[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018221173A1 - Organic electroluminescent element, display device, and lighting device - Google Patents

Organic electroluminescent element, display device, and lighting device Download PDF

Info

Publication number
WO2018221173A1
WO2018221173A1 PCT/JP2018/018451 JP2018018451W WO2018221173A1 WO 2018221173 A1 WO2018221173 A1 WO 2018221173A1 JP 2018018451 W JP2018018451 W JP 2018018451W WO 2018221173 A1 WO2018221173 A1 WO 2018221173A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
organic
light emitting
layer
Prior art date
Application number
PCT/JP2018/018451
Other languages
French (fr)
Japanese (ja)
Inventor
小林 史明
秀雄 ▲高▼
鈴木 隆嗣
一成 多田
卓史 波多野
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2019522078A priority Critical patent/JPWO2018221173A1/en
Publication of WO2018221173A1 publication Critical patent/WO2018221173A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to an organic electroluminescence element, a display device, and a lighting device, and in particular, an organic electroluminescence element that can improve the density of a light emitting layer, improve luminous efficiency and element lifetime, and is easy to manufacture, and the organic
  • the present invention relates to a display device and an illumination device including an electroluminescence element.
  • EL organic electroluminescence
  • An organic EL element has a structure in which a light-emitting layer containing a compound that emits light (hereinafter also referred to as “light-emitting material”) is sandwiched between a cathode and an anode, and recombines by injecting electrons and holes into the light-emitting layer.
  • This is an element that generates excitons (excitons) by light emission, and emits light by utilizing light emission (fluorescence / phosphorescence) when the excitons are deactivated.
  • Such an organic EL element can emit light at a low voltage of several V to several tens V, and further has a wide viewing angle and high visibility because it is a self-luminous type.
  • the organic EL element is a thin-film type complete solid-state element, it has attracted attention from the viewpoints of space saving and portability.
  • an organic EL element capable of emitting light with better luminous efficiency, luminance and chromaticity is desired.
  • an organic EL element for example, see Patent Document 1 using zinc sulfide (ZnS), which is an inorganic material, as a hole injection layer, an electron transport layer, and a protective layer
  • ZnS zinc sulfide
  • An organic EL element used in the above has been proposed (see, for example, Patent Documents 2 and 3).
  • Patent Document 1 zinc sulfide is used for the hole injection layer.
  • the element evaluation is performed as an organic EL element using NPD as the hole transport layer between the hole injection layer and the light emitting layer. Is going. Therefore, detailed investigations have been made on the evaluation of the element lifetime and the like in a layer configuration in which electrodes / zinc sulfide / light-emitting layers are stacked in this order (that is, a configuration in which a light-emitting layer is directly stacked on a layer containing zinc sulfide). Not.
  • Patent Documents 2 and 3 only describe that the use of zinc sulfide for the electron transport layer can improve the electron injection property and the response speed.
  • the present invention has been made in view of the above problems and situations, and a solution to that problem is to improve the density of the light emitting layer, improve the light emission efficiency and the device life, and can be easily manufactured. It is providing the luminescent element, the display apparatus and illuminating device which were equipped with the said organic electroluminescent element.
  • the present inventor in the process of examining the cause of the above problems, by directly laminating the light emitting layer on the layer containing zinc sulfide, the density of the light emitting layer is improved, The present inventors have found that an organic electroluminescence device and the like that can improve the light emission efficiency and the device life and can be easily manufactured can be provided.
  • An organic electroluminescence device in which at least a hole injection layer and a light emitting layer are laminated between a pair of electrodes, The hole injection layer contains zinc sulfide; The light emitting layer is directly laminated on the hole injection layer, The light emitting layer contains an organic compound that interacts with the zinc sulfide, and An organic electroluminescence device wherein the density of the light emitting layer is in the range of 1.0 to 1.8 g / cm 3 .
  • a display apparatus provided with the organic electroluminescent element as described in any one of Claim 1 to 3.
  • An illuminating device provided with the organic electroluminescent element as described in any one of 1st term
  • an organic electroluminescence device that can improve the density of the light emitting layer, achieve high luminous efficiency and increase the lifetime of the device, and is easy to manufacture.
  • a light emitting layer containing an organic compound that interacts with ZnS is directly laminated on a hole injection layer made of at least zinc sulfide (ZnS). Therefore, since the hole injection layer functions as a substrate of the light emitting layer, when forming the light emitting layer on the substrate, the organic compound is caused by the interaction (affinity) between ZnS (especially S) and organic compound molecules.
  • ZnS zinc sulfide
  • Molecular molecules are regularly arranged at the interface between the hole injection layer and the light emitting layer, and accordingly, organic compound molecules in the vicinity of the interface and further inside are also regularly arranged. It is assumed that the regular arrangement of the organic compound molecules improves the density of the light emitting layer and suppresses the generation of defects in the light emitting layer. As a result, it is presumed that an element having a light emitting layer with high luminous efficiency and long life could be formed.
  • ZnS has a hole transport function and exciton stabilization (block) function
  • recombination of carriers in the vicinity of the interface between the hole injection layer and the light emitting layer is increased, which contributes to the improvement of the light emission efficiency. Is also inferred.
  • such a phenomenon is considered to have an influence on the improvement of the density due to the temporal change of the morphology (morphology / fine structure) of the light emitting layer.
  • ZnS which is an inorganic material it is excellent in solvent tolerance, the choice of the solvent of a light emitting layer spreads, and it becomes easy to manufacture an organic EL element.
  • Schematic diagram showing an example of a display device composed of organic EL elements Schematic diagram of display part A Schematic showing the pixel circuit
  • Schematic diagram of passive matrix type full color display device Schematic diagram of lighting device Cross section of the lighting device
  • the organic electroluminescence device of the present invention is an organic electroluminescence device in which at least a hole injection layer and a light emitting layer are laminated between a pair of electrodes, wherein the hole injection layer contains zinc sulfide, and the light emission A layer is directly laminated on the hole injection layer, the light-emitting layer contains an organic compound having an interaction with the zinc sulfide, and the density of the light-emitting layer is 1.0 to 1.8 g / Within the range of cm 3 .
  • This feature is a technical feature common to or corresponding to the claimed invention.
  • the hole injection layer contains zinc sulfide doped with a metal oxide from the viewpoint of further improving luminous efficiency.
  • the thickness of the hole injection layer is preferably in the range of 5 to 10 nm from the viewpoint that the light emission efficiency and the device life can be further improved.
  • the organic electroluminescence element of the present invention is suitably used for display devices and lighting devices.
  • the organic electroluminescence device of the present invention (hereinafter also referred to as “organic EL device”) is an organic electroluminescence device in which at least a hole injection layer and a light emitting layer are laminated between a pair of electrodes, The injection layer contains zinc sulfide, the light emitting layer is laminated directly on the hole injection layer, the light emitting layer contains an organic compound that interacts with the zinc sulfide, and the light emitting layer Is in the range of 1.0 to 1.8 g / cm 3 .
  • the density of the light emitting layer according to the present invention is preferably in the range of 1.4 to 1.7 g / cm 3 from the viewpoint of further improving the density of the light emitting layer and further improving the light emission efficiency and the device lifetime.
  • the density of the light emitting layer can be determined by the X-ray reflectivity method. It is obtained by measuring the reflectance at a very low angle, for example, in the range of 0.2 to 2 degrees, and fitting the obtained reflectance curve to the reflectance formula of the multilayer film sample obtained from the Fresnel formula. . For the fitting method, see L.C. G. Parrat. Phis. Rev. 95 359 (1954).
  • the X-ray generation source uses copper as a target, operates at 50 kV-300 mA, and uses X-rays monochromatic with a multilayer mirror and a Ge (111) channel cut monochromator. The measurement was performed using the software-ATX-Crystal Guide Ver.
  • the pair of electrodes is an anode and a cathode.
  • the organic EL device of the present invention preferably, an anode and a cathode, and at least a hole injection layer and a light emitting layer are laminated between these electrodes on a substrate.
  • the light-emitting layer refers to a layer that emits light when an electric current is applied to an electrode composed of a cathode and an anode.
  • an electric current is applied to an electrode composed of a cathode and an anode
  • the organic EL device of the present invention may have an electron injection layer and an electron transport layer in addition to the hole injection layer and the light emitting layer as necessary, and these layers are sandwiched between the cathode and the anode. Take the structure.
  • a cathode buffer layer (for example, lithium fluoride) may be inserted between the electron injection layer and the cathode, and an anode buffer layer (for example, copper phthalocyanine) may be inserted between the anode and the hole injection layer. ) May be inserted.
  • anode buffer layer for example, copper phthalocyanine
  • the substrate that can be used in the organic EL device of the present invention (hereinafter also referred to as a base, a support substrate, a base material, a support, etc.) is not particularly limited, and a glass substrate, a plastic substrate, or the like can be used. It may be transparent or opaque. When extracting light from the substrate side, the substrate is preferably transparent. Examples of the transparent substrate preferably used include glass, quartz, and a transparent plastic substrate. In order to prevent oxygen and water from entering from the substrate side, the substrate has a thickness of 1 ⁇ m or more and a water vapor transmission rate of 1 g / (m 2 ⁇ 24 h ⁇ atm in a test based on JIS Z-0208. ) (25 ° C.) or less is preferred.
  • the glass substrate include alkali-free glass, low alkali glass, and soda lime glass.
  • Alkali-free glass is preferable from the viewpoint of low moisture adsorption, but any of these may be used as long as it is sufficiently dried.
  • the resin film used as the base material of the plastic substrate is not particularly limited.
  • polyester such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC) ), Cellulose acetates such as cellulose acetate butyrate, cellulose acetate propionate (CAP), cellulose acetate phthalate, cellulose nitrate, or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate , Norbornene resin, polymethylpentene, polyetherketone, polyimide, polyethersulfone PES), polyphenylene sulfide, polysulfones, polyetherimides, poly
  • organic-inorganic hybrid resin examples include those obtained by combining an organic resin and an inorganic polymer (for example, silica, alumina, titania, zirconia, etc.) obtained by a sol-gel reaction.
  • an inorganic polymer for example, silica, alumina, titania, zirconia, etc.
  • norbornene (or cycloolefin-based) resins such as Arton (manufactured by JSR) or Apel (manufactured by Mitsui Chemicals) are particularly preferable.
  • barrier film a film that suppresses intrusion of water vapor, oxygen, or the like on the resin film.
  • the material constituting the barrier film is not particularly limited, and an inorganic film, an organic film, a hybrid of both, or the like is used.
  • a film may be formed, and the water vapor transmission rate (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a method according to JIS K 7129-1992 is 0.01 g / ( m 2 ⁇ 24 h) or less, and the oxygen permeability measured by a method according to JIS K 7126-1987 is preferably 1 ⁇ 10 ⁇ 3 mL / (m 2 ⁇ 24 h). It is preferably a high gas barrier film having a water vapor permeability of 1 ⁇ 10 ⁇ 5 g / (m 2 ⁇ 24 h) or less.
  • the material constituting the barrier film is not particularly limited as long as it is a material having a function of suppressing intrusion of elements that cause deterioration of the element such as moisture and oxygen.
  • a metal oxide, a metal oxynitride, a metal nitride, or the like Inorganic materials, organic materials, hybrid materials of the both, or the like can be used.
  • Metal oxides, metal oxynitrides or metal nitrides include metal oxides such as silicon oxide, titanium oxide, indium oxide, tin oxide, indium tin oxide (ITO) and aluminum oxide, and metal nitrides such as silicon nitride And metal oxynitrides such as silicon oxynitride and titanium oxynitride.
  • the barrier membrane had a water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) of 0.01 g / (m 2 ⁇ 24 h) measured by a method according to JIS K 7129-1992.
  • the following gas barrier film is preferable, and further, the oxygen permeability measured by a method according to JIS K 7126-1987 is 1 ⁇ 10 ⁇ 3 mL / (m 2 ⁇ 24 h ⁇ atm) or less, A high gas barrier film having a water vapor permeability of 1 ⁇ 10 ⁇ 5 g / (m 2 ⁇ 24 h) or less is preferable.
  • the method of providing the barrier film on the resin film is not particularly limited, and any method may be used.
  • vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam method, ion plating Method plasma polymerization method, atmospheric pressure plasma polymerization method, CVD method (chemical vapor deposition: for example, plasma CVD method, laser CVD method, thermal CVD method, etc.), coating method, sol-gel method, etc.
  • the method by plasma CVD treatment at or near atmospheric pressure is preferable from the viewpoint that a dense film can be formed.
  • the opaque substrate include a metal plate such as aluminum and stainless steel, a film, an opaque resin substrate, a ceramic substrate, and the like.
  • anode As the anode of the organic EL element, a material having a work function (4 eV or more) metal, alloy, metal electrically conductive compound, or a mixture thereof is preferably used.
  • the “metal conductive compound” refers to a compound of a metal and another substance having electrical conductivity, and specifically, for example, a metal oxide, a halide or the like. That has electrical conductivity.
  • an electrode substance examples include a conductive transparent material such as a metal such as Au, CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • the anode can be produced by forming a thin film made of these electrode materials on the substrate by a known method such as vapor deposition or sputtering.
  • a pattern having a desired shape may be formed on the thin film by a photolithography method, and when a pattern accuracy is not required (about 100 ⁇ m or more), a desired shape can be formed at the time of vapor deposition or sputtering of the electrode material.
  • a pattern may be formed through a mask. When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%.
  • the sheet resistance as the anode is several hundred ⁇ / sq. The following is preferred. Furthermore, although the layer thickness of the anode depends on the material constituting it, it is usually selected within the range of 10 nm to 1 ⁇ m, preferably 10 to 200 nm.
  • the material used for the hole injection layer (also referred to as “hole injection / transport layer”) according to the present invention contains zinc sulfide (ZnS) applicable as a hole injection material and a hole transport material. . Therefore, the hole injection layer in the present invention is a hole injection layer having a hole transport function.
  • the hole injection material has either hole injection or electron barrier properties.
  • the hole transport material has an electron barrier property and has a function of transporting holes to the light emitting layer.
  • the hole injection layer according to the present invention may be doped with a metal oxide or the like as long as it contains ZnS.
  • metal oxides that can be doped with ZnS include molybdenum oxide, vanadium oxide, and tungsten oxide.
  • the doping concentration of the metal oxide is preferably in the range of 25 to 75%.
  • the hole injection material used for the hole injection layer may be either organic or inorganic. Specifically, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives , Hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, porphyrin compounds, thiophene oligomers and other conductive polymer oligomers.
  • arylamine derivatives and porphyrin compounds are preferred.
  • aromatic tertiary amine compounds and styrylamine compounds are preferable, and aromatic tertiary amine compounds are more preferable.
  • aromatic tertiary amine compound and styrylamine compound include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N ′.
  • No. 5,061,569 Having a ring in the molecule, for example, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (hereinafter abbreviated as ⁇ -NPD), 4,4 ', 4 "-tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine (MTDATA) in which triphenylamine units described in No. 308688 are linked in three starburst types
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material.
  • the hole injection layer may be formed by either a dry process or a wet process, and the hole injection material may be formed using, for example, a vacuum deposition method, a spin coating method, a casting method, an LB method, an ink jet method, a transfer method, or a printing method.
  • the thin film can be formed by a known method such as a method.
  • the thickness of the hole injection layer is in the range of 5 to 10 nm, the density of the light emitting layer can be in the range of 1.0 to 1.7 g / cm 3 , and the light emission efficiency and the device life can be reduced. It is preferable in that it can be further improved.
  • the light emitting layer according to the present invention is directly laminated on the hole injection layer, the light emitting layer contains an organic compound having an interaction with zinc sulfide contained in the hole injection layer, and the density of the light emitting layer is It is within the range of 1.0 to 1.8 g / cm 3 .
  • the density of the light emitting layer is more preferably in the range of 1.4 to 1.7 g / cm 3 .
  • the thickness of the hole injection layer is adjusted within the range of 5 to 10 nm as described above, or the ZnS layer is doped with a metal oxide.
  • the light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole injection layer, and the light emitting portion is in the layer of the light emitting layer. May be the interface between the light emitting layer and the adjacent layer.
  • the light emitting layer may be a layer having a single composition, or may be a laminated structure including a plurality of layers having the same or different compositions.
  • the light emitting layer itself may be provided with functions such as a hole injection layer, an electron injection layer, a hole transport layer, and an electron transport layer.
  • an injection function capable of injecting holes from an anode or a hole injection layer and applying electrons from a cathode or an electron injection layer when an electric field is applied to the light emitting layer
  • a light-emitting function that provides a recombination field of electrons and holes inside the light-emitting layer and connects it to light emission.
  • a function may be added.
  • the light emitting layer may have a difference in the ease of hole injection and the ease of electron injection, and the transport function represented by the mobility of holes and electrons may be large or small. The one having a function of moving at least one of the charges is preferable.
  • Organic compounds used in the light emitting layer As an organic compound used for a light emitting layer, it is preferable that the host compound and the light emission dopant are contained.
  • the light emitting dopant contained in the light emitting layer may be contained at a uniform concentration or may have a concentration distribution in the thickness direction of the light emitting layer.
  • the thickness of each light emitting layer included in each light emitting unit is not particularly limited, but the homogeneity of a layer to be formed and a high voltage unnecessary for light emission are not required.
  • the phosphorescent host compound and phosphorescent dopant contained in the light emitting layer will be described.
  • Phosphorescent host compound used in the present invention is not particularly limited in terms of structure, but typically includes, for example, a carbazole derivative, a triarylamine derivative, an aromatic borane derivative, Those having basic skeletons such as nitrogen heterocyclic compounds, thiophene derivatives, furan derivatives, oligoarylene compounds, carboline derivatives and diazacarbazole derivatives (here, diazacarbazole derivatives are carbonizations constituting the carboline ring of carboline derivatives) And the like in which at least one carbon atom of the hydrogen ring is substituted with a nitrogen atom.
  • the phosphorescent host compound may be used alone or in combination of two or more.
  • the phosphorescent host compound used in the light emitting layer according to the present invention is preferably a compound represented by the following general formula (a).
  • X represents NR ′, O, S, CR′R ′′ or SiR′R ′′.
  • R ′ and R ′′ each independently represents a hydrogen atom or a substituent.
  • Ar represents an aromatic ring.
  • N represents an integer of 0 to 8.
  • examples of the substituent represented by R ′ and R ′′ include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, a hexyl group).
  • an alkyl group for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, a hexyl group.
  • X preferably represents NR ′ or O
  • R ′ particularly preferably represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • examples of the aromatic ring represented by Ar include an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • the aromatic ring represented by Ar may be either a single ring or a condensed ring, and further has a substituent represented by the above R ′ and R ′′ even if it is unsubstituted. May be.
  • examples of the aromatic hydrocarbon ring represented by Ar include a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, and triphenylene.
  • examples of the aromatic heterocycle represented by Ar include a furan ring, a dibenzofuran ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, and a triazine ring.
  • the aromatic ring represented by Ar is preferably a carbazole ring, carboline ring, dibenzofuran ring or benzene ring, more preferably a carbazole ring, carboline ring or benzene ring, Preferred is a benzene ring having a substituent, and most preferred is a benzene ring having a carbazolyl group.
  • the aromatic ring represented by Ar is preferably a condensed ring having three or more rings, as shown below.
  • Specific examples of the aromatic hydrocarbon condensed ring in which three or more rings are condensed include, for example, naphthacene ring, anthracene ring, tetracene ring, pentacene ring, hexacene ring, phenanthrene ring, pyrene ring, benzopyrene ring, benzoazulene ring, Chrysene ring, benzochrysene ring, acenaphthene ring, acenaphthylene ring, triphenylene ring, coronene ring, benzocoronene ring, hexabenzocoronene ring, fluorene ring, benzofluorene ring, fluoranthene ring, perylene ring, naphthoperylene ring, penta
  • aromatic heterocyclic condensed ring in which three or more rings are condensed include, for example, an acridine ring, a benzoquinoline ring, a carbazole ring, a carboline ring, a phenazine ring, a phenanthridine ring, a phenanthroline ring, and a carboline ring.
  • n represents an integer of 0 to 8, preferably an integer of 0 to 2, particularly 1 or 2 when X is O or S. It is preferable.
  • the phosphorescent host compound used in the present invention may be a low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). But it ’s okay.
  • the phosphorescent host compound a compound having a hole transporting ability and an electron transporting ability, which prevents emission of light from being increased in wavelength and has a high Tg (glass transition temperature) is preferable.
  • a compound having a glass transition point of 90 ° C. or higher is preferable, and a compound having a glass transition temperature of 130 ° C. or higher is preferable because excellent characteristics can be obtained.
  • the glass transition point (Tg) is a value obtained by a method based on JIS K 7121 using DSC (Differential Scanning Calorimetry).
  • a conventionally known host compound can also be used.
  • conventionally known host compounds compounds described in the following documents can be suitably used.
  • the phosphorescent host compound may be different for each light emitting layer of each light emitting unit, but the same compound is preferable in terms of production efficiency and process management.
  • the phosphorescent host compound preferably has a lowest excited triplet energy (T1) larger than 2.7 eV because higher luminous efficiency can be obtained.
  • the lowest excited triplet energy as used in the present invention refers to the peak energy of an emission band corresponding to the transition between the lowest vibrational bands of a phosphorescence emission spectrum observed at a liquid nitrogen temperature after dissolving a host compound in a solvent.
  • the phosphorescence emission dopant which can be used for this invention can be selected from a well-known thing. For example, it can be selected from complex compounds containing metals of Group 8 to Group 10 in the periodic table of elements, preferably iridium compounds, osmium compounds or platinum compounds (platinum complex compounds), or rare earth complexes. Of these, iridium compounds are most preferred.
  • a phosphorescent light emitting material is preferable as a light emitter that emits light in at least the green, yellow, and red regions.
  • Ra represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group.
  • Rb and Rc each independently represents a hydrogen atom or a substituent.
  • A1 represents a residue necessary for forming an aromatic ring or an aromatic heterocyclic ring.
  • M represents Ir or Pt.
  • Ra represents a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group.
  • Rb, Rc, Rb 1 and Rc 1 each independently represent a hydrogen atom or a substituent.
  • A1 represents a residue necessary for forming an aromatic ring or an aromatic heterocyclic ring.
  • M represents Ir or Pt.
  • Ra represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group.
  • Rb and Rc each independently represents a hydrogen atom or a substituent.
  • A1 represents a residue necessary for forming an aromatic ring or an aromatic heterocyclic ring.
  • M represents Ir or Pt.
  • examples of the aliphatic group represented by Ra include an alkyl group (eg, methyl group, ethyl group, propyl group, butyl group, pentyl group, isopentyl group, 2-ethyl group). -Hexyl group, octyl group, undecyl group, dodecyl group, tetradecyl group) and cycloalkyl group (for example, cyclopentyl group, cyclohexyl group).
  • alkyl group eg, methyl group, ethyl group, propyl group, butyl group, pentyl group, isopentyl group, 2-ethyl group.
  • cycloalkyl group for example, cyclopentyl group, cyclohexyl group.
  • Examples of the aromatic group represented by Ra include a phenyl group, a tolyl group, an azulenyl group, an anthranyl group, a phenanthryl group, a pyrenyl group, a chrycenyl group, a naphthacenyl group, an o-terphenyl group, an m-terphenyl group, p -Terphenyl group, acenaphthenyl group, coronenyl group, fluorenyl group, perylenyl group and the like.
  • heterocyclic group represented by Ra examples include pyrrolyl, indolyl, furyl, thienyl, imidazolyl, pyrazolyl, indolizinyl, quinolinyl, carbazolyl, indolinyl, thiazolyl, pyridyl, pyridazinyl.
  • These groups may have a substituent represented by R ′ and R ′′ in the general formula (a).
  • examples of the substituent represented by Rb, Rc, Rb 1 and Rc 1 include an alkyl group (eg, methyl group, ethyl group, propyl group, isopropyl group, tert- Butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (eg, vinyl group, allyl group) Etc.), alkynyl groups (eg ethynyl group, propargyl group etc.), aryl groups (eg phenyl group, naphthyl group etc.), aromatic heterocyclic groups (eg furyl group, thienyl group, pyridyl
  • examples of the aromatic ring represented by A1 include a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, and naphthacene ring.
  • Triphenylene ring Triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring , Pyrene ring, pyranthrene ring, anthraanthrene ring and the like.
  • aromatic heterocycle represented by A1 for example, furan ring, thiophene ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, Pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, carbazole ring, carboline ring, diazacarbazole ring (the hydrocarbon ring constituting the carboline ring) A ring in which one of the carbon atoms is substituted with a nitrogen atom.) And the like.
  • M represents Ir or Pt, with Ir being preferred.
  • the structures of the general formulas (A) to (C) are partial structures, and a ligand corresponding to the valence of the central metal is necessary for the structure itself to be a light-emitting dopant of a completed structure.
  • ligands include, for example, halogen (eg, fluorine atom, chlorine atom, bromine atom or iodine atom), aryl group (eg, phenyl group, p-chlorophenyl group, mesityl group, Tolyl group, xylyl group, biphenyl group, naphthyl group, anthryl group, phenanthryl group, etc.), alkyl group (for example, methyl group, ethyl group, isopropyl group, hydroxyethyl group, methoxymethyl group, trifluoromethyl group, t-butyl) Group), alkyloxy group, aryloxy group, alkylthio group, arylthio group,
  • a tris body having a completed structure with three partial structures of the general formulas (A) to (C) is preferable.
  • Fluorescent luminescent dopants include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes. Fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes, polythiophene dyes, rare earth complex phosphors, and the like.
  • the electron injecting layer only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer, and any material can be selected from conventionally known compounds.
  • materials for organic EL elements used in this electron injection layer include heterocyclic rings such as nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene, and the like.
  • Examples include tetracarboxylic anhydride, carbodiimide, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a series of electron transfer compounds described in Japanese Patent Application Laid-Open No. 59-194393 is disclosed as a material for forming a light emitting layer in the publication, but as a result of investigations by the present inventors, electron injection is performed. It was found that it can be used as a material.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, or a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as an electron injection material.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (abbreviated as Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8- Quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • Alq 3 8-quinolinol aluminum
  • metal-free or metal phthalocyanine or those in which the terminal is substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron injection material.
  • an inorganic semiconductor such as n-type-Si or n-type-SiC can also be used as the electron injection material.
  • a preferable material for an organic EL element used for the electron transport layer preferably has a fluorescence maximum wavelength at 415 nm or less. That is, the organic EL element material used for the electron transport layer is preferably a compound that has an electron transport ability, prevents the emission of light from becoming longer, and has a high Tg.
  • the electron injection layer is formed by thinning the electron injection material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, an ink jet method, a transfer method, or a printing method. Can do.
  • the thickness of the electron injection layer is not particularly limited, but is usually selected in the range of 5 nm to 5 ⁇ m.
  • the electron injection layer may have a single layer structure composed of one or more of these electron injection materials, or may have a laminated structure composed of a plurality of layers having the same composition or different compositions.
  • an electron carrying layer is contained in an electron injection layer.
  • the electron transport layer is also referred to as a hole blocking layer (hole block layer). Examples thereof include, for example, WO00 / 70655, JP2001-313178, JP11-204258, and 11-204359. And the like described in page 237 of “Organic EL devices and their forefront of industrialization” (issued on November 30, 1998 by NTS).
  • a hole blocking layer hole blocking layer
  • a buffer layer may exist between the anode and the hole injection layer and between the cathode and the light emitting layer or the electron injection layer.
  • the buffer layer is a layer that is provided between the electrode and the organic layer in order to lower the driving voltage and improve the light emission efficiency. “The organic EL element and the forefront of its industrialization (issued on November 30, 1998 by NTS Corporation) ) ”, Chapter 2, Chapter 2,“ Electrode Materials ”(pages 123 to 166), which includes an anode buffer layer and a cathode buffer layer.
  • anode buffer layer Details of the anode buffer layer are also described in JP-A-9-45479, 9-260062, 8-28869, etc., and specific examples thereof include a phthalocyanine buffer layer represented by copper phthalocyanine, vanadium oxide. And an oxide buffer layer, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • a metal buffer layer typified by strontium or aluminum examples thereof include an alkali metal compound buffer layer typified by lithium fluoride, an alkaline earth metal compound buffer layer typified by magnesium fluoride, and an oxide buffer layer typified by aluminum oxide.
  • the buffer layer is desirably a very thin film, and depending on the material, the thickness is preferably in the range of 0.1 to 100 nm. Furthermore, in addition to the basic constituent layers, layers having other functions may be appropriately laminated as necessary.
  • cathode As the cathode of the organic EL element, a metal having a low work function (less than 4 eV) (hereinafter referred to as an electron injecting metal), an alloy, a metal electrically conductive compound, or a mixture thereof is used.
  • electrode materials include sodium, magnesium, lithium, aluminum, indium, rare earth metals, sodium-potassium alloys, magnesium / copper mixtures, magnesium / silver mixtures, magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / Aluminum oxide (Al 2 O 3 ) mixture, lithium / aluminum mixture and the like.
  • the cathode may contain a Group 13 metal element. preferable. That is, in the present invention, as described later, the surface of the cathode is oxidized with oxygen gas in a plasma state to form an oxide film on the cathode surface, thereby preventing further oxidation of the cathode and improving the durability of the cathode. Can be made.
  • the electrode material of the cathode is preferably a metal having a preferable electron injection property required for the cathode and capable of forming a dense oxide film.
  • Specific examples of the electrode material of the cathode containing the Group 13 metal element include, for example, aluminum, indium, a magnesium / aluminum mixture, a magnesium / indium mixture, and an aluminum / aluminum oxide (Al 2 O 3 ) mixture. And lithium / aluminum mixtures.
  • the mixing ratio of each component of the said mixture can employ
  • the cathode can be produced by forming a thin film on the organic functional layer by depositing the electrode material described above by a method such as vapor deposition or sputtering.
  • the sheet resistance as a cathode is several hundred ⁇ / sq. The following is preferable, and the layer thickness is usually selected in the range of 10 nm to 1 ⁇ m, preferably 50 to 200 nm.
  • the layer thickness is usually selected in the range of 10 nm to 1 ⁇ m, preferably 50 to 200 nm.
  • it is preferable that either one of the anode and the cathode of the organic EL element is made transparent or semi-transparent because the light emission efficiency is improved.
  • a method for producing an organic EL device comprising anode / hole injection layer / light emitting layer / electron transport layer / electron injection layer / cathode will be described.
  • a thin film made of a desired electrode material for example, an anode material is formed on a suitable substrate by a method such as vapor deposition or sputtering so as to have a thickness of 1 ⁇ m or less, preferably 10 to 200 nm. Make it.
  • the organic compound thin film of the hole injection layer, the light emitting layer, the electron transport layer, the electron injection layer, and the hole blocking layer containing at least ZnS described above is sequentially formed thereon.
  • spin coating methods there are spin coating methods, casting methods, ink jet methods, vapor deposition methods, printing methods, and the like as methods for thinning these organic compound thin films.
  • a vacuum deposition method or a spin coating method is preferable from the viewpoint that it is difficult to form.
  • the spin coating method is particularly preferable because the composition of the present invention can be used as a coating solution.
  • the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C., a vacuum degree of 10 ⁇ 6 to 10 ⁇ 2 Pa, a vapor deposition rate of 0.01 It is desirable to select appropriately within the range of ⁇ 50 nm / second, substrate temperature of ⁇ 50 to 300 ° C., and thickness of 0.1 nm to 5 ⁇ m.
  • a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a thickness of 1 ⁇ m or less, preferably in the range of 50 to 200 nm, and a cathode is provided.
  • a desired organic EL element can be obtained.
  • the organic EL element is preferably manufactured from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • the organic EL element sealing means is not particularly limited. For example, after sealing the outer periphery of the organic EL element with a sealing adhesive, a sealing member is provided so as to cover the light emitting region of the organic EL element. The method of arranging is mentioned.
  • sealing adhesive examples include photocuring and thermosetting adhesives having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. Can be mentioned. Moreover, heat
  • a polymer film and a metal film can be preferably used from the viewpoint of reducing the thickness of the organic EL element.
  • inert gases such as nitrogen and argon, fluorinated hydrocarbons, and silicone oil are used. Inert liquids can also be injected. Further, the gap between the sealing member and the display area of the organic EL element can be evacuated, or a hygroscopic compound can be sealed in the gap.
  • the multicolor display device using the organic EL element of the present invention is provided with a shadow mask only at the time of forming a light emitting layer, and the other layers are common, so patterning such as a shadow mask is unnecessary, vapor deposition method, casting method, A film can be formed by a spin coating method, an inkjet method, a printing method, or the like.
  • the method is not limited, but a vapor deposition method, an inkjet method, and a printing method are preferable. In the case of using a vapor deposition method, patterning using a shadow mask is preferable.
  • the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode in this order.
  • a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state.
  • the alternating current waveform to be applied may be arbitrary.
  • the multicolor display device can be used as a display device, a display, and various light emission sources.
  • a display device or display full-color display is possible by using three types of organic EL elements of blue, red, and green light emission.
  • the display device and the display include a television, a personal computer, a mobile device, an AV device, a character broadcast display, and an information display in a car.
  • the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
  • Light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc.
  • the organic EL element according to the present invention may be used as an organic EL element having a resonator structure.
  • Examples of the purpose of use of the organic EL element having such a resonator structure include a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processing machine, and a light source of an optical sensor. It is not limited. Moreover, you may use for the said use by making a laser oscillation.
  • the organic EL device of the present invention may be used as a kind of lamp such as an illumination or exposure light source, a projection device that projects an image, or a display device that directly recognizes a still image or a moving image. (Display) may be used.
  • the driving method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method. Alternatively, it is possible to produce a full-color display device by using two or more organic EL elements of the present invention having different emission colors.
  • FIG. 1 is a schematic diagram illustrating an example of a display device including organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
  • the display 41 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.
  • the control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of the plurality of pixels based on image information from the outside.
  • the pixels for each scanning line are converted into image data signals by the scanning signal.
  • FIG. 2 is a schematic diagram of the display unit A.
  • the display unit A includes a wiring unit including a plurality of scanning lines 55 and data lines 56, a plurality of pixels 53, and the like on a substrate. The main members of the display unit A will be described below.
  • FIG. 2 shows a case where the light emitted from the pixel 53 is extracted in the white arrow direction (downward).
  • the scanning lines 55 and the plurality of data lines 56 in the wiring portion are each made of a conductive material, and the scanning lines 55 and the data lines 56 are orthogonal to each other in a lattice shape and are connected to the pixels 53 at the orthogonal positions (details are shown in the figure). Not shown).
  • the pixel 53 receives an image data signal from the data line 56, and emits light according to the received image data.
  • Full color display is possible by appropriately arranging pixels in the red region, the green region, and the blue region that emit light on the same substrate.
  • FIG. 3 is a schematic diagram illustrating a pixel circuit.
  • the pixel includes an organic EL element 60, a switching transistor 61, a driving transistor 62, a capacitor 63, and the like.
  • a full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 60 for a plurality of pixels, and juxtaposing them on the same substrate.
  • an image data signal is applied to the drain of the switching transistor 61 from the control unit B (not shown in FIG. 3, but shown in FIG. 1) via the data line 56.
  • the switching transistor 61 When a scanning signal is applied from the control unit B to the gate of the switching transistor 61 via the scanning line 55, the switching transistor 61 is turned on, and the image data signal applied to the drain is supplied to the capacitor 63 and the driving transistor 62. Is transmitted to the gate. By transmitting the image data signal, the capacitor 63 is charged according to the potential of the image data signal, and the drive of the drive transistor 62 is turned on.
  • the drive transistor 62 has a drain connected to the power supply line 67 and a source connected to the electrode of the organic EL element 60, and the power supply line 67 changes to the organic EL element 60 according to the potential of the image data signal applied to the gate. Current is supplied.
  • the driving of the switching transistor 61 is turned off. However, even if the driving of the switching transistor 61 is turned off, the capacitor 63 holds the potential of the charged image data signal, so that the driving of the driving transistor 62 is kept on and the next scanning signal is applied. Until then, the organic EL element 60 continues to emit light.
  • the driving transistor 62 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 60 emits light.
  • the organic EL element 60 emits light by providing a switching transistor 61 and a drive transistor 62, which are active elements, for each of the organic EL elements 60 of a plurality of pixels, and a plurality of pixels 53 (not shown in FIG. 3). 2) Each organic EL element 60 emits light. Such a light emitting method is called an active matrix method.
  • the light emission of the organic EL element 60 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or on / off of a predetermined light emission amount by a binary image data signal. But you can.
  • the potential of the capacitor 63 may be held continuously until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
  • a passive matrix light emission drive in which the organic EL element emits light according to the data signal only when the scanning signal is scanned.
  • FIG. 4 is a schematic view of a passive matrix display device.
  • a plurality of scanning lines 55 and a plurality of image data lines 56 are provided in a lattice shape so as to face each other with the pixel 53 interposed therebetween.
  • the scanning signal of the scanning line 55 is applied by sequential scanning, the pixel 53 connected to the applied scanning line 55 emits light according to the image data signal.
  • the passive matrix method there is no active element in the pixel 53, and the manufacturing cost can be reduced.
  • the lighting device of the present invention includes home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources of optical storage media, exposure light sources of electrophotographic copying machines, light sources of optical communication processors, and optical sensors.
  • the present invention is not limited to these.
  • the non-light emitting surface of the organic EL device of the present invention is covered with a glass case, a 300 ⁇ m thick glass substrate is used as a sealing substrate, and an epoxy photocurable adhesive (LUX The track LC0629B) is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured, sealed, and illuminated as shown in FIGS.
  • a device can be formed.
  • FIG. 5 shows a schematic diagram of the lighting device.
  • the organic EL element 101 is covered with a glass cover 102.
  • the sealing operation with the glass cover 102 is preferably performed in a glove box (in an atmosphere of high purity nitrogen gas having a purity of 99.999% or more) in a nitrogen atmosphere without bringing the organic EL element 101 into contact with the atmosphere.
  • FIG. 6 shows a cross-sectional view of the lighting device.
  • the lighting device mainly includes a cathode 105, an organic EL layer 106, and a glass substrate 107 with a transparent electrode, and these members are covered with a glass cover 102.
  • the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • the organic EL element of the present invention is not only the display device and the display, but also various light emitting sources, lighting devices, home lighting, interior lighting, a kind of lamp such as an exposure light source, and a liquid crystal display. It is also useful for display devices such as device backlights.
  • backlights such as clocks, signboard advertisements, traffic lights, light sources such as optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processing machines, light sources for optical sensors, etc.
  • ITO Indium Tin Oxide
  • 1.0 nm of lithium fluoride was deposited as an electron injection layer and 110 nm of aluminum was deposited as a cathode, thereby fabricating an organic EL device 1-1.
  • the density of the light emitting layer of each organic EL element was computed by the X-ray reflectivity method.
  • the X-ray generation source was a copper target, operated at 50 kV-300 mA, and X-rays monochromatized with a multilayer mirror and a Ge (111) channel cut monochromator were used.
  • the organic EL device using ZnS according to the present invention as the material for the hole injection layer has an initial performance higher than that of the comparative organic EL device not using ZnS as the material for the hole injection layer. It is excellent in any of luminous efficiency, half life, and density of the light emitting layer.
  • Example 2 Example in which the density of the light emitting layer can be controlled by the thickness when ZnS is used for the hole injection layer ⁇ Preparation of Organic EL Element 2-1> Patterning was performed on a substrate (NAV 45 manufactured by AvanStrate Co., Ltd.) on which a 100 nm ITO film was formed as an anode on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate. Thereafter, the transparent support substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while ZnS is put into a molybdenum resistance heating boat, 1-6 is put into another molybdenum resistance heating boat, another molybdenum resistance heating boat D-28 was put in, LiF was put in another resistance heating boat made of molybdenum, and attached to a vacuum deposition apparatus.
  • the pressure in the vacuum chamber was reduced to 4 ⁇ 10 ⁇ 4 Pa, and the heating boat containing ZnS was heated by energization.
  • the vapor deposition rate was 0.1 nm / sec. A layer was provided.
  • the produced organic EL element it carried out similarly to the said Example 1, and measured the luminous efficiency (external extraction quantum efficiency (EQE)), luminous lifetime, and the density of the light emitting layer.
  • EQE extraction quantum efficiency
  • the organic EL device in which the thickness of the hole injection layer made of ZnS is in the range of 5 to 10 nm is higher in luminous efficiency (external extraction quantum efficiency) than other organic EL devices, Both the half life (light emission life) and the density of the light emitting layer are excellent.
  • Example 3 Example for showing the effect of ZnS contained in the hole injection layer regardless of the material of the light emitting layer ⁇ Production of Organic EL Element 3-1> Patterning was performed on a substrate (NAV 45 manufactured by AvanStrate Co., Ltd.) on which a 100 nm ITO film was formed as an anode on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate. Thereafter, the transparent support substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while ZnS is put into a molybdenum resistance heating boat, 1-6 is put into another molybdenum resistance heating boat, another molybdenum resistance heating boat D-28 was placed in the container, KF was placed in another molybdenum resistance heating boat, and attached to a vacuum deposition apparatus.
  • the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, heated by energizing the heating boat containing ZnS, and deposited on a transparent support substrate at a deposition rate of 0.1 nm / second to form a 10 nm hole injection layer.
  • ZnS is placed in a molybdenum resistance heating boat, and ⁇ -NPD (4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), 1-6 in another molybdenum resistance heating boat, D-28 in another molybdenum resistance heating boat, another molybdenum resistance KF was put into a heating boat and attached to a vacuum deposition apparatus.
  • the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, heated by energizing the heating boat containing ZnS, and deposited on a transparent support substrate at a deposition rate of 0.1 nm / second to form a 10 nm hole injection layer.
  • Example 4 Solvent resistance of a layer containing ZnS A glass substrate of 100 mm x 100 mm x 1.1 mm was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes. This transparent support substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus, while ZnS was placed in a molybdenum resistance heating boat and attached to the vacuum deposition apparatus. Next, the pressure in the vacuum chamber was reduced to 4 ⁇ 10 ⁇ 4 Pa, and the heating boat containing ZnS was energized and heated, and deposited on the substrate at a deposition rate of 0.1 nm / second to form a 50 nm hole injection layer.
  • a provided single membrane was prepared.
  • a layer containing ZnS by adding various solvents as shown in Table IV below to the prepared hole injection layer (single film) containing ZnS, spin-coating, drying, and measuring the thickness. The solvent resistance of was examined.
  • Table IV The abbreviations in Table IV are as follows: TFPO: 2,2,3,3-tetrafluoro-1-propanol THF: tetrahydrofuran 2mTHF: 2-methyltetrahydrofuran
  • Example 5 Production of illumination device ⁇ Production of white light-emitting organic EL element 4-1>
  • the transparent support substrate provided with the ITO transparent electrode used in the production of the organic EL element 1-1 was attached to a vacuum deposition apparatus, and the vacuum chamber was decompressed to 4 ⁇ 10 ⁇ 4 Pa.
  • 10 nm of ZnS was deposited as a hole injection layer to provide a hole injection layer.
  • spin coating was performed at 2000 rpm for 30 seconds. A thin film was formed.
  • the first light emitting layer was formed by vacuum drying at 60 ° C. for 1 hour. Further, on this first light-emitting layer, a solution in which HOST-94 (100 mg) as a host compound and D-84 (16 mg) as a dopant were dissolved in 6 mL of hexafluoroisopropanol (HFIP) was used, and the conditions were 2000 rpm for 30 seconds. A thin film was formed by spin coating and vacuum dried at 60 ° C. for 1 hour to form a second light emitting layer.
  • HOST-94 100 mg
  • D-84 16 mg
  • a thin film was formed by spin coating and vacuum dried at 60 ° C. for 1 hour to form a second light emitting layer.
  • This substrate is fixed to a substrate holder of a vacuum deposition apparatus, and the vacuum chamber is depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then ET-35 is deposited on the second light emitting layer to form an electron transport layer having a thickness of 30 nm. Subsequently, lithium fluoride was vapor-deposited to form a cathode buffer layer having a thickness of 0.5 nm, and aluminum was further vapor-deposited to form a cathode having a thickness of 110 nm. Thus, an organic EL element 4-1 was produced. .
  • Example 6 Production of full-color display device ⁇ Production of blue light-emitting element>
  • the organic EL device 1-1 of Example 1 was used as a blue light emitting device.
  • a green light emitting device was produced in the same manner as the organic EL device 1-1 except that D-86 was used as a green light emitting dopant.
  • red light emitting element A red light emitting device was produced in the same manner as the organic EL device 1-1 except that Ir-9 was used as a red light emitting dopant.
  • each of the red, green and blue light emitting organic EL elements produced above was placed on the same substrate to produce an active matrix type full color display device having the form as shown in FIG. 1, and FIG. Only the schematic diagram of the display section A of the display device is shown. That is, a wiring portion including a plurality of scanning lines 55 and data lines 56 on the same substrate, and a plurality of juxtaposed pixels 53 (light emission color is a red region pixel, a green region pixel, a blue region pixel, etc.)
  • the scanning lines 55 and the plurality of data lines 56 in the wiring portion are each made of a conductive material, and the scanning lines 55 and the data lines 56 are orthogonal to each other in a grid pattern and are connected to the pixels 53 at orthogonal positions ( Details are not shown).
  • the plurality of pixels 53 are driven by an active matrix system in which an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor are provided, and a scanning signal is applied from a scanning line 55. Then, an image data signal is received from the data line 56, and light is emitted according to the received image data.
  • a full color display device was produced by juxtaposing the red, green, and blue pixels appropriately. It was found that by driving the full-color display device, a clear full-color moving image display having high luminance, high durability, and clearness can be obtained.
  • Example 7 Example of doping metal oxide into ZnS of hole injection layer ⁇ Preparation of organic EL element 6-1> Patterning was performed on a substrate (AvanState Co., Ltd., NA45) in which ITO (Indium Tin Oxide) 100 nm was formed on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate as an anode. Thereafter, the transparent support substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes. This transparent support substrate was attached to a vacuum deposition apparatus, and the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa.
  • ITO Indium Tin Oxide
  • a hole transport layer ZnS was deposited to a thickness of 10 nm to provide a hole injection layer.
  • 1.0 nm of lithium fluoride was deposited as an electron injection layer and 110 nm of aluminum was deposited as a cathode, thereby fabricating an organic EL element 6-1.
  • Organic EL elements 6-2 to 6-4 were prepared in the same manner as in the production of the organic EL element 6-1, except that ZnS was doped with a metal oxide shown in Table V below as a hole injection layer.
  • the produced organic EL element it carried out similarly to the said Example 1, and measured the luminous efficiency (external extraction quantum efficiency (EQE)), luminous lifetime, and the density of the light emitting layer.
  • EQE extraction quantum efficiency
  • the organic EL device containing ZnS in which the hole injection layer is doped with a metal oxide has excellent luminous efficiency as compared with the case where the metal oxide is not doped.
  • the present invention can be used for an organic electroluminescence element that can improve the density of the light emitting layer, improve the light emission efficiency and the element lifetime, and is easy to manufacture, and a display device and an illumination device equipped with the organic electroluminescence element. be able to.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

