2016-05-11 | 宇龙计算机通信科技(深圳)有限公司 | 一种拍照方法及装置 |
WO2016123415A1 (en) * | 2015-01-30 | 2016-08-04 | Microsoft Technology Licensing, Llc | Automatic processing of automatic image capture parameter adjustment |
CN106454097A (zh) * | 2016-10-29 | 2017-02-22 | 深圳市金立通信设备有限公司 | 一种拍照方法及拍照设备 |
CN106686301A (zh) * | 2016-12-01 | 2017-05-17 | 努比亚技术有限公司 | 照片拍摄方法及装置 |
CN107332981A (zh) * | 2017-06-14 | 2017-11-07 | 广东欧珀移动通信有限公司 | 图像处理方法及相关产品 |
CN107395956A (zh) * | 2017-06-29 | 2017-11-24 | 维沃移动通信有限公司 | 确定拍摄参数的方法、移动终端及计算机可读存储介质 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4395619B2 (ja) * | 2005-01-24 | 2010-01-13 | カシオ計算機株式会社 | 撮像装置、撮影条件設定方法、及び、プログラム |
CN104427238A (zh) * | 2013-09-06 | 2015-03-18 | 联想(北京)有限公司 | 一种信息处理方法及电子设备 |
CN104092934A (zh) * | 2014-05-30 | 2014-10-08 | 西安中兴新软件有限责任公司 | 一种设置拍摄参数的方法、装置及终端 |
CN106357983A (zh) * | 2016-11-15 | 2017-01-25 | 上海传英信息技术有限公司 | 拍摄参数调整方法及用户终端 |
-
2017
- 2017-06-14 CN CN201710448682.6A patent/CN107332981B/zh not_active Expired - Fee Related
-
2018
- 2018-05-25 WO PCT/CN2018/088452 patent/WO2018228168A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016123415A1 (en) * | 2015-01-30 | 2016-08-04 | Microsoft Technology Licensing, Llc | Automatic processing of automatic image capture parameter adjustment |
CN105578027A (zh) * | 2015-07-28 | 2016-05-11 | 宇龙计算机通信科技(深圳)有限公司 | 一种拍照方法及装置 |
CN106454097A (zh) * | 2016-10-29 | 2017-02-22 | 深圳市金立通信设备有限公司 | 一种拍照方法及拍照设备 |
CN106686301A (zh) * | 2016-12-01 | 2017-05-17 | 努比亚技术有限公司 | 照片拍摄方法及装置 |
CN107332981A (zh) * | 2017-06-14 | 2017-11-07 | 广东欧珀移动通信有限公司 | 图像处理方法及相关产品 |
CN107395956A (zh) * | 2017-06-29 | 2017-11-24 | 维沃移动通信有限公司 | 确定拍摄参数的方法、移动终端及计算机可读存储介质 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112749722A (zh) * | 2019-10-31 | 2021-05-04 | 深圳云天励飞技术有限公司 | 一种模型分发管理方法及其相关产品 |
CN112749722B (zh) * | 2019-10-31 | 2023-11-17 | 深圳云天励飞技术有限公司 | 一种模型分发管理方法及其相关产品 |
CN111143703A (zh) * | 2019-12-19 | 2020-05-12 | 上海寒武纪信息科技有限公司 | 智能线路推荐方法及相关产品 |
CN111143703B (zh) * | 2019-12-19 | 2023-05-23 | 上海寒武纪信息科技有限公司 | 智能线路推荐方法及相关产品 |
CN111104910A (zh) * | 2019-12-20 | 2020-05-05 | 上海寒武纪信息科技有限公司 | 垃圾投递行为监督方法及相关产品 |
CN111125399A (zh) * | 2019-12-20 | 2020-05-08 | 维沃移动通信有限公司 | 图片选择方法及电子设备 |
CN111104910B (zh) * | 2019-12-20 | 2023-05-23 | 上海寒武纪信息科技有限公司 | 垃圾投递行为监督方法及相关产品 |
CN111125399B (zh) * | 2019-12-20 | 2024-03-19 | 维沃移动通信有限公司 | 图片选择方法及电子设备 |
CN114938427A (zh) * | 2022-05-12 | 2022-08-23 | 北京字跳网络技术有限公司 | 媒体内容的拍摄方法、装置、设备、存储介质和程序产品 |
CN114938427B (zh) * | 2022-05-12 | 2024-03-12 | 北京字跳网络技术有限公司 | 媒体内容的拍摄方法、装置、设备、存储介质和程序产品 |
CN116033285A (zh) * | 2022-12-27 | 2023-04-28 | 芯原微电子(上海)股份有限公司 | 调试参数确定方法、装置、电子设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN107332981A (zh) | 2017-11-07 |
CN107332981B (zh) | 2019-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018228168A1 (zh) | 图像处理方法及相关产品 | |
CN107566529B (zh) | 一种拍照方法、移动终端及云端服务器 | |
CN107273510B (zh) | 照片推荐方法及相关产品 | |
CN109361865B (zh) | 一种拍摄方法及终端 | |
CN107613191B (zh) | 一种拍照方法、设备及计算机可读存储介质 | |
TWI656509B (zh) | 影像處理方法及相關產品 | |
KR101906827B1 (ko) | 연속 사진 촬영 장치 및 방법 | |
CN109040643B (zh) | 移动终端及远程合影的方法、装置 | |
CN108605085B (zh) | 一种获取拍摄参考数据的方法、移动终端 | |
WO2019020014A1 (zh) | 解锁控制方法及相关产品 | |
CN108495056A (zh) | 拍照方法、移动终端及计算机可读存储介质 | |
CN107633235B (zh) | 解锁控制方法及相关产品 | |
JP2016531362A (ja) | 肌色調整方法、肌色調整装置、プログラム及び記録媒体 | |
CN107644219B (zh) | 人脸注册方法及相关产品 | |
CN107205116B (zh) | 图像选择方法、移动终端、图像选择装置及计算机可读存储介质 | |
CN110248254A (zh) | 显示控制方法及相关产品 | |
WO2019129020A1 (zh) | 一种摄像头自动调焦方法、存储设备及移动终端 | |
CN108307106B (zh) | 一种图像处理方法、装置及移动终端 | |
CN108200421B (zh) | 一种白平衡处理方法、终端和计算机可读存储介质 | |
CN109788204A (zh) | 拍摄处理方法及终端设备 | |
CN108848309B (zh) | 一种相机程序启动方法及移动终端 | |
CN108564915B (zh) | 亮度调整方法及相关产品 | |
CN108156393A (zh) | 图像拍摄方法、移动终端及计算机可读存储介质 | |
CN109743506A (zh) | 一种图像拍摄方法及终端设备 | |
KR20160127606A (ko) | 이동 단말기 및 그 제어 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18818467 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18818467 Country of ref document: EP Kind code of ref document: A1 |