[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018221114A1 - メモリ装置およびメモリ装置の製造方法 - Google Patents

メモリ装置およびメモリ装置の製造方法 Download PDF

Info

Publication number
WO2018221114A1
WO2018221114A1 PCT/JP2018/017405 JP2018017405W WO2018221114A1 WO 2018221114 A1 WO2018221114 A1 WO 2018221114A1 JP 2018017405 W JP2018017405 W JP 2018017405W WO 2018221114 A1 WO2018221114 A1 WO 2018221114A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
memory
memory device
metal film
wiring layer
Prior art date
Application number
PCT/JP2018/017405
Other languages
English (en)
French (fr)
Inventor
潤 角野
雅幸 田崎
英幸 深田
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US16/616,233 priority Critical patent/US11683942B2/en
Priority to CN201880033844.2A priority patent/CN110651363A/zh
Priority to KR1020197033122A priority patent/KR20200014745A/ko
Priority to JP2019522048A priority patent/JPWO2018221114A1/ja
Publication of WO2018221114A1 publication Critical patent/WO2018221114A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • H10B63/24Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes of the Ovonic threshold switching type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H10N70/245Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells

Definitions

  • the present disclosure relates to a memory device in which a memory element is embedded in a logic circuit and a manufacturing method thereof.
  • a memory device includes a logic circuit in which a plurality of wiring layers including layers having different wiring pitches are stacked, and a memory element provided between the plurality of wiring layers.
  • a logic circuit is formed by stacking a plurality of wiring layers including layers having different wiring pitches, and a memory element is formed between the plurality of wiring layers.
  • the logic circuit is formed by forming a memory element between a plurality of wiring layers including layers having different wiring pitches constituting the logic circuit.
  • the memory element can be mixedly mounted on the logic circuit without changing the wiring pattern or the laminated structure.
  • the memory element is formed between a plurality of wiring layers including wiring layers having different wiring pitches constituting the logic circuit.
  • FIG. 2 is a schematic cross-sectional view illustrating a configuration of a memory device according to a first embodiment of the present disclosure.
  • FIG. FIG. 2 is a schematic cross-sectional view illustrating an enlarged main part of the memory unit illustrated in FIG. 1. It is a cross-sectional schematic diagram for demonstrating an example of the manufacturing method of the principal part of the memory device shown in FIG. It is a cross-sectional schematic diagram showing the process following FIG. 3A. It is a cross-sectional schematic diagram showing the process following FIG. 3B. It is a cross-sectional schematic diagram showing the process following FIG. 3C. It is a cross-sectional schematic diagram showing the process following FIG. 3D. It is a cross-sectional schematic diagram showing the process following FIG. 3E.
  • FIG. 10 is a schematic cross-sectional view illustrating a configuration of a memory device according to a third embodiment of the present disclosure.
  • FIG. 9 is a cross-sectional schematic diagram illustrating a configuration of a memory device according to a fourth embodiment of the present disclosure.
  • FIG. 10 is a schematic cross-sectional diagram illustrating a configuration of a memory device according to a fifth embodiment of the present disclosure.
  • FIG. 9 is a cross-sectional configuration diagram illustrating a configuration of a memory device according to Modification 1 of the present disclosure.
  • 10 is a cross-sectional schematic diagram illustrating a configuration of a memory device according to Modification 2 of the present disclosure.
  • FIG. FIG. 10 is a schematic cross-sectional view for illustrating the method for manufacturing the main part of the memory device shown in FIG. 9. It is a cross-sectional schematic diagram showing the process following FIG. 10A. It is a cross-sectional schematic diagram showing the process following FIG. 10B. It is a cross-sectional schematic diagram showing the process following FIG. 10C. It is a cross-sectional schematic diagram showing the process following FIG. 10D. It is a cross-sectional schematic diagram showing the process following FIG. 10E.
  • FIG. 10F It is a cross-sectional schematic diagram showing the process of following FIG. 10F. 14 is a schematic cross-sectional view for explaining a method for manufacturing a main part of a memory device according to Modification 3 of the present disclosure.
  • FIG. It is a cross-sectional schematic diagram showing the process of following FIG. 11A. It is a cross-sectional schematic diagram showing the process of following FIG. 11B. It is a cross-sectional schematic diagram showing the process of following FIG. 11C.
  • FIG. 9 is a cross-sectional schematic diagram illustrating a configuration of a memory device according to Modification 4 of the present disclosure.
  • FIG. 9 is a cross-sectional schematic diagram illustrating a configuration of a memory device according to Modification 5 of the present disclosure.
  • FIG. 16 is a schematic cross-sectional diagram illustrating a configuration of a main part of a memory device according to Modification 6 of the present disclosure.
  • FIG. 16 is a schematic cross-sectional diagram illustrating a configuration of a main part of a memory device according to Modification 7 of the present disclosure.
  • Third Embodiment Example in which a memory cell is formed by omitting the second wiring layer between three stacked wiring layers
  • Fourth Embodiment Example in which a memory cell and an intermediate resistance layer are stacked between the three stacked wiring layers by omitting the second wiring layer
  • Fifth embodiment example in which memory cells are formed across wiring layers having different wiring pitches
  • 6-1 Example in which memory cells are formed across wiring layers having different wiring pitches
  • Modification 1 Example in which a memory cell is formed by omitting the second wiring layer between three stacked wiring layers including wiring layers having different wiring pitches
  • Modification 2 example in which an intermediate resistance layer is provided between a memory element and a selection element constituting a memory cell
  • Modification 3 Example in which the connection between the wiring and the via in the logic portion and the connection between the bit line BL and the memory cell in the memory portion are collectively performed by using an etching stopper film made of different materials for the logic portion and the memory portion.
  • Modification 4 example in which a plurality of memory cells are provided between different wiring layers
  • Modification 5 example in which a plurality of memory cells are provided between wiring layers having different wiring pitches
  • Modification 6 example in which the formation position of the barrier metal film on the memory cell is shifted
  • Modification 7 (example in which memory cells are formed using damascene method between wiring layers constituting a logic circuit)
  • FIG. 1 schematically illustrates a cross-sectional configuration of the memory device (memory device 1) according to the first embodiment of the present disclosure.
  • FIG. 2 is an enlarged view of the configuration of the main part of the memory device 1 shown in FIG.
  • the memory device 1 constitutes, for example, a microcomputer mounted on an electronic device such as a mobile device or an automobile, and a memory is mixedly mounted on a logic circuit.
  • the memory device 1 includes a memory element between a plurality of wiring layers (metal film M1 to metal film M10) constituting the logic circuit 100 (for example, between the metal film M3 and the metal film M4). 12 is formed.
  • the memory device 1 is a circuit in which a memory (memory element 12) is mixedly mounted on the logic circuit 100.
  • the logic circuit 100 has a multilayer wiring structure in which a plurality of wiring layers are stacked.
  • the logic circuit 100 includes a logic unit 100A in which a circuit that performs a logical operation is configured, and a memory unit 100B in which the memory element 12 is formed.
  • the logic unit 100A and the memory unit 100B have the same wiring structure. That is, the logic unit 100A and the memory unit 100B have the same wiring pattern in the same layer, and have a wiring structure formed at the same wiring interval in the stacking direction.
  • the multilayer wiring structure constituting the logic circuit 100 has a configuration in which layers having different wiring pitches are stacked, and a layer in which a plurality of wiring layers having a dense wiring pitch are stacked (first wiring layer) and a wiring pitch is And a layer (second wiring layer) in which a plurality of sparse wiring layers are stacked.
  • the logic circuit 100 includes a first wiring layer 10 in which a wiring layer having the densest wiring pitch is stacked on the substrate 41, and a first wiring, as shown in FIG.
  • the second wiring layer 20 having a sparser wiring pitch than the layer 10 and the third wiring layer 30 having the sparser wiring pitch are stacked in this order.
  • the multilayer wiring structure constituting the logic circuit 100 has, for example, a structure in which ten wiring layers are stacked.
  • the logic circuit 100 includes, in order from the substrate 41 side, for example, a metal film M1, a metal film M2, a metal film M3, a metal film M4, a metal film M5, a metal film M6, a metal film M7, a metal film M8,
  • the metal film M9 and the metal film M10 are embedded in an insulating film (for example, the interlayer insulating layer 48 (see FIG. 3H)).
  • the metal film M1 and the metal film M2 are connected by a via V1.
  • the metal film M2 and the metal film M3 are connected by the via V2.
  • the metal film M3 and the metal film M4 are connected by a via V3.
  • the metal film M4 and the metal film M5 are connected by a via V4.
  • the metal film M5 and the metal film M6 are connected by a via V5.
  • the metal film M6 and the metal film M7 are connected by a via V6.
  • the metal film M7 and the metal film M8 are connected by a via V7.
  • the metal film M8 and the metal film M9 are connected by a via V8.
  • the metal film M9 and the metal film M10 are connected by a via V9.
  • the metal film M1 is provided on the substrate 41 via the contact CT1.
  • the metal films M1 to M10 are formed according to the same wiring rule and constitute the first wiring layer 10.
  • the metal film M7 and the metal film M8 are formed according to the same wiring rule, and constitute the second wiring layer 20.
  • the metal film M9 and the metal film M10 are formed according to the same wiring rule, and constitute the third wiring layer 30. Note that the configuration of the logic circuit 100 illustrated in FIG. 1 is an example, and the present invention is not limited to this.
  • the memory element 12 constitutes the memory cell 13 together with the selection element 11, and is formed between the wiring layers of the memory unit 100B having the same wiring structure as the logic unit 100A. Specifically, the memory element 12 is formed as the memory cell 13 together with the selection element 11 in, for example, the via V3 portion between the metal film M3 and the metal film M4 of the first wiring layer 10 having the densest wiring pitch. ing.
  • the memory cell 13 is one element constituting a memory cell array having a so-called cross-point array structure, and includes a word line WL extending in one direction and a bit line BL extending in a direction different from the word line WL. It is provided at the intersection.
  • the metal film M3 provided in the memory portion 100B is used as the word line WL and the metal film M4 is used as the bit line BL.
  • the selection element 11 is provided on the word line WL side and the selection element 11 is provided on the bit line BL side.
  • the memory element 12 is arranged. Note that FIG. 1 does not show the vias V2 and V5 that connect the metal film M2 and the word line WL and the metal film M5 and the metal film M6, but are electrically connected at positions different from the cross section shown in FIG. It is connected to the.
  • the selection element 11 is for selectively operating any one of a plurality of memory elements arranged in a memory cell array having a so-called cross-point array structure. Further, the selection element 11 is connected in series to the memory element 12, and the resistance greatly decreases as the applied voltage increases, and exhibits a high resistance state when the applied voltage is low. In other words, the selection element 11 has a high electrical resistance when the applied voltage is low, and the electrical resistance is greatly reduced when the applied voltage is high. It has resistance characteristics. Further, the selection element 11 does not perform a memory operation such that, for example, a conduction path formed by movement of ions by voltage application is maintained even after erasing the applied voltage.
  • the selection element 11 has a configuration using an ovonic threshold switch. It is formed by the configuration.
  • the selection element 11 may be configured using, for example, an MSM (Metal-Semiconductor-Metal) diode, an MIM (Metal-Insulator-Metal) diode, or a varistor, or may be configured of a plurality of layers.
  • the selection element 11 may use a unidirectional diode or a bidirectional diode depending on the operation method of the memory element 12.
  • the memory element 12 is, for example, a resistance-change memory element having a nonvolatile property that can reversibly change its resistance value by an electrical signal and can maintain the changed state.
  • the memory element 12 has, for example, a structure in which an ion source layer 12A and a resistance change layer 12B are stacked as shown in FIG.
  • the ion source layer 12A is formed to contain a movable element that forms a conduction path in the resistance change layer 12B by applying an electric field.
  • This movable element is, for example, a transition metal element, aluminum (Al), copper (Cu), or a chalcogen element.
  • the chalcogen element include tellurium (Te), selenium (Se), and sulfur (S).
  • the transition metal element include elements of Groups 4 to 6 of the periodic table. For example, titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum ( Ta), chromium (Cr), molybdenum (Mo), tungsten (W), and the like.
  • the ion source layer 12A includes one or more of the movable elements.
  • the ion source layer 12A includes oxygen (O), nitrogen (N), elements other than the movable elements (for example, manganese (Mn), cobalt (Co), iron (Fe), nickel (Ni), or platinum ( Pt)) or silicon (Si) may be contained.
  • the resistance change layer 12B is made of, for example, an oxide of a metal element or a nonmetal element, or a nitride of a metal element or a nonmetal element, and has resistance when a predetermined voltage is applied between the pair of electrodes. The value changes.
