WO2018216558A1 - 難燃剤組成物及びそれを含有する難燃性樹脂組成物 - Google Patents
難燃剤組成物及びそれを含有する難燃性樹脂組成物 Download PDFInfo
- Publication number
- WO2018216558A1 WO2018216558A1 PCT/JP2018/018820 JP2018018820W WO2018216558A1 WO 2018216558 A1 WO2018216558 A1 WO 2018216558A1 JP 2018018820 W JP2018018820 W JP 2018018820W WO 2018216558 A1 WO2018216558 A1 WO 2018216558A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flame retardant
- mass
- acid
- tert
- retardant composition
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/52—Phosphorus bound to oxygen only
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/05—Alcohols; Metal alcoholates
- C08K5/057—Metal alcoholates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3442—Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
- C08K5/3462—Six-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3477—Six-membered rings
- C08K5/3492—Triazines
- C08K5/34928—Salts
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K21/00—Fireproofing materials
- C09K21/02—Inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K21/00—Fireproofing materials
- C09K21/06—Organic materials
- C09K21/12—Organic materials containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K21/00—Fireproofing materials
- C09K21/14—Macromolecular materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2296—Oxides; Hydroxides of metals of zinc
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0066—Flame-proofing or flame-retarding additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/02—Flame or fire retardant/resistant
Definitions
- the present invention relates to a flame retardant composition and a flame retardant resin composition containing the same.
- Resin is superior in molding processability, heat resistance, mechanical properties, etc., and has the advantages of low specific gravity and light weight, so conventional building materials, automotive parts, packaging materials, agricultural materials, home appliance housings It has been widely used for materials and toys.
- resins are flammable materials, and flame retardant is indispensable depending on the application.
- highly flammable synthetic resins such as polyolefin resins are widely used in a wide range of fields, it is indispensable to add a flame retardant to impart flame retardancy to these synthetic resins.
- Resin flame retardant methods include halogenated flame retardants, inorganic phosphorus flame retardants typified by polyphosphoric flame retardants such as red phosphorus and ammonium polyphosphate, and organic phosphorus retardants represented by triaryl phosphate ester compounds. It is widely known to use a flame retardant, a metal hydroxide such as magnesium hydroxide, a flame retardant auxiliary agent such as antimony oxide and a melamine compound alone or in combination.
- Patent Document 1 proposes a flame retardant composition containing a melamine salt, a pyrophosphate salt, and a bicyclophosphate ester.
- Patent Document 2 proposes that zinc glycerolate can be used as one of a plurality of types disclosed as a nucleating agent component.
- Patent Document 3 proposes to impart flame retardancy to a synthetic resin by the combined use of an alkaline earth metal salt or zinc salt of glycerin and a halogen-based flame retardant compound.
- Patent Document 1 has a problem that sufficient flame retardancy cannot be imparted to the resin when the addition amount is small.
- Patent Document 2 does not disclose or suggest the use of zinc glycerolate as a flame retardant.
- patent document 3 the flame retardance performance provision by combined use with a halogenated flame retardant had a problem not only from a flame retardance performance but from the point of safety.
- an object of the present invention is to provide a flame retardant and a flame retardant resin composition that can impart excellent flame retardancy to a resin even with a low addition amount.
- the present invention has been made based on this finding. Specifically, the present invention is as follows.
- a flame retardant composition containing (A) an amine phosphate compound and (B) a zinc salt of glycerin.
- the component (A) has an pyrophosphate amine salt as an essential component, and the mass ratio of the component (A) to the component (B) is 99.99: 0.01 to 60:40 in the former: the latter.
- the flame retardant composition of Invention 1 or 2 further comprising (C) 0.01 to 10 parts by mass of zinc oxide based on a total of 100 parts by mass of the component (A) and the component (B).
- a flame retardant resin composition comprising 1 to 100 parts by mass of the flame retardant composition according to any one of Inventions 1 to 4 based on 100 parts by mass of a resin.
- a method for flame retarding a resin comprising mixing a composition containing the following component (A) and the following component (B) with a resin.
- composition containing the following component (A) and the following component (B) as a flame retardant.
- Component Phosphate amine salt
- Component Zinc salt of glycerin
- the present invention relates to a flame retardant composition and a flame retardant resin composition.
- the present invention will be described based on preferred embodiments thereof.
- the flame retardant composition of the present invention comprises (A) an amine phosphate and (B) a zinc salt of glycerin as essential components. (A) Component
- the flame retardant composition of the present invention contains (A) an amine phosphate.
- the phosphoric acid amine salt means a composition containing at least one salt of phosphoric acid and amine.
- the “phosphoric acid” in the phosphoric acid amine salt is a general term for monophosphoric acid and polyphosphoric acid. Examples of monophosphoric acid include orthophosphoric acid (H 3 PO 4 ).
- polyphosphoric acid examples include diphosphoric acid pyrophosphoric acid (H 4 P 2 O 7 ), triphosphoric acid triphosphoric acid (H 5 P 3 O 10 ), and condensed phosphoric acid metaphosphoric acid (HPO 3 ) k ( k represents a positive integer of 4 to 20.) and the like.
- the amine in the phosphoric acid amine salt include ammonia, alkylamine, aromatic amine, and heterocyclic amine. The amine may have a hydroxyl group.
- alkylamine examples include a monoalkylamine represented by R 1 NH 2 , a dialkylamine represented by R 1 R 2 NH, a trialkylamine represented by R 1 R 2 R 3 N, and [R 4 R 5 And a diamine represented by N (CH 2 ) m NR 6 R 7 ].
- R 1 , R 2 and R 3 represent the same or different linear or branched alkyl groups having 1 to 8 carbon atoms.
- R 4 , R 5 , R 6 and R 7 are the same or different and each represents a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms.
- Examples of the linear or branched alkyl group having 1 to 8 carbon atoms represented by R 1 to R 7 include, for example, methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl, pentyl, tertiary Examples include pentyl, hexyl, heptyl, octyl, 2-ethylhexyl, and tertiary octyl.
- Examples of the monoalkylamine include methylamine, ethylamine, propylamine, and isopropylamine.
- dialkylamine examples include dimethylamine, dimethylethylamine, diethylamine, dipropylamine, methylpropylamine, ethylpropylamine, and ethylenediamine.
- trialkylamine examples include trimethylamine, dimethylethylamine, dimethylpropylamine, methyldiethylamine, methyldipropylamine, triethylamine, and tripropylamine.
- Examples of the diamine represented by [R 4 R 5 N (CH 2 ) m NR 6 R 7 ] include N, N, N ′, N′-tetramethyldiaminomethane, ethylenediamine, and N, N′-dimethyl.
- m is preferably a number of 1 to 20.
- Examples of the aromatic amine include aromatic monoamines, aromatic diamines, and aromatic triamines.
- Examples of the aromatic monoamine include aniline.
- Examples of the aromatic diamine include 1,2-diaminobenzene, 1,4-diaminobenzene, 1,3-diaminobenzene, and the like.
- Examples of the aromatic triamine include 1,3,5-triaminobenzene.
- heterocyclic amine examples include heterocyclic amines having 2 to 14 carbon atoms containing at least one nitrogen atom.
- the heterocyclic amine may contain at least one selected from a sulfur atom and an oxygen atom.
- examples of the heterocyclic amine include, for example, an aliphatic heterocyclic amine having 2 to 7 carbon atoms, a 5-membered aromatic heterocyclic amine having 2 to 4 carbon atoms, and a 6-membered ring having 2 to 5 carbon atoms. Examples thereof include aromatic heterocyclic amines and polycyclic aromatic heterocyclic amines having 5 to 12 carbon atoms.
- Examples of the aliphatic heterocyclic compound having 2 to 7 carbon atoms include piperidine, piperazine, morpholine, quinuclidine, pyrrolidine, acetylidin, acetylidin-2-one and aziricin, and a 4- to 9-membered ring compound is preferable.
- a 6-membered ring compound is particularly preferred.
- Examples of the 5-membered aromatic heterocyclic compound having 2 to 4 carbon atoms include pyrrole, imidazole, pyrazole, oxazole, isoxazole, thiazole and isothiazole.
- Examples of the 6-membered aromatic heterocyclic amine having 2 to 5 carbon atoms include melamine, pyridine, pyrimidine, pyridazine, pyrazine and 1,2,3-triazine.
- Examples of the polycyclic aromatic heterocyclic amine having 5 to 12 carbon atoms include quinoline, isoquinoline, quinazoline, phthalazine, indole, benzimidazole, purine, acridine and phenothiazine.
- examples of such an amine include a monoalkylamine represented by R 1 NH 2 , a dialkylamine represented by R 1 R 2 NH, and R 1 R 2 R 3 N.
- An amine in which one or two or more hydrogen atoms in the alkyl in the represented trialkylamine are substituted with a hydroxyl group is exemplified. Specific examples include methanolamine, ethanolamine, dimethanolamine, diethanolamine, trimethanolamine, and triethanolamine.
- the amine in the phosphoric acid amine salt is preferably at least one selected from the group consisting of ammonia, alkylamines, aromatic amines, heterocyclic amines, ethanolamines, diethanolamines, and diethylenetriamines.
- Ammonia, diethylamine, ethanol Must be at least one selected from the group consisting of amine, diethanolamine, aniline, melamine, morpholine, ethylenediamine, piperazine, 1,2-diaminobenzene, 1,4-diaminobenzene, diethylenetriamine, methylamine, ethylamine and dimethylamine.
- melamine and piperazine are more preferable from the viewpoint of flame retardancy.
- the phosphate amine salt can be any combination of one or more of the phosphoric acid described above and one or more of the amine described above.
- the phosphoric acid amine salts include piperazine orthophosphate, piperazine pyrophosphate, melamine orthophosphate, melamine pyrophosphate, pyrophosphate and piperazine And double salts with melamine, and double salts with orthophosphoric acid, piperazine and melamine.
- the molar ratio of phosphoric acid to piperazine is preferably 0.3 to 1.2 mol of piperazine to 1 mol of phosphorus atom in phosphoric acid.
- the molar ratio of melamine to melamine is preferably 0.3 to 1.2 mol per mol of phosphorus atom in phosphoric acid.
- the phosphoric acid amine salt in the flame retardant composition of the present invention preferably contains a pyrophosphoric acid amine salt as an essential component.
- the ratio of pyrophosphoric acid to phosphoric acid in the total phosphate amine salt is 80 to 100% by mass, preferably 90 to 100% by mass, more preferably 95 to 100% by mass. It is preferable from the viewpoint of flame retardancy.
- an orthophosphate amine salt or a polyphosphate amine salt is produced as a by-product in the pyrophosphate amine salt. There is.
- the proportion of orthophosphoric acid in phosphoric acid is 3% by mass or less, and when the polyphosphate amine salt in phosphoric acid is 1% by mass or less, the proportion of pyrophosphoric acid in phosphoric acid is 100. Mass%.
