[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018219257A1 - 一种通信的方法及装置 - Google Patents

一种通信的方法及装置 Download PDF

Info

Publication number
WO2018219257A1
WO2018219257A1 PCT/CN2018/088769 CN2018088769W WO2018219257A1 WO 2018219257 A1 WO2018219257 A1 WO 2018219257A1 CN 2018088769 W CN2018088769 W CN 2018088769W WO 2018219257 A1 WO2018219257 A1 WO 2018219257A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
dmrs sequence
dmrs
broadcast signal
symbols
Prior art date
Application number
PCT/CN2018/088769
Other languages
English (en)
French (fr)
Inventor
黄煌
高宽栋
颜矛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020197036916A priority Critical patent/KR102415212B1/ko
Priority to EP18810287.5A priority patent/EP3614757A4/en
Priority to CA3063956A priority patent/CA3063956C/en
Publication of WO2018219257A1 publication Critical patent/WO2018219257A1/zh
Priority to US16/696,219 priority patent/US11431466B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signalling for the administration of the divided path, e.g. signalling of configuration information
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • H04L5/10Channels characterised by the type of signal the signals being represented by different frequencies with dynamo-electric generation of carriers; with mechanical filters or demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0093Point-to-multipoint
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a communication method and apparatus.
  • NR New Radio
  • Beamforming technology can limit the energy of the transmitted signal to a certain beam direction, thereby increasing the efficiency of signal transmission and reception. Beamforming technology can effectively expand the transmission range of wireless signals and reduce signal interference, thereby achieving higher communication efficiency and higher network capacity.
  • beamforming technology will result in beam scanning for the transmission of broadcast signals. The channel of different beam signals is inconsistent after beam scanning. Therefore, each broadcast signal channel needs to carry its own demodulation reference signal (Demodulation Reference Signal, DMRS). ).
  • DMRS demodulation Reference Signal
  • the channel of the broadcast signal is usually performed by using the CRS as the DMRS. Demodulation of the signal.
  • the period of the CRS may be inconsistent with the period of the broadcast signal. Therefore, in the LTE system, the method of using the CRS as the DMRS of the broadcast signal channel may exist that some broadcast signal channels have no DMRS, and thus the broadcast signals cannot be used. The channel is demodulated or the terminal device cannot access the base station.
  • Embodiments of the present application provide a method and apparatus for communication, and in particular, a DMRS of a new broadcast signal channel, which can be applied to an NR.
  • a method for generating a demodulation reference signal sequence comprising: generating a demodulation reference signal DMRS sequence of a broadcast signal according to a pseudo-random sequence c(m); wherein the DMRS sequence and a resource block of the broadcast signal
  • the number of RBs N RB is related to the number n RE of resource elements RE occupied by the DMRS sequence in one RB; the DMRS sequence is mapped into one or more symbols.
  • the DMRS sequence of the broadcast signal is generated according to the pseudo random sequence c(m), and the DMRS sequence is mapped into one or more symbols, thereby generating a dedicated DMRS sequence for the broadcast signal, and the DMRS is generated.
  • the sequence is sent to the terminal device, which in turn enables the terminal device to correctly demodulate the broadcast signal and enable the terminal device to quickly access the base station.
  • the broadcast signal is paging information, a physical broadcast channel PBCH, or system information.
  • the demodulation reference signal DMRS sequence of the broadcast signal is generated according to the pseudo random sequence c(m), including: generating according to the pseudo random sequence c(m) by using the formula (1) a DMRS sequence of a broadcast signal; where l represents an index value of a symbol on a time slot, r l (m) represents a DMRS sequence, and m represents a sequence index value of a DMRS sequence,
  • n RE is a value of 3 or 4.
  • the initialization c init of the pseudo random sequence c(m) is the following formula (1-1a)-(1-1b) Any one of the initializations shown, initializing c init for generating a pseudo-random sequence c(m);
  • N ID represents the physical cell identity of the cell Or the identity of a region composed of multiple cells
  • k 1 and k 2 are constants from 0 to 64
  • n RNTI represents the wireless network temporary identification value
  • n SS represents the index value of the synchronization signal block in a synchronization signal segment set
  • m 2 represents the paging information or system.
  • l 2 represents the index value of the symbol in the RB of the paging information or system information.
  • mapping the DMRS sequence to one or more symbols includes: mapping the DMRS sequence to the resource block RB of the broadcast signal according to formula (2) Resource unit RE,
  • a k,l represents the position of the RE occupied by the sequence code included in the DMRS sequence in the RB
  • k represents the frequency index value on the symbol
  • l represents the symbol index value on one slot or the symbol on the RB of the broadcast signal.
  • the index value, n represents an index value of a scheduling resource unit of the broadcast signal
  • m represents a sequence index value of the DMRS sequence.
  • the values of k, l, and m are specifically as in formula (2-1a).
  • n density represents the density used to transmit the DMRS sequence in the RB
  • v shift represents the first frequency offset value of the starting RE position of the DMRS sequence with respect to the RE of the minimum frequency
  • v represents the relative RE position of the DMRS sequence relative to The second frequency offset value of the RE of the minimum frequency
  • the range of l 1 and l 2 is 0, 1, 2, ..., N symbol
  • N symbol represents the number of symbols or paging information in a time slot or The number of symbols on the RB of the system information, Indicates the cell physical identity of the cell, and mod indicates the remainder.
  • the DMRS sequence of the broadcast signal can be mapped in the RE included in the RB of the broadcast signal in the most efficient manner, thereby reducing the transmission occupied by the DMRS sequence while the broadcast signal is correctly demodulated. Resources.
  • a method for generating a demodulation reference signal sequence comprising: receiving a first demodulation reference signal DMRS sequence of a broadcast signal from a base station; and generating a second DMRS sequence according to the pseudo-random sequence c(m);
  • the second DMRS sequence is related to the number N RB of the resource block RB of the broadcast signal and the number n RE of the resource unit RE occupied by the DMRS sequence in one RB; if the second DMRS sequence matches the first DMRS sequence, the The second DMRS demodulates the data of the broadcast signal.
  • the broadcast signal is paging information, a physical broadcast channel PBCH, or system information.
  • generating the demodulation reference signal DMRS sequence according to the pseudo random sequence c(m) includes: generating the second DMRS by using the formula (1) according to the pseudo random sequence c(m) In the sequence, where r l (m) represents a second DMRS sequence, m represents a sequence index value of a second DMRS sequence, l represents an index value of a symbol on a time slot, r l (m) represents a DMRS sequence, and m represents Sequence index value of the DMRS sequence;
  • n RE is 3 or 4.
  • the N RB is obtained by using a physical downlink control channel PDCCH, or a physical broadcast channel PBCH, or an RMSI.
  • the initialization c init of the pseudo random sequence c(m) is the following formula (1-1a)-(1-1b) Any of the initializations shown, initializing c init for generating a pseudo-random sequence c(m);
  • N ID represents the physical cell identity of the cell Or the identity of a region composed of multiple cells
  • k 1 and k 2 are constants from 0 to 64
  • n RNTI represents the wireless network temporary identification value
  • n SS represents the index value of the synchronization signal block in a synchronization signal segment set
  • m 2 represents the paging information or system.
  • l 2 represents the index value of the symbol in the RB of the paging information or system information.
  • a method for mapping a demodulation reference signal sequence comprising: generating a demodulation reference signal DMRS sequence of a broadcast signal; and mapping the DMRS sequence to a resource included in a resource block RB of the broadcast signal according to formula (2) Unit RE,
  • a k,l represents the position of the RE occupied by the sequence code included in the DMRS sequence
  • k represents the frequency index value on the symbol
  • l represents the symbol index value on one slot or the RB of the broadcast signal.
  • the symbol index value, n represents the index value of the scheduling resource unit of the broadcast signal
  • m represents the sequence index value of the DMRS sequence.
  • the broadcast signal is paging information or system information.
  • the DMRS sequence is obtained by using formula (1); wherein r l (m) represents the DMRS sequence, c (m) represents a pseudo-random sequence, and n RE represents The number of resource units RE occupied by the DMRS sequence, N RB represents the number of resource blocks RB of the broadcast signal, and n RE is greater than or equal to 1, and the l represents an index value of a symbol on one time slot;
  • the values of k, l, and m are specifically as in formula (2-1a).
  • n density represents the density used to transmit the DMRS sequence in the RB
  • v shift represents the first frequency offset value of the starting RE position of the DMRS sequence with respect to the RE of the minimum frequency
  • v represents the relative RE position of the DMRS sequence relative to The second frequency offset value of the RE of the minimum frequency
  • the range of l 1 and l 2 is 0, 1, 2, ..., N symbol
  • N symbol represents the number of symbols or paging information in a time slot or The number of symbols on the RB of the system information, Indicates the cell physical identity of the cell, and mod indicates the remainder.
  • the K value of the RB and RE for transmission density n density and RB for transmitting the DMRS sequence DMRS sequence with respect to the frequency offset value of the minimum frequency RE is any one shown in the following table:
  • NA empty
  • a fourth aspect provides a method for acquiring a demodulation reference signal sequence, the method comprising: receiving a demodulation reference signal DMRS sequence sent by a base station through a resource block RB of a broadcast signal; determining, according to formula (2), a DMRS sequence in a broadcast signal a location in the resource unit RE included in the RB; acquiring a DMRS sequence from the RB of the broadcast signal according to the location of the DMRS sequence;
  • a k,l represents the position of the RE occupied by the sequence code included in the DMRS sequence in the RB
  • k represents the frequency index value on the symbol
  • l represents the symbol index value on one slot or the symbol on the RB of the broadcast signal.
  • the index value, n represents an index value of a scheduling resource unit of the broadcast signal
  • m represents a sequence index value of the DMRS sequence.
  • the broadcast signal is paging information or system information.
  • the DMRS sequence is obtained by the base station by using formula (1); where r l (m) represents the DMRS sequence, and c (m) represents a pseudo random sequence.
  • n RE represents the number of resource units RE occupied by the DMRS sequence
  • N RB represents the number of resource blocks RB of the broadcast signal
  • n RE is greater than or equal to 1
  • the l represents an index value of a symbol on one slot;
  • the values of k, l, and m are specifically as in formula (2-1a).
  • n density represents the density of the DMRS sequence used for transmission in the RB, specifically the number of intervals RE of two adjacent REs used to transmit the DMRS sequence in frequency
  • v shift indicates that the starting RE position of the DMRS sequence is relative
  • the first frequency offset value of the RE of the minimum frequency, the offset unit is the number
  • the value of v shift is an integer between 0 and 11
  • the v represents the starting RE position of the DMRS sequence with respect to the minimum frequency.
  • the values of 1 and l 2 are 0, 1, 2, ..., N symbol , N symbol represents the number of symbols in a time slot or the number of symbols on the RB of paging information or system information; Indicates the cell physical identity of the cell; mod indicates the remainder.
  • the value of k is different from the density n density used to transmit the DMRS sequence in the RB and the RE used to transmit the DMRS sequence in the RB with respect to the RE of the minimum frequency.
  • the specific relationship of the frequency offset value v shift +v is any one shown in the following table:
  • the DMRS sequence of the broadcast signal may be mapped in the RE included in the RB of the broadcast signal in the most efficient manner, thereby reducing the transmission resource occupied by the DMRS sequence while the broadcast signal is correctly demodulated.
  • an apparatus comprising: a processing unit, configured to generate a demodulation reference signal DMRS sequence of a broadcast signal according to a pseudo-random sequence c(m); wherein the DMRS sequence and the resource block RB of the broadcast signal
  • the number N RB is related to the number of RE REs occupied by the DMRS sequence in one RB
  • the processing unit is further configured to map the DMRS sequence on one or more symbols.
  • the broadcast signal is paging information, a physical broadcast channel PBCH, or system information.
  • the processing unit is specifically configured to: generate, according to the pseudo-random sequence c(m), a DMRS sequence of the broadcast signal by using the formula (1); where l represents a time slot The index value of the symbol, r l (m) represents the DMRS sequence, and m represents the sequence index value of the DMRS sequence.
  • n RE takes a value of 3 or 4.
  • the initialization c init of the pseudo random sequence c(m) is the following formula (1-1a)-(1-1b) Any one of the initializations shown, initializing c init for generating the pseudo-random sequence c(m);
  • N ID represents the physical cell identity of the cell Or the identity of a region composed of multiple cells
  • k 1 and k 2 are constants from 0 to 64
  • n RNTI represents the wireless network temporary identification value
  • n SS represents the index value of the synchronization signal block in a synchronization signal segment set
  • m 2 represents the paging information or system.
  • l 2 represents the index value of the symbol in the RB of the paging information or system information.
  • the processing unit is specifically configured to: map, according to formula (2), the DMRS sequence in a resource unit RE included in the resource block RB of the broadcast signal,
  • a k,l represents the position of the RE occupied by the sequence code included in the DMRS sequence in the RB
  • k represents the frequency index value on the symbol
  • l represents the symbol index value on one slot or the symbol on the RB of the broadcast signal.
  • the index value, n represents an index value of a scheduling resource unit of the broadcast signal
  • m represents a sequence index value of the DMRS sequence.
  • the values of k, l, and m are specifically as in formula (2-1a).
  • n density represents the density used to transmit the DMRS sequence in the RB
  • v shift represents the frequency offset value of the starting RE position of the DMRS sequence with respect to the RE of the minimum frequency
  • v represents the starting RE position of the DMRS sequence with respect to the minimum Frequency offset value of the frequency of the RE
  • l 1 and l 2 have a value range of 0, 1, 2, ..., N symbol
  • N symbol represents the number of symbols on a time slot or RB of paging information or system information The number of symbols on the Indicates the cell physical identity of the cell, and mod indicates the remainder.
  • the apparatus is a chip on a base station or a base station.
  • an apparatus comprising: a receiving unit, a first demodulation reference signal DMRS sequence for receiving a broadcast signal from a base station; and a processing unit, configured to generate a first according to the pseudo-random sequence c(m) a second DMRS sequence; wherein, the second DMRS sequence is related to the number N RB of the resource block RBs of the broadcast signal and the number n RE of the resource units RE occupied by the DMRS sequence in one RB; the processing unit is further configured to: if the second DMRS sequence and When the first DMRS sequence match satisfies the requirement, the data of the broadcast signal is demodulated according to the second DMRS.
  • the broadcast signal is paging information, a physical broadcast channel PBCH, or system information.
  • the processing unit is specifically configured to: generate, according to the pseudo-random sequence c(m), a DMRS sequence by using the formula (1); where r l (m) represents a DMRS sequence, where a sequence index value indicating a DMRS sequence, and l an index value of a symbol on a time slot;
  • n RE is a value of 3 or 4.
  • the receiving unit is further configured to acquire the N RB by using a physical downlink control channel PDCCH, or a physical broadcast channel PBCH, or an RMSI.
  • the initialization c init of the pseudo random sequence c(m) is the following formula (1-1a)-(1-1b) Any of the initializations shown, initializing c init for generating a pseudo-random sequence c(m);
  • N ID represents the physical cell identity of the cell Or the identity of a region composed of multiple cells
  • k 1 and k 2 are constants from 0 to 64
  • n RNTI represents the wireless network temporary identification value
  • n SS represents the index value of the synchronization signal block in a synchronization signal segment set
  • m 2 represents the paging information or system.
  • l 2 represents the index value of the symbol in the RB of the paging information or system information.
  • the device is a chip on a terminal device or a terminal device.
  • an apparatus comprising: a processing unit, a demodulation reference signal DMRS sequence for generating a broadcast signal; and a processing unit, further configured to map the DMRS sequence to a resource of the broadcast signal according to formula (2) In the resource unit RE included in the block RB,
  • a k,l represents the position of the RE occupied by the sequence code included in the DMRS sequence in the RB
  • k represents the frequency index value on the symbol
  • l represents the symbol index value on one slot or the symbol on the RB of the broadcast signal.
  • the index value, n represents an index value of a scheduling resource unit of the broadcast signal
  • m represents a sequence index value of the DMRS sequence.
  • the broadcast signal is paging information or system information.
  • the DMRS sequence is obtained by using formula (1); where r l (m) represents a DMRS sequence, c (m) represents a pseudo random sequence, and n RE represents a DMRS sequence occupied.
  • the values of k, l, and m are specifically as in formula (2-1a).
  • n density represents the density used to transmit the DMRS sequence in the RB
  • v shift represents the frequency offset value of the starting RE position of the DMRS sequence with respect to the RE of the minimum frequency
  • v represents the starting RE position of the DMRS sequence with respect to the minimum Frequency offset value of the frequency of the RE
  • l 1 and l 2 have a value range of 0, 1, 2, ..., N symbol
  • N symbol represents the number of symbols on a time slot or RB of paging information or system information The number of symbols on the Indicates the cell physical identity of the cell, and mod indicates the remainder.
  • the K value for the RB RE n density and the density of the DMRS sequence RB transmission for transmitting the DMRS sequence with respect to the frequency offset value of the minimum frequency RE is any one shown in the following table:
  • NA empty
  • the device is a chip inside a base station or a base station.
  • an apparatus comprising: a receiving unit, configured to receive a demodulation reference signal DMRS sequence sent by a base station by a resource block RB of a broadcast signal; and a processing unit, configured to determine a DMRS sequence according to formula (2) a location in the resource unit RE included in the RB of the broadcast signal; the processing unit is further configured to: acquire the DMRS sequence from the RB of the broadcast signal according to the location of the DMRS sequence;
  • a k,l represents a position of an RE occupied by the sequence code included in the DMRS sequence in the RB, the k represents a frequency index value on a symbol, and the l represents a symbol on a time slot An index value or a symbol index value on an RB of the broadcast signal, the n indicating an index value of a scheduling resource unit of the broadcast signal, and the m indicating a sequence index value of the DMRS sequence.
  • the broadcast signal is paging information or system information.
  • the DMRS sequence is obtained by the base station by using formula (1); where r l (m) represents a DMRS sequence, c (m) represents a pseudo-random sequence, and n RE represents The number of resource units RE occupied by the DMRS sequence, N RB represents the number of resource blocks RB of the broadcast signal, n RE is greater than or equal to 1, and l represents an index value of a symbol on one slot;
  • the values of k, l, and m are specifically as in formula (2-1a).
  • n density represents the density of the DMRS sequence used for transmission in the RB
  • v shift represents the first frequency offset value of the starting RE position of the DMRS sequence with respect to the RE of the minimum frequency
  • v represents the start of the DMRS sequence a second frequency offset value of the RE of the initial RE position relative to the minimum frequency
  • l 1 and l 2 have a value range of 0, 1, 2, ..., N symbol
  • N symbol represents the number of symbols on a time slot or The number of symbols on the RB of the paging information or system information, Indicates the cell physical identity of the cell, and mod indicates the remainder.
  • the broadcast signal is paging information or system information.
  • the DMRS sequence is obtained by using formula (1); where r l (m) represents a DMRS sequence, c (m) represents a pseudo random sequence, and n RE represents a DMRS sequence occupied.
  • the values of k, l, and m are specifically as in formula (2-1a).
  • n density represents the density used to transmit the DMRS sequence in the RB
  • v shift represents the frequency offset value of the starting RE position of the DMRS sequence with respect to the RE of the minimum frequency
  • v represents the starting RE position of the DMRS sequence with respect to the minimum Frequency offset value of the frequency of the RE
  • l 1 and l 2 have a value range of 0, 1, 2, ..., N symbol
  • N symbol represents the number of symbols on a time slot or RB of paging information or system information The number of symbols on the Indicates the cell physical identity of the cell, and mod indicates the remainder.
  • NA empty
  • the device is a chip inside a base station or a base station.
  • an apparatus comprising: a receiving unit, configured to receive a demodulation reference signal DMRS sequence sent by a base station by a resource block RB of a broadcast signal; and a processing unit, configured to determine a DMRS sequence according to formula (2) a location in the resource unit RE included in the RB of the broadcast signal; the processing unit is further configured to: acquire the DMRS sequence from the RB of the broadcast signal according to the location of the DMRS sequence;
  • a k,l represents a position of an RE occupied by the sequence code included in the DMRS sequence in the RB, the k represents a frequency index value on a symbol, and the l represents a symbol on a time slot An index value or a symbol index value on an RB of the broadcast signal, the n indicating an index value of a scheduling resource unit of the broadcast signal, and the m indicating a sequence index value of the DMRS sequence.
  • the broadcast signal is paging information or system information.
  • the DMRS sequence is obtained by the base station by using a formula (1); where r l (m) represents a DMRS sequence, c (m) represents a pseudo random sequence, and n RE represents The number of resource units RE occupied by the DMRS sequence, N RB represents the number of resource blocks RB of the broadcast signal, n RE is greater than or equal to 1, and l represents an index value of a symbol on one slot;
  • the values of k, l, and m are specifically as in formula (2-1a).
  • n density represents the density of the DMRS sequence used for transmission in the RB
  • v shift represents the first frequency offset value of the starting RE position of the DMRS sequence with respect to the RE of the minimum frequency
  • v represents the start of the DMRS sequence a second frequency offset value of the RE of the initial RE position relative to the minimum frequency
  • l 1 and l 2 have a value range of 0, 1, 2, ..., N symbol
  • N symbol represents the number of symbols on a time slot or The number of symbols on the RB of the paging information or system information, Indicates the cell physical identity of the cell, and mod indicates the remainder.
  • an information indication method includes: the base station generates at least one sequence, at least one sequence is a DMRS sequence of a PBCH, and each sequence in the at least one sequence corresponds to a specified information, and the information is specified below.
  • the RMS identifier Any one of the following: the RMS identifier, the scheduling information set of the downlink control channel, the CORESET information, the frequency resource information of the PDSCH, the FDD/TDD identifier, the extended cell identifier, the area identifier, the TRS configuration information, the synchronization signal block index, and the base station to the terminal
  • the device transmits a target sequence, the target sequence is a sequence in at least one sequence, and the target sequence is used to indicate to the terminal device the specified information corresponding to the target sequence.
  • an information indication method includes: receiving, by a terminal device, a target sequence sent by a base station, where the target sequence is a sequence in at least one sequence; wherein at least one sequence is a DMRS sequence of the PBCH, at least one Each sequence in the sequence corresponds to a specified information, and the specified information is any one of the following information: a valid value identifier, a scheduling information set of a downlink control channel, a CORESET information, a frequency resource information of a PDSCH, an FDD/TDD identifier, an extended cell identifier, The area identifier, the TRS configuration information, and the synchronization signal block index; the terminal device determines the specified information corresponding to the target sequence according to the target sequence.
  • a base station includes: a processing unit, configured to generate at least one sequence, at least one sequence is a DMRS sequence of a PBCH, and each sequence in at least one sequence corresponds to a specified information, specifying information Any one of the following information: a valid value identifier, a scheduling information set of a downlink control channel, CORESET information, a frequency resource information of a PDSCH, an FDD/TDD identifier, an extended cell identifier, an area identifier, a TRS configuration information, a synchronization signal block index, and a transmission And a unit, configured to send, to the terminal device, the target sequence, where the target sequence is a sequence in the at least one sequence, the target sequence is used to indicate, to the terminal device, the specified information corresponding to the target sequence.
  • a processing unit configured to generate at least one sequence, at least one sequence is a DMRS sequence of a PBCH, and each sequence in at least one sequence corresponds to a specified information, specifying information Any one of
  • a further aspect of the present application provides a terminal device, comprising: a receiving unit, configured to receive a target sequence sent by a base station, where the target sequence is a sequence in at least one sequence; wherein at least one sequence is a DMRS sequence of the PBCH
  • Each of the at least one sequence corresponds to one specified information, and the specified information is any one of the following information: a valid value identifier, a scheduling information set of the downlink control channel, a CORESET information, a frequency resource information of the PDSCH, an FDD/TDD identifier, and an extension.