  • a voltage or current pulse in the “positive direction” when a voltage or current pulse in the “positive direction” is applied to the element in the initial state (high resistance state), for example, a transition metal element included in the ion source layer 12A Is ionized and diffused into the resistance change layer 12B or oxygen ions move to cause oxygen defects, and a low resistance portion (conductive path) having a low oxidation state is formed in the resistance change layer 12B. Resistance decreases (recording state).
  • a voltage pulse is applied in the “negative direction” to the memory element 12 in the low resistance state
  • metal ions in the resistance change layer 12B move into the ion source layer 12A or oxygen ions from the ion source layer 12A. Moves to reduce oxygen defects in the conduction path portion. As a result, the conduction path including the transition metal element disappears, and the resistance of the resistance change layer 12B becomes high (initial state or erased state).
  • the principle of resistance change is not particularly limited, such as phase change, polarization, magnetization direction, and formation of a conduction path (filament). That is, the memory element 12 includes, for example, PCM (phase change memory element), FeRAM (ferroelectric memory element), MRAM (magnetoresistive memory element), and a resistance change memory element including transition metal oxide or chalcogenide. Any of these may be used.
  • PCM phase change memory element
  • FeRAM ferroelectric memory element
  • MRAM magnetoresistive memory element
  • a resistance change memory element including transition metal oxide or chalcogenide any of these may be used.
  • the ion source layer 12A is disposed on the bit line BL side and the resistance change layer 12B is disposed on the selection element 11 side, but the present invention is not limited thereto.
  • the ion source layer 12A may be disposed on the selection element 11 side
  • the resistance change layer 12B may be disposed on the bit line BL side.
  • the memory cell 13 may include other layers. For example, a barrier layer that prevents diffusion of the transition metal element and ionic conduction may be formed between the selection element 11 and the memory element 12, for example.
  • Examples of the material of the barrier layer include tungsten (W), tungsten nitride (WN), titanium nitride (TiN), carbon (C), molybdenum (Mo), tantalum (Ta), tantalum nitride (TaN), and titanium tungsten ( TiW) or silicide.
  • the memory device 1 of the present embodiment can be manufactured as follows, for example.
  • the manufacturing method shown below is an example and you may form using another method.
  • 3A to 3H show a method of manufacturing a main part (a wiring layer in which the memory cell 13 is formed) of the memory device 1 according to the present embodiment in the order of steps.
  • a word line WL having a wiring pattern is formed.
  • the metal films M1 to M10, the word line WL, the bit line BL, and the vias V1 to V9 are formed of copper (Cu), and a barrier that prevents diffusion of Cu is formed around the metal films M1 to M10.
  • a metal film for example, a barrier metal film 43
  • a continuous barrier metal film for example, a TiN film
  • the barrier metal film 44, the selection element layer 11X, the memory element layer 12X, and the barrier metal film are formed by, for example, a dry etching method. 45 is etched to form the memory cell 13 on the word line WL.
  • a SiN film 47 is formed by using, for example, an ALD method or a CVD method. Thereby, the etching stopper film 47a and the protective film 47b for protecting the memory cell 13 are formed in one step.
  • a low-K film is formed on the SiN film 47 by using, for example, a CVD method
  • the surface is flattened by a chemical mechanical polishing (CMP) method, and an interlayer insulating layer 48 is formed.
  • CMP chemical mechanical polishing
  • a hard mask is formed on the interlayer insulating layer 48.
  • a via V3 and a metal film M4 are formed in the logic portion 100A, and a bit line BL is formed in the memory portion 100B.
  • the mask 49 is patterned using a photolithography method, and an opening 48H 1 reaching the etching stopper film 47a is formed on the metal film M3 provided in the logic portion 100A by, for example, etching. Form.
  • the metal film M3 and the memory cell 13 are etched by etching.
  • An opening 48H 2 having an opening width of the metal film M4 and the bit line BL is formed.
  • the mask 46 on the memory cell 13 is removed, and the etching stopper film 47a on the metal film M3 is also etched to expose the metal film M3. .
  • the opening 48H 2 as the barrier metal film 50 for example on the side and bottom of the opening 48H 2, for example, a TiN film is formed.
  • the copper film formed on the interlayer insulating layer 48 is polished and removed by the CMP method. , Flatten the surface.
  • a wiring layer here, the metal film M3 and the metal film M4 in which the memory cell 13 is incorporated is formed in the memory unit 100B.
  • the memory element 12 is provided between a plurality of wiring layers constituting the logic circuit 100. Thereby, as described above, the memory element 12 can be mounted in the logic circuit 100 without forming the memory portion and the driver portion in parallel on the substrate 41.
  • the memory element 12 is provided between a plurality of wiring layers constituting the logic circuit 100.
  • the memory element 12 can be mixedly mounted on the logic circuit 100 without forming the memory portion and the driver portion in parallel on the substrate 41 as described above, and both high functionality and cost reduction can be achieved. Is possible.
  • a resistance change type nonvolatile memory element is used as the memory element 12.
  • a logic circuit is formed between the metal films (for example, between the metal film M3 and the metal film M4) constituting the first wiring layer 10 having the densest wiring pitch among the wiring layers constituting the logic circuit.
  • the memory element 12 can be formed without changing the wiring pattern or the laminated structure of the wiring layer to be formed.
  • the via V3 connecting the metal film M3 and the metal film M4 in the logic unit 100A can be simply replaced with the memory cell 13 and formed. Therefore, it is possible to provide a more sophisticated memory device 1 at a low cost.
  • the protective film 57b that protects the sidewall of the memory cell 13 is provided with wiring (for example, the metal film M3 and the metal film M4) provided in the logic portion.
  • the etching stopper film 47a used when forming the via V3 that connects the two they are formed in a lump. As a result, the protective film 47b of the memory cell 13 can be formed without increasing the number of steps.
  • FIG. 4 schematically illustrates a cross-sectional configuration of a memory device (memory device 2A) according to the second embodiment of the present disclosure.
  • the selection element 11 and the memory element 12 constituting the memory cell 13 are arranged between three wiring layers stacked on the first wiring layer 10 constituting the logic circuit 100 (for example, the metal film M3 and the like). This is different from the first embodiment in that it is provided separately between the metal film M4 and between the metal film M4 and the metal film M5.
  • the metal film M4 constituting the first wiring layer 10 is interposed between the metal film M3 and the metal film M4, and between the metal film M4 and the metal film M5.
  • the selection element 11 and the memory element 12 are provided between them. That is, the via V3 connecting the metal film M3 and the metal film M4 and the via V4 connecting the metal film M4 and the metal film M5 in the logic unit 100A are replaced with the selection element 11 and the memory element 12, respectively. I made it.
  • the selection element 11 and the memory element 12 can sufficiently secure the thickness in the respective stacking directions as compared with the first embodiment. Therefore, in addition to the first embodiment, when the logic circuit 100 is miniaturized, the performance of each circuit can be maintained.
  • FIG. 5 schematically illustrates a cross-sectional configuration of a memory device (memory device 3A) according to the third embodiment of the present disclosure.
  • the metal film M4 and the metal film M5 of the first wiring layer 10 constituting the logic circuit 100 are omitted from the selection element 11 and the memory element 12 constituting the memory cell 13.
  • the difference from the first and second embodiments is that a memory cell 13 is provided between the first and second embodiments.
  • the selection element 11 and the memory element 12 in the memory device 3A of the present embodiment can be formed by using, for example, the formation process of the via V3 and the metal film M4 described in the first embodiment. That is, for example, in the step of forming the via V3 and the metal film M4 in the logic section 100A shown in FIG. 3E ⁇ Figure 3H, also form similar openings 48H 2 in the memory unit 100B, to the via V3 and the metal film M4
  • the selection element 11 shown in FIG. 5 can be formed by using the material of the selection element 11 instead of the copper (Cu) that constitutes.
  • Cu copper
  • the via V3 and the metal film M4 are formed on the metal film M3 of the logic unit 100A.
  • the metal film M4 is not patterned on the selection element 11 provided in the memory unit 100B.
  • the upper surface of the selection element 11 and the upper surface of the metal film M4 are the same surface.
  • the via V4 and the metal film M5 are simultaneously formed in both the logic part 100A and the memory part 100B.
  • the metal film M4 constituting the first wiring layer 10 is omitted in the memory unit 100B, and the memory cell 13 is provided between the metal film M3 and the metal film M5. I made it.
  • the selection element 11 and the memory element 12 can further ensure the thickness in the respective stacking directions by the thickness of the metal film M4. Therefore, as compared with the second embodiment, even when the logic circuit 100 is miniaturized, it is possible to maintain higher performance.
  • FIG. 6 schematically illustrates a cross-sectional configuration of a memory device (memory device 4A) according to the fourth embodiment of the present disclosure.
  • the selection element 11 and the memory element 12 constituting the memory cell 13 are omitted from the first wiring layer 10 constituting the logic circuit 100, for example, the metal film M4, and the via V3 and the metal film M4.
  • the difference from the first to third embodiments is that the memory cell 13 is provided at the formation position and the intermediate resistance layer 14 is formed at the formation position of the via V4.
  • the intermediate resistance layer 14 is for preventing an unintended charge current from flowing into the memory cell 13.
  • the intermediate resistance layer 14 has, for example, the same configuration as the via V4 provided in the logic unit 100A, and can be formed, for example, when the via 4 of the logic unit 100A is formed.
  • the memory element 12 may be formed together with the memory element 12 by a dry etching method in a state where a film constituting the intermediate resistance layer 14 is formed on the memory element 12.
  • the metal film M4 constituting the first wiring layer 10 is omitted in the memory unit 100B, and the memory cell 13 is provided at the formation position of the via V3 and the metal film M4.
  • the intermediate resistance layer 14 is formed on the memory cell 13.
  • the formation of the intermediate resistance layer 14 increases the number of steps and leads to an increase in cost.
  • the via V4 that connects the metal film M4 and the metal film M5 in the logic unit 100A is used as the intermediate resistance layer 14 in the memory unit 100B.
  • the intermediate resistance layer 14 can be formed without increasing the number of steps.
  • FIG. 7 schematically illustrates a cross-sectional configuration of a memory device (memory device 2B) according to the fifth embodiment of the present disclosure.
  • the selection element 11 and the memory element 12 constituting the memory cell 13 are formed across the first wiring layer 10 and the second wiring layer 20 constituting the logic circuit 100. This is different from the fourth embodiment.
  • the selection element 11 and the memory element 12 constituting the memory cell 13 are straddled across the first wiring layer 10 and the second wiring layer 20 constituting the logic circuit 100.
  • the first wiring layer 10 is configured, and the selection element 11 is disposed between the metal film M6 provided on the boundary with the second wiring layer 20 and the metal film M5 immediately below the metal film M6.
  • the memory element 12 is formed between M6 and the metal film M7 constituting the second wiring layer 20.
  • the selection element 11 and the memory element 12 can sufficiently secure the thickness in the respective stacking directions.
  • the memory element 12 is provided in the second wiring layer 20, which has a smaller wiring pitch than the first wiring layer 10.
  • the vias V6 and V7 provided in the second wiring layer 20 have a larger wiring width than the vias V1 to V5 provided in the first wiring layer 10. For this reason, the element area of the memory element 12 can be secured by replacing the via (here, the via V6) of the second wiring layer 20 with the memory element 12. Therefore, the performance of the memory element 12 can be maintained even when the logic circuit 100 is further miniaturized as compared with the second embodiment.
  • the metal film M7 constituting the second wiring layer 20 having a large wiring width and film thickness in the stacking direction is used as the bit line BL, the resistance of the bit line BL can be reduced. . As a result, signal deterioration can be suppressed, and the performance of the memory element 12 can be improved.
  • FIG. 8 schematically illustrates a cross-sectional configuration of a memory device (memory device 3B) according to Modification 1 of the present disclosure.
  • the memory device 3B of this modification is a combination of the configurations of the third embodiment and the fifth embodiment, and the memory cell 13 is connected to the first wiring layer 10 and the second wiring layer 20.
  • the selection element 11 and the memory element 12 are stacked between the metal film M5 and the metal film M7 while being formed over the metal film M6.
  • the memory device 3B according to the present modification has an effect that the performance of the memory element 12 can be maintained even when the logic circuit 100 is further miniaturized.
  • FIG. 9 schematically illustrates a cross-sectional configuration of a memory device (memory device 4B) according to Modification 2 of the present disclosure.
  • the memory device 4B according to the present modification has the intermediate resistance layer 14 provided between the memory cell 13 and the bit line BL in the fourth embodiment provided between the selection element 11 and the memory element 12. It is.
  • the memory device 4B according to this modification can be manufactured as follows, for example.
  • FIG. 10A to 10G show a method of manufacturing a wiring layer in which the memory cell 13 of the memory device 4B is formed in the order of steps.
  • a metal film M3 having a barrier metal film 43 around it and a word line having the same wiring pattern as that of the metal film M3 are formed by using a general damascene wiring technique.