- the ratio of pyrophosphoric acid to orthophosphoric acid and the ratio of orthophosphoric acid in the total phosphoric acid amine salt in the flame retardant composition of the present invention can be determined by ion chromatography or the like.
- the amine phosphate is preferably a combination of a piperazine phosphate and a melamine phosphate from the viewpoint of flame retardancy and heat resistance.
- the mass ratio of the piperazine phosphate salt to the melamine phosphate is preferably 80:20 to 10:90, more preferably 70:30 to 20:80 in the former: the latter, It is more preferably 70:30 to 50:50, and most preferably 65:35 to 55:45.
- the amine phosphate is preferably a combination of a piperazine pyrophosphate salt and a melamine pyrophosphate salt.
- the preferred mass ratio of the piperazine pyrophosphate salt and the melamine pyrophosphate salt is a piperazine phosphate salt and a melamine phosphate salt.
- the preferred mass ratio is the same range as the range given above.
- the content of the phosphoric acid amine salt of the component (A) is preferably 1 to 99% by mass from the viewpoint of flame retardancy, and 10 to 98% by mass. % Is more preferable, and 30 to 97% by mass is more preferable.
- the content of the phosphate amine salt in the flame retardant composition of the present invention can be measured by ion chromatography or the like.
- Examples of the phosphoric acid amine salt of the component (A) of the present invention include, but are not limited to, the compositions represented by the following A-1 to A-36.
- A-1 A mixture of piperazine pyrophosphate salt (molar ratio of pyrophosphate to piperazine is 1: 1) and melamine pyrophosphate (molar ratio of pyrophosphate to melamine is 1: 2), the former and the latter And the mass ratio is 90:10
- A-2 A composition in which the mass ratio of the former to the latter in the mixture of A-1 was changed to 80:20.
- A-3 The mass ratio of the former to the latter in the mixture of A-1.
- A-4 Composition in which the mass ratio of the former and the latter in the mixture of A-1 was changed to 60:40
- A-5 In the mixture of A-1 A composition in which the mass ratio of the former and the latter is changed to 50:50.
- A-6 A composition in which the mass ratio of the former to the latter in the mixture of A-1 is changed to 40:60.
- A-7 A composition in which the mass ratio of the former and the latter in the mixture of A-1 was changed to 30:70.
- A-8 The mass ratio of the former and the latter in the mixture of A-1 was changed to 20:80.
- A-9 In the mixture of A-1, the mass ratio of the former to the latter Composition changed to 10:90
- A-10 a mixture of a piperazine pyrophosphate salt (molar ratio of pyrophosphate to piperazine is 1: 2) and a melamine pyrophosphate salt (molar ratio of pyrophosphate to melamine is 1: 2), 90:10 mass ratio with the latter
- A-11 A composition in which the mass ratio of the former and the latter in the mixture of A-10 was changed to 80:20.
- A-12 In the mixture of A-10, the mass ratio of the former and the latter was changed. Composition changed to 70:30
- A-13 Composition in which the mass ratio of the former and the latter was changed to 60:40 in the mixture of A-10
- A-14 In the mixture of A-10 A composition in which the mass ratio of the former and the latter is changed to 50:50.
- A-15 A composition in which the mass ratio of the former to the latter is changed to 40:60 in the mixture of A-10.
- A-16 A composition in which the mass ratio of the former and the latter is changed to 30:70 in the mixture of A-10.
- A-17 The mass ratio of the former and the latter in the mixture of A-10 is changed to 20:80.
- Composition A-18 Mixture of A-10 In which the mass ratio of the former to the latter was changed to 10:90
- A-19 a mixture of piperazine pyrophosphate salt (molar ratio of pyrophosphate and piperazine is 1: 1) and melamine pyrophosphate (molar ratio of pyrophosphate to melamine is 1: 1), 90:10 mass ratio with the latter
- A-20 A composition in which the mass ratio of the former and the latter in the mixture of A-19 was changed to 80:20.
- A-21 In the mixture of A-19, the mass ratio of the former to the latter was changed. Composition changed to 70:30 A-22: Composition in which the mass ratio of the former and the latter was changed to 60:40 in the mixture of A-19 A-23: In the mixture of A-19 A composition in which the mass ratio of the former to the latter is changed to 50:50.
- A-24 A composition in which the mass ratio of the former to the latter is changed to 40:60 in the mixture of A-19.
- A-25 A composition in which the mass ratio of the former to the latter is changed to 30:70 in the mixture of A-19.
- A-26 The mass ratio of the former to the latter in the mixture of A-19 is changed to 20:80.
- Composition A-27 Mixture of A-19 In which the mass ratio of the former to the latter was changed to 10:90
- A-28 a mixture of a piperazine pyrophosphate salt (molar ratio of pyrophosphate to piperazine is 1: 2) and a melamine pyrophosphate salt (molar ratio of pyrophosphate to melamine is 1: 1),
- the latter mass ratio is 90:10
- A-29 A composition in which the mass ratio of the former and the latter in the mixture of A-28 was changed to 80:20.
- A-30 In the mixture of A-28, the mass ratio of the former to the latter was changed. Composition changed to 70:30
- A-31 In the mixture of A-28, a composition in which the mass ratio of the former to the latter was changed to 60:40.
- A-32 In the mixture of A-28, A composition in which the mass ratio of the former to the latter is changed to 50:50.
- A-33 A composition in which the mass ratio of the former to the latter is changed to 40:60 in the mixture of A-28.
- A-34 In the mixture of A-28, a composition in which the mass ratio of the former to the latter was changed to 30:70.
- A-35 In the mixture of A-28, the mass ratio of the former to the latter was changed to 20:80.
- Composition A-36 Mixture of A-28 In which the mass ratio of the former to the latter was changed to 10:90
- the flame retardant composition of the present invention contains (B) a glycerin zinc salt.
- the zinc salt of glycerin is a salt of glycerin and zinc.
- the zinc salt of glycerin may be a monomer having a molar ratio of glycerin to zinc of 1: 1, and may be a multimer having a molar ratio of glycerin to zinc of 1: 2 or 2: 1. is there.
- the zinc salt of glycerin can be easily produced by, for example, a dehydration reaction between glycerin and zinc oxide or zinc hydroxide, but the production method is not particularly limited.
- the particle size, crystal form, or presence or absence of crystal water there is no particular limitation on the particle size, crystal form, or presence or absence of crystal water.
- Specific examples of the (B) zinc salt of glycerin include CAS registration numbers 16754-68-0, 87189-25-1, 2309556-34-0, 142227-07-4, and the like.
- a commercially available product can be used as the zinc salt of glycerin.
- Examples of commercially available zinc salts of glycerin include Irgastab NA-287 and Unichema 3881 from BASF, which can be preferably used. These zinc salts of glycerin may be used alone or in combination of two or more.
- the content of the glycerin zinc salt as the component (B) is preferably 0.01 to 50% by mass, preferably 0.1 to 30% by mass is more preferable, and 1 to 20% by mass is even more preferable.
- the content of the zinc salt of glycerin in the flame retardant composition of the present invention can be measured by ICP emission analysis, ion chromatography, fluorescent X-ray analysis, nuclear magnetic resonance analysis (NMR) or the like.
- the mass ratio of the component (A) to the component (B) is preferably 99.99: 0.01 to 60:40 in terms of flame retardancy, the former: the latter, 99.9: 0.1 to 70:30 is more preferable, and 99: 1 to 80:20 is even more preferable.
- Examples of the flame retardant composition of the present invention include, but are not limited to, compositions represented by the following No. 1 to No. 35, and (A) an amine phosphate and (B) As long as it contains the zinc salt of glycerin, it can be used as the flame retardant composition of the present invention.
- the mass ratios of No. 1 to No. 35 indicate the former: latter ratio.
- the zinc salt of glycerin is simply referred to as “(B)”.
- No. 1 Flame retardant composition in which A-1 and (B) were mixed at a mass ratio of 99.99: 0.01 2: Flame retardant composition in which A-1 and (B) were mixed at a mass ratio of 99: 1. 3: Flame retardant composition in which A-1 and (B) were mixed at a mass ratio of 98: 2. 4: Flame retardant composition in which A-1 and (B) were mixed at a mass ratio of 95: 5 5: Flame retardant composition in which A-1 and (B) were mixed at a mass ratio of 93: 7 6: Flame retardant composition in which A-1 and (B) were mixed at a mass ratio of 90:10 7: Flame retardant composition in which A-1 and (B) are mixed at a mass ratio of 80:20
- No. 8 Flame retardant composition in which A-3 and (B) were mixed at a mass ratio of 98: 2.
- 9 Flame retardant composition in which A-3 and (B) were mixed at a mass ratio of 95: 5
- 10 Flame retardant composition in which A-3 and (B) were mixed at a mass ratio of 93: 7
- 11 Flame retardant composition in which A-3 and (B) were mixed at a mass ratio of 90:10 12: A flame retardant composition in which A-3 and (B) are mixed at a mass ratio of 80:20
- No. 13 Flame retardant composition in which A-4 and (B) were mixed at a mass ratio of 99.99: 0.01 14: Flame retardant composition in which A-4 and (B) were mixed at a mass ratio of 99: 1 15: Flame retardant composition in which A-4 and (B) were mixed at a mass ratio of 98: 2. 16: Flame retardant composition in which A-4 and (B) were mixed at a mass ratio of 95: 5 17: Flame retardant composition in which A-4 and (B) were mixed at a mass ratio of 93: 7 18: Flame retardant composition in which A-4 and (B) were mixed at a mass ratio of 90:10 19: Flame retardant composition in which A-4 and (B) are mixed at a mass ratio of 80:20
- No. 20 Flame retardant composition in which A-8 and (B) were mixed at a mass ratio of 99.99: 0.01 21: Flame retardant composition in which A-8 and (B) were mixed at a mass ratio of 99: 1 22: Flame retardant composition obtained by mixing A-8 and (B) at a mass ratio of 98: 2. 23: Flame retardant composition in which A-8 and (B) were mixed at a mass ratio of 95: 5 24: Flame retardant composition obtained by mixing A-8 and (B) at a mass ratio of 93: 7 25: Flame retardant composition obtained by mixing A-8 and (B) at a mass ratio of 90:10 26: A flame retardant composition in which A-8 and (B) are mixed at a mass ratio of 80:20
- No. 27 Flame retardant composition in which A-11 and (B) were mixed at a mass ratio of 97: 3 28: Flame retardant composition in which A-11 and (B) were mixed at a mass ratio of 80:20 29: Flame retardant composition in which A-11 and (B) are mixed at a mass ratio of 50:50
- No. 30 Flame retardant composition obtained by mixing A-23 and (B) at a mass ratio of 95: 5 31: A flame retardant composition in which A-23 and (B) are mixed at a mass ratio of 93: 7
- No. 32 Flame retardant composition in which A-36 and (B) were mixed at a mass ratio of 95: 5 33: Flame retardant composition in which A-36 and (B) were mixed at a mass ratio of 93: 7 34: Flame retardant composition in which A-36 and (B) were mixed at a mass ratio of 80:20 35: Flame retardant composition in which A-36 and (B) are mixed at a mass ratio of 60:40
- the flame retardant composition of the present invention further contains (C) zinc oxide.