  • the base station may indicate any one of the following information to the terminal device by using a DMRS sequence of different PBCHs or a sequence of different PSS sequences or SSSs: whether the base station allows the terminal device to camp, and whether the base station reads the RMSI information. Value, partial frame number of SFN or H-SFN, system bandwidth RMS identifier, scheduling information set of downlink control channel CORESET information, frequency resource information of PDSCH, FDD/TDD identifier, extended cell identifier, area identifier, TRS configuration information Synchronizing the signal block index, thereby saving signaling interaction between the base station and the terminal device, thereby reducing overhead and detection complexity of the terminal device.
  • the base station may also indicate the above information through different positions of the DMRS sequence of the PBCH, or different frequency positions of the PSS sequence or the sequence of the SSS, and also save signaling interaction between the base station and the terminal device, and reduce overhead and detection of the terminal device. the complexity.
  • an apparatus comprising a processor, a memory, a communication interface, and a bus, the memory and the data are stored, the processor, the memory, and the communication interface are connected by a bus, and the processor runs the code in the memory
  • the apparatus for causing the apparatus to perform the demodulation reference signal sequence generation method provided by any one of the first aspect or the first aspect of the first aspect, or the third aspect or any possible implementation of the third aspect Demodulation reference signal sequence mapping method.
  • an apparatus comprising a processor, a memory, a communication interface, and a bus, the memory and the data are stored, the processor, the memory, and the communication interface are connected by a bus, and the processor runs the code in the memory
  • a further aspect of the present application provides a system, the system comprising a base station and a terminal device, wherein the base station is the device provided by any of the possible implementation manners of the fifth aspect or the fifth aspect, or the seventh
  • the apparatus provided by any one of the possible implementations of the seventh aspect; and/or the apparatus provided by the terminal apparatus of any of the possible implementations of the sixth aspect or the sixth aspect, or An apparatus provided by any of the eight aspects or any of the possible implementations of the eighth aspect.
  • Yet another aspect of the present application provides a computer readable storage medium having stored therein instructions that, when executed on a computer, cause the computer to perform the methods provided by the various aspects described above.
  • Yet another aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods provided by the various aspects described above.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a base station according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a method for generating a demodulation reference signal sequence according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of a demodulation reference signal distribution according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of another demodulation reference signal distribution according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of still another demodulation reference signal distribution according to an embodiment of the present application.
  • FIG. 8 is a flowchart of a method for indicating a demodulation reference signal sequence according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a DMRS sequence combination according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another apparatus according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of another apparatus according to an embodiment of the present application.
  • System frame A wireless transmission frame.
  • the length of the system frame can be 10 milliseconds, and the duration of one subframe is 1 ms.
  • the number of slots included in one subframe is related to the subcarrier spacing.
  • the number of consecutive symbols of a time slot can be 7 symbols or 14 symbols.
  • the index value of the symbol is used to identify different symbols. For example, when the number of consecutive symbols of a time slot is 7 symbols, the index value of the corresponding symbol may be 0-6.
  • Synchronization Signal refers to a signal used to provide the same time reference.
  • the synchronization signal may include a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the primary synchronization signal is used to indicate an ID in a physical cell group, and the secondary synchronization signal indicates a physical cell group number.
  • Synchronization signal block may include one PSS OFDM symbol, one SSS OFDM symbol, and two or more PBCH OFDM symbols.
  • the OFDM symbols may be referred to as symbols, and the positions of the PSS symbols, SSS symbols, and PBCH symbols in the sync signal block have a fixed time domain distribution relationship and are adjacent.
  • a plurality of sync signal blocks constitute a sync signal segment (SS burst), and a plurality of sync signal segments constitute a SS burst set.
  • the communication system includes a base station 101 and a terminal device 102.
  • the base station 101 has a scheduling function of a shared channel, and has a function of establishing a scheduling based on a history of packet data transmitted to the terminal device 102.
  • scheduling when a plurality of terminal devices 102 share transmission resources, a mechanism is needed to effectively allocate. Physical layer resources to obtain statistical multiplexing gain.
  • the terminal device 102 has a function of transmitting and receiving data through a communication channel established with the base station 101.
  • the terminal device 102 performs transmission or reception processing of the shared channel based on the information transmitted through the scheduling control channel.
  • the terminal device 102 may be a mobile station, a mobile terminal, a user equipment, a telephone, a home appliance, a car, a mobile phone, a tablet computer, a computer, a portable terminal, or the like, and the types of the terminal devices 102 may be the same or different.
  • the base station 101 and the terminal device 102 perform data reception and transmission through a communication channel, which may be a wireless communication channel, and in the wireless communication channel, at least a shared channel and a scheduling control channel exist, and the shared channel is for transmitting and receiving.
  • the packet is shared among the plurality of terminal devices 102, and the scheduling control channel is used to transmit the allocation of the shared channel, the corresponding scheduling result, and the like.
  • the base station includes a baseband subsystem, a medium-frequency subsystem, an antenna feeder subsystem, and some supporting structures (for example, a whole subsystem).
  • the baseband subsystem is used to implement operation and maintenance of the entire base station, implement signaling processing, radio resource principle, transmission interface to the packet core network, implement physical layer, medium access control layer, L3 signaling, operation and maintenance master control Function;
  • the middle RF subsystem realizes conversion between the baseband signal, the intermediate frequency signal and the radio frequency signal, realizes demodulation of the LTE wireless received signal, and modulation and power amplification of the transmitted signal;
  • the antenna feeder subsystem includes an antenna connected to the base station radio frequency module and The feeder and the antenna and feeder of the GRS receiving card are used to realize the receiving and transmitting of the wireless air interface signal;
  • the whole subsystem is a supporting part of the baseband subsystem and the intermediate frequency subsystem, and provides structural, power supply and environmental monitoring functions.
  • FIG. 3 is a schematic structural diagram of a terminal device according to an embodiment of the present application, where the terminal device may be a mobile phone, a tablet computer, a notebook computer, a mobile device, a mobile station, a mobile unit, an M2M terminal, and a wireless device. Units, remote units, user agents, mobile clients, and more.
  • the terminal device includes: a memory, a processor, a radio frequency (RF) circuit, and a power source.
  • RF radio frequency
  • the memory can be used to store software programs and modules, and the processor executes various functional applications and data processing of the terminal devices by running software programs and modules stored in the memory.
  • the memory may mainly include a storage program area and an storage data area, wherein the storage program area may store an operating system, an application required for at least one function, and the like; the storage data area may store data created according to usage of the terminal device, and the like.
  • the memory may include a high speed random access memory, and may also include a nonvolatile memory or the like.
  • the processor is a control center of the terminal device, and connects various parts of the entire terminal device by using various interfaces and lines, and executes the terminal by running or executing software programs and/or modules stored in the memory, and calling data stored in the memory.
  • the various functions of the device and the processing of the data thereby overall monitoring of the terminal device.
  • the processor may include one or more processing units; preferably, the processor may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, etc., and modulates
  • the demodulation processor primarily handles wireless communications.
  • Radio frequency (RF) circuits can be used to send and receive information and receive and transmit signals during a call.
  • RF circuits include, but are not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the RF circuit can communicate with the network and other devices through wireless communication.
  • the wireless communication can use any communication standard or protocol, including but not limited to global mobile communication systems, general packet radio services, code division multiple access, wideband code division multiple access, long term evolution, email, short message service, and the like.
  • the terminal device also includes a power supply for supplying power to the various components.
  • the power source can be logically connected to the processor through the power management system to manage functions such as charging, discharging, and power management through the power management system.
  • the terminal device may further include an input unit, a display unit, a sensor module, an audio module, a WiFi module, a Bluetooth module, and the like, and details are not described herein again.
  • FIG. 4 is a flowchart of a method for generating a demodulation reference signal sequence according to an embodiment of the present application. Referring to FIG. 4, the method includes the following steps.
  • Step 201 Generate a demodulation reference signal DMRS sequence of the broadcast signal according to the pseudo random sequence c(m).
  • the DMRS sequence is related to the number N RB of resource blocks RB of the broadcast signal and the number n RE of resource units RE occupied by the DMRS sequence in one RB.
  • the pseudo-random sequence c(m) may be a golden sequence, a ZC sequence, or an m-sequence, etc., and the pseudo-random sequence c(m) may be used to generate a DMRS sequence.
  • the broadcast signal may be paging information, a Physical Broadcast Channel (PBCH), or system information.
  • PBCH Physical Broadcast Channel
  • the DMRS sequence can be used for a physical downlink control channel and a physical downlink shared channel of a broadcast signal.
  • the broadcast signals may have a common antenna port number, ie, paging information, physical broadcast information, and system information having a common DMRS design.
  • the value of the number of resource blocks RB of the broadcast signal N RB is related to the bandwidth scanned by the base station, and the terminal device can determine the N RB through the PDCCH, or the PBCH, or the RMSI.
  • the number of REs occupied by the DMRS sequence in an RB, n RE may refer to the number of REs used to transmit the DMRS sequence on one symbol in one RB, or may be used to transmit the DMRS sequence in one RB.
  • the DMRS sequence of the broadcast signal can be generated by the formula (1) according to the pseudo-random sequence c(m).
  • m represents the sequence code index value of the DMRS sequence
  • l represents the index value of the symbol on one time slot. For example, when 7 symbols are included in one time slot, the value of l may be an integer between 0 and 6. .
  • the number of n-resource element RE, RE is one RB occupied by the DMRS sequence value can be 3 or 4, i.e., one with a symbol of RB
  • the number of REs transmitting the DMRS sequence may be 3 or 4, or the total number of REs used to transmit the DMRS sequence in one RB may be 3 or 4.
  • Step 202 Map the DMRS sequence on one or more symbols.
  • steps 201 and 202 may be performed by a base station, or may be performed by a chip on a base station device, and a base station is taken as an example in FIG. 4 .
  • the one or more symbols may be one or more symbols included in the RB of the broadcast signal.
  • the base station may map the DMRS sequence on one or more symbols included in the RB of the broadcast signal.
  • the base station maps the DMRS sequence of the broadcast signal in the resource unit RE included in the resource block RB of the broadcast signal according to formula (2).
  • a k,l denotes the position of the RE occupied by the sequence code included in the DMRS sequence in the RB of the broadcast signal; k denotes the frequency index value on the symbol; l denotes the symbol index value on one slot or the RB of the broadcast signal The symbol index value on the upper; n represents the index value of the scheduling resource unit of the broadcast signal; m represents the sequence index value of the DMRS sequence, and r l (m) is used to represent the DMRS sequence.
  • n density represents the density of the DMRS sequence used for transmitting the paging information or the system information, specifically the number of intervals RE of the two adjacent REs for transmitting the DMRS sequence in frequency
  • v shift indicates the DMRS
  • the initial RE position of the sequence is relative to the first frequency offset value of the RE of the minimum frequency, the offset unit is the number, the value of v shift is an integer between 0 and 11, and v represents the starting RE position of the DMRS sequence.
  • the value of N symbol may be an integer from 1 to 14; Indicates the cell physical identity of the cell, and mod indicates the remainder.
  • the values of k, l, and m in the above formula (2) may be specifically expressed in the form of a table.
  • the specific relationship of v is shown in Table 1 below.
  • NA in Table 2 above does not exist, for example, when If it is 1, it means that the DMRS sequence only occupies one symbol, then only the first symbol exists, there is no other second to fourth symbols, and there is no corresponding v to the second to fourth symbols. value.
  • Table 2 above Indicates that it is rounded down, Table 2 The values are 1, 2, 3, and 4, respectively, and the values of v on different symbols shown in Table 2 are The relationship does not constitute a limitation on the embodiments of the present application.
  • the base station may map the demodulation reference signal DMRS sequence of the PBCH in the resource unit RE included in the resource block RB of the PBCH according to formula (3).
  • a k,l represents the position of the RE occupied by the sequence code included in the DMRS sequence in the RB of the PBCH; k represents the frequency index value on the symbol; l represents the symbol index value on one slot or the RB on the PBCH Symbol index value; m represents the sequence index value of the DMRS sequence.
  • the r l (m) in the above formula (3) is used to represent the DMRS sequence, and the DMRS sequence can be obtained by the formula (1) in the above embodiment, with specific reference to the description of the formula (1) in the above embodiment, the present application The embodiments are not described herein again.
  • the values of k, l, and m in the above formula (3) may specifically be as in the formula (2-2).
  • n density represents the density of the DMRS sequence used for transmitting the RBRS in the RB of the PBCH, specifically the number of intervals RE of the two neighboring REs used to transmit the DMRS sequence in frequency
  • v shift represents the starting RE of the DMRS sequence
  • the first frequency offset value of the RE relative to the minimum frequency, the offset unit is the number of RE, the v shift may be a fixed value, and the value is less than n density , or the value thereof is Related
  • v represents the second frequency offset value of the starting RE position of the DMRS sequence with respect to the RE of the minimum frequency, the offset unit is the number of RE
  • l represents the symbol index value on one time slot, or a synchronization signal block ( The index value of the symbol used to transmit the PBCH in SS block); Indicates the cell physical identity of the cell, and mod indicates the remainder.
  • Step 203 The base station sends the DMRS sequence to the terminal device by using one or more symbols.
  • the base station may send the DMRS sequence to the terminal device by using the one or more symbols, so that the terminal device receives the DMRS sequence of the broadcast signal.
  • Step 204 The terminal device receives one or more symbols from the base station, where the one or more symbols include a DMRS sequence.
  • the DMRS sequence received by the terminal device may be referred to as a first DMRS sequence.
  • Step 205 The terminal device generates a second DMRS sequence according to the pseudo random sequence c(m). Step 205 and step 201-step 204 are in no particular order. In FIG. 4, step 204 is located after step 203 as an example.
  • the method for generating the second DMRS sequence by the terminal device according to the pseudo-random sequence c(m) is the same as the method for generating the DMRS sequence of the broadcast signal in the foregoing step 201.
  • the description in the foregoing step 201 where the embodiment of the present application is This will not be repeated here.
  • Step 206 If the second DMRS sequence matches the first DMRS sequence, the terminal device demodulates the data in the broadcast signal according to the second DMRS sequence.
  • Step 206 is located after step 204 and step 205, that is, after the terminal device receives the first DMRS sequence sent by the base station and generates the second DMRS sequence by itself, the terminal device may determine whether the second DMRS sequence matches the first DMRS sequence. fulfil requirements.
  • the matching between the second DMRS sequence and the first DMRS sequence is that when the correlation between the first DMRS sequence and the second DMRS sequence is performed, the correlation value is greater than or equal to a preset correlation threshold.
  • the terminal device may demodulate the broadcast signal by using the DMRS sequence, thereby ensuring the correctness of the demodulation of the broadcast signal, and enabling the terminal device to quickly access. Base station.
  • the terminal device can also perform channel estimation and the like through the DMRS sequence.
  • the DMRS sequence sent by the base station received by the terminal device is obtained by the terminal device from one or more symbols sent by the base station.
  • the terminal device may determine the location of the RE occupied by the DMRS sequence according to the method in the foregoing step 202.
  • the process of acquiring the DMRS sequence by the specific terminal device is similar to the process of mapping the DMRS sequence by the base station. For details, refer to the foregoing description. The embodiments are not described herein again.
  • the initialization c init of the pseudo-random sequence c(m) is related to the index value n SS of the sync signal block.
  • the broadcast signal may be paging information, system information, or PBCH, in the foregoing steps 201 and 205, when the DMRS sequence of the broadcast signal is generated according to the pseudo random sequence c(m), the pseudo random sequence c
  • the initialization of (m) c init is related to what kind of information the broadcast signal is, and the initialization c init is used to generate the pseudo-random sequence c(m), which will be described separately below.
  • the initialization c init of the pseudo random sequence c(m) may be any one of the initializations shown by the following formulas (1-1a) to (1-1b), as follows.
  • the values of k 1 and k 2 are constants in the range of 0 to 64, and may generally be 15 or 16; n SS represents a set of sync signal segments (SS burst) Index value of the synchronization signal block in set); N ID represents the physical cell identity of the cell Or the identity of a region composed of multiple cells n RNTI indicates the wireless network temporary identification value.
  • P-RNTI Paging Radio Network Temporary Identifier
  • SI-RNTI System Information Radio Network Temporary Identifier
  • m 2 indicates the number of symbols in the RB of the paging information or system information
  • l 2 indicates the RB in the paging information or system information.
  • the n RNTI may be 0.
  • the initialization c init of the pseudo random sequence c(m) may be as shown in the following formula (1-1c)-(1-1j) Any of the initializations is as follows.
  • the DMRS of the paging information or the system information may be a DMRS designed in any of the following situations, as described below.
  • the DMRS of the PBCH signal in the synchronization signal block can be utilized as the DMRS of the paging information or the system information, or both can use the common DMRS, that is, The DMRS of the paging information or system information and the DMRS of the PBCH have the same antenna port, as shown in FIG.
  • the paging information or system information is multiplexed with the PBCH in a Time-Division Multiplex (TDM) manner, and the synchronization signal block can have both Frequency-Division Multiplex (FDM) and TDM multiplexing modes. .
  • the paging information or the system information may be located on both sides of the PBCH, or may be located at one side or the middle of the PBCH.
  • the proprietary DMRS of the PBCH signal may be used as the paging information or the DMRS of the system information. It should be noted that when the proprietary DMRS of the PBCH signal is used as the paging information or the DMRS of the system information, the bandwidth of the PBCH and the bandwidth of the paging information or the system information should be not much different.
  • the paging information or the system information may be TDM multiplexed with the synchronization signal block signal or the multiplex mode of the synchronous signal block signal using FDM and TDM, the paging information or the system information may be utilized in the synchronization signal block.
  • the SSS signal and the DMRS carried by itself are used as paging information or DMRS of system information, that is, they have the same antenna port number.
  • the SSS signal can be used for channel estimation, and the paging information or system information-specific DMRS can assist the SSS in demodulating paging information or system information, and can also be used to estimate the Doppler shift of the channel.
  • the paging information or the multiplexing of the system information and the synchronization signal block may be a TDM mode, an FDM mode, or a FDM and TDM multiplexing mode, as shown in FIG. 6.
  • the proprietary DMRS symbol and the SSS symbol of the paging information or the system information may be on the same symbol as shown in (a) of FIG. 6, or may not be on one symbol as shown in (b) of FIG. 6.
  • the paging information or the system information may have multiple DMRS symbols, and each symbol has a DMRS; or some of the symbols may have a dedicated DMRS; the DMRS positions on different symbols may be the same or different.
  • the paging information or the system information may be TDM multiplexed with the synchronization signal block signal, or the synchronization signal block signal adopts a multiplexing mode in which FDM and TDM exist simultaneously
  • the paging information or the system information may be utilized in the synchronization signal block.
  • the SSS signal, the DMRS signal of the PBCH demodulates paging information or system information, or assists in demodulating paging information or system information.
  • the DMRS of the SSS and the PBCH and the antenna port of the DMRS of the paging information or system information are required to be the same.
  • the distribution of the DMRS of the paging information or the system information may be the same frequency offset as the DMRS distribution of the PBCH, or may be a different frequency offset.
  • the proprietary DMRS symbol of the paging information or system information may be on the same symbol as the SSS symbol or on the PBCH symbol.
  • the symbol of the paging information or the system information may be DMRS on each symbol, or DMRS on some symbols.
  • the symbols of the paging information or system information may be located on one side of the sync signal block or on both sides of the sync signal block.
  • the paging information or the system information may be TDM multiplexed with the synchronization signal block signal, or the multiplexed manner of the synchronization signal block signal using FDM and TDM, so that the paging information or the system information may utilize the synchronization signal block.
  • the DMRS signal of the PBCH demodulates or assists in demodulating paging information or system information, that is, paging information or system information and the PBCH have the same antenna port.
  • the distribution of the DMRS of the paging information or the system information may be the same frequency offset as the DMRS distribution of the PBCH, or may be a different frequency offset.
  • the symbol of the paging information or the system information may be DMRS on each symbol, or DMRS on some symbols.
  • the symbols of the paging information or system information may be located on one side of the sync signal block or on both sides of the sync signal block.
  • the system information includes Remaining Minimum System Information (RMSI) and Other System Information (OSI).
  • RMSI Remaining Minimum System Information
  • OSI System Information
  • system information is divided into two types: one is Minimum System Information, which contains key access system information; the other is other system information OSI contains non-critical system information.
  • the minimum system information is divided into two parts, one part is the Main Information Block (MIB), which is transmitted in the PBCH.
  • MIB Main Information Block
  • RMSI which is also a broadcast signal.
  • the call information is broadcast together, they can use the same DMRS, ie their DMRS antenna ports are the same.
  • the multiplexing of paging information and system information may be in the form of TDM and FDM, but the DMRS sequences are the same or share the same DMRS sequence.
  • the paging information or the system information may be TDM multiplexed with the synchronization signal block signal, or may be FDM multiplexing, or a multiplexing mode in which the synchronization signal block signal uses FDM and TDM, or paging information or system information. Scanned separately, not multiplexed with sync blocks.
  • the DMRS of paging information or system information can use its own proprietary DMRS signal.
  • Paging information or system information-specific DMRS may be used on each symbol used to transmit paging information or system information, or may be part of a symbol.
  • Paging information or system information-specific DMRS may have the same frequency offset on each symbol, or may have different frequency offsets on different symbols.
  • the DMRS sequence of the PBCH may also be an m sequence or a golden sequence, and each PBCH may have the same sequence or a different sequence, that is, a PBCH. There are two or more sequences on the symbol.
  • the DMRS sequence of the PBCH in each synchronization signal block may be the same, that is, each PBCH symbol adopts the same DMRS sequence, or may be different, that is, two PBCH symbols respectively adopt different DMRS sequences or two PBCH symbols.
  • a DMRS sequence is shared; the PBCHs on different sync blocks can use the same DMRS sequence, that is, the DMRS sequences on all PBCHs on different sync blocks are the same, or the first PBCH symbol in each sync block
  • the same DMRS sequence is used, and the same DMRS sequence is used on the second PBCH symbol; different DMRS sequences may be used on the PBCH of different synchronization signal blocks, and these DMRS sequences may be related to the PBCH symbol or the synchronization signal block.
  • the time index correlation may also be related to the slot index value in the radio system frame, or may be related to the symbol index value in the slot, or may be related to the subframe index value in the radio system frame, or may be related to the synchronization signal block.