  • a barrier film 51 made of, for example, titanium nitride (TiN) or tungsten (W) is formed on the WL and the interlayer insulating layer 42.
  • a barrier metal film 44 is formed at a position corresponding to the word line WL in the barrier film 51 by using, for example, a PVD method, a CVD method, and a CMP method.
  • the selection element layer 11X, the barrier metal film (for example, TiN film) 52, and the hard layer are formed on the barrier film 51 and the barrier metal film 44 by using, for example, the PVD method and the CVD method.
  • Masks (masks 53 and 54) are formed in this order.
  • the selection element layer 11X, the barrier metal film 52, and the mask 53 are etched, and the memory cell 13 is formed on the word line WL.
  • the SiN film 47 is formed on the side surfaces and the upper surfaces of the barrier film 51 and the stacked selection element 11, the barrier metal film 52, and the masks 53 and 54, for example, using an ALD method or a CVD method.
  • a low-k film is formed on the SiN film 47 by using, for example, a CVD method
  • the surface is planarized by the CMP method to form an interlayer insulating layer 48.
  • a hard mask (mask 49) is formed on the interlayer insulating layer 48.
  • a via V3 and a metal film M4 are formed in the logic part 100A, and a bit line BL is formed in the memory part 100B.
  • the mask 49 is patterned using a photolithography method, and openings 48H 3 are formed on the metal film M3 and the selection element 11 provided in the logic unit 100A, for example, by etching. To do.
  • the barrier film 51 serves as an etching stopper film on the metal film M3, and the mask 53 serves as an etching stopper film on the selection element 11.
  • an opening 48H 4 of the metal film M4 is formed on the metal film M3 by etching. Subsequently, by performing etching again, the barrier film 51 on the metal film M3 and the mask 53 on the selection element 11 are removed.
  • the barrier metal film 50 is formed in the opening 48H 4 by using, for example, the PVD method.
  • the thickness of the barrier metal film 50 to be formed varies depending on the depth of the opening 48H 4 . That is, as shown in FIG. 10G, the bottom of the opening 48H 4 on shallow selecting element 11 having a depth of the opening 48H 4, the barrier metal film 50 is formed thicker than the upper metal film M3.
  • the barrier metal film 50 provided on the selection element 11 corresponds to the intermediate resistance layer 14.
  • the barrier metal film 50 is, for example, a TiN film, and has a higher resistance than copper (Cu) constituting the via V3.
  • the barrier metal film 50 is formed on the selection element 11 in a thick film, and this is used as the intermediate resistance layer 14 together with the via V3 formed on the selection element 11.
  • the resistance value of the intermediate resistance layer 14 can be adjusted to a desired value.
  • the opening 48H 4 after forming a copper (Cu) as the via V3 and the metal film M4, is removed by polishing the copper film formed on the interlayer insulating layer 48 by CMP, the surface To flatten.
  • the via 4 and the memory element 12 are formed by using the method for manufacturing the via V3, the metal film M4, and the memory cell 13 described above.
  • a wiring layer is formed between the metal film M3 and the metal film M5 shown in FIG. 9 in which the selection element 11 and the memory element 12 are stacked with the via V3 interposed therebetween.
  • the intermediate resistance layer 14 may be provided between the selection element 11 and the memory element 12.
  • the intermediate resistance layer 14 is adjusted by adjusting the thickness of the barrier metal film 50 formed on the selection element 11 using the difference in the depth of the opening 48H 4 in the manufacturing process.
  • the resistance value can be adjusted to a desired value.
  • FIG. 11A to FIG. 11D show another example of the manufacturing method of the wiring layer in which the memory cell 13 of the memory device (memory device 1) according to Modification 3 of the present disclosure is formed in the order of steps.
  • the metal film M3 having the barrier metal film 43 around it and the word line WL having the same wiring pattern as the metal film M3 and the interlayer insulation After forming the barrier film 51 on the layer 42, the barrier metal film 44 is formed at a position corresponding to the word line WL in the barrier film 51. Subsequently, the selection element layer 11X, the memory element layer 12X, the barrier metal film 45, and a hard mask (mask 46) are formed in this order on the barrier film 51 and the barrier metal film 44.
  • the selection element layer 11X, the memory element layer 12X, and the barrier metal film 45 are etched by using a photolithography method and a dry etching method to form the memory cell 13 on the word line WL.
  • the SiN film 47 is formed on the side and upper surfaces of the barrier film 51 and the stacked selection element layer 11X, memory element layer 12X, barrier metal film 45, and mask 46.
  • a low-k film is formed on the SiN film 47 by using, for example, a CVD method, the surface is planarized by the CMP method to form an interlayer insulating layer 48.
  • a via V3 and a metal film M4 are formed in the logic part 100A, and a bit line BL is formed in the memory part 100B.
  • the mask 49 is patterned using a photolithography method to form an opening 48H 5 reaching the barrier film 51 on the metal film M3 provided in the logic part 100A.
  • the mask 49 is patterned using a photolithography method, and then openings 48H 6 are formed on the metal film M3 and the memory cell 13 by etching, respectively. Subsequently, by etching again, the barrier film 51 on the metal film M3 and the mask 46 on the memory cell 13 are etched together. Thereby, the barrier metal film 45 provided on the metal film M3 and the memory cell 13 is exposed.
  • Cu buried copper
  • connection between the metal film M3 and the via V3 in the logic unit 100A and the memory cell 13 in the memory unit 100B (specifically, the barrier provided on the memory cell 13).
  • the step of providing the opening for connecting the metal film 45) and the bit line BL is difficult to form simultaneously due to the etching material and the difference in film thickness.
  • a film (barrier film 51) having etching resistance equivalent to that of the mask 46 formed on the memory cell 13 is previously formed on the metal film M3 of the logic unit 100A. I made it.
  • the margin in the step of forming the opening 48H 6 can be increased, and the manufacturing yield can be improved.
  • FIG. 12 schematically illustrates a cross-sectional configuration of a memory device (memory device 5A) according to Modification 4 of the present disclosure.
  • memory device 5A of the present modification for example, memory cells 13A and 13B are provided between the metal film M3 and the metal film M4 constituting the first wiring layer 10 and between the metal film M4 and the metal film M5, respectively. Is.
  • a plurality of memory cells 13 can be formed between different wiring layers without changing the wiring pattern of the wiring layer constituting the logic circuit 100.
  • FIG. 13 schematically illustrates a cross-sectional configuration of a memory device (memory device 5B) according to Modification 5 of the present disclosure.
  • the memory device 5B according to the present modification is obtained by providing memory cells 13A and 13B in the first wiring layer 10 and the second wiring layer 20, respectively.
  • the memory cells 13A and 13B provided in the memory device 5B of this modification have different sizes according to the design rules of the formed wiring layer. Specifically, the widths of the selection element 11 and the memory element 12 constituting the memory cell 13A formed in the first wiring layer 10 are the same as the selection element 11 and the memory element 13B formed in the second wiring layer 20. It is smaller than the width of the memory element 12. In general, when the thickness in the stacking direction is equal, the smaller the width of the memory element 12, that is, the smaller the element area, the better the high-speed operation, and the larger the element area, the higher the reliability.
  • the memory cells 13A and 13B having different characteristics are mixedly mounted on the single substrate 41 without changing the wiring pattern of the wiring layer configuring the logic circuit 100. It becomes possible. Therefore, it is possible to mount memory cells according to the application, and it is possible to further improve the functionality of the memory device 5B.
  • FIG. 14 schematically illustrates a cross-sectional configuration of a memory device (memory device 6) according to Modification 6 of the present disclosure.
  • the memory device 6 of this modification is formed by intentionally shifting the barrier metal film 45 provided between the memory cell 13 and the bit line BL from the memory cell 13 in the memory device 1, for example.
  • the barrier metal film 45 functions as, for example, an electrode of the memory cell 13, and the contact area between the memory cell 13 and the barrier metal film 45 is reduced by forming the barrier metal film 45 so as to shift the barrier metal film 45.
  • the resistance value increases. By adjusting the resistance value of the barrier metal film 45 in this way, it is possible to reduce the deterioration of the memory cell 13 due to an unintended charge current.
  • FIG. 15 schematically illustrates a cross-sectional configuration of a memory device (memory device 7) according to Modification 6 of the present disclosure.
  • the barrier metal film 44, the memory cell 13, and the barrier metal film 45 provided between the word line EL and the bit line BL in the memory device 1 are formed by using the damascene method. It is a thing.
  • the damascene method for example, when the barrier metal film 44, the selection element 11, the memory element 12, and the barrier metal film 45 are formed in this order in the opening 81H formed in the interlayer insulating layer 81, As shown in FIG. 15, they are formed in layers on the side surface and bottom surface of the opening 81H.
  • the bit line BL is required to be formed so as to be in contact only with the barrier metal film 45 formed on the innermost side in the opening 81H.
  • the opening (trench) when the inside of the opening (trench) is buried using the damascene method, a hole is formed in the center, so that the etching stopper film 83 is relatively thinly formed at the portion (the center of the opening).
  • the opening 45H is formed using anisotropic etching. As a result, only the hole portion is etched, and the opening H constituting the bit line BL can be formed by self-alignment.
  • the present disclosure has been described above with reference to the first to fifth embodiments and modifications 1 to 7.
  • the present disclosure is not limited to the above-described embodiments and the like, and various modifications can be made.
  • the selection element 11 to be configured is provided on the word line WL side and the memory element 12 is provided on the bit line BL side has been described.
  • the selection element 11 may be formed on the bit line BL side.
  • the positions between the wiring layers where the memory cells 13 are formed are not limited.
  • it may be formed between the metal film M2 and the metal film M3, or may be formed between the metal film M8 and the metal film M9.
  • a resistance change memory element is used as the memory element 12
  • the spin injection memory element is difficult to be finely processed as compared with the resistance change memory element. Therefore, when a spin injection memory element is used, it is preferable to provide the vias V6 to V9 in the second wiring layer 20 and the third wiring layer 30, for example.
  • this indication can take the following composition.
  • a logic circuit in which a plurality of layers including wiring layers having different wiring pitches are stacked; And a memory device provided between the plurality of wiring layers.
  • the memory device according to (1) wherein a selection element is provided together with the memory element between the plurality of wiring layers.
  • the logic circuit has a logic part and a memory part in which the memory element is formed, The memory device according to (1) or (2), wherein the logic unit and the memory unit have the same wiring structure.
  • the plurality of wiring layers include a first wiring layer in which a plurality of wiring layers having a dense wiring pitch are stacked, and a plurality of wiring layers in which a wiring pitch is less than the wiring pitch of the first wiring layer.
  • the memory device according to any one of (1) to (3), wherein a second wiring layer is stacked in this order.
  • the memory element constitutes a memory cell together with a selection element, The memory device according to (4), wherein the memory cell is provided between two wirings stacked in the first wiring layer.
  • the memory element constitutes a memory cell together with a selection element, In the memory cell, the memory element is provided between one of the three wirings stacked in the first wiring layer, and the selection element is provided between the other wirings.
  • the memory element constitutes a memory cell together with a selection element, The memory device according to (4) or (5), wherein the memory cell and a conductive film are stacked between two wirings stacked in the first wiring layer.
  • the memory element constitutes a memory cell together with a selection element, The memory device according to any one of (4), (5), and (7), wherein the memory cell is provided between a plurality of wires in the first wiring layer.
  • the memory element constitutes a memory cell together with a selection element, The memory device according to (4), wherein the memory cell is provided across the first wiring layer and the second wiring layer.
  • the memory element constitutes a memory cell together with a selection element, The memory according to any one of (4) to (10), wherein the memory cell is provided between wirings in the first wiring layer and between wirings in the second wiring layer.
  • Each of the plurality of wiring layers has a plurality of wirings; A side surface of the memory element and the selection element provided on one wiring of the wiring layer including the plurality of wirings is formed in the same wiring layer as the one wiring, and is on the wiring constituting the logic circuit.
  • the memory element is a resistance change memory element or a spin injection memory element.
  • Each of the plurality of wiring layers has a plurality of wirings; After forming a memory cell having the memory element and the selection element on one wiring of the wiring layer composed of the plurality of wirings, the plurality of wirings are formed on another wiring formed in the same wiring layer as the one wiring.
  • an etching stopper film used when forming the via on the other wiring and a protective film covering a side surface of the memory element are collectively formed. 15.
  • a barrier metal film is collectively formed on the selection element and the other wiring, thereby forming a film thickness on the selection element and the other wiring.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)

