[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018221391A1 - 基板貼り合わせ方法、積層基板製造装置及び積層基板製造システム - Google Patents

基板貼り合わせ方法、積層基板製造装置及び積層基板製造システム Download PDF

Info

Publication number
WO2018221391A1
WO2018221391A1 PCT/JP2018/020075 JP2018020075W WO2018221391A1 WO 2018221391 A1 WO2018221391 A1 WO 2018221391A1 JP 2018020075 W JP2018020075 W JP 2018020075W WO 2018221391 A1 WO2018221391 A1 WO 2018221391A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
holding
substrates
bonding
distortion
Prior art date
Application number
PCT/JP2018/020075
Other languages
English (en)
French (fr)
Inventor
菅谷 功
創 三ッ石
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to KR1020197028146A priority Critical patent/KR20200014268A/ko
Priority to JP2019522179A priority patent/JPWO2018221391A1/ja
Publication of WO2018221391A1 publication Critical patent/WO2018221391A1/ja
Priority to US16/698,238 priority patent/US20200091015A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68735Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/89Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using at least one connector not provided for in any of the groups H01L24/81 - H01L24/86
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/80009Pre-treatment of the bonding area
    • H01L2224/8001Cleaning the bonding area, e.g. oxide removal step, desmearing
    • H01L2224/80011Chemical cleaning, e.g. etching, flux
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/80009Pre-treatment of the bonding area
    • H01L2224/8001Cleaning the bonding area, e.g. oxide removal step, desmearing
    • H01L2224/80013Plasma cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/808Bonding techniques
    • H01L2224/80894Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
    • H01L2224/80895Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces between electrically conductive surfaces, e.g. copper-copper direct bonding, surface activated bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Definitions