  • the symbol index value within the correlation or the symbol index value of the PBCH within the sync signal block is related.
  • the initialization c init of the pseudo-random sequence c(m) may be any one of the initializations shown by the following formulas (1-2a)-(1-2f), as described below.
  • N the physical cell identifier of the cell; the value of N half is 0 or 1. When the value is 0, it indicates that the location of the PBCH is located in the first half of the frame of the wireless system. When the value is 1, it indicates that it is located in the frame of the wireless system.
  • the second half frame; the value of K ranges from 1 to 64; n SS represents the index value of the sync signal block in a SS burst set; n s represents the slot index in the frame of the wireless system. value.
  • the number N RB of the resource block RBs of the PBCH may be specifically expressed as And It may be obtained by the density n density of the DMRS sequence in the RB of the PBCH and the number N symbol of the symbols occupied by the DMRS sequence in one SS block.
  • the distribution of PBCH in time is in units of symbols, with 12 subcarriers as frequency units.
  • n density can be 12, 6, 4, 3, 2, then The size can be obtained according to formula (A) or according to Table 4 below.
  • the DMRS on the symbol occupied by the PBCH is a long DMRS sequence, that is, one DMRS sequence is mapped on multiple symbols, and the density n density of the DMRS sequence on each symbol is different, and is mapped in the SSS bandwidth of the secondary synchronization signal.
  • the density is n density1 and the density outside the SSS bandwidth is n density2 .
  • the density of the DMRS sequence may be relatively sparse.
  • n density1 may be 12 or 6; when outside the SSS bandwidth, the density of the DMRS sequence may be relatively dense, for example, n density2 may be 4, 3, Or 2.
  • the size can be obtained according to formula (B) or according to Table 5 below.
  • n density can be 12, 6, 4, 3, 2, then the corresponding The size can be 24, 48, 72, 96 and 144.
  • the broadcast signal is a PBCH
  • the PBCH and the synchronization signal block may be time division multiplexed TDM
  • the SSS in the synchronization signal block and the proprietary DMRS may be utilized as the DMRS of the PBCH.
  • the number of subcarriers of the PBCH is twice the number of subcarriers of the SSS
  • a denser DMRS is required, or there is no DMR on the same bandwidth as the SSS to satisfy the PBCH.
  • the demodulation performance is as shown in (a) of FIG.
  • the number of DMRS symbols of the PBCH may be a single symbol or two symbols, as shown in (b) and (c) of FIG.
  • the frequency offsets of the DMRSs of different symbols of the PBCH may be the same or different, and even some resource blocks have no DMRS.
  • the base station In the method for generating a demodulation reference signal sequence provided by the embodiment of the present application, the base station generates a demodulation reference signal DMRS sequence of the broadcast signal according to the pseudo random sequence c(m), and the number of the DMRS sequence and the resource block RB based on the broadcast signal
  • the N RB is associated with the number of RE REs occupied by the DMRS sequence in an RB, so that the base station maps it to one or more symbols and sends the DMRS sequence to the terminal device according to the same method.
  • the generated DMRS sequence matches the DMRS sequence sent by the base station, the data of the broadcast signal is demodulated by the DMRS sequence, so that the method can determine the DMRS sequence corresponding to each broadcast signal, thereby ensuring that the broadcast signal is correctly demodulated, At the same time, the efficiency of the terminal device accessing the base station is also improved.
  • FIG. 8 is a flowchart of an information indication method according to an embodiment of the present application. Referring to FIG. 8, the method includes the following steps.
  • Step 301 The base station generates a first sequence and a second sequence.
  • the first sequence and the second sequence may be a sequence of a demodulation reference signal DMRS sequence of the PBCH or a secondary synchronization reference signal SSS.
  • the first sequence and the second sequence are two different sequences, and the first sequence and the second sequence may be both DMRS sequences or sequences of SSS at the same time.
  • Step 302 The base station sends a target sequence to the terminal device. If the target sequence is the first sequence, it is used to indicate that the base station allows the terminal device to camp; if the target sequence is the second sequence, it is used to indicate that the base station does not allow the terminal device to camp.
  • Step 303 The terminal device receives the target sequence sent by the base station, and determines that the base station allows the terminal device to camp if the target sequence is the first sequence, and determines that the base station does not allow the terminal device to camp if the target sequence is the second sequence.
  • the base station may use the DMRS sequence of the PBCH or the sequence of the SSS to indicate whether the base station allows the UE to or can not camp on the cell.
  • the base station uses two different PBCH DMRS sequences or two different SSS sequences to indicate whether the base station allows the terminal device to camp.
  • the base station may further indicate to the terminal device whether the base station allows the terminal device to camp at different positions in the PBCH or different frequency positions of the SSS sequence by using the DMRS sequence, as described below.
  • the base station indicates, by using the method indicated by the following information, whether the base station allows the terminal device to camp.
  • the method includes: the base station generates a first sequence; the base station sends the first sequence to the terminal device; wherein, if the location of the first sequence is the first location, The first sequence is used to indicate that the base station allows the terminal device to camp; if the location of the first sequence is the second location, the first sequence is used to indicate that the base station does not allow the terminal device to camp, and the first location and the second location are different.
  • the terminal device may determine whether the base station allows the terminal device to camp by using the following information indicating method, where the method includes: the terminal device receives the first sequence sent by the base station; and if the location where the first sequence is located is the first location, the terminal device Determining that the base station allows the terminal device to camp; if the location of the first sequence is the second location, the terminal device determines that the base station does not allow the terminal device to camp, and the first location and the second location are different.
  • the base station and the terminal device may further indicate, according to the foregoing method for indicating whether the base station allows the terminal device to camp, whether the base station reads the value of the RMSI information, and the specific process is similar to the foregoing process of indicating whether the base station allows the terminal device to camp.
  • the application examples are not described herein again.
  • the DMRS sequence of the PBCH or the sequence of the PSS/SSS may also be used to indicate any one of the following information: a frame number part information of a system frame number (SFN), and a super Frame number part information of the Hyper System Frame Number (H-SFN), the System Regarding Bandwidth Part, the value tag, and the Control Resource Set (CORESET) of the downlink control channel.
  • SFN system frame number
  • H-SFN Hyper System Frame Number
  • CORESET Control Resource Set
  • the base station reads the value of the RMSI information, the frequency resource information of the PDSCH, the subcarrier of the RMSI (Numerology), the FDD/TDD identifier, the cell ID extension, the area identifier (Area Identity, Area ID), (Tracking Reference Signal, TRS) configuration information, and synchronization signal block index.
  • the details are as follows.
  • the base station indicates the frame number partial information of the SFN or H-SFN using the DMRS sequence of the PBCH or the sequence of the PSS/SSS.
  • the method includes: the base station generates at least one sequence, and the at least one sequence is any one of the following: a DMRS sequence of the PBCH, a sequence of the PSS, a sequence of the SSS, and each of the at least one sequence corresponds to a wireless system frame SFN or a partial frame number of a hyper-radio system frame H-SFN; the base station transmits a target sequence to the terminal device, the target sequence is a sequence in at least one sequence, and the target sequence is used to indicate to the terminal device the SFN or H-SFN corresponding to the target sequence Part of the frame number.
  • the terminal device receives the target sequence sent by the base station, and the target sequence is a sequence in at least one sequence; wherein at least one sequence is any one of the following sequences: a DMRS sequence of the PBCH, a sequence of the PSS, and a sequence of the SSS, at least Each sequence in a sequence corresponds to a radio system frame SFN or a partial frame number of a hyper-radio system frame H-SF; the terminal device determines a partial frame number of the SFN or H-SFN corresponding to the target sequence according to the target sequence.
  • the base station uses the different sequence of the DMRS of the PBCH or the different sequence of the PSS/SSS to indicate the frame number of the frame of the wireless system.
  • MSB Most Significant Bit
  • the base station indicates 2 bits of the highest data bit of the SFN or H-SFN through four sequences, with sequence 1 corresponding to 00, sequence 2 corresponding to 01, sequence 3 corresponding to 10, and sequence 4 corresponding to 11.
  • the DMRS sequence of the PBCH or the sequence of the PSS/SSS indicates the X bits of the Least Significant Bit (LSB) of the SFN.
  • the DMRSs of two symbols may also be used to respectively indicate different frame numbers of the SFN.
  • the frame number portion information of the SFN may be represented by the position of the DMRS sequence.
  • the base station uses the DMRS sequence of the PBCH or the sequence of the PSS/SSS to indicate the system bandwidth.
  • the method includes: the base station generates at least one sequence, and at least one sequence is any one of the following sequences: a DMRS sequence of the PBCH, a sequence of the PSS a sequence of SSS, each sequence of at least one sequence corresponding to a system bandwidth; the base station transmits a target sequence to the terminal device, the target sequence is a sequence in at least one sequence, and the target sequence is used to indicate to the terminal device a system corresponding to the target sequence bandwidth.
  • the terminal device receives the target sequence sent by the base station, and the target sequence is a sequence in at least one sequence; wherein at least one sequence is any one of the following sequences: a DMRS sequence of the PBCH, a sequence of the PSS, and a sequence of the SSS, at least Each sequence in a sequence corresponds to a system bandwidth; the terminal device determines the system bandwidth corresponding to the target sequence according to the target sequence.
  • the base station may use N different PBCH DMRS sequences or N different sequences of PSS/SSS to indicate N different system bandwidths.
  • N different system bandwidths can be either full system bandwidth or partial system bandwidth.
  • the DMRS sequences of two symbols can also be used to respectively use different sequences to jointly indicate all or part of the information of the system bandwidth.
  • the base station uses the DMRS sequence of the PBCH to indicate any one of the following information: the valid value identifier, the scheduling information set of the downlink control channel, the CORESET information, the frequency resource information of the PDSCH, the FDD/TDD identifier, the extended cell identifier, the area identifier, TRS configuration information.
  • the method includes: the base station generates at least one sequence, at least one sequence is a DMRS sequence of the PBCH, and each sequence in the at least one sequence corresponds to one specified information, and the specified information is any one of the following information: a valid value identifier, and a downlink control channel.
  • the base station transmits a target sequence to the terminal device, and the target sequence is a sequence in at least one sequence The target sequence is used to indicate to the terminal device the specified information corresponding to the target sequence.
  • the terminal device receives the target sequence sent by the base station, and the target sequence is a sequence in at least one sequence; wherein at least one sequence is a DMRS sequence of the PBCH, and each sequence in the at least one sequence corresponds to a specified information, and the information is specified below. Any one of the following: the RMS identifier, the scheduling information set of the downlink control channel, the CORESET information, the frequency resource information of the PDSCH, the FDD/TDD identifier, the extended cell identifier, the area identifier, the TRS configuration information, and the synchronization signal block index; The target sequence determines the specified information corresponding to the target sequence.
  • the base station uses the DMRS sequence of the PBCH to indicate the valid value identifier.
  • a DMRS sequence using N different PBCHs represents N different valid value identifiers.
  • the DMRSs of two symbols may be used to respectively use different sequences, which together represent N different valid value identifiers.
  • N different valid value identifiers may be represented by different locations of the DMRS in the PBCH.
  • the base station uses the DMRS of the PBCH to indicate part or all of the information of the scheduling information set (CORESET) of the downlink control channel.
  • N different PBCH DMRS sequences are used to indicate scheduling information sets (CORESET) of N different downlink control channels.
  • N different PBCH DMRS sequences are used to indicate log2(N) bits of the MSB of the scheduling information set (CORESET) of the downlink control channel or log2(N) bits of the LSB indicating the scheduling information set (CORESET) of the downlink control channel.
  • the scheduling information set (CORESET) of the N different downlink control channels may also be indicated at different locations in the PBCH of the DMRS.
  • the base station uses the DMRS of the PBCH to indicate the frequency resource information of the PDSCH.
  • the DMRS sequence of N different PBCHs is used to indicate frequency resource information of N different PDSCHs.
  • the DMRS sequence of the PBCH is used to indicate N bits of the MSB of the frequency resource information of the PDSCH or N bits of the LSB.
  • the DMRSs of the two symbols may also use different sequences to jointly indicate the frequency resource information of the PDSCH.
  • the frequency resource information of the N types of PDSCHs may be indicated by different locations of the DMRS in the PBCH.
  • the base station uses the DMRS of the PBCH to indicate the subcarrier spacing of the RMSI.
  • a DMRS sequence using N different PBCHs indicates subcarrier spacing of N different RMSIs.
  • the DMRS sequence of the PBCH is used to indicate the N bits of the MSB of the subcarrier spacing of the RMSI or the N bits of the LSB.
  • the DMRSs of two symbols can also be used to respectively use different sequences to jointly indicate the subcarrier spacing of N different RMSIs.
  • subcarrier spacing of N different RMSIs may be indicated at different locations in the PBCH of the DMRS sequence.
  • the base station uses the DMRS of the PBCH to indicate the FDD/TDD identifier.
  • a DMRS sequence using two different PBCHs indicates the value of the FDD/TDD flag.
  • the value of the FDD/TDD identity of the base station may be indicated at different locations in the PBCH using the DMRS sequence.
  • the base station uses the DMRS of the PBCH to indicate the extended cell identity.
  • a DMRS sequence using N different PBCHs indicates N different extended cell identifiers.
  • the DMRS sequence of the PBCH is used to indicate the N bits of the MSB of the extended cell identifier or the N bits of the LSB.
  • the DMRSs of two symbols may also be used to respectively use different sequences to jointly indicate the extended cell identity. It is also possible to indicate extended cell identification part information or all information using different locations of the DMRS in the PBCH.
  • the base station uses the DMRS sequence of the PBCH to indicate the area identifier.
  • a DMRS sequence using N different PBCHs indicates N different area identifiers.
  • the DMRS sequence of the PBCH is used to indicate the N bits of the MSB identified by the area or the N bits of the LSB.
  • the DMRSs of two symbols may also be used to respectively use different sequences to jointly indicate the area identifier.
  • the base station uses the DMRS sequence of the PBCH to indicate the combination of the TRS configuration information.
  • N different PBCH DMRS sequences are used to indicate N different TRS configuration information.
  • DMRSs of two symbols may be used to respectively use different sequences to jointly indicate N different TRS configuration information.
  • N different TRS configuration information may be represented by different locations of the DMRS in the PBCH.
  • the base station indicates the SS block index through the DMRS sequence of the PBCH. Specifically, the base station can perform indication by using two different methods as follows.
  • the first type the base station combines the DMRS sequence of the PBCH with the synchronization signal block index of the PBCH, and separately designs two symbols for transmitting the DMRS sequence, and jointly represents the index value of the synchronization signal block. For example, suppose that there are 64 index values of the sync signal block to be represented, and the 64 index values can be separately represented, that is, there are 8 kinds of DMRS sequences on the first symbol, and 8 types of DMRS sequences on the second symbol. The sequence of two symbols can be combined to represent all of the sync block indices in a SS burst set.
  • DMRS to indicate the N bits of the MSB of the synchronization signal block index of the PBCH or the N bits of the LSB, and the remaining data bits are transmitted in two ways, and the first implicit manner transmits N3 bits, including scrambling.
  • N+N3 is the complete data bit of the synchronization signal block index of the PBCH; another transmission
  • the method is explicit and implicit, and the explicit means that N1 bits are transmitted in the content of the PBCH, and N2 bits are implicitly transmitted through the implicit transmission, wherein N+N1+N2 is the index of the synchronization signal block of the complete PBCH. Data bits.
  • All DMRS sequences on both symbols may be the same or different.
  • the eight DMRS sequences on each symbol can be generated by a cyclic shift of one sequence or eight independent sequences.
  • the eight independent sequences represent the golden sequences generated by the eight sequences using different initialization formulas, or eight pseudo-random sequences that are not initialized, such as m-sequences or ZC sequences.
  • the sequence herein may be a pseudo random sequence such as a ZC sequence, a golden sequence, an m sequence, or a combination of these sequences, such as the combination of the two sequences shown in (a) and (b) of Fig. 9.
  • the combination shown in (a) of FIG. 9 indicates that in the bandwidth of the PBCH, the DMRS sequence on each symbol is a complete sequence; the combination shown in (b) of FIG. 9 indicates that In the PBCH bandwidth, the PBCH of each symbol uses one DMRS sequence on the bandwidth frequency resource overlapping with the SSS. On the resources other than the SSS bandwidth, another DMRS sequence is used, that is, a plurality of DMRS sequences on one synchronization signal block are combined. DMRS of PBCH.
  • the base station fuses the DMRS sequence of the PBCH with the synchronization signal block index of the PBCH, and designs the DMRS sequence of the PBCH by using two symbols.
  • the DMRS sequence of each symbol represents the index value of the synchronization signal segment, and the second symbol
  • the DMRS sequence represents the index value of the sync signal block, and the sequence of the two symbols together can represent all the sync block index in a set of sync signal segments.
  • the DMRS sequence on the first symbol represents the synchronization signal block index value in the synchronization signal segment
  • the DMRS sequence on the second symbol represents the index value of the synchronization signal segment
  • the sequence of the two symbols together can represent a synchronization signal. All sync block indexes in the set of segments.
  • the DMRS sequences on the two symbols may be the same or different.
  • the eight DMRS sequences on each symbol can be a cyclic shift of one sequence or eight independent sequences.
  • the eight independent sequences represent the golden sequences generated by the eight sequences using different initialization formulas, or eight pseudo-random sequences that are not initialized, such as m-sequences or ZC-sequences, where the sequences described herein are pseudo-random sequences.
  • Such as ZC sequence, golden sequence, m sequence It is also possible that a combination of these sequences or a combination of these sequences together with the frequency domain position of the DMRS represents a sync block index.
  • the base station may use the DMRS sequence of the PBCH or the sequence of the SSS to indicate whether the base station allows the terminal device to camp, the frame number part information of the SFN, the frame number of the H-SFN, the system bandwidth, and the effective value.
  • Identification part or all of the information of the scheduling information set of the downlink control channel, whether the base station reads the value of the RMSI information, the frequency resource information of the PDSCH, the subcarrier spacing of the RMSI, the FDD/TDD identifier, the extended cell identifier, the area identifier, and the TRS configuration
  • the information, and any information in the synchronization signal block index can save signaling interaction between the base station and the terminal device, thereby reducing overhead and detection complexity of the terminal device.
  • each network element such as a base station, a terminal device, a chip of a base station, a chip of a terminal device, etc.
  • each network element includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in a combination of hardware or hardware and computer software in conjunction with the network elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the embodiments of the present application may divide the functional modules of the base station, the terminal device, the chip of the base station, and the chip of the terminal device according to the foregoing method.
  • each function module may be divided according to each function, or two or more functions may be used.
  • the functions are integrated in one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 10 is a schematic diagram showing a possible structure of the device 400 involved in the foregoing embodiment.
  • the device 400 may be a base station or a chip on a base station.
  • the apparatus 400 includes a processing unit 401 and a transmitting unit 402.
  • the processing unit 401 is configured to perform step 201 and step 202 in FIG. 4, step 301 in FIG. 8, and/or other processes for the techniques described herein; the transmitting unit 402 is used in step 203 in FIG. Step 302 in Figure 8, and/or other processes for the techniques described herein. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional description of the corresponding functional modules, and details are not described herein again.
  • the processing unit 401 may be a processor, and the sending unit 402 may be a sending interface, and the receiving interface may form a communication interface.
  • FIG. 11 is a schematic diagram showing a possible logical structure of the device 410 involved in the foregoing embodiment provided by the embodiment of the present application.
  • the device 410 includes a processor 412, a communication interface 413, a memory 411, and a bus 414.
  • the processor 412, the communication interface 413, and the memory 411 are connected to one another via a bus 414.
  • the processor 412 is configured to control and manage the actions of the device 410.
  • the processor 412 is configured to perform step 201 and step 202 in FIG. 4, step 301 in FIG. 8, and/or Other processes of the techniques described herein.
  • Communication interface 413 is used to support device 410 for communication.
  • the memory 411 is configured to store program codes and data of the device 410.
  • the processor 412 can be a central processing unit CPU, a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, combinations of digital signal processors and microprocessors, and the like.
  • the bus 414 can be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus or the like.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • FIG. 12 is a schematic diagram showing a possible structure of the device 500 involved in the foregoing embodiment.
  • the device 500 may be a terminal device or a terminal device. chip.
  • the apparatus 500 includes a receiving unit 501 and a processing unit 502.
  • the receiving unit 501 is configured to perform the steps of step 203 in FIG. 4, the step of receiving the target sequence in step 303 of FIG. 8, and/or other processes for the techniques described herein;
  • the processing unit 502 is configured to execute the method in FIG.
  • the processing unit 502 may be a processor
  • the receiving unit 501 may be a receiving interface, which may form a communication interface with the sending interface.
  • FIG. 13 is a schematic diagram showing a possible logical structure of a device 510 involved in the foregoing embodiment provided by an embodiment of the present application.
  • the device 510 includes a processor 512, a communication interface 513, a memory 511, and a bus 514.
  • the processor 512, the communication interface 513, and the memory 511 are connected to one another via a bus 514.
  • the processor 512 is configured to perform control management on the action of the device 510.
  • the processor 512 is configured to perform step 205 and step 206 in FIG. 4, and step 303 in FIG. 8 determines whether the base station allows the terminal.
  • Communication interface 513 is used to support device 510 for communication.
  • the memory 511 is configured to store program codes and data of the device 510.
  • the processor 512 can be a central processing unit CPU, a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, combinations of digital signal processors and microprocessors, and the like.
  • the bus 514 can be a peripheral component interconnect standard PCI bus or an extended industry standard architecture EISA bus or the like. The bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 13, but it does not mean that there is only one bus or one type of bus.
  • a computer readable storage medium having stored therein instructions that, when run on a computer, cause the computer to perform the above-described FIG. 4 or FIG. The steps of the base station or the steps of the terminal device in the provided method.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the steps or terminal of the base station in the method of FIG. 4 or FIG. 8 described above The steps of the device.
  • a system comprising a base station and a terminal device; wherein the base station may be the base station provided in FIG. 10 or FIG. 11 above, for performing the above FIG. 4 or FIG. 8 is the step of the base station in the method provided; and/or the terminal device is the terminal device provided in FIG. 12 or FIG. 13 above, for performing the steps of the terminal device in the method provided in FIG. 4 or FIG. 8 above.
  • the base station can ensure that the broadcast signal has a proper demodulation reference signal sequence by generating a demodulation reference signal sequence of the broadcast signal and performing mapping of the demodulation reference signal sequence. At the same time, the efficiency and accuracy of demodulation of the broadcast signal are improved.
  • the information indication method provided by the embodiment of the present application can save signaling interaction between the base station and the terminal device, thereby reducing overhead and detection complexity of the terminal device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信的方法及装置,涉及通信技术领域,解决了现有技术中一些广播信号无法解调、以及终端设备无法接入基站的问题。所述方法包括:根据伪随机序列c(m),生成广播信号的解调参考信号DMRS序列,所述DMRS序列与所述广播信号的资源块RB的数量N RB和一个RB中所述DMRS序列占用的资源单元RE的数量n RE相关;将所述DMRS序列映射在一个或者多个符号上。之后,基站将映射有所述DMRS序列的一个或多个符号发送给终端设备,终端设备接收基站发送的DMRS序列,并根据上述方法生成DMRS序列,若生成的DMRS序列与从基站接收的DMRS序列匹配满足要求,则根据所述DMRS序列解调所述广播信号中的数据。