Abstract

本開示の一実施形態のメモリ装置は、配線ピッチの異なる層を含む複数の配線層が積層されたロジック回路と、複数の配線層の間に設けられたメモリ素子とを備える。

Description

メモリ装置およびメモリ装置の製造方法
 本開示は、ロジック回路にメモリ素子が混載されたメモリ装置およびその製造方法に関する。
 例えば、特許文献1,2に開示されている半導体装置のように、マイコン等の半導体装置のロジック回路に不揮発性メモリを混載することは、半導体装置の機能を向上させる手段として広く用いられている。
特開2017-45947号公報 特開2017-54900号公報
 ところで、ロジック回路に混載するメモリとしてNOR型フラッシュメモリを用いた場合、基板上にメモリ部およびドライバ部を並列に配置することとなる。このため、ビット当たりの面積が大きくなる傾向があり、コストの増加が懸念されている。
 高機能化およびコストの低下を両立することが可能なメモリ装置およびメモリ装置の製造方法を提供することが望ましい。
 本開示の一実施形態のメモリ装置は、配線ピッチの異なる層を含む複数の配線層が積層されたロジック回路と、複数の配線層の間に設けられたメモリ素子とを備えたものである。
 本開示の一実施形態のメモリ装置の製造方法は、配線ピッチの異なる層を含む複数の配線層を積層してロジック回路を形成すると共に、複数の配線層の間にメモリ素子を形成する。
 本開示の一実施形態のメモリ装置および一実施形態のメモリ装置の製造方法では、ロジック回路を構成する配線ピッチの異なる層を含む複数の配線層の間にメモリ素子を形成することにより、ロジック回路の配線パターンや積層構造を変えることなくロジック回路にメモリ素子を混載することが可能となる。
 本開示の一実施形態のメモリ装置および一実施形態のメモリ装置の製造方法によれば、ロジック回路を構成する配線ピッチの異なる配線層を含む複数の配線層の間にメモリ素子を形成するようにしたので、ロジック回路の配線パターンや積層構造を変えることなくロジック回路にメモリ素子を混載することが可能となる。よって、高機能化およびコストの低下を両立することが可能となる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれの効果であってもよい。
本開示の第1の実施の形態に係るメモリ装置の構成を表す断面模式図である。 図1に示したメモリ部の要部を拡大して表した断面模式図である。 図1に示したメモリ装置の要部の製造方法の一例を説明するための断面模式図である。 図3Aに続く工程を表す断面模式図である。 図3Bに続く工程を表す断面模式図である。 図3Cに続く工程を表す断面模式図である。 図3Dに続く工程を表す断面模式図である。 図3Eに続く工程を表す断面模式図である。 図3Fに続く工程を表す断面模式図である。 図3Gに続く工程を表す断面模式図である。 本開示の第2の実施の形態に係るメモリ装置の構成を表す断面模式図である。 本開示の第3の実施の形態に係るメモリ装置の構成を表す断面模式図である。 本開示の第4の実施の形態に係るメモリ装置の構成を表す断面模式図である。 本開示の第5の実施の形態に係るメモリ装置の構成を表す断面模式図である。 本開示の変形例1に係るメモリ装置の構成を表す断面構成図である。 本開示の変形例2に係るメモリ装置の構成を表す断面模式図である。 図9に示したメモリ装置の要部の製造方法を説明するための断面模式図である。 図10Aに続く工程を表す断面模式図である。 図10Bに続く工程を表す断面模式図である。 図10Cに続く工程を表す断面模式図である。 図10Dに続く工程を表す断面模式図である。 図10Eに続く工程を表す断面模式図である。 図10Fに続く工程を表す断面模式図である。 本開示の変形例3に係るメモリ装置の要部の製造方法を説明するための断面模式図である。 図11Aに続く工程を表す断面模式図である。 図11Bに続く工程を表す断面模式図である。 図11Cに続く工程を表す断面模式図である。 本開示の変形例4に係るメモリ装置の構成を表す断面模式図である。 本開示の変形例5に係るメモリ装置の構成を表す断面模式図である。 本開示の変形例6に係るメモリ装置の要部の構成を表す断面模式図である。 本開示の変形例7に係るメモリ装置の要部の構成を表す断面模式図である。
 以下、本開示における実施の形態について、図面を参照して詳細に説明する。以下の説明は本開示の一具体例であって、本開示は以下の態様に限定されるものではない。また、本開示は、各図に示す各構成要素の配置や寸法、寸法比等についても、それらに限定されるものではない。なお、説明する順序は、下記の通りである。
 1.第1の実施の形態(ロジック回路を構成する配線層の間にメモリセルを形成した例)
  1-1.メモリ装置の構成
  1-2.メモリ装置の製造方法
  1-3.作用・効果
 2.第2の実施の形態(積層された3つの配線層の一方の配線層間にメモリ素子を、他方の配線層間に選択素子を形成した例)
 3.第3の実施の形態(積層された3つの配線層間に、2層目の配線層を省略してメモリセルを形成した例)
 4.第4の実施の形態(積層された3つの配線層の間に、2層目の配線層を省略してメモリセルおよび中間抵抗層を積層形成した例)
 5.第5の実施の形態(配線ピッチの異なる配線層の間に跨ってメモリセルを形成した例)
 6.変形例
  6-1.変形例1(配線ピッチの異なる配線層を含む積層された3つの配線層の間に、2層目の配線層を省略してメモリセルを形成した例)
  6-2.変形例2(メモリセルを構成するメモリ素子と選択素子との間に中間抵抗層を設けた例)
  6-3.変形例3(ロジック部およびメモリ部に異なる材料からなるエッチングストッパ膜を用いることでロジック部における配線とビアとの接続と、メモリ部におけるビット線BLとメモリセルとの接続とを一括で行う例)
  6-4.変形例4(複数のメモリセルを異なる配線層間に設けた例)
  6-5.変形例5(複数のメモリセルを配線ピッチの異なる配線層間に設けた例)
  6-6.変形例6(メモリセル上のバリアメタル膜の形成位置をずらした例)
  6-7.変形例7(ロジック回路を構成する配線層間に、ダマシン法を用いてメモリセルを形成した例)
<1.第1の実施の形態>
 図1は、本開示の第1の実施の形態に係るメモリ装置(メモリ装置1)の断面構成を模式的に表したものである。図2は、図1に示したメモリ装置1の要部の構成を拡大して表したものである。このメモリ装置1は、例えば、モバイル機器や自動車等の電子機器に搭載されるマイコンを構成するものであり、ロジック回路にメモリが混載されたものである。本実施の形態では、メモリ装置1は、ロジック回路100を構成する複数の配線層(金属膜M1~金属膜M10)の間(例えば、金属膜M3と金属膜M4との間)に、メモリ素子12が形成されたものである。
(1-1.メモリ装置の構成)
 メモリ装置1は、上記のように、ロジック回路100にメモリ(メモリ素子12)が混載されたものであり、ロジック回路100は、複数の配線層が積層された多層配線構造を有する。ロジック回路100は、論理演算を行う回路が構成されたロジック部100Aと、メモリ素子12が形成されたメモリ部100Bとを有する。ロジック部100Aおよびメモリ部100Bは、同じ配線構造を有する。即ち、ロジック部100Aおよびメモリ部100Bは、同一層内において同じ配線パターンを有すると共に、積層方向においても互いに同じ配線間隔で形成された配線構造を有する。
 ロジック回路100を構成する多層配線構造は、配線ピッチの異なる層が積層された構成を有し、配線ピッチが密な配線層が複数積層された層(第1の配線層)と、配線ピッチが疎な配線層が複数積層された層(第2の配線層)とを有する。本実施の形態のメモリ装置1では、ロジック回路100は、図1に示したように、基板41上に、最も配線ピッチが密な配線層が積層された第1配線層10と、第1配線層10よりも配線ピッチが疎な第2配線層20と、最も配線ピッチが疎な第3配線層30とがこの順に積層された構成を有する。
 ロジック回路100を構成する多層配線構造は、例えば、10層の配線層が積層された構造を有する。具体的には、ロジック回路100は、基板41側から順に、例えば、金属膜M1、金属膜M2、金属膜M3、金属膜M4、金属膜M5、金属膜M6、金属膜M7、金属膜M8、金属膜M9および金属膜M10が絶縁膜(例えば、層間絶縁層48(図3H参照))に埋め込み形成された構成を有する。金属膜M1と金属膜M2とは、ビアV1により接続されている。以下、同様に、金属膜M2と金属膜M3とは、ビアV2により接続されている。金属膜M3と金属膜M4とは、ビアV3により接続されている。金属膜M4と金属膜M5とは、ビアV4により接続されている。金属膜M5と金属膜M6とは、ビアV5により接続されている。金属膜M6と金属膜M7とは、ビアV6により接続されている。金属膜M7と金属膜M8とは、ビアV7により接続されている。金属膜M8と金属膜M9とは、ビアV8により接続されている。金属膜M9と金属膜M10とは、ビアV9により接続されている。金属膜M1は、コンタクトCT1を介して基板41上に設けられている。上記金属膜M1~金属膜M10のうち、金属膜M1~金属膜M6は、同じ配線ルールによって形成されており、第1配線層10を構成している。金属膜M7および金属膜M8は、同じ配線ルールによって形成されており、第2配線層20を構成している。金属膜M9および金属膜M10は、同じ配線ルールによって形成されており、第3配線層30を構成している。なお、図1に示したロジック回路100の構成は一例であり、これに限定されるものではない。
 本実施の形態では、メモリ素子12は選択素子11と共にメモリセル13を構成し、ロジック部100Aと同様の配線構造を有するメモリ部100Bの配線層間に形成されている。具体的には、メモリ素子12は、最も配線ピッチが密な第1配線層10の、例えば金属膜M3と金属膜M4との間のビアV3部分に選択素子11と共に、メモリセル13として形成されている。
 メモリセル13は、所謂クロスポイントアレイ構造を有するメモリセルアレイを構成する1素子であり、一の方向に延在するワード線WLと、ワード線WLとは異なる方向に延在するビット線BLとの交点に設けられたものである。本実施の形態では、メモリ部100Bに設けられた金属膜M3がワード線WLとして、金属膜M4がビット線BLとして用いられており、ワード線WL側に選択素子11が、ビット線BL側にメモリ素子12が配置された構成を有する。なお、図1では、金属膜M2とワード線WLおよび金属膜M5と金属膜M6を接続するビアV2,V5が示されていないが、図1に示した断面とは異なる位置で、それぞれ電気的に接続されている。
(選択素子)
 選択素子11は、所謂クロスポイントアレイ構造を有するメモリセルアレイにおいて複数配設されたうちの任意のメモリ素子を選択的に動作させるためのものである。また、選択素子11は、メモリ素子12に直列に接続されており、印加電圧の増加とともに抵抗が大幅に低下し、印加電圧が低い場合に高抵抗状態を呈するものである。換言すると、選択素子11は、印加電圧が低い場合には電気抵抗が高く、印加電圧が高い場合には電気抵抗が大幅に低下し、大電流(例えば数桁倍の電流)が流れる非線形の電気抵抗特性を有するものである。更に、選択素子11とは、例えば電圧印加によるイオンの移動によって形成される伝導パスが印加電圧消去後にも維持される等のメモリ動作をしないものである。
 選択素子11は、例えば、オボニック閾値スイッチを用いた構成を有し、例えば、BGaPTe、BGaAsTe、BGaPTeN、BGaAsTeN、BGaPTeO、BGaAsTeO、BGaCPTe、BGaCAsTe、BGaCPTeN、BGaCAsTeN、BGaCPTeO、BGaCAsTeOのうちのいずれかの元素構成により形成されている。また、選択素子11は、例えば、MSM(Metal-Semiconductor-Metal)ダイオード、MIM(Metal-Insulator-Metal)ダイオード、バリスタを用いた構成としてもよく、複数の層から構成されていてもよい。更に、選択素子11は、メモリ素子12の動作方法によっては単方向ダイオードまたは双方向ダイオードを用いてもよい。
(メモリ素子)
 メモリ素子12は、例えば、電気的信号によって抵抗値が可逆的に変化するものであり、その変化した状態を保持することが可能な不揮発性を有する抵抗変化型のメモリ素子である。メモリ素子12は、例えば、図2に示したように、イオン源層12Aと抵抗変化層12Bとが積層された構造を有する。
 イオン源層12Aは、電界の印加によって抵抗変化層12B内に伝導パスを形成する可動元素を含んでいる形成されたものである。この可動元素は、例えば、遷移金属元素、アルミニウム(Al)、銅(Cu)またはカルコゲン元素である。カルコゲン元素としては、例えば、テルル(Te)、セレン(Se)、または硫黄(S)が挙げられる。遷移金属元素としては、周期律表第4族~第6族の元素であり、例えば、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、クロム(Cr)、モリブデン(Mo)またはタングステン(W)等が挙げられる。イオン源層12Aは、上記可動元素を1種あるいは2種以上含んで構成されている。また、イオン源層12Aは、酸素(O)、窒素(N)、上記可動元素以外の元素(例えば、マンガン(Mn)、コバルト(Co)、鉄(Fe)、ニッケル(Ni)、または白金(Pt))またはケイ素(Si)等を含んでいてもかまわない。
 抵抗変化層12Bは、例えば、金属元素もしくは非金属元素の酸化物、または、金属元素もしくは非金属元素の窒化物によって構成されており、一対の電極の間に所定の電圧を印加した場合に抵抗値が変化するものである。
 本実施の形態のメモリ素子12では、初期状態(高抵抗状態)の素子に対して「正方向」の電圧または電流パルスが印加されると、イオン源層12Aに含まれる、例えば、遷移金属元素がイオン化して抵抗変化層12Bに拡散、あるいは酸素イオンが移動することによって酸素欠陥が生じ、抵抗変化層12B中に酸化状態の低い低抵抗部(伝導パス)が形成されて抵抗変化層12Bの抵抗が低くなる(記録状態)。この低抵抗な状態のメモリ素子12に対して「負方向」へ電圧パルスが印加されると、抵抗変化層12B中の金属イオンがイオン源層12A中へ移動、あるいはイオン源層12Aから酸素イオンが移動して伝導パス部分の酸素欠陥が減少する。これにより遷移金属元素を含む伝導パスが消滅し、抵抗変化層12Bの抵抗が高い状態となる(初期状態または消去状態)。
 なお、抵抗変化の原理は、相変化、分極、磁化方向および伝導パス(フィラメント)の形成等、特に限定されるものではない。即ち、メモリ素子12は、例えば、PCM(相変化型メモリ素子)、FeRAM(強誘電体メモリ素子)、MRAM(磁気抵抗変化型メモリ素子)および遷移金属酸化物または、カルコゲナイドを含む抵抗変化メモリ素子のいずれを用いても構わない。
 また、図2に示したメモリセル13では、イオン源層12Aがビット線BL側に、抵抗変化層12Bが選択素子11側に配置された例を示したがこれに限らない。メモリ素子12の構成は、イオン源層12Aが選択素子11側に、抵抗変化層12Bがビット線BL側に配置されていてもよい。更に、メモリセル13は、他の層を備えていてもよい。例えば、選択素子11とメモリ素子12との間に、例えば、遷移金属元素の拡散およびイオン伝導を防止するバリア層を形成するようにしてもよい。バリア層の材料としては、例えば、タングステン(W)、窒化タングステン(WN)、窒化チタン(TiN)、炭素(C)、モリブデン(Mo)、タンタル(Ta)、窒化タンタル(TaN)、チタンタングステン(TiW)、またはシリサイド等が挙げられる。バリア層を設けることにより、イオン源層12Aに含まれる遷移金属元素の拡散による選択素子11の劣化が低減される。
(1-2.メモリ装置の製造方法)