  • the present invention relates to a substrate bonding method, a multilayer substrate manufacturing apparatus, and a multilayer substrate manufacturing system.
  • Patent Document 1 JP-A-2015-95579
  • the first substrate by releasing the holding of one of the first substrate held by the first holding unit and the second substrate held by the second holding unit, the first substrate A method for bonding a substrate and a second substrate, wherein the holding of either the first substrate or the second substrate is released based on information on the respective distortions of the first substrate and the second substrate.
  • a method for laminating a substrate is provided that includes determining whether to maintain or maintain.
  • a substrate bonding method for releasing the holding of the substrate having the smaller distortion generated in the bonding process when the holding is released, or the substrate having the smaller distortion generated before the bonding includes the first substrate and the second substrate.
  • the first substrate and the second substrate are bonded to each other, and either the first substrate or the second substrate is held first based on the information on the respective distortions of the first substrate and the second substrate.
  • a substrate bonding method including the step of determining whether to hold the part or the second holding part is provided.
  • the first substrate has a first holding unit that holds the first substrate and a second holding unit that holds the second substrate, and one of the first substrate and the second substrate.
  • a determination step of determining which holding of the second substrate is to be released or maintained, and the bonding step is a method of manufacturing a laminated substrate that releases the holding of the substrate determined to be released in the determination step Provided.
  • a first holding unit that holds the first substrate and a second holding unit that holds the second substrate, and one of the first substrate and the second substrate.
  • a laminated substrate manufacturing apparatus that manufactures a laminated substrate by bonding the first substrate and the second substrate by releasing the holding of the first substrate, and information on each distortion of the first substrate and the second substrate
  • a laminated substrate manufacturing apparatus including a determining unit that determines whether to hold or maintain one of the first substrate and the second substrate.
  • a first holding unit that holds the first substrate and a second holding unit that holds the second substrate so as to face the first substrate are provided.
  • a laminated substrate manufacturing apparatus that manufactures a laminated substrate by bonding the first substrate and the second substrate by releasing one of the substrates and the second substrate, wherein the first substrate and the second substrate
  • An apparatus for manufacturing a laminated substrate is provided that releases the holding of one of the two substrates that has been determined to be released based on information related to strain.
  • a first holding unit that holds the first substrate and a second holding unit that holds the second substrate so as to face the first substrate are provided.
  • a laminated substrate manufacturing apparatus that manufactures a laminated substrate by bonding the first substrate and the second substrate by releasing one of the substrates and the second substrate, wherein the first substrate and the second substrate
  • a multilayer substrate manufacturing apparatus for releasing the holding of the substrate having the smaller distortion generated in the bonding process when the holding is released or the substrate having the smaller distortion generated before the bonding. Is done.
  • a first holding unit that holds the first substrate, a second holding unit that holds the second substrate so as to face the first substrate, and the first substrate, A correction unit that corrects misalignment with the second substrate, and the first substrate and the second substrate are bonded together by releasing the holding of one of the first substrate and the second substrate.
  • the correction amount of the positional deviation estimated when the first substrate and the second substrate are bonded is large enough to be corrected by the correction unit.
  • a laminated substrate manufacturing apparatus that releases the holding of the substrate that becomes the target.
  • the first holding unit that holds the first substrate and the second holding unit that holds the second substrate have one of the first substrate and the second substrate.
  • the bonding portion that bonds the first substrate and the second substrate A determination unit that determines whether to release or maintain which of the second substrates is to be released, and the bonding unit includes a laminated substrate manufacturing system that releases the holding of the substrate that is determined to be released by the determination unit Provided.
  • FIG. 1 is a schematic plan view of a multilayer substrate manufacturing apparatus 100.
  • FIG. 2 is a schematic plan view of a substrate 210.
  • FIG. 3 is a flowchart showing a procedure for stacking substrates 210 to produce a stacked substrate 230.
  • FIG. 3 is a schematic cross-sectional view of a substrate holder 221 that holds a substrate 211 and a substrate holder 223 that holds a substrate 213.
  • 3 is a schematic cross-sectional view of a bonding unit 300.
  • FIG. 3 is a schematic cross-sectional view of a bonding unit 300.
  • FIG. 3 is a schematic cross-sectional view of a bonding unit 300.
  • FIG. 3 is a schematic cross-sectional view of a bonding unit 300.
  • FIG. 3 is a schematic cross-sectional view of a bonding unit 300.
  • FIG. 3 is a schematic cross-sectional view of a bonding unit 300.
  • FIG. 3 is a schematic cross-
  • FIG. 3 is a schematic cross-sectional view of a bonding unit 300.
  • FIG. It is the elements on larger scale which show the bonding process of the board
  • 4 is a schematic diagram showing the relationship between crystal anisotropy and Young's modulus in a silicon single crystal substrate 208. 4 is a schematic diagram showing the relationship between crystal anisotropy and Young's modulus in a silicon single crystal substrate 209.
  • FIG. 5 is a schematic diagram showing substrates 511 and 513 on which a plurality of circuit regions 216 are formed.
  • FIG. 20 is a flowchart showing a procedure for bonding the previously corrected substrates 511 and 513 shown in FIG. 19 together.
  • FIG. 20 is a diagram for explaining a method for correcting a magnification distortion caused by air resistance that may occur at the time of bonding in a case where the substrate 511 shown in FIG. 19 is determined to be fixed, contrary to provisional determination.
  • 5 is a schematic cross-sectional view of a part of a bonding unit 600.
  • FIG. 6 is a schematic diagram showing a layout of an actuator 612.
  • FIG. 6 is a schematic diagram showing part of the operation of a bonding unit 600.
  • FIG. 1 is a schematic plan view of the multilayer substrate manufacturing apparatus 100.
  • the multilayer substrate manufacturing apparatus 100 includes a housing 110, a substrate cassette 120 that accommodates a substrate 210 to be bonded, a substrate cassette 130 that accommodates a multilayer substrate 230 manufactured by bonding at least two substrates 210, and a control unit 150.
  • the inside of the housing 110 is temperature-controlled, and is kept at room temperature, for example.
  • the transport unit 140 transports a single substrate 210, a substrate holder 220, a substrate holder 220 holding the substrate 210, a stacked substrate 230 formed by stacking a plurality of substrates 210, and the like.
  • the control unit 150 controls each unit of the multilayer substrate manufacturing apparatus 100 in an integrated manner.
  • the control unit 150 receives a user instruction from the outside, and sets manufacturing conditions for manufacturing the laminated substrate 230.
  • the control unit 150 has a user interface that displays the operation state of the multilayer substrate manufacturing apparatus 100 toward the outside.
  • the bonding unit 300 includes a pair of opposing stages 322 and 332.
  • the pair of stages 322 and 332 hold the substrate 210 via the substrate holder 220, respectively.
  • the bonding unit 300 aligns the pair of substrates 210 held on the pair of stages 322 and 332 with each other, and then maintains the state in which one of the pair of substrates 210 is held on the one stage. Then, by releasing the other substrate 210 from the other stage toward the one substrate 210, the pair of substrates 210 are brought into contact with each other and bonded to form the laminated substrate 230.
  • the substrate 210 that is maintained on one stage is referred to as a fixed-side substrate 210, and the substrate 210 that is released from the state held on the other stage when being bonded is released. Is referred to as a release-side substrate 210.
  • the bonded state means that the terminals provided on the two stacked substrates are connected to each other, thereby ensuring electrical continuity between the two substrates, or of the two substrates.
  • these states are included.
  • the two substrates are finally electrically connected by performing a treatment such as annealing on the two stacked substrates, or when the bonding strength of the two substrates is equal to or higher than a predetermined strength.
  • the bonded state includes a state where the two substrates are temporarily bonded before the treatment such as annealing, that is, a state where they are temporarily joined.
  • the state where the bonding strength becomes equal to or higher than a predetermined strength by annealing includes, for example, a state where the surfaces of two substrates are bonded to each other by a covalent bond. Further, the temporarily bonded state includes a state in which two overlapping substrates can be separated and reused.
  • the pre-aligner 500 aligns the substrate 210 and the substrate holder 220 and holds the substrate 210 on the substrate holder 220.
  • the substrate holder 220 is made of a hard material such as alumina ceramics, and sucks and holds the substrate 210 by an electrostatic chuck, a vacuum chuck, or the like.
  • an unprocessed silicon wafer in addition to the substrate 210 on which elements, circuits, terminals, and the like are formed, an unprocessed silicon wafer, a GeGe-added SiGe substrate, a Ge single crystal substrate, a III-V group Alternatively, a compound semiconductor wafer such as II-VI group and a glass substrate can be bonded together.
  • the object to be bonded may be a circuit board and an unprocessed substrate, or may be an unprocessed substrate.
  • the substrate 210 to be bonded may itself be a stacked substrate 230 having a plurality of substrates already stacked.
  • FIG. 2 is a schematic plan view of the substrate 210 to be bonded in the laminated substrate manufacturing apparatus 100.
  • the substrate 210 includes a notch 214, a plurality of circuit regions 216, and a plurality of alignment marks 218.
  • the plurality of circuit regions 216 is an example of a structure formed on the surface of the substrate 210, and is periodically arranged in the surface direction on the surface of the substrate 210.
  • Each of the plurality of circuit regions 216 is provided with a structure such as a wiring or a protective film formed by a photolithography technique or the like.
  • the plurality of circuit regions 216 are also provided with connection portions such as pads and bumps that serve as connection terminals when the substrate 210 is electrically connected to another substrate 210, a lead frame, or the like.
  • the connection part is also an example of a structure formed on the surface of the substrate 210.
  • the plurality of alignment marks 218 are also examples of structures formed on the surface of the substrate 210, and are arranged on the scribe lines 212 arranged between the plurality of circuit regions 216.
  • the plurality of alignment marks 218 are indicators for aligning the substrate 210 with another substrate 210.
  • FIG. 3 is a flowchart showing a procedure for producing a laminated substrate 230 by laminating a pair of substrates 210 in the laminated substrate manufacturing apparatus 100.
  • the control unit 150 acquires information on the respective distortions of the substrates 211 and 213 to be bonded (step S101), and based on the acquired information, either of the substrates 211 or 213 is a pair of stages of the bonding unit 300. Is determined to be the fixed side or the release side (step S102). That is, in the present embodiment, the control unit 150 plays a role as a determination unit.
  • the control unit 150 may determine only one of the fixed-side substrate and the release-side substrate among the two substrates 211 and 213.
  • the substrate 211 and the substrate 213 are examples of the substrate 210.
  • the transport unit 140 sequentially carries the substrate holder 221 for the fixed side and the substrate 211 determined on the fixed side into the pre-aligner 500 (step S103).
  • the substrate 211 is held by the fixed-side substrate holder 221 (step S104).
  • the transport unit 140 sequentially loads the substrate holder 223 for the release side and the substrate 213 determined for the release side into the pre-aligner 500 in the same manner as the substrate 211.
  • the substrate 213 is held on the substrate holder 223 for the release side (step S104).
  • the substrate holder 221 and the substrate holder 223 are examples of the substrate holder 220.
  • FIG. 4 is a schematic cross-sectional view of the substrate holder 221 that holds the substrate 211 and the substrate holder 223 that holds the substrate 213.
  • the substrate holder 221 has a cross-sectional shape in which the thickness gradually increases from the peripheral portion toward the central portion.
  • the curved holding surface 225 is smooth.
  • the substrate 211 adsorbed and held by the substrate holder 221 is in close contact with the holding surface 225 and is curved following the shape of the holding surface 225. Therefore, when the surface of the holding surface is a curved surface, for example, a cylindrical surface, a spherical surface, a paraboloid, or the like, the shape of the adsorbed substrate 213 changes so as to form such a curved surface.
  • the substrate holder 223 is similar to the substrate holder 221 and has a cross-sectional shape in which the thickness gradually increases from the peripheral portion toward the central portion, thereby having a curved smooth holding surface 227.
  • the substrate 213 adsorbed and held by the substrate holder 223 is in close contact with the holding surface 227 and is curved following the shape of the holding surface 227.
  • the curvature and shape of the holding surface 225 of the substrate holder 221 and the holding surface 227 of the substrate holder 223 are drawn substantially the same, but the present invention is not limited to this.
  • the curvature and shape of the holding surface 227 of the release-side substrate holder 223 are such that both substrates are first brought into contact with each other so that no void is generated between the substrate 211 and the substrate 213 bonded together in the bonding unit 300. It may be designed with.
  • the curvature and shape of the holding surface 225 of the substrate holder 221 for the fixed side may be designed for the purpose of correcting distortion caused by air resistance or the like that may occur when the substrate 211 and the substrate 213 are bonded together. Accordingly, the curvature and shape of each holding surface are individually designed for different purposes and may be the same or different.
  • the holding surfaces 225 and 227 of the substrate holders 221 and 223 may have any shape.
  • the substrate holder 221 and the substrate 211 may be deformed by deforming the holding surface of the lower stage 332 so as to rise gently.
  • the holding surface 227 of the release-side substrate holder 223 may have a shape in which the peripheral region is flat and the central region protrudes, and the protruding amount may be variable.
  • the holding surface 227 of the release-side substrate holder 223 may be flat as long as the holding surface 225 of the fixed-side substrate holder 221 is curved.
  • the substrate holder 221 holding the substrate 211 is carried into the lower stage 332 of the bonding unit 300, and the substrate holder 223 holding the substrate 213 is carried into the upper stage 322 of the bonding unit 300.
  • the upper stage 322 has a holding function such as a vacuum chuck or an electrostatic chuck, and is fixed downward on the top plate 316 of the frame 310.
  • the lower stage 332 has a holding function such as a vacuum chuck and an electrostatic chuck, and is mounted on the upper surface of the Y-direction drive unit 333 that is overlaid on the X-direction drive unit 331 disposed on the bottom plate 312 of the frame 310.
  • the holding surface 225 of the substrate holder 221 and the holding surface 227 of the substrate holder 223 are both drawn flat for simplicity of explanation.
  • the microscope 324 and the activation device 326 are fixed to the side of the upper stage 322 on the top plate 316.
  • the microscope 324 can observe the upper surface of the substrate 211 held on the lower stage 332.
  • the activation device 326 generates plasma that cleans the upper surface of the substrate 211 held on the lower stage 332.
  • the X-direction drive unit 331 moves in the direction indicated by the arrow X in the drawing in parallel with the bottom plate 312.
  • the Y direction drive unit 333 moves on the X direction drive unit 331 in parallel with the bottom plate 312 in the direction indicated by the arrow Y in the drawing.
  • the lower stage 332 moves two-dimensionally in parallel with the bottom plate 312.
  • the lower stage 332 is supported by the lifting drive unit 338 and is moved up and down in the direction indicated by the arrow Z by the drive of the lifting drive unit 338.
  • the amount of movement of the lower stage 332 by the X direction drive unit 331, the Y direction drive unit 333, and the lift drive unit 338 is accurately measured using an interferometer or the like.
  • the microscope 334 and the activation device 336 are mounted on the side of the lower stage 332 in the Y direction driving unit 333, respectively.
  • the microscope 334 can observe the surface that is the lower surface of the substrate 213 held by the upper stage 322.
  • the activation device 336 generates plasma that cleans the surface of the substrate 213.
  • the activation devices 326 and 336 are provided in a device different from the bonding unit 300, and the substrate and the substrate holder whose surfaces are activated are transferred from the activation devices 326 and 336 to the bonding unit 300 by a robot. It may be.
  • the bonding unit 300 may further include a rotation drive unit that rotates the lower stage 332 around a rotation axis perpendicular to the bottom plate 312 and a swing drive unit that swings the lower stage 332. Accordingly, the lower stage 332 can be made parallel to the upper stage 322, and the substrate 211 held by the lower stage 332 can be rotated to improve the alignment accuracy of the substrates 211 and 213.
  • the microscopes 324 and 334 are calibrated by causing the control unit 150 to focus on each other or to observe a common index. Thereby, the relative positions of the pair of microscopes 324 and 334 in the bonding unit 300 are measured.
  • control unit 150 operates the X-direction driving unit 331 and the Y-direction driving unit 333 to apply the microscopes 324 and 334 to each of the substrates 211 and 213.
  • the provided alignment mark 218 is detected (step S106 in FIG. 3).
  • the relative positions of the substrates 211 and 213 can be determined by detecting the positions of the alignment marks 218 on the substrates 211 and 213 with the microscopes 324 and 334 whose relative positions are known (step S107).
  • the positional deviation amount between the corresponding alignment marks 218 in the pair of substrates 211 and 213 is equal to or less than a predetermined threshold value, or the position of the corresponding circuit region 216 or connection portion between the substrates 211 and 213.
  • the relative movement amounts of the substrates 211 and 213 are calculated so that the deviation amount is equal to or less than a predetermined threshold value.
  • the misregistration refers to the misalignment between the corresponding alignment marks 218 and the misalignment between the corresponding connecting portions between the stacked substrates 211 and 213.
  • the misalignment that occurs in each of the two substrates 211 and 213. Includes misalignment due to the difference in quantity. The distortion will be described later.
  • the “threshold value” may be a shift amount that allows electrical conduction between the substrates 211 and 213 when the substrates 211 and 213 are bonded together. It may be the amount of deviation when the structures provided respectively in contact with each other at least partially.
  • the control unit 150 is in a state where the connection parts do not contact each other or appropriate electrical continuity cannot be obtained, or between the joint parts. It may be determined that the bonding strength is not obtained.
  • the threshold value is set based on the position in a state where one of the substrates is deformed before bonding.
  • the control unit 150 records the relative positions of the pair of substrates 211 and 213, and chemically bonds the bonding surfaces of the pair of substrates 211 and 213. (Step S108 in FIG. 3). First, the control unit 150 resets the position of the lower stage 332 to the initial position and then moves it horizontally to scan the surfaces of the substrates 211 and 213 with the plasma generated by the activation devices 326 and 336. Thereby, the surfaces of the substrates 211 and 213 are cleaned, and the chemical activity is increased.
  • the surfaces of the substrates 211 and 213 can be activated by sputter etching using an inert gas, ion beam, fast atom beam, or the like. In the case of using an ion beam or a fast atom beam, the bonded portion 300 can be generated under reduced pressure.
  • the substrates 211 and 213 can be activated by ultraviolet irradiation, ozone asher or the like. Further, for example, the surface of the substrates 211 and 213 may be activated by chemical cleaning using a liquid or gas etchant. After the activation of the surfaces of the substrates 211 and 213, the surfaces of the substrates 211 and 213 may be hydrophilized by a hydrophilizing device.
  • the control unit 150 aligns the substrates 211 and 213 with each other (step S109 in FIG. 3).
  • the control unit 150 determines the corresponding structures of the substrates 211 and 213 based on the relative positions of the microscopes 324 and 334 detected first and the positions of the alignment marks 218 of the substrates 211 and 213 detected in step S106.
  • the lower stage 332 is moved so that at least the amount of misalignment becomes equal to or less than the threshold when the pasting is completed.
  • control unit 150 operates the lifting drive unit 338 to raise the lower stage 332 and bring the substrates 211 and 213 closer to each other. And a part of board
  • the regions of the substrates 211 and 213 are activated, when a part of them contacts, adjacent regions are autonomously adsorbed and bonded together by the intermolecular force between the substrates 211 and 213. Therefore, for example, by releasing the holding of the substrate 213 by the substrate holder 223 held by the upper stage 322, the region where the substrates 211 and 213 are bonded is sequentially expanded from the contacted portion to the adjacent region. As a result, a bonding wave is generated in which the contact area gradually expands, and the bonding of the substrates 211 and 213 proceeds. Eventually, the substrates 211 and 213 are in contact with each other and bonded together (step S110). Thereby, the laminated substrate 230 is formed from the pair of substrates 211 and 213.
  • control unit 150 replaces the holding of the substrate 213 by the substrate holder 223 with the upper stage 322 of the substrate holder 223.
  • the holding may be released.
  • the laminated substrate 230 formed in this way is carried out together with the substrate holder 221 from the bonding unit 300 by the transport unit 140 (step S111). Thereafter, the laminated substrate 230 and the substrate holder 221 are separated in the pre-aligner 500, and the laminated substrate 230 is conveyed to the substrate cassette 130.
  • the control unit 150 acquires information on each distortion of the substrates 211 and 213 to be bonded, and based on the acquired information, either of the substrates 211 or 213 is acquired. Then, it is determined whether to fix with the lower stage 332 of the bonding unit 300 or to release from the upper stage 322 of the bonding unit 300.
  • the distortion generated in the substrates 211 and 213 is a deformation that displaces the position of the structure on the substrates 211 and 213 from the design coordinates, that is, the design position.
  • the distortion generated in the substrates 211 and 213 includes plane distortion and three-dimensional distortion.
  • the plane distortion is a distortion generated in a direction along the bonding surface of the substrates 211 and 213, and a linear distortion in which a position displaced with respect to a design position of each structure of the substrates 211 and 213 is expressed by linear transformation.
  • nonlinear distortion other than linear distortion that cannot be expressed by linear transformation is a distortion generated in a direction along the bonding surface of the substrates 211 and 213, and a linear distortion in which a position displaced with respect to a design position of each structure of the substrates 211 and 213 is expressed by linear transformation.
  • nonlinear distortion other than linear distortion that cannot be expressed by linear transformation.
  • Linear distortion includes magnification distortion in which the amount of displacement increases at a constant rate along the radial direction from the center.
  • the magnification distortion is a value obtained by dividing the deviation from the design value at the distance X from the center of the substrates 211 and 213 by X, and its unit is ppm.
  • the magnification distortion includes isotropic magnification distortion.