Description

一种通信的方法及装置
本申请要求于2017年06月02日提交中国专利局、申请号为201710409898.1、申请名称为“一种通信的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信的方法及装置。
背景技术
随着通信技术的快速发展,人们对无线通信的数据速率和效率的要求越来越高。在新空口(New Radio,NR)通信系统中,波束成形技术能够将传输信号的能量限制在某个波束方向内,从而增加信号发射和接收的效率。波束成形技术能够有效扩大无线信号的传输范围,降低信号干扰,从而达到更高的通信效率和获取更高的网络容量。然而,采用波束成形技术会导致广播信号的传输需要波束扫描,波束扫描后不同波束信号的信道不一致,因此每个广播信号信道需要携带各自用于解调的解调参考信号(Demodulation Reference Signal,DMRS)。
目前,在长期演进(Long Term Evolution,LTE)系统中,由于广播信号的周期与小区参考信号(Cell-specific Reference Signal,CRS)的周期是一致的,因此广播信号的信道通常采用CRS作为DMRS进行信号的解调。但是,在NR系统中,CRS的周期与广播信号的周期可能是不一致的,因此采用LTE系统中将CRS作为广播信号信道的DMRS的方法会存在一些广播信号信道没有DMRS,从而无法对这些广播信号信道进行解调,或者导致终端设备无法接入基站。
发明内容
本申请的实施例提供一种通信的方法及装置,特别地,提供一种新的广播信号信道的DMRS,可以应用于NR中。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供一种解调参考信号序列生成方法,该方法包括:根据伪随机序列c(m),生成广播信号的解调参考信号DMRS序列;其中,该DMRS序列与广播信号的资源块RB的数量N RB和一个RB中该DMRS序列占用的资源单元RE的数量n RE相关;将该DMRS序列映射到一个或者多个符号中。上述技术方案中,通过根据伪随机序列c(m),生成广播信号的DMRS序列,并将该DMRS序列映射到一个或者多个符号中,从而为广播信号生成专有的DMRS序列,将该DMRS序列发送给终端设备,进而可以使终端设备对广播信号进行正确的解调,以及使终端设备快速的接入基站。
在第一方面的一种可能的实现方式中,广播信号为寻呼信息、物理广播信道PBCH或者系统信息。
在第一方面的一种可能的实现方式中,根据伪随机序列c(m),生成广播信号的解调参考信号DMRS序列,包括:根据伪随机序列c(m),通过公式(1)生成广播信号的DMRS序列;式中,l表示一个时隙上的符号的索引值,r l(m)表示DMRS序列,m表示 DMRS序列的序列索引值,
Figure PCTCN2018088769-appb-000001
在第一方面的一种可能的实现方式中,所述n RE取值为3或4。
在第一方面的一种可能的实现方式中,广播信号为寻呼信息或者系统信息时,伪随机序列c(m)的初始化c init为以下公式(1-1a)-(1-1b)所示的初始化中的任一个,初始化c init用于生成伪随机序列c(m);
Figure PCTCN2018088769-appb-000002
Figure PCTCN2018088769-appb-000003
式中,N ID表示小区的物理小区标识
Figure PCTCN2018088769-appb-000004
或者由多个小区组成的区域的标识
Figure PCTCN2018088769-appb-000005
k 1和k 2的取值为0~64中的常数,n RNTI表示无线网络临时标识数值,n SS表示一个同步信号段集合中的同步信号块的索引值,m 2表示寻呼信息或系统信息的RB中的符号数量,l 2表示寻呼信息或系统信息的RB中符号的索引值。
在第一方面的一种可能的实现方式中,将该DMRS序列映射到一个或者多个符号中,具体包括:根据公式(2),将该DMRS序列映射在所述广播信号的资源块RB包括的资源单元RE中,
a k,l=r l,n(m)        (2)
式中,a k,l表示DMRS序列包括的序列码在RB中占用的RE的位置,k表示符号上的频率索引值,l表示一个时隙上的符号索引值或者广播信号的RB上的符号索引值,n表示广播信号的调度资源单位的索引值,m表示DMRS序列的序列索引值。
在第一方面的另一种可能的实现方式中,k、l和m的取值具体如公式(2-1a),
Figure PCTCN2018088769-appb-000006
式中,n density表示RB中用于传输DMRS序列的密度;v shift表示DMRS序列的起始RE位置相对于最小频率的RE的第一频率偏移值;v表示DMRS序列的起始RE位置相对于最小频率的RE的第二频率偏移值;l 1和l 2的取值范围为0,1,2,…,N symbol,N symbol表示一个时隙上的符号个数或者寻呼信息或系统信息的RB上的符号个数,
Figure PCTCN2018088769-appb-000007
表示小区的小区物理标识,mod表示取余。
上述几种可能的实现方式,可以使广播信号的DMRS序列以最有效的方式映射在广播信号的RB包括的RE中,从而在包括广播信号被正确解调的同时,减小DMRS序列占用的传输资源。
第二方面,提供一种解调参考信号序列生成方法,该方法包括:接收来自基站的广播信号的第一解调参考信号DMRS序列;根据伪随机序列c(m),生成第二DMRS序列;其中,第二DMRS序列与广播信号的资源块RB的数量N RB和一个RB中DMRS序列占用的资源单元RE的数量n RE相关;若第二DMRS序列与第一DMRS序列匹配满足要求,则根据第二DMRS解调广播信号的数据。
在第二方面的一种可能的实现方式中,广播信号为寻呼信息、物理广播信道PBCH 或者系统信息。
在第二方面的一种可能的实现方式中,根据伪随机序列c(m),生成解调参考信号DMRS序列,包括:根据伪随机序列c(m),通过公式(1)生成第二DMRS序列,式中,r l(m)表示第二DMRS序列,m表示第二DMRS序列的序列索引值,l表示一个时隙上的符号的索引值,r l(m)表示DMRS序列,m表示DMRS序列的序列索引值;
Figure PCTCN2018088769-appb-000008
在第二方面的一种可能的实现方式中,n RE取值为3或4。
在第二方面的一种可能的实现方式中,通过物理下行控制信道PDCCH、或者物理广播信道PBCH、或者RMSI获取N RB
在第二方面的一种可能的实现方式中,当广播信号为寻呼信息或者系统信息时,伪随机序列c(m)的初始化c init为以下公式(1-1a)-(1-1b)所示的初始化中的任一个,初始化c init用于生成伪随机序列c(m);
Figure PCTCN2018088769-appb-000009
Figure PCTCN2018088769-appb-000010
式中,N ID表示小区的物理小区标识
Figure PCTCN2018088769-appb-000011
或者由多个小区组成的区域的标识
Figure PCTCN2018088769-appb-000012
k 1和k 2的取值为0~64中的常数,n RNTI表示无线网络临时标识数值,n SS表示一个同步信号段集合中的同步信号块的索引值,m 2表示寻呼信息或系统信息的RB中的符号数量,l 2表示寻呼信息或系统信息的RB中符号的索引值。
第三方面,提供一种解调参考信号序列映射方法,该方法包括:生成广播信号的解调参考信号DMRS序列;根据公式(2),将DMRS序列映射在广播信号的资源块RB包括的资源单元RE中,
a k,l=r l,n(m)       (2)
式中,a k,l表示DMRS序列包括的序列码在所述RB中占用的RE的位置,k表示符号上的频率索引值,l表示一个时隙上的符号索引值或者广播信号的RB上的符号索引值,n表示广播信号的调度资源单位的索引值,m表示DMRS序列的序列索引值。
在第三方面的一种可能的实现方式中,广播信号为寻呼信息、或者系统信息。
在第三方面的一种可能的实现方式中,DMRS序列通过公式(1)获得;式中,所述r l(m)表示所述DMRS序列,c(m)表示伪随机序列,n RE表示所述DMRS序列占用的资源单元RE的数量,N RB表示所述广播信号的资源块RB数量,n RE大于或等于1,所述l表示一个时隙上的符号的索引值;
Figure PCTCN2018088769-appb-000013
在第三方面的一种可能的实现方式中,k、l和m的取值具体如公式(2-1a),
Figure PCTCN2018088769-appb-000014
式中,n density表示RB中用于传输DMRS序列的密度;v shift表示DMRS序列的起始RE 位置相对于最小频率的RE的第一频率偏移值;v表示DMRS序列的起始RE位置相对于最小频率的RE的第二频率偏移值;l 1和l 2的取值范围为0,1,2,…,N symbol,N symbol表示一个时隙上的符号个数或者寻呼信息或系统信息的RB上的符号个数,
Figure PCTCN2018088769-appb-000015
表示小区的小区物理标识,mod表示取余。
在第三方面的一种可能的实现方式中,k的取值与RB中用于传输DMRS序列的密度n density和RB中用于传输DMRS序列的RE相对于最小频率的RE的频率偏移值v shift+v的具体关系为以下表中所示的任意一种:
Figure PCTCN2018088769-appb-000016
Figure PCTCN2018088769-appb-000017
在第三方面的一种可能的实现方式中,若DMRS序列占用的符号个数为
Figure PCTCN2018088769-appb-000018
Figure PCTCN2018088769-appb-000019
与v的具体关系为:
Figure PCTCN2018088769-appb-000020
式中,NA表示空,
Figure PCTCN2018088769-appb-000021
表示向下取整。
第四方面,提供一种解调参考信号序列获取方法,该方法包括:接收基站通过广播信号的资源块RB发送的解调参考信号DMRS序列;根据公式(2),确定DMRS序列在广播信号的RB包括的资源单元RE中的位置;根据DMRS序列的位置,从广播信号的RB中获取DMRS序列;
a k,l=r l,n(m)       (2)
式中,a k,l表示DMRS序列包括的序列码在RB中占用的RE的位置,k表示符号上的频率索引值,l表示一个时隙上的符号索引值或者广播信号的RB上的符号索引值,n表示广播信号的调度资源单位的索引值,m表示DMRS序列的序列索引值。
在第四方面的一种可能的实现方式中,广播信号为寻呼信息、或者系统信息。
在第四方面的一种可能的实现方式中,该DMRS序列是基站通过公式(1)获得;式中,所述r l(m)表示所述DMRS序列,c(m)表示伪随机序列,n RE表示所述DMRS序列占用的资源单元RE的数量,N RB表示所述广播信号的资源块RB数量,n RE大于或等于1,所述l表示一个时隙上的符号的索引值;
Figure PCTCN2018088769-appb-000022
在第四方面的一种可能的实现方式中,k、l和m的取值具体如公式(2-1a),
Figure PCTCN2018088769-appb-000023
式中,n density表示所述RB中用于传输DMRS序列的密度,具体为用于传输DMRS序列的两个相邻RE在频率上的间隔RE数目;v shift表示DMRS序列的起始RE位置相对于最小频率的RE的第一频率偏移值,偏移单位为个数,v shift的取值为0~11之间的整数;所述v表示DMRS序列的起始RE位置相对于最小频率的RE的第二频率偏移值,偏移单位为个数,v的取值为-6~6之间的整数,且当v shift+v≥n density时,v=v shift-n density;l 1和l 2的取值范围为0,1,2,…,N symbol,N symbol表示一个时隙上的符号个数或者寻呼信息或系统信息的RB上的符号个数;
Figure PCTCN2018088769-appb-000024
表示小区的小区物理标识;mod表示取余。
在第四方面的一种可能的实现方式中,k的取值与所述RB中用于传输DMRS序列的密度n density和所述RB中用于传输DMRS序列的RE相对于最小频率的RE的频率偏移值v shift+v的具体关系为以下表中所示的任意一种:
Figure PCTCN2018088769-appb-000025
Figure PCTCN2018088769-appb-000026
在第四方面的一种可能的实现方式中,若DMRS序列占用的符号个数为
Figure PCTCN2018088769-appb-000027
Figure PCTCN2018088769-appb-000028
与v的具体关系为:
Figure PCTCN2018088769-appb-000029
式中,
Figure PCTCN2018088769-appb-000030
表示向下取整。
上述实现方式中,可以使广播信号的DMRS序列以最有效的方式映射在广播信号的RB包括的RE中,从而在包括广播信号被正确解调的同时,减小DMRS序列占用的传输资源。
第五方面,提供一种装置,该装置包括:处理单元,用于根据伪随机序列c(m),生成广播信号的解调参考信号DMRS序列;其中,DMRS序列与广播信号的资源块RB的数量N RB和一个RB中DMRS序列占用的资源单元RE的数量n RE相关;处理单元,还用于将DMRS序列映射在一个或者多个符号上。
在第五方面的一种可能的实现方式中,广播信号为寻呼信息、物理广播信道PBCH 或者系统信息。
在第五方面的一种可能的实现方式中,处理单元具体用于:根据伪随机序列c(m),通过公式(1)生成广播信号的DMRS序列;式中,l表示一个时隙上的符号的索引值,r l(m)表示DMRS序列,m表示DMRS序列的序列索引值。
Figure PCTCN2018088769-appb-000031
在第五方面的一种可能的实现方式中,n RE取值为3或4。
在第五方面的一种可能的实现方式中,广播信号为寻呼信息或者系统信息时,伪随机序列c(m)的初始化c init为以下公式(1-1a)-(1-1b)所示的初始化中的任一个,初始化c init用于生成所述伪随机序列c(m);
Figure PCTCN2018088769-appb-000032
Figure PCTCN2018088769-appb-000033
式中,N ID表示小区的物理小区标识
Figure PCTCN2018088769-appb-000034
或者由多个小区组成的区域的标识
Figure PCTCN2018088769-appb-000035
k 1和k 2的取值为0~64中的常数,n RNTI表示无线网络临时标识数值,n SS表示一个同步信号段集合中的同步信号块的索引值,m 2表示寻呼信息或系统信息的RB中的符号数量,l 2表示寻呼信息或系统信息的RB中符号的索引值。
在第五方面的一种可能的实现方式中,处理单元具体用于:根据公式(2),将该DMRS序列映射在所述广播信号的资源块RB包括的资源单元RE中,
a k,l=r l,n(m)        (2)
式中,a k,l表示DMRS序列包括的序列码在RB中占用的RE的位置,k表示符号上的频率索引值,l表示一个时隙上的符号索引值或者广播信号的RB上的符号索引值,n表示广播信号的调度资源单位的索引值,m表示DMRS序列的序列索引值。
在第五方面的另一种可能的实现方式中,k、l和m的取值具体如公式(2-1a),
Figure PCTCN2018088769-appb-000036
式中,n density表示RB中用于传输DMRS序列的密度;v shift表示DMRS序列的起始RE位置相对于最小频率的RE的频率偏移值;v表示DMRS序列的起始RE位置相对于最小频率的RE的频率偏移值;l 1和l 2的取值范围为0,1,2,…,N symbol,N symbol表示一个时隙上的符号个数或者寻呼信息或系统信息的RB上的符号个数,
Figure PCTCN2018088769-appb-000037
表示小区的小区物理标识,mod表示取余。
在第五方面的另一种设计中,所述装置为基站或基站上的芯片。
第六方面,提供一种装置,该装置包括:接收单元,用于接收来自基站的广播信号的第一解调参考信号DMRS序列;处理单元,用于根据伪随机序列c(m),生成第二DMRS序列;其中,第二DMRS序列与广播信号的资源块RB的数量N RB和一个RB中DMRS序列占用的资源单元RE的数量n RE相关;处理单元,还用于若第二DMRS序列与第一DMRS序列匹配满足要求,则根据第二DMRS解调广播信号的数据。
在第六方面的一种可能的实现方式中,广播信号为寻呼信息、物理广播信道PBCH 或者系统信息。
在第六方面的一种可能的实现方式中,处理单元具体用于:根据伪随机序列c(m),通过公式(1)生成DMRS序列;式中,r l(m)表示DMRS序列,m表示DMRS序列的序列索引值,l表示一个时隙上的符号的索引值;
Figure PCTCN2018088769-appb-000038
在第六方面的一种可能的实现方式中,n RE取值为3或4。
在第六方面的一种可能的实现方式中,接收单元还用于通过物理下行控制信道PDCCH、或者物理广播信道PBCH、或者RMSI获取N RB
在第六方面的一种可能的实现方式中,当广播信号为寻呼信息或者系统信息时,伪随机序列c(m)的初始化c init为以下公式(1-1a)-(1-1b)所示的初始化中的任一个,初始化c init用于生成伪随机序列c(m);
Figure PCTCN2018088769-appb-000039
Figure PCTCN2018088769-appb-000040
式中,N ID表示小区的物理小区标识
Figure PCTCN2018088769-appb-000041
或者由多个小区组成的区域的标识
Figure PCTCN2018088769-appb-000042
k 1和k 2的取值为0~64中的常数,n RNTI表示无线网络临时标识数值,n SS表示一个同步信号段集合中的同步信号块的索引值,m 2表示寻呼信息或系统信息的RB中的符号数量,l 2表示寻呼信息或系统信息的RB中符号的索引值。
在第六方面的另一种可能的实现方式中,所述装置为终端设备或终端设备上的芯片。
第七方面,提供一种装置,该装置包括:处理单元,用于生成广播信号的解调参考信号DMRS序列;处理单元,还用于根据公式(2),将DMRS序列映射在广播信号的资源块RB包括的资源单元RE中,
a k,l=r l,n(m)       (2)
式中,a k,l表示DMRS序列包括的序列码在RB中占用的RE的位置,k表示符号上的频率索引值,l表示一个时隙上的符号索引值或者广播信号的RB上的符号索引值,n表示广播信号的调度资源单位的索引值,m表示DMRS序列的序列索引值。
在第七方面的一种可能的实现方式中,广播信号为寻呼信息、或者系统信息。
在第七方面的一种可能的实现方式中,DMRS序列通过公式(1)获得;式中,r l(m)表示DMRS序列,c(m)表示伪随机序列,n RE表示DMRS序列占用的资源单元RE的数量,N RB表示广播信号的资源块RB数量,n RE大于或等于1,l表示一个时隙上的符号的索引值;
Figure PCTCN2018088769-appb-000043
在第七方面的一种可能的实现方式中,k、l和m的取值具体如公式(2-1a),
Figure PCTCN2018088769-appb-000044
式中,n density表示RB中用于传输DMRS序列的密度;v shift表示DMRS序列的起始RE位置相对于最小频率的RE的频率偏移值;v表示DMRS序列的起始RE位置相对于最小频率的RE的频率偏移值;l 1和l 2的取值范围为0,1,2,…,N symbol,N symbol表示一个时隙上的符号个数或者寻呼信息或系统信息的RB上的符号个数,
Figure PCTCN2018088769-appb-000045
表示小区的小区物理标识,mod表示取余。
在第七方面的一种可能的实现方式中,k的取值与RB中用于传输DMRS序列的密度n density和RB中用于传输DMRS序列的RE相对于最小频率的RE的频率偏移值v shift+v的具体关系为以下表中所示的任意一种:
Figure PCTCN2018088769-appb-000046
Figure PCTCN2018088769-appb-000047
在第七方面的一种可能的实现方式中,若DMRS序列占用的符号个数为
Figure PCTCN2018088769-appb-000048
Figure PCTCN2018088769-appb-000049
与v的具体关系为:
Figure PCTCN2018088769-appb-000050
式中,NA表示空,
Figure PCTCN2018088769-appb-000051
表示向下取整。
在第七方面的另一种可能的实现方式中,所述装置为基站或基站内部的芯片。
第八方面,提供一种装置,该装置包括:接收单元,用于接收基站通过广播信号的资源块RB发送的解调参考信号DMRS序列;处理单元,用于根据公式(2),确定DMRS序列在广播信号的RB包括的资源单元RE中的位置;处理单元,还用于根据DMRS序列的位置,从广播信号的RB中获取该DMRS序列;
a k,l=r l,n(m)       (2)
式中,所述a k,l表示所述DMRS序列包括的序列码在所述RB中占用的RE的位置,所述k表示符号上的频率索引值,所述l表示一个时隙上的符号索引值或者所述广播信号的RB上的符号索引值,所述n表示所述广播信号的调度资源单位的索引值,所述m表示所述DMRS序列的序列索引值。
在第八方面的一种可能的实现方式中,广播信号为寻呼信息、或者系统信息。
在第八方面的一种可能的实现方式中,DMRS序列是所述基站通过公式(1)获得;式中,r l(m)表示DMRS序列,c(m)表示伪随机序列,n RE表示DMRS序列占用的资源单元RE的数量,N RB表示广播信号的资源块RB数量,n RE大于或等于1,l表示一个时隙上的符号的索引值;
Figure PCTCN2018088769-appb-000052
在第八方面的一种可能的实现方式中,k、l和m的取值具体如公式(2-1a),
Figure PCTCN2018088769-appb-000053
式中,n density表示所述RB中用于传输DMRS序列的密度;v shift表示所述DMRS序列的起始RE位置相对于最小频率的RE的第一频率偏移值;v表示DMRS序列的起始RE位置相对于最小频率的RE的第二频率偏移值;l 1和l 2的取值范围为0,1,2,…,N symbol,N symbol表示一个时隙上的符号个数或者寻呼信息或系统信息的RB上的符号个数,
Figure PCTCN2018088769-appb-000054
表示小区的小区物理标识,mod表示取余。
在第八方面的一种可能的实现方式中,广播信号为寻呼信息、或者系统信息。
在第八方面的一种可能的实现方式中,DMRS序列通过公式(1)获得;式中,r l(m)表示DMRS序列,c(m)表示伪随机序列,n RE表示DMRS序列占用的资源单元RE的数量,N RB表示广播信号的资源块RB数量,n RE大于或等于1,l表示一个时隙上的符号的索引值;
Figure PCTCN2018088769-appb-000055
在第八方面的一种可能的实现方式中,k、l和m的取值具体如公式(2-1a),
Figure PCTCN2018088769-appb-000056
式中,n density表示RB中用于传输DMRS序列的密度;v shift表示DMRS序列的起始RE位置相对于最小频率的RE的频率偏移值;v表示DMRS序列的起始RE位置相对于最小频率的RE的频率偏移值;l 1和l 2的取值范围为0,1,2,…,N symbol,N symbol表示一个时隙上的符号个数或者寻呼信息或系统信息的RB上的符号个数,
Figure PCTCN2018088769-appb-000057
表示小区的小区物理标识,mod表示取余。
在第八方面的一种可能的实现方式中,k的取值与RB中用于传输DMRS序列的密度n density和RB中用于传输DMRS序列的RE相对于最小频率的RE的频率偏移值v shift+v的具体关系为以下表中所示的任意一种:
Figure PCTCN2018088769-appb-000058
Figure PCTCN2018088769-appb-000059
在第八方面的一种可能的实现方式中,若DMRS序列占用的符号个数为
Figure PCTCN2018088769-appb-000060
Figure PCTCN2018088769-appb-000061
与v的具体关系为:
式中,NA表示空,
Figure PCTCN2018088769-appb-000063
表示向下取整。
在第八方面的另一种可能的实现方式中,所述装置为基站或基站内部的芯片。
第九方面,提供一种装置,该装置包括:接收单元,用于接收基站通过广播信号的资源块RB发送的解调参考信号DMRS序列;处理单元,用于根据公式(2),确定DMRS序列在广播信号的RB包括的资源单元RE中的位置;处理单元,还用于根据DMRS序列的位置,从广播信号的RB中获取该DMRS序列;
a k,l=r l,n(m)       (2)
式中,所述a k,l表示所述DMRS序列包括的序列码在所述RB中占用的RE的位置,所述k表示符号上的频率索引值,所述l表示一个时隙上的符号索引值或者所述广播信号的RB上的符号索引值,所述n表示所述广播信号的调度资源单位的索引值,所述m表示所述DMRS序列的序列索引值。
在第九方面的一种可能的实现方式中,广播信号为寻呼信息、或者系统信息。
在第九方面的一种可能的实现方式中,DMRS序列是所述基站通过公式(1)获得;式中,r l(m)表示DMRS序列,c(m)表示伪随机序列,n RE表示DMRS序列占用的资源单元RE的数量,N RB表示广播信号的资源块RB数量,n RE大于或等于1,l表示一个时隙上的符号的索引值;
Figure PCTCN2018088769-appb-000064
在第九方面的一种可能的实现方式中,k、l和m的取值具体如公式(2-1a),
Figure PCTCN2018088769-appb-000065
式中,n density表示所述RB中用于传输DMRS序列的密度;v shift表示所述DMRS序列的起始RE位置相对于最小频率的RE的第一频率偏移值;v表示DMRS序列的起始RE位置相对于最小频率的RE的第二频率偏移值;l 1和l 2的取值范围为0,1,2,…,N symbol,N symbol表示一个时隙上的符号个数或者寻呼信息或系统信息的RB上的符号个数,
Figure PCTCN2018088769-appb-000066
表示小区的小区物理标识,mod表示取余。
本申请的又一方面,提供一种信息指示方法,该方法包括:基站生成至少一个序列,至少一个序列为PBCH的DMRS序列,至少一个序列中的每个序列对应一个指定信息,指定信息以下信息中的任一种:有效值标识、下行控制信道的调度信息集合 CORESET信息、PDSCH的频率资源信息、FDD/TDD标识、扩展小区标识、区域标识、TRS配置信息、同步信号块索引;基站向终端设备发送目标序列,目标序列为至少一个序列中的序列,目标序列用于向终端设备指示与目标序列对应的指定信息。
本申请的又一方面,提供一种信息指示方法,该方法包括:终端设备接收基站发送的目标序列,目标序列为至少一个序列中的序列;其中,至少一个序列为PBCH的DMRS序列,至少一个序列中的每个序列对应一个指定信息,指定信息以下信息中的任一种:有效值标识、下行控制信道的调度信息集合CORESET信息、PDSCH的频率资源信息、FDD/TDD标识、扩展小区标识、区域标识、TRS配置信息、同步信号块索引;终端设备根据目标序列,确定与目标序列对应的指定信息。
本申请的又一方面,提供一种基站,该基站包括:处理单元,用于生成至少一个序列,至少一个序列为PBCH的DMRS序列,至少一个序列中的每个序列对应一个指定信息,指定信息以下信息中的任一种:有效值标识、下行控制信道的调度信息集合CORESET信息、PDSCH的频率资源信息、FDD/TDD标识、扩展小区标识、区域标识、TRS配置信息、同步信号块索引;发送单元,用于向终端设备发送目标序列,目标序列为至少一个序列中的序列,目标序列用于向终端设备指示与目标序列对应的指定信息。