- Zinc oxide may be untreated or may be surface treated.
- a commercial item can be used as zinc oxide.
- Commercially available products of zinc oxide include, for example, Mitsui Metals Mining Co., Ltd .; 1 type of zinc oxide, Mitsui Metals Mining Co., Ltd .; Partially coated zinc oxide, Sakai Chemical Industry Co., Ltd .; Nanofine 50 (average particle size 0 .02 ⁇ m ultrafine zinc oxide), Nanofine K (ultrafine zinc oxide coated with zinc silicate having an average particle size of 0.02 ⁇ m), and the like.
- one kind of zinc oxide manufactured by Mitsui Mining & Smelting Co., Ltd. can be preferably used. These zinc oxides may be used alone or in combination of two or more.
- the content of zinc oxide in the flame retardant composition of the present invention is preferably 0.01 to 10 parts by mass, and 0.03 to 8 parts per 100 parts by mass in total of the component (A) and the component (B). Part by mass is more preferable, and 0.05 to 5 parts by mass is even more preferable.
- the content of zinc oxide in the flame retardant composition of the present invention can be measured by ICP emission analysis, infrared spectroscopy (IR) or the like.
- the flame retardant composition of the present invention further contains (D) hydrotalcite.
- Hydrotalcite is, for example, a complex salt compound made of magnesium, aluminum, a hydroxyl group, a carbonate group, and any crystal water known as a natural product or a synthetic product.
- Hydrotalcite may be obtained by dehydrating crystal water.
- Organic fatty acids such as higher fatty acids such as stearic acid, higher fatty acid metal salts such as alkali metal oleate, and alkali metal salts of dodecylbenzenesulfonic acid. It may be coated with a metal salt, higher fatty acid amide, higher fatty acid ester or wax.
- Hydrotalcite can be further used without being limited to a crystal structure, crystal particles, or the like. In the flame retardant composition of the present invention, known hydrotalcite can be used without particular limitation. Moreover, in the flame retardant composition of the present invention, commercially available hydrotalcite can be used.
- hydrotalcite manufactured by Kyowa Chemical Industry Co., Ltd . DHT-4A, Alkamizer-1, Alkamizer-2, Alkamizer 4, Alkamizer 7, HT-1, HT-7, HT-P, Toda Kogyo Co., Ltd. Made by company; NAOX-19, NAOX-19T, NAOX-33, NAOX-54, NAOX-55, NAOX-56, NAOX-57, NAOX-71, NAOX-72, NAOX-81, NAOX-91, OPTIMA-LSA , OPTIMA-XT, MAGGOLD, etc.
- DHT-4A manufactured by Kyowa Chemical Industry can be preferably used.
- These hydrotalcites may be used alone or in combination of two or more.
- the content of hydrotalcite in the flame retardant composition of the present invention is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass in total of the component (A) and the component (B), and 0.03 More preferred is 3 parts by mass.
- the hydrotalcite content in the flame retardant composition of the present invention can be measured by ICP emission analysis, infrared spectroscopy (IR) or the like.
- the flame retardant composition of the present invention contains (A) a phosphoric acid amine salt and (B) a zinc salt of glycerin, as required.
- Agents, thioether antioxidants, other antioxidants, nucleating agents, lubricants, UV absorbers, light stabilizers, other flame retardants, plasticizers, fillers, fatty acid metal salts, antistatic agents, pigments, dyes, etc. Can be blended. These components may be blended in advance in the flame retardant composition of the present invention, or may be blended in preparing the flame retardant resin composition described below.
- phenol-based antioxidant examples include 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2-tert-butyl-4,6- Dimethylphenol, styrenated phenol, 2,2'-methylenebis (4-ethyl-6-tert-butylphenol), 2,2'-thiobis- (6-tert-butyl-4-methylphenol), 2,2'- Thiodiethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2-methyl-4,6-bis (octylsulfanylmethyl) phenol, 2,2′-isobutylidenebis (4,6-dimethylphenol), isooctyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate N, N′-hexane-1,6-diylbis [3- (3,5-di-but
- phenolic antioxidants may be used alone or in combination of two or more.
- the content of the phenolic antioxidant in the flame retardant composition of the present invention can be in a range that does not impair the effects of the present invention, but is 0.001 to 5 masses per 100 mass parts of the flame retardant composition. Part is preferable, and 0.01 to 1.0 part by weight is more preferable.
- phosphite antioxidant examples include triphenyl phosphite, diisooctyl phosphite, heptakis (dipropylene glycol) triphosphite, triisodecyl phosphite, diphenylisooctyl phosphite, diisooctylphenyl phosphite, Diphenyl tridecyl phosphite, triisooctyl phosphite, trilauryl phosphite, diphenyl phosphite, tris (dipropylene glycol) phosphite, diisodecyl pentaerythritol diphosphite, dioleyl hydrogen phosphite, trilauryl trithiophosphite, Bis (tridecyl) phosphite, Tris (isodecyl) phosphite
- phosphite antioxidants may be used alone or in combination of two or more.
- the content of the phosphite-based antioxidant in the flame retardant composition of the present invention can be in a range that does not impair the effects of the present invention, and is 0.001 to 5 masses per 100 mass parts of the flame retardant composition. Part is preferable, and 0.01 to 1.0 part by weight is more preferable.
- thioether-based antioxidant examples include 3,3′-thiodipropionic acid, alkyl (C12-14) thiopropionic acid, di (lauryl) -3,3′-thiodipropionate, 3,3′- Ditridecyl thiobispropionate, di (myristyl) -3,3'-thiodipropionate, di (stearyl) -3,3'-thiodipropionate, di (octadecyl) -3,3'-thiodipropionate , Lauryl stearyl thiodipropionate, tetrakis [methylene-3- (dodecylthio) propionate] methane, thiobis (2-tert-butyl-5-methyl-4,1-phenylene) bis (3- (dodecylthio) propionate), 2 , 2'-thiodiethylenebis (3-aminobutenoate), 4,6-
- thioether-based antioxidants may be used alone or in combination of two or more.
- the content of the thioether antioxidant in the flame retardant composition of the present invention can be in a range that does not impair the effects of the present invention, and is 0.001 to 5 parts by mass with respect to 100 parts by mass of the flame retardant composition. Is preferable, and 0.01 to 1.0 part by mass is more preferable.
- antioxidants examples include N-benzyl- ⁇ -phenylnitrone, N-ethyl- ⁇ -methylnitrone, N-octyl- ⁇ -heptylnitrone, N-lauryl- ⁇ -undecylnitrone, N-tetradecyl.
- antioxidants may be used alone or in combination of two or more.
- the content of other antioxidants in the flame retardant composition of the present invention can be in a range that does not impair the effects of the present invention, and is 0.001 to 5 parts by mass with respect to 100 parts by mass of the flame retardant composition. Is preferable, and 0.01 to 1.0 part by mass is more preferable.
- nucleating agent examples include metal carboxylic acids such as sodium benzoate, aluminum 4-tert-butylbenzoate, sodium adipate, and disodium bicyclo [2.2.1] heptane-2,3-dicarboxylate.
- nucleating agents may be used alone or in combination of two or more.
- the content of the nucleating agent in the flame retardant composition of the present invention can be in a range that does not impair the effects of the present invention, and is preferably 0.001 to 5 parts by mass with respect to 100 parts by mass of the flame retardant composition. More preferred is 0.01 to 1.0 part by mass.
- lubricant examples include hydrocarbon lubricants such as low molecular wax, paraffin wax, polyethylene wax, chlorinated hydrocarbon, and fluorocarbon, natural wax lubricants such as carnauba wax and candeli wax, lauric acid, and stearic acid.
- hydrocarbon lubricants such as low molecular wax, paraffin wax, polyethylene wax, chlorinated hydrocarbon, and fluorocarbon
- natural wax lubricants such as carnauba wax and candeli wax, lauric acid, and stearic acid.
- Fatty acid lubricants such as higher fatty acids such as behenic acid, oxy fatty acids such as hydroxystearic acid, aliphatic amide compounds such as stearylamide, laurylamide, oleylamide, or methylenebisstearylamide, ethylenebisstearylamide Aliphatic amide-based lubricants such as alkylene bis aliphatic amide compounds, ester compounds of fatty acids and monohydric alcohols such as stearyl stearate, butyl stearate, distearyl phthalate, and glycerin tristearate , Ester compounds of fatty acids and polyhydric alcohols such as sorbitan tristearate, pentaerythritol tetrastearate, dipentaerythritol hexastearate, polyglycerin polyricinoleate, hydrogenated castor oil, dipentaerythritol adipic acid / stearic acid Fatty alcohol ester
- silicone oil-based lubricant examples include dimethyl silicone oil having a polysiloxane side chain and all terminal methyl groups (commercially available from Shin-Etsu Chemical Co., Ltd .; KF-96, KF-965, KF-968, etc.).
- Methylphenyl silicone oil in which part of the side chain of the polysiloxane is a phenyl group (commercially available from Shin-Etsu Chemical Co., Ltd .; KF-50, KF-53, KF-54, KF-56, etc.) Methylhydrogen silicone oil in which part of the side chain of the polysiloxane is hydrogen (commercially available from Shin-Etsu Chemical Co., Ltd .; KF-99, KF-9901, HMS-151, Gelest; HMS) -071, HMS-301, DMS-H21, etc.), and these copolymers. It is.
- an amine group modified with an organic group introduced into a part of these side chains and / or terminals (commercially available products include Shin-Etsu Chemical Co., Ltd .; KF-393 etc.), epoxy modified (as commercially available products) Manufactured by Shin-Etsu Chemical Co., Ltd .; X-22-343, X-22-2000, KF-101, KF-102, KF-1001, etc.), alicyclic epoxy modification, carboxyl modification (commercially available products are Shin-Etsu) Chemical Industry Co., Ltd .; X-22-3701E, etc.), carbinol modified (commercially available products include Shin-Etsu Chemical Co., Ltd .; X-22-4039, X-22-4015, etc.), mercapto Modification, polyether modification, long chain alkyl modification, fluoroalkyl modification, higher fatty acid ester modification, higher fatty acid amide modification, silanol modification, diol modification, phenol modification Lum
- silane coupling lubricant for example, as a silane coupling agent having an alkenyl group, vinyltrimethoxysilane (commercially available from Shin-Etsu Chemical Co., Ltd .; KBM-1003, Montive Performance Materials Japan GK) A-171, manufactured by Toray Dow Corning Co., Ltd .; Z-6300, manufactured by Asahi Kasei Wacker Silicone Co., Ltd .; GENIOSIL XL10, manufactured by Nimi Shoji Co., Ltd .; Manufactured by Shin-Etsu Chemical Co., Ltd .; KBE-1003, manufactured by Montive Performance Materials Japan GK; A-151, manufactured by Toray Dow Corning Co., Ltd .; Z-6519, manufactured by Asahi Kasei Wacker Silicone Co., Ltd .; GF56, manufactured by Nimi Shoji Co., Ltd .; examples include Silaace S220), vinyltriacetoxysilane (commercially available products include Asahi
- p-styryl trimethoxysilane (Shin-Etsu Chemical Co., Ltd. is commercially; KBM-1403, and the like).
