[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018225305A1 - エンジン冷却システム - Google Patents

エンジン冷却システム Download PDF

Info

Publication number
WO2018225305A1
WO2018225305A1 PCT/JP2018/006237 JP2018006237W WO2018225305A1 WO 2018225305 A1 WO2018225305 A1 WO 2018225305A1 JP 2018006237 W JP2018006237 W JP 2018006237W WO 2018225305 A1 WO2018225305 A1 WO 2018225305A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
temperature
sub
sub heat
Prior art date
Application number
PCT/JP2018/006237
Other languages
English (en)
French (fr)
Inventor
石田 哲朗
井上 隆
増次 足立
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to JP2019523340A priority Critical patent/JPWO2018225305A1/ja
Priority to EP18812787.2A priority patent/EP3636893A4/en
Publication of WO2018225305A1 publication Critical patent/WO2018225305A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2037/00Controlling
    • F01P2037/02Controlling starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/02Intercooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • F01P2060/045Lubricant cooler for transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/16Outlet manifold

Definitions

  • the present invention relates to an engine cooling system including a liquid cooling type cooling device that cools a cooling target portion of an engine with a refrigerant.
  • Vehicles equipped with various engines such as gasoline engines and diesel engines are provided with a water-cooled cooling device that cools the engine body around the cylinder by circulating cooling water as a refrigerant.
  • cooling water is supplied to a space such as a water jacket provided in a cylinder block by a pump device called a water pump, and fuel in the cylinder is supplied by the cooling water. Excessive temperature rise of the engine body due to combustion is suppressed.
  • the cooling water is cooled by a refrigerant cooling heat exchanger such as a radiator, and then circulates again to the engine body via the pump device.
  • control is performed to promote engine warm-up by switching the flow path of the cooling water in accordance with the temperature of the cooling water (for example, see Patent Document 1 below).
  • Patent Document 1 includes an exhaust gas recirculation device that recirculates a part of exhaust gas as exhaust gas recirculation gas to the intake air, and cools the exhaust gas recirculation gas with cooling water for cooling the engine body.
  • a water-cooled exhaust gas recirculation cooler is provided.
  • a sub-radiator which is a refrigerant cooling heat exchanger different from the radiator, is arranged in front of the radiator arranged to lower the temperature of the cooling water.
  • the control is performed so that the thermostat is closed and the cooling water is not circulated through the engine.
  • the thermostat is opened so that the cooling water is circulated through the engine and only the radiator is used to cool the cooling water, and the temperature of the cooling water is higher.
  • the control is selectively performed using only the sub-radiator disposed in front of the radiator.
  • the present invention is to avoid the hindrance to the temperature rise caused by the low temperature refrigerant flowing into the engine when it is desired to promote the temperature rise during the warm-up operation of the engine.
  • the present invention provides a pump device that sends out a refrigerant, an engine cooling target that is cooled by heat exchange with the refrigerant, a radiator that cools the refrigerant, the pump device, and the A refrigerant circulation circuit for connecting the object to be cooled and the radiator to circulate the refrigerant; a sub refrigerant circulation circuit including a sub heat exchanger to which the refrigerant is supplied and having a heat exchange performance lower than that of the radiator; and the object to be cooled Refrigerant temperature acquisition means for acquiring information correlated with the temperature of the refrigerant in the case where the temperature of the refrigerant is less than a first predetermined value during warm-up operation, to the radiator and the sub heat exchanger
  • the supply of the refrigerant is suppressed, and the temperature of the refrigerant rises and the temperature of the refrigerant becomes equal to or higher than a first predetermined value, the supply of the refrigerant is canceled and the
  • the supply of the refrigerant to the radiator is stopped and the sub heat exchanger
  • An engine cooling system is used that supplies refrigerant and supplies the refrigerant to the radiator when the temperature of the refrigerant is equal to or higher than the second predetermined value.
  • the sub heat exchanger can adopt a configuration in which the amount of refrigerant flowing out from the sub heat exchanger per unit time is smaller than the radiator.
  • the sub heat exchanger employs a configuration in which the temperature of the refrigerant after being dissipated through the sub heat exchanger is higher than the temperature of the refrigerant after passing through the radiator. can do.
  • the sub refrigerant circulation circuit includes, as the sub heat exchanger, a first type sub heat exchanger that raises the temperature of the refrigerant and a second type sub heat exchanger that lowers the temperature of the refrigerant,
  • the first type sub heat exchanger When supplying the refrigerant to the exchanger, if the temperature of the refrigerant is less than a third predetermined value set between the first predetermined value and the second predetermined value, the first type sub heat exchanger The refrigerant is supplied to the second-type sub heat exchanger, the supply of the refrigerant to the second-type sub heat exchanger is stopped, and when the refrigerant temperature is equal to or higher than the third predetermined value, the second-type sub-heat exchanger is supplied.
  • coolant of this can be employ
  • the sub refrigerant circulation circuit includes a small capacity sub heat exchanger having a relatively low cooling performance and a large capacity sub heat exchanger having a relatively high cooling performance as the sub heat exchanger for lowering the temperature of the refrigerant.
  • the temperature of the refrigerant is less than a fourth predetermined value set between the first predetermined value and the second predetermined value
  • the refrigerant is supplied to the small-capacity sub heat exchanger and the supply of the refrigerant to the large-capacity sub heat exchanger is stopped, and the temperature of the refrigerant is equal to or higher than the fourth predetermined value.
  • a configuration for supplying the refrigerant to the large-capacity sub heat exchanger can be adopted.
  • the engine includes an exhaust gas recirculation device that recirculates a part of the exhaust gas to the intake air as exhaust gas recirculation gas, and the exhaust gas recirculation device cools the exhaust gas recirculation gas with the refrigerant.
  • An exhaust gas recirculation cooler of the type can be provided, and the sub heat exchanger can employ a configuration including the exhaust gas recirculation gas cooler.
  • the sub heat exchanger can employ a configuration including a heater core provided in an air conditioner of a vehicle on which the engine is mounted.
  • the sub heat exchanger includes a liquid-cooled engine oil cooler that cools the engine lubricating oil with the refrigerant, a liquid-cooled intercooler that cools intake air with the refrigerant, and an engine driving force. It is possible to adopt a configuration including a single element or a plurality of elements selected from a liquid-cooled transmission oil cooler that cools the lubricating oil of the transmission to which the above-mentioned transmission is performed with the refrigerant.
  • the refrigerant common to the radiator is supplied to increase the temperature of the refrigerant or the radiator. Since the refrigerant that has passed through the sub heat exchanger with lower cooling performance is supplied, when the temperature rise is to be promoted, such as during warm-up of the engine, the temperature rises due to the low-temperature refrigerant flowing into the engine. The temperature hindrance can be avoided.
  • This embodiment includes a cylinder block in which a piston 2 is accommodated in a cylinder of an engine 1 to form a combustion chamber 3, and a liquid cooling type cooling device for cooling members around the cylinder block.
  • a main body of the engine 1 including a cylinder block and members around the cylinder block is a cooling target portion 10 that is cooled by heat exchange with the refrigerant.
  • an intake passage 4 for sending intake air into the combustion chamber 3 and an exhaust passage 5 for sending exhaust gas from the combustion chamber 3.
  • the intake passage 4 and the exhaust passage 5 are opened and closed to the combustion chamber 3 by an intake valve 6 and an exhaust valve 7.
  • Reference numeral 8 in the figure denotes an ignition device that generates an ignition spark in the combustion chamber 3.
  • the engine 1 of this embodiment is a gasoline engine, but the ignition device 8 is not provided when the engine 1 is a diesel engine.
  • the liquid cooling type cooling device of the embodiment is a water cooling type cooling device using water (hereinafter referred to as cooling water) as a refrigerant.
  • the water-cooled cooling device includes a pump device 11 called a water pump that sends out cooling water, and a radiator 20 that is a core for cooling the cooling water.
  • the pump device 11, the object to be cooled 10, and the radiator 20 are annularly connected via a refrigerant passage, thereby constituting a refrigerant circulation circuit 21 that circulates cooling water.
  • the pump device 11 has a function of sending out the cooling water by the driving force of the electric motor or the driving force of the engine.
  • the radiator 20 has a function of reducing the temperature of the cooling water by heat exchange with air or the like.
  • Cooling water is supplied to a space such as a water jacket provided in the cylinder block of the engine 1 by the pump device 11, and the cooling water causes an excessive temperature rise of the engine 1 due to combustion of fuel in the combustion chamber 3. Suppressed.
  • the cooling water is cooled by the radiator 20 and then circulates again to the main body side of the engine 1 via the pump device 11.
  • the cooling water can be circulated in the refrigerant circulation circuit 21 when the valve 22 is opened, and the cooling water is supplied to the refrigerant circulation circuit 21 when the valve 22 is closed. Will be unable to circulate.
  • a bypass circulation passage 13 branched from the middle of the refrigerant circulation circuit 21 is provided, and the bypass circulation passage 13 cools the cooling water from the pump device 11 without passing through any heat exchanger.
  • the target unit 10 is constantly circulated.
  • a water temperature sensor 12 serving as a refrigerant temperature acquisition means is provided in the bypass circulation passage 13 to detect information correlated with the cooling water temperature in the cooling target unit 10, and based on the information of the water temperature sensor 12, the temperature of the refrigerant ( Hereinafter, if the temperature of the cooling water, which is the refrigerant of this embodiment, is referred to as the water temperature) is equal to or higher than the first predetermined value T1, the valve 22 is opened, and the cooling water is cooled by the drive of the pump device 11 The cooling water can be circulated through the refrigerant circulation circuit 21 by being fed into the section 10.