  • the isotropic magnification distortion is a distortion in which the X component and the Y component of the displacement vector from the design position are equal, that is, the magnification in the X direction and the magnification in the Y direction are equal.
  • an anisotropic magnification distortion in which the X component and the Y component of the displacement vector from the design position are different that is, a distortion in which the magnification in the X direction and the magnification in the Y direction are different is included in the nonlinear distortion.
  • the difference in magnification distortion based on the design position of the structure on each of the two substrates 211 and 213 is included in the amount of misalignment between the two substrates 211 and 213.
  • linear distortion includes orthogonal distortion.
  • Orthogonal distortion is a large amount of displacement as the structure becomes farther in the Y-axis direction from the origin when the X-axis and Y-axis are set orthogonal to each other with the center of the substrate as the origin, and the structure is displaced in parallel in the X-axis direction from the design position It is a distortion.
  • the amount of displacement is the same in each of a plurality of regions crossing the Y axis parallel to the X axis, and the absolute value of the amount of displacement increases as the distance from the X axis increases.
  • the positive displacement direction of the Y axis and the negative displacement direction of the Y axis are opposite to each other.
  • the three-dimensional distortion of the substrates 211 and 213 is a displacement in a direction other than the direction along the bonding surface of the substrates 211 and 213, that is, a direction intersecting the bonding surface.
  • the three-dimensional distortion includes a curve generated in the whole or a part of the substrates 211 and 213 when the substrates 211 and 213 are bent entirely or partially.
  • the bending of the substrate means that the substrates 211 and 213 change to a shape including the surface of the substrates 211 and 213 that does not exist on the plane specified by the three points on the substrates 211 and 213. To do.
  • the curvature is a distortion in which the surface of the substrate forms a curved surface, and includes, for example, warping of the substrates 211 and 213.
  • warpage refers to strain remaining on the substrates 211 and 213 in a state where the influence of gravity is eliminated.
  • the distortion of the substrates 211 and 213 in which the influence of gravity is added to the warp is called deflection.
  • the warpage of the substrates 211 and 213 includes a global warp in which the entire substrates 211 and 213 are bent with a substantially uniform curvature, and a local warp in which the curvature is changed and bent in a part of the substrates 211 and 213. .
  • magnification distortion is classified into an initial magnification distortion, an adsorption magnification distortion, and a bonding process magnification distortion depending on the cause of occurrence.
  • the initial magnification distortion is caused by the stress generated in the process of forming the alignment mark 218, the circuit region 216, etc. on the substrates 211, 213, the periodic rigidity change caused by the arrangement of the scribe line 212, the circuit region 216, etc.
  • the deviation from the design specifications 211 and 213 occurs from the stage before the substrates 211 and 213 are bonded together. Therefore, the initial magnification distortion of the substrates 211 and 213 can be known before starting the lamination of the substrates 211 and 213. For example, information on the initial magnification distortion is obtained from the pretreatment apparatus that manufactured the substrates 211 and 213 by the control unit 150. May get.
  • the adsorption magnification distortion corresponds to a change in the magnification distortion caused by the bonding of the substrates 211 and 213 in which distortion such as warpage or the like is caused to adhere to the substrate holder 220. That is, when the warped substrate 210 is attracted and held by the substrate holder 220, the substrate 210 is deformed following the shape of the holding surface of the substrate holder 220. Here, when the substrate 210 changes from a warped state to a state that follows the shape of the holding surface of the substrate holder 220, the amount of distortion of the substrate 210 changes compared to before the holding.
  • the amount of distortion with respect to the design specification of the circuit region 216 on the surface of the substrate 210 changes compared with before the retention.
  • the change in the amount of distortion of the substrate 210 differs depending on the structure of the structure such as the circuit region 216 formed on the substrate 210, the process for forming the structure, the magnitude of the warp of the substrate 210 before holding, and the like.
  • the magnitude of the adsorption magnification distortion is determined by examining the correlation between the distortion and the adsorption magnification distortion in advance when distortions such as warpage have occurred in the substrates 211 and 213. It can be calculated from the state of distortion including shape and the like.
  • Bonding process magnification distortion is a change in magnification distortion newly generated due to distortion generated in the substrates 211 and 213 during the bonding process.
  • FIG. 11 and FIG. 12 are partial enlarged views showing the bonding process of the substrates 211 and 213 on the fixed-side substrate holder 221 having a flat holding surface.
  • 10, 11, and 12 in the substrates 211 and 213 in the process of being bonded by the bonding unit 300, the contact area where the substrates 211 and 213 are in contact with each other and the substrates 211 and 213 are in contact with each other.
  • a region Q in the vicinity of a boundary K with a non-contact region that is separated and will be pasted together is shown enlarged.
  • the boundary K extends from the center side of the substrates 211 and 213 toward the outer periphery side. Moving. In the vicinity of the boundary K, the substrate 213 released from being held by the substrate holder 223 is stretched due to the air resistance when the air intervening with the substrate 211 is expelled. Specifically, at the boundary K, the substrate 213 extends on the lower surface side in the drawing of the substrate 213 and the substrate 213 contracts on the upper surface side in the drawing with respect to the central surface in the thickness direction of the substrate 213.
  • magnification distortion with respect to the design specification of the circuit region 216 on the surface of the substrate 213 is enlarged with respect to the substrate 211 at the outer end of the region bonded to the substrate 211 in the substrate 213. It distorts as if it were. For this reason, the amount of elongation of the substrate 213 between the lower substrate 211 held by the substrate holder 221 and the upper substrate 213 released from the substrate holder 223, that is, as shown by a dotted line deviation in the drawing, A positional shift caused by a difference in magnification distortion occurs.
  • the extension amount of the substrate 213 fixed by bonding is accumulated as the boundary K moves to the outer periphery of the substrates 211 and 213.
  • the amount of magnification distortion in the bonding process as described above can be calculated based on physical quantities such as the rigidity of the substrates 211 and 213 to be bonded, the viscosity of the atmosphere sandwiched between the substrates 211 and 213, and the adsorption force between the substrates 211 and 213. .
  • the amount of deviation generated by bonding substrates manufactured in the same lot as the substrates 211 and 213 to be bonded is measured and recorded in advance, and the recorded measurement values are bonded to the substrates 211 and 213 of the lot.
  • the control unit 150 may acquire the information regarding the bonding process magnification distortion that occurs.
  • the bonding process is a process from when the substrates 211 and 213 are partially in contact with each other until the expansion of the contact area is completed.
  • FIG. 13 is a schematic diagram showing a positional shift in the laminated substrate 230 due to a magnification distortion generated when a fixed-side substrate holder 221 having a flat holding surface is used.
  • the arrows in the figure are vectors indicating the positional deviation of the release-side substrate 213 when the fixed-side substrate 211 is used as a reference, and the direction indicates the direction of the positional deviation, and the length indicates the size of the positional deviation.
  • the illustrated shift has a shift amount that gradually increases in a radial direction from the center point of the laminated substrate 230.
  • the illustrated magnification distortion includes an initial magnification distortion and an adsorption magnification distortion generated before the substrates 211 and 213 are bonded together, and a bonding process magnification distortion generated in the process of bonding the substrates 211 and 213.
  • the other substrate 213 is released while holding one substrate, for example, the substrate 211. Therefore, when the substrates 211 and 213 are bonded together, the held substrate 211 is fixed in shape, whereas the released substrate 213 is bonded while being distorted. Therefore, it is not necessary to consider the bonding process magnification distortion for the substrate 211 to be bonded while being fixed, but it is desirable to consider the bonding process magnification distortion for the substrate 213 to be released.
  • both bonding process magnification distortion and adsorption magnification distortion should be considered.
  • distortion such as adsorption magnification distortion generated by the substrate 213 following the shape of the distorted substrate 211.
  • the final difference in magnification distortion after bonding in the substrates 211 and 213 to be bonded is the difference in initial magnification distortion that the substrates 211 and 213 have from the beginning, and the substrates 211 and 213 are the substrate holder 221. 223 and the like, and the difference in adsorption magnification distortion generated when held by 223 and the like, and the bonding process magnification distortion of the substrate 213 released from holding in the bonding process are overlapped.
  • the positional deviation generated in the laminated substrate 230 formed by laminating the substrates 211 and 213 is related to the magnitude of the difference in initial magnification distortion, the difference in adsorption magnification distortion, and the difference in adhesion process magnification distortion. .
  • the magnification distortion generated in the substrates 211 and 213 is related to the distortion of the substrate such as warpage.
  • the difference in initial magnification distortion, the difference in adsorption magnification distortion, and the difference in bonding process magnification distortion can be estimated by measurement and calculation before bonding as described above. Therefore, based on the final difference in magnification distortion after bonding estimated for the substrates 211 and 213 to be bonded together, a measure for correcting this difference can be taken in advance.
  • FIG. 14 is a partially enlarged view showing a bonding process of the substrates 211 and 213 on the substrate holder 221 when the magnification distortion due to air resistance is corrected using the fixed-side substrate holder 221 having a curved holding surface.
  • the holding surface 225 of the substrate holder 221 for the fixed side is curved.
  • the figure of the substrate 211 is compared with the central portion A in the thickness direction of the substrate 213 indicated by a broken line in the drawing.
  • the shape changes so that the surface of the substrate 211 expands in the surface direction from the center toward the peripheral edge.
  • the shape changes so that the surface of the substrate 211 is reduced in the surface direction from the center toward the peripheral portion.
  • the upper surface of the substrate 211 in the drawing is enlarged as compared with the flat state of the substrate 211.
  • a difference in final magnification distortion from the other substrate 213, that is, a positional deviation caused by this difference can be corrected.
  • a plurality of substrate holders 221 having different curvatures of the curved holding surface 225 are prepared, and the holding surface 225 has a curvature with which the amount of positional deviation caused by the difference in final magnification distortion is equal to or less than a predetermined threshold. By selecting the substrate holder 221, the correction amount can be adjusted.
  • the holding surface 225 of the substrate holder 221 has a shape that rises at the center. Instead, by preparing a substrate holder 221 whose center portion is recessed with respect to the peripheral portion of the holding surface 225 and holding the substrate 211, the magnification on the bonding surface of the substrate 211 is reduced, and the bonding surface is The positional deviation with respect to the design specification of the formed circuit region 216 can also be adjusted.
  • magnification distortion among the linear distortions included in the plane distortion generated in the substrates 211 and 213 to be bonded, particularly the bonding process magnification distortion has been described.
  • FIG. 14 an example of a measure for correcting this difference based on the difference in final magnification distortion after bonding estimated for the substrates 211 and 213 to be bonded has been described.
  • anisotropy due to the crystal orientation of the substrates 211 and 213, that is, distortion due to crystal anisotropy among nonlinear strains included in the plane strain generated in the substrates 211 and 213 to be bonded will be described.
  • FIG. 15 is a schematic diagram showing the relationship between crystal anisotropy and Young's modulus in the silicon single crystal substrate 208.
  • Young's modulus in the 0 ° direction and the 90 ° direction in the XY coordinates where the direction of the notch 214 relative to the center is 0 °. Is as high as 169 GPa and the Young's modulus is as low as 130 GPa in the 45 ° direction.
  • an uneven distribution of bending rigidity occurs in the circumferential direction of the substrate 210.
  • the bending rigidity of the substrate 210 differs depending on the traveling direction when the bonding wave travels from the center of the substrate 210 toward the peripheral edge.
  • the bending rigidity indicates ease of deformation with respect to a force that bends the substrate 210, and may be an elastic modulus.
  • FIG. 16 is a schematic diagram showing the relationship between crystal anisotropy and Young's modulus in the silicon single crystal substrate 209.
  • the Young's modulus in the 45 ° direction is 188 GPa most in the XY coordinates where the direction of the notch 214 relative to the center is 0 °.
  • the Young's modulus in the 0 ° direction is 169 GPa.
  • the Young's modulus in the 90 ° direction is the lowest 130 GPa. For this reason, in the substrate 210 manufactured using the silicon single crystal substrate 209, a non-uniform and complicated distribution of bending rigidity occurs in the circumferential direction of the substrate 210.
  • the magnitude of distortion generated in the bonding process described with reference to FIGS. 10 to 12 differs depending on the magnitude of the bending rigidity. Specifically, the magnitude of distortion in the low rigidity region is smaller than that in the high rigidity region. For this reason, in the laminated substrate 230 manufactured by laminating the substrates 211 and 213, a non-uniform displacement of the circuit region 216 occurs in the circumferential direction of the laminated substrate 230.
  • FIG. 17 is a schematic diagram showing a positional shift in the laminated substrate 230 due to nonlinear distortion that occurs when the substrate 210 to be released has a partial curvature.
  • the positional shift due to the nonlinear distortion shown in FIG. 17 does not include the positional shift due to the magnification distortion caused by the air resistance shown in FIG.
  • misalignment due to nonlinear distortion in the multilayer substrate 230 is greatly generated in the second quadrant and the fourth quadrant, but the positional misalignment amount rule along the radial direction from the center of the multilayer substrate 230. There is no general distribution. Referring to FIG. 17, it can be understood that the positional displacement caused by nonlinear distortion cannot represent the position displaced with respect to the design position of each structure of the substrates 211 and 213 by linear transformation.
  • Nonlinear distortion is caused by a variety of factors interacting with each other, and the main factors are crystal anisotropy in the silicon single crystal substrates 208 and 209 described with reference to FIGS. 15 and 16, and This is a manufacturing process of the substrate 210.
  • a plurality of structures are formed on the substrate 210 in the manufacturing process of the substrate 210.
  • a plurality of circuit regions 216, a scribe line 212, and a plurality of alignment marks 218 are formed on the substrate 210.
  • each of the plurality of circuit regions 216 Connected to each of the plurality of circuit regions 216 as a structure in the case where the substrate 210 is electrically connected to another substrate 210, a lead frame, etc., in addition to wiring formed by photolithography technology, a protective film, and the like Connection portions such as pads and bumps to be terminals are also arranged.
  • the structure and arrangement of these structures that is, the structure configuration affects the in-plane stiffness distribution and in-plane stress distribution of the substrate 210, and if the stiffness distribution or in-plane stress distribution becomes uneven, Partial curvature occurs.
  • the structure of these structures may be different for each substrate 210, or may be different for each type of substrate 210 such as a logic wafer, a CIS wafer, and a memory wafer. Even if the manufacturing process is the same, the structure of the structure may be slightly different depending on the manufacturing apparatus. Therefore, the structure of the structure may be different for each manufacturing lot of the substrate 210. As described above, the configuration of the plurality of structures formed on the substrate 210 may be different for each substrate 210, each type of the substrate 210, each manufacturing lot of the substrate 210, or each manufacturing process of the substrate 210. Therefore, the in-plane stiffness distribution of the substrate 210 is also different. Therefore, the curved state of the substrate 210 generated in the manufacturing process and the bonding process is also different.
  • the portion where the curve is generated in the substrate 210 is The distance between the other substrate 210 and the other substrate 210 becomes larger when bonded to the other substrate 210 as compared with a portion where no curvature occurs. Therefore, the progress of the bonding wave is slower in the portion where the curve is generated than in the portion where the curve is not generated, and the portion where the curve is generated in the substrate 210 on the release side is wrinkled. Non-linear distortion occurs in the substrate 230.
  • the adsorption-side magnification distortion may occur in the fixed-side substrate 210, such distortion is smaller than the distortion generated in the release-side substrate 210, and is ignored because it has little effect. Also good.
  • the control unit 150 acquires information about each curve before bonding the substrates 211 and 213, and determines one of the substrates 211 and 213 as the release side based on the information about each curve of the substrates 211 and 213. And if the bonding part 300 bonds based on determination, the position shift resulting from a nonlinear distortion can be suppressed. Note that information related to curvature is included in information related to distortion.
  • the information regarding the curvature of the substrates 211 and 213 includes information obtained by measuring the curvature of the substrates 211 and 213 and information regarding the cause of the curvature of the substrates 211 and 213.
  • the information obtained by measuring the curvature of the substrates 211 and 213 includes the magnitude of the warping of the substrates 211 and 213, the direction of the warping, the warped portion, the amplitude of the warping, the magnitude of the bending, the direction of the bending, and the bending. Characteristics of bending, such as amplitude, bending portion, internal stress, and stress distribution.
  • the information regarding the cause of the curvature of the substrates 211 and 213 includes the manufacturing process of the substrates 211 and 213, the type of the substrates 211 and 213, and the structure of the structure formed on the substrates 211 and 213.
  • the control unit 150 may acquire information related to the curvature of the substrates 211 and 213 from a pretreatment apparatus such as an exposure apparatus or a film forming apparatus used in a process performed before the multilayer substrate manufacturing apparatus 100. Moreover, in the multilayer substrate manufacturing apparatus 100, you may acquire from the pre-aligner 500 used in the process performed before the bonding part 300, for example.
  • the control unit 150 outputs information determined based on the acquired information to at least one of the transport unit 140, the pre-aligner 500, and the bonding unit 300.
  • FIG. 18 is a diagram for explaining a deflection measurement and a method for calculating warpage.
  • the method in FIG. 18 first, the bending of the substrates 211 and 213 as target substrates is measured. Specifically, under gravity, the front or back surfaces of the substrates 211 and 213 are observed with a non-contact distance meter such as a microscope while supporting the centers of the back surfaces of the substrates 211 and 213 in the surface direction and rotating around the centers. Then, the position of the front surface or the back surface is measured based on the distribution of distance information obtained from the automatic focusing function of the optical system of the microscope.
  • a non-contact distance meter such as a microscope
  • the control unit 150 acquires information on the amount of deflection of the substrates 211 and 213, and decomposes the information into a linear component and a nonlinear component along the radial direction from the substrate center.
  • the linear component of the deflection amount of the substrates 211 and 213 is shown as a parabola as the average deflection (A), and the nonlinear component is shown as a wavy line as the amplitude (B) of the deflection at the outer periphery. Yes.
  • the deflection of bare silicon as a reference substrate is measured.
  • Bare silicon can be regarded as the substrates 211 and 213 in which no structure is formed and the substrates 211 and 213 in which no warp occurs.
  • the amount of deflection of bare silicon is measured.
  • the control unit 150 acquires information on the amount of deflection of the bare silicon, and obtains information on a linear component along the radial direction from the center of the bare silicon ((A) in FIG. 18) and a nonlinear component ((B in FIG. 18). )).
  • the amplitude of bending at the outer periphery of the bare silicon is subtracted from the amplitude of bending at the outer periphery of the substrates 211 and 213.
  • a non-linear component of the warpage amount of the substrates 211 and 213, which can be regarded as a measurement value under zero gravity can be calculated.
  • the non-linear component of the warpage amount of the substrates 211 and 213 is shown as a wavy line as the amplitude (B) of the warpage at the outer periphery, and corresponds to the local warpage.
  • the reason why the amount of warpage as the amount of deformation measured under zero gravity can be calculated by this method is that the amount of deformation included in the amount of deformation as the amount of deformation measured under gravity is substantially reduced by the above subtraction. Because it is deducted.
  • a linear component of the warpage amount of the substrates 211 and 213 that can be regarded as a measurement value under zero gravity can be calculated.
  • the linear component of the warpage amount of the substrates 211 and 213 is shown in a parabolic shape as the average warpage (A).
  • the situation when the substrates 211 and 213 are bonded as the release-side substrates is reflected. Specifically, by taking into account the posture in which the surfaces of the substrates 211 and 213 face downward and the direction of gravity, the amplitude of the warp at the outer periphery of the substrates 211 and 213 is converted, so that the surface direction of the surfaces of the substrates 211 and 213 is changed. Assuming that the measurement is performed as described above while supporting the center, the amplitude of warpage at the outer periphery of the substrates 211 and 213 is calculated as a predicted value.
  • the control unit 150 determines which of the substrates 211 and 213 is the release-side substrate. For example, the magnitude of the maximum value of the warp amplitude at the outer periphery may be compared and the larger maximum value may be determined on the fixed side. The larger value may be determined as the fixed side.
  • each curve characteristic may be determined from the information on the amplitude of warpage at the outer periphery of each of the substrates 211 and 213 to determine whether to be the release side or the fixed side. .
  • one of the substrates 211, 213 is calculated that the amplitude of warpage at its outer periphery is zero, that is, if it is found that no partial curvature has occurred, one of the substrates is released. Decide on the side.
  • the direction and amount of global warpage may be additionally or alternatively used.
  • the direction of the global warpage is concave toward the other substrate to be bonded with the substrate that is convex toward the other substrate to be bonded out of the two substrates 211 and 213 as the release side.
  • the substrate may be the fixed side.
  • the one having a sharp local warp shape may be the fixed side.
  • the amount of distortion that may occur in the bonding process on each of the two substrates 211 and 213 may be measured, calculated, or estimated, and the smaller distortion amount may be set as the release side.