本申请的又一方面,提供一种终端设备,该终端设备包括:接收单元,用于接收基站发送的目标序列,目标序列为至少一个序列中的序列;其中,至少一个序列为PBCH的DMRS序列,至少一个序列中的每个序列对应一个指定信息,指定信息以下信息中的任一种:有效值标识、下行控制信道的调度信息集合CORESET信息、PDSCH的频率资源信息、FDD/TDD标识、扩展小区标识、区域标识、TRS配置信息、同步信号块索引;处理单元,用于根据目标序列,确定与目标序列对应的指定信息。
上述技术方案中,基站可以通过不同的PBCH的DMRS序列、或者不同的PSS序列或者SSS的序列向终端设备指示以下信息中的任一种:基站是否允许终端设备驻留,基站是否读取RMSI信息的值、SFN或者H-SFN的部分帧号、系统带宽有效值标识、下行控制信道的调度信息集合CORESET信息、PDSCH的频率资源信息、FDD/TDD标识、扩展小区标识、区域标识、TRS配置信息、同步信号块索引,从而可以节省基站与终端设备之间的信令交互,进而降低开销和终端设备的检测复杂度。此外,基站也可以通过PBCH的DMRS序列的不同位置、或者PSS序列或SSS的序列的不同频率位置指示以上信息,同样可以节省基站与终端设备之间的信令交互,降低开销和终端设备的检测复杂度。
本申请的又一方面,提供一种装置,该装置包括处理器、存储器、通信接口和总线,存储器中存储代码和数据,处理器、存储器和通信接口通过总线连接,处理器运行存储器中的代码使得该装置执行上述第一方面或第一方面的任一种可能的实现方式所提供的解调参考信号序列生成方法、或者第三方面或第三方面的任一种可能的实现方式所提供的解调参考信号序列映射方法。
本申请的又一方面,提供一种装置,该装置包括处理器、存储器、通信接口和总线,存储器中存储代码和数据,处理器、存储器和通信接口通过总线连接,处理器运行存储器中的代码使得该装置执行上述第二方面或第二方面的任一种可能的实现方式 所提供的方法解调参考信号序列映射方法、或者第四方面或第四方面的任一种可能的实现方式所提供的解调参考信号序列映射方法。
本申请的又一方面提供了一种系统,该系统包括基站和终端设备;其中,基站为上述第五方面或第五方面的任一种可能的实现方式所提供的装置,或者为上述第七方面或第七方面的任一种可能的实现方式所提供的装置;和/或,终端设备为上述第六方面或第六方面的任一种可能的实现方式所提供的装置,或者为上述第八方面或第八方面的任一种可能的实现方式所提供的装置。
本申请的又一方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所提供的方法。
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所提供的方法。
可以理解地,上述提供的任一种通信的方法及装置、计算机存储介质或者计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种通信系统的结构示意图;
图2为本申请实施例提供的一种基站的结构示意图;
图3为本申请实施例提供的一种终端设备的结构示意图;
图4为本申请实施例提供的一种解调参考信号序列生成方法的流程图;
图5为本申请实施例提供的一种解调参考信号分布的示意图;
图6为本申请实施例提供的另一种解调参考信号分布的示意图;
图7为本申请实施例提供的又一种解调参考信号分布的示意图;
图8为本申请实施例提供的一种解调参考信号序列指示方法的流程图;
图9为本申请实施例提供的一种DMRS序列组合的示意图;
图10为本申请实施例提供的一种装置的结构示意图;
图11为本申请实施例提供的另一种装置的结构示意图;
图12为本申请实施例提供的一种装置的结构示意图;
图13为本申请实施例提供的另一种装置的结构示意图。
具体实施方式
在介绍本申请之前,首先对本申请实施例涉及到的技术名词进行介绍说明。
系统帧:即一个无线传输帧,系统帧的时间长度可以为10毫秒,一个子帧持续时间为1ms。在NR系统中,一个子帧包括的时隙(slot)的个数与子载波间隔有关。通常,一个时隙的持续符号(symbol)数目可以为7个符号或者14个符号。符号的索引值用于标识不同的符号,比如,当一个时隙的持续符号数为7个符号时,对应的符号的索引值可以为0~6。
同步信号(Synchronization Signal,SS)是指用于提供相同时间参考的信号。同步信号可以包括主同步信号(Primary Synchronization Signal,PSS)和辅同步信号(Secondary Synchronization Signal,SSS)。其中,主同步信号用于指示一个物理小区组内的ID,辅同步信号指示物理小区组号。
同步信号块(SS block):在NR当中,一个同步信号块可以包括一个PSS OFDM符号、一个SSS OFDM符号、两个或多个PBCH OFDM符号。OFDM符号可以称为符号,同步信号块中PSS符号,SSS符号和PBCH符号的位置有固定的时域分布关系,而且是相邻的。多个同步信号块构成了同步信号段(SS burst),多个同步信号段构成了一个同步信号段集合(SS burst set)。
图1为本申请的实施例所应用的通信系统的结构示意图,参见图1,该通信系统包括基站101和终端设备102。
其中,基站101具有共享信道的调度功能,具有基于发送到终端设备102的分组数据的历史来建立调度的功能,调度就是在多个终端设备102共用传输资源时,需要有一种机制来有效地分配物理层资源,以获得统计复用增益。
终端设备102具有通过与基站101之间建立的通信信道而发送和接收数据的功能。终端设备102根据通过调度控制信道发送的信息,进行共享信道的发送或接收处理。另外,终端设备102可以是移动台、移动终端、用户设备、电话、家电、汽车、手机、平板电脑、计算机以及便携终端等等,且终端设备102的类型可以相同,也可以不同。
基站101与终端设备102之间通过通信信道进行数据的接收和发送,该通信信道可以是无线通信信道,且在无线通信信道中,至少存在共享信道和调度控制信道,共享信道是为了发送和接收分组而在多个终端设备102之间公用,调度控制信道用于发送共享信道的分配、以及相应的调度结果等。
图2为本申请实施例提供的一种基站的硬件结构图,如图2所示,该基站包括基带子系统、中射频子系统、天馈子系统和一些支撑结构(例如,整机子系统),其中,基带子系统用于实现整个基站的操作维护,实现信令处理、无线资源原理、到分组核心网的传输接口,实现物理层、介质访问控制层、L3信令、操作维护主控功能;中射频子系统实现基带信号、中频信号和射频信号之间的转换,实现LTE无线接收信号的解调和发送信号的调制和功率放大;天馈子系统包括连接到基站射频模块的天线和馈线以及GRS接收卡的天线和馈线,用于实现无线空口信号的接收和发送;整机子系统,是基带子系统和中频子系统的支撑部分,提供结构、供电和环境监控功能。
[根据细则91更正 20.06.2018] 
图3为本申请实施例所应用的终端设备的结构示意图,该终端设备可以为手机、平板电脑、笔记本电脑、移动设备、移动台(mobile station)、移动单元(mobile unit)、M2M终端、无线单元,远程单元、用户代理、移动客户端等等。如图3所示,该终端设备包括:存储器、处理器、射频(Radio Frequency,RF)电路、以及电源等部件。本领域技术人员可以理解,图3中示出的结构并不构成对终端设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图3对终端设备的各个构成部件进行具体的介绍:
存储器可用于存储软件程序以及模块,处理器通过运行存储在存储器的软件程序以及模块,从而执行终端设备的各种功能应用以及数据处理。存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器等。
处理器是终端设备的控制中心,利用各种接口和线路连接整个终端设备的各个部 分,通过运行或执行存储在存储器内的软件程序和/或模块,以及调用存储在存储器内的数据,执行终端设备的各种功能和处理数据,从而对终端设备进行整体监控。可选的,处理器可包括一个或多个处理单元;优选的,处理器可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。
射频(Radio Frequency,RF)电路可用于收发信息或通话过程中,信号的接收和发送。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,RF电路还可以通过无线通信与网络和其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统、通用分组无线服务、码分多址、宽带码分多址、长期演进、电子邮件、短消息服务等。
终端设备还包括给各个部件供电的电源,优选的,电源可以通过电源管理系统与处理器逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管未示出,终端设备还可以包括输入单元、显示单元、传感器模块、音频模块、WiFi模块、蓝牙模块等,在此不再赘述。
图4为本申请实施例提供的一种解调参考信号序列生成方法的流程图,参见图4,该方法包括以下几个步骤。
步骤201:根据伪随机序列c(m),生成广播信号的解调参考信号DMRS序列。
其中,该DMRS序列与广播信号的资源块RB的数量N RB和一个RB中该DMRS序列占用的资源单元RE的数量n RE相关。伪随机序列c(m)可以是golden序列、ZC序列、或者m序列等,伪随机序列c(m)可以用于生成DMRS序列。
广播信号可以为寻呼(paging)信息、物理广播信道(Physical Broadcast Channel,PBCH)、或者系统信息。该DMRS序列可以用于广播信号的物理下行控制信道和物理下行共享信道。广播信号可以有共同的天线端口号,即寻呼信息,物理广播信息和系统信息有共同的DMRS设计。
另外,广播信号的资源块RB的数量N RB的取值与基站扫描的带宽有关,且终端设备可以通过PDCCH、或者PBCH、或者RMSI来确定N RB。一个RB中该DMRS序列占用的资源单元RE的数量n RE,可以是指一个RB中的一个符号上用于传输该DMRS序列的RE的数量,也可以是指一个RB中用于传输该DMRS序列的RE的总数量,即该DMRS序列占用一个RB中的多个符号,该多个符号上用于传输该DMRS序列的RE的总数量。
具体的,可以根据伪随机序列c(m),通过公式(1)生成广播信号的DMRS序列。式中,m表示DMRS序列的序列码索引值,l表示一个时隙上的符号的索引值,比如,一个时隙上包括7个符号时,l的取值可以为0~6之间的整数。
Figure PCTCN2018088769-appb-000067
示例性的,当该广播信号为寻呼信息或者系统信息时,一个RB中该DMRS序列占用的资源单元RE的数量n RE的取值可以为3或4,即一个RB中的一个符号上用于传输该DMRS序列的RE的数量可以为3或4,或者一个RB中用于传输该DMRS序列的RE的总数量可以为3或4。
步骤202:将该DMRS序列映射在一个或者多个符号上。
需要说明的是,所述步骤201、202可以由基站执行,也可以由基站设备上的芯片来执行,图4中以基站为例进行说明。
其中,该一个或者多个符号可以是广播信号的RB包括的一个或者多个符号。当基站生成DMRS序列时,基站可以将该DMRS序列映射在广播信号的RB包括的一个或者多个符号上。
可选地,基站根据公式(2),将广播信号的DMRS序列映射在广播信号的资源块RB包括的资源单元RE中。
a k,l=r l,n(m)        (2)
式中,a k,l表示DMRS序列包括的序列码在广播信号的RB中占用的RE的位置;k表示符号上的频率索引值;l表示一个时隙上的符号索引值或者广播信号的RB上的符号索引值;n表示广播信号的调度资源单位的索引值;m表示DMRS序列的序列索引值,r l(m)用于表示DMRS序列。
上述公式(2)中的k、l和m的取值具体可以如公式(2-1)。
Figure PCTCN2018088769-appb-000068
式中,n density表示寻呼信息或系统信息的RB中用于传输DMRS序列的密度,具体为用于传输该DMRS序列的两个相邻RE在频率上的间隔RE数目;v shift表示该DMRS序列的起始RE位置相对于最小频率的RE的第一频率偏移值,偏移单位为个数,v shift的取值为0~11之间的整数;v表示DMRS序列的起始RE位置相对于最小频率的RE的第二频率偏移值,偏移单位为个数,v的取值为-6~6之间的整数,且当v shift+v≥n density时,v=v shift-n density;l 1和l 2的取值范围为0,1,2,…,N symbol,N symbol表示一个时隙上的符号个数、或者寻呼信息或系统信息的RB上的符号个数,N symbol的取值可以为1~14中的整数;
Figure PCTCN2018088769-appb-000069
表示小区的小区物理标识,mod表示取余。
可选的,上述公式(2)中的k、l和m的取值具体可以以表格的形式进行表示。其中,k的取值与广播信号的RB中用于传输该DMRS序列的密度n density和广播信号的RB中用于传输该DMRS序列的RE相对于最小频率的RE的频率偏移值v shift+v的具体关系如下表1所示。
表1
n density和v shift+v的取值 k的取值
n density=2,v shift+v=0 0,2,4,6,…,12N RB-2
n density=2,v shift+v=1 1,3,5,7,…,12N RB-1
n density=3,v shift+v=0 0,3,6,9,…,12N RB-3
n density=3,v shift+v=1 1,4,7,10,…,12N RB-2
n density=3,v shift+v=2 2,5,8,11,…,12N RB-1
n density=4,v shift+v=0 0,4,8,12,…,12N RB-4
n density=4,v shift+v=1 1,5,9,13,…,12N RB-3
n density=4,v shift+v=2 2,6,10,14,…,12N RB-2
n density=4,v shift+v=3 3,7,11,15,…,12N RB-1
n density=6,v shift+v=0 0,6,12,18,…,12N RB-6
n density=6,v shift+v=1 1,7,13,19,…,12N RB-5
n density=6,v shift+v=2 2,8,14,20,…,12N RB-4
n density=6,v shift+v=3 3,9,15,21,…,12N RB-3
n density=6,v shift+v=4 4,10,16,22,…,12N RB-2
n density=6,v shift+v=5 5,11,17,23,…,12N RB-1
n density=12,v shift+v=0 0,12,24,36,…,12N RB-12
n density=12,v shift+v=1 1,13,25,37,…,12N RB-11
n density=12,v shift+v=2 2,14,26,38,…,12N RB-10
n density=12,v shift+v=3 3,15,27,39,…,12N RB-9
n density=12,v shift+v=4 4,16,28,40,…,12N RB-8
n density=12,v shift+v=5 5,17,29,41,…,12N RB-7
n density=12,v shift+v=6 6,18,30,42,…,12N RB-6
n density=12,v shift+v=7 7,19,31,43,…,12N RB-5
n density=12,v shift+v=8 8,20,32,44,…,12N RB-4
n density=12,v shift+v=9 9,21,33,45,…,12N RB-3
n density=12,v shift+v=10 10,22,34,46,…,12N RB-2
n density=12,v shift+v=11 11,23,35,47,…,12N RB-1
在本申请的实施例中,若寻呼信息或系统信息所占有的符号个数
Figure PCTCN2018088769-appb-000070
为一个,或者寻呼信息或系统信息所占有的符号个数为多个、且多个符号上DMRS序列的位置都相同,则v=0。若寻呼信息或系统信息所占有的符号个数
Figure PCTCN2018088769-appb-000071
为多个,而且多个 符号上DMRS序列的位置不同,即DMRS序列的频率偏移不同,则不同符号上的v与
Figure PCTCN2018088769-appb-000072
的关系如下表2所示。
表2
Figure PCTCN2018088769-appb-000073
需要说明的是,上述表2中的NA表示不存在,比如,当
Figure PCTCN2018088769-appb-000074
为1时表示DMRS序列只占用了一个符号,则只存在第一个符号,不存在其他第二个到第四个符号,相应的也不存在第二个到第四个符号上的v的取值。另外,上述表2中,
Figure PCTCN2018088769-appb-000075
表示的是向下取整,表2以
Figure PCTCN2018088769-appb-000076
的取值分别为1、2、3和4为例进行说明,且表2所示的不同符号上v的取值与
Figure PCTCN2018088769-appb-000077
的关系并不对本申请实施例构成限定。
其中,当
Figure PCTCN2018088769-appb-000078
即用于传输寻呼信息或系统信息的符号个数为4时,若将每两个符号分为一组,且每一组内的DMRS序列的频率偏移位置是相同的,不同组中的DMRS序列的频率偏移位置是不同的,则第一组的符号上对应的v=0,第二组符号上对应的
Figure PCTCN2018088769-appb-000079
在本申请的另一实施例中,若广播信号为PBCH,则基站可以根据公式(3),将PBCH的解调参考信号DMRS序列映射在PBCH的资源块RB包括的资源单元RE中。
a k,l=r l(m)       (3)
式中,a k,l表示DMRS序列包括的序列码在PBCH的RB中占用的RE的位置;k表示符号上的频率索引值;l表示一个时隙上的符号索引值或者PBCH的RB上的符号索引值;m表示DMRS序列的序列索引值。
上述公式(3)中的r l(m)用于表示DMRS序列,且该DMRS序列可以通过上述实施例中的公式(1)获取,具体参考上述实施例中公式(1)的描述,本申请实施例在此不再赘述。
具体的,上述公式(3)中的k、l和m的取值具体可以如公式(2-2)。
Figure PCTCN2018088769-appb-000080
式中,n density表示PBCH的RB中用于传输DMRS序列的密度,具体为用于传输该DMRS序列的两个相邻RE在频率上的间隔RE数目;v shift表示该DMRS序列的起始RE位置相对于最小频率的RE的第一频率偏移值,偏移单位为RE个数,v shift可以是固定的一个值,且其取值小于n density,或者其取值与
Figure PCTCN2018088769-appb-000081
有关;v表示DMRS序列的起始RE位置相对于最小频率的RE的第二频率偏移值,偏移单位为RE个数;l表示一个时隙上的符 号索引值、或者一个同步信号块(SS block)内用于传输PBCH的符号的索引值;
Figure PCTCN2018088769-appb-000082
表示小区的小区物理标识,mod表示取余。
在本申请的实施例中,若PBCH所占有的符号个数
Figure PCTCN2018088769-appb-000083
为一个,则v=0。若PBCH所占有的符号个数
Figure PCTCN2018088769-appb-000084
为多个、且多个符号上DMRS序列的位置都相同,则v=0,比如,PBCH的符号个数
Figure PCTCN2018088769-appb-000085
为两个,且两个符号上DMRS序列的位置相同,则两个符号上均v=0。若PBCH所占有的符号个数为多个,而且多个符号上DMRS序列的位置不同,即DMRS序列的频率偏移不同,则不同符号上的v与
Figure PCTCN2018088769-appb-000086
的关系如下表3所示。
表3
Figure PCTCN2018088769-appb-000087
上述表3中以
Figure PCTCN2018088769-appb-000088
的取值分别为1和2为例进行说明,且表3所示的不同符号上v的取值与
Figure PCTCN2018088769-appb-000089
的关系并不对本申请实施例构成限定。
步骤203:基站通过一个或者多个符号将该DMRS序列发送给终端设备。
当基站通过上述步骤202将DMRS序列映射在一个或者多个符号上时,基站可以通过该一个或者多个符号将该DMRS序列发送给终端设备,以使终端设备接收广播信号的DMRS序列。
步骤204:终端设备接收来自基站的一个或多个符号,该一个或多个符号上包括DMRS序列。其中,终端设备接收的DMRS序列可以称为第一DMRS序列。
步骤205:终端设备根据伪随机序列c(m),生成第二DMRS序列。其中,步骤205与步骤201-步骤204不分先后顺序,图4中以步骤204位于步骤203之后为例进行说明。
其中,终端设备根据伪随机序列c(m),生成第二DMRS序列的方法,与上述步骤201中生成广播信号的DMRS序列的方法一致,具体参见上述步骤201中的描述,本申请实施例在此不再赘述。
步骤206:若第二DMRS序列与第一DMRS序列匹配满足要求,则终端设备根据第二DMRS序列解调广播信号中的数据。
其中,步骤206位于步骤204和步骤205之后,即当终端设备接收到基站发送的第一DMRS序列,并自身生成第二DMRS序列之后,终端设备可以确定第二DMRS序列与第一DMRS序列是否匹配满足要求。
第二DMRS序列与第一DMRS序列匹配满足要求是指对第一DMRS序列与第二DMRS序列进行相关性分析时,其相关值大于或等于预设相关门限。具体的,若第二DMRS序列与第一DMRS序列匹配满足要求,则终端设备可以通过该DMRS序列对广播信号进行解调,从而保证广播信号解调的正确性,同时使终端设备快速的接入基站。此外,在终端设备确定DMRS序列后,终端设备还可以通过DMRS序列进行信道估计等。
另外,终端设备接收到的基站发送的DMRS序列,是终端设备从基站发送的一个 或者多个符号中获得到的。可选的,终端设备可以按照上述步骤202中的方法,确定DMRS序列占用的RE的位置,具体的终端设备获取DMRS序列的过程,与基站映射DMRS序列的过程类似,具体见上述描述,本申请实施例在此不再赘述。
进一步的,伪随机序列c(m)的初始化c init与同步信号块的索引值n SS有关。具体的,由于广播信号可以为寻呼信息、系统信息、或者PBCH,因此,在上述步骤201和步骤205中,当根据伪随机序列c(m)生成广播信号的DMRS序列时,伪随机序列c(m)的初始化c init与广播信号具体为何种信息有关,初始化c init用于生成伪随机序列c(m),下面分别进行介绍说明。
(I)、当广播信号为寻呼信息或者系统信息时,
伪随机序列c(m)的初始化c init可以为以下公式(1-1a)-(1-1b)所示的初始化中的任一个,具体如下所述。
Figure PCTCN2018088769-appb-000090
Figure PCTCN2018088769-appb-000091
式(1-1a)-(1-1b)中,k 1和k 2的取值为0~64中的常数,通常可以取值为15或16;n SS表示一个同步信号段集合(SS burst set)中的同步信号块的索引值;N ID表示小区的物理小区标识
Figure PCTCN2018088769-appb-000092
或者由多个小区组成的区域的标识
Figure PCTCN2018088769-appb-000093
n RNTI表示无线网络临时标识数值,当广播信号为寻呼信息时,具体可以表示寻呼信息的无线网络临时标识(Paging Radio Network Temporary Identifier,P-RNTI),当广播信号为系统信息时,具体可以表示系统信息的无线网络临时标识(System Information Radio Network Temporary Identifier,SI-RNTI);m 2表示寻呼信息或系统信息的RB中的符号数量;l 2表示寻呼信息或系统信息的RB中符号的索引值。可选的,n RNTI可以为0。
在本申请的另一实施例中,当广播信号为寻呼信息或者系统信息时,伪随机序列c(m)的初始化c init可以为以下公式(1-1c)-(1-1j)所示的初始化中的任一个,具体如下所述。
Figure PCTCN2018088769-appb-000094
Figure PCTCN2018088769-appb-000095
Figure PCTCN2018088769-appb-000096
Figure PCTCN2018088769-appb-000097
Figure PCTCN2018088769-appb-000098
Figure PCTCN2018088769-appb-000099
Figure PCTCN2018088769-appb-000100
c init=N ID              (1-1j)
式(1-1c)-(1-1j)中,
Figure PCTCN2018088769-appb-000101
表示的是向下取整;K表示一个子帧内的时隙数;n s表示无线系统帧内的时隙索引值;
Figure PCTCN2018088769-appb-000102
表示寻呼信息或者系统信息的指示信息值,其可能携带终端设备的分组信息;m 1表示一个时隙内的符号数量,l 1表示一个时隙内符号的索引值、或者寻呼信息或系统信息的RB中符号的索引值;另外,n s、n SS、N ID和n RNTI的表示含义、以及k 1和k 2的取值范围与上述式(1-1a)-(1-1b)中的一致,具体参见上述描述,本申请实施例在此不再赘述。
进一步的,当该广播信号为寻呼信息或者系统信息时,寻呼信息或者系统信息的DMRS可以为以下多种情况中任一种情况设计的DMRS,具体如下所述。
由于寻呼信息或者系统信息可以与同步信号块(SS block)复用,因此可以利用同步信号块中PBCH信号的DMRS作为寻呼信息或者系统信息的DMRS,也可以两者使用共同的DMRS,即寻呼信息或者系统信息的DMRS和PBCH的DMRS有相同的天线端口,例如图5所示。寻呼信息或者系统信息与PBCH采用时分复用(Time-Division Multiplex,TDM)的方式复用,与同步信号块可以同时有频分复用(Frequency-Division Multiplex,FDM)和TDM复用方式存在。其中,寻呼信息或者系统信息可以位于PBCH的两侧,也可以位于PBCH的一侧或者中间位置,这几种方式下PBCH信号的专有DMRS都可以作为寻呼信息或者系统信息的DMRS。需要说明的是,当PBCH信号的专有DMRS作为寻呼信息或者系统信息的DMRS时,PBCH的带宽与寻呼信息或者系统信息的带宽应该是差别不大的。
或者,由于寻呼信息或者系统信息可以与同步信号块信号进行TDM复用或者与同步信号块信号采用FDM和TDM同时存在的复用方式,因此寻呼信息或者系统信息可以利用同步信号块中的SSS信号和自己本身携带的DMRS作为寻呼信息或者系统信息的DMRS,即它们有相同的天线端口号。其中,SSS信号可以用来做信道估计,寻呼信息或者系统信息专有的DMRS可以辅助SSS作寻呼信息或者系统信息的解调,也可以用来估计信道的多普勒频移。寻呼信息或者系统信息与同步信号块的复用可以是TDM的方式,也可以是FDM的方式,还可以是同时有FDM和TDM复用方式存在,如图6所示。寻呼信息或者系统信息的专有DMRS符号与SSS符号可以在同一个符号上如图6中的(a)所示,也可以不在一个符号上如图6中的(b)所示。寻呼信息或者系统信息的专有DMRS符号可以是多个,各个符号上都有DMRS;也可以是部分符号上有专有的DMRS;不同符号上DMRS位置可以相同,也可以是不同的。