  • the valve 22 When it is desired to raise the temperature when the engine 1 is warming up or the like, if the water temperature is lower than the first predetermined value T1, the valve 22 is closed and the cooling water is not sent to the cooling target portion 10 of the engine 1 That is, the control for stopping the supply of the cooling water to the cooling target portion 10 and promoting the warm-up of the engine 1 is performed.
  • the water-cooled cooling device is controlled by an electronic control unit 60 provided in a vehicle on which the engine 1 is mounted.
  • the electronic control unit 60 controls the operation of the engine 1 and also controls the water-cooled cooling device according to the temperature condition of the cooling target unit 10, the water temperature, various operating conditions, and the like.
  • this water-cooled cooling device is supplied with a refrigerant (cooling water) common to the refrigerant circulation circuit 21 to increase the temperature of the refrigerant, or to lower the temperature of the refrigerant and lower in cooling performance of the refrigerant than the radiator 20.
  • a refrigerant cooling water
  • Three sub refrigerant circulation circuits 31, 41, 51 each including three sub heat exchangers 30, 40, 50 are provided. That is, each of the sub heat exchangers 30, 40, 50 has a lower heat exchange performance with the refrigerant than the radiator 20.
  • the sub heat exchangers 30, 40, 50 are designed such that the amount of refrigerant flowing out per unit time is smaller than that of the radiator 20.
  • the sub heat exchanger 30, 40, 50 is sub heat exchanged. The temperature of the cooling water after being radiated through the vessels 30, 40, 50 becomes higher than the temperature of the cooling water after passing through the radiator 20.
  • the first sub heat exchanger 30 is composed of a liquid-cooled engine oil cooler that cools the lubricating oil of the engine 1 with cooling water common to the refrigerant circulation circuit 21.
  • the sub heat exchanger 30 is referred to as an engine oil cooler 30.
  • valve 32 Since the valve 32 is provided in the sub refrigerant circulation circuit 31 including the engine oil cooler 30, if the valve 32 is opened, the cooling water can be circulated through the sub refrigerant circulation circuit 31 including the engine oil cooler 30, If the valve 32 is closed, the cooling water cannot be circulated through the sub refrigerant circulation circuit 31.
  • the sub refrigerant circulation circuit 31 including the engine oil cooler 30 is joined to the refrigerant circulation circuit 21 on the downstream side of the radiator 20 and the upstream side of the valve 22 to circulate the cooling water to the sub refrigerant circulation circuit 31. It may be configured to be commonly controlled by the valve 22 of the refrigerant circulation circuit 21. In this case, the cooling water is supplied to the radiator 20 and the cooling water is supplied to the engine oil cooler 30 at the same time.
  • the engine 1 includes an exhaust gas recirculation device 15 that recirculates a part of the exhaust gas discharged from the combustion chamber 3 to the intake air as exhaust gas recirculation gas and introduces it into the combustion chamber 3.
  • the exhaust gas recirculation device 15 includes an exhaust gas recirculation gas passage 16 that connects the air intake passage 4 and the exhaust gas passage 5, an exhaust gas recirculation valve 17 that opens and closes the exhaust gas recirculation gas passage 16, and a merge of the exhaust gas recirculation gas passage 16 and the air intake passage 4.
  • a throttle valve (not shown) that is provided in the intake passage 4 upstream of the air passage to guide the intake passage 4 to a negative pressure state, a liquid-cooled exhaust gas recirculation gas cooler 40 provided in the middle of the exhaust gas recirculation gas passage 16, etc. I have.
  • the second sub heat exchanger 40 is constituted by an exhaust gas recirculation gas cooler provided in the exhaust gas recirculation device 15.
  • the sub heat exchanger 40 is referred to as an exhaust gas recirculation gas cooler 40.
  • the exhaust gas recirculation gas cooler 40 cools the exhaust gas recirculation gas passing through the core connected to the exhaust gas recirculation gas passage 16 by the cooling water circulated through the core.
  • the cooling water supplied to the exhaust gas recirculation gas cooler 40 is common cooling water with the refrigerant circulation circuit 21 including the radiator 20.
  • the sub refrigerant circulation circuit 41 is provided with a valve 42, if the valve 42 is opened, cooling water can be circulated to the sub refrigerant circulation circuit 41 including the exhaust gas recirculation gas cooler 40, and the valve 42 is closed. Then, the cooling water cannot be circulated through the sub refrigerant circulation circuit 41.
  • the vehicle equipped with this engine 1 is provided with an air conditioner 53.
  • the air conditioner 53 includes a heater core 50 that is provided to generate warm air in the passenger compartment.
  • the third sub heat exchanger 50 is composed of a heater core provided in the air conditioner 53.
  • the sub heat exchanger 50 is referred to as a heater core 50.
  • the heater core 50 is provided with an electric blower fan, and cooling water common to the refrigerant circulation circuit 21 including the radiator 20 is supplied into the core. If the blower fan is rotated, the amount of heat of the cooling water is radiated to the air sent out into the passenger compartment, and hot air is generated, so that the temperature in the passenger compartment can be raised.
  • the sub refrigerant circulation circuit 51 including the heater core 50 branches on the downstream side of the exhaust gas recirculation gas cooler 40 of the sub refrigerant circulation circuit 41, and then passes through the heater core 50 and on the downstream side of the valve 42 of the sub refrigerant circulation circuit 41. It joins the circuit 41 and returns to the pump device 11. Since the valve 52 is provided on the downstream side of the heater core 50 in the sub refrigerant circulation circuit 51, if the valve 52 is opened, the cooling water can be circulated through the sub refrigerant circulation circuit 51 including the heater core 50. If 52 is closed, the cooling water cannot be circulated in the sub refrigerant circulation circuit 51.
  • the sub refrigerant circulation circuit 51 including the heater core 50 may be branched on the upstream side of the exhaust gas recirculation gas cooler 40 of the sub refrigerant circulation circuit 41, or the sub refrigerant circulation circuit 51 may be divided into the sub refrigerant circulation circuit 31 and the sub refrigerant circulation circuit 31. Similar to the refrigerant circulation circuit 41, the refrigerant circulation circuit 41 may be directly drawn out from the cooling target unit 10.
  • valves 32, 42, 52 of the air conditioner 53 and the sub refrigerant circulation circuits 31, 41, 51 are all controlled by the electronic control unit 60.
  • valves 22, 32, 42, 52 rotary valves that control the flow rate by rotating members such as a rotor are employed. If a member such as a rotor is rotated, the valves 22, 32, 42, 52 are opened, and an amount of cooling water corresponding to the rotation speed flows, and if the rotation of the member is stopped, the valves 22, 32, 42, 52 is closed to stop the flow of cooling water.
  • valve devices having other configurations having a function of controlling the flow rate of the fluid may be employed instead of the rotary valves.
  • the air conditioner 53 having the heater core 50 can be manually controlled based on an input signal when the driver operates the vehicle interior air conditioning switch 61 and the vehicle interior fan switch 62 provided in the vehicle interior, and can also control the temperature in the vehicle interior. It can also be set to be automatically controlled based on information from the vehicle interior temperature detection means 63 for detecting and the outside air temperature detection means 64 for detecting the temperature outside the vehicle.
  • air blowing occurs based on the ON signal of the vehicle interior fan switch 62, and air blowing stops when the OFF signal or the ON signal stops. It is also possible to set the intensity of the air blow at the ON signal. Further, based on the ON signal of the vehicle interior air conditioning switch 61, the air passes through the core, and the air at normal temperature is switched to hot air having a higher temperature to perform heating. When the vehicle interior air conditioning switch 61 is turned off or stopped, the supply of hot air is switched to the normal temperature. In automatic control, the presence / absence of air flow and the temperature and intensity of hot air are automatically controlled so that the temperature in the vehicle interior approaches the set temperature (target temperature), and the set temperature is automatically set based on the temperature outside the vehicle. Can also be set.
  • cooling water is generally supplied to the heater core at all times.
  • the air conditioner 53 can be set so that the valve 52 of the sub refrigerant circulation circuit 51 is closed and the cooling water is not supplied to the heater core 50 when the vehicle interior is not required to be heated. Therefore, it can suppress that the temperature of cooling water falls unexpectedly according to an operating condition.
  • the conditions that do not require heating of the vehicle interior include a case where the temperature detected by the intake air temperature sensor 9, the outside air temperature detection means 64, and the vehicle interior temperature detection means 63 is equal to or higher than a predetermined temperature, or the vehicle interior air conditioning switch 61. Or when the vehicle interior fan switch 62 is OFF.
  • the basic configuration of the control is first when the water temperature is less than a preset first predetermined value T1 under operating conditions that require an early temperature increase, such as during warm-up operation of the engine 1 (region of FIG. 3). a), the cooling water of the refrigerant circuit 21 including the radiator 20 is stopped from being supplied to the cooling target portion 10 of the engine 1. This stop can be performed by closing the valve 22 of the refrigerant circuit 21. At this time, the cooling water of the refrigerant circuit 21 including the radiator 20 may not be completely stopped from being supplied to the cooling target portion 10 of the engine 1 but may be controlled to suppress the supply amount. By stopping or suppressing the supply of cooling water to the object to be cooled 10, the supply of cooling water to the radiator 20 and the sub heat exchanger is also stopped or suppressed.
  • the pump device 11 is continuously driven when the engine 1 is in operation, and the other valves 32, 42, and 52 are also closed. Therefore, the cooling water sent from the pump device 11 is supplied to the radiator 20 or the sub It circulates in the bypass circulation passage 13 that does not pass through any heat exchanger such as the engine oil cooler 30, the exhaust gas recirculation gas cooler 40, and the heater core 50 that are heat exchangers.