- silane coupling agent having an acrylic group 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane (commercially available products include Shin-Etsu Chemical Co., Ltd .; KBM-5103, etc.), etc.
- silane coupling agent having a methacryl group 3-methacryloxypropylmethyldimethoxysilane (commercially available from Shin-Etsu Chemical Co., Ltd .; KBM-502, manufactured by Toray Dow Corning Co., Ltd .; Z-6033, etc.) 3-methacryloxypropyltrimethoxysilane (commercially available from Shin-Etsu Chemical Co., Ltd .; KBM-503, Montive Performance Materials Japan GK; A-174, Toray Dow Corning Co., Ltd.) Made by company; Z-6030, Asahi Kasei Ker Silicone Co., Ltd .; GENIOSIL GF31, manufactured by Nimi Shoji Co., Ltd .; Silaace S710, etc.), 3-methacryloxypropylmethyldiethoxysilane (commercially available from Shin-Etsu Chemical Co., Ltd .; KBE-502) 3-methacryloxypropyltriethoxysilane (manufactured by Shin-
- GENIOSIL GF-9 1, manufactured by Nimi Shoji Co., Ltd .; examples include Sila Ace S320), 3-aminopropyltrimethoxysilane (commercially available from Shin-Etsu Chemical Co., Ltd .; KBM-903, Montive Performance Materials Japan GK) A-1110, manufactured by Toray Dow Corning Co., Ltd .; Z-6610, manufactured by Nimi Shoji Co., Ltd .; and Silaace S360, etc.), 3-aminopropyltriethoxysilane (as a commercial product, Shin-Etsu Chemical Co., Ltd.
- Examples of commercially available products include KBM-9659 manufactured by Shin-Etsu Chemical Co., Ltd.), and 3-mercaptopropylmethyldimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd. as a commercial product) as a silane coupling agent having a mercapto group.
- KBM-802 manufactured by Toray Dow Corning Co., Ltd .; Z-6852 and the like
- 3-mercaptopropyltrimethoxysilane (commercially available from Shin-Etsu Chemical Co., Ltd .; KBM-803, Montive Performance Material) Made by Japan Limited; A- 189, manufactured by Toray Dow Corning Company; Z-6062, manufactured by Nimi Shoji Co., Ltd .; Silaace S810, etc.), 3-mercaptopropyltriethoxysilane (commercially available, Montive Performance Materials Japan GK)
- silane coupling agent having a ureido group 3-ureidopropyltrialkoxysilane (as a commercially available product, Shin-Etsu Chemical Co., Ltd.) can be used.
- lubricants may be used alone or in combination of two or more.
- the content of the lubricant in the flame retardant composition of the present invention can be in a range that does not impair the effects of the present invention, and is preferably 0.01 to 10 parts by weight, preferably 0.03 to 10 parts by weight with respect to 100 parts by weight of the resin. 3 parts by mass is more preferred.
- fatty acid of the fatty acid metal salt examples include capric acid, 2-ethylhexanoic acid, undecylic acid, lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, nonadecylic acid, arachidic acid, Saturated fatty acids such as heicosyl acid, behenic acid, tricosyl acid, lignoceric acid, serotic acid, montanic acid, melicic acid, 4-decenoic acid, 4-dodecenoic acid, palmitoleic acid, ⁇ -linolenic acid, linoleic acid, ⁇ -linolenic acid , Stearidonic acid, petroceric acid, oleic acid, elaidic acid, vaccenic acid, eicosapentaenoic acid, docosapentaenoic acid, docosahexaenoic
- Examples of the ultraviolet absorber include 2,4-dihydroxybenzophenone, 5,5′-methylenebis (2-hydroxy-4-methoxybenzophenone), 2-hydroxy-4-normal octoxybenzophenone, 2-hydroxy-4-methoxybenzophenone, Benzophenones such as 2-hydroxy-4-dodecyloxybenzophenone and 2,2′-dihydroxy-4-methoxybenzophenone, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5- tert-octylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) ) -5-Chlorobenzoto Azole, 2- (2-hydroxy-3,5-dicumylphenyl) benzotriazole, 2,2'-methylenebis (4-tert-octyl
- ultraviolet absorbers may be used alone or in combination of two or more.
- the content of the ultraviolet absorber in the flame retardant composition of the present invention can be in a range that does not impair the effects of the present invention, but is 0.001 to 5 parts by mass with respect to 100 parts by mass of the flame retardant composition. Preferably, 0.005 to 0.5 parts by mass is more preferable.
- Examples of the light stabilizer include 2,2,6,6-tetramethyl-4-piperidyl stearate, 1,2,2,6,6-pentamethyl-4-piperidyl stearate, 2,2,6,6 -Tetramethyl-4-piperidylbenzoate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2, 3,4-butanetetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, bis (2,2,6,6) -Tetramethyl-4-piperidyl) -di (tridecyl) -1,2,3,4-butanetetracarboxylate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) -di (tri Syl) -1,2,3,4-but
- the content of the light stabilizer in the flame retardant composition of the present invention can be in a range that does not impair the effects of the present invention, but is preferably 0.001 to 5 parts by mass with respect to 100 parts by mass of the flame retardant composition. 0.005 to 0.5 parts by mass is more preferable.
- the other flame retardants include, for example, chlorine-based flame retardants such as tris (chloropropyl) phosphate, tris (tribromoneopentyl) phosphate, brominated bisphenol A type epoxy resin, brominated phenol novolac Type epoxy resin, hexabromobenzene, pentabromotoluene, ethylenebis (pentabromophenyl), ethylenebistetrabromophthalimide, 1,2-dibromo-4- (1,2-dibromoethyl) cyclohexane, tetrabromocyclooctane, hexa Bromocyclododecane, bis (tribromophenoxy) ethane, brominated polyphenylene ether, brominated (poly) styrene, 2,4,6-tris (tribromophenoxy) -1,3,5-triazine, tribromophenylmaleimide, Ribromoph
- inorganic phosphorus flame retardants such as red phosphorus, aliphatic phosphate flame retardants such as trimethyl phosphate and triethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl Diphenyl phosphate, cresyl-2,6-dixylenyl phosphate, resorcinol bis (diphenyl phosphate), (1-methylethylidene) -4,1-phenylenetetraphenyldiphosphate, 1,3-phenylenetetrakis (2,6-dimethyl) Phenyl) phosphate, commercially available from ADEKA Corporation; ADK STAB FP-500, ADK STAB FP-600, ADK STAB FP-700, ADK STAB FP-800, ADK STAB PFR, and Daihachi Chemical Industry Co., Ltd .; DAI UARD-
- nitrogen flame retardants examples include melamine cyanurate.
- metal hydroxides examples include magnesium hydroxide and aluminum hydroxide.
- the content of the other flame retardant in the flame retardant composition of the present invention can be in a range that does not impair the effects of the present invention, and is preferably 1 to 400 parts by mass with respect to 100 parts by mass of the flame retardant composition, The amount is more preferably 3 to 200 parts by weight, and further preferably 5 to 100 parts by weight.
- plasticizer examples include, for example, epoxidized soybean oil, epoxidized linseed oil, epoxidized fatty acid octyl ester, and other epoxy-based, methacrylate-based, polycondensates of dicarboxylic acid and polyhydric alcohol, and polyvalent carboxylic acid.
- Polyesters such as polycondensates of polyhydric alcohols, polycondensates of dicarboxylic acids, polyhydric alcohols and alkylene glycols, polycondensates of dicarboxylic acids, polyhydric alcohols and arylene glycols, polycarboxylic acids and polycondensates
- Polyether condensates of polyhydric alcohols and alkylene glycols polyether ester systems such as polycondensates of polyhydric carboxylic acids and polyhydric alcohols and arylene glycols, aliphatic ester systems such as adipic acid esters and succinic acid esters, Phthalate ester, terephthalate ester, trimellitic acid ester, pyromellitic ester Esters, and aromatic ester such as benzoic acid esters.
- plasticizers may be used alone or in combination of two or more.
- the content of the plasticizer in the flame retardant composition of the present invention can be in a range that does not impair the effects of the present invention, but is 0.1 to 500 parts by mass with respect to 100 parts by mass of the flame retardant composition. It is preferably 1 to 100 parts by mass, more preferably 3 to 80 parts by mass.
- Examples of the filler include talc, mica, calcium carbonate, calcium oxide, calcium hydroxide, magnesium carbonate, magnesium hydroxide, magnesium oxide, magnesium sulfate, aluminum hydroxide, barium sulfate, glass powder, glass fiber, clay, and dolomite. , Mica, silica, alumina, potassium titanate whisker, wollastonite, fibrous magnesium oxysulfate, montmorillonite, etc., and appropriately select the particle diameter (in the fibrous form, the fiber diameter, fiber length and aspect ratio) Can be used. These fillers may be used alone or in combination of two or more.
- the content of the filler in the flame retardant composition of the present invention can be in a range that does not impair the effects of the present invention, but is 0.01 to 500 parts by mass with respect to 100 parts by mass of the flame retardant composition. It is preferably 1 to 100 parts by mass, more preferably 3 to 80 parts by mass.
- the metal of the fatty acid metal salt examples include alkali metals, magnesium, calcium, strontium, barium, titanium, manganese, iron, zinc, silicon, zirconium, yttrium, barium, and hafnium. Alkali metals such as potassium are preferred. These fatty acid metal salts may be used alone or in combination of two or more.
- the content of the fatty acid metal salt in the flame retardant composition of the present invention can be in a range that does not impair the effects of the present invention, and is 0.001 to 5 parts by mass with respect to 100 parts by mass of the flame retardant composition. Preferably, 0.05 to 3 parts by mass is more preferable.
- antistatic agent examples include cationic antistatic agents such as fatty acid quaternary ammonium ion salts and polyamine quaternary salts, higher alcohol phosphate ester salts, higher alcohol EO adducts, polyethylene glycol fatty acid esters, anionic type Anionic antistatic agents such as alkyl sulfonate, higher alcohol sulfate ester salt, higher alcohol ethylene oxide adduct sulfate ester, higher alcohol ethylene oxide adduct phosphate ester salt, polyhydric alcohol fatty acid ester, polyglycol phosphate ester, Examples thereof include nonionic antistatic agents such as polyoxyethylene alkyl allyl ether, and amphoteric antistatic agents such as amphoteric alkylbetaines such as alkyldimethylaminoacetic acid betaine and imidazoline type amphoteric activators.
- cationic antistatic agents such as fatty acid quaternary ammonium ion salts and polyamine
- antistatic agents may be used alone or in combination of two or more.