The present invention provides an organic EL electroluminescent element having at least a hole injection layer and a light emitting layer laminated between a pair of electrodes, wherein the hole injection layer contains zinc sulfide, the light emitting layer is directly laminated on the hole injection layer, the light emitting layer contains an organic compound interacting with said zinc sulfide, and the density of the light emitting layer is in the range of 1.0-1.8 g/cm3.

Description

有機エレクトロルミネッセンス素子、表示装置及び照明装置Organic electroluminescence element, display device and lighting device
 本発明は、有機エレクトロルミネッセンス素子、表示装置及び照明装置に関し、特に、発光層の密度を向上させ、発光効率及び素子寿命を向上させることができ、かつ、製造しやすい有機エレクトロルミネッセンス素子、当該有機エレクトロルミネッセンス素子を具備した表示装置及び照明装置に関する。 The present invention relates to an organic electroluminescence element, a display device, and a lighting device, and in particular, an organic electroluminescence element that can improve the density of a light emitting layer, improve luminous efficiency and element lifetime, and is easy to manufacture, and the organic The present invention relates to a display device and an illumination device including an electroluminescence element.
 発光型の電子ディスプレイデバイスとして、有機エレクトロルミネッセンス(以下、「EL」ともいう。)素子がある。 There is an organic electroluminescence (hereinafter, also referred to as “EL”) element as a light-emitting electronic display device.
 有機EL素子は、発光する化合物(以下、「発光材料」ともいう。)を含有する発光層を陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・リン光)を利用して発光する素子である。このような有機EL素子は、数V~数十Vの低電圧で発光が可能であり、さらに自己発光型であるために視野角に富み、視認性が高い。また、有機EL素子は、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。 An organic EL element has a structure in which a light-emitting layer containing a compound that emits light (hereinafter also referred to as “light-emitting material”) is sandwiched between a cathode and an anode, and recombines by injecting electrons and holes into the light-emitting layer. This is an element that generates excitons (excitons) by light emission, and emits light by utilizing light emission (fluorescence / phosphorescence) when the excitons are deactivated. Such an organic EL element can emit light at a low voltage of several V to several tens V, and further has a wide viewing angle and high visibility because it is a self-luminous type. In addition, since the organic EL element is a thin-film type complete solid-state element, it has attracted attention from the viewpoints of space saving and portability.
 今後の有機ELの素子開発として、さらに発光効率、輝度及び色度の良好な発光が可能な有機EL素子が望まれている。 As an organic EL element development in the future, an organic EL element capable of emitting light with better luminous efficiency, luminance and chromaticity is desired.
 ところで、近年、層構成をよりシンプルにした有機EL素子の作製が求められている。そこで、電極上に有機材料を用いた有機層を積層し、当該有機層上に発光層を積層した、電極/有機層/発光層の層構成を有する有機EL素子の場合、電子耐久性に問題があり、所望の素子寿命が得られない。また、発光層に直接、隣接する層に、有機材料を用いているため、発光層の溶媒の選択肢が狭くなるという問題があった。 Incidentally, in recent years, there has been a demand for production of an organic EL element having a simpler layer structure. Therefore, in the case of an organic EL element having an electrode / organic layer / light emitting layer structure in which an organic layer using an organic material is laminated on an electrode and a light emitting layer is laminated on the organic layer, there is a problem in electronic durability. Therefore, the desired device life cannot be obtained. In addition, since an organic material is used for the layer directly adjacent to the light emitting layer, there is a problem that the choice of the solvent for the light emitting layer is narrowed.
 そこで、発光層の溶媒の選択肢を広げるため、無機材料である硫化亜鉛(ZnS)を、正孔注入層に用いた有機EL素子(例えば、特許文献1参照。)や、電子輸送層及び保護層に用いた有機EL素子が提案されている(例えば、特許文献2及び3参照。)。 Therefore, in order to broaden the choice of solvent for the light emitting layer, an organic EL element (for example, see Patent Document 1) using zinc sulfide (ZnS), which is an inorganic material, as a hole injection layer, an electron transport layer, and a protective layer An organic EL element used in the above has been proposed (see, for example, Patent Documents 2 and 3).
 しかしながら、上記特許文献1では、正孔注入層に硫化亜鉛を用いているが、正孔注入層と発光層との間に、正孔輸送層としてNPDを用いた有機EL素子として、素子評価を行っている。そのため、電極/硫化亜鉛/発光層の順に積層した層構成(すなわち、硫化亜鉛を有する層の上に直接、発光層を積層した構成)における素子寿命などの評価については、詳細な検討は行われていない。 However, in Patent Document 1 above, zinc sulfide is used for the hole injection layer. However, the element evaluation is performed as an organic EL element using NPD as the hole transport layer between the hole injection layer and the light emitting layer. Is going. Therefore, detailed investigations have been made on the evaluation of the element lifetime and the like in a layer configuration in which electrodes / zinc sulfide / light-emitting layers are stacked in this order (that is, a configuration in which a light-emitting layer is directly stacked on a layer containing zinc sulfide). Not.
 また、上記特許文献2及び3では、電子輸送層に硫化亜鉛を用いることにより、電子注入性の向上や応答速度の向上が図れる点が記載されているのみである。 Further, the above Patent Documents 2 and 3 only describe that the use of zinc sulfide for the electron transport layer can improve the electron injection property and the response speed.
特許第6041336号公報Japanese Patent No. 6041336 特開2000-215984号公報JP 2000-215984 A 特開2008-277799号公報JP 2008-277799 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、発光層の密度を向上させて、発光効率及び素子寿命を向上させることができ、かつ、製造しやすい有機エレクトロルミネッセンス素子、当該有機エレクトロルミネッセンス素子を具備した表示装置及び照明装置を提供することである。 The present invention has been made in view of the above problems and situations, and a solution to that problem is to improve the density of the light emitting layer, improve the light emission efficiency and the device life, and can be easily manufactured. It is providing the luminescent element, the display apparatus and illuminating device which were equipped with the said organic electroluminescent element.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、硫化亜鉛を含有する層の上に、発光層を直接積層することで、発光層の密度が向上し、発光効率及び素子寿命が向上し、かつ、製造しやすい有機エレクトロルミネッセンス素子等を提供することができることを見いだし本発明に至った。 In order to solve the above problems, the present inventor, in the process of examining the cause of the above problems, by directly laminating the light emitting layer on the layer containing zinc sulfide, the density of the light emitting layer is improved, The present inventors have found that an organic electroluminescence device and the like that can improve the light emission efficiency and the device life and can be easily manufactured can be provided.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.一対の電極間に、少なくとも正孔注入層及び発光層が積層された有機エレクトロルミネッセンス素子であって、
 前記正孔注入層が、硫化亜鉛を含有し、
 前記発光層が、前記正孔注入層上に直接積層され、
 前記発光層が、前記硫化亜鉛と相互作用を有する有機化合物を含有し、かつ、
 前記発光層の密度が、1.0~1.8g/cmの範囲内である有機エレクトロルミネッセンス素子。
1. An organic electroluminescence device in which at least a hole injection layer and a light emitting layer are laminated between a pair of electrodes,
The hole injection layer contains zinc sulfide;
The light emitting layer is directly laminated on the hole injection layer,
The light emitting layer contains an organic compound that interacts with the zinc sulfide, and
An organic electroluminescence device wherein the density of the light emitting layer is in the range of 1.0 to 1.8 g / cm 3 .
 2.前記正孔注入層が、金属酸化物がドープされた硫化亜鉛を含有している第1項に記載の有機エレクトロルミネッセンス素子。 2. The organic electroluminescence device according to claim 1, wherein the hole injection layer contains zinc sulfide doped with a metal oxide.
 3.前記正孔注入層の厚さが、5~10nmの範囲内である第1項又は第2項に記載の有機エレクトロルミネッセンス素子。 3. 3. The organic electroluminescence device according to item 1 or 2, wherein the thickness of the hole injection layer is in the range of 5 to 10 nm.
 4.第1項から第3項までのいずれか一項に記載の有機エレクトロルミネッセンス素子を備える表示装置。 4. A display apparatus provided with the organic electroluminescent element as described in any one of Claim 1 to 3.
 5.第1項から第3項までのいずれか一項に記載の有機エレクトロルミネッセンス素子を備える照明装置。 5. An illuminating device provided with the organic electroluminescent element as described in any one of 1st term | claim to 3rd term | claim.
 本発明の上記手段により、発光層の密度を向上させ、高い発光効率及び素子の長寿命化を図ることができ、かつ、製造しやすい有機エレクトロルミネッセンス素子を提供することができる。 By the above means of the present invention, it is possible to provide an organic electroluminescence device that can improve the density of the light emitting layer, achieve high luminous efficiency and increase the lifetime of the device, and is easy to manufacture.
 本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 本発明の有機エレクトロルミネッセンス素子においては、少なくとも硫化亜鉛(ZnS)からなる正孔注入層上に、ZnSと相互作用する有機化合物を含有する発光層が直接積層されている。
 したがって、当該正孔注入層が発光層の基板としての機能を果たすため、当該基板上に発光層を形成する際、ZnS(特にS)と有機化合物分子との相互作用(親和性)により有機化合物分子分子が正孔注入層と発光層との界面で規則的に配列することになり、それに伴い、界面近傍及び更に内部の有機化合物分子も規則的に配列する。このような有機化合物分子の規則的配列により発光層の密度が向上し、発光層の欠陥の生成も抑制されると推察される。
 その結果として、高い発光効率でかつ長寿命の発光層を備えた素子を形成できたと推察される。
In the organic electroluminescence device of the present invention, a light emitting layer containing an organic compound that interacts with ZnS is directly laminated on a hole injection layer made of at least zinc sulfide (ZnS).
Therefore, since the hole injection layer functions as a substrate of the light emitting layer, when forming the light emitting layer on the substrate, the organic compound is caused by the interaction (affinity) between ZnS (especially S) and organic compound molecules. Molecular molecules are regularly arranged at the interface between the hole injection layer and the light emitting layer, and accordingly, organic compound molecules in the vicinity of the interface and further inside are also regularly arranged. It is assumed that the regular arrangement of the organic compound molecules improves the density of the light emitting layer and suppresses the generation of defects in the light emitting layer.
As a result, it is presumed that an element having a light emitting layer with high luminous efficiency and long life could be formed.
 また、ZnSが正孔輸送機能や励起子安定化(ブロック)機能を有するため、正孔注入層と発光層の界面近傍でのキャリアの再結合が増加し発光効率の向上に寄与していることも推察される。また、このような現象は、発光層のモルフォルジー(形態・微細構造)の経時変化による密度の向上にも影響していると考えられる。
 さらに、無機材料であるZnSを用いていることから、溶媒耐性に優れ、発光層の溶媒の選択肢も広がり、有機EL素子を製造しやくなる。
In addition, because ZnS has a hole transport function and exciton stabilization (block) function, recombination of carriers in the vicinity of the interface between the hole injection layer and the light emitting layer is increased, which contributes to the improvement of the light emission efficiency. Is also inferred. In addition, such a phenomenon is considered to have an influence on the improvement of the density due to the temporal change of the morphology (morphology / fine structure) of the light emitting layer.
Furthermore, since ZnS which is an inorganic material is used, it is excellent in solvent tolerance, the choice of the solvent of a light emitting layer spreads, and it becomes easy to manufacture an organic EL element.
有機EL素子から構成される表示装置の一例を示した模式図Schematic diagram showing an example of a display device composed of organic EL elements 表示部Aの模式図Schematic diagram of display part A 画素の回路を示した概略図Schematic showing the pixel circuit パッシブマトリクス方式フルカラー表示装置の模式図Schematic diagram of passive matrix type full color display device 照明装置の模式図Schematic diagram of lighting device 照明装置の断面図Cross section of the lighting device
 本発明の有機エレクトロルミネッセンス素子は、一対の電極間に、少なくとも正孔注入層及び発光層が積層された有機エレクトロルミネッセンス素子であって、前記正孔注入層が、硫化亜鉛を含有し、前記発光層が、前記正孔注入層上に直接積層され、前記発光層が、前記硫化亜鉛と相互作用を有する有機化合物を含有し、かつ、前記発光層の密度が、1.0~1.8g/cmの範囲内である。この特徴は、各請求項に係る発明に共通又は対応する技術的特徴である。
 本発明の実施態様としては、前記正孔注入層が、金属酸化物がドープされた硫化亜鉛を含有していることが、発光効率がより向上する点で好ましい。
 前記正孔注入層の厚さが、5~10nmの範囲内であることが、発光効率及び素子寿命をより向上させることができる点で好ましい。
The organic electroluminescence device of the present invention is an organic electroluminescence device in which at least a hole injection layer and a light emitting layer are laminated between a pair of electrodes, wherein the hole injection layer contains zinc sulfide, and the light emission A layer is directly laminated on the hole injection layer, the light-emitting layer contains an organic compound having an interaction with the zinc sulfide, and the density of the light-emitting layer is 1.0 to 1.8 g / Within the range of cm 3 . This feature is a technical feature common to or corresponding to the claimed invention.
As an embodiment of the present invention, it is preferable that the hole injection layer contains zinc sulfide doped with a metal oxide from the viewpoint of further improving luminous efficiency.
The thickness of the hole injection layer is preferably in the range of 5 to 10 nm from the viewpoint that the light emission efficiency and the device life can be further improved.
 本発明の有機エレクトロルミネッセンス素子は、表示装置や照明装置に好適に用いられる。 The organic electroluminescence element of the present invention is suitably used for display devices and lighting devices.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
[本発明の概要]
 本発明の有機エレクトロルミネッセンス素子(以下、「有機EL素子」ともいう。)は、一対の電極間に、少なくとも正孔注入層及び発光層が積層された有機エレクトロルミネッセンス素子であって、前記正孔注入層が、硫化亜鉛を含有し、前記発光層が、前記正孔注入層上に直接積層され、前記発光層が、前記硫化亜鉛と相互作用を有する有機化合物を含有し、かつ、前記発光層の密度が、1.0~1.8g/cmの範囲内である。
Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
[Outline of the present invention]
The organic electroluminescence device of the present invention (hereinafter also referred to as “organic EL device”) is an organic electroluminescence device in which at least a hole injection layer and a light emitting layer are laminated between a pair of electrodes, The injection layer contains zinc sulfide, the light emitting layer is laminated directly on the hole injection layer, the light emitting layer contains an organic compound that interacts with the zinc sulfide, and the light emitting layer Is in the range of 1.0 to 1.8 g / cm 3 .
 本発明に係る発光層の密度は、1.4~1.7g/cmの範囲内であることが、発光層の密度をより向上させ、発光効率及び素子寿命がより向上する点で好ましい。 The density of the light emitting layer according to the present invention is preferably in the range of 1.4 to 1.7 g / cm 3 from the viewpoint of further improving the density of the light emitting layer and further improving the light emission efficiency and the device lifetime.
 発光層の密度は、X線反射率法により求めることができる。極低角度、例えば、0.2~2度の範囲内の反射率を測定し、得られた反射率曲線をフレネルの式より求められる多層膜試料の反射率の式にフィッティングすることにより求められる。フィッティングの方法については、L.G.Parratt.Phis.Rev.,95 359(1954年)を参考にすることができる。
 具体的には、X線発生源は銅をターゲットとし、50kV-300mAで作動させ、多層膜ミラーとGe(111)チャンネルカットモノクロメーターにて単色化したX線を使用する。測定は、ソフトウェア-ATX-Crystal Guide Ver.6.5.3.4を用い、アライメント調整後、2θ/ω=0~1度を0.002度/stepで0.05度/minで走査する。上記の測定条件で反射率曲線を測定した後、株式会社リガク製GXRR Ver.2.1.0解析ソフトウェアを用いて測定した。
The density of the light emitting layer can be determined by the X-ray reflectivity method. It is obtained by measuring the reflectance at a very low angle, for example, in the range of 0.2 to 2 degrees, and fitting the obtained reflectance curve to the reflectance formula of the multilayer film sample obtained from the Fresnel formula. . For the fitting method, see L.C. G. Parrat. Phis. Rev. 95 359 (1954).
Specifically, the X-ray generation source uses copper as a target, operates at 50 kV-300 mA, and uses X-rays monochromatic with a multilayer mirror and a Ge (111) channel cut monochromator. The measurement was performed using the software-ATX-Crystal Guide Ver. Using 6.5.3.4, after alignment adjustment, scan 2θ / ω = 0 to 1 degree at 0.002 degree / step at 0.05 degree / min. After measuring the reflectance curve under the above measurement conditions, GXRR Ver. 2.1.0 Measured using analysis software.
 前記一対の電極とは、陽極と陰極であり、本発明の有機EL素子は、好ましくは、基板上に、陽極と陰極、及びこれらの電極間に、少なくとも正孔注入層及び発光層が積層されている。
 発光層とは、広義には、陰極と陽極とからなる電極に電流を流した際に発光する層のことを指し、具体的には、陰極と陽極とからなる電極に電流を流した際に発光する有機化合物を含有する層を指す。
 本発明の有機EL素子は、必要に応じて、正孔注入層及び発光層の他に、電子注入層及び電子輸送層を有していてもよく、これらの層が陰極と陽極とで挟持された構造をとる。
The pair of electrodes is an anode and a cathode. In the organic EL device of the present invention, preferably, an anode and a cathode, and at least a hole injection layer and a light emitting layer are laminated between these electrodes on a substrate. ing.
In a broad sense, the light-emitting layer refers to a layer that emits light when an electric current is applied to an electrode composed of a cathode and an anode. Specifically, when an electric current is applied to an electrode composed of a cathode and an anode, It refers to a layer containing an organic compound that emits light.
The organic EL device of the present invention may have an electron injection layer and an electron transport layer in addition to the hole injection layer and the light emitting layer as necessary, and these layers are sandwiched between the cathode and the anode. Take the structure.
 また、以下に、基板上に有する有機EL素子の層構成の好ましい具体例を以下に示すが、ZnSを含有する正孔注入層上に発光層が直接積層されていれば、その他の構成は限定されない。
(i) 陽極/正孔注入層/発光層/陰極
(ii) 陽極/正孔注入層/発光層/電子注入層/陰極
(iii)陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極
(vi) 陽極/正孔注入層/発光層/電子輸送層/陰極
In addition, preferred specific examples of the layer configuration of the organic EL element on the substrate are shown below, but other configurations are limited as long as the light emitting layer is directly laminated on the hole injection layer containing ZnS. Not.
(I) Anode / hole injection layer / emission layer / cathode (ii) Anode / hole injection layer / emission layer / electron injection layer / cathode (iii) Anode / hole injection layer / emission layer / electron transport layer / electron Injection layer / cathode (vi) Anode / hole injection layer / light emitting layer / electron transport layer / cathode
 さらに、電子注入層と陰極との間に、陰極バッファー層(例えば、フッ化リチウム等)を挿入してもよく、陽極と正孔注入層との間に、陽極バッファー層(例えば、銅フタロシアニン等)を挿入してもよい。
 以下、基板と、有機EL素子の各層構成について詳細に説明する。
Further, a cathode buffer layer (for example, lithium fluoride) may be inserted between the electron injection layer and the cathode, and an anode buffer layer (for example, copper phthalocyanine) may be inserted between the anode and the hole injection layer. ) May be inserted.
Hereinafter, the structure of each layer of the substrate and the organic EL element will be described in detail.
(基板)
 本発明の有機EL素子に用いることのできる基板(以下、基体、支持基板、基材、支持体等ともいう)としては、特に限定は無く、ガラス基板、プラスチック基板等を用いることができ、また透明であっても不透明であってもよい。基板側から光を取り出す場合には、基板は透明であることが好ましい。好ましく用いられる透明な基板としては、ガラス、石英、透明プラスチック基板を挙げることができる。
 また、基板としては、基板側からの酸素や水の侵入を阻止するため、JIS Z-0208に準拠した試験において、その厚さが1μm以上で水蒸気透過度が1g/(m・24h・atm)(25℃)以下であるものが好ましい。
(substrate)
The substrate that can be used in the organic EL device of the present invention (hereinafter also referred to as a base, a support substrate, a base material, a support, etc.) is not particularly limited, and a glass substrate, a plastic substrate, or the like can be used. It may be transparent or opaque. When extracting light from the substrate side, the substrate is preferably transparent. Examples of the transparent substrate preferably used include glass, quartz, and a transparent plastic substrate.
In order to prevent oxygen and water from entering from the substrate side, the substrate has a thickness of 1 μm or more and a water vapor transmission rate of 1 g / (m 2 · 24 h · atm in a test based on JIS Z-0208. ) (25 ° C.) or less is preferred.
 ガラス基板としては、具体的には、例えば無アルカリガラス、低アルカリガラス、ソーダライムガラス等が挙げられる。水分の吸着が少ない点からは無アルカリガラスが好ましいが、充分に乾燥を行えばこれらのいずれを用いてもよい。 Specific examples of the glass substrate include alkali-free glass, low alkali glass, and soda lime glass. Alkali-free glass is preferable from the viewpoint of low moisture adsorption, but any of these may be used as long as it is sufficiently dried.
 プラスチック基板は、可撓性が高く、軽量で割れにくいこと、さらに有機EL素子のさらなる薄型化を可能にできること等の理由で近年注目されている。
 プラスチック基板の基材として用いられる樹脂フィルムとしては、特に限定は無く、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル又はポリアリレート類、有機無機ハイブリッド樹脂等からなる樹脂フィルムを挙げることができる。有機無機ハイブリッド樹脂としては、有機樹脂とゾル・ゲル反応によって得られる無機高分子(例えばシリカ、アルミナ、チタニア、ジルコニア等)を組み合わせて得られるものが挙げられる。これらのうちでは、特にアートン(JSR(株)製)又はアペル(三井化学(株)製)といったノルボルネン(又はシクロオレフィン系)樹脂が好ましい。
In recent years, plastic substrates have been attracting attention for reasons such as high flexibility, light weight and resistance to cracking, and further reduction in thickness of organic EL elements.
The resin film used as the base material of the plastic substrate is not particularly limited. For example, polyester such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC) ), Cellulose acetates such as cellulose acetate butyrate, cellulose acetate propionate (CAP), cellulose acetate phthalate, cellulose nitrate, or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate , Norbornene resin, polymethylpentene, polyetherketone, polyimide, polyethersulfone PES), polyphenylene sulfide, polysulfones, polyetherimides, polyether ketone imide, polyamide, fluorine resin, nylon, polymethyl methacrylate, acrylic or polyarylates, a resin film made of an organic-inorganic hybrid resin. Examples of the organic-inorganic hybrid resin include those obtained by combining an organic resin and an inorganic polymer (for example, silica, alumina, titania, zirconia, etc.) obtained by a sol-gel reaction. Among these, norbornene (or cycloolefin-based) resins such as Arton (manufactured by JSR) or Apel (manufactured by Mitsui Chemicals) are particularly preferable.
 通常生産されているプラスチック基板は水分の透過性が比較的高く、また基板内部に水分を含有している場合もある。そのため、このようなプラスチック基板を用いる際には、樹脂フィルム上に水蒸気や酸素などの侵入を抑制する膜(以下、「バリアー膜」又は「水蒸気封止膜」という)を設けたものが好ましい。
 バリアー膜を構成する材料は、特に限定は無く、無機物、有機物の被膜又はその両者のハイブリッド等が用いられる。被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のガスバリアー性フィルムであることが好ましく、さらには、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3mL/(m・24h・atm)以下、水蒸気透過度が、1×10-5g/(m・24h)以下の高ガスバリアー性フィルムであることが好ましい。
Normally produced plastic substrates have a relatively high moisture permeability and may contain moisture inside the substrate. Therefore, when using such a plastic substrate, it is preferable to provide a film (hereinafter referred to as “barrier film” or “water vapor sealing film”) that suppresses intrusion of water vapor, oxygen, or the like on the resin film.
The material constituting the barrier film is not particularly limited, and an inorganic film, an organic film, a hybrid of both, or the like is used. A film may be formed, and the water vapor transmission rate (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) measured by a method according to JIS K 7129-1992 is 0.01 g / ( m 2 · 24 h) or less, and the oxygen permeability measured by a method according to JIS K 7126-1987 is preferably 1 × 10 −3 mL / (m 2 · 24 h). It is preferably a high gas barrier film having a water vapor permeability of 1 × 10 −5 g / (m 2 · 24 h) or less.
 バリアー膜を構成する材料としては、水分や酸素等、素子の劣化をもたらすものの浸入を抑制する機能を有する材料であれば特に限定は無く、例えば金属酸化物、金属酸窒化物又は金属窒化物等の無機物、有機物、又はその両者のハイブリッド材料等を用いることができる。金属酸化物、金属酸窒化物又は金属窒化物としては酸化ケイ素、酸化チタン、酸化インジウム、酸化スズ、インジウム・スズ酸化物(ITO)、酸化アルミニウム等の金属酸化物、窒化ケイ素等の金属窒化物、酸窒化ケイ素、酸窒化チタン等の金属酸窒化物等が挙げられる。 The material constituting the barrier film is not particularly limited as long as it is a material having a function of suppressing intrusion of elements that cause deterioration of the element such as moisture and oxygen. For example, a metal oxide, a metal oxynitride, a metal nitride, or the like Inorganic materials, organic materials, hybrid materials of the both, or the like can be used. Metal oxides, metal oxynitrides or metal nitrides include metal oxides such as silicon oxide, titanium oxide, indium oxide, tin oxide, indium tin oxide (ITO) and aluminum oxide, and metal nitrides such as silicon nitride And metal oxynitrides such as silicon oxynitride and titanium oxynitride.