 本実施の形態のメモリ装置1は、例えば、次のようにして製造することができる。なお、下記に示した製造方法は一例であり、他の方法を用いて形成しても構わない。
 図3A~図3Hは、本実施の形態のメモリ装置1の要部(メモリセル13が形成された配線層)の製造方法を工程順に表したものである。まず、図3Aに示したように、例えば、一般的なダマシン法による配線技術を用いて、層間絶縁層42に埋設された、周囲にバリアメタル膜43を有する金属膜M5および金属膜M5と同じ配線パターンを有するワード線WLを形成する。なお、本実施の形態では、金属膜M1~M10、ワード線WL、ビット線BLおよびビアV1~V9は、銅(Cu)によって形成されており、その周囲には、Cuの拡散を防止するバリアメタル膜(例えば、バリアメタル膜43)が形成されている。続いて、金属膜M5、ワード線WLおよび層間絶縁層42上に、例えば、PVD(physical vapor deposition)法およびCVD(Chemical Vapor Deposition)法を用いて、連続するバリアメタル膜(例えば、TiN膜)44、選択素子層11X、メモリ素子層12X、バリアメタル膜(例えば、TiN膜)45およびハードマスク(マスク46)をこの順に形成する。
 次に、図3Bに示したように、例えば、フォトリソグラフィ法を用いてマスク46をパターニングしたのち、例えばドライエッチング法により、バリアメタル膜44、選択素子層11X、メモリ素子層12Xおよびバリアメタル膜45をエッチングし、ワード線WL上にメモリセル13を形成する。
 続いて、図3Cに示したように、例えば、ALD法やCVD法を用いてSiN膜47を成膜する。これにより、エッチングストッパ膜47aおよびメモリセル13を保護する保護膜47bが一工程で形成される。
 次に、図3Dに示したように、SiN膜47上に、例えば、CVD法を用いてLow-K膜を成膜したのち、CMP(chemical mechanical polishing)法によって表面を平坦化し層間絶縁層48を形成する。続いて、層間絶縁層48上に、ハードマスク(マスク49)を形成する。
 次に、ダマシン法を用いて、ロジック部100AにビアV3および金属膜M4、メモリ部100Bにビット線BLを形成する。まず、図3Eに示したように、フォトリソグラフィ法を用いてマスク49をパターニングし、ロジック部100Aに設けられた金属膜M3上に、例えば、エッチングにより、エッチングストッパ膜47aまで達する開口48H1を形成する。
 次に、図3Fに示したように、例えば、フォトリソグラフィ法を用いてマスク49をパターニングしたのち、エッチングにより、金属膜M3上およびメモリセル13上に、それぞれ。金属膜M4およびビット線BLの開口幅の開口48H2を形成する。
 続いて、図3Gに示したように、再度エッチングすることにより、メモリセル13上のマスク46が除去されると共に、金属膜M3上のエッチングストッパ膜47aもエッチングされて、金属膜M3が露出する。
 次に、開口48H2内に、例えば開口48H2の側面および底面にバリアメタル膜50として、例えば、TiN膜を成膜する。最後に、ビアV3、金属膜M4およびビット線BLとして開口48H2内に銅(Cu)を成膜したのち、CMP法により層間絶縁層48上に成膜された銅膜を研磨して除去し、表面を平坦化する。これにより、メモリ部100Bにおいてメモリセル13が組み込まれた配線層(ここでは、金属膜M3および金属膜M4)が形成される。
(1-3.作用・効果)
 前述したように、マイコン等の半導体装置を構成するロジック回路に不揮発性メモリを混載することは、半導体装置の機能を向上させる手段として広く用いられている。ロジック回路に混載される不揮発性メモリとしては、一般にNOR型フラッシュメモリやスリップゲート型フラッシュメモリ等が用いられている。
 これらフラッシュメモリは半導体トランジスタを応用したメモリであるため、基板上にメモリ部およびドライバ部を並列に配置する必要がある。このため、ビット当たりの面積が大きくなる傾向があり、コストが増加するという問題があった。
 これに対して、本実施の形態のメモリ装置1およびその製造方法では、ロジック回路100を構成する複数の配線層の間に、メモリ素子12を設けるようにした。これにより、上記のように、基板41上にメモリ部とドライバ部とを並列形成することなくロジック回路100にメモリ素子12を混載することが可能となる。
 以上のことから、本実施の形態のメモリ装置1およびその製造方法では、ロジック回路100を構成する複数の配線層の間に、メモリ素子12を設けるようにした。これにより、上記のように、基板41上にメモリ部とドライバ部とを並列形成することなくロジック回路100にメモリ素子12を混載することが可能となり、高機能化およびコストの低下を両立することが可能となる。
 また、本実施の形態では、メモリ素子12として、抵抗変化型の不揮発性メモリ素子を用いるようにした。これにより、ロジック回路を構成する配線層のうち、最も配線ピッチの密な第1配線層10を構成する金属膜間(例えば、金属膜M3と金属膜M4との間)に、ロジック回路を構成する配線層の配線パターンや積層構造を変更することなく、メモリ素子12を形成することが可能となる。具体的には、ロジック部100Aにおける、金属膜M3と金属膜M4とを接続するビアV3を単純にメモリセル13で置き換えて形成することが可能となる。よって、より高機能なメモリ装置1を低コストで提供することが可能となる。
 更に、上述したように、メモリセル13の形成工程においてドライエッチング法を用いた場合、メモリセル13の側面にはダメージが生じる。このため、メモリセル13の側面には保護膜を形成することが好ましいが、工程数が増える懸念があった。これに対して、本実施の形態のメモリ装置1の製造方法では、メモリセル13の側壁を保護する保護膜57bを、ロジック部に設けられた配線(例えば、金属膜M3と金属膜M4と)の間を接続するビアV3を形成する際に用いるエッチングストッパ膜47aと同一工程において一括で形成するようにした。これにより、工程数を増やすことなく、メモリセル13の保護膜47bを形成することが可能となる。
 次に、第2~第5の実施の形態および変形例1~7について説明する。以下では、上記第1の実施の形態と同様の構成要素については同一の符号を付し、適宜その説明を省略する。
<2.第2の実施の形態>
 図4は、本開示の第2の実施の形態に係るメモリ装置(メモリ装置2A)の断面構成を模式的に表したものである。本実施の形態では、メモリセル13を構成する選択素子11およびメモリ素子12を、ロジック回路100を構成する第1配線層10に積層形成された3つの配線層の間(例えば、金属膜M3と金属膜M4との間および金属膜M4と金属膜M5との間)に、それぞれ分けて設けた点が上記第1の実施の形態とは異なる。
 上記のように、本実施の形態のメモリ装置2Aでは、第1配線層10を構成する金属膜M4を間に、金属膜M3と金属膜M4との間および金属膜M4と金属膜M5との間に、それぞれ選択素子11およびメモリ素子12を設けるようにした。即ち、ロジック部100Aにおける、金属膜M3と金属膜M4とを接続するビアV3および金属膜M4と金属膜M5とを接続するビアV4を、それぞれ選択素子11およびメモリ素子12で置き換えて形成するようにした。これにより、選択素子11およびメモリ素子12は、上記第1の実施の形態と比較して、それぞれの積層方向の厚みを十分に確保することが可能となる。よって、上記第1の実施の形態に加えて、ロジック回路100の微細化が進んだ際に、それぞれの性能を維持することが可能となるという効果を奏する。
<3.第3の実施の形態>
 図5は、本開示の第3の実施の形態に係るメモリ装置(メモリ装置3A)の断面構成を模式的に表したものである。本実施の形態では、メモリセル13を構成する選択素子11およびメモリ素子12を、ロジック回路100を構成する第1配線層10の、例えば、金属膜M4を省略し、金属膜M3と金属膜M5との間にメモリセル13を設けた点が上記第1,第2の実施の形態とは異なる。
 本実施の形態のメモリ装置3Aにおける選択素子11およびメモリ素子12は、例えば、上記第1の実施の形態において説明したビアV3および金属膜M4の形成工程を用いることによって形成することができる。即ち、例えば、図3E~図3Hに示したロジック部100AにおけるビアV3および金属膜M4形成する工程において、メモリ部100Bにも同様の開口48H2を形成し、これに、ビアV3および金属膜M4を構成する銅(Cu)の代わりに選択素子11の材料を用いることで、図5に示した選択素子11を形成することができる。メモリ素子12については、ロジック部100AにおけるビアV4および金属膜M5を形成する工程において、同様の方法を用いて開口を形成し、メモリ素子12の材料を用いて開口を埋設することで、図5に示したメモリ素子12を形成することができる。
 上記以外の方法としては、以下の方法がある。例えば、選択素子11をドライエッチング法で形成したのち、ロジック部100Aの金属膜M3上にビアV3および金属膜M4を形成する。なお、このとき、メモリ部100Bに設けた選択素子11上には金属膜M4のパターニングは行わない。この工程で、選択素子11の上面と金属膜M4の上面とは同一面となる。この後、選択素子11上にメモリ素子12をドライエッチング法で形成したのち、ロジック部100Aおよびメモリ部100B共に、ビアV4および金属膜M5を同時に形成する。
 上記のように、本実施の形態のメモリ装置3Aでは、メモリ部100Bにおいて第1配線層10を構成する金属膜M4を省略して、金属膜M3と金属膜M5との間にメモリセル13を設けるようにした。これにより、選択素子11およびメモリ素子12は、金属膜M4の厚み分、それぞれの積層方向の厚みをさらに確保することが可能となる。よって、上記第2の実施の形態と比較して、ロジック回路100の微細化が進んだ場合にも、より高い性能を維持することが可能となるという効果を奏する。
<4.第4の実施の形態>
 図6は、本開示の第4の実施の形態に係るメモリ装置(メモリ装置4A)の断面構成を模式的に表したものである。本実施の形態では、メモリセル13を構成する選択素子11およびメモリ素子12を、ロジック回路100を構成する第1配線層10の、例えば、金属膜M4を省略し、ビアV3および金属膜M4の形成位置にメモリセル13を設け、ビアV4の形成位置に中間抵抗層14を形成した点が上記第1~第3の実施の形態とは異なる。
 中間抵抗層14は、意図しないチャージ電流がメモリセル13に流れるのを防ぐためのものである。中間抵抗層14は、例えば、ロジック部100Aに設けられるビアV4と同様の構成を有し、例えば、ロジック部100Aのビア4の形成時に形成することができる。あるいは、メモリ素子12を成膜する際に、メモリ素子12上に中間抵抗層14を構成する膜を成膜した状態で、ドライエッチング法によりメモリ素子12と共に一括で形成するようにしてもよい。
 上記のように、本実施の形態のメモリ装置4Aでは、メモリ部100Bにおいて第1配線層10を構成する金属膜M4を省略して、ビアV3および金属膜M4の形成位置にメモリセル13を設け、メモリセル13上に中間抵抗層14を形成するようにした。これにより、選択素子11およびメモリ素子12の積層方向の厚みを確保しつつ、メモリセル13に流れる虞のある意図しないチャージ電流によるメモリセル13の劣化を防ぐことが可能となる。よって、上記第1の実施の形態の効果に加えて、ロジック回路100の微細化が進んだ際に、それぞれの性能を維持することが可能となるという効果と共に、メモリセル13の動作の安定性を向上させることが可能となるという効果を奏する。
 また、一般に中間抵抗層14の形成には、工程数の増加を伴いコストの増加に繋がる。これに対して、本実施の形態では、ロジック部100Aにおいて金属膜M4と金属膜M5とを接続するビアV4を、メモリ部100Bにおける中間抵抗層14として用いるようにした。これにより、工程数を増加させることなく、中間抵抗層14を形成することが可能となる。
<5.第5の実施の形態>
 図7は、本開示の第5の実施の形態に係るメモリ装置(メモリ装置2B)の断面構成を模式的に表したものである。本実施の形態では、メモリセル13を構成する選択素子11およびメモリ素子12を、ロジック回路100を構成する第1配線層10および第2配線層20に跨って形成した点が上記第1~第4の実施の形態とは異なる。
 上記のように、本実施の形態のメモリ装置2Bでは、メモリセル13を構成する選択素子11およびメモリ素子12を、ロジック回路100を構成する第1配線層10および第2配線層20に跨って形成した。具体的には、例えば、第1配線層10を構成すると共に、第2配線層20との境に設けられた金属膜M6とその直下の金属膜M5との間に選択素子11を、金属膜M6と第2配線層20を構成する金属膜M7との間にメモリ素子12を形成するようにした。これにより、選択素子11およびメモリ素子12は、それぞれの積層方向の厚みを十分に確保することが可能となる。更に、メモリ素子12を、第1配線層10と比較して配線ピッチが疎な第2配線層20に設けるようにした。第2配線層20に設けられるビアV6,V7は、第1配線層10に設けられるビアV1~V5と比較して配線幅が大きい。このため、第2配線層20のビア(ここでは、ビアV6)をメモリ素子12に置き換えることで、メモリ素子12の素子面積を確保することが可能となる。よって、上記第2の実施の形態と比較して、ロジック回路100の微細化がさらに進んだ場合でも、メモリ素子12の性能を維持することが可能となるという効果を奏する。
 また、本実施の形態では、配線幅および積層方向の膜厚が大きな第2配線層20を構成する金属膜M7をビット線BLとして用いるため、ビット線BLの抵抗を低下させることが可能となる。これにより、信号の劣化が抑制され、メモリ素子12の性能を向上させることが可能となるという効果が得られる。
<6.変形例>
(6-1.変形例1)
 図8は、本開示の変形例1に係るメモリ装置(メモリ装置3B)の断面構成を模式的に表したものである。本変形例のメモリ装置3Bは、上記第3の実施の形態と上記第5の実施の形態との構成を組み合わせたものであり、メモリセル13を第1配線層10および第2配線層20に跨って形成すると共に、金属膜M6を省略して金属膜M5と金属膜M7との間に選択素子11とメモリ素子12とを積層したものである。
 上記構成とすることにより、本変形例のメモリ装置3Bでは、ロジック回路100の微細化がさらに進んだ場合でも、メモリ素子12の性能を維持することが可能となるという効果を奏する。
(6-2.変形例2)
 図9は、本開示の変形例2に係るメモリ装置(メモリ装置4B)の断面構成を模式的に表したものである。本変形例のメモリ装置4Bは、上記第4の実施の形態においてメモリセル13とビット線BLとの間に設けた中間抵抗層14を、選択素子11とメモリ素子12との間に設けたものである。
 本変形例のメモリ装置4Bは、例えば、次のようにして製造することができる。
 図10A~図10Gは、メモリ装置4Bのメモリセル13が形成された配線層の製造方法を工程順に表したものである。まず、図10Aに示したように、例えば、一般的なダマシン法による配線技術を用いて形成された、周囲にバリアメタル膜43を有する金属膜M3および金属膜M3と同じ配線パターンを有するワード線WLと、層間絶縁層42との上に、例えば、窒化チタン(TiN)やタングステン(W)からなるバリア膜51を形成する。
 続いて、図10Bに示したように、例えば、PVD法、CVD法およびCMP法を用いてバリア膜51内のワード線WLに対応する位置にバリアメタル膜44を形成する。次に、図10Cに示したように、バリア膜51およびバリアメタル膜44上に、例えば、PVD法およびCVD法を用いて、選択素子層11X、バリアメタル膜(例えば、TiN膜)52およびハードマスク(マスク53,54)をこの順に形成する。