  • valve 22 of the refrigerant circulation circuit 21 a valve that opens only under the condition of the water temperature equal to or higher than the first predetermined value T1 may be adopted by the function of the thermostat.
  • the cooling water that has passed through the heat exchanger is supplied to the cooling target portion 10 of the engine 1. Start.
  • the water temperature is set to a value higher than the first predetermined value T1. If it is less than the second predetermined value T2 (see regions b, c, d in FIG. 3), the valve 22 is closed and the supply of the cooling water to the radiator 20 is stopped, and the valve 32, the valve 42, and the valve 52 are sequentially or selectively opened, and supply of cooling water to the engine oil cooler 30, the exhaust gas recirculation gas cooler 40, and the heater core 50, which are sub heat exchangers, is started sequentially or selectively.
  • the exhaust gas recirculation gas cooler 40 that is a sub heat exchanger of the sub refrigerant circulation circuit 41 is defined as a first type sub heat exchanger H that raises the water temperature.
  • the engine oil cooler 30 that is a sub heat exchanger of the sub refrigerant circulation circuit 31 and the heater core 50 that is a sub heat exchanger of the sub refrigerant circulation circuit 51 are defined as a second type sub heat exchanger C that lowers the water temperature. To do.
  • the cooling water When the cooling water is supplied to the sub heat exchanger when the water temperature is equal to or higher than the first predetermined value T1 and lower than the second predetermined value T2, the water temperature is set between the first predetermined value T1 and the second predetermined value T2. If it is less than the third predetermined value T3 (see region b in FIG. 3), the cooling water is supplied to the first type sub heat exchanger H, and the second type sub heat exchanger C is supplied. Stop supplying cooling water.
  • the first type sub heat exchanger H is a radiator, and the cooling water receives the heat of the exhaust gas recirculation gas so that the temperature rises. Therefore, the first type sub heat exchanger C is preceded by the first type sub heat exchanger C.
  • the supply of the cooling water to the second-type sub heat exchanger C is started. Since the water temperature has risen to the third predetermined value T3 or higher, even if the cooling water has passed through the sub heat exchanger that lowers the temperature of the cooling water, the water temperature of the refrigerant circuit 21 that has passed through the radiator 20 has increased. As long as it is not extremely low like cooling water, even if it supplies to the engine 1, temperature rise is not inhibited.
  • the two sub-heat exchanger C as a sub-heat exchanger to lower the temperature of the cooling water, a relatively cooling performance is low small capacity sub heat exchanger C S, relatively cooling performance is high and a large sub-heat exchanger C L.
  • the water temperature is lower than a fourth predetermined value T4 set between the first predetermined value T1 and the second predetermined value T2 ( the reference area c) of FIG. 3, first, performs a supply of cooling water to the small capacity sub heat exchanger C S, and to stop the supply of cooling water to the high capacity sub-heat exchanger C L.
  • the engine 1 relatively high water temperature cooling water which has passed through the cooling performance is low small capacity sub heat exchanger C S Will be supplied.
  • 4th predetermined value T4 is set to 1st type sub heat exchanger. It is set between the third predetermined value T3 related to the boundary condition of the operation between the exchanger H and the second type sub heat exchanger C and the second predetermined value T2. If the first type sub heat exchanger H and the second type sub heat exchanger C are not used together and only the second type sub heat exchanger C is adopted as the sub heat exchanger, the fourth predetermined The value T4 is set between the first predetermined value T1 and the second predetermined value T2.
  • a small-capacity sub heat exchanger C S of the two sub-heat exchanger C employing an engine oil cooler 30, as a large-capacity sub heat exchanger C L, it employs a heater core 50.
  • the valve 32 When supplying cooling water to the engine oil cooler 30, the valve 32 is opened, and when supplying cooling water to the heater core 50, the valve 52 is sequentially opened.
  • the graph of FIG. 2 shows the cylinder temperature (liner temperature) when the supply of cooling water to the radiator 20 is stopped and the cooling water is supplied only to the exhaust gas recirculation gas cooler 40 after the warm-up operation of the engine 1 is started. Show.
  • a behavior of the cylinder temperature a line indicated by X in the figure is obtained when only the valve 42 is opened and the others are closed.
  • the line indicated by X + Y in the figure is when both the valve 42 and the valve 52 are opened and the others are closed.
  • a line indicated by X + Y + Z in the drawing is the one when the valve 42, the valve 52, and the valve 22 are opened.
  • the line indicated by X + Y + Z indicates that the cooling water that has passed through the radiator 20 is supplied to the engine 1, and therefore the increase in the cylinder temperature is slow.
  • the line indicated by X + Y in the figure is supplied with cooling water to both the exhaust gas recirculation gas cooler 40 and the heater core 50, the cooling water is not supplied to the radiator 20, and therefore the cylinder is more than the line indicated by X + Y + Z in the figure.
  • the line indicated by X in the figure shows that the cooling water is supplied only to the exhaust gas recirculation gas cooler 40, and no cooling water is supplied to the heater core 50 and the radiator 20, so that the degree of increase in the cylinder temperature is the fastest. Further, the amount of temporary decrease in the cylinder temperature when the supply of cooling water to the engine 1 is started (the amount of undershoot at the time indicated by symbol a in the figure) is also reduced.
  • the flow of low-temperature cooling water from the refrigerant circuit including the radiator is automatically controlled by a thermostat, and the radiator-type refrigerant circuit has a large capacity required for engine cooling. Therefore, the flow rate is large and the heat dissipation is large. For this reason, even if the thermostat is opened with a very small opening, a relatively large amount of low-temperature cooling water flows into the engine all at once and the temperature is raised at an early stage, but temporary supercooling occurs. There was a problem. The occurrence of this supercooling is considered to be affected by the amount of inflowing cooling water per unit time, the temperature of the cooling water after being radiated by the heat exchanger, and the like.
  • the water flow control valve corresponding to the thermostat in the conventional radiator system is not suddenly opened, but rather than the refrigerant circulation circuit 21 including the radiator 20.
  • the cooling water is supplied to the refrigerant circulation circuit 21 including the radiator 20.
  • the cooling performance needs to be relatively smaller than that of the refrigerant circulation circuit 21 including the radiator 20 that is the main cooling system. is there.
  • the cooling performance in order for the cooling performance to be relatively small, for example, when viewed from the engine 1 side, the inflow cooling water amount per unit time, and from the heat exchanger side, the outflow water amount per unit time, that is, outflow A small amount of refrigerant is required.
  • the temperature of the cooling water after passing through the sub heat exchanger and dissipating heat should be higher than the temperature of the cooling water after passing through the radiator 20 of the main cooling system, that is, the temperature of the refrigerant. More preferable.
  • the water flow resistance of the sub refrigerant circulation circuit including the sub heat exchanger rather than the refrigerant circulation circuit 21 including the radiator 20 which is the main cooling system. It can be realized by increasing. Specifically, a method of narrowing (squeezing) the pipe diameter inside the core of the sub heat exchanger than the pipe system inside the core of the radiator 20 of the main cooling system can be mentioned.
  • the temperature condition of the cooling water after heat radiation can be realized by reducing the capacity of the sub heat exchanger as compared with the radiator 20 of the main cooling system. Specifically, this can be realized by reducing the heat radiation amount and the heat radiation area by a method such as shortening the pipe length of the sub refrigerant circulation circuit including the sub heat exchanger.
  • the heater core 50 employed as a sub heat exchanger has a pipe diameter inside the core smaller than that of the radiator 20 and the entire volume of the heater core 50 is smaller than the core of the radiator 20. Resistance is large and heat dissipation tends to be small.
  • the pipe length of the sub refrigerant circulation circuit 51 including the heater core 50 may be longer than the pipe length of the refrigerant circulation circuit 21 including the radiator 20. Since the long length is also a factor that increases the water flow resistance, the cooling performance of the sub refrigerant circuit 51 including the heater core 50 exceeds the cooling performance of the refrigerant circuit 21 including the radiator 20 because the pipe length is long. Basically not considered.
  • the engine oil cooler 30, the exhaust gas recirculation gas cooler 40, and the heater core 50 are employed as the sub heat exchanger, and in particular, the exhaust gas recirculation gas cooler 40 is raised to the first type sub heat exchanger H (the temperature of the refrigerant is increased).
  • Sub-heat exchanger), engine oil cooler 30 and heater core 50 are second-type sub-heat exchanger C (sub-heat exchanger that lowers the temperature of the refrigerant), but the present invention is not limited to this embodiment.
  • Various heat exchangers can be adopted as the sub heat exchanger to be controlled by the engine cooling system.
  • the first type sub heat exchanger H is employed.
  • the second type sub heat exchanger C is not used, an embodiment in which only the second type sub heat exchanger C is used without using the first type sub heat exchanger H, the first An embodiment in which a plurality of second-type sub heat exchangers C are employed without using the seed sub-heat exchanger H is conceivable.
  • a liquid-cooled intercooler that cools intake air with a refrigerant common to the refrigerant circulation circuit 21 including the radiator 20, or a transmission that transmits engine driving force.
  • a liquid-cooled transmission oil cooler that cools the lubricating oil with a refrigerant common to the refrigerant circuit 21 including the radiator 20.
  • One or a plurality of sub heat exchangers to be controlled can be selected from these various sub heat exchangers.
  • the engine cooling system of the present invention has been described with respect to an example in which a water-cooled cooling device using cooling water as a refrigerant is adopted as the liquid-cooled cooling device.
  • a cooling device using other refrigerants such as an oil cooling type cooling device may be adopted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