或者,由于寻呼信息或者系统信息可以与同步信号块信号进行TDM复用,或者与同步信号块信号采用FDM和TDM同时存在的复用方式,因此寻呼信息或者系统信息可以利用同步信号块中的SSS信号,PBCH的DMRS信号解调寻呼信息或者系统信息、或者辅助解调寻呼信息或者系统信息。这种情况下要求SSS和PBCH的DMRS以及寻呼信息或者系统信息的DMRS的天线端口相同。当寻呼信息或者系统信息与同步信号块进行TDM复用时,寻呼信息或者系统信息的DMRS的分布可以与PBCH的DMRS分布采用相同的频率偏移,也可以是不同的频率偏移。寻呼信息或者系统信息的专有DMRS符号可以与SSS符号在同一个符号上,也可以在PBCH符号上。寻呼信息或者系统信息的符号上可以是每一个符号上都有DMRS,也可以部分符号上有DMRS。寻呼信息或者系统信息的符号可以位于同步信号块的一侧,也可以位于同步信号块的两侧。
或者,寻呼信息或者系统信息可以与同步信号块信号进行TDM复用,或者与同步信号块信号采用FDM和TDM同时存在的复用方式,因此寻呼信息或者系统信息可以利用同步信号块中的PBCH的DMRS信号解调或者辅助解调寻呼信息或者系统信息,即寻呼信息或者系统信息和PBCH拥有相同的天线端口。当寻呼信息或者系统信息与同步信号块为TDM复用时,寻呼信息或者系统信息的DMRS的分布可以与PBCH的DMRS分布采用相同的频率偏移,也可以是不同的频率偏移。寻呼信息或者系统信息的符号上可 以是每一个符号上都有DMRS,也可以部分符号上有DMRS。寻呼信息或者系统信息的符号可以位于同步信号块的一侧,也可以位于同步信号块的两侧。此外,还可以定义某种DMRS,指定DMRS的端口号,PBCH和寻呼信息或者系统信息都使用它来解调,不再是PBCH或者寻呼信息或者系统信息专有。
或者,系统信息包含剩余最小系统信息(Remaining Minimum System Information,RMSI)和其他系统信息(Other System Information,OSI)。在NR当中,系统信息分为两种:一种是最小系统信息(Minimum System Information),包含关键的接入系统信息;另一种是其他系统信息OSI包含非关键的系统信息。最小系统信息分为两部分,一部分是主要信息块(Main Information Block,MIB),在PBCH里面传输,剩余的最小系统信息为RMSI,也是广播信号,OSI当中也有一些广播的信息,因此可以和寻呼信息一起广播,它们可以使用共同的DMRS,即它们的DMRS天线端口相同。寻呼信息和系统信息的复用可以是TDM和FDM的形式,但是DMRS序列相同,或者共用相同的DMRS序列。
或者,寻呼信息或者系统信息可以与同步信号块信号进行TDM复用,也可以是FDM复用,或者与同步信号块信号采用FDM和TDM同时存在的复用方式,或者寻呼信息或者系统信息单独扫描,不与同步信号块进行复用。这几种情况下,寻呼信息或者系统信息的DMRS都可以采用自己专有的DMRS信号。寻呼信息或者系统信息专有的DMRS可以在用于传输寻呼信息或者系统信息每一个符号上都有,也可以是部分符号上。寻呼信息或者系统信息专有的DMRS可以在每一个符号上的频率偏移都相同,也可以在不同符号上的频率偏移不同。
(II)、当广播信号为PBCH时,PBCH的DMRS序列也可以是m序列,也可以是golden序列,每一个PBCH的符号上可以是一样的序列,也可以是不一样的序列,即一个PBCH符号上有两个及其两个以上的序列。每一个同步信号块内的PBCH的DMRS序列可以是一样的,即每一个PBCH符号采用相同的DMRS序列,也可以是不一样的,即两个PBCH符号分别采用不同的DMRS序列或者两个PBCH符号共用一条DMRS序列;不同的同步信号块上的PBCH可以采用相同的DMRS序列,即不同的同步信号块上所有的PBCH上的DMRS序列都相同,或者每一个同步信号块内的第一个PBCH符号上采用相同的DMRS序列,第二个PBCH符号上采用相同的DMRS序列;不同的同步信号块的PBCH上也可以采用不同的DMRS序列,这些DMRS序列可以与PBCH符号相关,也可以与同步信号块的时间索引相关,还可以与无线系统帧中的时隙索引值相关,也可以时隙内的符号索引值相关,也可以与无线系统帧内的子帧索引值相关,也可以与同步信号块内的符号索引值相关或同步信号块内PBCH的符号索引值相关。
如果采用伪随机序列中的golden序列,伪随机序列c(m)的初始化c init可以为以下公式(1-2a)-(1-2f)所示的初始化中的任一个,具体如下所述。
Figure PCTCN2018088769-appb-000103
Figure PCTCN2018088769-appb-000104
Figure PCTCN2018088769-appb-000105
Figure PCTCN2018088769-appb-000106
Figure PCTCN2018088769-appb-000107
Figure PCTCN2018088769-appb-000108
式(1-2a)-(1-2f)中,
Figure PCTCN2018088769-appb-000109
为小区的物理小区标识;N half的取值为0或1,当取值为0时表示PBCH的位置位于无线系统帧中的前半帧,当取值为1时表示其位于无线系统帧中的后半帧;K的取值范围为1~64内的整数;n SS表示一个同步信号段集合(SS burst set)中的同步信号块的索引值;n s表示无线系统帧内的时隙索引值。
其中,PBCH的资源块RB的数量N RB具体可以表示为
Figure PCTCN2018088769-appb-000110
Figure PCTCN2018088769-appb-000111
可以由PBCH的RB中DMRS序列的密度n density、以及一个同步信号块(SS block)中DMRS序列占用的符号的个数N symbol获得。通常,PBCH在时间上的分布是以符号为时间单位,以12个子载波为频率单位。
若PBCH占用的符号上的DMRS为一个长的DMRS序列,即将一个DMRS序列映射在多个符号上,而且每个符号上DMRS序列的密度n density都是相同的。比如,n density可以为12、6、4、3、2,则
Figure PCTCN2018088769-appb-000112
的大小可以根据公式(A)获得,或者根据如下表4获得。
Figure PCTCN2018088769-appb-000113
表4
Figure PCTCN2018088769-appb-000114
若PBCH占用的符号上的DMRS为一个长的DMRS序列,即将一个DMRS序列映射在多个符号上,每个符号上DMRS序列的密度n density都是不同的,而且映射在辅同步信号SSS带宽内的密度为n density1、映射在SSS带宽以外的密度为n density2。比如,当在SSS带宽以内时,DMRS序列的密度可以比较稀疏,例如n density1可以为12或者6;当在SSS带宽以外时,DMRS序列的密度可以比较密集,例如n density2可以为4、3、或者2。具体的,则
Figure PCTCN2018088769-appb-000115
的大小可以根据公式(B)获得,或者根据如下表5获得。
Figure PCTCN2018088769-appb-000116
表5
Figure PCTCN2018088769-appb-000117
若PBCH占用的每个符号上的DMRS为一个单独的DMRS序列,即将一个DMRS序 列映射在一个符号上,则
Figure PCTCN2018088769-appb-000118
的大小可以只根据DMRS序列的密度n density获得,具体根据如下表6获得。比如,n density可以为12、6、4、3、2,则相应的
Figure PCTCN2018088769-appb-000119
的大小可以为24、48、72、96和144。
表6
Figure PCTCN2018088769-appb-000120
进一步的,当该广播信号为PBCH时,由于PBCH与同步信号块可以是时分复用TDM的,因此可以利用同步信号块中的SSS和专有的DMRS作为PBCH的DMRS。但是,由于PBCH的子载波数目是SSS的子载波数目的2倍,因此当PBCH的带宽在SSS带宽以外的时候,需要更密的DMRS,或者与SSS相同的带宽上没有DMR,以满足PBCH的解调性能,如图7中的(a)所示。PBCH的DMRS符号数目可以是单个符号,也可以是2个符号,如图7中的(b)和(c)所示;也可以是PBCH的全部符号都有DMRS,如图7中的(a)所示。PBCH不同符号的DMRS的频率偏移可以是相同的,也可以是不同的,甚至是一些资源块上没有DMRS。
本申请实施例提供的解调参考信号序列生成方法中,基站根据伪随机序列c(m),生成广播信号的解调参考信号DMRS序列,且该DMRS序列与基于广播信号的资源块RB的数量N RB和一个RB中该DMRS序列占用的资源单元RE的数量n RE相关,从而基站将其映射在一个或者多个符号上发送给终端设备,终端设备根据相同的方法生成DMRS序列,并在确定生成的DMRS序列与基站发送的DMRS序列匹配满足要求时,通过该DMRS序列解调广播信号的数据,从而该方法可以确定每个广播信号对应的DMRS序列,进而保证广播信号被正确的解调、同时也提高终端设备接入基站的效率。
图8为本申请实施例提供的一种信息指示方法的流程图,参见图8,该方法包括以下几个步骤。
步骤301:基站生成第一序列和第二序列。
其中,第一序列和第二序列可以为PBCH的解调参考信号DMRS序列、或者辅同步参考信号SSS的序列。第一序列和第二序列为不同的两个序列,第一序列和第二序列可以同时为DMRS序列、或者同时为SSS的序列。
步骤302:基站向终端设备发送目标序列。其中,若目标序列为第一序列,则用于指示基站允许终端设备驻留;若目标序列为第二序列,则用于指示基站不允许终端设备驻留。
步骤303:终端设备接收基站发送的目标序列,若目标序列为第一序列则确定基站允许终端设备驻留,若目标序列为第二序列则确定基站不允许终端设备驻留。
具体的,基站可以采用PBCH的DMRS序列或者采用SSS的序列指示基站是否允许终端设备驻留(Information for quick identification that UE can or can not camp on the cell)的信息。比如,基站采用2种不同的PBCH的DMRS序列或者两种不同的SSS的序列分别用于指示基站是否允许终端设备驻留。
进一步的,基站还可以利用DMRS序列在PBCH当中的不同位置或者SSS序列的不同频率位置向终端设备指示基站是否允许终端设备驻留,具体如下所述。
基站通过以下信息指示的方法,指示基站是否允许终端设备驻留,该方法包括:基站生成第一序列;基站向终端设备发送第一序列;其中,若第一序列的位置为第一位置,则第一序列用于指示基站允许终端设备驻留;若第一序列的位置为第二位置,则第一序列用于指示基站不允许终端设备驻留,第一位置和第二位置不同。
相应的,终端设备可以通过以下信息指示方法,确定基站是否允许终端设备驻留,该方法包括:终端设备接收基站发送的第一序列;若第一序列所在的位置为第一位置,则终端设备确定基站允许终端设备驻留;若第一序列所在的位置为第二位置,则终端设备确定基站不允许终端设备驻留,第一位置和第二位置不同。
可选的,基站和终端设备还可以基于上述指示基站是否允许终端设备驻留的方法,指示基站是否读取RMSI信息的值,具体过程与上述指示基站是否允许终端设备驻留的过程类似,本申请实施例在此不再赘述。
在本申请的另一实施例中,还可以利用PBCH的DMRS序列、或者PSS/SSS的序列指示以下信息中的任一种:无线系统帧(System Frame Number,SFN)的帧号部分信息、超无线系统帧(Hyper System Frame Number,H-SFN)的帧号部分信息、系统带宽(Information Regarding Bandwidth Part)、有效值标识(value tag)、下行控制信道的调度信息集合(Control Resource Set,CORESET)的部分或者全部信息、基站是否读取RMSI信息的值、PDSCH的频率资源信息、RMSI的子载波间隔(Numerology)、FDD/TDD标识、扩展小区标识(cell ID Extension)、区域标识(Area Identity,Area ID)、(Tracking Reference Signal,TRS)配置信息、以及同步信号块索引。具体如下所述。
(a)基站利用PBCH的DMRS序列、或者PSS/SSS的序列指示SFN或H-SFN的帧号部分信息。该方法包括:基站生成至少一个序列,至少一个序列为以下序列中的任一种:PBCH的DMRS序列、PSS的序列、SSS的序列,至少一个序列中的每个序列对应一个无线系统帧SFN或者一个超无线系统帧H-SFN的部分帧号;基站向终端设备发送目标序列,目标序列为至少一个序列中的序列,目标序列用于向终端设备指示与目标序列对应的SFN或者H-SFN的部分帧号。
相应的,终端设备接收基站发送的目标序列,目标序列为至少一个序列中的序列;其中,至少一个序列为以下序列中的任一种:PBCH的DMRS序列、PSS的序列、SSS的序列,至少一个序列中的每个序列对应一个无线系统帧SFN或者一个超无线系统帧H-SF的部分帧号;终端设备根据目标序列,确定与目标序列对应的SFN或者H-SFN的部分帧号。
具体的,基站使用PBCH的DMRS不同序列或者PSS/SSS的不同序列指示无线系统帧的帧号,具体的指示方式有两种:(1)使用PBCH的DMRS序列或者PSS/SSS的序列指示SFN或H-SFN的最高数据位(Most Significant Bit,MSB)的X个比特。比如,基站通过4个序列指示SFN或H-SFN的最高数据位的2个比特,序列1对应00、序列2对应01、序列3对应10、序列4对应11。(2)使用PBCH的DMRS序列或者PSS/SSS的序列指示SFN的最低数据位(Least Significant Bit,LSB)的X个比特。此外,也可以采用两个符号的DMRS分别使用不同的序列,共同指示SFN的帧号部分信息。或者,还可以利用DMRS序列的位置表示SFN的帧号部分信息。
(b)基站利用PBCH的DMRS序列、或者PSS/SSS的序列指示系统带宽,该方法包 括:基站生成至少一个序列,至少一个序列为以下序列中的任一种:PBCH的DMRS序列、PSS的序列、SSS的序列,至少一个序列中的每个序列对应一个系统带宽;基站向终端设备发送目标序列,目标序列为至少一个序列中的序列,目标序列用于向终端设备指示与目标序列对应的系统带宽。
相应的,终端设备接收基站发送的目标序列,目标序列为至少一个序列中的序列;其中,至少一个序列为以下序列中的任一种:PBCH的DMRS序列、PSS的序列、SSS的序列,至少一个序列中的每个序列对应一个系统带宽;终端设备根据目标序列,确定与目标序列对应的系统带宽。
具体的,基站可以使用N种不同的PBCH的DMRS序列、或者PSS/SSS的N种不同序列指示N种不同的系统带宽。N种不同的系统带宽可以是全部的系统带宽,也可以是部分系统带宽。此外。此外,也可以采用两个符号的DMRS序列分别使用不同的序列,共同指示系统带宽的全部或部分信息。
(c)基站利用PBCH的DMRS序列指示以下信息中的任一种:有效值标识、下行控制信道的调度信息集合CORESET信息、PDSCH的频率资源信息、FDD/TDD标识、扩展小区标识、区域标识、TRS配置信息。该方法包括:基站生成至少一个序列,至少一个序列为PBCH的DMRS序列,至少一个序列中的每个序列对应一个指定信息,指定信息以下信息中的任一种:有效值标识、下行控制信道的调度信息集合CORESET信息、PDSCH的频率资源信息、FDD/TDD标识、扩展小区标识、区域标识、TRS配置信息、同步信号块索引;基站向终端设备发送目标序列,目标序列为至少一个序列中的序列,目标序列用于向终端设备指示与目标序列对应的指定信息。
相应的,终端设备接收基站发送的目标序列,目标序列为至少一个序列中的序列;其中,至少一个序列为PBCH的DMRS序列,至少一个序列中的每个序列对应一个指定信息,指定信息以下信息中的任一种:有效值标识、下行控制信道的调度信息集合CORESET信息、PDSCH的频率资源信息、FDD/TDD标识、扩展小区标识、区域标识、TRS配置信息、同步信号块索引;终端设备根据目标序列,确定与目标序列对应的指定信息。
具体的,基站采用PBCH的DMRS序列指示有效值标识。比如,采用N种不同的PBCH的DMRS序列表示N种不同的有效值标识。或者,也可以采用两个符号的DMRS分别使用不同的序列,合起来表示N种不同的有效值标识。此外,还可以利用DMRS的在PBCH当中的不同位置表示N种不同的有效值标识。
基站采用PBCH的DMRS指示下行控制信道的调度信息集合(CORESET)部分或者全部信息。比如,采用N种不同的PBCH DMRS序列指示N种不同的下行控制信道的调度信息集合(CORESET)。或者采用N种不同的PBCH DMRS序列指示下行控制信道的调度信息集合(CORESET)的MSB的log2(N)bits或者指示下行控制信道的调度信息集合(CORESET)的LSB的log2(N)bits。也可以采用两个符号的DMRS分别使用不同的序列,共同指示N种不同的下行控制信道的调度信息集合(CORESET)。还可以利用DMRS的在PBCH当中的不同位置指示N种不同的下行控制信道的调度信息集合(CORESET)。
基站采用PBCH的DMRS指示PDSCH的频率资源信息。比如,采用N种不同的PBCH 的DMRS序列指示N种不同的PDSCH的频率资源信息。或者采用PBCH的DMRS序列指示PDSCH的频率资源信息的MSB的N个比特或者LSB的N个比特。此外,也可以采用两个符号的DMRS分别使用不同的序列,共同指示PDSCH的频率资源信息。或者,还可以利用DMRS的在PBCH当中的不同位置指示N种PDSCH的频率资源信息。
基站采用PBCH的DMRS指示RMSI的子载波间隔。比如,采用N种不同的PBCH的DMRS序列指示N种不同的RMSI的子载波间隔。或者,采用PBCH的DMRS序列指示RMSI的子载波间隔的MSB的N个比特或者LSB的N个比特。此外,也可以采用两个符号的DMRS分别使用不同的序列,共同指示N种不同的RMSI的子载波间隔。或者,还可以利用DMRS序列的在PBCH当中的不同位置指示N种不同的RMSI的子载波间隔。
基站采用PBCH的DMRS指示FDD/TDD标识。比如,采用2种不同的PBCH的DMRS序列指示FDD/TDD标识的值。或者,还可以利用DMRS序列在PBCH当中的不同位置指示基站的FDD/TDD标识的值。
基站采用PBCH的DMRS指示扩展小区标识。比如,采用N种不同的PBCH的DMRS序列指示N种不同的扩展小区标识。或者,采用PBCH的DMRS序列指示扩展小区标识的MSB的N个比特或者LSB的N个比特。也可以采用两个符号的DMRS分别使用不同的序列,共同指示扩展小区标识。还可以利用DMRS的在PBCH当中的不同位置指示扩展小区标识部分信息或者全部信息。
基站采用PBCH的DMRS序列指示区域标识。比如,采用N种不同的PBCH的DMRS序列指示N种不同的区域标识。或者,采用PBCH的DMRS序列指示区域标识的MSB的N bits或者LSB的N bits。此外,也可以采用两个符号的DMRS分别使用不同的序列,共同指示区域标识。或者,还可以利用DMRS的在PBCH当中的不同位置指示区域标识部分信息或者全部信息。
基站采用PBCH的DMRS序列指示TRS配置信息相结合。比如,采用N种不同的PBCH DMRS序列指示N种不同的TRS配置信息。此外,也可以采用两个符号的DMRS分别使用不同的序列,共同指示N种不同的TRS配置信息。或者,还可以利用DMRS的在PBCH当中的不同位置表示N种不同的TRS配置信息。
(d)基站通过PBCH的DMRS序列,指示同步信号块索引(SS block index)。具体的,基站可以通过以下两种不同的方法进行指示,具体如下所示。
第一种、基站将PBCH的DMRS序列与PBCH的同步信号块索引进行融合,采用用于传输DMRS序列的两个符号分别设计,共同表示同步信号块的索引值。例如,假设需要表示的同步信号块的索引值有64个,可以将这64个索引值分开表示,即第一个符号上的DMRS序列有8种,第二个符号上的DMRS序列有8种,两个符号的序列合起来可以表示一个同步信号段集合(SS burst set)中所有的同步信号块索引。或者采用DMRS指示PBCH的同步信号块索引的MSB的N个比特或者LSB的N个比特,剩余的数据比特分两种方式传输,第一种隐式方式传输N3个比特,包含加扰(Scrambling),循环冗余校验码(CRC),循环偏移,冗余版本(RV)方法中的一种或者多种,其中N+N3为PBCH的同步信号块索引的完整数据比特;另外一种传输方式为显式加隐式,显式是指在PBCH的内容里面传输N1个比特,再通过所述的隐式传输N2个比特,其中N+N1+N2为完整的PBCH的同步信号块索引的数据比特。
两个符号上的所有DMRS序列可以是相同的,也可以是不同的。每一个符号上8种DMRS序列可以是一个序列的循环移位产生,也可以是8个独立的序列。8个独立的序列表示的是这8个序列使用不同的初始化公式产生的golden序列,或者是8种没有初始化的伪随机序列,如m序列或者ZC序列。这里的序列可以为伪随机序列,如ZC序列、golden序列、m序列,也可以是这些序列的组合,例如图9中的(a)和(b)所示的两种序列组合方式。
其中,图9中的(a)所示的组合表示的是在PBCH的带宽中,每一个符号上的DMRS序列是一个完整的序列;图9中的(b)所示的组合表示的是在PBCH带宽中,与SSS重叠的带宽频率资源上,每一个符号的PBCH使用一个DMRS序列,SSS带宽以外资源上,采用另外一种DMRS序列,即一个同步信号块上有多个DMRS序列共同组成了PBCH的DMRS。
第二种、基站将PBCH的DMRS序列与PBCH的同步信号块索引进行融合,采用两个符号进行设计PBCH的DMRS序列,每一个符号的DMRS序列表示同步信号段的索引值,第二个符号的DMRS序列表示同步信号块的索引值,两个符号的序列合起来可以表示一个同步信号段集合中所有的同步信号块索引。或者,第一个符号上的DMRS序列表示同步信号段内的同步信号块索引值,第二个符号上的DMRS序列表示同步信号段的索引值,两个符号的序列合起来可以表示一个同步信号段集合中所有的同步信号块索引。
两个符号上的DMRS序列可以是相同的,也可以是不同的。每一个符号上8种DMRS序列可以是一个序列的循环移位,也可以是8个独立的序列。8个独立的序列表示的是这8个序列使用不同的初始化公式产生的golden序列,或者是8种没有初始化的伪随机序列,如m序列或者ZC序列,这里所述的序列为伪随机序列,如ZC序列,golden序列,m序列。也可以是这些序列的组合或者这些序列的组合与DMRS的频域位置相结合共同表示同步信号块索引。
本申请实施例提供的信息指示方法中,基站可以利用PBCH的DMRS序列或者SSS的序列指示基站是否允许终端设备驻留、SFN的帧号部分信息、H-SFN的帧号、系统带宽、有效值标识、下行控制信道的调度信息集合的部分或者全部信息、基站是否读取RMSI信息的值、PDSCH的频率资源信息、RMSI的子载波间隔、FDD/TDD标识、扩展小区标识、区域标识、TRS配置信息、以及同步信号块索引中的任一信息,从而可以节省基站与终端设备之间的信令交互,进而降低开销和终端设备的检测复杂度。
上述主要从各个网元交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如基站、终端设备、基站的芯片、终端设备的芯片等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的网元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对基站、终端设备、基站的芯片、终端设备 的芯片进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图10示出了上述实施例中所涉及的装置400的一种可能的结构示意图,该装置400可以是基站,也可以是基站上的芯片。装置400包括:处理单元401和发送单元402。其中,处理单元401用于执行图4中的步骤201和步骤202、图8中的步骤301,和/或用于本文所描述的技术的其他过程;发送单元402用于图4中的步骤203、图8中的步骤302,和/或用于本文所描述的技术的其他过程。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在硬件实现上,上述处理单元401可以为处理器,发送单元402可以为发送接口,其与接收接口可以构成通信接口。
图11所示,为本申请的实施例提供的上述实施例中所涉及的装置410的一种可能的逻辑结构示意图。装置410包括:处理器412、通信接口413、存储器411以及总线414。处理器412、通信接口413以及存储器411通过总线414相互连接。在申请的实施例中,处理器412用于对装置410的动作进行控制管理,例如,处理器412用于执行图4中的步骤201和步骤202、图8中的步骤301,和/或用于本文所描述的技术的其他过程。通信接口413用于支持装置410进行通信。存储器411,用于存储装置410的程序代码和数据。
其中,处理器412可以是中央处理器单元CPU,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。总线414可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在采用对应各个功能划分各个功能模块的情况下,图12示出了上述实施例中所涉及的装置500的一种可能的结构示意图,该装置500可以是终端设备,也可以是终端设备上的芯片。装置500包括:接收单元501和处理单元502。其中,接收单元501用于执行图4中的步骤203、图8的步骤303中接收目标序列的步骤,和/或用于本文所描述的技术的其他过程;处理单元502用于执行图4中的步骤205和步骤206、图8的步骤303中确定基站是否允许终端设备驻留的过程,和/或用于本文所描述的技术的其他过程。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在硬件实现上,上述处理单元502可以为处理器,接收单元501可以为接收接口,其与发送接口可以构成通信接口。
图13所示,为本申请的实施例提供的上述实施例中所涉及的装置510的一种可能的 逻辑结构示意图。装置510包括:处理器512、通信接口513、存储器511以及总线514。处理器512、通信接口513以及存储器511通过总线514相互连接。在申请的实施例中,处理器512用于对装置510的动作进行控制管理,例如,处理器512用于执行图4中的步骤205和步骤206、图8的步骤303中确定基站是否允许终端设备驻留的过程,和/或用于本文所描述的技术的其他过程。通信接口513用于支持装置510进行通信。存储器511,用于存储装置510的程序代码和数据。
其中,处理器512可以是中央处理器单元CPU,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。总线514可以是外设部件互连标准PCI总线或扩展工业标准结构EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请的另一实施例中,还提供一种一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述图4、或图8所提供的方法中基站的步骤或者终端设备的步骤。
在本申请的另一实施例中,还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述图4、或图8所提供的方法中基站的步骤或者终端设备的步骤。
在本申请的另一实施例中,还提供了一种系统,该系统包括基站和终端设备;其中,基站可以为上述图10或者图11所提供的基站,用于执行上述图4、或图8所提供的方法中基站的步骤;和/或,终端设备为上述图12或图13所提供的终端设备,用于执行上述图4、或图8所提供的方法中终端设备的步骤。
本申请实施例中,基站通过生成广播信号的解调参考信号序列、以及进行解调参考信号序列的映射,可以保证广播信号存在专有的解调参考信号序列,从而实现广播信号的正确解调,同时提高广播信号解调的效率和准确率。另外,通过本申请实施例提供的信息指示方法,可以节省基站与终端设备之间的信令交互,进而降低开销和终端设备的检测复杂度。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (82)