  • the distortion correction amount may be calculated in advance, and the one that reduces the distortion correction amount when pasted together may be the release side.
  • the substrate having the larger global warpage amount is set to the release side
  • the substrate having the smaller global warpage amount is set to the release side.
  • the magnification distortion generated when adsorbing to the upper stage 322 the magnification distortion caused by following the shape of the other substrate during bonding, the magnification distortion caused by the air resistance during bonding, the rigidity according to the crystal orientation
  • the substrate with the larger amount of global warpage may be used as the fixed side because the difference in magnification in the circumferential direction due to the difference between the two becomes larger.
  • both of the two substrates 211 and 213 are convex or concave, the larger warp amount is set to the fixed side, and the smaller warp amount is set to the release side.
  • the shape measurement of the substrates 211 and 213 may be performed by the above-described warpage measurement.
  • the substrate having a local warp that is likely to cause nonlinear distortion is fixed. It may be on the side. That is, the smaller one of the two substrates 211 and 213, which has already generated nonlinear distortion before bonding, or nonlinear distortion that may occur in the bonding process, may be set as the release side.
  • a correction amount corresponding to the convex amount of the substrate holder having the holding surface curved so that the central portion protrudes compared to the outer peripheral portion or a distortion correction using an actuator described in detail in FIGS. 22 to 24, for example. If the maximum correctable value of the mechanism is exceeded, the distortion cannot be corrected. For this reason, it is good also considering the board
  • the greater the curvature that is, the greater the curvature, the greater the magnitude of distortion that occurs during the bonding process.
  • a substrate having a large curvature may be used as the fixed side.
  • the air resistance is caused by the difference in rigidity distribution between the pair of substrates 211 and 213.
  • the magnification distortion may change.
  • the fixed side may have a larger magnification distortion due to air resistance when the release side is set.
  • the CIS wafer may be the release side.
  • the idea common to these judgment methods is to make the one with the larger distortion generated in the bonding process the fixed side. In this case, it may be considered that the side that enables distortion correction by an arbitrary distortion correction unit is set as the release side.
  • the distortion of the substrates 211 and 213 may differ for each of the substrates 211 and 213, for each type of the substrates 211 and 213, for each manufacturing lot of the substrates 211 and 213, or for each manufacturing process of the substrates 211 and 213. Therefore, the determination of which of the substrates 211 and 213 is the fixed side or the release side is made every time the substrates 211 and 213 are bonded together, for each type of the substrates 211 and 213, for each manufacturing lot of the substrates 211 and 213, and for each substrate It may be executed at any one of the manufacturing processes 211 and 213.
  • the residual stress of the substrates 211 and 213 is measured by Raman scattering or the like in a state where the substrates 211 and 213 are forcibly flattened by being attracted by the substrate holder 221, etc. It is good also as information about. Further, the distortion of the substrates 211 and 213 may be measured by the pre-aligner 500.
  • the control unit 150 analytically obtains information on the distortion of the substrates 211 and 213 and determines whether the substrates 211 and 213 are set to the release side or the fixed side. May be. In that case, based on the manufacturing process of the substrates 211 and 213, the structure and material of the structure such as the circuit region 216 formed on the substrates 211 and 213, the type of the substrates 211 and 213, and information on the stress distribution in the substrates 211 and 213. The magnitude and direction of distortion generated in the substrates 211 and 213, the shape of the substrates 211 and 213, and the like may be estimated.
  • the final magnification distortion and final non-linear distortion after bonding are calculated as described above, and based on these, either of the substrates 211 and 213 is set to the release side or the fixed side. To decide.
  • information regarding the manufacturing process for the substrates 211 and 213 generated in the process of forming the structure that is, information relating to chemical treatment such as thermal history accompanying etching and etching, and the like is used as information that causes warping. Based on this, distortion generated in the substrates 211 and 213 may be estimated.
  • Peripheral information such as the tendency, variation, deposition procedure, and conditions of the deposition apparatus such as the CVD apparatus may be referred to. These pieces of peripheral information may be measured again for the purpose of estimating distortion.
  • past data or the like obtained by processing equivalent substrates may be referred to, or assumed for substrates equivalent to the substrates 211 and 213 to be bonded.
  • the relationship between the amount of warpage included in the strain and the magnification strain, the relationship between the amount of warpage and the difference in magnification strain between the two substrates, or the difference in magnification strain between the two substrates, that is, the positional deviation You may prepare beforehand the data of the combination of the curvature amount from which amount becomes below a predetermined threshold value. Furthermore, based on the film formation structure and film formation conditions of the substrates 211 and 213 to be bonded together, data may be prepared by analytically obtaining the amount of warpage by a finite element method or the like.
  • the measurement of the strain amount with respect to the substrates 211 and 213 may be performed outside the multilayer substrate manufacturing apparatus 100, or the substrate 211, the multilayer substrate manufacturing apparatus 100, or the system including the multilayer substrate manufacturing apparatus 100 may include the substrate 211, A device for measuring strain 213 may be incorporated. Furthermore, the number of measurement items may be increased by using both internal and external measuring devices.
  • FIG. 19 is a schematic view showing substrates 511 and 513 on which a plurality of circuit regions 216 are formed.
  • the amount of displacement in the laminated substrate 230 due to the air-resistance-induced magnification distortion and the crystallographic anisotropy that may occur at the time of bonding is equal to or less than a predetermined threshold value.
  • the arrangement has been corrected in advance.
  • the control unit 150 tentatively determines that the substrate 513 is to be released based on, for example, the type or manufacturing process of the substrates 511 and 513, and determines the substrate 511. If it is fixed, it will be temporarily determined. Further, the substrates 511 and 513 are formed from the silicon single crystal substrate 208 described with reference to FIG.
  • the substrate holder 221 for the fixed side having the curved holding surface 225 is selected.
  • the amount of positional deviation in the laminated substrate 230 due to the air strain caused by the air resistance and the non-linear strain caused by the crystal anisotropy that can occur at the time of bonding is determined in advance. Make sure that: As the release-side substrate holder 223, one having a curved holding surface 227 is selected to prevent voids.
  • the substrate 511 that has been tentatively determined to be fixed is maintained in a fixed state at the time of bonding, a magnification distortion caused by air resistance and a non-linear distortion caused by crystal anisotropy do not occur. Predict. Therefore, in the substrate 511, when the plurality of circuit regions 216 are formed on the entire substrate 511 by repeatedly performing exposure using the same mask, the plurality of circuit regions are formed over the entire substrate 511 without correcting the shot map. Form at equal intervals.
  • the substrate 513 tentatively determined when the release side is released will be released at the time of bonding to cause a magnification distortion caused by air resistance and a nonlinear distortion caused by crystal anisotropy. Therefore, in the substrate 513, when the plurality of circuit regions 216 are formed on the entire substrate 513 by repeatedly performing exposure using the same mask, the position caused by the magnification distortion caused by the air resistance and the nonlinear distortion caused by the crystal anisotropy.
  • the shot map is corrected so that the amount of deviation is not more than a predetermined threshold.
  • the interval in the circumferential direction is made wider than the intervals in the 0 ° direction and the 90 ° direction.
  • the substrate 513 temporarily determined to be the release side is determined to be the release side in the determination based on the information on the distortion of the substrates 511 and 513 to be executed later, the substrate holder for the fixed side Even if the holding surface 225 of 221 is flat, a predetermined threshold value is used for the positional deviation in the multilayer substrate 230 due to the magnification distortion caused by air resistance and the non-linear distortion caused by crystal anisotropy that may occur at the time of bonding. The following can be suppressed.
  • the interval between the plurality of circuit regions 216 is made constant from the center of the substrate 513 toward the peripheral edge when correcting the shot map, and the constant value of the interval is set to the magnification. Change according to size.
  • FIG. 20 is a flowchart showing a procedure for bonding the substrates 511 and 513 corrected in advance shown in FIG.
  • FIG. 21 shows a method of correcting magnification distortion due to air resistance that may occur during bonding when the substrate 511 shown in FIG. 19 is determined to be released, contrary to the provisional determination described above. It is a figure explaining.
  • the substrate 511 is fixed by the lower stage 332 of the bonding unit 300, and is temporarily determined when the substrate 513 is released from the upper stage 322 of the bonding unit 300 (step S201).
  • a plurality of circuit regions 216 are formed at equal intervals on the surface of the substrate 511 in a pre-processing apparatus such as an exposure apparatus or a film forming apparatus used in a process performed before the apparatus 100, and the arrangement is previously performed as described above.
  • a plurality of corrected circuit regions 216 are formed on the surface of the substrate 513 (step S202).
  • the provisional determination in step S201 may be performed by the pretreatment apparatus described above, or may be performed by the control unit 150 of the multilayer substrate manufacturing apparatus 100 and output to the pretreatment apparatus.
  • either the fixed side or the release side may be determined in advance for each of the substrates 511 and 513 to be bonded, and the information may be stored in the memory of the preprocessing device.
  • step S101 information on each distortion of the substrates 511 and 513 to be bonded is acquired (step S101), and the substrate 511 and 513 are held by the lower stage 332 of the bonding unit 300 based on the acquired information. Is to be maintained, or whether the holding by the upper stage 322 of the bonding unit 300 is to be released is determined (step S102).
  • step S203 If it is determined that the substrate 513 that has been provisionally determined to be the release side in step S201 is the release side in step S102 (step S203: YES), the process proceeds to step S103 and subsequent steps, and the release side in which the holding surface 227 is curved as described above.
  • the substrate 513 is held by the substrate holder 223, the substrate 511 is held by the fixed-side substrate holder 221 having a flat holding surface 225, and the substrate 513 and the substrate 511 are bonded to each other by the bonding unit 300 to be a laminated substrate. 230 is formed.
  • step S203 if it is determined that the substrate 513 that has been provisionally determined to be the release side in step S201 is to be the fixed side in step S102 (step S203: NO), a magnification distortion caused by air resistance is used as the substrate holder 222 for the fixed side. Then, after selecting the one having the holding surface 225 having a curved shape such that the amount of displacement due to nonlinear distortion caused by crystal anisotropy is not more than a predetermined threshold (step S204), step S103 is selected.
  • the substrate 511 is held by the release-side substrate holder 223 whose holding surface 227 is curved, and the substrate 513 is held by the fixed-side substrate holder 222 whose holding surface 225 is curved, as shown in FIG. Further, the substrate 511 and the substrate 513 are bonded to each other at the bonding portion 300 to form the multilayer substrate 230.
  • the distortion correction amount using the fixed-side substrate holder 222 selected in step S204 cancels the distortion correction amount in step S202, and makes the amount of positional deviation equal to or less than a predetermined threshold value. Since it is necessary, for example, it becomes about twice the distortion correction amount in step S202. Considering the difference of the initial magnification distortion between the substrates 511 and 513, it slightly increases or decreases from about 2 times.
  • the fixed-side substrate 513 is used. Even if the holding surface 225 of the substrate holder 221 is flat, the positional deviation in the laminated substrate 230 due to the magnification distortion caused by air resistance and the non-linear distortion caused by crystal anisotropy that can occur at the time of bonding is determined in advance. It can be suppressed below the threshold value.
  • the holding surface 225 is curved with a predetermined curvature.
  • FIGS. 22 to 24 show an embodiment different from the embodiment shown in FIG. 14 as a method of correcting a positional shift due to a difference in distortion generated between the two substrates 211 and 213.
  • the surface shape of the lower stage 632 that holds the fixed-side substrate 211 is changed according to the magnitude of the magnification distortion caused by the air resistance of the release-side substrate 213, and the fixed-side substrate 211 Adjust the correction amount.
  • FIG. 22 is a schematic cross-sectional view of a part of a bonding unit 600 according to another embodiment.
  • the bonding unit 600 is the same except for the configuration of the lower stage 332 of the bonding unit 300 in the above embodiment, and thus the description thereof is omitted.
  • the holding surfaces 225 and 227 of the substrate holders 221 and 223 may have an arbitrary shape.
  • the lower stage 632 of the bonding unit 600 includes a base 611, a plurality of actuators 612, and a suction unit 613.
  • the base 611 supports the adsorption unit 613 via a plurality of actuators 612.
  • the suction unit 613 has a suction mechanism such as a vacuum chuck or an electrostatic chuck, and forms the upper surface of the lower stage 632.
  • the suction unit 613 sucks and holds the carried substrate holder 221.
  • the plurality of actuators 612 are arranged along the lower surface of the suction portion 613 below the suction portion 613.
  • the plurality of actuators 612 are individually driven under the control of the control unit 150 by supplying working fluid from the pressure source 622 via the pump 615 and the valve 616 from the outside.
  • the plurality of actuators 612 expands and contracts in the thickness direction of the lower stage 632, that is, the bonding direction of the substrates 211 and 213, respectively, with different expansion and contraction amounts, and raises or lowers the region where the adsorbing portion 613 is coupled.
  • the plurality of actuators 612 are coupled to the suction unit 613 via links.
  • a central portion of the suction portion 613 is coupled to the base portion 611 by a support column 614.
  • the surface of the suction portion 613 is displaced in the thickness direction for each region where the plurality of actuators 612 are coupled.
  • FIG. 23 is a schematic diagram showing a layout of the actuator 612.
  • the plurality of actuators 612 are arranged radially with the support column 614 as the center. Further, the arrangement of the plurality of actuators 612 can be regarded as a concentric shape centering on the support column 614.
  • the arrangement of the plurality of actuators 612 is not limited to that shown in the figure, and may be arranged in a lattice shape, a spiral shape, or the like, for example. Accordingly, the substrate 211 can be corrected by changing the shape into a concentric shape, a radial shape, a spiral shape, or the like.
  • FIG. 24 is a schematic diagram illustrating a part of the operation of the bonding unit 600.
  • the plurality of actuators 612 can be expanded and contracted by individually opening and closing the valves 616 to change the shape of the suction portion 613. Therefore, if the suction unit 613 is sucking the substrate holder 221 and the substrate holder 221 is holding the substrate 211, the shape of the suction unit 613 is changed to change the substrate holder 221 and the substrate 211. The shape can be changed and curved.
  • the plurality of actuators 612 are concentric, that is, arranged in the circumferential direction of the lower stage 632. Therefore, as shown by a dotted line M in FIG. 23, a plurality of actuators 612 for each circumference are grouped, and the driving amount is increased toward the periphery, so that the center is raised on the surface of the suction portion 613,
  • the shape can be changed to a parabolic surface, a cylindrical surface, or the like.
  • the substrate 211 can be curved by changing its shape following a spherical surface, a paraboloid, or the like. Therefore, on the upper surface of the substrate 211 in the drawing, the shape is changed so that the surface of the substrate 211 expands in the surface direction, with the central portion B in the thickness direction of the substrate 211 indicated by the alternate long and short dash line in FIG. Further, the shape of the lower surface of the substrate 211 is changed so that the surface of the substrate 211 is reduced in the surface direction.
  • the substrate 211 can be curved by changing the shape of the substrate 211 in a non-linear manner including a plurality of uneven portions in addition to other shapes such as a cylindrical surface. .
  • the deviation from the design specifications of the plurality of circuit regions 216 on the surface of the substrate 211 can be adjusted partially or entirely. Further, the amount of change in shape can be adjusted by the operation amount of the plurality of actuators 612.
  • the adsorbing portion 613 has a shape that rises at the center.
  • the magnification of the plurality of circuit regions 216 on the surface of the substrate 211 is increased by increasing the operation amount of the plurality of actuators 612 at the peripheral portion of the suction portion 613 and causing the central portion to be depressed with respect to the peripheral portion of the suction portion 613. Distortion can also be reduced.
  • another correction method such as thermal expansion or thermal contraction by temperature adjustment may be further introduced.
  • the substrate on the side of which the holding is released at the time of bonding or to heat the substrate on the fixed side it is preferable to cool the substrate on the side of which the holding is released at the time of bonding or to heat the substrate on the fixed side. Further, when correcting one of the two substrates 211 and 213 by heating, when the heated substrate is held on the lower stage 332, the heat generated from the heated substrate rises toward the upper stage 322, and the upper substrate 322 is heated. Since the substrate may be deformed by being transmitted to the substrate held on the stage 322, it is preferable to hold the substrate to be heated on the upper stage 322 and hold the other substrate on the lower stage 332. That is, in this case, it is preferable that the other substrate held by the lower stage 332 is a release-side substrate.
  • the conveyance unit receives the determination information, selectively removes the release-side or fixed-side substrate holder from the holder cassette, and sequentially sets the substrate and substrate holder pairs on the pre-aligner. Carry in.
  • the bonding unit receives the determination information and selectively holds the substrate holder holding the substrate on the upper stage or the lower stage. May be.
  • control unit of the multilayer substrate manufacturing apparatus has been described as a configuration in which one of the pair of substrates 211 and 213 is determined to be the fixed side and the other is set to the release side.
  • the determination may be performed in advance by a preprocessing apparatus, and the determined information may be input to the control unit of the multilayer substrate manufacturing apparatus.
  • the determination of which of the pair of substrates 211 and 213 is the fixed side or the release side is performed before the substrate is held by the stage of the bonding unit.
  • the stage on the substrate release side is determined in advance, and the substrate determined to be on the release side is held on the stage determined for release in advance.
  • the control unit 150 determines the stage on which the pair of substrates 211 and 213 should be held, respectively, according to the information regarding the distortion of the pair of substrates 211 and 213.
  • control unit 150 may determine which stage is holding the substrate that is determined to be released, and may perform control to release the suction by the stage.
  • the stage on which the substrate to be released is held is determined, and control for releasing the stage is controlled by the control unit 150. May be performed.
  • control unit 150 may release the holding of the pair of substrates 211 and 213 by both stages at the time of bonding. In this case, based on the information regarding distortion, it may be determined which of the pair of substrates 211 and 213 is held on the upper stage or the lower stage.
  • the control unit 150 may release part or all of the holding of the substrate 211 by the substrate holder 221.
  • the lower substrate 211 is lifted from the substrate holder 221 and bent by the pulling force from the upper substrate 213 in the process of expanding the contact area.
  • the shape changes so that the surface of the lower substrate 211 extends, so that the difference from the amount of extension of the surface of the upper substrate 213 is reduced by this amount of extension. Therefore, a positional shift caused by different deformation amounts between the two substrates 211 and 213 is suppressed.
  • the control unit 150 determines the substrate 211 as a fixed-side substrate.
  • the suction force by the stationary stage may be adjusted to hold the stationary substrate semi-fixed. In this case, it is not included in releasing the substrate described in the plurality of embodiments that the substrate held semi-fixed is attracted to another substrate by an intermolecular force and is separated from the substrate holder.
  • the apparatus and method for manufacturing a laminated substrate have been described using a plurality of embodiments. Additionally or alternatively, by releasing the holding of one of the first substrate held by the first holding unit and the second substrate held by the second holding unit, the first substrate A multilayer substrate manufacturing system that manufactures a multilayer substrate by bonding a second substrate, an acquisition unit that acquires information about each strain of the first substrate and the second substrate, and based on the information about the strain , A determination unit that determines whether to hold or release the holding of the first substrate and the second substrate, and a bonding unit that bonds the first substrate and the second substrate based on the determination It is good also as a laminated substrate manufacturing system provided with these.
  • the deciding unit sends a signal indicating that the release-side substrate and the fixed-side substrate are separated into separate transfer containers to the transfer device that sorts the substrates into transfer containers that contain the substrates to be joined, or a single You may transmit the signal to accommodate so that the cancellation
  • the determination unit includes a signal including information on the release-side substrate and the fixed-side substrate, a signal indicating that the release-side substrate is held on the release stage and the fixed-side substrate is held on the fixing stage, and
  • at least one of the signals indicating that the stage holding the release-side substrate is controlled to be released at the time of bonding may be transmitted to the laminated substrate manufacturing apparatus 100 which is an example of a bonding unit.
  • the substrates 211 and 213 are bonded to each other by gradually expanding the contact area after contacting a part of the substrates 211 and 213 is used.
  • the substrates 211 and 213 may be bonded together by holding each of 211 and 213 on a flat holding portion and releasing the holding of one substrate.
  • the method described in the above embodiment can be applied to determine the substrate to be released.
  • 100 laminated substrate manufacturing apparatus 110 housing, 120, 130 substrate cassette, 140 transport unit, 150 control unit, 208, 209 silicon single crystal substrate, 210, 211, 213, 511, 513 substrate, 212 scribe line, 214 notch, 216 Circuit area, 218 Alignment mark, 220, 221, 222, 223 Substrate holder, 225, 227 Holding surface, 230 Laminated substrate, 300 Bonding part, 310 Frame body, 312 Bottom plate, 316 Top plate, 322 Upper stage, 324, 334 microscope, 326, 336 activation device, 331 X direction drive unit, 332 lower stage, 333 Y direction drive unit, 338 elevating drive unit, 400 holder stocker, 500 pre-aligner, 600 bonding unit, 611 base, 612 Actuator 613 suction unit, 614 posts, 615 pumps, 616 valves, 622 pressure source 632 lower stage