 さらに、該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
 バリアー膜は、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のガスバリアー性フィルムであることが好ましく、さらには、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3mL/(m・24h・atm)以下、水蒸気透過度が、1×10-5g/(m・24h)以下の高ガスバリアー性フィルムであることが好ましい。
Furthermore, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and layers made of organic materials. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
The barrier membrane had a water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) of 0.01 g / (m 2 · 24 h) measured by a method according to JIS K 7129-1992. The following gas barrier film is preferable, and further, the oxygen permeability measured by a method according to JIS K 7126-1987 is 1 × 10 −3 mL / (m 2 · 24 h · atm) or less, A high gas barrier film having a water vapor permeability of 1 × 10 −5 g / (m 2 · 24 h) or less is preferable.
 前記樹脂フィルムに、バリアー膜を設ける方法は、特に限定されず、いかなる方法でもよいが、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、CVD法(化学的気相堆積:例えば、プラズマCVD法、レーザーCVD法、熱CVD法など)、コーティング法、ゾル・ゲル法等を用いることができる。これらのうち、緻密な膜を形成できる点から、大気圧又は大気圧近傍でのプラズマCVD処理による方法が好ましい。
 不透明な基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
The method of providing the barrier film on the resin film is not particularly limited, and any method may be used. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam method, ion plating Method, plasma polymerization method, atmospheric pressure plasma polymerization method, CVD method (chemical vapor deposition: for example, plasma CVD method, laser CVD method, thermal CVD method, etc.), coating method, sol-gel method, etc. can be used. . Of these, the method by plasma CVD treatment at or near atmospheric pressure is preferable from the viewpoint that a dense film can be formed.
Examples of the opaque substrate include a metal plate such as aluminum and stainless steel, a film, an opaque resin substrate, a ceramic substrate, and the like.
(陽極)
 有機EL素子の陽極としては、仕事関数の大きい(4eV以上)金属、合金、金属の電気伝導性化合物、又はこれらの混合物を電極物質とするものが好ましく用いられる。ここで、「金属の電気伝導性化合物」とは、金属と他の物質との化合物のうち電気伝導性を有するものをいい、具体的には、例えば、金属の酸化物、ハロゲン化物等であって電気伝導性を有するものをいう。
(anode)
As the anode of the organic EL element, a material having a work function (4 eV or more) metal, alloy, metal electrically conductive compound, or a mixture thereof is preferably used. Here, the “metal conductive compound” refers to a compound of a metal and another substance having electrical conductivity, and specifically, for example, a metal oxide, a halide or the like. That has electrical conductivity.
 このような電極物質の具体例としては、Au等の金属、CuI、インジウム・スズ酸化物(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。上記陽極は、これらの電極物質からなる薄膜を、蒸着やスパッタリング等の公知の方法により、前記基板上に形成させることで作製することができる。
 また、この薄膜にフォトリソグラフィー法で所望の形状のパターンを形成してもよく、また、パターン精度を余り必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
 陽極から発光を取り出す場合には、透過率を10%より大きくすることが望ましい。また、陽極としてのシート抵抗は、数百Ω/sq.以下が好ましい。さらに陽極の層厚は、構成する材料にもよるが、通常10nm~1μm、好ましくは10~200nmの範囲内で選ばれる。
Specific examples of such an electrode substance include a conductive transparent material such as a metal such as Au, CuI, indium tin oxide (ITO), SnO 2 , and ZnO. The anode can be produced by forming a thin film made of these electrode materials on the substrate by a known method such as vapor deposition or sputtering.
In addition, a pattern having a desired shape may be formed on the thin film by a photolithography method, and when a pattern accuracy is not required (about 100 μm or more), a desired shape can be formed at the time of vapor deposition or sputtering of the electrode material. A pattern may be formed through a mask.
When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%. The sheet resistance as the anode is several hundred Ω / sq. The following is preferred. Furthermore, although the layer thickness of the anode depends on the material constituting it, it is usually selected within the range of 10 nm to 1 μm, preferably 10 to 200 nm.
(正孔注入層)
 本発明に係る正孔注入層(「正孔注入・輸送層」ともいう。)に用いられる材料は、正孔注入材料及び正孔輸送材料として適用可能な硫化亜鉛(ZnS)を含有している。
 したがって、本発明における正孔注入層は、正孔輸送機能も有する正孔注入層である。
 上記正孔注入材料とは、正孔の注入、電子の障壁性のいずれかを有するものである。また、上記正孔輸送材料とは、電子の障壁性を有するとともに正孔を発光層まで輸送する働きを有するものである。
(Hole injection layer)
The material used for the hole injection layer (also referred to as “hole injection / transport layer”) according to the present invention contains zinc sulfide (ZnS) applicable as a hole injection material and a hole transport material. .
Therefore, the hole injection layer in the present invention is a hole injection layer having a hole transport function.
The hole injection material has either hole injection or electron barrier properties. The hole transport material has an electron barrier property and has a function of transporting holes to the light emitting layer.
 本発明に係る正孔注入層は、ZnSを含有していれば、金属酸化物などもドーピングされていてもよい。
 ZnSにドーピング可能な金属酸化物としては、例えば、酸化モリブデン、酸化バナジウム、酸化タングステン等が挙げられる。
 金属酸化物のドープ濃度としては、25~75%の範囲内であることが好ましい。
The hole injection layer according to the present invention may be doped with a metal oxide or the like as long as it contains ZnS.
Examples of metal oxides that can be doped with ZnS include molybdenum oxide, vanadium oxide, and tungsten oxide.
The doping concentration of the metal oxide is preferably in the range of 25 to 75%.
 また、ZnS以外に、その他、正孔注入層に用いられる正孔注入材料は、有機物、無機物のいずれであってもよい。
 具体的には、例えばトリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、ポルフィリン化合物、チオフェンオリゴマー等の導電性高分子オリゴマーが挙げられる。これらのうちでは、アリールアミン誘導体及びポルフィリン化合物が好ましい。アリールアミン誘導体の中では、芳香族第三級アミン化合物及びスチリルアミン化合物が好ましく、芳香族第三級アミン化合物がより好ましい。
In addition to ZnS, the hole injection material used for the hole injection layer may be either organic or inorganic.
Specifically, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives , Hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, porphyrin compounds, thiophene oligomers and other conductive polymer oligomers. Of these, arylamine derivatives and porphyrin compounds are preferred. Among the arylamine derivatives, aromatic tertiary amine compounds and styrylamine compounds are preferable, and aromatic tertiary amine compounds are more preferable.
 上記芳香族第三級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)ビフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベン;N-フェニルカルバゾール、さらには、米国特許第5061569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(以下、α-NPDと略す。)、特開平4-308688号に記載されているトリフェニルアミンユニットが三つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料として使用することができる。 Representative examples of the aromatic tertiary amine compound and styrylamine compound include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N ′. -Bis (3-methylphenyl)-[1,1'-biphenyl] -4,4'-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; Bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p- Tolylaminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, '-Di (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) biphenyl N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino -(2-diphenylvinyl) benzene; 3-methoxy-4'-N, N-diphenylaminostilbene; N-phenylcarbazole, as well as two fused aromatics described in US Pat. No. 5,061,569 Having a ring in the molecule, for example, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (hereinafter abbreviated as α-NPD), 4,4 ', 4 "-tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine (MTDATA) in which triphenylamine units described in No. 308688 are linked in three starburst types In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material.
 正孔注入層は、ドライプロセス又はウェットプロセスのいずれで形成してもよく、上記正孔注入材料を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法、転写法、印刷法等の公知の方法により、薄膜化することにより形成することができる。
 正孔注入層の厚さは、5~10nmの範囲内であることが、発光層の密度を1.0~1.7g/cmの範囲内にすることができ、発光効率及び素子寿命をより向上させることができる点で好ましい。
The hole injection layer may be formed by either a dry process or a wet process, and the hole injection material may be formed using, for example, a vacuum deposition method, a spin coating method, a casting method, an LB method, an ink jet method, a transfer method, or a printing method. The thin film can be formed by a known method such as a method.
The thickness of the hole injection layer is in the range of 5 to 10 nm, the density of the light emitting layer can be in the range of 1.0 to 1.7 g / cm 3 , and the light emission efficiency and the device life can be reduced. It is preferable in that it can be further improved.
(発光層)
 本発明に係る発光層は、正孔注入層上に直接積層され、発光層が正孔注入層に含有される硫化亜鉛と相互作用を有する有機化合物を含有し、かつ、発光層の密度が、1.0~1.8g/cmの範囲内である。
 発光層の密度は、1.4~1.7g/cmの範囲内であることがより好ましい。このような密度の範囲にする手段として、例えば、正孔注入層の厚さを上述したように5~10nmの範囲内に調整したり、ZnS層に金属酸化物をドープすることが挙げられる。
(Light emitting layer)
The light emitting layer according to the present invention is directly laminated on the hole injection layer, the light emitting layer contains an organic compound having an interaction with zinc sulfide contained in the hole injection layer, and the density of the light emitting layer is It is within the range of 1.0 to 1.8 g / cm 3 .
The density of the light emitting layer is more preferably in the range of 1.4 to 1.7 g / cm 3 . As means for obtaining such a density range, for example, the thickness of the hole injection layer is adjusted within the range of 5 to 10 nm as described above, or the ZnS layer is doped with a metal oxide.
 本発明に係る発光層は、電極又は電子輸送層、正孔注入層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。発光層は単一の組成を持つ層であってもよいし、同一又は異なる組成をもつ複数の層からなる積層構造であってもよい。
 この発光層自体に、正孔注入層、電子注入層、正孔輸送層及び電子輸送層等の機能を付与してもよい。すなわち、発光層に(1)電界印加時に、陽極又は正孔注入層により正孔を注入することができ、かつ陰極又は電子注入層より電子を注入することができる注入機能、(2)注入した電荷(電子と正孔)を電界の力で移動させる輸送機能、(3)電子と正孔の再結合の場を発光層内部に提供し、これを発光につなげる発光機能のうちの少なくとも一つの機能を付与してもよい。なお、発光層は、正孔の注入されやすさと電子の注入されやすさに違いがあってもよく、また、正孔と電子の移動度で表される輸送機能に大小があってもよいが、少なくともどちらか一方の電荷を移動させる機能を有するものが好ましい。
The light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole injection layer, and the light emitting portion is in the layer of the light emitting layer. May be the interface between the light emitting layer and the adjacent layer. The light emitting layer may be a layer having a single composition, or may be a laminated structure including a plurality of layers having the same or different compositions.
The light emitting layer itself may be provided with functions such as a hole injection layer, an electron injection layer, a hole transport layer, and an electron transport layer. That is, (1) an injection function capable of injecting holes from an anode or a hole injection layer and applying electrons from a cathode or an electron injection layer when an electric field is applied to the light emitting layer, and (2) injection At least one of a transport function that moves electric charges (electrons and holes) by the force of an electric field, and (3) a light-emitting function that provides a recombination field of electrons and holes inside the light-emitting layer and connects it to light emission. A function may be added. Note that the light emitting layer may have a difference in the ease of hole injection and the ease of electron injection, and the transport function represented by the mobility of holes and electrons may be large or small. The one having a function of moving at least one of the charges is preferable.
(発光層に用いられる有機化合物)
 発光層に用いられる有機化合物としては、ホスト化合物及び発光ドーパントが含まれていることが好ましい。
 発光層に含有される発光ドーパントは、発光層の層厚方向に対し、均一な濃度で含有されていても良いし、濃度分布を有していても良い。
 タンデム構造の有機EL素子である場合には、各発光ユニットに包含される個々の発光層の層厚は、特に制限はないが、形成する層の均質性や、発光時に不必要な高電圧の印加を防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、5~200nmの範囲内に調整することが好ましく、さらに好ましくは10~100nmの範囲内に調整される。
 以下、発光層に含まれるリン光ホスト化合物及びリン光ドーパントについて説明する。
(Organic compounds used in the light emitting layer)
As an organic compound used for a light emitting layer, it is preferable that the host compound and the light emission dopant are contained.
The light emitting dopant contained in the light emitting layer may be contained at a uniform concentration or may have a concentration distribution in the thickness direction of the light emitting layer.
In the case of an organic EL element having a tandem structure, the thickness of each light emitting layer included in each light emitting unit is not particularly limited, but the homogeneity of a layer to be formed and a high voltage unnecessary for light emission are not required. From the viewpoint of preventing the application and improving the stability of the emission color with respect to the drive current, it is preferably adjusted within the range of 5 to 200 nm, more preferably within the range of 10 to 100 nm.
Hereinafter, the phosphorescent host compound and phosphorescent dopant contained in the light emitting layer will be described.
(1)リン光ホスト化合物
 本発明に用いられるリン光ホスト化合物としては、構造的には特に制限はないが、代表的には、例えば、カルバゾール誘導体、トリアリールアミン誘導体、芳香族ボラン誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有するものや、カルボリン誘導体やジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素環の少なくとも一つの炭素原子が窒素原子で置換されているものを表す。)等が挙げられる。
(1) Phosphorescent host compound The phosphorescent host compound used in the present invention is not particularly limited in terms of structure, but typically includes, for example, a carbazole derivative, a triarylamine derivative, an aromatic borane derivative, Those having basic skeletons such as nitrogen heterocyclic compounds, thiophene derivatives, furan derivatives, oligoarylene compounds, carboline derivatives and diazacarbazole derivatives (here, diazacarbazole derivatives are carbonizations constituting the carboline ring of carboline derivatives) And the like in which at least one carbon atom of the hydrogen ring is substituted with a nitrogen atom.
 リン光ホスト化合物は、単独で用いても良いし、複数種併用して用いても良い。 The phosphorescent host compound may be used alone or in combination of two or more.
 本発明に係る発光層に用いられるリン光ホスト化合物としては、下記一般式(a)で表される化合物であることが好ましい。 The phosphorescent host compound used in the light emitting layer according to the present invention is preferably a compound represented by the following general formula (a).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(a)中、Xは、NR′、O、S、CR′R″又はSiR′R″を表す。R′及びR″は、それぞれ独立に、水素原子又は置換基を表す。Arは、芳香族環を表す。nは、0~8の整数を表す。 In general formula (a), X represents NR ′, O, S, CR′R ″ or SiR′R ″. R ′ and R ″ each independently represents a hydrogen atom or a substituent. Ar represents an aromatic ring. N represents an integer of 0 to 8.
 一般式(a)において、R′及びR″で表される置換基としては、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリール基、1-プロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、イソプロペニル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す。)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。
 これらの置換基は、上記の置換基によってさらに置換されていても良い。また、これらの置換基は、複数が互いに結合して環を形成していても良い。
In the general formula (a), examples of the substituent represented by R ′ and R ″ include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, a hexyl group). Octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (for example, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (for example, vinyl group, aryl group, 1-propenyl group, 2- Butenyl, 1,3-butadienyl, 2-pentenyl, isopropenyl, etc.), alkynyl (eg, ethynyl, propargyl, etc.), aromatic hydrocarbon (aromatic carbocyclic, aryl, etc.) For example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, ant Group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, biphenylyl group, etc., aromatic heterocyclic group (for example, furyl group, thienyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl) Group, triazinyl group, imidazolyl group, pyrazolyl group, thiazolyl group, quinazolinyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom) ), Phthalazinyl group, etc.), heterocyclic group (eg, pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl group, etc.), alkoxy group (eg, methoxy group, ethoxy group, propyloxy group, pentyloxy group, Hexyloxy group, octyl Xyl group, dodecyloxy group, etc.), cycloalkoxy group (eg, cyclopentyloxy group, cyclohexyloxy group, etc.), aryloxy group (eg, phenoxy group, naphthyloxy group, etc.), alkylthio group (eg, methylthio group, ethylthio group) Propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio group (for example, cyclopentylthio group, cyclohexylthio group, etc.), arylthio group (for example, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl group (Eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, phenyloxy Carbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecyl) Aminosulfonyl group, phenylaminosulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (for example, acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group ( For example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonyl) Amino group, propylcarbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group ( For example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, Hexylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethyl Ureido group, pentylureido group, cyclohexylureido group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, 2-pyridylaminoureido group, etc.), sulfinyl group (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group) Cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridyl Sulfinyl group etc.), alkylsulfonyl group (eg methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group etc.), arylsulfonyl group or heteroarylsulfonyl group (eg Phenylsulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (for example, amino group, ethylamino group, dimethylamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, Anilino group, naphthylamino group, 2-pyridylamino group, etc.), halogen atom (eg fluorine atom, chlorine atom, bromine atom etc.), fluorinated hydrocarbon group (eg fluoromethyl group, trifluoromethyl group, pentaf) Oroethyl group, pentafluorophenyl group, etc.), cyano group, nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group, phenyldiethylsilyl group, etc.), phosphono group, etc. Is mentioned.
These substituents may be further substituted with the above substituents. In addition, a plurality of these substituents may be bonded to each other to form a ring.
 一般式(a)において、Xは、NR′又はOを表すことが好ましく、R′は、芳香族炭化水素基又は芳香族複素環基を表すことが特に好ましい。 In the general formula (a), X preferably represents NR ′ or O, and R ′ particularly preferably represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
 一般式(a)において、Arで表される芳香族環としては、芳香族炭化水素環又は芳香族複素環が挙げられる。
 Arで表される芳香族環としては、単環又は縮合環のいずれであっても良く、さらには、未置換であっても上述のR′及びR″で表される置換基を有していても良い。
In the general formula (a), examples of the aromatic ring represented by Ar include an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
The aromatic ring represented by Ar may be either a single ring or a condensed ring, and further has a substituent represented by the above R ′ and R ″ even if it is unsubstituted. May be.
 一般式(a)において、Arで表される芳香族炭化水素環としては、例えば、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。 In the general formula (a), examples of the aromatic hydrocarbon ring represented by Ar include a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, and triphenylene. Ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, pyrene Ring, pyranthrene ring, anthraanthrene ring and the like.
 一般式(a)において、Arで表される芳香族複素環としては、例えば、フラン環、ジベンゾフラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭化水素環の炭素原子の一つが窒素原子で置換されている環を示す。)等が挙げられる。 In the general formula (a), examples of the aromatic heterocycle represented by Ar include a furan ring, a dibenzofuran ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, and a triazine ring. , Benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indazole ring, indazole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, cinnoline ring, quinoline A ring, an isoquinoline ring, a phthalazine ring, a naphthyridine ring, a carbazole ring, a carboline ring, a diazacarbazole ring (indicating a ring in which one of the carbon atoms of the hydrocarbon ring constituting the carboline ring is substituted with a nitrogen atom). Can be mentioned.
 一般式(a)において、Arで表される芳香族環として、好ましくは、カルバゾール環、カルボリン環、ジベンゾフラン環、ベンゼン環であり、より好ましくは、カルバゾール環、カルボリン環、ベンゼン環であり、特に好ましくは、置換基を有するベンゼン環であり、最も好ましくは、カルバゾリル基を有するベンゼン環である。 In the general formula (a), the aromatic ring represented by Ar is preferably a carbazole ring, carboline ring, dibenzofuran ring or benzene ring, more preferably a carbazole ring, carboline ring or benzene ring, Preferred is a benzene ring having a substituent, and most preferred is a benzene ring having a carbazolyl group.
 また、一般式(a)において、Arで表される芳香族環としては、下記に示すような、各々3環以上の縮合環であることが好ましい一態様である。
 3環以上が縮合した芳香族炭化水素縮合環としては、具体的には、例えば、ナフタセン環、アントラセン環、テトラセン環、ペンタセン環、ヘキサセン環、フェナントレン環、ピレン環、ベンゾピレン環、ベンゾアズレン環、クリセン環、ベンゾクリセン環、アセナフテン環、アセナフチレン環、トリフェニレン環、コロネン環、ベンゾコロネン環、ヘキサベンゾコロネン環、フルオレン環、ベンゾフルオレン環、フルオランテン環、ペリレン環、ナフトペリレン環、ペンタベンゾペリレン環、ベンゾペリレン環、ペンタフェン環、ピセン環、ピラントレン環、コロネン環、ナフトコロネン環、オバレン環、アンスラアントレン環等が挙げられる。
In the general formula (a), the aromatic ring represented by Ar is preferably a condensed ring having three or more rings, as shown below.
Specific examples of the aromatic hydrocarbon condensed ring in which three or more rings are condensed include, for example, naphthacene ring, anthracene ring, tetracene ring, pentacene ring, hexacene ring, phenanthrene ring, pyrene ring, benzopyrene ring, benzoazulene ring, Chrysene ring, benzochrysene ring, acenaphthene ring, acenaphthylene ring, triphenylene ring, coronene ring, benzocoronene ring, hexabenzocoronene ring, fluorene ring, benzofluorene ring, fluoranthene ring, perylene ring, naphthoperylene ring, pentabenzoperylene ring, benzoperylene ring , Pentaphen ring, picene ring, pyranthrene ring, coronene ring, naphtho coronene ring, ovalen ring, anthraanthrene ring and the like.
 また、3環以上が縮合した芳香族複素環縮合環としては、具体的には、例えば、アクリジン環、ベンゾキノリン環、カルバゾール環、カルボリン環、フェナジン環、フェナントリジン環、フェナントロリン環、カルボリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ジアザカルバゾール環(カルボリン環を構成する炭化水素環の炭素原子の一つが窒素原子で置き換わったものを示す。)、フェナントロリン環、ジベンゾフラン環、ジベンゾチオフェン環、ナフトフラン環、ナフトチオフェン環、ベンゾジフラン環、ベンゾジチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、チオファントレン環(ナフトチオフェン環)等が挙げられる。 Specific examples of the aromatic heterocyclic condensed ring in which three or more rings are condensed include, for example, an acridine ring, a benzoquinoline ring, a carbazole ring, a carboline ring, a phenazine ring, a phenanthridine ring, a phenanthroline ring, and a carboline ring. , Cyclazine ring, quindrine ring, tepenidine ring, quinindrin ring, triphenodithiazine ring, triphenodioxazine ring, phenanthrazine ring, anthrazine ring, perimidine ring, diazacarbazole ring (carbon of hydrocarbon ring constituting carboline ring) One of the atoms is replaced by a nitrogen atom.), Phenanthroline ring, dibenzofuran ring, dibenzothiophene ring, naphthofuran ring, naphthothiophene ring, benzodifuran ring, benzodithiophene ring, naphthodifuran ring, naphthodithiophene ring, anthrafuran ring Anthradithiophene furan ring, anthracite thiophene ring, anthradithiophene ring, thianthrene ring, phenoxathiin ring, such as thio fan train ring (naphthothiophene ring).