  1. 一种解调参考信号序列生成方法,其特征在于,所述方法包括:
    根据伪随机序列c(m),生成广播信号的解调参考信号DMRS序列;
    其中,所述DMRS序列与所述广播信号的资源块RB的数量N RB和一个RB中所述DMRS序列占用的资源单元RE的数量n RE相关;
    将所述DMRS序列映射到一个或者多个符号中。
  2. 根据权利要求1所述的方法,其特征在于,所述广播信号为寻呼信息、物理广播信道PBCH或者系统信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据伪随机序列c(m),生成广播信号的解调参考信号DMRS序列,包括:
    根据伪随机序列c(m),通过公式(1)生成所述广播信号的DMRS序列,
    Figure PCTCN2018088769-appb-100001
    式中,所述r l(m)表示所述DMRS序列,所述m表示所述DMRS序列的序列索引值,所述l表示一个时隙上的符号的索引值。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述n RE取值为3或4。
  5. 根据权利要求3所述的方法,其特征在于,所述广播信号为所述寻呼信息或者所述系统信息时,所述伪随机序列c(m)的初始化c init为以下公式(1-1a)-(1-1b)所示的初始化中的任一个,所述初始化c init用于生成所述伪随机序列c(m);
    Figure PCTCN2018088769-appb-100002
    Figure PCTCN2018088769-appb-100003
    式中,所述N ID表示小区的物理小区标识
    Figure PCTCN2018088769-appb-100004
    或者由多个小区组成的区域的标识
    Figure PCTCN2018088769-appb-100005
    所述k 1和所述k 2的取值为0~64中的常数,所述n RNTI表示无线网络临时标识数值,所述n SS表示一个同步信号段集合中的同步信号块的索引值,所述m 2表示所述寻呼信息或所述系统信息的RB中的符号数量,所述l 2表示所述寻呼信息或所述系统信息的RB中符号的索引值。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述将所述DMRS序列映射到一个或者多个符号中,具体包括:
    根据公式(2),将所述DMRS序列映射在所述广播信号的资源块RB包括的资源单元RE中,
    a k,l=r l,n(m)  (2)
    式中,所述a k,l表示所述DMRS序列包括的序列码在所述RB中占用的RE的位置,所述k表示符号上的频率索引值,所述l表示一个时隙上的符号索引值或者所述广播信号的RB上的符号索引值,所述n表示所述广播信号的调度资源单位的索引值,所述m表示所述DMRS序列的序列索引值。
  7. 根据权利要求6所述的方法,其特征在于,所述k、所述l和所述m的取值具体如公式(2-1a),
    Figure PCTCN2018088769-appb-100006
    式中,所述n density表示所述RB中用于传输所述DMRS序列的密度;所述v shift表示所述DMRS序列的起始RE位置相对于最小频率的RE的频率偏移值;所述v表示所述DMRS序列的起始RE位置相对于最小频率的RE的频率偏移值;所述l 1和所述l 2的取值范围为0,1,2,…,N symbol,所述N symbol表示一个时隙上的符号个数或者所述寻呼信息或所述系统信息的RB上的符号个数,所述
    Figure PCTCN2018088769-appb-100007
    表示小区的小区物理标识,所述mod表示取余。
  8. 根据权利要求1所述的方法,其特征在于,当所述DMRS序列映射到多个符号时,所述多个符号的数量为3。
  9. 根据权利要求2所述的方法,其特征在于,所述广播信号占用多个符号,且所述多个符号上的DMRS序列在RB内的频率偏移位置均相同。
  10. 根据权利要求1所述的方法,其特征在于,所述伪随机序列c(m)是根据无线系统帧内的时隙索引值确定的。
  11. 根据权利要求1所述的方法,其特征在于,所述伪随机序列c(m)是根据一个时隙内的符号数量确定的。
  12. 根据权利要求2所述的方法,其特征在于,当所述广播信号为PBCH时,所述DMRS序列用于指示所述PBCH的同步信号块索引中最低数据位LSB的N个比特。
  13. 根据权利要求1所述的方法,其特征在于,所述DMRS序列占用的符号个数为1、2、3或者4。
  14. 根据权利要求1所述的方法,其特征在于,当所述DMRS序列映射到多个符号时,所述多个符号上的DMRS序列的密度均相同。
  15. 根据权利要求2所述的方法,其特征在于,所述寻呼信息的DMRS序列或所述系统信息的DMRS与同步信号块频分复用。
  16. 一种解调参考信号序列生成方法,其特征在于,所述方法包括:
    接收来自基站的广播信号的第一解调参考信号DMRS序列;
    根据伪随机序列c(m),生成第二DMRS序列;其中,所述第二DMRS序列与所述广播信号的资源块RB的数量N RB和一个RB中所述DMRS序列占用的资源单元RE的数量n RE相关;
    若所述第二DMRS序列与从基站接收的第一DMRS序列匹配满足要求,则根据所述第二DMRS解调所述广播信号中的数据。
  17. 根据权利要求16所述的方法,其特征在于,所述广播信号为寻呼信息、物理广播信道PBCH或者系统信息。
  18. 根据权利要求16或17所述的方法,其特征在于,所述根据伪随机序列c(m),生成第二DMRS序列,包括:
    根据伪随机序列c(m),通过公式(1)生成所述第二DMRS序列,
    Figure PCTCN2018088769-appb-100008
    式中,所述r l(m)表示所述第二DMRS序列,所述m表示所述第二DMRS序列的序列索引值,所述l表示一个时隙上的符号的索引值。
  19. 根据权利要求16-18任一项所述的方法,其特征在于,所述n RE取值为3或4。
  20. 根据权利要求16-19任一项所述的方法,其特征在于,通过物理下行控制信道PDCCH、或者物理广播信道PBCH、或者RMSI获取所述N RB
  21. 根据权利要求18所述的方法,其特征在于,当所述广播信号为所述寻呼信息或者所述系统信息时,所述伪随机序列c(m)的初始化c init为以下公式(1-1a)-(1-1b)所示的初始化中的任一个,所述初始化c init用于生成所述伪随机序列c(m);
    Figure PCTCN2018088769-appb-100009
    Figure PCTCN2018088769-appb-100010
    式中,所述N ID表示小区的物理小区标识
    Figure PCTCN2018088769-appb-100011
    或者由多个小区组成的区域的标识
    Figure PCTCN2018088769-appb-100012
    所述k 1和所述k 2的取值为0~64中的常数,所述n RNTI表示无线网络临时标识数值,所述n SS表示一个同步信号段集合中的同步信号块的索引值,所述m 2表示所述寻呼信息或所述系统信息的RB中的符号数量,所述l 2表示所述寻呼信息或所述系统信息的RB中符号的索引值。
  22. 根据权利要求16所述的方法,其特征在于,当所述DMRS序列映射到多个符号时,所述多个符号的数量为3。
  23. 根据权利要求17所述的方法,其特征在于,所述广播信号占用多个符号,且所述多个符号上的DMRS序列在RB内的频率偏移位置均相同。
  24. 根据权利要求16所述的方法,其特征在于,所述伪随机序列c(m)是根据无线系统帧内的时隙索引值确定的。
  25. 根据权利要求16所述的方法,其特征在于,所述伪随机序列c(m)是根据一个时隙内的符号数量确定的。
  26. 根据权利要求17所述的方法,其特征在于,当所述广播信号为PBCH时,所述DMRS序列用于指示所述PBCH的同步信号块索引中最低数据位LSB的N个比特。
  27. 根据权利要求1所述的方法,其特征在于,所述DMRS序列占用的符号个数为1、2、3或者4。
  28. 根据权利要求16所述的方法,其特征在于,当所述DMRS序列映射到多个符号时,所述多个符号上的DMRS序列的密度均相同。
  29. 根据权利要求17所述的方法,其特征在于,所述寻呼信息的DMRS序列或所述系统信息的DMRS与同步信号块频分复用。
  30. 一种解调参考信号序列映射方法,其特征在于,所述方法包括:
    生成广播信号的解调参考信号DMRS序列;
    根据公式(2),将所述DMRS序列映射在所述广播信号的资源块RB包括的资源单元RE中,
    a k,l=r l,n(m)  (2)
    式中,所述a k,l表示所述DMRS序列包括的序列码在所述RB中占用的RE的位置, 所述k表示符号上的频率索引值,所述l表示一个时隙上的符号索引值或者所述广播信号的RB上的符号索引值,所述n表示所述广播信号的调度资源单位的索引值,所述m表示所述DMRS序列的序列索引值。
  31. 根据权利要求30所述的方法,其特征在于,所述广播信号为寻呼信息、或者系统信息。
  32. 根据权利要求30或31所述的方法,其特征在于,所述DMRS序列通过公式(1)获得,
    Figure PCTCN2018088769-appb-100013
    式中,所述r l(m)表示所述DMRS序列,c(m)表示伪随机序列,n RE表示所述DMRS序列占用的资源单元RE的数量,N RB表示所述广播信号的资源块RB数量,n RE大于或等于1,所述l表示一个时隙上的符号的索引值。
  33. 根据权利要求30-32任一项所述的方法,其特征在于,所述k、所述l和所述m的取值具体如公式(2-1a),
    Figure PCTCN2018088769-appb-100014
    式中,所述n density表示所述RB中用于传输所述DMRS序列的密度;所述v shift表示所述DMRS序列的起始RE位置相对于最小频率的RE的第一频率偏移值;所述v表示所述DMRS序列的起始RE位置相对于最小频率的RE的第二频率偏移值;所述l 1和所述l 2的取值范围为0,1,2,…,N symbol,所述N symbol表示一个时隙上的符号个数或者所述寻呼信息或所述系统信息的RB上的符号个数,所述
    Figure PCTCN2018088769-appb-100015
    表示小区的小区物理标识,所述mod表示取余。
  34. 根据权利要求30-32任一项所述的方法,其特征在于,所述k的取值与所述RB中用于传输所述DMRS序列的密度n density和所述RB中用于传输所述DMRS序列的RE相对于最小频率的RE的频率偏移值v shift+v的具体关系为以下表中所示的任意一种:
    Figure PCTCN2018088769-appb-100016
    Figure PCTCN2018088769-appb-100017
  35. 根据权利要求33所述的方法,其特征在于,若所述DMRS序列占有的符号个数为
    Figure PCTCN2018088769-appb-100018
    则所述
    Figure PCTCN2018088769-appb-100019
    与所述v的具体关系为:
    Figure PCTCN2018088769-appb-100020
    Figure PCTCN2018088769-appb-100021
    式中,NA表示空,
    Figure PCTCN2018088769-appb-100022
    表示向下取整。
  36. 一种解调参考信号序列获取方法,其特征在于,所述方法包括:
    接收基站通过广播信号的资源块RB发送的解调参考信号DMRS序列;
    根据公式(2),确定所述DMRS序列在所述广播信号的RB包括的资源单元RE中的位置,
    a k,l=r l,n(m)  (2)
    式中,所述a k,l表示所述DMRS序列包括的序列码在所述RB中占用的RE的位置,所述k表示符号上的频率索引值,所述l表示一个时隙上的符号索引值或者所述广播信号的RB上的符号索引值,所述n表示所述广播信号的调度资源单位的索引值,所述m表示所述DMRS序列的序列索引值;
    根据所述DMRS序列的位置,从所述广播信号的RB中获取所述DMRS序列。
  37. 根据权利要求36所述的方法,其特征在于,所述广播信号为寻呼信息、或者系统信息。
  38. 根据权利要求36或37所述的方法,其特征在于,所述DMRS序列是所述基站通过公式(1)获得,
    Figure PCTCN2018088769-appb-100023
    式中,所述r l(m)表示所述DMRS序列,c(m)表示伪随机序列,n RE表示所述DMRS序列占用的资源单元RE的数量,N RB表示所述广播信号的资源块RB数量,n RE大于或等于1,所述l表示一个时隙上的符号的索引值。
  39. 根据权利要求36-38任一项所述的方法,其特征在于,所述k、所述l和所述m的取值具体如公式(2-1a),
    Figure PCTCN2018088769-appb-100024
    式中,所述n density表示所述RB中用于传输所述DMRS序列的密度;所述v shift表示所述DMRS序列的起始RE位置相对于最小频率的RE的第一频率偏移值;所述v表示所述DMRS序列的起始RE位置相对于最小频率的RE的第二频率偏移值;所述l 1和所述l 2的取值范围为0,1,2,…,N symbol,所述N symbol表示一个时隙上的符号个数或者所述寻呼信息或所述系统信息的RB上的符号个数,所述
    Figure PCTCN2018088769-appb-100025
    表示小区的小区物理标识,所述mod表示取余。
  40. 根据权利要求36-38任一项所述的方法,其特征在于,所述k的取值与所述RB中用于传输所述DMRS序列的密度n density和所述RB中用于传输所述DMRS序列的RE相对于最小频率的RE的频率偏移值v shift+v的具体关系为以下表中所示的任意一种:
    Figure PCTCN2018088769-appb-100026
    Figure PCTCN2018088769-appb-100027
    Figure PCTCN2018088769-appb-100028
  41. 根据权利要求39所述的方法,其特征在于,若所述DMRS序列占有的符号个数为
    Figure PCTCN2018088769-appb-100029
    则所述
    Figure PCTCN2018088769-appb-100030
    与所述v的具体关系为下表中所示的任意一种:
    Figure PCTCN2018088769-appb-100031
    式中,NA表示空,
    Figure PCTCN2018088769-appb-100032
    表示向下取整。
  42. 一种装置,其特征在于,所述装置包括:
    处理单元,用于根据伪随机序列c(m),生成广播信号的解调参考信号DMRS序列;
    其中,所述DMRS序列与所述广播信号的资源块RB的数量N RB和一个RB中所述DMRS序列占用的资源单元RE的数量n RE相关;
    所述处理单元,用于将所述DMRS序列映射到一个或者多个符号中。
  43. 根据权利要求42所述的装置,其特征在于,所述广播信号为寻呼信息、物理广播信道PBCH或者系统信息。
  44. 根据权利要求42或43所述的装置,其特征在于,所述处理单元,具体用于:
    根据伪随机序列c(m),通过公式(1)生成所述广播信号的DMRS序列,
    Figure PCTCN2018088769-appb-100033
    式中,所述r l(m)表示所述DMRS序列,所述m表示所述DMRS序列的序列索引值,所述l表示一个时隙上的符号的索引值。
  45. 根据权利要求42-44任一项所述的装置,其特征在于,所述n RE取值为3或4。
  46. 根据权利要求44所述的装置,其特征在于,所述广播信号为所述寻呼信息或者所述系统信息时,所述伪随机序列c(m)的初始化c init为以下公式(1-1a)-(1-1b)所示的初始化中的任一个,所述初始化c init用于生成所述伪随机序列c(m);
    Figure PCTCN2018088769-appb-100034
    Figure PCTCN2018088769-appb-100035
    式中,所述N ID表示小区的物理小区标识
    Figure PCTCN2018088769-appb-100036
    或者由多个小区组成的区域的标识
    Figure PCTCN2018088769-appb-100037
    所述k 1和所述k 2的取值为0~64中的常数,所述n RNTI表示无线网络临时标识数值,所述n SS表示一个同步信号段集合中的同步信号块的索引值,所述m 2表示所述寻呼信息或所述系统信息的RB中的符号数量,所述l 2表示所述寻呼信息或所述系统信息的RB中符号的索引值。
  47. 根据权利要求42-46任一项所述的装置,其特征在于,所述处理单元,具体用 于:
    根据公式(2),将所述DMRS序列映射在所述广播信号的资源块RB包括的资源单元RE中,
    a k,l=r l,n(m)  (2)
    式中,所述a k,l表示所述DMRS序列包括的序列码在所述RB中占用的RE的位置,所述k表示符号上的频率索引值,所述l表示一个时隙上的符号索引值或者所述广播信号的RB上的符号索引值,所述n表示所述广播信号的调度资源单位的索引值,所述m表示所述DMRS序列的序列索引值。
  48. 根据权利要求47所述的装置,其特征在于,所述k、所述l和所述m的取值具体如公式(2-1a),
    Figure PCTCN2018088769-appb-100038
    式中,所述n density表示所述RB中用于传输所述DMRS序列的密度;所述v shift表示所述DMRS序列的起始RE位置相对于最小频率的RE的频率偏移值;所述v表示所述DMRS序列的起始RE位置相对于最小频率的RE的频率偏移值;所述l 1和所述l 2的取值范围为0,1,2,…,N symbol,所述N symbol表示一个时隙上的符号个数或者所述寻呼信息或所述系统信息的RB上的符号个数,所述
    Figure PCTCN2018088769-appb-100039
    表示小区的小区物理标识,所述mod表示取余。
  49. 根据权利要求42所述的装置,其特征在于,当所述DMRS序列映射到多个符号时,所述多个符号的数量为3。
  50. 根据权利要求43所述的装置,其特征在于,所述广播信号占用多个符号,且所述多个符号上的DMRS序列在RB内的频率偏移位置均相同。
  51. 根据权利要求42所述的装置,其特征在于,所述伪随机序列c(m)是根据无线系统帧内的时隙索引值确定的。
  52. 根据权利要求42所述的装置,其特征在于,所述伪随机序列c(m)是根据一个时隙内的符号数量确定的。
  53. 根据权利要求43所述的装置,其特征在于,当所述广播信号为PBCH时,所述DMRS序列用于指示所述PBCH的同步信号块索引中最低数据位LSB的N个比特。
  54. 根据权利要求42所述的装置,其特征在于,所述DMRS序列占用的符号个数为1、2、3或者4。
  55. 根据权利要求42所述的装置,其特征在于,当所述DMRS序列映射到多个符号时,所述多个符号上的DMRS序列的密度均相同。
  56. 根据权利要求43所述的装置,其特征在于,所述寻呼信息的DMRS序列或所述系统信息的DMRS与同步信号块频分复用。
  57. 一种装置,其特征在于,所述装置包括:
    接收单元,用于接收来自基站的广播信号的第一解调参考信号DMRS序列;
    处理单元,用于根据伪随机序列c(m),生成第二DMRS序列;其中,所述第二DMRS序列与所述广播信号的资源块RB的数量N RB和一个RB中所述DMRS序列占用的资源单元RE的数量n RE相关;
    所述处理单元,还用于若所述第二DMRS序列与所述第一DMRS匹配满足要求,则根据所述第二DMRS解调所述广播信号的数据。
  58. 根据权利要求57所述的装置,其特征在于,所述广播信号为寻呼信息、物理广播信道PBCH或者系统信息。
  59. 根据权利要求57或58所述的装置,其特征在于,所述处理单元,具体用于:
    根据伪随机序列c(m),通过公式(1)生成所述DMRS序列,
    Figure PCTCN2018088769-appb-100040
    式中,所述r l(m)表示所述DMRS序列,所述m表示所述DMRS序列的序列索引值,所述l表示一个时隙上的符号的索引值。
  60. 根据权利要求57-59任一项所述的装置,其特征在于,所述n RE取值为3或4。
  61. 根据权利要求57-60任一项所述的装置,其特征在于,所述接收单元还用于通过物理下行控制信道PDCCH、或者物理广播信道PBCH、或者RMSI获取所述N RB
  62. 根据权利要求59所述的装置,其特征在于,当所述广播信号为所述寻呼信息或者所述系统信息时,所述伪随机序列c(m)的初始化c init为以下公式(1-1a)-(1-1b)所示的初始化中的任一个,所述初始化c init用于生成所述伪随机序列c(m);
    Figure PCTCN2018088769-appb-100041
    Figure PCTCN2018088769-appb-100042
    式中,所述N ID表示小区的物理小区标识
    Figure PCTCN2018088769-appb-100043
    或者由多个小区组成的区域的标识
    Figure PCTCN2018088769-appb-100044
    所述k 1和所述k 2的取值为0~64中的常数,所述n RNTI表示无线网络临时标识数值,所述n SS表示一个同步信号段集合中的同步信号块的索引值,所述m 2表示所述寻呼信息或所述系统信息的RB中的符号数量,所述l 2表示所述寻呼信息或所述系统信息的RB中符号的索引值。
  63. 根据权利要求57所述的装置,其特征在于,当所述DMRS序列映射到多个符号时,所述多个符号的数量为3。
  64. 根据权利要求58所述的装置,其特征在于,所述广播信号占用多个符号,且所述多个符号上的DMRS序列在RB内的频率偏移位置均相同。
  65. 根据权利要求57所述的装置,其特征在于,所述伪随机序列c(m)是根据无线系统帧内的时隙索引值确定的。
  66. 根据权利要求57所述的装置,其特征在于,所述伪随机序列c(m)是根据一个时隙内的符号数量确定的。
  67. 根据权利要求58所述的装置,其特征在于,当所述广播信号为PBCH时,所述DMRS序列用于指示所述PBCH的同步信号块索引中最低数据位LSB的N个比特。
  68. 根据权利要求57所述的装置,其特征在于,所述DMRS序列占用的符号个数为1、2、3或者4。
  69. 根据权利要求57所述的装置,其特征在于,当所述DMRS序列映射到多个符 号时,所述多个符号上的DMRS序列的密度均相同。
  70. 根据权利要求58所述的装置,其特征在于,所述寻呼信息的DMRS序列或所述系统信息的DMRS与同步信号块频分复用。
  71. 一种装置,其特征在于,所述装置包括:
    处理单元,用于生成广播信号的解调参考信号DMRS序列;
    所述处理单元,还用于根据公式(2),将所述DMRS序列映射在所述广播信号的资源块RB包括的资源单元RE中,
    a k,l=r l,n(m)  (2)
    式中,所述a k,l表示所述DMRS序列包括的序列码在所述RB中占用的RE的位置,所述k表示符号上的频率索引值,所述l表示一个时隙上的符号索引值或者所述广播信号的RB上的符号索引值,所述n表示所述广播信号的调度资源单位的索引值,所述m表示所述DMRS序列的序列索引值。
  72. 根据权利要求71所述的装置,其特征在于,所述广播信号为寻呼信息、或者系统信息。
  73. 根据权利要求71或72所述的装置,其特征在于,所述DMRS序列通过公式(1)获得,
    Figure PCTCN2018088769-appb-100045
    式中,所述r l(m)表示所述DMRS序列,c(m)表示伪随机序列,n RE表示所述DMRS序列占用的资源单元RE的数量,N RB表示所述广播信号的资源块RB数量,n RE大于或等于1,所述l表示一个时隙上的符号的索引值。
  74. 根据权利要求71-73任一项所述的装置,其特征在于,所述k、所述l和所述m的取值具体如公式(2-1a),
    Figure PCTCN2018088769-appb-100046
    式中,所述n density表示所述RB中用于传输所述DMRS序列的密度;所述v shift表示所述DMRS序列的起始RE位置相对于最小频率的RE的第一频率偏移值;所述v表示所述DMRS序列的起始RE位置相对于最小频率的RE的第二频率偏移值;所述l 1和所述l 2的取值范围为0,1,2,…,N symbol,所述N symbol表示一个时隙上的符号个数或者所述寻呼信息或所述系统信息的RB上的符号个数,所述
    Figure PCTCN2018088769-appb-100047
    表示小区的小区物理标识,所述mod表示取余。
  75. 根据权利要求71-74任一项所述的装置,其特征在于,所述k的取值与所述RB中用于传输所述DMRS序列的密度n density和所述RB中用于传输所述DMRS序列的RE相对于最小频率的RE的频率偏移值v shift+v的具体关系为以下表中所示的任意一种:
    Figure PCTCN2018088769-appb-100048
    Figure PCTCN2018088769-appb-100049
  76. 根据权利要求73所述的装置,其特征在于,若所述DMRS占有的符号个数为
    Figure PCTCN2018088769-appb-100050
    则所述
    Figure PCTCN2018088769-appb-100051
    与所述v的具体关系为:
    Figure PCTCN2018088769-appb-100052
    式中,NA表示空,
    Figure PCTCN2018088769-appb-100053
    表示向下取整。
  77. 一种装置,其特征在于,所述装置包括:
    接收单元,用于接收基站通过广播信号的资源块RB发送的解调参考信号DMRS序列;
    处理单元,用于根据公式(2),确定所述DMRS序列在所述广播信号的RB包括的资源单元RE中的位置,
    a k,l=r l,n(m)  (2)
    式中,所述a k,l表示所述DMRS序列包括的序列码在所述RB中占用的RE的位置,所述k表示符号上的频率索引值,所述l表示一个时隙上的符号索引值或者所述广播信号的RB上的符号索引值,所述n表示所述广播信号的调度资源单位的索引值,所述m表示所述DMRS序列的序列索引值;
    所述处理单元,还用于根据所述DMRS序列的位置,从所述广播信号的RB中获取所述DMRS序列。
  78. 根据权利要求77所述的装置,其特征在于,所述广播信号为寻呼信息、或者系统信息。
  79. 根据权利要求77或78所述的装置,其特征在于,所述DMRS序列是所述基站通过公式(1)获得,
    Figure PCTCN2018088769-appb-100054
    式中,所述r l(m)表示所述DMRS序列,c(m)表示伪随机序列,n RE表示所述DMRS序列占用的资源单元RE的数量,N RB表示所述广播信号的资源块RB数量,n RE大于或等于1,所述l表示一个时隙上的符号的索引值。
  80. 根据权利要求77-79任一项所述的装置,其特征在于,所述k、所述l和所述m的取值具体如公式(2-1a),
    Figure PCTCN2018088769-appb-100055
    式中,所述n density表示所述RB中用于传输所述DMRS序列的密度;所述v shift表示所述DMRS序列的起始RE位置相对于最小频率的RE的频率偏移值;所述v表示所述DMRS序列的起始RE位置相对于最小频率的RE的频率偏移值;所述l 1和所述l 2的取值范围为0,1,2,…,N symbol,所述N symbol表示一个时隙上的符号个数或者所述寻呼信息或所述系统信息的RB上的符号个数,所述
    Figure PCTCN2018088769-appb-100056
    表示小区的小区物理标识,所述mod表示取余。
  81. 根据权利要求77-79任一项所述的装置,其特征在于,所述k的取值与所述RB中用于传输所述DMRS序列的密度n density和所述RB中用于传输所述DMRS序列的RE相对于最小频率的RE的频率偏移值v shift+v的具体关系为以下表中所示的任意一种:
    Figure PCTCN2018088769-appb-100057
    Figure PCTCN2018088769-appb-100058
  82. 根据权利要求80所述的装置,其特征在于,若所述DMRS序列占有的符号个数为
    Figure PCTCN2018088769-appb-100059
    则所述
    Figure PCTCN2018088769-appb-100060
    与所述v的具体关系为:
    Figure PCTCN2018088769-appb-100061
    式中,NA表示空,
    Figure PCTCN2018088769-appb-100062
    表示向下取整。
PCT/CN2018/088769 2017-06-02 2018-05-28 一种通信的方法及装置 WO2018219257A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197036916A KR102415212B1 (ko) 2017-06-02 2018-05-28 통신을 위한 방법 및 디바이스
EP18810287.5A EP3614757A4 (en) 2017-06-02 2018-05-28 COMMUNICATION METHOD AND DEVICE
CA3063956A CA3063956C (en) 2017-06-02 2018-05-28 Communication method and apparatus
US16/696,219 US11431466B2 (en) 2017-06-02 2019-11-26 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710409898.1 2017-06-02
CN201710409898.1A CN108989003B (zh) 2017-06-02 2017-06-02 一种通信的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/696,219 Continuation US11431466B2 (en) 2017-06-02 2019-11-26 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2018219257A1 true WO2018219257A1 (zh) 2018-12-06