冷媒の温度が第一所定値(T1)未満の場合は、エンジン(1)の冷却対象部(10)、ラジエータ(20)及びサブ熱交換器(30,40,50)への冷媒の供給を抑制し、冷媒の温度が第一所定値(T1)以上となった場合には冷却対象部(10)への冷媒の供給抑制を解除する。さらに、冷媒の温度が第一所定値(T1)以上で第二所定値(T2)未満の場合はラジエータ(20)への冷媒の供給を停止し且つサブ熱交換器(30,40,50)への冷媒の供給を行い、第二所定値(T2)以上である場合にはラジエータ(20)への冷媒の供給を行う。

Description

エンジン冷却システム
 この発明は、エンジンの冷却対象部を冷媒によって冷却する液冷式冷却装置を備えたエンジン冷却システムに関する。
 ガソリンエンジン、ディーゼルエンジン等の各種エンジンを搭載する車両では、冷媒として冷却水を循環させることにより、シリンダ周囲のエンジン本体を冷却する水冷式の冷却装置が設けられている。
 エンジン本体を冷却するための水冷式冷却装置では、ウォータポンプと呼ばれるポンプ装置によって、シリンダブロック内に設けられたウォータジャケット等の空間に冷却水が供給され、その冷却水によって、シリンダ内での燃料の燃焼によるエンジン本体の過度な温度上昇を抑制している。冷却水は、ラジエータ等の冷媒冷却用熱交換器で冷却された後、再度ポンプ装置を経由して、エンジン本体側へ循環していく。
 この種の水冷式冷却装置では、冷却水の温度に応じて冷却水の流路を切り換えてエンジンの暖機を促進する制御を行っている(例えば、下記特許文献1参照)。
特開2015-175296号公報
 上記特許文献1に記載の技術では、排気ガスの一部を、排気還流ガスとして吸気に還流する排気ガス再循環装置を備え、その排気還流ガスを、エンジン本体を冷却するための冷却水で冷却する水冷式の排気還流ガスクーラが備えられている。また、冷却水の温度を下げるために配置されるラジエータよりも前方には、ラジエータとは別の冷媒冷却用熱交換器であるサブラジエータが配置されている。
 そして、排気還流ガスクーラの下流側における冷却水の温度に応じて、例えば、冷却水の温度が閾値未満で低い際に、サーモスタットを閉弁させてエンジンに冷却水を循環させないようにする制御と、冷却水の温度が閾値以上の際に、サーモスタットを開弁させてエンジンに冷却水を循環させるとともに冷却水を冷却するためにラジエータのみを利用する制御、及び、冷却水の温度がさらに高い際に、サーモスタットの開弁状態でラジエータよりも前方に配置されたサブラジエータのみを利用する制御を選択的に行っている。
 しかし、従来のエンジン冷却システムでは、エンジンの暖機運転時等、昇温を促進したい場合に、サーモスタットを閉弁させてエンジンへの冷却水の循環を制限した状態から、冷却水の温度がある程度上昇してサーモスタットが開弁すると、ラジエータを通過した冷却水が、一気にエンジンに流入してしまう事態が生じ得る。このため、エンジンを早期に昇温したにもかかわらず、ラジエータを通過した比較的温度の低い冷却水がエンジンに流入して、早期の昇温を妨げてしまうという問題がある。
 そこで、この発明は、エンジンの暖機運転時等、昇温を促進したい場合に、温度の低い冷媒がエンジンに流入することによる昇温の妨げを回避することである。
 上記の課題を解決するために、この発明は、冷媒を送り出すポンプ装置と、前記冷媒との熱交換によって冷却されるエンジンの冷却対象部と、前記冷媒を冷却するラジエータと、前記ポンプ装置と前記冷却対象部と前記ラジエータとを接続し前記冷媒を循環させる冷媒循環回路と、前記冷媒が供給され前記ラジエータよりも熱交換性能が低いサブ熱交換器を含むサブ冷媒循環回路と、前記冷却対象部における前記冷媒の温度に相関する情報を取得する冷媒温度取得手段と、を備え、暖機運転時に前記冷媒の温度が第一所定値未満である場合には前記ラジエータ及び前記サブ熱交換器への冷媒の供給を抑制し、前記冷媒の温度が上昇して前記冷媒の温度が第一所定値以上となった場合には前記冷媒の供給抑制を解除するとともに、前記抑制を解除する際、前記冷媒の温度が前記第一所定値よりも高い値に設定された第二所定値未満である場合には前記ラジエータへの冷媒の供給を停止し且つ前記サブ熱交換器への冷媒の供給を行い、前記冷媒の温度が前記第二所定値以上である場合には前記ラジエータへの前記冷媒の供給を行うエンジン冷却システムを採用した。
 ここで、前記サブ熱交換器は、該サブ熱交換器から単位時間当たりに流出する冷媒量が前記ラジエータより小さい構成を採用することができる。
 これらの各態様において、前記サブ熱交換器は、該サブ熱交換器を通過して放熱された後の前記冷媒の温度が、前記ラジエータを通過した後の前記冷媒の温度よりも高い構成を採用することができる。
 また、これらの各態様において、暖機運転時に前記冷媒の温度が前記第一所定値未満である場合には前記ラジエータ及び前記サブ熱交換器への冷媒の供給を停止し、前記冷媒の温度が上昇して前記冷媒の温度が前記第一所定値以上となった場合には前記サブ熱交換器への冷媒の供給を開始する構成を採用することができる。
 ここで、前記サブ冷媒循環回路は、前記サブ熱交換器として冷媒の温度を上昇させる第一種サブ熱交換器と冷媒の温度を低下させる第二種サブ熱交換器とを備え、前記サブ熱交換器に冷媒を供給する際、前記冷媒の温度が前記第一所定値と前記第二所定値との間に設定された第三所定値未満である場合には前記第一種サブ熱交換器への冷媒の供給を行い且つ前記第二種サブ熱交換器への冷媒の供給を停止し、前記冷媒の温度が前記第三所定値以上である場合には前記第二種サブ熱交換器への冷媒の供給を行う構成を採用することができる。
 また、前記サブ冷媒循環回路は、冷媒の温度を低下させる前記サブ熱交換器として相対的に冷却性能が低い小容量サブ熱交換器と相対的に冷却性能が高い大容量サブ熱交換器とを備え、冷媒の温度を低下させる前記サブ熱交換器に冷媒を供給する際、前記冷媒の温度が前記第一所定値と前記第二所定値との間に設定された第四所定値未満である場合には前記小容量サブ熱交換器への冷媒の供給を行い且つ前記大容量サブ熱交換器への冷媒の供給を停止し、前記冷媒の温度が前記第四所定値以上である場合には前記大容量サブ熱交換器への冷媒の供給を行う構成を採用することができる。
 これらの各態様において、前記エンジンは排気ガスの一部を排気還流ガスとして吸気に還流する排気ガス再循環装置を備え、前記排気ガス再循環装置は前記排気還流ガスを前記冷媒で冷却する液冷式の排気還流ガスクーラを備え、前記サブ熱交換器は前記排気還流ガスクーラを含む構成を採用することができる。
 これらの各態様において、前記サブ熱交換器は、前記エンジンを搭載する車両の空調装置が備えるヒータコアを含む構成を採用することができる。
 これらの各態様において、前記サブ熱交換器は、前記エンジンの潤滑油を前記冷媒で冷却する液冷式のエンジンオイルクーラ、吸気を前記冷媒で冷却する液冷式のインタークーラ、エンジンの駆動力が伝達される変速機の潤滑油を前記冷媒で冷却する液冷式のトランスミッションオイルクーラから選択される単一の又は複数の要素を含む構成を採用することができる。
 この発明は、エンジンの暖機運転時等、昇温を促進したい場合に、ラジエータを通過した冷媒をエンジンに供給する前に、ラジエータと共通の冷媒が供給されその冷媒の温度を上昇させる又はラジエータよりも冷却性能が低いサブ熱交換器を通過した冷媒を供給するようにしたので、エンジンの暖機運転時等、昇温を促進したい場合に、温度の低い冷媒がエンジンに流入することによる昇温の妨げを回避することができる。
この発明の実施形態の冷媒循環回路を示す模式図である。 冷媒の温度変化示すグラフ図である。 この発明の制御を示すグラフ図である。
 この発明の実施形態のエンジン冷却システムを、図面に基づいて説明する。この実施形態は、エンジン1のシリンダ内部にピストン2を収容して燃焼室3を形成したシリンダブロック、及び、そのシリンダブロック周囲の部材を冷却するための液冷式冷却装置を備えている。シリンダブロック、及び、そのシリンダブロック周囲の部材からなるエンジン1の本体が、冷媒との熱交換によって冷却される冷却対象部10である。