- the content of the antistatic agent in the flame retardant composition of the present invention can be in a range that does not impair the effects of the present invention, and is 0.01 to 20 parts by mass with respect to 100 parts by mass of the flame retardant composition. Preferably, 3 to 10 parts by mass is more preferable.
- pigments can also be used as the pigment, for example, Pigment Red 1, 2, 3, 9, 10, 17, 22, 23, 31, 38, 41, 48, 49, 88, 90, 97, 112. 119, 122, 123, 144, 149, 166, 168, 169, 170, 171, 177, 179, 180, 184, 185, 192, 200, 202, 209, 215, 216, 217, 220, 223, 224 226, 227, 228, 240, 254; Pigment Orange 13, 31, 34, 36, 38, 43, 46, 48, 49, 51, 52, 55, 59, 60, 61, 62, 64, 65, 71 Pigment Yellow 1, 3, 12, 13, 14, 16, 17, 20, 24, 55, 60, 73, 81, 83, 86, 93, 95, 97, 98, 1 0, 109, 110, 113, 114, 117, 120, 125, 126, 127, 129, 137, 138, 139, 147, 148, 150
- pigments may be used alone or in combination of two or more.
- the content of the pigment in the flame retardant composition of the present invention can be in a range that does not impair the effects of the present invention, but is preferably 0.0001 to 10 parts by mass with respect to 100 parts by mass of the flame retardant composition.
- dyes can also be used as the above dyes, for example, azo dyes, anthraquinone dyes, indigoid dyes, triarylmethane dyes, xanthene dyes, alizarin dyes, acridine dyes, stilbene dyes, thiazole dyes, naphthol dyes, quinoline dyes, Examples thereof include nitro dyes, indamine dyes, oxazine dyes, phthalocyanine dyes, cyanine dyes and the like. These dyes may be used alone or in combination of two or more.
- the content of the dye in the flame retardant composition of the present invention can be in a range that does not impair the effects of the present invention, and is preferably 0.0001 to 10 parts by mass with respect to 100 parts by mass of the flame retardant composition.
- the flame retardant resin composition means a composition containing at least one flame retardant composition and at least one resin.
- the flame retardant composition is preferably 10 to 400 parts by weight, more preferably 10 to 300 parts by weight, and still more preferably 10 to 80 parts by weight with respect to 100 parts by weight of the resin.
- the flame retardancy of the resin is improved by setting the flame retardant composition of the present invention to 10 parts by mass or more.
- the workability of resin is not impaired by setting the flame retardant composition of this invention to 400 mass parts or less.
- Examples of the resin used in the flame retardant resin composition of the present invention include polyolefin resins, polyester resins, vinyl resins, polycarbonate resins, acrylic resins, styrene resins, polyamide resins, polyphenylene oxide resins, There may be mentioned thermoplastic resins such as polyphenylene sulfide resins. These resins may be used alone or in combination of two or more. The resin may be alloyed.
- the resin has a melt flow rate (MFR) of 2.0 to 80 g / 10 min at a load of 2.16 kg and a temperature of 230 ° C. measured in accordance with JIS K7210 from the viewpoint of processability and flame retardancy. It is preferably 8.0 to 60 g / 10 min.
- polystyrene resin examples include polyethylene resins such as polyethylene, low density polyethylene, linear low density polyethylene, and high density polyethylene, polypropylene, homopolypropylene, random copolymer polypropylene, block copolymer polypropylene, impact copolymer polypropylene, and high impact copolymer.
- polyethylene resins such as polyethylene, low density polyethylene, linear low density polyethylene, and high density polyethylene
- polypropylene homopolypropylene, random copolymer polypropylene, block copolymer polypropylene, impact copolymer polypropylene, and high impact copolymer.
- Polypropylene resins such as polypropylene, isotactic polypropylene, syndiotactic polypropylene, hemiisotactic polypropylene and maleic anhydride modified polypropylene, stereoblock polypropylene, polybutene, cycloolefin polymer, poly-3-methyl-1-butene, poly ⁇ -Olephy such as -3-methyl-1-pentene and poly-4-methyl-1-pentene Polymers, ethylene / propylene block or random copolymer, ethylene - methyl methacrylate copolymer, ethylene - alpha-olefin copolymer such as vinyl acetate copolymer.
- polyester-based resin a divalent acid such as terephthalic acid as an acid component, or a derivative thereof having ester forming ability, a glycol having 2 to 10 carbon atoms as a glycol component, other divalent alcohols, or The saturated polyester resin obtained using those derivatives etc. which have ester formation ability are mentioned.
- a polyalkylene terephthalate resin is preferable in that it has an excellent balance of processability, mechanical properties, electrical properties, heat resistance, and the like.
- Specific examples of the polyalkylene terephthalate resin include polyethylene terephthalate resin, polybutylene terephthalate resin, and polyhexamethylene terephthalate resin.
- vinyl resin examples include vinyl monomers (eg, vinyl esters such as vinyl acetate; chlorine-containing vinyl monomers (eg, vinyl chloride); vinyl ketones; vinyl ethers; vinyl amines such as N-vinylcarbazole). And the like, or copolymers with other copolymerizable monomers.
- vinyl monomers eg, vinyl esters such as vinyl acetate; chlorine-containing vinyl monomers (eg, vinyl chloride); vinyl ketones; vinyl ethers; vinyl amines such as N-vinylcarbazole).
- vinyl resins for example, polyvinyl acetals such as polyvinyl alcohol, polyvinyl formal, and polyvinyl butyral, and ethylene-vinyl acetate copolymers
- polycarbonate-based resin examples include those obtained by reacting one or more bisphenols with phosgene or carbonic acid diester, or those obtained by reacting one or more bisphenols with diphenyl carbonate by a transesterification method.
- bisphenols include hydroquinone, 4,4-dihydroxyphenyl, bis- (4-hydroxyphenyl) -alkane, bis- (4-hydroxyphenyl) -cycloalkane, and bis- (4-hydroxyphenyl) -sulfide.
- polycarbonate-based resin a so-called polymer alloy obtained by mixing polycarbonate and another resin can also be used.
- polymer alloys include polycarbonate / ABS resin, polycarbonate / AS resin, polycarbonate / rubber polymer compound, polycarbonate / ABS resin / rubber polymer compound, polycarbonate / polyethylene terephthalate, polycarbonate / polybutylene terephthalate, Examples include polycarbonate / ASA resin and polycarbonate / AES resin.
- the proportion of the polycarbonate contained in these polymer alloys is preferably 50 to 98% by mass in the polymer alloy.
- acrylic resin examples include polymers mainly composed of (meth) acrylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. And may be a homopolymer of (meth) acrylic acid ester, and may be a copolymer of 50% by weight or more of methacrylic acid ester and 50% by weight or less of other monomers.
- Monomers other than (meth) acrylic acid esters include aromatic alkenyl compounds such as styrene, ⁇ -methylstyrene and vinyltoluene; alkenyl cyanide compounds such as acrylonitrile and methacrylonitrile; unsaturated compounds such as acrylic acid and methacrylic acid Carboxylic acid; maleic anhydride; monofunctional monomers such as N-substituted maleimide; polyunsaturated carboxylic acid esters of polyhydric alcohols such as ethylene glycol dimethacrylate, butanediol dimethacrylate, trimethylolpropane triacrylate; acrylic acid Alkenyl esters of unsaturated carboxylic acids such as allyl, allyl methacrylate, allyl cinnamate; polyalkenyl esters of polybasic acids such as diallyl phthalate, diallyl maleate, triallyl cyanurate, triallyl isocyanurate; Polyfunctional monomers such as aromatic
- styrenic resin examples include styrene monomers (styrene, vinyltoluene, etc.) or copolymers; styrene monomers and vinyl monomers [(meth) acrylic monomers (for example, ( (Meth) acrylonitrile, (meth) acrylic acid ester, (meth) acrylic acid, etc.), ⁇ , ⁇ -monoolefinic unsaturated carboxylic acid or acid anhydride or ester, etc. such as maleic anhydride] Examples thereof include a graft copolymer and a styrene block copolymer.
- polyamide resin examples include aliphatic polyamides such as polyamide 46, polyamide 6, polyamide 66, polyamide 610, polyamide 612, polyamide 11 and polyamide 12, and alicyclic diamines such as bis (aminocyclohexyl) C 1-3 alkanes.
- an aliphatic dicarboxylic acid such as C 8-14 alkanedicarboxylic acid; aromatic dicarboxylic acid (for example, terephthalic acid and / or isophthalic acid) and aliphatic diamine (for example, hexamethylenediamine, nona And polyamides obtained from aromatic and aliphatic dicarboxylic acids (for example, terephthalic acid and adipic acid) and aliphatic diamines (for example, hexamethylenediamine).
- aromatic dicarboxylic acid for example, terephthalic acid and / or isophthalic acid
- aliphatic diamine for example, hexamethylenediamine, nona And polyamides obtained from aromatic and aliphatic dicarboxylic acids (for example, terephthalic acid and adipic acid) and aliphatic diamines (for example, hexamethylenediamine).
- polyphenylene oxide resin examples include poly (2,6-dimethyl-1,4-phenylene) oxide, poly (2,5-dimethyl-1,4-phenylene) oxide, poly (2,5-diethyl-1, Poly (mono, di or tri C 1-6 alkyl-phenylene) oxide such as 4-phenylene) oxide, poly (mono or di C 6-20 aryl-phenylene) oxide, poly (mono C 1-6 alkyl-mono C) 6-20 aryl-phenylene) oxide and other homopolymers, random copolymers having 2,6-dimethyl-1,4-phenylene oxide units and 2,3,6-trimethyl-1,4-phenylene oxide units.
- examples thereof include a modified graft copolymer grafted with a saturated carboxylic acid or anhydride (such as (meth) acrylic acid or maleic anhydride).
- polyphenylene sulfide resin examples include homopolymers and copolymers having a phenylene sulfide skeleton — (Ar—S) — [wherein Ar represents a phenylene group].
- a phenylene group (—Ar—) Is, for example, a p-, m- or o-phenylene group, a substituted phenylene group (for example, an alkylphenylene group having a substituent such as a C 1-6 alkyl group, or an arylphenylene having a substituent such as a phenyl group) Group), —Ar—A 1 —Ar— [wherein Ar represents a phenylene group, A 1 represents a direct bond, O, CO, or SO 2 ].
- the method of blending the flame retardant composition of the present invention into the resin is not particularly limited, and a known method can be employed. Specific blending methods include a method of mixing with an ordinary blender or mixer, a method of melt-kneading with an extruder or the like, a method of mixing with a solvent and casting the solution.
- the molded product of the present invention is formed by molding the resin composition of the present invention.
- molding conditions which shape
- molding conditions are employable. Specific molding methods include extrusion molding, injection molding, stretched film molding, blow molding and the like, and these molding methods can be carried out under known molding conditions.
- the molded object obtained by shape molding the resin composition of this invention
- the thing of a sheet form, a film form, a special shape etc. are mentioned.
- the use of the obtained molded body is not particularly limited.