 また、一般式(a)において、nは、0~8の整数を表すが、0~2の整数であることが好ましく、特に、XがO又はSである場合には、1又は2であることが好ましい。 In the general formula (a), n represents an integer of 0 to 8, preferably an integer of 0 to 2, particularly 1 or 2 when X is O or S. It is preferable.
 以下、一般式(a)で表されるリン光ホスト化合物の具体例を示すが、本発明はこれらに限定されない。 Specific examples of the phosphorescent host compound represented by the general formula (a) are shown below, but the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 また、本発明に用いるリン光ホスト化合物は、低分子化合物でも、繰り返し単位を持つ高分子化合物でも良く、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でも良い。 In addition, the phosphorescent host compound used in the present invention may be a low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). But it ’s okay.
 リン光ホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、かつ、発光の長波長化を防ぎ、高Tg(ガラス転移温度)である化合物が好ましい。本発明においては、ガラス転移点が90℃以上の化合物が好ましく、さらには130℃以上の化合物が優れた特性を得られることから好ましい。
 ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Calorimetry:示差走査熱量法)を用いて、JIS K 7121に準拠した方法により求められる値である。
As the phosphorescent host compound, a compound having a hole transporting ability and an electron transporting ability, which prevents emission of light from being increased in wavelength and has a high Tg (glass transition temperature) is preferable. In the present invention, a compound having a glass transition point of 90 ° C. or higher is preferable, and a compound having a glass transition temperature of 130 ° C. or higher is preferable because excellent characteristics can be obtained.
Here, the glass transition point (Tg) is a value obtained by a method based on JIS K 7121 using DSC (Differential Scanning Calorimetry).
 また、本発明においては、従来公知のホスト化合物を用いることもできる。
 従来公知のホスト化合物の具体例としては、以下の文献に記載されている化合物を好適に用いることができる。例えば、特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等が挙げられる。
In the present invention, a conventionally known host compound can also be used.
As specific examples of conventionally known host compounds, compounds described in the following documents can be suitably used. For example, Japanese Patent Laid-Open Nos. 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860 Gazette, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579 No. 2002-105445, No. 2002-343568, No. 2002-141173, No. 2002-352957, No. 2002-203683, No. 2002-363227, No. 2002-231453. No. 2003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-286061, No. 2002-280183, No. 2002-299060. No. 2002-302516, No. 2002-305083, No. 2002-305084, No. 2002-308837, and the like.
 タンデム構造の有機EL素子においては、リン光ホスト化合物は各発光ユニットの発光層ごとに異なっていても良いが、同一の化合物であることが生産効率上、工程管理上好ましい。 In an organic EL device having a tandem structure, the phosphorescent host compound may be different for each light emitting layer of each light emitting unit, but the same compound is preferable in terms of production efficiency and process management.
 また、リン光ホスト化合物は、その最低励起3重項エネルギー(T1)が、2.7eVより大きいことがより高い発光効率を得られることから好ましい。
 本発明でいう最低励起3重項エネルギーとは、ホスト化合物を溶媒に溶解し、液体窒素温度において観測したリン光発光スペクトルの最低振動バンド間遷移に対応する発光バンドのピークエネルギーのことをいう。
In addition, the phosphorescent host compound preferably has a lowest excited triplet energy (T1) larger than 2.7 eV because higher luminous efficiency can be obtained.
The lowest excited triplet energy as used in the present invention refers to the peak energy of an emission band corresponding to the transition between the lowest vibrational bands of a phosphorescence emission spectrum observed at a liquid nitrogen temperature after dissolving a host compound in a solvent.
(2)リン光発光ドーパント
 本発明に用いることができるリン光発光ドーパントは、公知のものの中から選ぶことができる。例えば、元素の周期表で8族~10族の金属を含有する錯体系化合物、好ましくはイリジウム化合物、オスミウム化合物若しくは白金化合物(白金錯体系化合物)、又は希土類錯体から選ぶことができる。中でも、最も好ましいのはイリジウム化合物である。
 白色発光を呈する有機EL素子を作製する場合、少なくとも緑、黄、赤領域の発光を担う発光体としては、リン光発光材料が好ましい。
(2) Phosphorescence emission dopant The phosphorescence emission dopant which can be used for this invention can be selected from a well-known thing. For example, it can be selected from complex compounds containing metals of Group 8 to Group 10 in the periodic table of elements, preferably iridium compounds, osmium compounds or platinum compounds (platinum complex compounds), or rare earth complexes. Of these, iridium compounds are most preferred.
In the case of producing an organic EL element that emits white light, a phosphorescent light emitting material is preferable as a light emitter that emits light in at least the green, yellow, and red regions.
(一般式(A)~(C)で表される部分構造)
 また、リン光発光ドーパントとして青色リン光発光ドーパントを用いる場合、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができるが、下記一般式(A)~(C)から選ばれる少なくとも一つの部分構造を有していることが好ましい。
(Partial structures represented by general formulas (A) to (C))
In addition, when a blue phosphorescent dopant is used as the phosphorescent dopant, it can be appropriately selected from known ones used for the light emitting layer of the organic EL device, and the following general formulas (A) to (C It is preferable to have at least one partial structure selected from
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 一般式(A)中、Raは、水素原子、脂肪族基、芳香族基又は複素環基を表す。Rb及びRcは、それぞれ独立に、水素原子又は置換基を表す。A1は、芳香族環又は芳香族複素環を形成するのに必要な残基を表す。Mは、Ir又はPtを表す。 In general formula (A), Ra represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group. Rb and Rc each independently represents a hydrogen atom or a substituent. A1 represents a residue necessary for forming an aromatic ring or an aromatic heterocyclic ring. M represents Ir or Pt.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式(B)中、Raは、水素原子、脂肪族基、芳香族基又は複素環基を表す。Rb、Rc、Rb及びRcは、それぞれ独立に、水素原子又は置換基を表す。A1は、芳香族環又は芳香族複素環を形成するのに必要な残基を表す。Mは、Ir又はPtを表す。 In general formula (B), Ra represents a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group. Rb, Rc, Rb 1 and Rc 1 each independently represent a hydrogen atom or a substituent. A1 represents a residue necessary for forming an aromatic ring or an aromatic heterocyclic ring. M represents Ir or Pt.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 一般式(C)中、Raは、水素原子、脂肪族基、芳香族基又は複素環基を表す。Rb及びRcは、それぞれ独立に、水素原子又は置換基を表す。A1は、芳香族環又は芳香族複素環を形成するのに必要な残基を表す。Mは、Ir又はPtを表す。 In general formula (C), Ra represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group. Rb and Rc each independently represents a hydrogen atom or a substituent. A1 represents a residue necessary for forming an aromatic ring or an aromatic heterocyclic ring. M represents Ir or Pt.
 一般式(A)~(C)において、Raで表される脂肪族基としては、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、イソペンチル基、2-エチル-ヘキシル基、オクチル基、ウンデシル基、ドデシル基、テトラデシル基)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基)が挙げられる。
 Raで表される芳香族基としては、例えば、フェニル基、トリル基、アズレニル基、アントラニル基、フェナントリル基、ピレニル基、クリセニル基、ナフタセニル基、o-テルフェニル基、m-テルフェニル基、p-テルフェニル基、アセナフテニル基、コロネニル基、フルオレニル基、ペリレニル基等が挙げられる。
 Raで表される複素環基としては、例えば、ピロリル基、インドリル基、フリル基、チエニル基、イミダゾリル基、ピラゾリル基、インドリジニル基、キノリニル基、カルバゾリル基、インドリニル基、チアゾリル基、ピリジル基、ピリダジニル基、チアジアジニル基、オキサジアゾリル基、ベンゾキノリニル基、チアジアゾリル基、ピロロチアゾリル基、ピロロピリダジニル基、テトラゾリル基、オキサゾリル基、クロマニル基等を挙げることができる。
 これらの基は、一般式(a)におけるR′及びR″で表される置換基を有していても良い。
In the general formulas (A) to (C), examples of the aliphatic group represented by Ra include an alkyl group (eg, methyl group, ethyl group, propyl group, butyl group, pentyl group, isopentyl group, 2-ethyl group). -Hexyl group, octyl group, undecyl group, dodecyl group, tetradecyl group) and cycloalkyl group (for example, cyclopentyl group, cyclohexyl group).
Examples of the aromatic group represented by Ra include a phenyl group, a tolyl group, an azulenyl group, an anthranyl group, a phenanthryl group, a pyrenyl group, a chrycenyl group, a naphthacenyl group, an o-terphenyl group, an m-terphenyl group, p -Terphenyl group, acenaphthenyl group, coronenyl group, fluorenyl group, perylenyl group and the like.
Examples of the heterocyclic group represented by Ra include pyrrolyl, indolyl, furyl, thienyl, imidazolyl, pyrazolyl, indolizinyl, quinolinyl, carbazolyl, indolinyl, thiazolyl, pyridyl, pyridazinyl. Group, thiadiazinyl group, oxadiazolyl group, benzoquinolinyl group, thiadiazolyl group, pyrrolothiazolyl group, pyrrolopyridazinyl group, tetrazolyl group, oxazolyl group, chromanyl group and the like.
These groups may have a substituent represented by R ′ and R ″ in the general formula (a).
 一般式(A)~(C)において、Rb、Rc、Rb及びRcで表される置換基としては、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、アリール基(例えば、フェニル基、ナフチル基等)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシル基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシル基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)等が挙げられる。
 これらの置換基は、上記の置換基によってさらに置換されていても良い。
In the general formulas (A) to (C), examples of the substituent represented by Rb, Rc, Rb 1 and Rc 1 include an alkyl group (eg, methyl group, ethyl group, propyl group, isopropyl group, tert- Butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (eg, vinyl group, allyl group) Etc.), alkynyl groups (eg ethynyl group, propargyl group etc.), aryl groups (eg phenyl group, naphthyl group etc.), aromatic heterocyclic groups (eg furyl group, thienyl group, pyridyl group, pyridazinyl group, pyrimidinyl group) Group, pyrazinyl group, triazinyl group, imidazolyl group, pyrazolyl group, thiazolyl group, quinazolyl Group, phthalazinyl group, etc.), heterocyclic group (eg, pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl group, etc.), alkoxyl group (eg, methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group) Octyloxy group, dodecyloxy group, etc.), cycloalkoxyl group (eg, cyclopentyloxy group, cyclohexyloxy group, etc.), aryloxy group (eg, phenoxy group, naphthyloxy group, etc.), alkylthio group (eg, methylthio group, Ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio group (eg, cyclopentylthio group, cyclohexylthio group, etc.), arylthio group (eg, phenylthio group, naphthylthio group) Etc.), alkoxycarbonyl groups (eg methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group etc.), aryloxycarbonyl groups (eg phenyloxycarbonyl group, naphthyloxy) Carbonyl group, etc.), sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenyl) Aminosulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (for example, acetyl group, ethylcarbonyl group, propyl group) Rubonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (for example, acetyloxy group, ethylcarbonyl group) Oxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, Pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonylamino group Group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, octyl) Aminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethylureido group, pentylureido group) Cyclohexylureido group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, 2-pyridylaminoureido group, etc.), sulfinyl Groups (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.), alkylsulfonyl group ( For example, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group, etc.), arylsulfonyl group (for example, phenylsulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.) ), Amino group (for example, amino group, ethylamino group, dimethylamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamine) Group, anilino group, naphthylamino group, 2-pyridylamino group, etc.), halogen atom (eg fluorine atom, chlorine atom, bromine atom etc.), fluorinated hydrocarbon group (eg fluoromethyl group, trifluoromethyl group, Pentafluoroethyl group, pentafluorophenyl group, etc.), cyano group, nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group, phenyldiethylsilyl group, etc.) Can be mentioned.
These substituents may be further substituted with the above substituents.
 一般式(A)~(C)において、A1で表される芳香族環としては、例えば、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。
 A1で表される芳香族複素環としては、例えば、フラン環、チオフェン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭化水素環の炭素原子の一つが窒素原子で置換されている環を示す。)等が挙げられる。
In the general formulas (A) to (C), examples of the aromatic ring represented by A1 include a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, and naphthacene ring. , Triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring , Pyrene ring, pyranthrene ring, anthraanthrene ring and the like.
As the aromatic heterocycle represented by A1, for example, furan ring, thiophene ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, benzimidazole ring, oxadiazole ring, triazole ring, imidazole ring, Pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, carbazole ring, carboline ring, diazacarbazole ring (the hydrocarbon ring constituting the carboline ring) A ring in which one of the carbon atoms is substituted with a nitrogen atom.) And the like.
 一般式(A)~(C)において、Mは、Ir又はPtを表すが、中でもIrが好ましい。 In the general formulas (A) to (C), M represents Ir or Pt, with Ir being preferred.
 一般式(A)~(C)の構造は部分構造であり、それ自身が完成構造の発光ドーパントとなるには、中心金属の価数に対応した配位子が必要である。そのような配位子としては、具体的には、例えば、ハロゲン(例えば、フッ素原子、塩素原子、臭素原子又はヨウ素原子等)、アリール基(例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ビフェニル基、ナフチル基、アントリル基、フェナントリル基等)、アルキル基(例えば、メチル基、エチル基、イソプロピル基、ヒドロキシエチル基、メトキシメチル基、トリフルオロメチル基、t-ブチル基等)、アルキルオキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、フタラジニル基等)、一般式(A)~(C)の金属を除いた部分構造等が挙げられる。 The structures of the general formulas (A) to (C) are partial structures, and a ligand corresponding to the valence of the central metal is necessary for the structure itself to be a light-emitting dopant of a completed structure. Specific examples of such ligands include, for example, halogen (eg, fluorine atom, chlorine atom, bromine atom or iodine atom), aryl group (eg, phenyl group, p-chlorophenyl group, mesityl group, Tolyl group, xylyl group, biphenyl group, naphthyl group, anthryl group, phenanthryl group, etc.), alkyl group (for example, methyl group, ethyl group, isopropyl group, hydroxyethyl group, methoxymethyl group, trifluoromethyl group, t-butyl) Group), alkyloxy group, aryloxy group, alkylthio group, arylthio group, aromatic heterocyclic group (for example, furyl group, thienyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group, imidazolyl group, Pyrazolyl group, thiazolyl group, quinazolinyl group, carbazolyl group, cal Riniru group, phthalazinyl group, etc.), the general formula (A) ~ partial structure such as metal except for the (C) can be mentioned.
 発光ドーパントとしては、一般式(A)~(C)の部分構造3個で完成構造となるトリス体が好ましい。 As the luminescent dopant, a tris body having a completed structure with three partial structures of the general formulas (A) to (C) is preferable.
 以下、上記一般式(A)~(C)の部分構造を有するリン光発光ドーパントを例示するが、これらに限定されるものではない。 Hereinafter, phosphorescent dopants having the partial structures of the general formulas (A) to (C) will be exemplified, but the invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(3)蛍光発光ドーパント
 蛍光発光ドーパント(蛍光性ドーパント、蛍光発光体等ともいう。)としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、希土類錯体系蛍光体等が挙げられる。
(3) Fluorescent luminescent dopant Fluorescent luminescent dopants (also referred to as fluorescent dopants, fluorescent luminescent materials, etc.) include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes. Fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes, polythiophene dyes, rare earth complex phosphors, and the like.
(電子注入層及び電子輸送層)
 電子注入層は、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができる。この電子注入層に用いられる有機EL素子用材料(以下、「電子注入材料」ともいう。)の例としては、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。
(Electron injection layer and electron transport layer)
The electron injecting layer only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer, and any material can be selected from conventionally known compounds. Examples of materials for organic EL elements used in this electron injection layer (hereinafter also referred to as “electron injection materials”) include heterocyclic rings such as nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene, and the like. Examples include tetracarboxylic anhydride, carbodiimide, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
 また、特開昭59-194393号公報に記載されている一連の電子伝達性化合物は、該公報では発光層を形成する材料として開示されているが、本発明者らが検討の結果、電子注入材料として用いうることが分かった。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子注入材料として用いることができる。 In addition, a series of electron transfer compounds described in Japanese Patent Application Laid-Open No. 59-194393 is disclosed as a material for forming a light emitting layer in the publication, but as a result of investigations by the present inventors, electron injection is performed. It was found that it can be used as a material. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, or a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as an electron injection material.
 また、8-キノリノール誘導体の金属錯体、例えばトリス(8-キノリノール)アルミニウム(Alqと略す。)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も電子注入材料として用いることができる。 In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (abbreviated as Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8- Quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and the central metal of these metal complexes is In Metal complexes replaced with Mg, Cu, Ca, Sn, Ga, or Pb can also be used as the electron injection material.
 その他、メタルフリーやメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも電子注入材料として好ましく用いることができる。また、正孔注入層と同様にn型-Si、n型-SiC等の無機半導体も電子注入材料として用いることができる。
 電子輸送層に用いられる好ましい有機EL素子用材料は、415nm以下に蛍光極大波長を有することが好ましい。すなわち、電子輸送層に用いられる有機EL素子用材料は、電子輸送能を有しつつかつ、発光の長波長化を防ぎ、なおかつ高Tgである化合物が好ましい。
 電子注入層は、上記電子注入材料を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法、転写法、印刷法等の公知の方法により、薄膜化することにより形成することができる。
 また、電子注入層としての厚さは特に制限はないが、通常は5nm~5μmの範囲で選ばれる。この電子注入層は、これらの電子注入材料の1種又は2種以上からなる1層構造であってもよいし、同一組成又は異種組成の複数層からなる積層構造であってもよい。
In addition, metal-free or metal phthalocyanine, or those in which the terminal is substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron injection material. Similarly to the hole injection layer, an inorganic semiconductor such as n-type-Si or n-type-SiC can also be used as the electron injection material.
A preferable material for an organic EL element used for the electron transport layer preferably has a fluorescence maximum wavelength at 415 nm or less. That is, the organic EL element material used for the electron transport layer is preferably a compound that has an electron transport ability, prevents the emission of light from becoming longer, and has a high Tg.
The electron injection layer is formed by thinning the electron injection material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, an ink jet method, a transfer method, or a printing method. Can do.
The thickness of the electron injection layer is not particularly limited, but is usually selected in the range of 5 nm to 5 μm. The electron injection layer may have a single layer structure composed of one or more of these electron injection materials, or may have a laminated structure composed of a plurality of layers having the same composition or different compositions.
 なお、本明細書においては、前記電子注入層のうち、発光層と比較してイオン化エネルギーが大きい場合には、特に電子輸送層と呼ぶこととする。したがって、本明細書においては、電子輸送層は電子注入層に含まれる。
 上記電子輸送層は、正孔阻止層(ホールブロック層)ともいわれ、その例としては、例えば、WO00/70655号、特開2001-313178号公報、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日 エヌ・ティー・エス社発行)」の第237頁等に記載されているものが挙げられる。特に発光層にオルトメタル錯体系ドーパントを用いるいわゆる「リン光発光素子」においては、前記(v)及び(vi)のように電子輸送層(正孔阻止層)を有する構成を採ることが好ましい。
In the present specification, when the ionization energy of the electron injection layer is larger than that of the light emitting layer, it is particularly referred to as an electron transport layer. Therefore, in this specification, an electron carrying layer is contained in an electron injection layer.
The electron transport layer is also referred to as a hole blocking layer (hole block layer). Examples thereof include, for example, WO00 / 70655, JP2001-313178, JP11-204258, and 11-204359. And the like described in page 237 of “Organic EL devices and their forefront of industrialization” (issued on November 30, 1998 by NTS). In particular, in the so-called “phosphorescent light emitting device” using an ortho metal complex dopant in the light emitting layer, it is preferable to adopt a configuration having an electron transport layer (hole blocking layer) as in the above (v) and (vi).
(バッファー層)
 陽極と正孔注入層の間、及び、陰極と発光層又は電子注入層との間にはバッファー層(電極界面層)を存在させてもよい。バッファー層とは、駆動電圧低下や発光効率向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日 エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(第123~166頁)に詳細に記載されており、陽極バッファー層と陰極バッファー層とがある。
(Buffer layer)
A buffer layer (electrode interface layer) may exist between the anode and the hole injection layer and between the cathode and the light emitting layer or the electron injection layer. The buffer layer is a layer that is provided between the electrode and the organic layer in order to lower the driving voltage and improve the light emission efficiency. “The organic EL element and the forefront of its industrialization (issued on November 30, 1998 by NTS Corporation) ) ”, Chapter 2, Chapter 2,“ Electrode Materials ”(pages 123 to 166), which includes an anode buffer layer and a cathode buffer layer.
 陽極バッファー層は、特開平9-45479号、同9-260062号、同8-288069号等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。 Details of the anode buffer layer are also described in JP-A-9-45479, 9-260062, 8-28869, etc., and specific examples thereof include a phthalocyanine buffer layer represented by copper phthalocyanine, vanadium oxide. And an oxide buffer layer, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
 陰極バッファー層は、特開平6-325871号、同9-17574号、同10-74586号等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。 The details of the cathode buffer layer are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, a metal buffer layer typified by strontium or aluminum, Examples thereof include an alkali metal compound buffer layer typified by lithium fluoride, an alkaline earth metal compound buffer layer typified by magnesium fluoride, and an oxide buffer layer typified by aluminum oxide.
 上記バッファー層はごく薄い膜であることが望ましく、素材にもよるが、その厚さは0.1~100nmの範囲が好ましい。さらに、上記基本構成層の他に、必要に応じてその他の機能を有する層を適宜積層してもよい。 The buffer layer is desirably a very thin film, and depending on the material, the thickness is preferably in the range of 0.1 to 100 nm. Furthermore, in addition to the basic constituent layers, layers having other functions may be appropriately laminated as necessary.
(陰極)
 有機EL素子の陰極としては、一般に仕事関数の小さい(4eV未満)金属(以下、電子注入性金属と称する)、合金、金属の電気伝導性化合物又はこれらの混合物を電極物質とするものが用いられる。
 このような電極物質の具体例としては、ナトリウム、マグネシウム、リチウム、アルミニウム、インジウム、希土類金属、ナトリウム-カリウム合金、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物等が挙げられる。
(cathode)
As the cathode of the organic EL element, a metal having a low work function (less than 4 eV) (hereinafter referred to as an electron injecting metal), an alloy, a metal electrically conductive compound, or a mixture thereof is used. .
Specific examples of such electrode materials include sodium, magnesium, lithium, aluminum, indium, rare earth metals, sodium-potassium alloys, magnesium / copper mixtures, magnesium / silver mixtures, magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / Aluminum oxide (Al 2 O 3 ) mixture, lithium / aluminum mixture and the like.