 燃焼室3には、その燃焼室3内に吸気を送り込む吸気通路4、燃焼室3からの排気ガスを送り出す排気通路5が接続されている。吸気通路4や排気通路5は、吸気バルブ6や排気バルブ7によって、燃焼室3への開口が開閉される。図中の符号8は、燃焼室3内で点火火花を発生させる点火装置である。この実施形態のエンジン1はガソリンエンジンであるが、エンジン1がディーゼルエンジンである場合は点火装置8は設けられない。
 実施形態の液冷式冷却装置は冷媒として水(以下、冷却水と称する。)を用いた水冷式冷却装置である。水冷式冷却装置は、冷却水を送り出すウォータポンプと呼ばれるポンプ装置11と、冷却水を冷却するコアであるラジエータ20を備える。ポンプ装置11と冷却対象部10とラジエータ20とが冷媒通路を介して環状に接続されることで、冷却水を循環させる冷媒循環回路21を構成している。ポンプ装置11は、電気モータの駆動力やエンジンの駆動力によって冷却水を送り出す機能を有する。ラジエータ20は、空気等との熱交換によって冷却水の温度を低下させる機能を有する。
 ポンプ装置11によって、エンジン1のシリンダブロック内に設けられたウォータジャケット等の空間に冷却水が供給され、その冷却水によって、燃焼室3内での燃料の燃焼によるエンジン1の過度な温度上昇を抑制している。冷却水は、ラジエータ20で冷却された後、再度ポンプ装置11を経由して、エンジン1の本体側へ循環していく。
 冷媒循環回路21には、バルブ22が設けられているので、このバルブ22を開放すれば冷媒循環回路21に冷却水が循環可能な状態となり、バルブ22を閉鎖すれば冷媒循環回路21に冷却水が循環不能な状態となる。
 この水冷式冷却装置では、冷媒循環回路21の途中から分岐したバイパス循環通路13が設けられており、このバイパス循環通路13はポンプ装置11からの冷却水をいずれの熱交換器も経由せず冷却対象部10に常時循環させている。冷媒温度取得手段である水温センサ12は冷却対象部10における冷却水温に相関する情報を検出すべくバイパス循環通路13に設けられており、この水温センサ12の情報に基づいて、その冷媒の温度(以下、この実施形態の冷媒である冷却水の温度を水温と称する)が、第一所定値T1以上であれば、バルブ22が開放され、ポンプ装置11の駆動により冷却水がエンジン1の冷却対象部10に送り込まれ、冷却水を冷媒循環回路21に循環させることができる。エンジン1の暖機運転時等、昇温を行いたい場合において、水温が、第一所定値T1未満であれば、バルブ22を閉鎖して冷却水をエンジン1の冷却対象部10に送り込まない制御、すなわち、冷却対象部10への冷却水の供給を停止してエンジン1の暖機を促進する制御を行う。
 水冷式冷却装置は、このエンジン1を搭載する車両が備える電子制御ユニット60によって制御されている。電子制御ユニット60は、エンジン1の稼働を制御するとともに、冷却対象部10の温度条件や水温、各種運転状況等に応じて、水冷式冷却装置を制御している。
 また、この水冷式冷却装置は、冷媒循環回路21と共通の冷媒(冷却水)が供給され冷媒の温度を上昇させる、又は、冷媒の温度を低下させるとともにラジエータ20よりも冷媒の冷却性能が低い三つのサブ熱交換器30,40,50をそれぞれ含む、三つのサブ冷媒循環回路31,41,51を備えている。すなわち、サブ熱交換器30,40,50は、いずれも、ラジエータ20よりも冷媒との熱交換性能が低いものとなっている。また、これらサブ熱交換器30,40,50は、単位時間当たりに流出する冷媒量がラジエータ20より小さくなるよう設計されており、温度条件が同じ冷却水が流入した場合には、サブ熱交換器30,40,50を通過して放熱された後の冷却水の温度が、ラジエータ20を通過した後の冷却水の温度よりも高くなる。
 一つ目のサブ熱交換器30は、エンジン1の潤滑油を冷媒循環回路21と共通の冷却水で冷却する液冷式のエンジンオイルクーラで構成される。以下、この実施形態では、サブ熱交換器30をエンジンオイルクーラ30と称する。
 エンジンオイルクーラ30を含むサブ冷媒循環回路31にはバルブ32が設けられているので、バルブ32を開放すれば、エンジンオイルクーラ30を含むサブ冷媒循環回路31に冷却水が循環可能な状態となり、バルブ32を閉鎖すればサブ冷媒循環回路31に冷却水が循環不能な状態となる。
 なお、エンジンオイルクーラ30を含むサブ冷媒循環回路31を、ラジエータ20の下流側、バルブ22の上流側で冷媒循環回路21に合流するようにし、サブ冷媒循環回路31への冷却水の循環を、冷媒循環回路21のバルブ22によって共通に制御できるようにしてもよい。この場合、ラジエータ20への冷却水の供給と、エンジンオイルクーラ30への冷却水の供給は、同時に行われるようになる。
 エンジン1は、燃焼室3から排出される排気ガスの一部を、排気還流ガスとして吸気に還流して燃焼室3に導入する排気ガス再循環装置15を備えている。排気ガス再循環装置15は、吸気通路4と排気通路5とを結ぶ排気還流ガス通路16と、排気還流ガス通路16を開閉する排気還流バルブ17、排気還流ガス通路16と吸気通路4との合流部の上流側において吸気通路4に設けられ、吸気通路4内を負圧状態に導くスロットルバルブ(図示せず)、排気還流ガス通路16の途中に設けられる液冷式の排気還流ガスクーラ40等を備えている。
 二つ目のサブ熱交換器40は、この排気ガス再循環装置15が備える排気還流ガスクーラで構成される。以下、この実施形態では、サブ熱交換器40を排気還流ガスクーラ40と称する。排気還流ガスクーラ40は、排気還流ガス通路16に接続されたコア内を通過する排気還流ガスを、そのコアに循環させた冷却水によって冷却する。排気還流ガスクーラ40に供給される冷却水は、ラジエータ20を含む冷媒循環回路21と共通の冷却水である。
 サブ冷媒循環回路41には、バルブ42が設けられているので、このバルブ42を開放すれば、排気還流ガスクーラ40を含むサブ冷媒循環回路41に冷却水が循環可能な状態となり、バルブ42を閉鎖すればサブ冷媒循環回路41に冷却水が循環不能な状態となる。
 このエンジン1を搭載する車両は、空調装置53を備えている。空調装置53は、車室内に温風を生じさせるために設けられるヒータコア50を備えている。
 三つ目のサブ熱交換器50は、この空調装置53が備えるヒータコアで構成される。以下、この実施形態では、サブ熱交換器50をヒータコア50と称する。ヒータコア50は、電動の送風用ファンを併設しているとともに、そのコアの内部に、ラジエータ20を含む冷媒循環回路21と共通の冷却水が供給される。送風用ファンを回転させれば、冷却水が持つ熱量を車室内に送り出す空気に放熱し温風が発生するので、車室内の温度を上昇させることができる。
 ヒータコア50を含むサブ冷媒循環回路51は、サブ冷媒循環回路41の排気還流ガスクーラ40の下流側で分岐し、その後、ヒータコア50を経て、サブ冷媒循環回路41のバルブ42の下流側でサブ冷媒循環回路41に合流して、ポンプ装置11に戻っている。サブ冷媒循環回路51のヒータコア50の下流側にはバルブ52が設けられているので、このバルブ52を開放すれば、ヒータコア50を含むサブ冷媒循環回路51に冷却水が循環可能な状態となり、バルブ52を閉鎖すればサブ冷媒循環回路51に冷却水が循環不能な状態となる。
 なお、ヒータコア50を含むサブ冷媒循環回路51を、サブ冷媒循環回路41の排気還流ガスクーラ40の上流側で分岐するようにしてもよいし、サブ冷媒循環回路51を、サブ冷媒循環回路31やサブ冷媒循環回路41と同様に、冷却対象部10から直接引き出してもよい。
 これらの空調装置53やサブ冷媒循環回路31,41,51の各バルブ32,42,52は、いずれも電子制御ユニット60によって制御されている。
 なお、この実施形態では、バルブ22,32,42,52として、ロータ等の部材の回転によりその流量を制御するロータリーバルブを採用している。ロータ等の部材を回転させればバルブ22,32,42,52は開放されて、その回転速度に応じた量の冷却水が流れ、部材の回転を停止すれば、バルブ22,32,42,52は閉鎖されて冷却水の流れが停止する。バルブ22,32,42,52としては、このロータリーバルブに代えて、流体の流量を制御する機能を有する他の構成からなる弁装置を採用してもよい。