 次に、図10Dに示したように、例えば、フォトリソグラフィ法を用いてマスク54をパターニングしたのち、選択素子層11X、バリアメタル膜52およびマスク53をエッチングし、ワード線WL上にメモリセル13を形成する。続いて、例えば、ALD法やCVD法を用いて、バリア膜51および積層された選択素子11、バリアメタル膜52およびマスク53,54の側面および上面にSiN膜47を成膜する。次に、SiN膜47上に、例えば、CVD法を用いてLow-K膜を成膜したのち、CMP法によって表面を平坦化し層間絶縁層48を形成する。続いて、層間絶縁層48上に、ハードマスク(マスク49)を形成する。
 続いて、ダマシン法を用いて、ロジック部100AにビアV3および金属膜M4、メモリ部100Bにビット線BLを形成する。まず、図10Eに示したように、フォトリソグラフィ法を用いてマスク49をパターニングし、ロジック部100Aに設けられた金属膜M3上および選択素子11上に、例えば、エッチングにより開口48H3をそれぞれ形成する。このとき、金属膜M3上ではバリア膜51が、選択素子11上ではマスク53がそれぞれエッチングストッパ膜となる。
 次に、図10Fに示したように、例えば、フォトリソグラフィ法を用いてマスク49をパターニングしたのち、エッチングにより、金属膜M3上に、金属膜M4の開口48H4を形成する。続いて、再度エッチングすることにより、金属膜M3上のバリア膜51および選択素子11上のマスク53が除去される。
 次に、図10Gに示したように、例えば、PVD法を用いて開口48H4内にバリアメタル膜50を形成する。このとき、成膜されるバリアメタル膜50の膜厚は、開口48H4の深さによって変化する。即ち、図10Gに示したように、開口48H4の深さの浅い選択素子11上の開口48H4の底部には、金属膜M3上よりもバリアメタル膜50が厚く成膜される。この選択素子11上に設けられたバリアメタル膜50が、中間抵抗層14に相当する。バリアメタル膜50は、例えばTiN膜であり、ビアV3を構成する銅(Cu)よりも抵抗が高い。この開口48H4の深さの違いを利用して、選択素子11上に、バリアメタル膜50を厚膜に形成し、これを選択素子11上に形成されるビアV3と共に中間抵抗層14として用いることで、中間抵抗層14の抵抗値を所望の値に調整することが可能となる
 続いて、開口48H4内に、ビアV3および金属膜M4となる銅(Cu)を成膜したのち、CMP法により層間絶縁層48上に成膜された銅膜を研磨して除去し、表面を平坦化する。こののち、上述したビアV3、金属膜M4およびメモリセル13の製造方法を用いることでビア4およびメモリ素子12を形成する。これにより、図9に示した金属膜M3と金属膜M5との間に、ビアV3を間に選択素子11およびメモリ素子12が積層された配線層が形成される。
 このように、中間抵抗層14は、選択素子11とメモリ素子12との間に設けるようにしてもよい。また、本変形例では、その製造工程において、開口48H4の深さの差を利用して、選択素子11上に成膜されるバリアメタル膜50の厚みを調整することにより、中間抵抗層14の抵抗値を所望の値に調整することが可能となる。
(6-3.変形例3)
 図11A~図11Dは、本開示の変形例3に係るメモリ装置(メモリ装置1)のメモリセル13が形成された配線層の製造方法の他の例を工程順に表したものである。
 本変形例では、図11Aに示したように、まず、変形例2と同様に、周囲にバリアメタル膜43を有する金属膜M3および金属膜M3と同じ配線パターンを有するワード線WLと、層間絶縁層42との上に、バリア膜51を形成したのち、バリア膜51内のワード線WLに対応する位置にバリアメタル膜44を形成する。続いて、バリア膜51およびバリアメタル膜44上に、選択素子層11X、メモリ素子層12X、バリアメタル膜45およびハードマスク(マスク46)をこの順に形成する。
 次に、フォトリソグラフィ法およびドライエッチング法を用いて、選択素子層11X、メモリ素子層12Xおよびバリアメタル膜45をエッチングし、ワード線WL上にメモリセル13を形成する。続いて、バリア膜51および積層された選択素子層11X、メモリ素子層12X、バリアメタル膜45およびマスク46の側面および上面にSiN膜47を成膜する。次に、SiN膜47上に、例えば、CVD法を用いてLow-K膜を成膜したのち、CMP法によって表面を平坦化し層間絶縁層48を形成する。
 続いて、ダマシン法を用いて、ロジック部100AにビアV3および金属膜M4、メモリ部100Bにビット線BLを形成する。まず、図11Bに示したように、フォトリソグラフィ法を用いてマスク49をパターニングし、ロジック部100Aに設けられた金属膜M3上にバリア膜51まで達する開口48H5を形成する。
 次に、図11Cに示したように、まず、フォトリソグラフィ法を用いてマスク49をパターニングしたのち、エッチングにより、金属膜M3上およびメモリセル13上に、それぞれ開口48H6を形成する。続いて、再度エッチングすることにより、金属膜M3上のバリア膜51およびメモリセル13上のマスク46が一緒にエッチングされる。これにより、金属膜M3およびメモリセル13上に設けられたバリアメタル膜45が露出される。
 最後に、図11Dに示したように、開口48H6の側面および底面に、バリアメタル膜50を成膜したのち、開口48H6内にビアV3および金属膜M4となる銅(Cu)を埋設し、CMP法により層間絶縁層48上に成膜された銅を研磨して除去し、表面を平坦化する。
 上記第1の実施の形態において説明した製造方法では、ロジック部100Aにおける金属膜M3とビアV3との接続およびメモリ部100Bにおけるメモリセル13(具体的には、メモリセル13上に設けられたバリアメタル膜45)とビット線BLとの接続を行う開口を設ける工程は、エッチング材料や、それぞれの膜厚の違いから同時に形成することは難しい。
 これに対して、本変形例では、予めロジック部100Aの金属膜M3上に、メモリセル13上に形成されるマスク46とエッチング耐性が同等になるような膜(バリア膜51)を形成するようにした。これにより、開口48H6の形成工程におけるマージンを拡大することができ、製造歩留まりを向上させることが可能となる。
(6-4.変形例4)
 図12は、本開示の変形例4に係るメモリ装置(メモリ装置5A)の断面構成を模式的に表したものである。本変形例のメモリ装置5Aは、例えば、第1配線層10を構成する金属膜M3と金属膜M4との間および金属膜M4と金属膜M5との間にそれぞれメモリセル13A,13Bを設けたものである。
 このように、本技術では、ロジック回路100を構成する配線層の配線パターンを変更することなく、複数のメモリセル13を異なる配線層の間に形成することが可能となる。
(6-5.変形例5)
 図13は、本開示の変形例5に係るメモリ装置(メモリ装置5B)の断面構成を模式的に表したものである。本変形例のメモリ装置5Bは、第1配線層10および第2配線層20に、それぞれメモリセル13A,13Bを設けたものである。
 本変形例のメモリ装置5Bに設けられたメモリセル13A,13Bは、形成された配線層のデザインルールに従って、それぞれサイズが異なる。具体的には、第1配線層10に形成されたメモリセル13Aを構成する選択素子11およびメモリ素子12の幅は、第2配線層20に形成されたメモリセル13Bを構成する選択素子11およびメモリ素子12の幅よりも小さい。一般に、積層方向の厚みが等しい場合、メモリ素子12の幅、即ち素子面積が小さいものほど高速動作に優れ、素子面積が大きいものほど高い信頼性を有する。
 このように、本開示の構成を有するメモリ装置5Bでは、ロジック回路100を構成する配線層の配線パターンを変更することなく、1つの基板41上に、特性の異なるメモリセル13A,13Bを混載させることが可能となる。よって、用途に応じたメモリセルを混載させることが可能となり、メモリ装置5Bの機能性をさらに向上させることが可能となる。
(6-6.変形例6)
 図14は、本開示の変形例6に係るメモリ装置(メモリ装置6)の断面構成を模式的に表したものである。本変形例のメモリ装置6は、例えばメモリ装置1において、メモリセル13とビット線BLとの間に設けられたバリアメタル膜45をメモリセル13上から意図的にずらして形成したものである。バリアメタル膜45は、例えば、メモリセル13の電極として機能するものであり、これをずらして形成することにより、メモリセル13とバリアメタル膜45との接触面積が小さくなり、バリアメタル膜45の抵抗値が大きくなる。このようにしてバリアメタル膜45の抵抗値を調整することによって、意図しないチャージ電流によるメモリセル13の劣化を低減することが可能となる。
(6-7.変形例7)
 図15は、本開示の変形例6に係るメモリ装置(メモリ装置7)の断面構成を模式的に表したものである。本変形例のメモリ装置7は、例えば、メモリ装置1においてワード線ELとビット線BLとの間に設けられたバリアメタル膜44、メモリセル13およびバリアメタル膜45を、ダマシン法を用いて形成したものである。
 ダマシン法を用いて、例えば、層間絶縁層81に形成された開口81H内に、例えば、バリアメタル膜44、選択素子11、メモリ素子12およびバリアメタル膜45をこの順に成膜した場合には、図15に示したように、それらは開口81Hの側面および底面に層状に形成される。このような構成を有するメモリセルを設けた場合、ビット線BLは、開口81H内において一番内側に形成されているバリアメタル膜45とのみ接触するように形成することが求められる。
 上記のように、ダマシン法を用いて開口(トレンチ)内を埋設した場合、中央に空孔が生じることでエッチングストッパ膜83が当該箇所(開口の中央)において比較的薄く形成される。本変形例では、これを利用して、図15に示したように、層間絶縁層81上にエッチングストッパ膜83を形成したのち、異方性エッチングを用いて開口45Hを形成するようにした。これにより、空孔部分のみがエッチングされるようになり、セルフアラインでビット線BLを構成する開口Hを形成することが可能となる。
 以上、第1~第5実施の形態およびその変形例1~7を挙げて本開示を説明したが、本開示内容は上記実施の形態等に限定されるものではなく、種々変形が可能である。例えば、上記実施の形態等では、構成する選択素子11をワード線WL側に、メモリ素子12をビット線BL側に設けた例を示したがこれに限らず、メモリ素子12がワード線WL側に、選択素子11がビット線BL側に形成されていてもよい。
 更に、本開示のメモリ装置1,2A,2B,3A,3B,4A,4B,5A,5B,6,7では、メモリセル13の形成される配線層間の位置は限定されない。例えば、金属膜M2と金属膜M3との間に形成するようにしてもよいし、金属膜M8と金属膜M9との間に形成するようにしてもよい。更にまた、上記実施の形態等では、メモリ素子12として抵抗変化メモリ素子を用いた例を示したが、これに限らず、例えば、スピン注入メモリ素子を用いてもよい。なお、スピン注入メモリ素子は、抵抗変化メモリ素子と比較して微細な加工が難しい。このため、スピン注入メモリ素子を用いる場合には、例えば、第2配線層20や、第3配線層30のビアV6~V9部分に設けることが好ましい。
 なお、本明細書中に記載された効果は、あくまで例示である。本開示の効果は、本明細書中に記載された効果に限定されるものではない。本開示内容が、本明細書中に記載された効果以外の効果を持っていてもよい。
 また、例えば、本開示は以下のような構成を取ることができる。
(1)
 配線ピッチの異なる配線層を含む複数の層が積層されたロジック回路と、
 前記複数の配線層の間に設けられたメモリ素子と
 を備えたメモリ装置。
(2)
 前記複数の配線層の間には、前記メモリ素子と共に、選択素子が設けられている、前記(1)に記載のメモリ装置。
(3)
 前記ロジック回路は、ロジック部と、前記メモリ素子が形成されたメモリ部とを有し、
 前記ロジック部および前記メモリ部とは、同じ配線構造を有する、前記(1)または(2)に記載のメモリ装置。
(4)
 前記複数の配線層は、配線ピッチが密な配線層が複数積層されてなる第1の配線層と、前記第1の配線層の配線ピッチよりも配線ピッチが疎な配線層が複数積層されてなる第2の配線層とがこの順に積層されている、前記(1)乃至(3)のうちのいずれかに記載のメモリ装置。
(5)
 前記メモリ素子は、選択素子と共にメモリセルを構成し、
 前記メモリセルは、前記第1の配線層内に積層された2つの配線の間に設けられている、前記(4)に記載のメモリ装置。
(6)
 前記メモリ素子は、選択素子と共にメモリセルを構成し、
 前記メモリセルは、前記第1の配線層内に積層された3つの配線の一方の配線間に前記メモリ素子が設けられ、他方の配線間に前記選択素子が設けられている、前記(4)に記載のメモリ装置。
(7)
 前記メモリ素子は、選択素子と共にメモリセルを構成し、
 前記第1の配線層内に積層された2つの配線の間には、前記メモリセルと導電膜とが積層されている、前記(4)または(5)に記載のメモリ装置。
(8)
 前記メモリ素子は、選択素子と共にメモリセルを構成し、
 前記メモリセルは、前記第1の配線層内の複数の配線間にそれぞれ設けられている、前記(4),(5)または(7)のうちのいずれかに記載のメモリ装置。
(9)
 前記メモリ素子は、選択素子と共にメモリセルを構成し、
 前記メモリセルは、前記第1の配線層と前記第2の配線層とに跨って設けられている、前記(4)に記載のメモリ装置。
(10)
 前記メモリ素子は前記第2の配線層側に設けられ、前記選択素子は前記第1の配線層側に設けられている、前記(9)に記載のメモリ装置。
(11)
 前記メモリ素子は、選択素子と共にメモリセルを構成し、
 前記メモリセルは、前記第1の配線層内の配線間および前記第2の配線層内の配線間にそれぞれ設けられている、前記(4)乃至(10)のうちのいずれかに記載のメモリ装置。
(12)
 前記複数の配線層はそれぞれ複数の配線を有し、
 前記複数の配線からなる配線層の一の配線上に設けられた前記メモリ素子および前記選択素子の側面には、前記一の配線と同じ配線層内に形成され、前記ロジック回路を構成する配線上に設けられたエッチングストッパ膜から連続する保護膜が形成されている、前記(2)乃至(11)のうちのいずれかに記載のメモリ装置。
(13)
 前記メモリ素子は、抵抗変化メモリ素子またはスピン注入メモリ素子である、前記(1)乃至(12)のうちのいずれかに記載のメモリ装置。
(14)
 配線ピッチの異なる層を含む複数の配線層を積層してロジック回路を形成すると共に、前記複数の配線層の間にメモリ素子を形成する
 メモリ装置の製造方法。
(15)
 前記複数の配線層はそれぞれ複数の配線を有し、
 前記複数の配線からなる配線層の一の配線上に前記メモリ素子と選択素子とを有するメモリセルを形成したのち、前記一の配線と同じ配線層内に形成された他の配線上に前記複数の配線層の間を接続するビアを形成する、前記(14)に記載のメモリ装置の製造方法。
(16)
 前記一の配線上に前記メモリセルを形成したのち、前記他の配線上に前記ビアを形成する際に用いるエッチングストッパ膜と前記メモリ素子の側面を覆う保護膜とを一括で形成する、前記(15)に記載のメモリ装置の製造方法。
(17)
 前記一の配線上に前記選択素子を形成したのち、前記選択素子上および前記他の配線上にバリアメタル膜を一括で成膜することで、前記選択素子上および前記他の配線上に膜厚の異なるバリアメタル膜を形成する、前記(15)または(16)に記載のメモリ装置の製造方法。
(18)
 前記複数の配線からなる配線層の一の配線上と、前記メモリセル上に互いに異なる材料からなるエッチングストッパ膜を形成する、前記(15)乃至(17)のうちのいずれかに記載のメモリ装置の製造方法。
 本出願は、日本国特許庁において2017年5月31日に出願された日本特許出願番号2017-107840号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (18)