 本発明においては、上記に列挙したものを陰極の電極物質として用いてもよいが、本発明の効果をより有効に発揮させる点からは、陰極は第13族金属元素を含有してなることが好ましい。すなわち本発明では、後述するように陰極の表面をプラズマ状態の酸素ガスで酸化して、陰極表面に酸化皮膜を形成することにより、それ以上の陰極の酸化を防止し、陰極の耐久性を向上させることができる。 In the present invention, those listed above may be used as the electrode material of the cathode. However, from the viewpoint of more effectively exerting the effects of the present invention, the cathode may contain a Group 13 metal element. preferable. That is, in the present invention, as described later, the surface of the cathode is oxidized with oxygen gas in a plasma state to form an oxide film on the cathode surface, thereby preventing further oxidation of the cathode and improving the durability of the cathode. Can be made.
 したがって、陰極の電極物質としては、陰極に要求される好ましい電子注入性を有する金属であって、緻密な酸化皮膜を形成しうる金属であることが好ましい。
 前記第13族金属元素を含有してなる陰極の電極物質としては、具体的には、例えば、アルミニウム、インジウム、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物等が挙げられる。なお、上記混合物の各成分の混合比率は、有機EL素子の陰極として従来公知の比率を採用することができるが、特にこれに限定されない。上記陰極は、上記の電極物質を蒸着やスパッタリング等の方法により、前記有機機能層上に薄膜形成することにより、作製することができる。
 また、陰極としてのシート抵抗は数百Ω/sq.以下が好ましく、層厚は、通常10nm~1μm、好ましくは50~200nmの範囲で選ばれる。なお、発光光を透過させるために、有機EL素子の陽極又は陰極のいずれか一方を透明又は半透明にすると、発光効率が向上して好ましい。
Therefore, the electrode material of the cathode is preferably a metal having a preferable electron injection property required for the cathode and capable of forming a dense oxide film.
Specific examples of the electrode material of the cathode containing the Group 13 metal element include, for example, aluminum, indium, a magnesium / aluminum mixture, a magnesium / indium mixture, and an aluminum / aluminum oxide (Al 2 O 3 ) mixture. And lithium / aluminum mixtures. In addition, the mixing ratio of each component of the said mixture can employ | adopt a conventionally well-known ratio as a cathode of an organic EL element, However It is not limited to this in particular. The cathode can be produced by forming a thin film on the organic functional layer by depositing the electrode material described above by a method such as vapor deposition or sputtering.
The sheet resistance as a cathode is several hundred Ω / sq. The following is preferable, and the layer thickness is usually selected in the range of 10 nm to 1 μm, preferably 50 to 200 nm. In order to transmit the emitted light, it is preferable that either one of the anode and the cathode of the organic EL element is made transparent or semi-transparent because the light emission efficiency is improved.
[有機EL素子の製造方法]
 本発明に係る有機EL素子の製造方法の一例として、陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の製造法について説明する。
 まず、適当な基体上に、所望の電極物質、例えば陽極用物質からなる薄膜を、1μm以下、好ましくは10~200nmの厚さになるように、蒸着やスパッタリング等の方法により形成させ、陽極を作製する。
 次に、この上に、上述した少なくともZnSを含有する正孔注入層、発光層、電子輸送層、電子注入層及び正孔阻止層の有機化合物薄膜を順に形成させる。ここで、本発明の組成物を用いて発光層を形成することが好ましい。
 これらの有機化合物薄膜の薄膜化の方法としては、上述したように、スピンコート法、キャスト法、インクジェット法、蒸着法、印刷法等があるが、均質な膜が得られやすく、かつピンホールが生成しにくい等の点から、真空蒸着法又はスピンコート法が好ましく、本発明においては、本発明の組成物を塗布溶液として用いることができる点でスピンコート法が特に好ましい。
[Method of manufacturing organic EL element]
As an example of the method for producing an organic EL device according to the present invention, a method for producing an organic EL device comprising anode / hole injection layer / light emitting layer / electron transport layer / electron injection layer / cathode will be described.
First, a thin film made of a desired electrode material, for example, an anode material is formed on a suitable substrate by a method such as vapor deposition or sputtering so as to have a thickness of 1 μm or less, preferably 10 to 200 nm. Make it.
Next, the organic compound thin film of the hole injection layer, the light emitting layer, the electron transport layer, the electron injection layer, and the hole blocking layer containing at least ZnS described above is sequentially formed thereon. Here, it is preferable to form a light emitting layer using the composition of the present invention.
As described above, there are spin coating methods, casting methods, ink jet methods, vapor deposition methods, printing methods, and the like as methods for thinning these organic compound thin films. A vacuum deposition method or a spin coating method is preferable from the viewpoint that it is difficult to form. In the present invention, the spin coating method is particularly preferable because the composition of the present invention can be used as a coating solution.
 また、層ごとに異なる成膜法を適用してもよい。成膜に蒸着法を採用する場合、その蒸着条件は、使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃、真空度10-6~10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、厚さ0.1nm~5μmの範囲で適宜選ぶことが望ましい。
 これらの層を形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50~200nmの範囲の厚さになるように、例えば蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより、所望の有機EL素子が得られる。この有機EL素子の作製は、1回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる成膜法を施してもかまわない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。
Different film formation methods may be applied for each layer. When a vapor deposition method is employed for film formation, the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C., a vacuum degree of 10 −6 to 10 −2 Pa, a vapor deposition rate of 0.01 It is desirable to select appropriately within the range of ˜50 nm / second, substrate temperature of −50 to 300 ° C., and thickness of 0.1 nm to 5 μm.
After these layers are formed, a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a thickness of 1 μm or less, preferably in the range of 50 to 200 nm, and a cathode is provided. Thus, a desired organic EL element can be obtained. The organic EL element is preferably manufactured from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
[有機EL素子の封止]
 有機EL素子の封止手段としては、特に限られないが、例えば、有機EL素子の外周部を封止用接着剤で封止した後、有機EL素子の発光領域を覆うように封止部材を配置する方法が挙げられる。
[Encapsulation of organic EL elements]
The organic EL element sealing means is not particularly limited. For example, after sealing the outer periphery of the organic EL element with a sealing adhesive, a sealing member is provided so as to cover the light emitting region of the organic EL element. The method of arranging is mentioned.
 封止用接着剤としては、例えば、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。 Examples of the sealing adhesive include photocuring and thermosetting adhesives having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. Can be mentioned. Moreover, heat | fever and chemical curing types (two-component mixing), such as an epoxy type, can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
 封止部材としては、有機EL素子を薄膜化することできる観点から、ポリマーフィルム及び金属フィルムを好ましく使用することができる。 As the sealing member, a polymer film and a metal film can be preferably used from the viewpoint of reducing the thickness of the organic EL element.
 封止部材と有機EL素子の発光領域との間隙には、封止用接着剤の他には、気相及び液相では窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコーンオイルのような不活性液体を注入することもできる。また、封止部材と有機EL素子の表示領域との間隙を真空とすることや、間隙に吸湿性化合物を封入することもできる。 In the gap between the sealing member and the light emitting region of the organic EL element, in addition to the sealing adhesive, in the gas phase and liquid phase, inert gases such as nitrogen and argon, fluorinated hydrocarbons, and silicone oil are used. Inert liquids can also be injected. Further, the gap between the sealing member and the display area of the organic EL element can be evacuated, or a hygroscopic compound can be sealed in the gap.
[表示装置]
 本発明の有機EL素子を用いる多色表示装置は、発光層形成時のみシャドーマスクを設け、他層は共通であるので、シャドーマスク等のパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。
 発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、印刷法である。蒸着法を用いる場合においてはシャドーマスクを用いたパターニングが好ましい。
[Display device]
The multicolor display device using the organic EL element of the present invention is provided with a shadow mask only at the time of forming a light emitting layer, and the other layers are common, so patterning such as a shadow mask is unnecessary, vapor deposition method, casting method, A film can be formed by a spin coating method, an inkjet method, a printing method, or the like.
When patterning is performed only on the light-emitting layer, the method is not limited, but a vapor deposition method, an inkjet method, and a printing method are preferable. In the case of using a vapor deposition method, patterning using a shadow mask is preferable.
 また、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
 このようにして得られた多色表示装置に、直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2~40V程度を印加すると、発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。さらに、交流電圧を印加する場合には、陽極が+、陰極が-の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。
In addition, it is also possible to reverse the production order and produce the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode in this order.
When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state. The alternating current waveform to be applied may be arbitrary.
 多色表示装置は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。表示デバイス、ディスプレイにおいて、青、赤、緑発光の3種の有機EL素子を用いることにより、フルカラーの表示が可能となる。
 表示デバイス、ディスプレイとしてはテレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。
The multicolor display device can be used as a display device, a display, and various light emission sources. In a display device or display, full-color display is possible by using three types of organic EL elements of blue, red, and green light emission.
Examples of the display device and the display include a television, a personal computer, a mobile device, an AV device, a character broadcast display, and an information display in a car. In particular, it may be used as a display device for reproducing still images and moving images, and the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
 発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではない。
 また、本発明に係る有機EL素子に共振器構造を持たせた有機EL素子として用いてもよい。
Light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc. For example, but not limited to.
Further, the organic EL element according to the present invention may be used as an organic EL element having a resonator structure.
 このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより、上記用途に使用してもよい。
 本発明の有機EL素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。又は、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。
Examples of the purpose of use of the organic EL element having such a resonator structure include a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processing machine, and a light source of an optical sensor. It is not limited. Moreover, you may use for the said use by making a laser oscillation.
The organic EL device of the present invention may be used as a kind of lamp such as an illumination or exposure light source, a projection device that projects an image, or a display device that directly recognizes a still image or a moving image. (Display) may be used. The driving method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method. Alternatively, it is possible to produce a full-color display device by using two or more organic EL elements of the present invention having different emission colors.
 本発明の有機EL素子から構成される表示装置の一例を図面に基づいて以下に説明する。
 図1は、有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。ディスプレイ41は、複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B等からなる。制御部Bは、表示部Aと電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。
 図2は、表示部Aの模式図である。表示部Aは基板上に、複数の走査線55及びデータ線56を含む配線部と、複数の画素53等とを有する。表示部Aの主要な部材の説明を以下に行う。
An example of a display device composed of the organic EL element of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic diagram illustrating an example of a display device including organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element. The display 41 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like. The control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of the plurality of pixels based on image information from the outside. The pixels for each scanning line are converted into image data signals by the scanning signal. In response to this, light is sequentially emitted and image scanning is performed to display image information on the display unit A.
FIG. 2 is a schematic diagram of the display unit A. The display unit A includes a wiring unit including a plurality of scanning lines 55 and data lines 56, a plurality of pixels 53, and the like on a substrate. The main members of the display unit A will be described below.
 図2においては、画素53の発光した光が、白矢印方向(下方向)へ取り出される場合を示している。配線部の走査線55及び複数のデータ線56は、それぞれ導電材料からなり、走査線55とデータ線56は格子状に直交して、直交する位置で画素53に接続している(詳細は図示せず)。画素53は、走査線55から走査信号が印加されると、データ線56から画像データ信号を受け取り、受け取った画像データに応じて発光する。発光の色が赤領域の画素、緑領域の画素、青領域の画素を、適宜、同一基板上に並置することによって、フルカラー表示が可能となる。 FIG. 2 shows a case where the light emitted from the pixel 53 is extracted in the white arrow direction (downward). The scanning lines 55 and the plurality of data lines 56 in the wiring portion are each made of a conductive material, and the scanning lines 55 and the data lines 56 are orthogonal to each other in a lattice shape and are connected to the pixels 53 at the orthogonal positions (details are shown in the figure). Not shown). When a scanning signal is applied from the scanning line 55, the pixel 53 receives an image data signal from the data line 56, and emits light according to the received image data. Full color display is possible by appropriately arranging pixels in the red region, the green region, and the blue region that emit light on the same substrate.
 次に、画素の発光プロセスを説明する。
 図3は、画素の回路を示した概略図である。画素は、有機EL素子60、スイッチングトランジスタ61、駆動トランジスタ62、コンデンサー63等を備えている。複数の画素に有機EL素子60として、赤色、緑色、青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。
 図3において、制御部B(図3には図示せず、図1に示す。)からデータ線56を介してスイッチングトランジスタ61のドレインに画像データ信号が印加される。そして、制御部Bから走査線55を介してスイッチングトランジスタ61のゲートに走査信号が印加されると、スイッチングトランジスタ61の駆動がオンし、ドレインに印加された画像データ信号がコンデンサー63と駆動トランジスタ62のゲートに伝達される。
 画像データ信号の伝達により、コンデンサー63が画像データ信号の電位に応じて充電されるとともに、駆動トランジスタ62の駆動がオンする。駆動トランジスタ62は、ドレインが電源ライン67に接続され、ソースが有機EL素子60の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン67から有機EL素子60に電流が供給される。
Next, the light emission process of the pixel will be described.
FIG. 3 is a schematic diagram illustrating a pixel circuit. The pixel includes an organic EL element 60, a switching transistor 61, a driving transistor 62, a capacitor 63, and the like. A full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 60 for a plurality of pixels, and juxtaposing them on the same substrate.
3, an image data signal is applied to the drain of the switching transistor 61 from the control unit B (not shown in FIG. 3, but shown in FIG. 1) via the data line 56. When a scanning signal is applied from the control unit B to the gate of the switching transistor 61 via the scanning line 55, the switching transistor 61 is turned on, and the image data signal applied to the drain is supplied to the capacitor 63 and the driving transistor 62. Is transmitted to the gate.
By transmitting the image data signal, the capacitor 63 is charged according to the potential of the image data signal, and the drive of the drive transistor 62 is turned on. The drive transistor 62 has a drain connected to the power supply line 67 and a source connected to the electrode of the organic EL element 60, and the power supply line 67 changes to the organic EL element 60 according to the potential of the image data signal applied to the gate. Current is supplied.
 制御部Bの順次走査により走査信号が次の走査線55に移ると、スイッチングトランジスタ61の駆動がオフする。しかし、スイッチングトランジスタ61の駆動がオフしてもコンデンサー63は充電された画像データ信号の電位を保持するので、駆動トランジスタ62の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子60の発光が継続する。順次走査により、次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ62が駆動して有機EL素子60が発光する。すなわち、有機EL素子60の発光は、複数の画素それぞれの有機EL素子60に対して、アクティブ素子であるスイッチングトランジスタ61と駆動トランジスタ62を設けて、複数の画素53(図3には図示せず、図2に示す。)それぞれの有機EL素子60の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。 When the scanning signal moves to the next scanning line 55 by the sequential scanning of the control unit B, the driving of the switching transistor 61 is turned off. However, even if the driving of the switching transistor 61 is turned off, the capacitor 63 holds the potential of the charged image data signal, so that the driving of the driving transistor 62 is kept on and the next scanning signal is applied. Until then, the organic EL element 60 continues to emit light. When the scanning signal is next applied by sequential scanning, the driving transistor 62 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 60 emits light. That is, the organic EL element 60 emits light by providing a switching transistor 61 and a drive transistor 62, which are active elements, for each of the organic EL elements 60 of a plurality of pixels, and a plurality of pixels 53 (not shown in FIG. 3). 2) Each organic EL element 60 emits light. Such a light emitting method is called an active matrix method.
 ここで、有機EL素子60の発光は、複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。
 また、コンデンサー63の電位の保持は、次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。
 本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。
Here, the light emission of the organic EL element 60 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or on / off of a predetermined light emission amount by a binary image data signal. But you can.
The potential of the capacitor 63 may be held continuously until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
In the present invention, not only the active matrix method described above, but also a passive matrix light emission drive in which the organic EL element emits light according to the data signal only when the scanning signal is scanned.
 図4は、パッシブマトリクス方式による表示装置の模式図である。図4において、複数の走査線55と複数の画像データ線56が画素53を挟んで対向して格子状に設けられている。順次走査により走査線55の走査信号が印加されたとき、印加された走査線55に接続している画素53が画像データ信号に応じて発光する。パッシブマトリクス方式では画素53にアクティブ素子が無く、製造コストの低減を図ることができる。 FIG. 4 is a schematic view of a passive matrix display device. In FIG. 4, a plurality of scanning lines 55 and a plurality of image data lines 56 are provided in a lattice shape so as to face each other with the pixel 53 interposed therebetween. When the scanning signal of the scanning line 55 is applied by sequential scanning, the pixel 53 connected to the applied scanning line 55 emits light according to the image data signal. In the passive matrix method, there is no active element in the pixel 53, and the manufacturing cost can be reduced.
[照明装置]
 本発明の照明装置は、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の露光光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれらに限定するものではない。
[Lighting device]
The lighting device of the present invention includes home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources of optical storage media, exposure light sources of electrophotographic copying machines, light sources of optical communication processors, and optical sensors. However, the present invention is not limited to these.
 本発明の有機EL素子を具備した本発明の照明装置の一態様について説明する。 An embodiment of the lighting device of the present invention provided with the organic EL element of the present invention will be described.
 本発明の有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図5及び図6に示すような照明装置を形成することができる。 The non-light emitting surface of the organic EL device of the present invention is covered with a glass case, a 300 μm thick glass substrate is used as a sealing substrate, and an epoxy photocurable adhesive (LUX The track LC0629B) is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured, sealed, and illuminated as shown in FIGS. A device can be formed.
 図5は、照明装置の模式図を示している。
 図5に示すとおり、有機EL素子101はガラスカバー102で覆われている。
 ガラスカバー102での封止作業は、好ましくは、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行われる。
FIG. 5 shows a schematic diagram of the lighting device.
As shown in FIG. 5, the organic EL element 101 is covered with a glass cover 102.
The sealing operation with the glass cover 102 is preferably performed in a glove box (in an atmosphere of high purity nitrogen gas having a purity of 99.999% or more) in a nitrogen atmosphere without bringing the organic EL element 101 into contact with the atmosphere.
 図6は、照明装置の断面図を示している。
 図6に示すとおり、照明装置は、主に陰極105、有機EL層106及び透明電極付きガラス基板107で構成され、これら部材がガラスカバー102で覆われている。
 ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
 このように、本発明の有機EL素子は、前記表示デバイス、ディスプレイに加えて、各種発光光源、照明装置として、家庭用照明、車内照明、また露光光源のような一種のランプとして、また液晶表示装置のバックライト等、表示装置にも有用に用いられる。
FIG. 6 shows a cross-sectional view of the lighting device.
As shown in FIG. 6, the lighting device mainly includes a cathode 105, an organic EL layer 106, and a glass substrate 107 with a transparent electrode, and these members are covered with a glass cover 102.
The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
As described above, the organic EL element of the present invention is not only the display device and the display, but also various light emitting sources, lighting devices, home lighting, interior lighting, a kind of lamp such as an exposure light source, and a liquid crystal display. It is also useful for display devices such as device backlights.
 その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等、さらには表示装置を必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。 In addition, backlights such as clocks, signboard advertisements, traffic lights, light sources such as optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processing machines, light sources for optical sensors, etc. There are a wide range of uses such as household appliances.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented.
[実施例1]
 以下に説明する実施例で用いられる化合物の構造式を以下に示す。
Figure JPOXMLDOC01-appb-C000023
[Example 1]
Structural formulas of compounds used in the examples described below are shown below.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
<有機EL素子1-1の作製>
 100mm×100mm×1.1mmのガラス基板上に、陽極としてITO(Indium Tin Oxide(インジウム・スズ酸化物))を100nm成膜した基板(AvanStrate株式会社製、NA45)にパターニングを行った。その後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥して、UVオゾン洗浄を5分間行った。
 この透明支持基板を真空蒸着装置に取り付け、真空槽を4×10-4Paまで減圧した。次いで、正孔注入層として、ZnSを10nm蒸着し、正孔注入層を設けた。
<Preparation of organic EL element 1-1>
Patterning was performed on a substrate (AvanState Co., Ltd., NA45) in which ITO (Indium Tin Oxide) 100 nm was formed as an anode on a 100 mm × 100 mm × 1.1 mm glass substrate. Thereafter, the transparent support substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
This transparent support substrate was attached to a vacuum deposition apparatus, and the vacuum chamber was depressurized to 4 × 10 −4 Pa. Next, 10 nm of ZnS was deposited as a hole injection layer to provide a hole injection layer.
 次いで、正孔注入層上に、ホスト化合物として1-6及びドーパントとしてD-28を1-6:D-28=100:5の割合で、70nm蒸着し、発光層を設けた。
 次いで、電子注入層としてフッ化リチウムを1.0nm、陰極としてアルミニウムを110nmそれぞれ蒸着し、有機EL素子1-1を作製した。
Next, on the hole injection layer, 1-6 as a host compound and D-28 as a dopant were deposited in a ratio of 1-6: D-28 = 100: 5 to a thickness of 70 nm to provide a light emitting layer.
Next, 1.0 nm of lithium fluoride was deposited as an electron injection layer and 110 nm of aluminum was deposited as a cathode, thereby fabricating an organic EL device 1-1.
<有機EL素子1-2~1-5の作製>
 有機EL素子1-1の作製において、正孔注入層の材料を下記表Iに示す材料に変更した。それ以外は同様にして、有機EL素子1-2~1-5を各々作製した。
<Preparation of organic EL elements 1-2 to 1-5>
In the production of the organic EL element 1-1, the material of the hole injection layer was changed to the material shown in Table I below. Other than that, organic EL elements 1-2 to 1-5 were produced in the same manner.
<有機EL素子の評価>
 上記で作製した有機EL素子を、以下の方法で、(1)発光効率、(2)耐久性(半減寿命)、(3)発光層の密度をそれぞれ測定した。測定結果を下記表Iに示す。