 ヒータコア50を備えた空調装置53は、車室内に設けられた車室内空調スイッチ61や車室内ファンスイッチ62を運転者が操作した際の入力信号に基づいて手動制御できるほか、車室内の温度を検出する車室内温度検出手段63、車外の温度を検出する外気温度検出手段64からの情報に基づいて、自動的に制御されるようにも設定できる。
 手動制御では、車室内ファンスイッチ62のON信号に基づいて送風が発生し、OFF信号又はON信号の停止で送風が停止する。ON信号時に、その送風の強さを設定することも可能である。また、車室内空調スイッチ61のON信号に基づいて、空気がコアを通過するようになり、常温の送風がより温度の高い温風に切り替わり暖房が行われる。車室内空調スイッチ61のOFF信号又はON信号の停止で、温風の供給から常温の送風に切り替わる。自動制御では、車室内の温度が設定温度(目標温度)に近づくように送風の有無や温風の温度や強さが自動的に制御され、また、車外の温度に基づいて自動的に設定温度を設定することもできる。
 従来の空調装置では、ヒータコアに常時冷却水が供給されているのが一般的であった。しかし、この発明では、空調装置53は、車室内の暖房を必要としない条件の時には、サブ冷媒循環回路51のバルブ52を閉鎖し、ヒータコア50に冷却水を供給しないように設定することもできるので、運転条件に応じて、意に反して冷却水の温度が低下することを抑制できる。
 ここで、車室内の暖房を必要としない条件とは、吸気温度センサ9や外気温度検出手段64、車室内温度検出手段63が検出する温度が所定温度以上である場合や、車室内空調スイッチ61がOFFである場合、あるいは、車室内ファンスイッチ62がOFFである場合等とすることができる。
 この発明のエンジン冷却システムの制御について、以下説明する。
 制御の基本的な構成は、まず、エンジン1の暖機運転時等、早期に昇温が必要な運転条件において、水温が予め設定された第一所定値T1未満である場合(図3の領域a参照)には、ラジエータ20を含む冷媒循環回路21の冷却水が、エンジン1の冷却対象部10へ供給されるのを停止する。この停止は、冷媒循環回路21のバルブ22を閉鎖することで行うことができる。このとき、ラジエータ20を含む冷媒循環回路21の冷却水が、エンジン1の冷却対象部10へ供給されるのを完全に停止させるのではなく、その供給量を抑制する制御とする場合もある。冷却対象部10への冷却水の供給停止又は供給抑制によって、ラジエータ20やサブ熱交換器への冷却水の供給も停止又は抑制される。
 このとき、ポンプ装置11はエンジン1の稼働時に常時駆動を継続しており、他のバルブ32,42,52も閉鎖しているので、ポンプ装置11から送り出される冷却水は、ラジエータ20や、サブ熱交換器であるエンジンオイルクーラ30や排気還流ガスクーラ40、ヒータコア50等、いずれの熱交換器も経由しないバイパス循環通路13内を循環する。
 なお、冷媒循環回路21のバルブ22として、サーモスタットの機能によって、第一所定値T1以上の水温の条件でのみ開弁するバルブを採用してもよい。
 エンジン1の暖機運転とともに水温が上昇して、水温が第一所定値T1以上となった場合には、熱交換器を経由した冷却水を、エンジン1の冷却対象部10へ供給することを開始する。
 ここで、エンジン1の冷却対象部10へ熱交換器を経由した冷却水の供給を開始する際、又は、供給抑制を解除する際、水温が、第一所定値T1よりも高い値に設定された第二所定値T2未満である場合(図3の領域b,c,d参照)には、バルブ22を閉鎖してラジエータ20への冷却水の供給を停止した状態を継続し、且つ、バルブ32やバルブ42、バルブ52を順次又は選択的に開放して、サブ熱交換器であるエンジンオイルクーラ30や排気還流ガスクーラ40、ヒータコア50への冷却水の供給を順次又は選択的に開始する。
 このとき、サブ冷媒循環回路41のサブ熱交換器である排気還流ガスクーラ40を、水温を上昇させる第一種サブ熱交換器Hと定義する。また、サブ冷媒循環回路31のサブ熱交換器であるエンジンオイルクーラ30や、サブ冷媒循環回路51のサブ熱交換器であるヒータコア50を、水温を低下させる第二種サブ熱交換器Cと定義する。
 水温が第一所定値T1以上、第二所定値T2未満で、サブ熱交換器に冷却水を供給する際に、水温が、第一所定値T1と第二所定値T2との間に設定された第三所定値T3未満である場合(図3の領域b参照)には、第一種サブ熱交換器Hへの冷却水の供給を行い、且つ、第二種サブ熱交換器Cへの冷却水の供給を停止するようにする。
 第一種サブ熱交換器Hは放熱器であり、冷却水は排気還流ガスの熱を受けて温度が上昇することから、第二種サブ熱交換器Cよりも先に、第一種サブ熱交換器Hを通過して温度が幾分上昇した冷却水をエンジン1の冷却対象部10へ供給することにより、温度の低い冷却水がエンジン1に一気に流入することによる昇温の妨げを回避することができる。
 そして、水温が第三所定値T3以上となった場合(図3の領域c,d参照)には、第二種サブ熱交換器Cへの冷却水の供給を開始する。水温は、第三所定値T3以上に高まっているので、冷却水の温度を低下させるサブ熱交換器を通過した冷却水であっても、その水温が、ラジエータ20を通過した冷媒循環回路21の冷却水のように極端に低くない限り、エンジン1に供給しても昇温を阻害しない。
 ここで、第二種サブ熱交換器Cは、冷却水の温度を低下させるサブ熱交換器として、相対的に冷却性能が低い小容量サブ熱交換器Cと、相対的に冷却性能が高い大容量サブ熱交換器Cとを備えている。
 ここで、第二種サブ熱交換器Cに冷却水を供給する際、水温が、第一所定値T1と第二所定値T2との間に設定された第四所定値T4未満である場合(図3の領域c参照)には、まずは、小容量サブ熱交換器Cへの冷却水の供給を行い、且つ、大容量サブ熱交換器Cへの冷却水の供給を停止する。これにより、相対的に水温が低くなる大容量サブ熱交換器Cよりも先に、冷却性能が低い小容量サブ熱交換器Cを通過した相対的に水温が高い冷却水がエンジン1に供給されるようになる。
 ところで、この実施形態では、サブ熱交換器として、第一種サブ熱交換器Hと第二種サブ熱交換器Cとを併用しているので、第四所定値T4を、第一種サブ熱交換器Hと第二種サブ熱交換器Cとの動作の境界条件に関わる第三所定値T3と、第二所定値T2との間に設定している。仮に、第一種サブ熱交換器Hと第二種サブ熱交換器Cとを併用せず、サブ熱交換器として、第二種サブ熱交換器Cのみを採用する場合には、第四所定値T4は、第一所定値T1と第二所定値T2との間に設定される。
 つぎに、水温が第四所定値T4以上となった場合(図3の領域d参照)には、大容量サブ熱交換器Cへの冷媒の供給を行う。既に、水温は、第四所定値T4以上となっているので、大容量サブ熱交換器Cを通過した相対的に温度が低い冷却水であっても、その水温が、ラジエータ20を通過した冷媒循環回路21の冷却水のように極端に低くない限り、エンジン1に供給しても昇温を阻害しない。
 この実施形態では、第二種サブ熱交換器Cの小容量サブ熱交換器Cとして、エンジンオイルクーラ30を採用し、大容量サブ熱交換器Cとして、ヒータコア50を採用している。エンジンオイルクーラ30に冷却水を供給する場合はバルブ32を開放し、ヒータコア50に冷却水を供給する場合はバルブ52を順次開放することとなる。
 最後に、水温が第二所定値T2以上となった場合(図3の領域e参照)には、ラジエータ20への冷却水の供給を開始する。水温は、第二所定値T2以上に高まっており、昇温は終了しているので、ラジエータ20を通過した水温の低い冷却水をエンジン1に供給しても問題はなく、以後、冷却水はエンジン1に対して所定の冷却性能を発揮する。
 図2のグラフ図は、エンジン1の暖機運転の開始後、ラジエータ20への冷却水の供給を停止して、排気還流ガスクーラ40のみに冷却水を供給した時のシリンダ温度(ライナ温度)を示している。シリンダ温度の挙動として図中Xに示す線は、バルブ42のみを開放して他は閉鎖した際のものである。図中X+Yに示す線は、バルブ42とバルブ52の両方を開放して他は閉鎖した際のものである。図中X+Y+Zに示す線は、バルブ42とバルブ52とバルブ22を開放した際のものである。