  1.  配線ピッチの異なる配線層を含む複数の層が積層されたロジック回路と、
     前記複数の配線層の間に設けられたメモリ素子と
     を備えたメモリ装置。
  2.  前記複数の配線層の間には、前記メモリ素子と共に、選択素子が設けられている、請求項1に記載のメモリ装置。
  3.  前記ロジック回路は、ロジック部と、前記メモリ素子が形成されたメモリ部とを有し、
     前記ロジック部および前記メモリ部とは、同じ配線構造を有する、請求項1に記載のメモリ装置。
  4.  前記複数の配線層は、配線ピッチが密な配線層が複数積層されてなる第1の配線層と、前記第1の配線層の配線ピッチよりも配線ピッチが疎な配線層が複数積層されてなる第2の配線層とがこの順に積層されている、請求項1に記載のメモリ装置。
  5.  前記メモリ素子は、選択素子と共にメモリセルを構成し、
     前記メモリセルは、前記第1の配線層内に積層された2つの配線の間に設けられている、請求項4に記載のメモリ装置。
  6.  前記メモリ素子は、選択素子と共にメモリセルを構成し、
     前記メモリセルは、前記第1の配線層内に積層された3つの配線の一方の配線間に前記メモリ素子が設けられ、他方の配線間に前記選択素子が設けられている、請求項4に記載のメモリ装置。
  7.  前記メモリ素子は、選択素子と共にメモリセルを構成し、
     前記第1の配線層内に積層された2つの配線の間には、前記メモリセルと導電膜とが積層されている、請求項4に記載のメモリ装置。
  8.  前記メモリ素子は、選択素子と共にメモリセルを構成し、
     前記メモリセルは、前記第1の配線層内の複数の配線間にそれぞれ設けられている、請求項4に記載のメモリ装置。
  9.  前記メモリ素子は、選択素子と共にメモリセルを構成し、
     前記メモリセルは、前記第1の配線層と前記第2の配線層とに跨って設けられている、請求項4に記載のメモリ装置。
  10.  前記メモリ素子は前記第2の配線層側に設けられ、前記選択素子は前記第1の配線層側に設けられている、請求項9に記載のメモリ装置。
  11.  前記メモリ素子は、選択素子と共にメモリセルを構成し、
     前記メモリセルは、前記第1の配線層内の配線間および前記第2の配線層内の配線間にそれぞれ設けられている、請求項4に記載のメモリ装置。
  12.  前記複数の配線層はそれぞれ複数の配線を有し、
     前記複数の配線からなる配線層の一の配線上に設けられた前記メモリ素子および前記選択素子の側面には、前記一の配線と同じ配線層内に形成され、前記ロジック回路を構成する配線上に設けられたエッチングストッパ膜から連続する保護膜が形成されている、請求項2に記載のメモリ装置。
  13.  前記メモリ素子は、抵抗変化メモリ素子またはスピン注入メモリ素子である、請求項1に記載のメモリ装置。
  14.  配線ピッチの異なる層を含む複数の配線層を積層してロジック回路を形成すると共に、前記複数の配線層の間にメモリ素子を形成する
     メモリ装置の製造方法。
  15.  前記複数の配線層はそれぞれ複数の配線を有し、
     前記複数の配線からなる配線層の一の配線上に前記メモリ素子と選択素子とを有するメモリセルを形成したのち、前記一の配線と同じ配線層内に形成された他の配線上に前記複数の配線層の間を接続するビアを形成する、請求項14に記載のメモリ装置の製造方法。
  16.  前記一の配線上に前記メモリセルを形成したのち、前記他の配線上に前記ビアを形成する際に用いるエッチングストッパ膜と前記メモリ素子の側面を覆う保護膜とを一括で形成する、請求項15に記載のメモリ装置の製造方法。
  17.  前記一の配線上に前記選択素子を形成したのち、前記選択素子上および前記他の配線上にバリアメタル膜を一括で成膜することで、前記選択素子上および前記他の配線上に膜厚の異なるバリアメタル膜を形成する、請求項15に記載のメモリ装置の製造方法。
  18.  前記複数の配線からなる配線層の一の配線上と、前記メモリセル上に互いに異なる材料からなるエッチングストッパ膜を形成する、請求項15に記載のメモリ装置の製造方法。
PCT/JP2018/017405 2017-05-31 2018-05-01 メモリ装置およびメモリ装置の製造方法 WO2018221114A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/616,233 US11683942B2 (en) 2017-05-31 2018-05-01 Memory device including a memory element between wiring layers and method of manufacturing memory device
CN201880033844.2A CN110651363A (zh) 2017-05-31 2018-05-01 存储器设备以及制造存储器设备的方法
KR1020197033122A KR20200014745A (ko) 2017-05-31 2018-05-01 메모리 장치 및 메모리 장치의 제조 방법
JP2019522048A JPWO2018221114A1 (ja) 2017-05-31 2018-05-01 メモリ装置およびメモリ装置の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017107840 2017-05-31
JP2017-107840 2017-05-31