- automotive parts such as electronic parts, such as an electric wire, and a vehicle interior / exterior member.
- the flame retardant composition described in Table 1 or 2 is blended in an amount (part by mass) shown in Table 1 or 2 below with respect to 100.35 parts by mass of the polypropylene resin composition.
- the flame retardant resin compositions of Examples 1 to 28 were added.
- As the component (B) NA-287 manufactured by BASF was used.
- Phosphorous antioxidant 0.14 parts by mass
- the comparative flame retardant composition shown in Table 3 or the following comparative flame retardant composition is added in the amount (parts by mass) shown in Table 3 or 4 below.
- a comparative flame retardant resin composition was obtained.
- the component (B) NA-287 manufactured by BASF was used.
- the obtained test piece was subjected to a 20 mm vertical combustion test (UL-94V) in accordance with ISO1210. Specifically, the test piece was kept vertical, the flame of the burner was removed after indirect flame for 10 seconds at the lower end, and the time when the fire that ignited the test piece disappeared was measured. Next, at the same time when the fire was extinguished, the second flame contact was performed for 10 seconds, and the time when the ignited fire extinguished was measured in the same manner as the first time. Moreover, it was also evaluated at the same time whether or not the cotton under the test piece was ignited by the falling fire type.
- Combustion ranks were assigned according to the UL-94V standard from the first and second combustion times, the presence or absence of cotton ignition, and the like.
- the flame rank is V-0, and the flame retardance decreases as V-1 and V-2 are reached.
- the evaluation results are shown in Tables 1 to 4 below.
- the flame retardant composition of the present invention containing an amine phosphate and a zinc salt of glycerin exhibits excellent flame retardancy.
- Comparative Examples 1 to 14 not containing a zinc salt of glycerol, Comparative Examples 15 and 16 using a flame retardant different from the amine phosphate salt, and a calcium salt of glycerol instead of the zinc salt of glycerol were used. It can be seen that the flame retardant composition of Comparative Example 17 is inferior in flame retardancy.
- the flame retardant composition of the present invention can improve the flame retardant performance of a resin even with a low addition amount, and can exhibit excellent flame retardant performance especially with a polypropylene resin.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Fireproofing Substances (AREA)
Abstract
Description
(A)リン酸アミン塩化合物と(B)グリセリンの亜鉛塩とを含有する難燃剤組成物。
〔発明2〕
(A)成分が、ピロリン酸アミン塩を必須成分とし、かつ、(A)成分と(B)成分との質量比が、前者:後者で、99.99:0.01~60:40である発明1の難燃剤組成物。
〔発明3〕
さらに、(C)酸化亜鉛を前記(A)成分と(B)成分との合計100質量部に対して0.01~10質量部含有する発明1又は2の難燃剤組成物。
〔発明4〕
さらに、(D)ハイドロタルサイトを、前記(A)成分と(B)成分との合計100質量部に対して0.01~5質量部含有する発明1~3の何れか1の難燃剤組成物。
〔発明5〕
樹脂100質量部に対して発明1~4何れか1の難燃剤組成物を1~100質量部含有する難燃性樹脂組成物。
〔発明6〕
発明5の難燃性樹脂組成物を成形してなる成形品。
〔発明7〕
下記(A)成分及び下記(B)成分を含有する組成物を、樹脂と混合する、樹脂の難燃化方法。
(A)成分:リン酸アミン塩
(B)成分:グリセリンの亜鉛塩
〔発明8〕
下記(A)成分及び下記(B)成分を含有する組成物の難燃剤としての使用。
(A)成分:リン酸アミン塩
(B)成分:グリセリンの亜鉛塩
本発明の難燃剤組成物は、(A)リン酸アミン塩と(B)グリセリンの亜鉛塩とを必須成分とする。
(A)成分
本発明の難燃剤組成物は(A)リン酸アミン塩を含有する。
本発明においてリン酸アミン塩とは、リン酸とアミンとの塩を少なくとも1種類以上含有する組成物を意味する。
リン酸アミン塩における「リン酸」とは、モノリン酸及びポリリン酸の総称である。モノリン酸としては、例えば、オルソリン酸(H3PO4)が挙げられる。ポリリン酸としては、二リン酸であるピロリン酸(H4P2O7)、三リン酸であるトリリン酸(H5P3O10)や縮合リン酸であるメタリン酸(HPO3)k(kは4~20の正の整数を表す。)等が挙げられる。
リン酸アミン塩におけるアミンとしては、例えば、アンモニア、アルキルアミン、芳香族アミン及び複素環式アミン等が挙げられる。アミンは水酸基を有する場合がある。
例えば、リン酸がオルソリン酸及びピロリン酸であり、アミンがピペラジン及びメラミンの場合、リン酸アミン塩としては、オルソリン酸ピペラジン、ピロリン酸ピペラジン、オルソリン酸メラミン、ピロリン酸メラミンのほか、ピロリン酸とピペラジン及びメラミンとの複塩や、オルソリン酸とピペラジン及びメラミンとの複塩等が挙げられる。
本発明の難燃剤組成物における全リン酸アミン塩におけるリン酸に占めるピロリン酸の比率及びオルソリン酸の比率は、イオンクロマトグラフィー等により求めることができる。
・A-1:ピロリン酸ピペラジン塩(ピロリン酸とピペラジンとのモル比が1:1)とピロリン酸メラミン塩(ピロリン酸とメラミンのモル比が1:2)との混合物であり、前者と後者との質量比が90:10
・A-2:前記A-1の混合物において、前者と後者との質量比を80:20に変更した組成物
・A-3:前記A-1の混合物において、前者と後者との質量比を70:30に変更した組成物
・A-4:前記A-1の混合物において、前者と後者との質量比を60:40に変更した組成物
・A-5:前記A-1の混合物において、前者と後者との質量比を50:50に変更した組成物
・A-6:前記A-1の混合物において、前者と後者との質量比を40:60に変更した組成物
・A-7:前記A-1の混合物において、前者と後者との質量比を30:70に変更した組成物
・A-8:前記A-1の混合物において、前者と後者との質量比を20:80に変更した組成物
・A-9:前記A-1の混合物において、前者と後者との質量比を10:90に変更した組成物
・A-11:前記A-10の混合物において、前者と後者との質量比を80:20に変更した組成物
・A-12:前記A-10の混合物において、前者と後者との質量比を70:30に変更した組成物
・A-13:前記A-10の混合物において、前者と後者との質量比を60:40に変更した組成物
・A-14:前記A-10の混合物において、前者と後者との質量比を50:50に変更した組成物
・A-15:前記A-10の混合物において、前者と後者との質量比を40:60に変更した組成物
・A-16:前記A-10の混合物において、前者と後者との質量比を30:70に変更した組成物
・A-17:前記A-10の混合物において、前者と後者との質量比を20:80に変更した組成物
・A-18:前記A-10の混合物において、前者と後者との質量比を10:90に変更した組成物
・A-20:前記A-19の混合物において、前者と後者との質量比を80:20に変更した組成物
・A-21:前記A-19の混合物において、前者と後者との質量比を70:30に変更した組成物
・A-22:前記A-19の混合物において、前者と後者との質量比を60:40に変更した組成物
・A-23:前記A-19の混合物において、前者と後者との質量比を50:50に変更した組成物
・A-24:前記A-19の混合物において、前者と後者との質量比を40:60に変更した組成物
・A-25:前記A-19の混合物において、前者と後者との質量比を30:70に変更した組成物
・A-26:前記A-19の混合物において、前者と後者との質量比を20:80に変更した組成物
・A-27:前記A-19の混合物において、前者と後者との質量比を10:90に変更した組成物
・A-29:前記A-28の混合物において、前者と後者との質量比を80:20に変更した組成物
・A-30:前記A-28の混合物において、前者と後者との質量比を70:30に変更した組成物
・A-31:前記A-28の混合物において、前者と後者との質量比を60:40に変更した組成物
・A-32:前記A-28の混合物において、前者と後者との質量比を50:50に変更した組成物
・A-33:前記A-28の混合物において、前者と後者との質量比を40:60に変更した組成物
・A-34:前記A-28の混合物において、前者と後者との質量比を30:70に変更した組成物
・A-35:前記A-28の混合物において、前者と後者との質量比を20:80に変更した組成物
・A-36:前記A-28の混合物において、前者と後者との質量比を10:90に変更した組成物
本発明の難燃剤組成物は(B)グリセリンの亜鉛塩を含有する。
本発明においてグリセリンの亜鉛塩とは、グリセリンと亜鉛との塩である。グリセリンの亜鉛塩は、グリセリンと亜鉛とのモル比が1:1の単量体である場合があり、グリセリンと亜鉛とのモル比が1:2や2:1などの多量体である場合がある。(B)グリセリンの亜鉛塩は、例えば、グリセリンと酸化亜鉛又は水酸化亜鉛との脱水反応により容易に製造することができるが、製造方法は特に限定されない。また、粒径、結晶形あるいは結晶水の有無は特に限定されない。(B)グリセリンの亜鉛塩の具体的としては、例えば、CAS登録番号の16754-68-0、87189-25-1、230956-34-0、142227-07-4等が挙げられる。グリセリンの亜鉛塩としては市販品を用いることができる。グリセリンの亜鉛塩の市販品としては、例えば、BASF社のIrgastab NA-287、Unichema Prifer 3881等が挙げられ、好適に使用できる。これらグリセリンの亜鉛塩は単独で用いる場合があり、2種類以上を併用して用いる場合がある。
No.2:前記A-1と前記(B)を質量比99:1で混合した難燃剤組成物
No.3:前記A-1と前記(B)を質量比98:2で混合した難燃剤組成物
No.4:前記A-1と前記(B)を質量比95:5で混合した難燃剤組成物
No.5:前記A-1と前記(B)を質量比93:7で混合した難燃剤組成物
No.6:前記A-1と前記(B)を質量比90:10で混合した難燃剤組成物
No.7:前記A-1と前記(B)を質量比80:20で混合した難燃剤組成物
No.9:前記A-3と前記(B)を質量比95:5で混合した難燃剤組成物
No.10:前記A-3と前記(B)を質量比93:7で混合した難燃剤組成物