Family

ID=64455210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088769 WO2018219257A1 (zh) 2017-06-02 2018-05-28 一种通信的方法及装置

Country Status (6)

Country Link
US (1) US11431466B2 (zh)
EP (1) EP3614757A4 (zh)
KR (1) KR102415212B1 (zh)
CN (1) CN108989003B (zh)
CA (1) CA3063956C (zh)
WO (1) WO2018219257A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021092188A1 (en) * 2019-11-05 2021-05-14 Qualcomm Incorporated Ssb enhancements for fine time-frequency estimation in nr

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018201469A1 (zh) * 2017-05-05 2018-11-08 北京小米移动软件有限公司 信号传输方法、装置、电子设备和计算机可读存储介质
RU2765035C2 (ru) 2017-06-15 2022-01-24 Шарп Кабусики Кайся Способ и устройство для генерирования и применения опорного сигнала для широковещательного канала для системы радиосвязи
CN114513291B (zh) 2017-06-16 2024-08-09 中兴通讯股份有限公司 定时信息的发送、确定方法、装置、存储介质及处理器
CN109309557B (zh) 2017-07-28 2020-09-01 电信科学技术研究院 一种信号处理方法、装置、设备及计算机可读存储介质
CN109392140B (zh) 2017-08-11 2020-07-28 维沃移动通信有限公司 一种用于监听pdcch的方法、终端及网络设备
IL274659B2 (en) 2017-11-15 2024-05-01 Idac Holdings Inc Signal transmission relative to phase tracking
US11621812B2 (en) * 2019-03-14 2023-04-04 Apple Inc. SSB pattern and DMRS design for PBCH in 5G NR
CN110177066B (zh) * 2019-04-25 2021-10-29 中国科学院上海微系统与信息技术研究所 一种5g nr系统中的大频偏估计方法及装置
CN111314012B (zh) * 2019-07-23 2022-05-20 展讯通信(上海)有限公司 辅同步信号序列的生成、检测方法及装置、存储介质、基站、接收机
CN112399612B (zh) * 2019-08-16 2024-01-09 华为技术有限公司 一种通信方法和装置
CN113472491B (zh) * 2020-03-30 2023-05-02 中国电信股份有限公司 数据传输方法、信息交互设备、基站及存储介质
WO2021248263A1 (en) * 2020-06-08 2021-12-16 Qualcomm Incorporated Flexible resource element (re) mapping and power control of demodulation reference signal (dmrs) in sub-resource block (rb) physical uplink shared channel (pusch) for coverage enhancement
US11924828B2 (en) * 2020-07-10 2024-03-05 Qualcomm Incorporated Adaptive demodulation reference signal density for physical downlink control channel
CN114391284B (zh) * 2020-08-04 2024-01-16 北京小米移动软件有限公司 资源位置的确定方法、装置、通信设备和介质
CN112019301B (zh) * 2020-08-18 2023-04-07 广东省新一代通信与网络创新研究院 一种pbch信道检测方法、终端
CN112187694B (zh) * 2020-09-24 2022-10-28 国家无线电监测中心 一种基于dmrs的手机终端信号屏蔽方法及系统
CN114389769B (zh) * 2020-10-16 2024-10-29 维沃移动通信有限公司 解调参考信号dmrs传输方法、装置及通信设备
WO2022151217A1 (zh) * 2021-01-14 2022-07-21 北京小米移动软件有限公司 信息传输方法、装置、通信设备和存储介质
WO2022183390A1 (zh) * 2021-03-02 2022-09-09 华为技术有限公司 一种无线通信方法、通信装置及通信系统
CN115606288A (zh) * 2021-04-12 2023-01-13 北京小米移动软件有限公司(Cn) 配置dmrs信号格式、生成dmrs信号的方法及装置、存储介质
US11689398B2 (en) * 2021-09-24 2023-06-27 Qualcomm Incorporated Scrambling initialization indication for higher bands

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012148207A2 (en) * 2011-04-29 2012-11-01 Pantech Co.,Ltd. Method and apparatus for transmitting/receiving reference signal in wireless communication system
CN105553632A (zh) * 2009-10-08 2016-05-04 高通股份有限公司 在无线通信系统中用于使用信道状态信息参考信号的方法和设备
CN105900387A (zh) * 2014-06-12 2016-08-24 华为技术有限公司 一种资源分配方法及装置
CN106134140A (zh) * 2014-03-21 2016-11-16 三星电子株式会社 在设备对设备通信中发送和接收参考信号的方法和装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116769A1 (en) * 2008-03-17 2009-09-24 Lg Electronics Inc. Method of transmitting reference signal and transmitter using the same
US8660084B2 (en) * 2009-04-10 2014-02-25 Lg Electronics Inc. Method and apparatus for transmitting reference signal in wireless communication system
CN103297177B (zh) * 2012-02-28 2016-09-28 华为终端有限公司 控制信道的调制、解调方法、基站和用户设备
CN103580790A (zh) * 2012-07-31 2014-02-12 中兴通讯股份有限公司 一种dmrs处理方法和装置
KR101987232B1 (ko) * 2012-11-02 2019-09-30 주식회사 팬택 다중 안테나 시스템에서 참조 신호의 전송장치 및 방법
EP3413495B1 (en) * 2016-02-02 2023-04-05 LG Electronics Inc. Method for transmitting dmrs in wireless communication system supporting nb-iot and apparatus therefor
US11038557B2 (en) 2016-03-31 2021-06-15 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving reference signals in wireless communication
US10484153B2 (en) * 2017-03-09 2019-11-19 Samsung Electronics Co., Ltd. Method and apparatus for NR-DMRS sequence design
WO2018201475A1 (zh) * 2017-05-05 2018-11-08 富士通株式会社 信息指示方法、检测方法及其装置、通信系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105553632A (zh) * 2009-10-08 2016-05-04 高通股份有限公司 在无线通信系统中用于使用信道状态信息参考信号的方法和设备
WO2012148207A2 (en) * 2011-04-29 2012-11-01 Pantech Co.,Ltd. Method and apparatus for transmitting/receiving reference signal in wireless communication system
CN106134140A (zh) * 2014-03-21 2016-11-16 三星电子株式会社 在设备对设备通信中发送和接收参考信号的方法和装置
CN105900387A (zh) * 2014-06-12 2016-08-24 华为技术有限公司 一种资源分配方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3614757A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021092188A1 (en) * 2019-11-05 2021-05-14 Qualcomm Incorporated Ssb enhancements for fine time-frequency estimation in nr
US11539486B2 (en) 2019-11-05 2022-12-27 Qualcomm Incorporated SSB enhancements for fine time-frequency estimation in NR

Also Published As

Publication number Publication date
CA3063956C (en) 2024-02-27
CA3063956A1 (en) 2019-12-10
KR20200007913A (ko) 2020-01-22
EP3614757A1 (en) 2020-02-26
CN108989003B (zh) 2024-06-25
US20200099500A1 (en) 2020-03-26
EP3614757A4 (en) 2020-04-15
US11431466B2 (en) 2022-08-30
CN108989003A (zh) 2018-12-11
KR102415212B1 (ko) 2022-07-01

Similar Documents

Publication Publication Date Title
WO2018219257A1 (zh) 一种通信的方法及装置
US10064188B2 (en) Methods and apparatuses for radio resource management
US11128422B2 (en) Narrowband physical broadcast channel transmission method and device
WO2019192345A1 (zh) 一种时域资源分配方法及装置
EP3627733B1 (en) Communication method, network device and terminal device
WO2021032017A1 (zh) 通信方法和装置
US11510164B2 (en) Method and device for synchronous broadcasting transmission signal block
CN111601382B (zh) 一种数据传输方法及通信装置
EP4068885A1 (en) Terminal device, base station device, and communication method
WO2018228537A1 (zh) 信息发送、接收方法及装置
WO2021012256A1 (zh) 速率匹配的指示方法、装置、设备及存储介质
US20230139778A1 (en) Resource configuration method and apparatus
WO2018059253A1 (zh) 参考信号发送方法、参考信号处理方法及设备
TWI595763B (zh) 使用新型態載波的實體廣播通道進行通訊的通訊站及通訊裝置
CN111050400B (zh) 信息处理的方法和装置
WO2021012255A1 (zh) 同步广播块的发送方法、接收方法、装置、设备及介质
CN110971362B (zh) 一种发现参考信号发送方法及装置
US20220039075A1 (en) Communication method and apparatus
CN106961735A (zh) 资源的使用方法及装置
WO2023006067A1 (zh) 一种通信方法及装置
WO2017054134A1 (zh) 一种确定频率资源的方法和装置
CN115150035B (zh) 信息传输方法和系统以及基站
WO2024187423A1 (zh) 通信方法及通信装置
CN114143723B (zh) Nr小区中集群寻呼消息的发送与接收方法及设备
CN118057888A (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810287

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3063956

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2018810287

Country of ref document: EP

Effective date: 20191121

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197036916

Country of ref document: KR

Kind code of ref document: A