<Evaluation of organic EL element>
The organic EL element produced above was measured by the following methods for (1) luminous efficiency, (2) durability (half-life), and (3) density of the light emitting layer. The measurement results are shown in Table I below.
 (1)発光効率(外部取り出し量子効率(EQE))の評価
 各有機EL素子について、室温23℃、乾燥窒素ガス雰囲気下で、2.5mA/cm定電流条件下による点灯を行い、点灯開始直後の発光輝度(L)[cd/m]を測定することにより外部取り出し量子効率を算出した。ここで、発光輝度の測定は、分光放射輝度計「CS-1000」(コニカミノルタ社製)を用いた。この外部取り出し量子効率を発光効率の指標とした。
(1) Evaluation of luminous efficiency (external extraction quantum efficiency (EQE)) For each organic EL element, lighting was performed under a constant current of 2.5 mA / cm 2 at a room temperature of 23 ° C. in a dry nitrogen gas atmosphere, and lighting was started. The external extraction quantum efficiency was calculated by measuring the light emission luminance (L) [cd / m 2 ] immediately after. Here, the emission luminance was measured using a spectral radiance meter “CS-1000” (manufactured by Konica Minolta). This external extraction quantum efficiency was used as an index of luminous efficiency.
(2)耐久性(半減寿命)の評価
 各有機EL素子を、50℃の一定環境条件下で、初期輝度が1000cd/mを与える電流で定電流駆動させ、初期輝度の1/2(500cd/m)に到達するまでの時間(50℃保存時の半減寿命)を求め、これを耐久性の尺度とした。
(2) Evaluation of durability (half life) Each organic EL element was driven at a constant current under a constant environmental condition of 50 ° C. with a current giving an initial luminance of 1000 cd / m 2, and 1/2 of the initial luminance (500 cd) / M 2 ) The time required to reach (m 2 ) (half life at 50 ° C. storage) was determined and used as a measure of durability.
(3)発光層の密度の評価
 X線反射率法により各有機EL素子の発光層の密度を算出した。
  X線発生源は銅をターゲットとし、50kV-300mAで作動させ、多層膜ミラーとGe(111)チャンネルカットモノクロメーターにて単色化したX線を使用した。測定は、ソフトウェア-ATX-Crystal Guide Ver.6.5.3.4を用い、アライメント調整後、2θ/ω=0~1度を0.002度/stepで0.05度/minで走査した。上記の測定条件で反射率曲線を測定した後、株式会社リガク製GXRR Ver.2.1.0解析ソフトウェアを用いて測定した。
(3) Evaluation of the density of a light emitting layer The density of the light emitting layer of each organic EL element was computed by the X-ray reflectivity method.
The X-ray generation source was a copper target, operated at 50 kV-300 mA, and X-rays monochromatized with a multilayer mirror and a Ge (111) channel cut monochromator were used. The measurement was performed using the software-ATX-Crystal Guide Ver. Using 6.5.3.4, after alignment adjustment, 2θ / ω = 0 to 1 degree was scanned at 0.002 degree / step at 0.05 degree / min. After measuring the reflectance curve under the above measurement conditions, GXRR Ver. 2.1.0 Measured using analysis software.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 表Iから明らかなとおり、本発明に係るZnSを正孔注入層の材料として使用した有機EL素子は、ZnSを正孔注入層の材料として用いない比較例の有機EL素子に比べ、初期性能の発光効率、半減寿命、及び発光層の密度のいずれにおいても優れている。 As is apparent from Table I, the organic EL device using ZnS according to the present invention as the material for the hole injection layer has an initial performance higher than that of the comparative organic EL device not using ZnS as the material for the hole injection layer. It is excellent in any of luminous efficiency, half life, and density of the light emitting layer.
[実施例2]:ZnSを正孔注入層に用いた際の厚さによって、発光層の密度をコントロールすることができる場合の例
<有機EL素子2-1の作製>
 100mm×100mm×1.1mmのガラス基板上に、陽極としてITOを100nm製膜した基板(AvanStrate株式会社製、NA45)にパターニングを行った。その後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥して、UVオゾン洗浄を5分間行った。
 この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートにZnSを入れ、別のモリブデン製抵抗加熱ボートに1-6を入れ、別のモリブデン製抵抗加熱ボートにD-28を入れ、別のモリブデン製抵抗加熱ボートにLiFを入れ、真空蒸着装置に取り付けた。
 次いで、真空槽を4×10-4Paまで減圧した後、ZnSの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、透明支持基板に蒸着し10nmの正孔注入層を設けた。
 さらに、1-6とD-28の入った前記加熱ボートに通電して加熱し、1-6:D-28=100:5の割合で、正孔注入層上に共蒸着し70nmの発光層を設けた。
 さらに、LiFの入った前記加熱ボートに通電して加熱し、電子注入層として蒸着し0.5nmの電子注入層、陰極としてアルミニウム110nmを設けた。
[Example 2]: Example in which the density of the light emitting layer can be controlled by the thickness when ZnS is used for the hole injection layer <Preparation of Organic EL Element 2-1>
Patterning was performed on a substrate (NAV 45 manufactured by AvanStrate Co., Ltd.) on which a 100 nm ITO film was formed as an anode on a 100 mm × 100 mm × 1.1 mm glass substrate. Thereafter, the transparent support substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while ZnS is put into a molybdenum resistance heating boat, 1-6 is put into another molybdenum resistance heating boat, another molybdenum resistance heating boat D-28 was put in, LiF was put in another resistance heating boat made of molybdenum, and attached to a vacuum deposition apparatus.
Next, the pressure in the vacuum chamber was reduced to 4 × 10 −4 Pa, and the heating boat containing ZnS was heated by energization. The vapor deposition rate was 0.1 nm / sec. A layer was provided.
Further, the heating boat containing 1-6 and D-28 was energized and heated, and co-evaporated on the hole injection layer at a ratio of 1-6: D-28 = 100: 5, and a 70 nm light emitting layer Was provided.
Further, the heating boat containing LiF was energized and heated, and was deposited as an electron injection layer to provide an electron injection layer of 0.5 nm, and aluminum 110 nm as a cathode.
<有機EL素子2-2~2-7の作製>
 有機EL素子2-1の作製において、正孔注入層のZnSの厚さを表IIに示すように変更した。それ以外は同様にして、有機EL素子2-2~2-7を各々作製した。
<Preparation of organic EL elements 2-2 to 2-7>
In the production of the organic EL element 2-1, the thickness of ZnS in the hole injection layer was changed as shown in Table II. Otherwise, the organic EL elements 2-2 to 2-7 were produced in the same manner.
 作製した有機EL素子について、上記実施例1と同様にして、発光効率(外部取り出し量子効率(EQE))及び発光寿命、発光層の密度を測定した。測定結果を下記表IIに示す。 About the produced organic EL element, it carried out similarly to the said Example 1, and measured the luminous efficiency (external extraction quantum efficiency (EQE)), luminous lifetime, and the density of the light emitting layer. The measurement results are shown in Table II below.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 表IIから明らかなとおり、ZnSからなる正孔注入層の厚さが5~10nmの範囲内である有機EL素子は、それ以外の有機EL素子に比べて、発光効率(外部取り出し量子効率)、半減寿命(発光寿命)及び発光層の密度のいずれにおいても優れている。 As is clear from Table II, the organic EL device in which the thickness of the hole injection layer made of ZnS is in the range of 5 to 10 nm is higher in luminous efficiency (external extraction quantum efficiency) than other organic EL devices, Both the half life (light emission life) and the density of the light emitting layer are excellent.
[実施例3]:発光層の材料の種類によらず、正孔注入層に含有されるZnSによる効果を示すための例
<有機EL素子3-1の作製>
 100mm×100mm×1.1mmのガラス基板上に、陽極としてITOを100nm製膜した基板(AvanStrate株式会社製、NA45)にパターニングを行った。その後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥して、UVオゾン洗浄を5分間行った。
 この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートにZnSを入れ、別のモリブデン製抵抗加熱ボートに1-6を入れ、別のモリブデン製抵抗加熱ボートにD-28を入れ、別のモリブデン製抵抗加熱ボートにKFを入れ、真空蒸着装置に取り付けた。
 次いで、真空槽を4×10-4Paまで減圧した後ZnSの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、透明支持基板に蒸着し10nmの正孔注入層を設けた。
 さらに、1-6とD-28の入った前記加熱ボートに通電して加熱し、1-6:D-28=100:5の割合で、正孔注入層上に共蒸着し70nmの発光層を設けた。
 さらに、KFの入った前記加熱ボートに通電して加熱し、電子注入層として蒸着し0.5nmの電子注入層、陰極としてアルミニウム110nmを設けた。
[Example 3]: Example for showing the effect of ZnS contained in the hole injection layer regardless of the material of the light emitting layer <Production of Organic EL Element 3-1>
Patterning was performed on a substrate (NAV 45 manufactured by AvanStrate Co., Ltd.) on which a 100 nm ITO film was formed as an anode on a 100 mm × 100 mm × 1.1 mm glass substrate. Thereafter, the transparent support substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while ZnS is put into a molybdenum resistance heating boat, 1-6 is put into another molybdenum resistance heating boat, another molybdenum resistance heating boat D-28 was placed in the container, KF was placed in another molybdenum resistance heating boat, and attached to a vacuum deposition apparatus.
Next, the vacuum chamber was depressurized to 4 × 10 −4 Pa, heated by energizing the heating boat containing ZnS, and deposited on a transparent support substrate at a deposition rate of 0.1 nm / second to form a 10 nm hole injection layer. Was provided.
Further, the heating boat containing 1-6 and D-28 was energized and heated, and co-evaporated on the hole injection layer at a ratio of 1-6: D-28 = 100: 5, and a 70 nm light emitting layer Was provided.
Further, the heating boat containing KF was energized and heated, evaporated as an electron injection layer, and provided with a 0.5 nm electron injection layer and an aluminum 110 nm as a cathode.
<有機EL素子3-2~3-10の作製>
 有機EL素子3-1の作製において、発光層のホスト材料及びドーパント材料を下記表IIIに示すように変更した。それ以外は同様にして、有機EL素子3-2~3-10を各
々作製した各々作製した。
<Production of organic EL elements 3-2 to 3-10>
In the production of the organic EL element 3-1, the host material and dopant material of the light emitting layer were changed as shown in Table III below. Other than that, the organic EL elements 3-2 to 3-10 were produced in the same manner.
<有機EL素子3-11の作製>
 100mm×100mm×1.1mmのガラス基板上に、陽極としてITOを100nm製膜した基板(AvanStrate株式会社製、NA45)にパターニングを行った。その後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥して、UVオゾン洗浄を5分間行った。
 この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートにZnSを入れ、別のモリブデン製抵抗加熱ボートにα-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)、を入れ、別のモリブデン製抵抗加熱ボートに1-6を入れ、別のモリブデン製抵抗加熱ボートにD-28を入れ、別のモリブデン製抵抗加熱ボートにKFを入れ、真空蒸着装置に取り付けた。
 次いで、真空槽を4×10-4Paまで減圧した後ZnSの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、透明支持基板に蒸着し10nmの正孔注入層を設けた。
 さらに、α-NPDの入った前記加熱ボートに通電して加熱し、正孔注入層上に蒸着し5nmの有機層を設けた。
 さらに、1-6とD-28の入った前記加熱ボートに通電して加熱し、1-6:D-28=100:5の割合で、前記有機層上に共蒸着し70nmの発光層を設けた。
 さらに、KFの入った前記加熱ボートに通電して加熱し、電子注入層として蒸着し、0.5nmの電子注入層、陰極としてアルミニウム110nmを設けた。
<Preparation of organic EL element 3-11>
Patterning was performed on a substrate (NAV 45 manufactured by AvanStrate Co., Ltd.) on which a 100 nm ITO film was formed as an anode on a 100 mm × 100 mm × 1.1 mm glass substrate. Thereafter, the transparent support substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
This transparent support substrate is fixed to a substrate holder of a commercially available vacuum vapor deposition apparatus. On the other hand, ZnS is placed in a molybdenum resistance heating boat, and α-NPD (4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), 1-6 in another molybdenum resistance heating boat, D-28 in another molybdenum resistance heating boat, another molybdenum resistance KF was put into a heating boat and attached to a vacuum deposition apparatus.
Next, the vacuum chamber was depressurized to 4 × 10 −4 Pa, heated by energizing the heating boat containing ZnS, and deposited on a transparent support substrate at a deposition rate of 0.1 nm / second to form a 10 nm hole injection layer. Was provided.
Further, the heating boat containing α-NPD was energized and heated, and deposited on the hole injection layer to provide a 5 nm organic layer.
Further, the heating boat containing 1-6 and D-28 was energized and heated, and co-evaporated on the organic layer at a ratio of 1-6: D-28 = 100: 5 to form a 70 nm light emitting layer. Provided.
Further, the heating boat containing KF was energized and heated to deposit as an electron injection layer, and a 0.5 nm electron injection layer and aluminum 110 nm as a cathode were provided.
<有機EL素子3-12~3-20の作製>
 有機EL素子3-11の作製において、発光層のホスト材料及びドーパント材料を下記表IIIに示すように変更した。それ以外は同様にして、有機EL素子3-12~3-20
を各々作製した。
<Production of organic EL elements 3-12 to 3-20>
In the production of the organic EL element 3-11, the host material and dopant material of the light emitting layer were changed as shown in Table III below. Other than that, the organic EL elements 3-12 to 3-20 are similarly processed.
Each was produced.
 作製した有機EL素子について、上記実施例1と同様にして、発光層における密度の測定を行った。測定結果を下記表IIIに示す。 About the produced organic EL element, it carried out similarly to the said Example 1, and measured the density in a light emitting layer. The measurement results are shown in Table III below.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 表IIIから明らかなとおり、ホスト材料及びドーパント材料の種類にかかわらず、正孔
注入層にZnSが含有され、かつ、ZnSを含有する層上に、直接、発光層が形成された有機EL素子は、発光層の密度の点で優れている。
As is apparent from Table III, the organic EL device in which ZnS is contained in the hole injection layer and the light emitting layer is directly formed on the layer containing ZnS, regardless of the types of the host material and the dopant material, It is excellent in terms of the density of the light emitting layer.
[実施例4]:ZnSを含有する層の溶媒耐性
 100mm×100mm×1.1mmのガラス基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥して、UVオゾン洗浄を5分間行った。
 この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートにZnSを入れ、真空蒸着装置に取り付けた。
 次いで、真空槽を4×10-4Paまで減圧した後、ZnSの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、基板に蒸着し50nmの正孔注入層を設けた単膜を作成した。
 作製したZnSを含有する正孔注入層(単膜)に対して、下記表IVに示すような各種の溶媒を滴下しスピンコートし、乾燥後、厚さを測定して、ZnSを含有する層の溶媒耐性を検討した。
 表IVにおける各略語は以下のとおりである。
 TFPO:2,2,3,3-テトラフルオロ-1-プロパノール
 THF:テトラヒドロフラン
 2mTHF:2-メチルテトラヒドロフラン
[Example 4]: Solvent resistance of a layer containing ZnS A glass substrate of 100 mm x 100 mm x 1.1 mm was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
This transparent support substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus, while ZnS was placed in a molybdenum resistance heating boat and attached to the vacuum deposition apparatus.
Next, the pressure in the vacuum chamber was reduced to 4 × 10 −4 Pa, and the heating boat containing ZnS was energized and heated, and deposited on the substrate at a deposition rate of 0.1 nm / second to form a 50 nm hole injection layer. A provided single membrane was prepared.
A layer containing ZnS by adding various solvents as shown in Table IV below to the prepared hole injection layer (single film) containing ZnS, spin-coating, drying, and measuring the thickness. The solvent resistance of was examined.
The abbreviations in Table IV are as follows:
TFPO: 2,2,3,3-tetrafluoro-1-propanol THF: tetrahydrofuran 2mTHF: 2-methyltetrahydrofuran
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 表IVから明らかなとおり、ZnSを含有する層の各種溶媒耐性を確認することができた。 As is clear from Table IV, various solvent resistances of the layer containing ZnS could be confirmed.
[実施例5]:照明装置の作製
<白色発光有機EL素子4-1の作製>
 有機EL素子1-1の作製で用いたITO透明電極を設けた透明支持基板を真空蒸着装置に取付け、真空槽を4×10-4Paまで減圧した。次いで、正孔注入層として、ZnSを10nm蒸着し、正孔注入層を設けた。
 次に、ホスト化合物としてHOST-56(100mg)、ドーパントとしてD-86(3mg)及びIr-19(3mg)をトルエン10mLに溶解した溶液を用い、2000rpm、30秒の条件下、スピンコート法により薄膜を形成した。60℃で1時間真空乾燥し、第1発光層を形成した。
 さらに、この第1発光層上に、ホスト化合物としてHOST-94(100mg)とドーパントとしてD-84(16mg)を6mLのヘキサフルオロイソプロパノール(HFIP)に溶解した溶液を用い、2000rpm、30秒の条件でスピンコート法により薄膜を形成し、60℃で1時間真空乾燥し、第2発光層を形成した。
 この基板を真空蒸着装置の基板ホルダーに固定し、真空槽を4×10-4Paまで減圧した後、第2発光層上に、ET-35を蒸着して厚さ30nmの電子輸送層を形成し、続いてフッ化リチウムを蒸着して厚さ0.5nmの陰極バッファー層を形成し、さらにアルミニウムを蒸着して厚さ110nmの陰極を形成することで、有機EL素子4-1を作製した。
[Example 5]: Production of illumination device <Production of white light-emitting organic EL element 4-1>
The transparent support substrate provided with the ITO transparent electrode used in the production of the organic EL element 1-1 was attached to a vacuum deposition apparatus, and the vacuum chamber was decompressed to 4 × 10 −4 Pa. Next, 10 nm of ZnS was deposited as a hole injection layer to provide a hole injection layer.
Next, using a solution obtained by dissolving HOST-56 (100 mg) as a host compound and D-86 (3 mg) and Ir-19 (3 mg) as dopants in 10 mL of toluene, spin coating was performed at 2000 rpm for 30 seconds. A thin film was formed. The first light emitting layer was formed by vacuum drying at 60 ° C. for 1 hour.
Further, on this first light-emitting layer, a solution in which HOST-94 (100 mg) as a host compound and D-84 (16 mg) as a dopant were dissolved in 6 mL of hexafluoroisopropanol (HFIP) was used, and the conditions were 2000 rpm for 30 seconds. A thin film was formed by spin coating and vacuum dried at 60 ° C. for 1 hour to form a second light emitting layer.
This substrate is fixed to a substrate holder of a vacuum deposition apparatus, and the vacuum chamber is depressurized to 4 × 10 −4 Pa, and then ET-35 is deposited on the second light emitting layer to form an electron transport layer having a thickness of 30 nm. Subsequently, lithium fluoride was vapor-deposited to form a cathode buffer layer having a thickness of 0.5 nm, and aluminum was further vapor-deposited to form a cathode having a thickness of 110 nm. Thus, an organic EL element 4-1 was produced. .
 作製した有機EL素子4-1に通電したところ、ほぼ白色の光が得られ、照明装置として使用できることが分かった。なお、ホスト化合物やドーパントとして、他の例示化合物に置き換えても同様に白色の発光が得られることが分かった。 When the produced organic EL element 4-1 was energized, it was found that almost white light was obtained and it could be used as a lighting device. In addition, it turned out that white light emission is obtained similarly even if it replaces with another exemplary compound as a host compound or a dopant.
[実施例6]:フルカラー表示装置の作製
<青色発光素子の作製>
 実施例1の有機EL素子1-1を青色発光素子として用いた。
[Example 6]: Production of full-color display device <Production of blue light-emitting element>
The organic EL device 1-1 of Example 1 was used as a blue light emitting device.
<緑色発光素子の作製>
 D-86を緑色発光ドーパントとして用いた以外は、有機EL素子1-1と同様にして緑色発光素子を作製した。
<Production of green light emitting element>
A green light emitting device was produced in the same manner as the organic EL device 1-1 except that D-86 was used as a green light emitting dopant.
<赤色発光素子の作製>
 Ir-9を赤色発光ドーパントとして用いた以外は、有機EL素子1-1と同様にして赤色発光素子を作製した。
<Production of red light emitting element>
A red light emitting device was produced in the same manner as the organic EL device 1-1 except that Ir-9 was used as a red light emitting dopant.
 上記で作製した、各々赤色、緑色、青色発光有機EL素子を同一基板上に並べて置き、図1に記載のような形態を有するアクティブマトリクス方式フルカラー表示装置を作製し、図2には、作製した前記表示装置の表示部Aの模式図のみを示した。
 すなわち、同一基板上に、複数の走査線55及びデータ線56を含む配線部と、並置した複数の画素53(発光の色が赤領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線55及び複数のデータ線56はそれぞれ導電材料からなり、走査線55とデータ線56は格子状に直交して、直交する位置で画素53に接続している(詳細は図示せず)。前記複数の画素53は、それぞれの発光色に対応した有機EL素子、アクティブ素子であるスイッチングトランジスタと駆動トランジスタそれぞれが設けられたアクティブマトリクス方式で駆動されており、走査線55から走査信号が印加されると、データ線56から画像データ信号を受け取り、受け取った画像データに応じて発光する。このように各赤、緑、青の画素を適宜、並置することによって、フルカラー表示装置を作製した。
 該フルカラー表示装置を駆動することにより、輝度が高く、高耐久性を有し、かつ、鮮明なフルカラー動画表示が得られることが分かった。
Each of the red, green and blue light emitting organic EL elements produced above was placed on the same substrate to produce an active matrix type full color display device having the form as shown in FIG. 1, and FIG. Only the schematic diagram of the display section A of the display device is shown.
That is, a wiring portion including a plurality of scanning lines 55 and data lines 56 on the same substrate, and a plurality of juxtaposed pixels 53 (light emission color is a red region pixel, a green region pixel, a blue region pixel, etc.) The scanning lines 55 and the plurality of data lines 56 in the wiring portion are each made of a conductive material, and the scanning lines 55 and the data lines 56 are orthogonal to each other in a grid pattern and are connected to the pixels 53 at orthogonal positions ( Details are not shown). The plurality of pixels 53 are driven by an active matrix system in which an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor are provided, and a scanning signal is applied from a scanning line 55. Then, an image data signal is received from the data line 56, and light is emitted according to the received image data. Thus, a full color display device was produced by juxtaposing the red, green, and blue pixels appropriately.
It was found that by driving the full-color display device, a clear full-color moving image display having high luminance, high durability, and clearness can be obtained.
[実施例7]:正孔注入層のZnSに金属酸化物をドープする例
<有機EL素子6-1の作製>
 100mm×100mm×1.1mmのガラス基板上に、陽極としてITO(Indium Tin Oxide(酸化インジウム・スズ))を100nm製膜した基板(AvanStrate株式会社製、NA45)にパターニングを行った。その後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥して、UVオゾン洗浄を5分間行った。
 この透明支持基板を真空蒸着装置に取り付け、真空槽を4×10-4Paまで減圧した。次いで、正孔輸送層として、ZnSを10nm蒸着し、正孔注入層を設けた。
 次いで、正孔注入層上に、ホスト化合物としての1-6及びドーパントとしてのD-28を1-6:D-28=100:5の割合で、70nm蒸着し、発光層を設けた。
 次いで、電子注入層としてフッ化リチウムを1.0nm、陰極としてアルミニウムを110nmそれぞれ蒸着し、有機EL素子6-1を作製した。
[Example 7]: Example of doping metal oxide into ZnS of hole injection layer <Preparation of organic EL element 6-1>
Patterning was performed on a substrate (AvanState Co., Ltd., NA45) in which ITO (Indium Tin Oxide) 100 nm was formed on a 100 mm × 100 mm × 1.1 mm glass substrate as an anode. Thereafter, the transparent support substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
This transparent support substrate was attached to a vacuum deposition apparatus, and the vacuum chamber was depressurized to 4 × 10 −4 Pa. Next, as a hole transport layer, ZnS was deposited to a thickness of 10 nm to provide a hole injection layer.
Next, 1-6 as a host compound and D-28 as a dopant were deposited on the hole injection layer in a ratio of 1-6: D-28 = 100: 5 to 70 nm to provide a light emitting layer.
Next, 1.0 nm of lithium fluoride was deposited as an electron injection layer and 110 nm of aluminum was deposited as a cathode, thereby fabricating an organic EL element 6-1.
<有機EL素子6-2~6-4の作製>
 有機EL素子6-1の作製において、正孔注入層としてZnSに下記表Vに示す金属酸化物をそれぞれドープした以外は同様にして、有機EL素子6-2~6-4を作製した。
<Preparation of organic EL elements 6-2 to 6-4>
Organic EL elements 6-2 to 6-4 were prepared in the same manner as in the production of the organic EL element 6-1, except that ZnS was doped with a metal oxide shown in Table V below as a hole injection layer.
 作製した有機EL素子について、上記実施例1と同様にして、発光効率(外部取り出し量子効率(EQE))及び発光寿命、発光層の密度を測定した。測定結果を下記表Vに示す。 About the produced organic EL element, it carried out similarly to the said Example 1, and measured the luminous efficiency (external extraction quantum efficiency (EQE)), luminous lifetime, and the density of the light emitting layer. The measurement results are shown in Table V below.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 表Vから明らかなとおり、正孔注入層が、金属酸化物がドープされたZnSを含有する有機EL素子は、金属酸化物をドープしない場合に比べて、発光効率に優れている。 As is clear from Table V, the organic EL device containing ZnS in which the hole injection layer is doped with a metal oxide has excellent luminous efficiency as compared with the case where the metal oxide is not doped.
 本発明は、発光層の密度を向上させ、発光効率及び素子寿命を向上させることができ、かつ、製造しやすい有機エレクトロルミネッセンス素子、当該有機エレクトロルミネッセンス素子を具備した表示装置及び照明装置に利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be used for an organic electroluminescence element that can improve the density of the light emitting layer, improve the light emission efficiency and the element lifetime, and is easy to manufacture, and a display device and an illumination device equipped with the organic electroluminescence element. be able to.
41 ディスプレイ(表示装置)
53 画素
55 走査線
56 データ線
60 有機EL素子
61 スイッチングトランジスタ
62 駆動トランジスタ
63 コンデンサー
67 電源ライン
101 有機EL素子
102 ガラスカバー
105 陰極
106 有機EL層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤
A 表示部
B 制御部
41 Display (display device)
53 pixel 55 scanning line 56 data line 60 organic EL element 61 switching transistor 62 drive transistor 63 capacitor 67 power supply line 101 organic EL element 102 glass cover 105 cathode 106 organic EL layer 107 glass substrate 108 with transparent electrode nitrogen gas 109 water-absorbing agent A Display unit B Control unit