No.11:前記A-3と前記(B)を質量比90:10で混合した難燃剤組成物
No.12:前記A-3と前記(B)を質量比80:20で混合した難燃剤組成物
No.14:前記A-4と前記(B)を質量比99:1で混合した難燃剤組成物
No.15:前記A-4と前記(B)を質量比98:2で混合した難燃剤組成物
No.16:前記A-4と前記(B)を質量比95:5で混合した難燃剤組成物
No.17:前記A-4と前記(B)を質量比93:7で混合した難燃剤組成物
No.18:前記A-4と前記(B)を質量比90:10で混合した難燃剤組成物
No.19:前記A-4と前記(B)を質量比80:20で混合した難燃剤組成物
No.21:前記A-8と前記(B)を質量比99:1で混合した難燃剤組成物
No.22:前記A-8と前記(B)を質量比98:2で混合した難燃剤組成物
No.23:前記A-8と前記(B)を質量比95:5で混合した難燃剤組成物
No.24:前記A-8と前記(B)を質量比93:7で混合した難燃剤組成物
No.25:前記A-8と前記(B)を質量比90:10で混合した難燃剤組成物
No.26:前記A-8と前記(B)を質量比80:20で混合した難燃剤組成物
No.28:前記A-11と前記(B)を質量比80:20で混合した難燃剤組成物
No.29:前記A-11と前記(B)を質量比50:50で混合した難燃剤組成物
No.31:前記A-23と前記(B)を質量比93:7で混合した難燃剤組成物
No.33:前記A-36と前記(B)を質量比93:7で混合した難燃剤組成物
No.34:前記A-36と前記(B)を質量比80:20で混合した難燃剤組成物
No.35:前記A-36と前記(B)を質量比60:40で混合した難燃剤組成物
本発明の難燃剤組成物は、さらに、(C)酸化亜鉛を含有することが好ましい。酸化亜鉛は未処理である場合があり、表面処理されている場合がある。酸化亜鉛としては市販品を使用することができる。酸化亜鉛の市販品としては、例えば、三井金属鉱業株式会社製;酸化亜鉛1種、三井金属鉱業株式会社製;部分被膜型酸化亜鉛、堺化学工業株式会社製;ナノファイン50(平均粒径0.02μmの超微粒子酸化亜鉛)、ナノファインK(平均粒径0.02μmの珪酸亜鉛被覆した超微粒子酸化亜鉛)等が挙げられる。この中でも三井金属鉱業株式会社製;酸化亜鉛1種が好適に使用できる。これら酸化亜鉛は単独で用いる場合があり、2種類以上を併用して用いる場合がある。
本発明の難燃剤組成物は、さらに、(D)ハイドロタルサイトを含有することが好ましい。
ハイドロタルサイトは、例えば、天然物や合成物として知られる、マグネシウム、アルミニウム、水酸基、炭酸基及び任意の結晶水からなる複合塩化合物である。本発明の難燃剤組成物においては、マグネシウム又はアルミニウムの一部をアルカリ金属や亜鉛等他の金属で置換したものや、水酸基、炭酸基を他のアニオン基で置換したもの用いることができる。また、ハイドロタルサイトは、結晶水を脱水したものである場合があり、ステアリン酸等の高級脂肪酸、オレイン酸アルカリ金属塩等の高級脂肪酸金属塩、ドデシルベンゼンスルホン酸アルカリ金属塩等の有機スルホン酸金属塩、高級脂肪酸アミド、高級脂肪酸エステル又はワックス等で被覆されたものである場合がある。ハイドロタルサイトは、さらに結晶構造、結晶粒子等に制限されることなく使用することができる。本発明の難燃剤組成物においては、公知のハイドロタルサイトを特に制限なく使用することができる。また、本発明の難燃剤組成物においては、市販されているハイドロタルサイトを使用することができる。ハイドロタルサイトの市販品としては協和化学工業株式会社製;DHT-4A、アルカマイザ-1、アルカマイザ-2、アルカマイザー4、アルカマイザー7、HT-1、HT-7、HT-P、戸田工業株式会社製;NAOX-19、NAOX-19T、NAOX-33、NAOX-54、NAOX-55、NAOX-56、NAOX-57、NAOX-71、NAOX-72、NAOX-81、NAOX-91、OPTIMA-LSA、OPTIMA-XT、MAGGOLD等が挙げられ、これらの中でも協和化学工業製DHT-4Aが好適に使用できる。これらハイドロタルサイトは1種を単独で用いる場合があり、2種以上を併用して用いる場合がある。
これらフェノール系酸化防止剤は1種を単独で用いる場合があり、2種以上を併用して用いる場合がある。
本発明の難燃剤組成物におけるフェノール系酸化防止剤の含有量は、本発明の効果を損ねない範囲とすることができるが、難燃剤組成物100質量部に対して、0.001~5質量部が好ましく、0.01~1.0質量部がより好ましい。
これらホスファイト系酸化防止剤は1種を単独で用いる場合があり、2種以上を併用して用いる場合がある。
本発明の難燃剤組成物におけるホスファイト系酸化防止剤の含有量は、本発明の効果を損ねない範囲とすることができ、難燃剤組成物100質量部に対して、0.001~5質量部が好ましく、0.01~1.0質量部がより好ましい。
これらチオエーテル系酸化防止剤は1種を単独で用いる場合があり、2種以上を併用して用いる場合がある。
本発明の難燃剤組成物におけるチオエーテル系酸化防止剤の含有量は、本発明の効果を損ねない範囲とすることができ、難燃剤組成物100質量部に対して、0.001~5質量部が好ましく、0.01~1.0質量部がより好ましい。
これらその他の酸化防止剤は1種を単独で用いる場合があり、2種以上を併用して用いる場合がある。
本発明の難燃剤組成物におけるその他の酸化防止剤の含有量は、本発明の効果を損ねない範囲とすることができ、難燃剤組成物100質量部に対して、0.001~5質量部が好ましく、0.01~1.0質量部がより好ましい。
これら核剤は1種を単独で用いる場合があり、2種以上を併用して用いる場合がある。
本発明の難燃剤組成物における核剤の含有量は、本発明の効果を損ねない範囲とすることができ、難燃剤組成物100質量部に対して、0.001~5質量部が好ましく、0.01~1.0質量部がより好ましい。
これら滑剤は1種を単独で用いる場合があり、2種以上を併用して用いる場合がある。
本発明の難燃剤組成物における滑剤の含有量は、本発明の効果を損ねない範囲とすることができ、樹脂100質量部に対して、0.01~10質量部が好ましく、0.03~3質量部がより好ましい。
これら紫外線吸収剤は1種を単独で用いる場合があり、2種以上を併用して用いる場合がある。
本発明の難燃剤組成物における紫外線吸収剤の含有量は、本発明の効果を損ねない範囲とすることができるが、難燃剤組成物100質量部に対して、0.001~5質量部が好ましく、0.005~0.5質量部がより好ましい。
これら光安定剤は1種を単独で用いる場合があり、2種以上を併用して用いる場合がある。
本発明の難燃剤組成物における光安定剤の含有量は、本発明の効果を損ねない範囲とすることができるが、難燃剤組成物100質量部に対して、0.001~5質量部好ましく、0.005~0.5質量部がより好ましい。
本発明の難燃剤組成物におけるその他の難燃剤の含有量は、本発明の効果を損ねない範囲とすることができ、難燃剤組成物100質量部に対して、1~400質量部が好ましく、3~200質量部がより好ましく、5~100質量部がさらに好ましい。
これら可塑剤は1種を単独で用いる場合があり、2種以上を併用して用いる場合がある。
本発明の難燃性組成物における可塑剤の含有量は、本発明の効果を損ねない範囲とすることができるが、難燃剤組成物100質量部に対して、0.1~500質量部が好ましく、1~100質量部がより好ましく、3~80質量部がさらに好ましい。
これら充填剤は1種を単独で用いる場合があり、2種以上を併用して用いる場合がある。
本発明の難燃性組成物における充填剤の含有量は、本発明の効果を損ねない範囲とすることができるが、難燃剤組成物100質量部に対して、0.01~500質量部が好ましく、1~100質量部がより好ましく、3~80質量部がさらに好ましい。
これら脂肪酸金属塩は1種を単独で用いる場合があり、2種以上を併用して用い場合がある。
本発明の難燃性組成物における脂肪酸金属塩の含有量は、本発明の効果を損ねない範囲とすることができ、難燃剤組成物100質量部に対して、0.001~5質量部が好ましく、0.05~3質量部がより好ましい。
これら帯電防止剤は1種を単独で用いる場合があり、2種以上を併用して用いる場合がある。
本発明の難燃性組成物における帯電防止剤の含有量は、本発明の効果を損ねない範囲とすることができ、難燃剤組成物100質量部に対して、0.01~20質量部が好ましく、3~10質量部がより好ましい。
これら顔料は1種を単独で用いる場合があり、2種以上を併用して用いる場合がある。
本発明の難燃性組成物における顔料の含有量は、本発明の効果を損ねない範囲とすることができるが、難燃剤組成物100質量部に対して0.0001~10質量部が好ましい。
これら染料は1種を単独で用いる場合があり、2種以上を併用して用いる場合がある。
本発明の難燃性組成物における染料の含有量は、本発明の効果を損ねない範囲とすることができ、難燃剤組成物100質量部に対して、0.0001~10質量部が好ましい。
本発明において難燃性樹脂組成物とは、前記難燃剤組成物を少なくとも1種以上と樹脂を少なくとも1種以上含有する組成物を意味する。
前記ポリアミド系樹脂としては、ポリアミド46、ポリアミド6、ポリアミド66、ポリアミド610、ポリアミド612、ポリアミド11、ポリアミド12等の脂肪族ポリアミド;ビス(アミノシクロヘキシル)C1-3アルカン類等の脂環族ジアミンとC8-14アルカンジカルボン酸等の脂肪族ジカルボン酸とから得られる脂環族ポリアミド;芳香族ジカルボン酸(例えば、テレフタル酸及び/又はイソフタル酸)と脂肪族ジアミン(例えば、ヘキサメチレンジアミン、ノナメチレンジアミン等)とから得られるポリアミド;芳香族及び脂肪族ジカルボン酸(例えば、テレフタル酸とアジピン酸)と脂肪族ジアミン(例えば、ヘキサメチレンジアミン)とから得られるポリアミド等が挙げられる。
得られた成形体の用途は特に限定されないが、例えば、食品容器、電子部品、自動車部品、医療材料、フィルム・シート材料、繊維素材、光学素材、塗料用樹脂、インク用樹脂、トナー用樹脂、接着剤用樹脂等が挙げられる。この中でも特に、電線等の電子部品や自動車内外装部材等の自動車部品に好適に用いられる。
・実施例1~28
ポリプロピレン(JIS K7210に準拠して測定された、荷重2.16kg、230℃におけるメルトフローレート=8g/10min)100質量部に、ステアリン酸カルシウム(高級脂肪酸金属塩)0.07質量部、テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオン酸メチル]メタン(フェノール系酸化防止剤)0.14質量部、トリス(2,4-ジ-第三ブチルフェニル)ホスファイト(ホスファイト系酸化防止剤)0.14質量部を配合し、ヘンシェルミキサーにて予備混合してポリプロピレン樹脂組成物を得た。得られたポリプロピレン樹脂組成物に対して、表1又は2に記載の難燃剤組成物をそれぞれポリプロピレン樹脂組成物100.35質量部に対して下記表1又は2に示す配合量(質量部)で添加し、実施例1~28の難燃性樹脂組成物とした。なお、(B)成分としては、BASF社製 NA-287を用いた。
ポリプロピレン(JIS K7210に準拠して測定された、荷重2.16kg、230℃におけるメルトフローレート=8g/10min)100質量部に、ステアリン酸カルシウム(高級脂肪酸金属塩)0.07質量部、テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオン酸メチル]メタン(フェノール系酸化防止剤)0.14質量部、トリス(2,4-ジ-第三ブチルフェニル)ホスファイト(リン系酸化防止剤)0.14質量部を配合し、ヘンシェルミキサーにて予備混合してポリプロピレン樹脂組成物を得た。得られたポリプロピレン樹脂組成物100.35質量部に対して、表3に示す比較難燃性組成物又は下記の比較難燃剤組成物を下表3又は4に示す配合量(質量部)で添加し、比較難燃性樹脂組成物を得た。なお、(B)成分としては、BASF社製 NA-287を用いた。
・トリキシレニルホスフェート(リン酸エステル化合物) 90質量部
・グリセリンの亜鉛塩(BASF社製 NA-287) 10質量部
〔比較難燃剤組成物-2〕
・トリス(トリブロモネオペンチルホスフェート)(ハロゲン含有リン酸エステル化合物) 95質量部
・グリセリンの亜鉛塩(BASF社製 NA-287) 5質量部
〔比較難燃剤組成物-3〕
・ポリリン酸ピペラジン塩 90質量部
・グリセリンのカルシウム塩 10質量部
得られた難燃性樹脂組成物及び比較難燃性樹脂組成物を二軸押出成形機(株式会社日本製鋼所製;TEX-30α)を用いて、シリンダー温度を220~250℃にして、スクリュー速度150rpmの条件で溶融混練した。ダイスから吐出されたストランドを冷却バスにより冷却し、ペレタイザーにて切断することにより、難燃性樹脂組成物のペレットを作製した。
得られた難燃性樹脂組成物のペレットを(日精樹脂工業社製;NEX-80)を用いてスクリュー設定温度210℃、金型温度40℃の条件で射出成形を行い、長さ127mm、幅12.7mm、厚さ1.6mmの難燃性評価用試験片を得た。
得られた試験片をISO1210に準拠し20mm垂直燃焼試験(UL-94V)を行なった。具体的には試験片を垂直に保ち、下端にバーナーの火を10秒間接炎させた後で炎を取り除き、試験片に着火した火が消える時間を測定した。次に、火が消えると同時に2回目の接炎を10秒間行い、1回目と同様にして着火した火が消える時間を測定した。また、落下する火種により試験片の下の綿が着火するか否かについても同時に評価した。1回目と2回目の燃焼時間、綿着火の有無等からUL-94V規格にしたがって燃焼ランクをつけた。燃焼ランクはV-0が最高のものであり、V-1、V-2となるにしたがって難燃性は低下する。評価結果を下記表1~4に記す。