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

貼り合わせる前の基板に歪みが生じている場合、保持部での保持を解除したときにその歪みが復元し、貼り合わせた二つの基板間に位置ずれが発生する。基板貼り合わせ方法であって、第1保持部に保持された第1の基板、および、第2保持部に保持された第2の基板の一方の保持を解除することにより、第1の基板と第2の基板とを貼り合わせる方法であって、第1の基板および第2の基板のそれぞれの歪みに関する情報に基づいて、第1の基板および第2の基板のいずれの保持を解除するかまたは維持するかを決定する段階を含む。

Description

基板貼り合わせ方法、積層基板製造装置及び積層基板製造システム
 本発明は、基板貼り合わせ方法、積層基板製造装置及び積層基板製造システムに関する。
 互いに対向した二つの保持部のそれぞれに基板を保持した状態で位置合わせをした後、一方の基板の保持を解除することにより二つの基板を互いに貼り合わせる方法が知られている(例えば、特許文献1)。
[特許文献1]特開2015-95579号公報
 上記の方法では、貼り合わせのときに保持部による一方の基板の保持が解除されるため、保持の解除により基板の歪みが復元したり、貼り合わせ過程で外力により歪みが生じたりする場合がある。この歪みにより、貼り合わせた二つの基板間に位置ずれが発生すると、二つの基板を適切に接合することができなくなる。
 本発明の第1の態様においては、第1保持部に保持された第1の基板、および、第2保持部に保持された第2の基板の一方の保持を解除することにより、第1の基板と第2の基板とを貼り合わせる方法であって、第1の基板および第2の基板のそれぞれの歪みに関する情報に基づいて、第1の基板および第2の基板のいずれの保持を解除するかまたは維持するかを決定する段階を含む基板貼り合わせ方法が提供される。
 本発明の第2の態様においては、第1の基板を第1保持部に保持する段階と、第1の基板に対向するように第2の基板を第2保持部に保持する段階と、第1の基板および第2の基板の一方の保持を解除することにより、第1の基板と第2の基板とを貼り合わせる段階とを含み、貼り合わせる段階は、第1の基板および第2の基板のうち、保持を解除した場合に貼り合せ過程で生じる歪みが小さい方の基板、または、貼り合わせ前に生じている歪みが小さい方の基板の保持を解除する基板貼り合せ方法が提供される。
 本発明の第3の態様においては、第1保持部に保持された第1の基板、および、第2保持部に保持された第2の基板の少なくとも一方の保持を解除することにより、第1の基板と第2の基板とを貼り合わせる方法であって、第1の基板および第2の基板のそれぞれの歪みに関する情報に基づいて、第1の基板および第2の基板のいずれを第1保持部または第2保持部に保持するかを決定する段階を含む基板貼り合わせ方法が提供される。
 本発明の第4の態様においては、第1の基板を保持する第1保持部と、第2の基板を保持する第2保持部とを有し、第1の基板および第2の基板の一方の保持を解除することにより、第1の基板と第2の基板とを貼り合わせる貼り合わせ段階と、第1の基板および第2の基板のそれぞれの歪みに関する情報に基づいて、第1の基板および第2の基板のいずれの保持を解除するかまたは維持するかを決定する決定段階と、を含み、貼り合わせ段階は、決定段階において解除すると決定された基板の保持を解除する積層基板製造方法が提供される。
 本発明の第5の態様においては、第1の基板を保持する第1保持部と、第2の基板を保持する第2保持部と、を備え、第1の基板および第2の基板の一方の保持を解除することにより、第1の基板と第2の基板とを貼り合わせて積層基板を製造する積層基板製造装置であって、第1の基板および第2の基板のそれぞれの歪みに関する情報に基づいて、第1の基板および第2の基板のいずれの保持を解除するかまたは維持するかを決定する決定部を備える積層基板製造装置が提供される。
 本発明の第6の態様においては、第1の基板を保持する第1保持部と、第1の基板に対向するように第2の基板を保持する第2保持部と、を備え、第1の基板および第2の基板の一方の保持を解除することにより、第1の基板と第2の基板とを貼り合わせて積層基板を製造する積層基板製造装置であって、第1の基板および第2の基板のうち歪みに関する情報に基づいて保持の解除が決定された一方の基板の保持を解除する積層基板製造装置が提供される。
 本発明の第7の態様においては、第1の基板を保持する第1保持部と、第1の基板に対向するように第2の基板を保持する第2保持部と、を備え、第1の基板および第2の基板の一方の保持を解除することにより、第1の基板と第2の基板とを貼り合わせて積層基板を製造する積層基板製造装置であって、第1の基板および第2の基板のうち、保持を解除した場合に貼り合せ過程で生じる歪みが小さい方の基板、または、貼り合わせ前に生じている歪みが小さい方の基板の保持を解除する積層基板製造装置が提供される。
 本発明の第8の態様においては、第1の基板を保持する第1保持部と、第1の基板に対向するように第2の基板を保持する第2保持部と、第1の基板と第2の基板との位置ずれを補正する補正部と、を備え、第1の基板および第2の基板の一方の保持を解除することにより、第1の基板と第2の基板とを貼り合わせて積層基板を製造する積層基板製造装置であって、第1の基板および第2の基板のうち、貼り合わせした場合に推定される位置ずれの補正量が、補正部での補正が可能な大きさとなる方の基板の保持を解除する積層基板製造装置が提供される。
 本発明の第9の態様においては、第1の基板を保持する第1保持部と、第2の基板を保持する第2保持部とを有し、第1の基板および第2の基板の一方の保持を解除することにより、第1の基板と第2の基板とを貼り合わせる貼り合わせ部と、第1の基板および第2の基板のそれぞれの歪みに関する情報に基づいて、第1の基板および第2の基板のいずれの保持を解除するかまたは維持するかを決定する決定部と、を備え、貼り合わせ部は、決定部において解除すると決定された基板の保持を解除する積層基板製造システムが提供される。
 上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。これらの特徴群のサブコンビネーションもまた発明となり得る。
積層基板製造装置100の模式的平面図である。 基板210の模式的平面図である。 基板210を積層して積層基板230を作製する手順を示す流れ図である。 基板211を保持した基板ホルダ221と、基板213を保持した基板ホルダ223との模式的断面図である。 貼り合わせ部300の模式的断面図である。 貼り合わせ部300の模式的断面図である。 貼り合わせ部300の模式的断面図である。 貼り合わせ部300の模式的断面図である。 貼り合わせ部300の模式的断面図である。 平坦な保持面を有する固定側用の基板ホルダ221上での基板211、213の貼り合わせ過程を示す部分拡大図である。 平坦な保持面を有する固定側用の基板ホルダ221上での基板211、213の貼り合わせ過程を示す部分拡大図である。 平坦な保持面を有する固定側用の基板ホルダ221上での基板211、213の貼り合わせ過程を示す部分拡大図である。 平坦な保持面を有する固定側用の基板ホルダ221を用いた場合に生じる空気抵抗起因の倍率歪みによる積層基板230での位置ずれを示す模式図である。 湾曲した保持面を有する固定側用の基板ホルダ221を用いて空気抵抗起因の倍率歪みを補正した場合の、基板ホルダ221上での基板211、213の貼り合わせ過程を示す部分拡大図である。 シリコン単結晶基板208における結晶異方性とヤング率との関係を示す模式である。 シリコン単結晶基板209における結晶異方性とヤング率との関係を示す模式である。 解除する側の基板210が部分的な湾曲を有していた場合に生じる非線形歪みによる積層基板230での位置ずれを示す模式図である。 撓み計測と反りの算出方法を説明する図である。 貼り合わせの際に生じ得る空気抵抗起因の倍率歪み、及び、結晶異方性起因の倍率歪みによる積層基板230での位置ずれの量が予め定められた閾値以下となるように予め配置が補正された複数の回路領域216が表面に形成されている基板511、513を示す模式図である。 図19に示された予め補正されている基板511、513を貼り合わせる手順を示す流れ図である。 仮の決定とは逆に、図19に示された基板511を固定する側に決定した場合において、貼り合わせの際に生じ得る空気抵抗起因の倍率歪みを補正する方法を説明する図である。 貼り合わせ部600の一部の模式的断面図である。 アクチュエータ612のレイアウトを示す模式図である。 貼り合わせ部600の一部の動作を示す模式図である。
 以下、発明の実施の形態を説明する。下記の実施形態は請求の範囲にかかる発明を限定するものではない。実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、積層基板製造装置100の模式的平面図である。積層基板製造装置100は、筐体110と、貼り合わせる基板210を収容する基板カセット120と、少なくとも二つの基板210を貼り合わせて作製された積層基板230を収容する基板カセット130と、制御部150と、搬送部140と、貼り合わせ部300と、基板210を保持する基板ホルダ220を収容するホルダストッカ400と、プリアライナ500とを備える。筐体110の内部は温度管理されており、例えば、室温に保たれる。
 搬送部140は、単独の基板210、基板ホルダ220、基板210を保持した基板ホルダ220、複数の基板210を積層して形成した積層基板230等を搬送する。制御部150は、積層基板製造装置100の各部を相互に連携させて統括的に制御する。また、制御部150は、外部からのユーザの指示を受け付けて、積層基板230を製造する場合の製造条件を設定する。更に、制御部150は、積層基板製造装置100の動作状態を外部に向かって表示するユーザインターフェイスも有する。
 貼り合わせ部300は、対向する一対のステージ322、332を有する。一対のステージ322、332には、それぞれ基板ホルダ220を介して基板210が保持される。貼り合わせ部300は、一対のステージ322、332に保持させた一対の基板210を相互に位置合わせした後、一対の基板210のうち一方の基板210を一方のステージに保持させた状態を維持して、他方の基板210をその一方の基板210に向けて他方のステージから解放することで、一対の基板210を互いに接触させて貼り合わせることにより積層基板230を形成する。この貼り合わせ方法において、一方のステージに保持された状態が維持される基板210を固定側の基板210と称し、他方のステージに保持された状態から貼り合わせのときに保持が解除される基板210を解除側の基板210と称する。
 ここで、貼り合わせした状態とは、積層された二つの基板に設けられた端子が互いに接続され、これにより、二つの基板間に電気的な導通が確保された場合、もしくは、二つの基板の接合強度が所定の強度以上となる場合には、それらの状態を含む。また、積層された二つの基板にアニール等の処理を行うことにより、二つの基板が最終的に電気的に接続される場合、もしくは、二つの基板の接合強度が所定の強度以上となる場合には、貼り合わせした状態は、アニール等の処理前に二つの基板が一時的に結合している状態、すなわち仮接合されている状態を含む。アニールにより接合強度が所定の強度以上になる状態は、例えば、二つの基板の表面同士が互いに共有結合により結合されている状態を含む。また、仮接合されている状態は、重なり合った二つの基板を分離して再利用することができる状態を含む。
 プリアライナ500は、基板210と基板ホルダ220との位置合わせを行い、基板210を基板ホルダ220に保持させる。基板ホルダ220は、アルミナセラミックス等の硬質材料により形成されており、静電チャックや真空チャック等により基板210を吸着して保持する。
 上記のような積層基板製造装置100においては、素子、回路、端子等が形成された基板210の他に、未加工のシリコンウエハ、Geを添加したSiGe基板、Ge単結晶基板、III-V族またはII-VI族等の化合物半導体ウエハ、および、ガラス基板等を貼り合わせることもできる。貼り合わせる対象は、回路基板および未加工基板であっても、未加工基板同士であってもよい。貼り合わされる基板210は、それ自体が、既に積層された複数の基板を有する積層基板230であってもよい。
 図2は、積層基板製造装置100において貼り合わせる基板210の模式的平面図である。基板210は、ノッチ214と、複数の回路領域216と、複数のアライメントマーク218とを有する。
 複数の回路領域216は、基板210の表面に形成された構造物の一例であり、基板210の表面で面方向に周期的に配される。複数の回路領域216の各々には、フォトリソグラフィ技術等によって形成された配線、保護膜等の構造物が設けられる。複数の回路領域216には、基板210を他の基板210、リードフレーム等に電気的に接続する場合に接続端子となるパッド、バンプ等の接続部も配される。接続部も、基板210の表面に形成された構造物の一例である。
 複数のアライメントマーク218もまた、基板210の表面に形成された構造物の一例であり、複数の回路領域216の相互の間に配されたスクライブライン212に配される。複数のアライメントマーク218は、基板210を他の基板210と位置合わせする際の指標である。
 図3は、積層基板製造装置100において一対の基板210を積層して積層基板230を作製する手順を示す流れ図である。先ず、制御部150が、貼り合わせる基板211、213のそれぞれの歪みに関する情報を取得し(ステップS101)、取得した情報に基づいて、基板211、213のいずれを、貼り合わせ部300の一対のステージの固定側または解除側にするか決定する(ステップS102)。すなわち、本実施形態では、制御部150は決定部としての役割を担う。ここでは、基板211を固定側にし、基板213を解除側にすると決定する。このとき、制御部150は、二つの基板211、213のうち、固定側の基板および解除側の基板の一方のみを決定してもよい。なお、基板211および基板213は、基板210の一例である。
 次に、制御部150からの出力に基づき、搬送部140は、固定側用の基板ホルダ221と、固定側に決定された基板211とを、順次プリアライナ500に搬入する(ステップS103)。プリアライナ500において、基板211を固定側用の基板ホルダ221に保持させる(ステップS104)。基板213についても基板211と同様に、制御部150からの出力に基づき、搬送部140が、解除側用の基板ホルダ223と、解除側に決定された基板213とを、順次プリアライナ500に搬入し(ステップS103)、プリアライナ500において、基板213を解除側用の基板ホルダ223に保持させる(ステップS104)。なお、基板ホルダ221および基板ホルダ223は、基板ホルダ220の一例である。
 図4は、基板211を保持した基板ホルダ221と、基板213を保持した基板ホルダ223との模式的断面図である。基板ホルダ221は、周縁部から中央部に向けて厚さが徐々に増加する断面形状を有する。これにより、湾曲した滑らかな保持面225を有する。基板ホルダ221に吸着して保持された基板211は、保持面225に密着して、保持面225の形状に倣って湾曲する。よって、保持面の表面が曲面、例えば、円筒面、球面、放物面等をなす場合は、吸着された基板213も、そのような曲面をなすように形状が変化する。基板ホルダ223は、基板ホルダ221と同様であって、周縁部から中央部に向けて厚さが徐々に増加する断面形状を有し、これにより、湾曲した滑らかな保持面227を有する。基板ホルダ223に吸着して保持された基板213は、保持面227に密着して、保持面227の形状に倣って湾曲する。
 図4において、基板ホルダ221の保持面225および基板ホルダ223の保持面227のそれぞれの曲率および形状は略同一に描かれているが、これに限定されない。解除側用の基板ホルダ223の保持面227の曲率および形状は、貼り合わせ部300において貼り合わされた基板211と基板213との間にボイドが生じないように両基板を先ず一部で接触させる目的で設計されてもよい。一方で、固定側用の基板ホルダ221の保持面225の曲率および形状は、基板211と基板213とを貼り合わせる際に生じ得る空気抵抗起因等の歪みを補正する目的で設計されてもよい。従って、それぞれの保持面の曲率および形状は、異なる目的で個別に設計されるため、同一であっても異なっていてもよい。
 また、それらの目的が共に達成される限りにおいて、基板ホルダ221、223のそれぞれの保持面225、227は任意の形状であってもよい。例えば、固定側用の基板ホルダ221の保持面225を平坦にする代わりに下ステージ332の保持面の形状をなだらかに隆起するよう変形させることで基板ホルダ221及び基板211を変形させてもよい。また、解除側の基板ホルダ223の保持面227を周縁領域が平坦で中心領域が突出する形状にしてもよく、その突出量は可変であってもよい。固定側の基板ホルダ221の保持面225が湾曲した形状であれば、解除側の基板ホルダ223の保持面227は平坦であってもよい。
 図5に示すように、基板211を保持した基板ホルダ221を、貼り合わせ部300の下ステージ332に搬入し、基板213を保持した基板ホルダ223を、貼り合わせ部300の上ステージ322に搬入する(ステップS105)。上ステージ322は、真空チャック、静電チャック等の保持機能を有し、枠体310の天板316に下向きに固定される。下ステージ332は、真空チャック、静電チャック等の保持機能を有し、枠体310の底板312に配されたX方向駆動部331に重ねられたY方向駆動部333の上面に搭載される。なお、図5から図9の各々において、説明の簡略化のため、基板ホルダ221の保持面225および基板ホルダ223の保持面227は共に平坦に描かれている。
 天板316には、顕微鏡324および活性化装置326が上ステージ322の側方に固定される。顕微鏡324は、下ステージ332に保持された基板211の上面を観察できる。活性化装置326は、下ステージ332に保持された基板211の上面を清浄化するプラズマを発生する。
 X方向駆動部331は、底板312と平行に、図中に矢印Xで示す方向に移動する。Y方向駆動部333は、X方向駆動部331上で、底板312と平行に、図中に矢印Yで示す方向に移動する。X方向駆動部331およびY方向駆動部333の動作を組み合わせることにより、下ステージ332は、底板312と平行に二次元的に移動する。
 また、下ステージ332は、昇降駆動部338により支持されており、昇降駆動部338の駆動により矢印Zで示す方向に昇降する。
 X方向駆動部331、Y方向駆動部333および昇降駆動部338による下ステージ332の移動量は、干渉計等を用いて精密に計測される。
 Y方向駆動部333には、顕微鏡334および活性化装置336が、それぞれ下ステージ332の側方に搭載される。顕微鏡334は、上ステージ322に保持された基板213の下面である表面を観察できる。活性化装置336は、基板213の表面を清浄化するプラズマを発生する。尚、この活性化装置326および336を貼り合わせ部300とは別の装置に設け、表面を活性化した基板および基板ホルダをロボットによって活性化装置326、336から貼り合わせ部300へと搬送するようにしてもよい。
 なお、貼り合わせ部300は、底板312に対して垂直な回転軸の回りに下ステージ332を回転させる回転駆動部、および、下ステージ332を揺動させる揺動駆動部を更に備えてもよい。これにより、下ステージ332を上ステージ322に対して平行にすると共に、下ステージ332に保持された基板211を回転させて、基板211、213の位置合わせ精度を向上させることができる。
 顕微鏡324、334は、制御部150により、焦点を相互に合わせたり共通の指標を観察させたりすることによって較正される。これにより、貼り合わせ部300における一対の顕微鏡324、334の相対位置が測定される。
 図5に示した状態に続いて、図6に示すように、制御部150は、X方向駆動部331およびY方向駆動部333を動作させて、顕微鏡324、334により基板211、213の各々に設けられたアライメントマーク218を検出させる(図3のステップS106)。
 こうして、相対位置が既知である顕微鏡324、334で基板211、213のアライメントマーク218の位置を検出することにより、基板211、213の相対位置が判る(ステップS107)。これにより、一対の基板211、213において対応するアライメントマーク218間の位置ずれ量が予め定められた閾値以下となるように、または、基板211、213間で対応する回路領域216または接続部の位置ずれ量が予め定められた閾値以下となるように、基板211、213の相対移動量を算出する。位置ずれは、積層された基板211、213の間における、対応するアライメントマーク218同士の位置ずれ、および、対応する接続部同士の位置ずれを指し、二つの基板211、213のそれぞれに生じる歪みの量の差に起因する位置ずれを含む。歪みについては後述する。
 ここで、「閾値」とは、基板211、213の相互の貼り合わせが完了したときに、基板211、213間に電気的な導通が可能となるずれ量であってもよく、基板211、213にそれぞれ設けられた構造物同士が少なくとも一部で接触するときのずれ量であってもよい。制御部150は、基板211、213間の位置ずれが予め定められた閾値以上になった場合に、接続部同士が接触しない又は適切な電気的導通が得られない状態、もしくは接合部間に所定の接合強度が得られない状態であると判断してもよい。また、基板211、213の貼り合わせ過程で生じる歪みを貼り合わせ前に予め対処する場合、すなわち、貼り合わせを完了したときにその歪みによる位置ずれが補正されるように、基板211、213の少なくとも一方を貼り合わせ前に変形させる場合は、一方の基板を貼り合せ前に変形させた状態での位置を基準に閾値が設定される。
 図6に示した状態に続いて、図7に示すように、制御部150は、一対の基板211、213の相対位置を記録し、一対の基板211、213の各々の貼り合わせ面を化学的に活性化する(図3のステップS108)。制御部150は、まず、下ステージ332の位置を初期位置にリセットした後に水平に移動させて、活性化装置326、336の生成したプラズマにより基板211、213の表面を走査させる。これにより、基板211、213のそれぞれの表面が清浄化され、化学的な活性が高くなる。
 プラズマに暴露する方法の他に、不活性ガスを用いたスパッタエッチング、イオンビーム、または、高速原子ビーム等により基板211、213の表面を活性化することもできる。イオンビームや高速原子ビームを用いる場合は、貼り合わせ部300を減圧下にして生成することが可能である。また更に、紫外線照射、オゾンアッシャー等により基板211、213を活性化することもできる。更に、例えば、液体または気体のエッチャントを用いて、基板211、213の表面を化学的に清浄化することにより活性化してもよい。基板211、213の表面の活性化後、基板211、213の表面を親水化装置により親水化してもよい。
 図7に示した状態に続いて、図8に示すように、制御部150は、基板211、213を相互に位置合わせする(図3のステップS109)。制御部150は、まず、最初に検出した顕微鏡324、334の相対位置と、ステップS106において検出した基板211、213のアライメントマーク218の位置とに基づいて、基板211、213の互いに対応する構造物の位置ずれ量が、少なくとも貼り合わせを完了したときに閾値以下となるように、下ステージ332を移動させる。
 図8に示した状態に続いて、図9に示すように、制御部150は、昇降駆動部338を動作させて下ステージ332を上昇させ、基板211、213を相互に接近させる。そして、基板211、213の一部が接触して貼り合わされる(ステップS110)。
 基板211、213の表面は活性化されているので、一部が接触すると、基板211、213同士の分子間力により、隣接する領域が自律的に相互に吸着されて貼り合わされる。よって、例えば、上ステージ322に保持された基板ホルダ223による基板213の保持を解除することにより、基板211、213が貼り合わされた領域は、接触した部分から隣接する領域に順次拡がる。これにより、接触した領域が順次拡がっていくボンディングウェーブが発生し、基板211、213の貼り合わせが進行する。やがて、基板211、213は、全面にわたって接触し、且つ、貼り合わされる(ステップS110)。これにより、一対の基板211、213から積層基板230を形成する。
 なお、上記のように基板211、213の接触領域が拡大していく過程で、制御部150は、基板ホルダ223による基板213の保持を解除することに代えて、上ステージ322による基板ホルダ223の保持を解除してもよい。
 こうして形成された積層基板230は、搬送部140により貼り合わせ部300から基板ホルダ221と共に搬出される(ステップS111)。その後、プリアライナ500において積層基板230と基板ホルダ221とが分離され、積層基板230は基板カセット130に搬送される。
 貼り合わせる前の基板210に歪みが生じていると、貼り合わせのときに位置ずれが生じる一要因となる。この場合、貼り合わせ部300において、アライメントマーク218等に基づいて基板211、213の面方向における位置合わせをしても、基板211、213間の位置ずれ量が予め定められた閾値以下となる相対移動量および相対回転量を算出できず、基板211、213の位置ずれを解消することができない場合がある。そこで、図3に示したステップS101およびステップS102においては、制御部150が、貼り合わせる基板211、213のそれぞれの歪みに関する情報を取得し、取得した情報に基づいて、基板211、213のいずれを、貼り合わせ部300の下ステージ332で固定する、または、貼り合わせ部300の上ステージ322から解除するか決定する。