Claims (5)

  1.  一対の電極間に、少なくとも正孔注入層及び発光層が積層された有機エレクトロルミネッセンス素子であって、
     前記正孔注入層が、硫化亜鉛を含有し、
     前記発光層が、前記正孔注入層上に直接積層され、
     前記発光層が、前記硫化亜鉛と相互作用を有する有機化合物を含有し、かつ、
     前記発光層の密度が、1.0~1.8g/cmの範囲内である有機エレクトロルミネッセンス素子。
    An organic electroluminescence device in which at least a hole injection layer and a light emitting layer are laminated between a pair of electrodes,
    The hole injection layer contains zinc sulfide;
    The light emitting layer is directly laminated on the hole injection layer,
    The light emitting layer contains an organic compound that interacts with the zinc sulfide, and
    An organic electroluminescence device wherein the density of the light emitting layer is in the range of 1.0 to 1.8 g / cm 3 .
  2.  前記正孔注入層が、金属酸化物がドープされた硫化亜鉛を含有している請求項1に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 1, wherein the hole injection layer contains zinc sulfide doped with a metal oxide.
  3.  前記正孔注入層の厚さが、5~10nmの範囲内である請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。 3. The organic electroluminescence device according to claim 1, wherein the thickness of the hole injection layer is in the range of 5 to 10 nm.
  4.  請求項1から請求項3までのいずれか一項に記載の有機エレクトロルミネッセンス素子を備える表示装置。 A display apparatus provided with the organic electroluminescent element as described in any one of Claim 1- Claim 3.
  5.  請求項1から請求項3までのいずれか一項に記載の有機エレクトロルミネッセンス素子を備える照明装置。 A lighting device comprising the organic electroluminescence element according to any one of claims 1 to 3.
PCT/JP2018/018451 2017-06-02 2018-05-14 Organic electroluminescent element, display device, and lighting device WO2018221173A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019522078A JPWO2018221173A1 (en) 2017-06-02 2018-05-14 Organic electroluminescence element, display device and lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-109619 2017-06-02
JP2017109619 2017-06-02