Claims (8)
- (A)リン酸アミン塩と(B)グリセリンの亜鉛塩とを含有する難燃剤組成物。
- (A)成分が、ピロリン酸アミン塩を必須成分とし、かつ、
(A)成分と(B)成分との質量比が、前者:後者で、99.99:0.01~60:40である請求項1記載の難燃剤組成物。 - さらに、(C)酸化亜鉛を前記(A)成分と前記(B)成分との合計100質量部に対して0.01~10質量部含有する請求項1又は2記載の難燃剤組成物。
- さらに、(D)ハイドロタルサイトを、前記(A)成分と前記(B)成分との合計100質量部に対して0.01~5質量部含有する請求項1~3の何れか1項に記載の難燃剤組成物。
- 樹脂100質量部に対して請求項1~4の何れか1項に記載の難燃剤組成物を10~400質量部含有する難燃性樹脂組成物。
- 請求項5記載の難燃性樹脂組成物を成形してなる成形品。
- 下記(A)成分及び下記(B)成分を含有する組成物を、樹脂と混合する、樹脂の難燃化方法。
(A)成分:リン酸アミン塩
(B)成分:グリセリンの亜鉛塩 - 下記(A)成分及び下記(B)成分を含有する組成物の難燃剤としての使用。
(A)成分:リン酸アミン塩
(B)成分:グリセリンの亜鉛塩
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019519595A JP7170632B2 (ja) | 2017-05-25 | 2018-05-15 | 難燃剤組成物及びそれを含有する難燃性樹脂組成物 |
US16/498,510 US11292892B2 (en) | 2017-05-25 | 2018-05-15 | Flame retardant composition and flame retardant resin composition containing same |
CN201880023945.1A CN110582553B (zh) | 2017-05-25 | 2018-05-15 | 阻燃剂组合物及含有其的阻燃性树脂组合物 |
EP18806209.5A EP3633011B1 (en) | 2017-05-25 | 2018-05-15 | Flame retardant composition and flame retardant resin composition containing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-103364 | 2017-05-25 | ||
JP2017103364 | 2017-05-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018216558A1 true WO2018216558A1 (ja) | 2018-11-29 |
Family
ID=64396407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/018820 WO2018216558A1 (ja) | 2017-05-25 | 2018-05-15 | 難燃剤組成物及びそれを含有する難燃性樹脂組成物 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11292892B2 (ja) |
EP (1) | EP3633011B1 (ja) |
JP (1) | JP7170632B2 (ja) |
CN (1) | CN110582553B (ja) |
TW (1) | TWI771421B (ja) |
WO (1) | WO2018216558A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2022234688A1 (ja) * | 2021-05-06 | 2022-11-10 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117534915B (zh) * | 2024-01-09 | 2024-03-22 | 广东电缆厂有限公司 | 一种无卤低烟阻燃电缆护套及其制备方法和包含该护套的电缆 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07286104A (ja) * | 1994-04-15 | 1995-10-31 | Asahi Denka Kogyo Kk | 結晶性合成樹脂組成物 |
JPH07304896A (ja) | 1994-05-13 | 1995-11-21 | Asahi Denka Kogyo Kk | 難燃性合成樹脂組成物 |
JPH07331006A (ja) * | 1994-06-07 | 1995-12-19 | Asahi Denka Kogyo Kk | ハロゲン含有樹脂組成物 |
WO2010138330A2 (en) | 2009-05-26 | 2010-12-02 | Basf Performance Products Llc | Scratch resistant polypropylene |
WO2012043219A1 (ja) * | 2010-09-28 | 2012-04-05 | 東レ株式会社 | 熱可塑性樹脂組成物およびそれからなる成形品 |
US20170342239A1 (en) | 2015-01-08 | 2017-11-30 | Adeka Corporation | Flame retardant composition and flame-retardant synthetic resin composition |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5461952B2 (ja) * | 2009-10-23 | 2014-04-02 | 株式会社Adeka | ポリオレフィン系樹脂組成物 |
DE102013005307A1 (de) | 2013-03-25 | 2014-09-25 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verwendung von organischen Oxyimiden als Flammschutzmittel für Kunststoffe sowie flammgeschützte Kunststoffzusammensetzung und hieraus hergestelltem Formteil |
JP6598768B2 (ja) * | 2013-09-27 | 2019-10-30 | ビーエーエスエフ ソシエタス・ヨーロピア | 建築材料用ポリオレフィン組成物 |
DE102014218811A1 (de) | 2014-09-18 | 2016-03-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verwendung von phosphorhaltigen organischen Oxyimiden als Flammschutzmittel, Radikalgeneratoren und/oder als Stabilisatoren für Kunststoffe, flammgeschützte Kunststoffzusammensetzung, Verfahren zu deren Herstellung sowie Formteile, Lacke und Beschichtungen |
EP3564299B1 (en) | 2015-07-20 | 2023-09-06 | Basf Se | Flame retardant polyolefin articles |
-
2018
- 2018-05-15 WO PCT/JP2018/018820 patent/WO2018216558A1/ja active Application Filing
- 2018-05-15 US US16/498,510 patent/US11292892B2/en active Active
- 2018-05-15 EP EP18806209.5A patent/EP3633011B1/en active Active
- 2018-05-15 CN CN201880023945.1A patent/CN110582553B/zh active Active
- 2018-05-15 JP JP2019519595A patent/JP7170632B2/ja active Active
- 2018-05-21 TW TW107117205A patent/TWI771421B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07286104A (ja) * | 1994-04-15 | 1995-10-31 | Asahi Denka Kogyo Kk | 結晶性合成樹脂組成物 |
JPH07304896A (ja) | 1994-05-13 | 1995-11-21 | Asahi Denka Kogyo Kk | 難燃性合成樹脂組成物 |
JPH07331006A (ja) * | 1994-06-07 | 1995-12-19 | Asahi Denka Kogyo Kk | ハロゲン含有樹脂組成物 |
WO2010138330A2 (en) | 2009-05-26 | 2010-12-02 | Basf Performance Products Llc | Scratch resistant polypropylene |
WO2012043219A1 (ja) * | 2010-09-28 | 2012-04-05 | 東レ株式会社 | 熱可塑性樹脂組成物およびそれからなる成形品 |
US20170342239A1 (en) | 2015-01-08 | 2017-11-30 | Adeka Corporation | Flame retardant composition and flame-retardant synthetic resin composition |
Non-Patent Citations (2)
Title |
---|
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 16754-68-0 |
See also references of EP3633011A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2022234688A1 (ja) * | 2021-05-06 | 2022-11-10 |
Also Published As
Publication number | Publication date |
---|---|
EP3633011A1 (en) | 2020-04-08 |
EP3633011A4 (en) | 2021-03-03 |
US11292892B2 (en) | 2022-04-05 |
TW201903134A (zh) | 2019-01-16 |
JPWO2018216558A1 (ja) | 2020-05-21 |
US20200048433A1 (en) | 2020-02-13 |
CN110582553B (zh) | 2021-10-15 |
TWI771421B (zh) | 2022-07-21 |
JP7170632B2 (ja) | 2022-11-14 |
EP3633011B1 (en) | 2021-12-15 |
CN110582553A (zh) | 2019-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11186777B2 (en) | Flame retardant composition and flame-retardant resin composition containing same | |
KR102573160B1 (ko) | 조성물 및 난연성 수지 조성물 | |
CN110869447B (zh) | 组合物及阻燃性树脂组合物 | |
JP7158389B2 (ja) | 組成物及び難燃性樹脂組成物 | |
EP3683288B1 (en) | Composition and flame retardant resin composition | |
JP7170632B2 (ja) | 難燃剤組成物及びそれを含有する難燃性樹脂組成物 | |
WO2022224809A1 (ja) | 難燃剤組成物、難燃性樹脂組成物、およびその成形品 | |
WO2023199865A1 (ja) | 難燃剤組成物、難燃性樹脂組成物および成形品 | |
WO2022215660A1 (ja) | 機械物性付与剤組成物、樹脂組成物および成形品 | |
CN115175965A (zh) | 阻燃剂组合物、阻燃性合成树脂组合物和成型体 | |
WO2019117049A1 (ja) | 組成物及び難燃性樹脂組成物 | |
WO2019065614A1 (ja) | 組成物、組成物を用いた難燃剤及び難燃性樹脂組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18806209 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019519595 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018806209 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2018806209 Country of ref document: EP Effective date: 20200102 |