 ここで、基板211、213に生じる歪みとは、基板211、213における構造物の位置を設計座標すなわち設計位置から変位させる変形である。基板211、213に生じる歪みは、平面歪みと立体歪みとを含む。
 平面歪みは、基板211、213の貼り合わせ面に沿った方向に生じた歪みであり、基板211、213のそれぞれの構造物の設計位置に対して変位した位置が線形変換により表される線形歪みと、線形変換により表すことができない、線形歪み以外の非線形歪みとを含む。
 線形歪みは、変位量が中心から径方向に沿って一定の増加率で増加する倍率歪みを含む。倍率歪みは、基板211、213の中心からの距離Xにおける設計値からのずれ量をXで除算することにより得られる値であり、単位はppmである。倍率歪みには、等方倍率歪みが含まれる。等方倍率歪みは、設計位置からの変位ベクトルが有するX成分およびY成分が等しい、すなわち、X方向の倍率とY方向の倍率とが等しい歪みである。一方で、設計位置からの変位ベクトルが有するX成分およびY成分が異なる、すなわち、X方向の倍率とY方向の倍率とが異なる歪みである非等方倍率歪みは、非線形歪みに含まれる。
 本実施形態では、二つの基板211、213のそれぞれにおける構造物の設計位置を基準とした倍率歪みの差が、二つの基板211、213間の位置ずれ量に含まれる。
 また、線形歪みは、直交歪みを含む。直交歪みは、基板の中心を原点として互いに直交するX軸およびY軸を設定したときに、構造物が原点からY軸方向に遠くなるほど大きな量で、設計位置からX軸方向に平行に変位している歪みである。当該変位量は、X軸に平行にY軸を横切る複数の領域のそれぞれにおいて等しく、変位量の絶対値は、X軸から離れるに従って大きくなる。さらに直交歪みは、Y軸の正側の変位の方向とY軸の負側の変位の方向とが互いに反対である。
 基板211、213の立体歪みは、基板211、213の貼り合わせ面に沿った方向以外の方向すなわち貼り合わせ面に交差する方向への変位である。立体歪みには、基板211、213が全体的にまたは部分的に曲がることにより基板211、213の全体または一部に生じる湾曲が含まれる。ここで、基板が曲がるとは、基板211、213が、当該基板211、213上の3点により特定された平面上に存在しない点を基板211、213の表面が含む形状に変化することを意味する。
 また、湾曲とは、基板の表面が曲面をなす歪みであり、例えば基板211、213の反りが含まれる。本実施形態においては、反りは、重力の影響を排除した状態で基板211、213に残る歪みをいう。反りに重力の影響を加えた基板211、213の歪みを、撓みと呼ぶ。なお、基板211、213の反りには、基板211、213全体が概ね一様な曲率で屈曲するグローバル反りと、基板211、213の一部で曲率が変化して屈曲するローカル反りとが含まれる。
 ここで、倍率歪みは、発生原因によって初期倍率歪み、吸着倍率歪み、及び、貼り合わせ過程倍率歪みに分類される。
 初期倍率歪みは、アライメントマーク218、回路領域216等を基板211、213に形成するプロセスで生じた応力、スクライブライン212、回路領域216等の配置に起因する周期的な剛性の変化等により、基板211、213の設計仕様に対する乖離として、基板211、213を貼り合わせる前の段階から生じている。よって、基板211、213の初期倍率歪みは、基板211、213の積層を開始する前から知ることができ、例えば、基板211、213を製造した前処理装置から初期倍率歪みに関する情報を制御部150が取得してもよい。
 吸着倍率歪みは、反り等の歪みが生じた基板211、213が、貼り合わせにより、または、基板ホルダ220への吸着により生じる倍率歪みの変化に対応する。すなわち、反りが生じた基板210を基板ホルダ220に吸着して保持させると、基板210は、基板ホルダ220の保持面の形状に倣って変形する。ここで、基板210が、反りを有する状態から基板ホルダ220の保持面の形状に倣った状態に変化すると、保持する前に比べて基板210の歪み量が変化する。
 これにより、基板210の表面における回路領域216の設計仕様に対する歪み量が保持する前に比べて変化する。基板210の歪み量の変化は、基板210に形成された回路領域216等の構造物の構造、当該構造物を形成するためのプロセス、保持前の基板210の反りの大きさ等に応じて異なる。吸着倍率歪みの大きさは、基板211、213に反り等の歪みが生じている場合に、その歪みと吸着倍率歪みとの相関を予め調べておくことにより、基板211、213の反り量および反り形状等を含む歪みの状態から算出できる。
 貼り合わせ過程倍率歪みは、貼り合わせの過程で基板211、213に生じる歪みに起因して、新たに生じる倍率歪みの変化である。図10、図11および図12は、平坦な保持面を有する固定側用の基板ホルダ221上での基板211、213の貼り合わせ過程を示す部分拡大図である。図10、図11および図12には、貼り合わせ部300で貼り合わされる過程にある基板211、213における、基板211、213が相互に接触した接触領域と、基板211、213が相互に接触せずに離れていてこれから貼り合わされる非接触領域との境界Kの付近の領域Qを拡大して示す。
 図10に示すように、貼り合わされた二つの基板211、213の接触領域が中央から外周に向かって面積を拡大する過程で、境界Kは、基板211、213の中央側から外周側に向かって移動する。境界K付近において、基板ホルダ223による保持から解除された基板213には、基板211との間に介在する空気を追い出す際の空気抵抗に起因して伸びが生じる。具体的には、境界Kにおいて、基板213の厚さ方向の中央の面に対して、基板213の図中下面側においては基板213が伸び、図中上面側においては基板213が収縮する。
 これにより、図中に点線で示すように、基板213において、基板211に貼り合わされた領域の外端においては、基板213の表面における回路領域216の設計仕様に対する倍率歪みが基板211に対して拡大したかのように歪む。このため、図中に点線のずれとして現れるように、基板ホルダ221に保持された下側の基板211と、基板ホルダ223から解除された上側の基板213との間に、基板213の伸び量すなわち倍率歪みの相違に起因する位置ずれが生じる。
 更に、図11に示すように、上記の状態で基板211、213が接触して貼り合わされると、基板213の拡大された倍率歪みが固定される。更に、図12に示すように、貼り合わせにより固定される基板213の伸び量は、基板211、213の外周に境界Kが移動するほど累積される。
 上記のような貼り合わせ過程倍率歪みの量は、貼り合わされる基板211、213の剛性、基板211、213に挟まれる雰囲気の粘性、基板211、213間の吸着力等の物理量に基づいて算出できる。また、貼り合わされる基板211、213と同一のロットで製造された基板を貼り合わせて生じたずれ量を予め測定して記録し、記録した測定値を当該ロットの基板211、213の貼り合わせにおいて生じる貼り合わせ過程倍率歪みに関する情報として制御部150が取得してもよい。なお、本実施形態において、貼り合せ過程とは、基板211、213が互いに一部で接触してから、接触領域の拡大が終了するまでの過程である。
 図13は、平坦な保持面を有する固定側用の基板ホルダ221を用いた場合に生じる倍率歪みによる積層基板230での位置ずれを示す模式図である。図中の矢印は、固定側の基板211を基準としたときの解除側の基板213の位置ずれを示すベクトルであり、その方向により位置ずれの方向を表し、その長さにより位置ずれの大きさを表す。図示のずれは、積層基板230の中心点から面方向に放射状に漸増するずれ量を有する。なお、図示の倍率歪みは、基板211、213を貼り合わせる前に生じた初期倍率歪みおよび吸着倍率歪みと、基板211、213を貼り合わせる過程で生じた貼り合わせ過程倍率歪みとを含む。
 なお、基板211、213を貼り合わせる場合は、一方の基板、例えば基板211を保持した状態で他方の基板213を解放する。このため、基板211、213が貼り合わされる時点では、保持された基板211が形状を固定されているのに対して、解放された基板213は歪みつつ貼り合わされる。よって、固定されたまま貼り合わされる基板211については貼り合わせ過程倍率歪みを考慮しなくてもよいが、解放される基板213については、貼り合わせ過程倍率歪みを考慮することが望ましい。
 固定された基板211が、基板ホルダ221の形状等により歪んだ状態で保持されている場合、解放された基板213に対しては、貼り合わせ過程倍率歪みと吸着倍率歪みとの両方を考慮することが望ましく、更には、歪んだ基板211の形状に基板213が倣うことにより生じる吸着倍率歪みのような歪みも考慮することが好ましい。
 このように、貼り合わせる基板211、213における貼り合わせ後の最終的な倍率歪みの差は、基板211、213が当初より有している初期倍率歪みの差に、基板211、213を基板ホルダ221、223等に保持させた場合に生じる吸着倍率歪みの差と、貼り合わせの過程で保持が解除される基板213の貼り合わせ過程倍率歪みとが重なって形成される。
 上述のように、基板211、213を積層して形成される積層基板230に生じる位置ずれは、初期倍率歪みの差、吸着倍率歪みの差、および貼り合わせ過程倍率歪みの差の大きさと関連する。また、基板211、213に生じる倍率歪みは、反り等の基板の歪みと関連する。
 更に、これら初期倍率歪みの差、吸着倍率歪みの差、および貼り合わせ過程倍率歪みの差は、上記のように、貼り合わせ前の測定、計算等により推定できる。よって、貼り合わせる基板211、213について推定された貼り合わせ後の最終的な倍率歪みの差に基づいて、この差を補正するための対策を予め講じることができる。
 対策の一例として、固定側用の複数の基板ホルダ221から、その保持面の曲率が最終的な倍率歪みの差を補正できるものを選択することが考えられる。図14は、湾曲した保持面を有する固定側用の基板ホルダ221を用いて空気抵抗起因の倍率歪みを補正した場合の、基板ホルダ221上での基板211、213の貼り合わせ過程を示す部分拡大図である。
 図14に示されるように、固定側用の基板ホルダ221の保持面225は湾曲している。このような形状の保持面225に基板211が吸着された場合、基板211が湾曲した状態では、図中に破線で示す基板213の厚さ方向の中心部Aに比較して、基板211の図中の上面である表面では、基板211の表面が中心から周縁部に向けて面方向に拡大するように形状が変化する。また、基板211の図中の下面である裏面においては、基板211の表面が中心から周縁部に向けて面方向に縮小するように形状が変化する。
 このように、基板211を基板ホルダ221に保持させることにより、基板211の図中上側の表面は、基板211が平坦な状態に比較すると拡大される。このような形状の変化により、他の基板213との最終的な倍率歪みの差、すなわち、この差に起因する位置ずれを補正できる。更に、湾曲した保持面225の曲率が異なる複数の基板ホルダ221を用意し、最終的な倍率歪みの差に起因する位置ずれの量が予め定められた閾値以下となる曲率の保持面225を有する基板ホルダ221を選択することで、その補正量を調節できる。
 図4または図14における実施形態では、基板ホルダ221の保持面225は、中央で盛り上がる形状を有していた。これに代えて、保持面225の周縁部に対して中央部が陥没した基板ホルダ221を用意して基板211を保持させることで、基板211の貼り合わせ面における倍率を縮小させ、貼り合わせ面に形成された回路領域216の設計仕様に対する位置ずれを調整することもできる。
 以上、図10から13を参照して、貼り合わせる基板211、213に生じる平面歪みに含まれる線形歪みのうちの倍率歪み、特に貼り合わせ過程倍率歪みを説明した。また、図14を参照して、貼り合わせる基板211、213について推定された貼り合わせ後の最終的な倍率歪みの差に基づいて、この差を補正するための対策の一例を説明した。
 次に、貼り合わせる基板211、213に生じる平面歪みに含まれる非線形歪みのうち、基板211、213の結晶配向に起因する異方性、すなわち結晶異方性に起因する歪みを説明する。
 図15は、シリコン単結晶基板208における結晶異方性とヤング率との関係を示す模式である。図15に示すように、(100)面を表面とするシリコン単結晶基板208においては、中心に対するノッチ214の方向を0°とするX-Y座標において、0°方向および90°方向においてヤング率が169GPaと高く、45°方向においては、ヤング率が130GPaと低い。このため、シリコン単結晶基板208を用いて作製した基板210においては、基板210の周方向に曲げ剛性の不均一な分布が生じる。すなわち、ボンディングウェーブが基板210の中心から周縁部に向けて進行したときの進行方向によって、基板210の曲げ剛性が異なっている。曲げ剛性は、基板210を曲げる力に対する変形のし易さを示しており、弾性率としてもよい。
 図16は、シリコン単結晶基板209における結晶異方性とヤング率との関係を示す模式である。図16に示すように、(110)面を表面とするシリコン単結晶基板209においては、中心に対するノッチ214の方向を0°とするX-Y座標において、45°方向のヤング率が188GPaと最も高く、0°方向のヤング率がそれに続いて169GPaである。更に、90°方向におけるヤング率は最も低い130GPaである。このため、シリコン単結晶基板209を用いて作製した基板210においては、基板210の周方向に曲げ剛性の不均一且つ複雑な分布が生じる。
 このように、結晶異方性がそれぞれ異なるシリコン単結晶基板208、209の何れを用いた基板210においても、その周方向に曲げ剛性の不均一な分布が生じる。曲げ剛性が異なる領域間では、その曲げ剛性の大きさに応じて、図10から図12までを参照して説明した貼り合わせ過程で生じる歪みの大きさが異なる。具体的には、剛性が低い領域の歪みの大きさが、剛性が高い領域に比べて小さくなる。このため、基板211、213を積層して製造した積層基板230においては、積層基板230の周方向について不均一な回路領域216の位置ずれが生じる。
 図17は、解除する側の基板210が部分的に湾曲を有していた場合に生じる非線形歪みによる積層基板230での位置ずれを示す模式図である。図17に示す非線形歪みによる位置ずれは、図13に示した空気抵抗起因の倍率歪みによる位置ずれを含んでいない。
 図17に示される通り、積層基板230における非線形歪み起因の位置ずれは、第2象限と第4象限とで大きく発生しているが、積層基板230の中心から径方向に沿う位置ずれ量の規則的な分布は無い。図17を参照すれば、非線形歪み起因の位置ずれとは、基板211、213のそれぞれの構造物の設計位置に対して変位した位置を線形変換により表すことができないものであることがわかる。
 非線形歪みは、多種多様な要因が相互に影響し合うことによって生じるが、その主たる要因は、図15および図16を参照して説明したシリコン単結晶基板208、209における結晶異方性、及び、基板210の製造プロセスである。図2を参照して説明した通り、基板210の製造プロセスにおいて、基板210には複数の構造物が形成される。例えば、構造物として、複数の回路領域216と、スクライブライン212と、複数のアライメントマーク218とが基板210に形成される。複数の回路領域216の各々には、構造物として、フォトリソグラフィ技術等より形成された配線、保護膜等の他、基板210を他の基板210、リードフレーム等に電気的に接続する場合に接続端子となるパッド、バンプ等の接続部も配されている。これらの構造物の構造や配置、すなわち構造物の構成は基板210の面内の剛性分布や面内応力分布に影響を与え、剛性分布や面内応力分布にムラが生じると、基板210には部分的に湾曲が発生する。
 これらの構造物の構成は、基板210毎に異なっていても、ロジックウエハ、CISウエハ、メモリウエハ等の基板210の種類毎に異なっていてもよい。また、製造プロセスが同じであっても、製造装置に依って構造物の構成が多少異なることも考えられるので、それらの構造物の構成は基板210の製造ロット毎に異なっていてもよい。このように、基板210に形成される複数の構造物の構成は、基板210毎、基板210の種類毎、基板210の製造ロット毎、又は、基板210の製造プロセス毎に異なり得る。それゆえに、基板210の面内の剛性分布も同様に異なる。従って、製造プロセスおよび貼り合せ過程で生じる基板210の湾曲状態も同様に異なる。
 一対の基板210を貼り合わせる際、貼り合わされる他方の基板210に向けて凹状となる湾曲が部分的に発生している基板210を解除する側にすると、基板210において湾曲が生じている箇所は、湾曲が生じていない箇所に比べて、他の基板210と貼り合わされるときに他の基板210との間の距離が大きくなる。そのため、湾曲が生じている箇所では湾曲が生じていない箇所に比べてボンディングウェーブの進行が遅くなり、解除側の基板210における湾曲が生じていた箇所にしわ寄せが生じ、これが原因で貼り合わせた積層基板230に非線形歪みが生じることになる。すなわち、部分的な湾曲と非線形歪みとの間には相関があり、貼り合わせる前における解除側の基板210の湾曲が大きい箇所は、貼り合わせた後における積層基板230に発生する非線形歪みも大きくなる。ただし、この因果関係は、部分的な湾曲による歪み以外の歪みが無い場合に当てはまる。一方で、貼り合わせる基板210が部分的な湾曲を有する場合であっても、部分的な湾曲により生じ得る非線形歪みが、例えば結晶異方性に起因する歪みでキャンセルされる場合もあり得る。
 一対の基板211、213のうち、貼り合わせの際に固定する側の基板210に、貼り合わせ前から湾曲が生じていた場合、その一方の側の全面が基板ホルダ220等によって吸着されて固定された状態が維持されるので、自身の湾曲に起因する非線形歪みは生じず、貼り合わせ後の基板211、213間には固定された基板の湾曲に起因する非線形な位置ずれも発生しない。ただし、固定側の基板210には吸着倍率歪み等は生じているかもしれないが、このような歪は、解除側の基板210に生じる歪みに比べたら小さく、その影響は殆どないので無視してもよい。一方で、貼り合わせの際に解除する側の基板210に部分的な湾曲が生じていた場合、上記の理由で、貼り合わせた一対の基板211、213間には非線形歪み起因の位置ずれが生じる。そこで、制御部150が、基板211、213の貼り合わせ前にそれぞれの湾曲に関する情報を取得し、基板211、213のそれぞれの湾曲に関する情報に基づいて基板211、213のいずれかを解除側に決定し、決定に基づいて貼り合わせ部300が貼り合わせれば、非線形歪みに起因する位置ずれを抑えることができる。なお、湾曲に関する情報は、歪みに関する情報に含まれる。
 基板211、213の湾曲に関する情報には、基板211、213の湾曲を計測することにより得られる情報と、基板211、213に湾曲を生じさせる原因に関する情報とが含まれる。基板211、213の湾曲を計測することにより得られる情報には、基板211、213の反りの大きさ、反りの方向、反っている部分、反りの振幅、撓みの大きさ、撓みの方向、撓みの振幅、撓んでいる部分、内部応力、応力分布等の湾曲の特性が含まれる。基板211、213に湾曲を生じさせる原因に関する情報には、基板211、213の製造プロセス、基板211、213の種類、基板211、213に形成された構造物の構成が含まれる。制御部150は、基板211、213の湾曲に関する情報を、積層基板製造装置100よりも前に行われるプロセスで使用される露光装置、成膜装置等の前処理装置から取得してもよい。また、積層基板製造装置100において、貼り合わせ部300よりも前に行われるプロセスで使用される、例えばプリアライナ500から取得してもよい。制御部150は、取得した情報に基づいて決定した情報を、搬送部140、プリアライナ500および貼り合わせ部300の少なくとも何れかに出力する。
 本実施形態においては、例えば前処理装置において、基板211、213の湾曲を実際に計測する。図18は、撓み計測と反りの算出方法を説明する図である。図18における方法では、先ず、対象基板としての基板211、213の撓みを計測する。具体的には、重力下において、基板211、213の裏面の面方向の中心を支持して中心の周りに回転させながら、顕微鏡等の非接触距離計により基板211、213の表面または裏面を観察し、顕微鏡の光学系が有する自動合焦機能から得られた距離情報の分布に基づいて、表面または裏面の位置を計測する。
 これにより、重力下における基板211、213の撓みの大きさと向きとを含む撓み量を測定できる。基板211、213の撓み量は、支持された中心を基準としたときの基板211、213の厚さ方向の表面または裏面の位置の変位から求められる。次に、制御部150が基板211、213の撓み量の情報を取得し、これを基板中心から径方向に沿う線形的な成分と非線形的な成分とに分解する。図18において、基板211、213の撓み量の線形的な成分は平均撓み(A)として放物線状に示され、非線形的な成分は外周での撓みの振幅(B)として波線状に示されている。
 次に、基準基板としてのベアシリコンの撓みを計測する。ベアシリコンは、構造物が形成されていない基板211、213であって、反りが生じていない基板211、213と見なすことができる。基板211、213と同じ測定条件で、ベアシリコンの撓み量を測定する。そして、制御部150がベアシリコンの撓み量の情報を取得し、これをベアシリコン中心から径方向に沿う線形的な成分(図18の(A))と非線形的な成分(図18の(B))とに分解する。
 そして、基板211、213の外周での撓みの振幅から、ベアシリコンの外周での撓みの振幅を減算する。これにより、無重力下での計測値と見なすことができる、基板211、213の反り量の非線形的な成分を算出できる。図18において、基板211、213の反り量の非線形的な成分は外周での反りの振幅(B)として波線状に示されおり、上記のローカル反りに対応する。なお、無重力下で計測される変形量としての反り量がこの方法で算出できる理由は、重力下で計測される変形量としての撓み量に含まれる、自重による変形量が上記減算によって実質的に差し引かれるためである。
 なお、基板211、213の平均撓みから、ベアシリコンの平均撓みを減算することによって、無重力下での計測値と見なすことができる基板211、213の反り量の線形的な成分を算出でき、これは上記のグローバル反りに対応する。図18において、基板211、213の反り量の線形的な成分は平均反り(A)として放物線状に示されている。
 最後に、基板211、213を解除側の基板として貼り合わせる際の状況を反映させる。具体的には、基板211、213の表面が下向きとなる姿勢および重力方向を考慮して基板211、213の外周での反りの振幅を変換することで、基板211、213の表面の面方向の中心を支持して上記のように計測したと仮定した場合における基板211、213の外周での反りの振幅を予測値として算出する。
 このようにして算出された、基板211、213の湾曲に関する情報としての、基板211、213を解除側の基板に仮定した場合における基板211、213のそれぞれの外周での反りの振幅すなわち波状に変形した外周部の山と谷との幅に基づいて、制御部150は、基板211、213のいずれを解除側の基板とするか決定する。例えば、外周での反りの振幅の最大値の大小を比較して、最大値が大きい方を固定側に決定してもよく、外周での反りの振幅の平均値の大小を比較して、平均値が大きい方を固定側に決定してもよい。また、このように比較を行わずに、基板211、213のそれぞれの外周での反りの振幅の情報から、それぞれの湾曲の特性を判断し、解除側または固定側にするか決定してもよい。言うまでもなく、基板211、213の何れか一方が、その外周での反りの振幅が0であると算出された、すなわち、部分的な湾曲が発生していないと判明したならば、その一方は解除側に決定する。
 基板211、213のいずれを解除側または固定側にするかの他の判断基準として、追加的に又は代替的に、グローバル反りの向きと量を用いてもよい。この場合には、例えばグローバル反りの向きが、二つの基板211、213のうち貼り合わされる他の基板に向かって凸状である基板を解除側にして、貼り合わされる他の基板に向かって凹状である基板を固定側にしてもよい。
 また、二つの基板211、213のうち、ローカル反りの形状が急峻である方を固定側にしてもよい。また、二つの基板211、213のそれぞれに貼り合わせ過程で生じ得る歪み量を実測、算出または推定し、歪み量が少ない方を解除側にしてもよい。また、予め歪み補正量を算出して、貼り合せた場合に歪み補正量が少なくなる方を解除側にしてもよい。
 基板211、213のいずれを解除側または固定側にするかの他の判断方法として、グローバル反り量が大きい方の基板を解除側にすると、グローバル反り量が小さい方の基板を解除側にする場合に比べて、上ステージ322への吸着のときに生じる倍率歪み、接合のときに他方の基板の形状に倣うことにより生じる倍率歪み、接合中の空気抵抗起因の倍率歪み、結晶方位に応じた剛性の差による周方向の倍率差、等が大きくなるという理由で、グローバル反り量が大きい方の基板を固定側としてもよい。二つの基板211、213の両方が凸状または凹状である場合は、反り量が大きい方を固定側にし、反り量が小さい方を解除側にする。基板211、213の形状測定は、上記した反り測定により行ってもよい。