Publications (1)

Publication Number Publication Date
WO2018221114A1 true WO2018221114A1 (ja) 2018-12-06

Family

ID=64455716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017405 WO2018221114A1 (ja) 2017-05-31 2018-05-01 メモリ装置およびメモリ装置の製造方法

Country Status (6)

Country Link
US (1) US11683942B2 (ja)
JP (1) JPWO2018221114A1 (ja)
KR (1) KR20200014745A (ja)
CN (1) CN110651363A (ja)
TW (1) TWI798226B (ja)
WO (1) WO2018221114A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11101175B2 (en) * 2018-11-21 2021-08-24 International Business Machines Corporation Tall trenches for via chamferless and self forming barrier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091519A (ja) * 2006-09-29 2008-04-17 Fujitsu Ltd ReRAM
WO2009081595A1 (ja) * 2007-12-26 2009-07-02 Panasonic Corporation 不揮発性半導体記憶装置およびその製造方法
WO2010079816A1 (ja) * 2009-01-09 2010-07-15 日本電気株式会社 半導体装置及びその製造方法
JP2013239728A (ja) * 2009-06-25 2013-11-28 Nec Corp 半導体装置及びその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100587692B1 (ko) * 2004-11-05 2006-06-08 삼성전자주식회사 반도체 메모리 장치에서의 회로 배선 배치구조와 그에따른 배치방법
US7763978B2 (en) * 2007-03-28 2010-07-27 Hewlett-Packard Development Company, L.P. Three-dimensional crossbar array systems and methods for writing information to and reading information stored in three-dimensional crossbar array junctions
WO2014115744A1 (ja) 2013-01-23 2014-07-31 ピーエスフォー ルクスコ エスエイアールエル 半導体装置およびその製造方法
JP2014238897A (ja) 2013-06-06 2014-12-18 パナソニック株式会社 抵抗変化型不揮発性記憶装置およびその制御方法
US9391119B2 (en) * 2014-06-20 2016-07-12 GlobalFoundries, Inc. Non-volatile random access memory devices with shared transistor configuration and methods of forming the same
WO2016042750A1 (ja) * 2014-09-18 2016-03-24 日本電気株式会社 クロスバースイッチ、これを用いた論理集積回路および半導体装置
JP2017045947A (ja) 2015-08-28 2017-03-02 ルネサスエレクトロニクス株式会社 半導体装置および半導体装置の製造方法
JP6556567B2 (ja) 2015-09-09 2019-08-07 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
KR102410947B1 (ko) * 2015-11-20 2022-06-22 에스케이하이닉스 주식회사 문턱 스위칭 장치 및 이를 포함하는 전자 장치
KR102494683B1 (ko) * 2016-03-02 2023-02-02 에스케이하이닉스 주식회사 스위칭 소자, 스위칭 소자 어레이, 저항 변화 메모리 장치, 및 이들의 제조 방법
KR102530067B1 (ko) * 2016-07-28 2023-05-08 삼성전자주식회사 가변 저항 메모리 소자 및 그 제조 방법
JP2018022795A (ja) * 2016-08-04 2018-02-08 株式会社東芝 磁気メモリ
US11271035B2 (en) * 2019-05-02 2022-03-08 Western Digital Technologies, Inc. Spin-orbit-torque magnetoresistive memory cell with integrated selector elements and method of making the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091519A (ja) * 2006-09-29 2008-04-17 Fujitsu Ltd ReRAM
WO2009081595A1 (ja) * 2007-12-26 2009-07-02 Panasonic Corporation 不揮発性半導体記憶装置およびその製造方法
WO2010079816A1 (ja) * 2009-01-09 2010-07-15 日本電気株式会社 半導体装置及びその製造方法
JP2013239728A (ja) * 2009-06-25 2013-11-28 Nec Corp 半導体装置及びその製造方法

Also Published As

Publication number Publication date
TWI798226B (zh) 2023-04-11
US20200091241A1 (en) 2020-03-19
KR20200014745A (ko) 2020-02-11
CN110651363A (zh) 2020-01-03
JPWO2018221114A1 (ja) 2020-04-02
TW201904020A (zh) 2019-01-16
US11683942B2 (en) 2023-06-20

Similar Documents

Publication Publication Date Title
JP5488458B2 (ja) 抵抗変化素子及びその製造方法
JP4531863B2 (ja) 不揮発性記憶素子および不揮発性記憶装置
JP5000788B2 (ja) 不揮発性記憶装置およびその製造方法
JP5468087B2 (ja) 不揮発性記憶素子及び不揮発性記憶装置
US8258493B2 (en) Nonvolatile semiconductor memory apparatus and manufacturing method thereof
KR102166506B1 (ko) 기억 장치 및 그 제조 방법
JP6344243B2 (ja) スイッチング素子、および半導体スイッチング装置の製造方法
US8482953B2 (en) Composite resistance variable element and method for manufacturing the same
JP5056096B2 (ja) 不揮発性半導体記憶装置およびその製造方法
WO2014030393A1 (ja) 抵抗変化素子、および抵抗変化素子の製造方法
JP5291269B2 (ja) 不揮発性半導体記憶素子、不揮発性半導体記憶装置およびその製造方法
JP2008306011A (ja) 不揮発性半導体記憶装置およびその製造方法
JP2008305889A (ja) 不揮発性記憶装置およびその製造方法
JP2008305888A (ja) 不揮発性記憶装置およびその製造方法
WO2018221114A1 (ja) メモリ装置およびメモリ装置の製造方法
US10804322B2 (en) Cross-point array device and method of manufacturing the same
KR101471971B1 (ko) 다층 터널 배리어 선택 소자를 이용한 비선형 저항 스위칭 메모리 소자 및 그 제조방법
JP6102121B2 (ja) 抵抗変化素子、および抵抗変化素子の形成方法
JP7255853B2 (ja) 非線形抵抗素子、スイッチング素子、および非線形抵抗素子の製造方法
US20200295086A1 (en) Storage device
US11963368B2 (en) Resistive random access memory device
US20230413699A1 (en) Semiconductor device and method for fabricating the same
US20230135287A1 (en) Semiconductor device and method for fabricating the same
TW201642261A (zh) 一次性編程電阻式記憶體
CN116209339A (zh) 半导体器件及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809863

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197033122

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019522048

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809863

Country of ref document: EP

Kind code of ref document: A1