Publications (1)

Publication Number Publication Date
WO2018221173A1 true WO2018221173A1 (en) 2018-12-06

Family

ID=64455876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018451 WO2018221173A1 (en) 2017-06-02 2018-05-14 Organic electroluminescent element, display device, and lighting device

Country Status (2)

Country Link
JP (1) JPWO2018221173A1 (en)
WO (1) WO2018221173A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175624A1 (en) * 2019-02-27 2020-09-03 国立大学法人九州大学 Compound, light emitting material, and organic semiconductor laser element
WO2022064580A1 (en) * 2020-09-24 2022-03-31 シャープ株式会社 Light emitting element and display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09120890A (en) * 1995-10-27 1997-05-06 Mitsubishi Chem Corp Organic electric field fluorescent element and its manufacture
JP2002175887A (en) * 2000-12-07 2002-06-21 Denso Corp Organic el element
WO2007020718A1 (en) * 2005-08-18 2007-02-22 Konica Minolta Holdings, Inc. Organic electroluminescent element, display device, and lighting device
WO2007052431A1 (en) * 2005-10-31 2007-05-10 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
JP2013168501A (en) * 2012-02-15 2013-08-29 Yamagata Univ Organic electroluminescent element
JP2014532312A (en) * 2011-11-28 2014-12-04 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Organic electroluminescent device having ternary doping hole transport layer and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015068779A1 (en) * 2013-11-07 2017-03-09 コニカミノルタ株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT, METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT, AND ORGANIC ELECTROLUMINESCENT MODULE
JPWO2015111489A1 (en) * 2014-01-22 2017-03-23 コニカミノルタ株式会社 Organic electroluminescence device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09120890A (en) * 1995-10-27 1997-05-06 Mitsubishi Chem Corp Organic electric field fluorescent element and its manufacture
JP2002175887A (en) * 2000-12-07 2002-06-21 Denso Corp Organic el element
WO2007020718A1 (en) * 2005-08-18 2007-02-22 Konica Minolta Holdings, Inc. Organic electroluminescent element, display device, and lighting device
WO2007052431A1 (en) * 2005-10-31 2007-05-10 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
JP2014532312A (en) * 2011-11-28 2014-12-04 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Organic electroluminescent device having ternary doping hole transport layer and method for producing the same
JP2013168501A (en) * 2012-02-15 2013-08-29 Yamagata Univ Organic electroluminescent element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175624A1 (en) * 2019-02-27 2020-09-03 国立大学法人九州大学 Compound, light emitting material, and organic semiconductor laser element
WO2022064580A1 (en) * 2020-09-24 2022-03-31 シャープ株式会社 Light emitting element and display device

Also Published As

Publication number Publication date
JPWO2018221173A1 (en) 2020-04-02

Similar Documents

Publication Publication Date Title
JP5967057B2 (en) ORGANIC ELECTROLUMINESCENCE ELEMENT AND ITS MANUFACTURING METHOD, LIGHTING DEVICE AND DISPLAY DEVICE
JP5533652B2 (en) White light-emitting organic electroluminescence element, lighting device and display device
JP5011908B2 (en) Organic electroluminescence element, display device and lighting device
JP5359869B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP5564942B2 (en) Organic electroluminescence element, display device and lighting device
JP5765223B2 (en) MANUFACTURING METHOD FOR ORGANIC ELECTROLUMINESCENT ELEMENT, AND LIGHTING DEVICE AND DISPLAY DEVICE PROVIDED WITH ORGANIC ELECTROLUMINESCENT ELEMENT
JP5304010B2 (en) Organic electroluminescence element, display device and lighting device
JP5470849B2 (en) Organic electroluminescence device
JP5201054B2 (en) Organic electroluminescent material, organic electroluminescent element, blue phosphorescent light emitting element, display device and lighting device
JP5499890B2 (en) Organic electroluminescence device and method for manufacturing the same
JP5163642B2 (en) Organic electroluminescence device
JP2013048261A (en) Organic electroluminescent element, display device, and lighting device
JP2013110262A (en) Organic el element and organic el module and manufacturing method therefor
JPWO2008090795A1 (en) Organic electroluminescence element, display device and lighting device
JP2010205815A (en) Organic electroluminescent element material, organic electroluminescent element, display and lighting device
JPWO2008142976A1 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, LIGHTING DEVICE, AND ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL
JP2011009517A (en) Organic electroluminescent element
JP5636630B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
WO2013140885A1 (en) Organic electroluminescence element and illumination device
WO2018221173A1 (en) Organic electroluminescent element, display device, and lighting device
JP2011238827A (en) Organic electroluminescent device
JP2010028014A (en) Organic electroluminescence element, organic electroluminescence element material, display device, and illumination device
JPWO2009008249A1 (en) Light emitting device
JP2013089608A (en) Organic el element
JP5338578B2 (en) Organic electroluminescence element, display device and lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810183

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019522078

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18810183

Country of ref document: EP

Kind code of ref document: A1