 図中X+Y+Zに示す線は、ラジエータ20を通過した冷却水がエンジン1に供給されているので、シリンダ温度の上昇度合いが遅くなっている。図中X+Yに示す線は、排気還流ガスクーラ40とヒータコア50の両方に冷却水が供給されているものの、ラジエータ20には冷却水は供給されていないので、図中X+Y+Zに示す線よりも、シリンダ温度の上昇度合いが速くなっている。図中Xに示す線は、排気還流ガスクーラ40のみに冷却水が供給され、ヒータコア50やラジエータ20には冷却水は供給されていないので、シリンダ温度の上昇度合いが最も速くなっている。また、エンジン1への冷却水の供給を開始した際におけるシリンダ温度の一時的な低下量(図中の符号aの時期でのアンダーシュート量)も小さくなっている。
 従来から、暖機運転時においてはエンジン内の冷却水の流動を極力止めて、敢えて、エンジン内の各部温度分布に不均一を生じさせる、すなわち、高温部から低温部への熱移動を阻害することにより、フリクションへの影響が大きいとされるシリンダライナ部の温度を早期に昇温させ、暖機途上の燃費を改善したいという要請がある。
 しかし、ラジエータを含む冷媒循環回路のからの低温の冷却水の流入は、サーモスタットで自動的に制御されており、また、ラジエータ系の冷媒循環回路は、エンジンの冷却に必要な大容量の性能が与えられているため、流量が多く放熱量も大きい。このため、サーモスタットの微少開度の開弁であっても、比較的大量の低温の冷却水がエンジンに一気に流れ込み、折角早期に昇温させているにもかかわらず、一時的な過冷却が生じる問題が生じていた。この過冷却の発生には、単位時間当たりの流入冷却水量、熱交換器で放熱された後の冷却水の温度等が影響していると考えられる。
 そこで、この発明では、上記のように、ラジエータ20を含む冷媒循環回路21からの冷却水の供給を制限する暖機促進制御によって、エンジン1の水温がある程度上昇した後(上記第一所定値T1に相当)、実際に、熱交換器を通過した冷却水の供給を開始するに当たって、従来のラジエータ系におけるサーモスタット相当の水流制御弁をいきなり開くのではなく、ラジエータ20を含む冷媒循環回路21よりも冷却性能が相対的に小さい(相対的に小流量又は低放熱量の)サブ熱交換器、又は、逆に水温を上昇させるサブ熱交換器への冷却水の供給を、先に開始するようにしたものである。さらにその後、水温が上昇して昇温が終了すれば(上記第二所定値T2に相当)、ラジエータ20を含む冷媒循環回路21に冷却水を供給するようにしたものである。
 すなわち、冷却性能の異なる大小2つの熱交換器をもって、暖機時には、冷却性能が相対的に小さい熱交換器から先に活用する、あるいは、冷却水の温度を低下させる熱交換器と冷却水の温度を上昇させる熱交換器とをもって、暖機時には、冷却水の温度を上昇させる熱交換器から先に活用する手法を採用することで、エンジンのシリンダ温度の過冷却、アンダーシュートを抑制することができる。
 ここで、冷却水の温度を低下させるサブ熱交換器を含むサブ冷媒循環回路では、その冷却性能が、メインの冷却系であるラジエータ20を含む冷媒循環回路21よりも、相対的に小さい必要がある。ここで、冷却性能が相対的に小さい状態であるためには、例えば、エンジン1側から見れば単位時間当たりの流入冷却水量、熱交換器側から見れば単位時間当たりの流出水量、すなわち、流出する冷媒量が小さいことが求められる。さらに、サブ熱交換器を通過して放熱した後の冷却水の温度、すなわち、冷媒の温度が、メイン冷却系のラジエータ20を通過した後の冷却水の温度、すなわち、冷媒の温度よりも高ければより好ましい。
 前述の単位時間当たりの流入冷却水量、流出水量の条件については、例えば、メインの冷却系であるラジエータ20を含む冷媒循環回路21よりも、サブ熱交換器を含むサブ冷媒循環回路の通水抵抗を大きくすることで実現することができる。具体的には、サブ熱交換器のコア内部の配管径を、メイン冷却系のラジエータ20のコア内部の配管系よりも細くする(絞る)手法が挙げられる。
 放熱後の冷却水の温度の条件については、メイン冷却系のラジエータ20よりも、サブ熱交換器の容量を少なくすることで実現することができる。具体的には、サブ熱交換器を含むサブ冷媒循環回路の配管長を短くする等の手法により、放熱量、放熱面積を小さくすることで実現できる。
 例えば、サブ熱交換器として採用したヒータコア50は、ラジエータ20よりもコア内部の配管径が細く、また、ヒータコア50全体の体積もラジエータ20のコアよりも小型であるため、ラジエータ20よりも通水抵抗は大きく、放熱量も小さくなりやすい。なお、ヒータコア50の設置位置次第では、ヒータコア50を含むサブ冷媒循環回路51の配管長は、ラジエータ20を含む冷媒循環回路21の配管長よりも長くなる場合もあると考えられるが、配管長が長いことは通水抵抗を増大させる要因でもあるため、配管長が長いことで、ヒータコア50を含むサブ冷媒循環回路51の冷却性能が、ラジエータ20を含む冷媒循環回路21の冷却性能を上回ることは基本的にないと考えられる。
 この冷却性能の大小比較については、ラジエータ20とサブ熱交換器との間だけでなく、冷媒の温度を低下させるサブ熱交換器を含むサブ冷媒循環回路が複数存在する場合において、その複数のサブ冷媒循環回路同士の間においても、同様の傾向があるということができる。
 上記の実施形態では、サブ熱交換器として、エンジンオイルクーラ30、排気還流ガスクーラ40、ヒータコア50を採用し、特に、排気還流ガスクーラ40を第一種サブ熱交換器H(冷媒の温度を上昇させるサブ熱交換器)、エンジンオイルクーラ30とヒータコア50とを第二種サブ熱交換器C(冷媒の温度を低下させるサブ熱交換器)としたが、この実施形態には限定されず、この発明のエンジン冷却システムの制御の対象となるサブ熱交換器としては、種々の熱交換器を採用できる。
 例えば、制御の対象となるサブ熱交換器として、第一種サブ熱交換器Hを一つだけ採用して第二種サブ熱交換器Cを採用しない実施形態、第一種サブ熱交換器Hを複数採用して第二種サブ熱交換器Cを採用しない実施形態、第一種サブ熱交換器Hを採用せず第二種サブ熱交換器Cを一つだけ採用する実施形態、第一種サブ熱交換器Hを採用せず第二種サブ熱交換器Cを複数採用する実施形態等が考えられる。
 また、サブ熱交換器の他の例として、ラジエータ20を含む冷媒循環回路21と共通の冷媒で吸気を、冷却する液冷式のインタークーラ、あるいは、エンジンの駆動力が伝達される変速機の潤滑油を、ラジエータ20を含む冷媒循環回路21と共通の冷媒で冷却する液冷式のトランスミッションオイルクーラ等が挙げられる。これらの種々のサブ熱交換器の中から、制御の対象となるサブ熱交換器を一つ又は複数選択することができる。
 この実施形態では、液冷式冷却装置として、冷却水を冷媒とする水冷式冷却装置を採用した例について、この発明のエンジン冷却システムを説明したが、それ以外にも、例えば、潤滑油を冷媒とする油冷式冷却装置など、他の冷媒による冷却装置を採用してもよい。
1 エンジン
2 ピストン
3 燃焼室
4 吸気通路
5 排気通路
6 吸気バルブ
7 排気バルブ
8 点火装置
9 吸気温度センサ
10 冷却対象部
11 ポンプ装置(ウォータポンプ)
12 水温センサ
15 排気ガス再循環装置
16 排気還流ガス通路
17 排気還流バルブ
20 ラジエータ
21 冷媒循環回路
22 バルブ
30 エンジンオイルクーラ(サブ熱交換器)
31 サブ冷媒循環回路
32 バルブ
40 排気還流ガスクーラ(サブ熱交換器)
41 サブ冷媒循環回路
42 バルブ
50 ヒータコア(サブ熱交換器)
51 サブ冷媒循環回路
52 バルブ
53 空調装置
60 電子制御ユニット
61 車室内空調スイッチ
62 車室内ファンスイッチ
63 車室内温度検出手段
64 外気温度検出手段
H 第一種サブ熱交換器(冷媒の温度を上昇させるサブ熱交換器)
C 第二種サブ熱交換器(冷媒の温度を低下させるサブ熱交換器)
 小容量サブ熱交換器
 大容量サブ熱交換器