 また、二つの基板211、213のうち、グローバル反りが生じている基板と、ローカル反りが生じている基板とを貼り合わせる場合には、非線形歪みが生じやすい、ローカル反りが生じている基板を固定側にしてもよい。つまり、二つの基板211、213のうち、貼り合わせ前に既に生じている非線形歪、または、貼り合わせ過程で生じ得る非線形歪みが、小さい方を解除側にしてもよい。
 また、二つの基板211、213のうち、一方の基板が、複数の回路領域216が形成された面の側が凹状となるように反っている場合、すなわち貼り合わされる他方の基板に向けて凹状の場合、一対の基板211、213が互いに一部で接触してから一方の基板を解除したときに、その一部と周縁部との間の領域よりも周縁部が先に接触してしまう虞がある。このため、他方の基板に向けて凹状の基板を固定側としてもよい。
 また、中央部が外周部に比べて突出するように湾曲した形状の保持面を有する基板ホルダの凸量に対応する補正量や、例えば図22から図24で詳述するアクチュエータを用いた歪み補正機構の補正可能な最大値を超えると、歪みを補正できない。このため、二つの基板211、213のうち、必要となる歪み補正量が大きい方、すなわち歪み補正機構の補正可能な最大値を超える可能性が高い基板を固定側としてもよい。この場合、二つの基板211、213のうちの一方の基板の初期倍率歪みがXppm、他方の基板の初期倍率歪みがYppmの場合、一方の基板を解除側にした場合の接合後倍率歪みの差である歪み補正量{Y-[X+(空気抵抗起因の倍率歪み)]}と、他方の基板を解除側にした場合の接合後倍率歪みの差である歪み補正量{X-[Y+(空気抵抗起因の倍率歪み)]}とを比べることで、歪み補正量が大きい方を判断してもよい。
 また、湾曲が大きいほど、すなわち曲率が大きいほど、貼り合わせ過程で生じる歪みの大きさが大きくなることがある。この場合、二つの基板211、213のうち、湾曲が大きい基板を固定側としてもよい。また、貼り合わせる一対の基板211、213が、貼り合わせる前の状態で両方とも湾曲が生じていない平坦な基板である場合、一対の基板211、213間の剛性分布の差に応じて空気抵抗起因の倍率歪みが変わることがある。この場合、解除側としたときに空気抵抗起因の倍率歪みがより大きい方を、固定側としてもよい。
 また、貼り合わせる一対の基板211、213の一方が複数の画素を有するCISウエハで、他方がロジックウエハまたはメモリウエハである場合は、CISウエハを解除側としてもよい。これらの判断手法に共通する考え方は、貼り合わせの過程で生じる歪みが大きい方を固定側にするというものである。この場合に、任意の歪み補正手段による歪み補正が可能となる方を解除側にすると考えてもよい。
 上記の通り、基板211、213の歪みは、基板211、213毎、基板211、213の種類毎、基板211、213の製造ロット毎、又は、基板211、213の製造プロセス毎に異なり得る。よって、基板211、213のいずれを固定側または解除側にするかの決定は、基板211、213を貼り合わせる毎、基板211、213の種類毎、基板211、213の製造ロット毎、および、基板211、213の製造プロセス毎の何れかで実行してもよい。
 以上、主たる実施形態を、図1から18を用いて説明した。主たる実施形態において、基板211、213を基板ホルダ221等により吸着して強制的に平坦にした状態で、ラマン散乱等により基板211、213の残留応力を計測して、この残留応力を基板の歪みに関する情報としてもよい。また、基板211、213の歪みは、プリアライナ500において測定してもよい。
 一方、基板211、213の歪みを測定せずに、制御部150は、解析的に基板211、213の歪みに関する情報を取得して、基板211、213を解除側または固定側にするか決定してもよい。その場合は、基板211、213の製造プロセス、基板211、213に形成した回路領域216等の構造物の構成や材料、基板211、213の種類、基板211、213における応力分布に関する情報に基づいて、基板211、213に生じる歪みの大きさおよび向き、基板211、213の形状等を推定してもよい。この場合、貼り合わせ後の最終的な倍率歪みや最終的な非線形歪みを上記したように算出し、これらに基づいた総合的な判断により、基板211、213のいずれを解除側または固定側にするか決定する。また、上記構造物を形成する過程で生じた基板211、213に対する製造プロセス、すなわち、成膜等に伴う熱履歴、エッチング等の化学処理に関する情報を反りの原因となる情報として、これらの情報に基づいて基板211、213に生じる歪みを推定してもよい。
 また、基板211、213に生じる歪みを推定する場合に、基板211、213に生じた歪みの原因となり得る基板211、213の表面構造、基板210に積層された薄膜の膜厚、成膜に用いたCVD装置等の成膜装置の傾向、ばらつき、成膜の手順、条件等の周辺情報を併せて参照してもよい。これらの周辺情報は、歪みを推定することを目的として、改めて測定してもよい。
 更に、上記のような基板211、213の歪みを推定するには、同等の基板を処理した過去のデータ等を参照してもよいし、貼り合わせる基板211、213と同等の基板に対して想定されるプロセスの実験をして、歪みに含まれる反り量と倍率歪みとの関係、反り量の違いと両基板間の倍率歪み差との関係、または、両基板間の倍率歪み差すなわち位置ずれ量が予め定められた閾値以下となる反り量の組み合わせのデータを予め用意してもよい。更に、貼り合わせる基板211、213の成膜構造、成膜条件に基づいて、有限要素法等により反り量を解析的に求めてデータを用意してもよい。
 なお、基板211、213に対する歪み量の測定は、積層基板製造装置100の外部で実行してもよいし、積層基板製造装置100、または、積層基板製造装置100を含むシステムの内部に基板211、213の歪みを測定する装置を組み込んでもよい。更に、内外の測定装置を併用して、測定項目を増やしてもよい。
 図19は、複数の回路領域216が表面に形成されている基板511、513を示す模式図である。複数の回路領域216は、貼り合わせの際に生じ得る空気抵抗起因の倍率歪み、及び、結晶異方性起因の非線形歪みによる積層基板230での位置ずれの量が、予め定められた閾値以下となるように、予め配置が補正されている。ここでは、少なくとも貼り合わせ部300に搬入する前の段階で、制御部150が、例えば基板511、513の種類や製造プロセスに基づいて、基板513を解除側にすると仮で決定し、基板511を固定側にすると仮で決定する。また、基板511、513は、図15を用いて説明したシリコン単結晶基板208から形成されている。
 上記の実施形態においては、空気抵抗起因の倍率歪みを予め補正する方法として、固定側用の基板ホルダ221として保持面225が湾曲したものを選択した。しかしながら、基板ホルダ221、223または上ステージ322、下ステージ332の加工、取扱い等がより容易であるのは、それらの保持面が平坦な方である。そこで、本実施形態は、保持面225が湾曲した固定側用の基板ホルダ221によって補正する方法に代えて、解除側にすると仮で決定した基板513の表面に形成する複数の回路領域216の配置を予め補正して形成することによって、貼り合わせの際に生じ得る空気抵抗起因の倍率歪み、及び、結晶異方性起因の非線形歪みによる積層基板230での位置ずれの量が予め定められた閾値以下となるようにする。なお、解除側用の基板ホルダ223は、ボイド対策用に保持面227が湾曲したものを選択する。
 固定側にすると仮で決定された基板511には、貼り合わせの際に固定された状態が維持されるので、空気抵抗起因の倍率歪み、及び、結晶異方性起因の非線形歪みが生じないものと予測する。そのため、基板511においては、同じマスクを用いた露光を繰り返して基板511全体に複数の回路領域216を形成する場合に、ショットマップを補正しないで、基板511の全体に渡って複数の回路領域を等間隔で形成する。
 一方で、解除側にすると仮で決定された基板513には、貼り合わせの際に解除されて空気抵抗起因の倍率歪み、及び、結晶異方性起因の非線形歪みが生じるものと予測する。そこで、基板513においては、同じマスクを用いた露光を繰り返して基板513全体に複数の回路領域216を形成する場合に、空気抵抗起因の倍率歪み、及び、結晶異方性起因の非線形歪みによる位置ずれの量が予め定められた閾値以下となるようにショットマップを補正する。基板513の中心から周縁部に向けて、複数の回路領域216の間隔を全体に渡って徐々に狭くしつつ、結晶方位45°方向に対応する領域に形成する複数の回路領域216の径方向および周方向の間隔を、0°方向及び90°方向の間隔よりも広くする。これによって、解除側にすると仮で決定された基板513が、後に実行される、基板511、513の歪みに関する情報に基づく決定においても解除側にすると決定された場合に、固定側用の基板ホルダ221の保持面225が平坦であっても、貼り合わせの際に生じ得る空気抵抗起因の倍率歪み、及び、結晶異方性起因の非線形歪みによる積層基板230での位置ずれを予め定められた閾値以下に抑えることができる。なお、補正する歪みが倍率歪みだけである場合は、ショットマップの補正時に、基板513の中心から周縁部に向けて、複数の回路領域216の間隔は一定にし、その間隔の一定値を倍率の大きさに応じて変更する。
 図20は、図19に示された予め補正されている基板511、513を貼り合わせる手順を示す流れ図である。図21は、上記の仮の決定とは逆に、図19に示された基板511を解除する側に決定した場合において、貼り合わせの際に生じ得る空気抵抗起因の倍率歪みを補正する方法を説明する図である。
 先ず、基板511を貼り合わせ部300の下ステージ332で固定し、基板513を貼り合わせ部300の上ステージ322から解除すると仮で決定し(ステップS201)、仮の決定に基づいて、積層基板製造装置100よりも前に行われるプロセスで使用される露光装置、成膜装置等の前処理装置で、基板511の表面に複数の回路領域216を等間隔に形成し、上記のように配置が予め補正された複数の回路領域216を基板513の表面に形成する(ステップS202)。なお、ステップS201の仮の決定は、上記の前処理装置で行ってもよく、積層基板製造装置100の制御部150で行って前処理装置に出力してもよい。また、固定側および解除側の何れとするかが貼り合わせる基板511、513毎に予め定められていて、その情報が前処理装置のメモリに格納されていてもよい。
 次に、貼り合わせる基板511、513のそれぞれの歪みに関する情報を取得し(ステップS101)、取得した情報に基づいて、基板511、513のいずれに対して、貼り合わせ部300の下ステージ332による保持を維持するか、または、貼り合わせ部300の上ステージ322による保持を解除するかを決定する(ステップS102)。
 ステップS201で解除側にすると仮で決定した基板513をステップS102で解除側にすると決定した場合は(ステップS203:YES)、ステップS103以降に進み、上記の通り、保持面227が湾曲した解除側用の基板ホルダ223で基板513を保持し、保持面225が平坦な固定側用の基板ホルダ221で基板511を保持し、貼り合わせ部300にて基板513と基板511とを貼り合わせて積層基板230を形成する。
 一方で、ステップS201で解除側にすると仮で決定した基板513をステップS102で固定側にすると決定した場合は(ステップS203:NO)、固定側用の基板ホルダ222として、空気抵抗起因の倍率歪み、及び、結晶異方性起因の非線形歪みによる位置ずれの量が予め定められた閾値以下となるような曲率の湾曲した形状の保持面225を有するものを選択した後(ステップS204)、ステップS103以降に進み、保持面227が湾曲した解除側用の基板ホルダ223で基板511を保持し、保持面225が湾曲した固定側用の基板ホルダ222で基板513を保持し、図21に示されるように、貼り合わせ部300にて基板511と基板513とを貼り合わせて積層基板230を形成する。なお、ステップS204で選択される固定側用の基板ホルダ222を用いた歪み補正量は、ステップS202における歪み補正分をキャンセルし、且つ、上記の位置ずれの量を予め定められた閾値以下にする必要があるので、例えばステップS202における歪み補正量の2倍程度になる。基板511、513間での初期倍率歪みの差分も考慮すると、2倍程度から多少増減する。
 以上の通り、本実施形態においては、解除側にすると仮で決定された基板513が、基板511、513の歪みに関する情報に基づく決定においても解除側にすると決定された場合に、固定側用の基板ホルダ221の保持面225が平坦であっても、貼り合わせの際に生じ得る空気抵抗起因の倍率歪み、及び、結晶異方性起因の非線形歪みによる積層基板230での位置ずれを予め定められた閾値以下に抑えることができる。更に、解除側にすると仮で決定された基板513が、基板511、513の歪みに関する情報に基づく決定において固定側にすると決定された場合であっても、所定の曲率で保持面225が湾曲した固定側用の基板ホルダ222を選択することによって、貼り合わせの際に生じ得る空気抵抗起因の倍率歪み、及び、結晶異方性起因の非線形歪みによる積層基板230での位置ずれを予め定められた閾値以下に抑えることができる。
 図22から図24は、二つの基板211、213間に生じる歪み量の差による位置ずれを補正する方法として、図14に示した実施形態とは別の実施形態を示している。別の実施形態では、解除側の基板213の空気抵抗起因の倍率歪みの大きさに応じて、固定側の基板211を保持する下ステージ632の表面形状を変化させ、固定側の基板211での補正量を調整する。
 図22は、別の実施形態による貼り合わせ部600の一部の模式的断面図である。貼り合わせ部600は、上記の実施形態における貼り合わせ部300の下ステージ332の構成が異なる点を除いて他の構成は同一であるため説明を省略する。なお、基板ホルダ221、223のそれぞれの保持面225、227は任意の形状であってもよい。
 貼り合わせ部600の下ステージ632は、基部611と、複数のアクチュエータ612と、吸着部613とを備える。基部611は、複数のアクチュエータ612を介して吸着部613を支持する。
 吸着部613は、真空チャック、静電チャック等の吸着機構を有し、下ステージ632の上面を形成する。吸着部613は、搬入された基板ホルダ221を吸着して保持する。
 複数のアクチュエータ612は、吸着部613の下方で吸着部613の下面に沿って配されている。また、複数のアクチュエータ612は、制御部150の制御の下で、外部からポンプ615およびバルブ616を介して圧力源622から作動流体が供給されることにより個別に駆動する。これにより複数のアクチュエータ612は、下ステージ632の厚さ方向すなわち基板211、213の貼り合わせ方向に、個々に異なる伸縮量で伸縮して、吸着部613の結合された領域を上昇または下降させる。
 また、複数のアクチュエータ612は、それぞれリンクを介して吸着部613に結合される。吸着部613の中央部は、支柱614により基部611に結合される。複数のアクチュエータ612が動作した場合、複数のアクチュエータ612が結合された領域毎に吸着部613の表面が厚さ方向に変位する。
 図23は、アクチュエータ612のレイアウトを示す模式図である。複数のアクチュエータ612は、支柱614を中心として放射状に配される。また、複数のアクチュエータ612の配列は、支柱614を中心とした同心円状ともとらえることができる。複数のアクチュエータ612の配置は図示のものに限られず、例えば格子状、渦巻き状等に配置してもよい。これにより、基板211を、同心円状、放射状、渦巻き状等に形状を変化させて補正することもできる。
 図24は、貼り合わせ部600の一部の動作を示す模式図である。図示のように、バルブ616を個別に開閉することにより複数のアクチュエータ612を伸縮させて、吸着部613の形状を変化させることができる。よって、吸着部613が基板ホルダ221を吸着しており、且つ、基板ホルダ221が基板211を保持している状態であれば、吸着部613の形状を変化させることにより、基板ホルダ221および基板211の形状を変化して湾曲させることができる。
 図23に示した通り、複数のアクチュエータ612は、同心円状、即ち、下ステージ632の周方向に配列されていると見做すことができる。よって、図23に点線Mで示すように、周毎の複数のアクチュエータ612をグループにして、周縁に近づくほど駆動量を大きくすることにより、吸着部613の表面において中央を隆起させて、球面、放物面、円筒面等の形状に変化させることができる。
 これにより、湾曲した基板ホルダ221に基板211を保持させた場合と同様に、基板211を、球面、放物面等に倣って形状を変化させて湾曲させることができる。よって、図24中に一点鎖線で示す基板211の厚さ方向の中心部Bを境に、基板211の図中上面では、基板211の表面が面方向に拡大するように形状を変化させる。また、基板211の図中下面においては、基板211の表面が面方向に縮小するように形状を変化させる。更に、複数のアクチュエータ612の伸縮量を個別に制御することにより、円筒面等の他の形状の他、複数の凹凸部を含む非線形々状に基板211の形状を変化させて湾曲させることもできる。
 よって、制御部150を通じて複数のアクチュエータ612を個別に動作させることにより、基板211の表面における複数の回路領域216の設計仕様に対するずれを、部分的または全体的に調整できる。また、複数のアクチュエータ612の動作量により形状を変化させる量を調整できる。
 上記の例では、吸着部613が、中央で盛り上がる形状を有していた。しかしながら、吸着部613の周縁部において複数のアクチュエータ612の動作量を増加させて、吸着部613の周縁部に対して中央部を陥没させることにより、基板211の表面における複数の回路領域216の倍率歪みを縮小することもできる。なお、これらに加えて、基板211、213の倍率歪みを補正すべく、温度調節による熱膨張または熱収縮等、他の補正方法を更に導入してもよい。
 温度調節により基板211、213の歪みを補正する場合、貼り合せ時に保持を解除する側の基板を冷却すること、または、固定側の基板を加熱することが好ましい。また、二つの基板211、213のうち一方を加熱することにより補正する場合は、加熱した基板を下ステージ332に保持すると、加熱した基板から発した熱が上ステージ322に向けて上昇し、上ステージ322に保持された基板に伝わることによって当該基板に変形が生じることがあるため、加熱する方の基板を上ステージ322に保持し、他方の基板を下ステージ332に保持することが好ましい。すなわち、この場合、下ステージ332に保持される他方の基板を解除側用の基板とすることが好ましい。
 以上の複数の実施形態において、固定側用の基板ホルダと解除側用の基板ホルダとの形状が異なるため、基板を基板ホルダに保持させる際に、既に解除側か固定側かを決定しているものとして説明した。この場合、積層基板製造装置において、搬送部がその決定情報を受信して、ホルダカセットから解除側用または固定側用の基板ホルダを選択的に取り出し、プリアライナに基板と基板ホルダとの組を順次搬入する。しかしながら、基板ホルダの形状が解除側と固定側とで異ならない場合には、貼り合わせ部がその決定情報を受信して、基板を保持した基板ホルダを上ステージまたは下ステージに選択的に保持させてもよい。
 以上の複数の実施形態において、積層基板製造装置の制御部が、一対の基板211、213の一方を固定側にして、他方を解除側にするよう決定する構成として説明したが、これに代えて、例えば前処理装置で、予め当該決定を行い、決定した情報を積層基板製造装置の制御部に入力させてもよい。
 以上の複数の実施形態において、一対の基板211、213の何れを固定側または解除側にするかの決定は、基板を貼り合わせ部のステージによって保持させる前に行うものとして説明した。この場合には、基板を解除する側のステージを予め決定しておき、解除側にすると決定された基板を、この予め解除用として決定されたステージに保持させる。すなわち、この場合、制御部150は、一対の基板211、213のそれぞれの歪みに関する情報に応じて、一対の基板211、213をそれぞれ保持すべきステージを決定する。
 これに代えて、基板をステージで保持させた後に、その基板の保持を維持するか又は解除するかを決定してもよい。この場合には、制御部150は、その決定後に、解除すると決定された基板を保持しているステージがどちらであるかを判断し、そのステージによる吸着を解除するよう制御してもよい。
 もしくは、基板をステージで保持する前に、保持を維持する基板と解除する基板との少なくとも一方を決定し、解除する基板が保持されるステージを判断し、そのステージを解除する制御を制御部150により行ってもよい。
 以上の複数の実施形態において、貼り合わせのときに、制御部150は、一対の基板211、213の両方のステージによる保持を解除するようにしてもよい。この場合、歪みに関する情報に基づいて、一対の基板211、213の何れを上ステージに保持させるか、下ステージに保持させるかを判断してもよい。
 また、基板211、213の接触領域が拡大していく過程で、制御部150は、基板ホルダ221による基板211の保持の一部または全部を解除してもよい。基板211の保持を解除する場合、接触領域の拡大過程で、上側の基板213からの引っ張り力により、下側の基板211が基板ホルダ221から浮き上がって湾曲する。これにより、下側の基板211の表面が伸びるように形状が変化するので、この伸び量の分、上側の基板213の表面の伸び量との差が小さくなる。従って、二つの基板211、213間の異なる変形量に起因する位置ずれが抑制される。
 基板ホルダ221による保持力を調整することにより、基板ホルダ221からの基板211の浮き上がり量を調整することができるので、基板ホルダ221に予め設定された補正量と実際に必要となる補正量との間に差が生じた場合には、この基板ホルダ221の保持力の調整により、差分を補うことができる。このように基板ホルダ221の保持力の調整によって基板211を基板ホルダ221から浮か上がらせる場合、制御部150は、基板211を固定側の基板として決定する。
 以上の複数の実施形態において、固定側のステージによる吸着力を調整して、固定側の基板を半固定で保持させてもよい。この場合、半固定で保持された基板が、分子間力により他の基板に引き寄せられて、基板ホルダから引き離されることは、複数の実施形態で説明した、基板を解除することに含まれない。
 以上、複数の実施形態を用いて、積層基板を製造するための装置および方法を説明した。追加的または代替的に、第1保持部に保持された第1の基板と、第2保持部に保持された第2の基板のうちの一方の保持を解除することにより、第1の基板と第2の基板とを貼り合わせて積層基板を製造する積層基板製造システムであって、第1の基板および第2の基板のそれぞれの歪みに関する情報を取得する取得部と、歪みに関する情報に基づいて、第1の基板および第2の基板のいずれの保持を維持するかまたは解除するかを決定する決定部と、決定に基づいて、第1の基板と第2の基板とを貼り合わせる貼り合わせ部とを備える、積層基板製造システムとしてもよい。
 この場合、決定部は、接合される基板を収容する搬送容器に基板を仕分ける仕分け装置に、解除側の基板と固定側の基板とを別々の搬送容器に仕分ける旨の信号、または、単一の搬送容器内で解除側の基板と固定側の基板とが識別可能となるように収容する旨の信号を送信してもよい。また、決定部は、解除側の基板および固定側の基板に関する情報を含む信号、解除側の基板を解除用のステージに保持し固定側の基板を固定用のステージに保持する旨の信号、および、解除側の基板を保持するステージを貼り合わせ時に解除制御する旨の信号、の少なくとも一つを貼り合わせ部の一例である積層基板製造装置100に送信してもよい。
 また、上記した実施形態では、基板211、213の一部を接触させた後、接触領域を徐々に拡大させることにより基板211、213を互いに貼り合わせる例を示したが、これに代えて、基板211、213のそれぞれを平坦な保持部に保持し、一方の基板の保持を解除することにより基板211、213を貼り合わせてもよい。この場合、解除する側の基板の決定は、上記した実施形態に記載の方法を適用することができる。
 以上、本発明の実施の形態を説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加え得ることが当業者に明らかである。その様な変更または改良を加えた形態もまた、本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
100 積層基板製造装置、110 筐体、120、130 基板カセット、140 搬送部、150 制御部、208、209 シリコン単結晶基板、210、211、213、511、513 基板、212 スクライブライン、214 ノッチ、216 回路領域、218 アライメントマーク、220、221、222、223 基板ホルダ、225、227 保持面、230 積層基板、300 貼り合わせ部、310 枠体、312 底板、316 天板、322 上ステージ、324、334 顕微鏡、326、336 活性化装置、331 X方向駆動部、332 下ステージ、333 Y方向駆動部、338 昇降駆動部、400 ホルダストッカ、500 プリアライナ、600 貼り合わせ部、611 基部、612 アクチュエータ、613 吸着部、614 支柱、615 ポンプ、616 バルブ、622 圧力源、632 下ステージ

Claims (16)

  1.  第1保持部に保持された第1の基板、および、第2保持部に保持された第2の基板の一方の前記保持を解除することにより、前記第1の基板と前記第2の基板とを貼り合わせる方法であって、
     前記第1の基板および前記第2の基板のそれぞれの歪みに関する情報に基づいて、前記第1の基板および前記第2の基板のいずれの前記保持を解除するかまたは維持するかを決定する段階を含む基板貼り合わせ方法。
  2.  前記歪みに関する情報は、前記第1の基板および前記第2の基板の貼り合わせ過程で生じる歪みに関する情報を含み、
     前記決定する段階では、前記第1の基板および前記第2の基板のうち前記貼り合わせ過程で生じる歪みが小さい方を解除すると決定する請求項1に記載の基板貼り合わせ方法。
  3.  前記歪みに関する情報は、歪みを生じさせる原因に関する情報を含み、 前記原因に関する情報に基づいて、前記第1の基板および前記第2の基板のそれぞれの歪みを推定する段階を更に備え、
     前記決定する段階では、前記推定した歪みの情報に基づいて前記決定を行う請求項1または2に記載の基板貼り合わせ方法。
  4.  前記歪みに関する情報を取得する段階を含み、
     前記取得する段階では、前記第1の基板および前記第2の基板のそれぞれの歪みを計測し、計測した前記歪みを前記情報として取得する請求項1から3の何れか一項に記載の基板貼り合わせ方法。
  5.  前記歪みに関する情報は、前記第1の基板および前記第2の基板のそれぞれにおける反りの大きさ、反りの方向、反っている部分、反りの振幅、撓みの大きさ、撓みの方向、撓みの振幅、撓んでいる部分、内部応力、および、応力分布の少なくとも一つに関する情報を含む請求項1から4の何れか一項に記載の基板貼り合わせ方法。
  6.  前記歪みに関する情報は、前記第1の基板および前記第2の基板のそれぞれにおける反りの振幅の最大値を示す情報を含み、
     前記決定する段階では、前記第1の基板の前記最大値と、前記第2の基板の前記最大値との大小を比較して決定を行い、前記第1の基板および前記第2の基板のうち前記最大値が大きい方を、前記保持を維持する基板に決定する請求項5に記載の基板貼り合わせ方法。
  7.  前記歪みに関する情報は、前記第1の基板および前記第2の基板のそれぞれにおける反りの振幅の平均値を示す情報を含み、
     前記決定する段階では、前記第1の基板の前記平均値と、前記第2の基板の前記平均値との大小を比較し、前記第1の基板および前記第2の基板のうち前記平均値が大きい方を、前記保持を維持する基板に決定する請求項5に記載の基板貼り合わせ方法。
  8.  前記決定する段階を、前記第1の基板および前記第2の基板を貼り合わせる毎、前記第1の基板の製造ロット毎、及び、前記第2の基板の製造ロット毎の少なくとも1つで実行する請求項1から7の何れか一項に記載の基板貼り合わせ方法。
  9.  第1の基板を第1保持部に保持する段階と、
     前記第1の基板に対向するように第2の基板を第2保持部に保持する段階と、
     前記第1の基板および前記第2の基板の一方の前記保持を解除することにより、前記第1の基板と前記第2の基板とを貼り合わせる段階とを含み、
     前記貼り合わせる段階は、前記第1の基板および前記第2の基板のうち、前記保持を解除した場合に貼り合せ過程で生じる歪みが小さい方の基板、または、貼り合わせ前に生じている歪みが小さい方の基板の前記保持を解除する基板貼り合せ方法。
  10.  第1保持部に保持された第1の基板、および、第2保持部に保持された第2の基板の少なくとも一方の前記保持を解除することにより、前記第1の基板と前記第2の基板とを貼り合わせる方法であって、
     前記第1の基板および前記第2の基板のそれぞれの歪みに関する情報に基づいて、前記第1の基板および前記第2の基板のいずれを前記第1保持部または前記第2保持部に保持するかを決定する段階を含む基板貼り合わせ方法。
  11.  第1の基板を保持する第1保持部と、第2の基板を保持する第2保持部とを有し、前記第1の基板および前記第2の基板の一方の前記保持を解除することにより、前記第1の基板と前記第2の基板とを貼り合わせる貼り合わせ段階と、
     前記第1の基板および前記第2の基板のそれぞれの歪みに関する情報に基づいて、前記第1の基板および前記第2の基板のいずれの前記保持を解除するかまたは維持するかを決定する決定段階と、
    を含み、
     前記貼り合わせ段階は、前記決定段階において解除すると決定された基板の前記保持を解除する積層基板製造方法。
  12.  第1の基板を保持する第1保持部と、
     第2の基板を保持する第2保持部と、を備え、
     前記第1の基板および前記第2の基板の一方の前記保持を解除することにより、前記第1の基板と前記第2の基板とを貼り合わせて積層基板を製造する積層基板製造装置であって、
     前記第1の基板および前記第2の基板のそれぞれの歪みに関する情報に基づいて、前記第1の基板および前記第2の基板のいずれの前記保持を解除するかまたは維持するかを決定する決定部を備える積層基板製造装置。
  13.  第1の基板を保持する第1保持部と、
     前記第1の基板に対向するように第2の基板を保持する第2保持部と、
    を備え、
     前記第1の基板および前記第2の基板の一方の前記保持を解除することにより、前記第1の基板と前記第2の基板とを貼り合わせて積層基板を製造する積層基板製造装置であって、
     前記第1の基板および前記第2の基板のうち歪みに関する情報に基づいて前記保持の解除が決定された一方の基板の前記保持を解除する積層基板製造装置。
  14.  第1の基板を保持する第1保持部と、
     前記第1の基板に対向するように第2の基板を保持する第2保持部と、
    を備え、
     前記第1の基板および前記第2の基板の一方の前記保持を解除することにより、前記第1の基板と前記第2の基板とを貼り合わせて積層基板を製造する積層基板製造装置であって、
     前記第1の基板および前記第2の基板のうち、前記保持を解除した場合に貼り合せ過程で生じる歪みが小さい方の基板、または、貼り合わせ前に生じている歪みが小さい方の基板の前記保持を解除する積層基板製造装置。
  15.  第1の基板を保持する第1保持部と、
     前記第1の基板に対向するように第2の基板を保持する第2保持部と、
     前記第1の基板と前記第2の基板との位置ずれを補正する補正部と、
    を備え、
     前記第1の基板および前記第2の基板の一方の前記保持を解除することにより、前記第1の基板と前記第2の基板とを貼り合わせて積層基板を製造する積層基板製造装置であって、
     前記第1の基板および前記第2の基板のうち、貼り合わせした場合に推定される位置ずれの補正量が、前記補正部での補正が可能な大きさとなる方の基板の前記保持を解除する積層基板製造装置。
  16.  第1の基板を保持する第1保持部と、第2の基板を保持する第2保持部とを有し、前記第1の基板および前記第2の基板の一方の前記保持を解除することにより、前記第1の基板と前記第2の基板とを貼り合わせる貼り合わせ部と、
     前記第1の基板および前記第2の基板のそれぞれの歪みに関する情報に基づいて、前記第1の基板および前記第2の基板のいずれの前記保持を解除するかまたは維持するかを決定する決定部と、
    を備え、
     前記貼り合わせ部は、前記決定部において解除すると決定された基板の前記保持を解除する積層基板製造システム。
PCT/JP2018/020075 2017-05-29 2018-05-24 基板貼り合わせ方法、積層基板製造装置及び積層基板製造システム WO2018221391A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197028146A KR20200014268A (ko) 2017-05-29 2018-05-24 기판 접합 방법, 적층 기판 제조 방법, 적층 기판 제조 장치 및 적층 기판 제조 시스템
JP2019522179A JPWO2018221391A1 (ja) 2017-05-29 2018-05-24 基板貼り合わせ方法、積層基板製造装置及び積層基板製造システム
US16/698,238 US20200091015A1 (en) 2017-05-29 2019-11-27 Substrate bonding method, multilayer substrate manufacturing method, multilayer substrate manufacturing apparatus, and multilayer substrate manufacturing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017106054 2017-05-29
JP2017-106054 2017-05-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/698,238 Continuation US20200091015A1 (en) 2017-05-29 2019-11-27 Substrate bonding method, multilayer substrate manufacturing method, multilayer substrate manufacturing apparatus, and multilayer substrate manufacturing system

Publications (1)

Publication Number Publication Date
WO2018221391A1 true WO2018221391A1 (ja) 2018-12-06

Family

ID=64456190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020075 WO2018221391A1 (ja) 2017-05-29 2018-05-24 基板貼り合わせ方法、積層基板製造装置及び積層基板製造システム

Country Status (5)

Country Link
US (1) US20200091015A1 (ja)
JP (1) JPWO2018221391A1 (ja)
KR (1) KR20200014268A (ja)
TW (1) TW201909235A (ja)
WO (1) WO2018221391A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179716A1 (ja) * 2019-03-01 2020-09-10 株式会社ニコン 積層体形成装置および積層体形成方法
JP2021150533A (ja) * 2020-03-19 2021-09-27 キオクシア株式会社 貼合装置および貼合方法
WO2023153317A1 (ja) * 2022-02-10 2023-08-17 株式会社ニコン 基板補正装置、基板積層装置、基板処理システム、基板補正方法、基板処理方法、および半導体装置の製造方法
JP7581824B2 (ja) 2020-12-11 2024-11-13 株式会社ニコン 位置合わせ装置、位置合わせ方法、および位置合わせプログラム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416078A (zh) * 2019-08-02 2019-11-05 武汉新芯集成电路制造有限公司 光刻工艺的扩张补偿的确定方法、装置及器件的制造方法
US11829077B2 (en) 2020-12-11 2023-11-28 Kla Corporation System and method for determining post bonding overlay
US11782411B2 (en) 2021-07-28 2023-10-10 Kla Corporation System and method for mitigating overlay distortion patterns caused by a wafer bonding tool
US20230030116A1 (en) * 2021-07-28 2023-02-02 Kla Corporation System and method for optimizing through silicon via overlay
CN118679557A (zh) * 2022-11-14 2024-09-20 上海显耀显示科技有限公司 一种补偿键合形变量的键合治具

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013258377A (ja) * 2012-06-14 2013-12-26 Sony Corp 半導体装置の製造装置および半導体装置の製造方法
WO2016060274A1 (ja) * 2014-10-17 2016-04-21 ボンドテック株式会社 基板どうしの接合方法、基板接合装置
WO2016093284A1 (ja) * 2014-12-10 2016-06-16 株式会社ニコン 基板重ね合わせ装置および基板重ね合わせ方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013258377A (ja) * 2012-06-14 2013-12-26 Sony Corp 半導体装置の製造装置および半導体装置の製造方法
WO2016060274A1 (ja) * 2014-10-17 2016-04-21 ボンドテック株式会社 基板どうしの接合方法、基板接合装置
WO2016093284A1 (ja) * 2014-12-10 2016-06-16 株式会社ニコン 基板重ね合わせ装置および基板重ね合わせ方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179716A1 (ja) * 2019-03-01 2020-09-10 株式会社ニコン 積層体形成装置および積層体形成方法
JP2021150533A (ja) * 2020-03-19 2021-09-27 キオクシア株式会社 貼合装置および貼合方法
JP7355687B2 (ja) 2020-03-19 2023-10-03 キオクシア株式会社 貼合装置および貼合方法
JP7581824B2 (ja) 2020-12-11 2024-11-13 株式会社ニコン 位置合わせ装置、位置合わせ方法、および位置合わせプログラム
WO2023153317A1 (ja) * 2022-02-10 2023-08-17 株式会社ニコン 基板補正装置、基板積層装置、基板処理システム、基板補正方法、基板処理方法、および半導体装置の製造方法

Also Published As

Publication number Publication date
US20200091015A1 (en) 2020-03-19
JPWO2018221391A1 (ja) 2020-04-09
KR20200014268A (ko) 2020-02-10
TW201909235A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2018221391A1 (ja) 基板貼り合わせ方法、積層基板製造装置及び積層基板製造システム
JP7416119B2 (ja) 積層基板製造方法、積層基板製造装置、積層基板製造システム、および基板処理装置
JP7494875B2 (ja) 基板重ね合わせ装置および基板処理方法
JP2022002336A (ja) 積層装置および積層方法
JP7147863B2 (ja) 基板貼り合わせ装置および基板貼り合わせ方法
JP2019129286A (ja) 積層装置、活性化装置、制御装置、積層体の製造装置、および積層体の製造方法
JP2022101596A (ja) 積層基板の製造方法および製造装置
JP7234494B2 (ja) 接合装置および接合方法
JP2019071329A (ja) 基板接合方法および基板接合装置
WO2023153317A1 (ja) 基板補正装置、基板積層装置、基板処理システム、基板補正方法、基板処理方法、および半導体装置の製造方法
TW202435350A (zh) 積層基板之製造方法及製造裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18808740

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019522179

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197028146

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18808740

Country of ref document: EP

Kind code of ref document: A1