Claims (9)

  1.  冷媒を送り出すポンプ装置と、
     前記冷媒との熱交換によって冷却されるエンジンの冷却対象部と、
     前記冷媒を冷却するラジエータと、
     前記ポンプ装置と前記冷却対象部と前記ラジエータとを接続し前記冷媒を循環させる冷媒循環回路と、
     前記冷媒が供給され前記ラジエータよりも熱交換性能が低いサブ熱交換器を含むサブ冷媒循環回路と、
     前記冷却対象部における前記冷媒の温度に相関する情報を取得する冷媒温度取得手段と、
    を備え、
     暖機運転時に前記冷媒の温度が第一所定値未満である場合には前記ラジエータ及び前記サブ熱交換器への冷媒の供給を抑制し、前記冷媒の温度が上昇して前記冷媒の温度が第一所定値以上となった場合には前記冷媒の供給抑制を解除するとともに、
     前記抑制を解除する際、前記冷媒の温度が前記第一所定値よりも高い値に設定された第二所定値未満である場合には前記ラジエータへの冷媒の供給を停止し且つ前記サブ熱交換器への冷媒の供給を行い、前記冷媒の温度が前記第二所定値以上である場合には前記ラジエータへの前記冷媒の供給を行う
    エンジン冷却システム。
  2.  前記サブ熱交換器は、該サブ熱交換器から単位時間当たりに流出する冷媒量が前記ラジエータより小さい
    請求項1に記載のエンジン冷却システム。
  3.  前記サブ熱交換器は、該サブ熱交換器を通過して放熱された後の前記冷媒の温度が、前記ラジエータを通過した後の前記冷媒の温度よりも高い
    請求項1又は2に記載のエンジン冷却システム。
  4.  暖機運転時に前記冷媒の温度が前記第一所定値未満である場合には前記ラジエータ及び前記サブ熱交換器への冷媒の供給を停止し、前記冷媒の温度が上昇して前記冷媒の温度が前記第一所定値以上となった場合には前記サブ熱交換器への冷媒の供給を開始する
    請求項1~3の何れか1項に記載のエンジン冷却システム。
  5.  前記サブ冷媒循環回路は、前記サブ熱交換器として冷媒の温度を上昇させる第一種サブ熱交換器と冷媒の温度を低下させる第二種サブ熱交換器とを備え、
     前記サブ熱交換器に冷媒を供給する際、前記冷媒の温度が前記第一所定値と前記第二所定値との間に設定された第三所定値未満である場合には前記第一種サブ熱交換器への冷媒の供給を行い且つ前記第二種サブ熱交換器への冷媒の供給を停止し、前記冷媒の温度が前記第三所定値以上である場合には前記第二種サブ熱交換器への冷媒の供給を行う
    請求項4に記載のエンジン冷却システム。
  6.  前記サブ冷媒循環回路は、冷媒の温度を低下させる前記サブ熱交換器として相対的に冷却性能が低い小容量サブ熱交換器と相対的に冷却性能が高い大容量サブ熱交換器とを備え、
     冷媒の温度を低下させる前記サブ熱交換器に冷媒を供給する際、前記冷媒の温度が前記第一所定値と前記第二所定値との間に設定された第四所定値未満である場合には前記小容量サブ熱交換器への冷媒の供給を行い且つ前記大容量サブ熱交換器への冷媒の供給を停止し、前記冷媒の温度が前記第四所定値以上である場合には前記大容量サブ熱交換器への冷媒の供給を行う
    請求項4又は5に記載のエンジン冷却システム。
  7.  前記エンジンは排気ガスの一部を排気還流ガスとして吸気に還流する排気ガス再循環装置を備え、
     前記排気ガス再循環装置は前記排気還流ガスを前記冷媒で冷却する液冷式の排気還流ガスクーラを備え、
     前記サブ熱交換器は前記排気還流ガスクーラ
    を含む請求項1~6の何れか1項に記載のエンジン冷却システム。
  8.  前記サブ熱交換器は、
     前記エンジンを搭載する車両の空調装置が備えるヒータコア
    を含む請求項1~7の何れか1項に記載のエンジン冷却システム。
  9.  前記サブ熱交換器は、
     前記エンジンの潤滑油を前記冷媒で冷却する液冷式のエンジンオイルクーラ、
     吸気を前記冷媒で冷却する液冷式のインタークーラ、
     エンジンの駆動力が伝達される変速機の潤滑油を前記冷媒で冷却する液冷式のトランスミッションオイルクーラ
    から選択される単一の又は複数の要素を含む請求項1~8の何れか1項に記載のエンジン冷却システム。
PCT/JP2018/006237 2017-06-05 2018-02-21 エンジン冷却システム WO2018225305A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019523340A JPWO2018225305A1 (ja) 2017-06-05 2018-02-21 エンジン冷却システム
EP18812787.2A EP3636893A4 (en) 2017-06-05 2018-02-21 ENGINE COOLING SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-110833 2017-06-05
JP2017110833 2017-06-05

Publications (1)

Publication Number Publication Date
WO2018225305A1 true WO2018225305A1 (ja) 2018-12-13

Family

ID=64566717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006237 WO2018225305A1 (ja) 2017-06-05 2018-02-21 エンジン冷却システム

Country Status (3)

Country Link
EP (1) EP3636893A4 (ja)
JP (1) JPWO2018225305A1 (ja)
WO (1) WO2018225305A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087761A (ja) * 2011-10-21 2013-05-13 Denso Corp エンジン冷却水循環システム
JP2013127224A (ja) * 2011-12-19 2013-06-27 Toyota Motor Corp 冷却装置の制御装置
WO2014192747A1 (ja) * 2013-05-28 2014-12-04 日産自動車株式会社 エンジンの制御装置及び制御方法
JP2015175296A (ja) 2014-03-14 2015-10-05 いすゞ自動車株式会社 エンジン冷却システム
JP2017002787A (ja) * 2015-06-09 2017-01-05 トヨタ自動車株式会社 車両の熱交換装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2804722B1 (fr) * 2000-02-03 2002-03-08 Peugeot Citroen Automobiles Sa Dispositif de refroidissement d'un moteur de vehicule automobile
GB2475079B (en) * 2009-11-05 2015-02-18 Ford Global Tech Llc Cooling systems
WO2014074430A1 (en) * 2012-11-07 2014-05-15 Borgwarner Inc. Thermal system cold start layout circuit with egr

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087761A (ja) * 2011-10-21 2013-05-13 Denso Corp エンジン冷却水循環システム
JP2013127224A (ja) * 2011-12-19 2013-06-27 Toyota Motor Corp 冷却装置の制御装置
WO2014192747A1 (ja) * 2013-05-28 2014-12-04 日産自動車株式会社 エンジンの制御装置及び制御方法
JP2015175296A (ja) 2014-03-14 2015-10-05 いすゞ自動車株式会社 エンジン冷却システム
JP2017002787A (ja) * 2015-06-09 2017-01-05 トヨタ自動車株式会社 車両の熱交換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3636893A4

Also Published As

Publication number Publication date
JPWO2018225305A1 (ja) 2020-04-02
EP3636893A1 (en) 2020-04-15
EP3636893A4 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
JP4119222B2 (ja) 車両用熱交換器の通風装置およびその制御方法
US8464668B2 (en) Vehicle cooling system with directed flows
JP5505331B2 (ja) 内燃機関冷却システム
US9470138B2 (en) Coolant circulation system for engine
JP5068371B2 (ja) 車両用のギヤボックス内のオイルの冷却装置
EP2795078B1 (en) Arrangement and method for cooling of coolant in a cooling system in a vehicle
EP2326812B1 (en) Cooling system for a vehicle driven by a combustion engine
KR101592428B1 (ko) 통합 유량 제어 밸브 장치
KR20190028965A (ko) 오일온도를 제어할 수 있는 인터쿨러 냉각장치 및 이의 제어방법
JP2012132422A (ja) 内燃機関の冷却装置
JP5490987B2 (ja) エンジンの冷却装置
KR20180128145A (ko) 변속기 오일 온도 제어 시스템
JP6246633B2 (ja) 車両用内燃機関の冷却装置
WO2018225305A1 (ja) エンジン冷却システム
JP3292217B2 (ja) 車両用油温制御装置
WO2017199866A1 (ja) 車両用冷却装置
JP2007224821A (ja) 内燃機関の冷却装置
JP2016151215A (ja) 内燃機関の冷却装置
JP2019044610A (ja) 内燃機関
JP2005076483A (ja) 冷却システム
JP2019190499A (ja) 油温制御装置
KR0149139B1 (ko) 엔진냉각 보조장치
KR20190079984A (ko) 자동차의 디젤엔진 냉각장치
JP2017198137A (ja) エンジン冷却装置
JP2018188973A (ja) 内燃機関の冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18812787

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523340

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018812787

Country of ref document: EP

Effective date: 20200107