WO2018216497A1 - 管用ねじ継手及び管用ねじ継手の製造方法 - Google Patents
管用ねじ継手及び管用ねじ継手の製造方法 Download PDFInfo
- Publication number
- WO2018216497A1 WO2018216497A1 PCT/JP2018/018221 JP2018018221W WO2018216497A1 WO 2018216497 A1 WO2018216497 A1 WO 2018216497A1 JP 2018018221 W JP2018018221 W JP 2018018221W WO 2018216497 A1 WO2018216497 A1 WO 2018216497A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plating layer
- alloy plating
- pipes
- threaded joint
- box
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 238000007747 plating Methods 0.000 claims abstract description 320
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 305
- 239000000956 alloy Substances 0.000 claims abstract description 305
- 239000007787 solid Substances 0.000 claims abstract description 166
- 229910007567 Zn-Ni Inorganic materials 0.000 claims abstract description 158
- 229910007614 Zn—Ni Inorganic materials 0.000 claims abstract description 158
- 230000001050 lubricating effect Effects 0.000 claims abstract description 149
- 229910020994 Sn-Zn Inorganic materials 0.000 claims abstract description 137
- 229910009069 Sn—Zn Inorganic materials 0.000 claims abstract description 137
- 230000003746 surface roughness Effects 0.000 claims abstract description 69
- 229910052751 metal Inorganic materials 0.000 claims abstract description 35
- 239000002184 metal Substances 0.000 claims abstract description 35
- 239000010410 layer Substances 0.000 claims description 290
- 239000011247 coating layer Substances 0.000 claims description 131
- 238000009713 electroplating Methods 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 36
- 229920005989 resin Polymers 0.000 claims description 32
- 239000011347 resin Substances 0.000 claims description 32
- 239000002245 particle Substances 0.000 claims description 31
- 238000005422 blasting Methods 0.000 claims description 16
- 239000003822 epoxy resin Substances 0.000 claims description 14
- 229920000647 polyepoxide Polymers 0.000 claims description 14
- -1 polytetrafluoroethylene, tetrafluoroethylene Polymers 0.000 claims description 13
- 239000004962 Polyamide-imide Substances 0.000 claims description 10
- 229920002312 polyamide-imide Polymers 0.000 claims description 10
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 claims description 7
- 229920001577 copolymer Polymers 0.000 claims description 6
- 239000002033 PVDF binder Substances 0.000 claims description 4
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 claims description 4
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 claims description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 4
- ZQXCQTAELHSNAT-UHFFFAOYSA-N 1-chloro-3-nitro-5-(trifluoromethyl)benzene Chemical compound [O-][N+](=O)C1=CC(Cl)=CC(C(F)(F)F)=C1 ZQXCQTAELHSNAT-UHFFFAOYSA-N 0.000 claims description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 3
- 229920001038 ethylene copolymer Polymers 0.000 claims description 3
- 239000011737 fluorine Substances 0.000 claims description 2
- 229910052731 fluorine Inorganic materials 0.000 claims description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims 1
- 238000005260 corrosion Methods 0.000 abstract description 33
- 230000007797 corrosion Effects 0.000 abstract description 32
- 238000012360 testing method Methods 0.000 description 113
- 239000000203 mixture Substances 0.000 description 77
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 36
- 229910000831 Steel Inorganic materials 0.000 description 32
- 239000010959 steel Substances 0.000 description 32
- 239000011701 zinc Substances 0.000 description 29
- 239000000654 additive Substances 0.000 description 25
- 239000011230 binding agent Substances 0.000 description 22
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 19
- 238000000576 coating method Methods 0.000 description 18
- 238000002844 melting Methods 0.000 description 18
- 230000008018 melting Effects 0.000 description 18
- 239000007921 spray Substances 0.000 description 18
- 239000011248 coating agent Substances 0.000 description 16
- 230000000996 additive effect Effects 0.000 description 14
- 239000010949 copper Substances 0.000 description 14
- 239000002904 solvent Substances 0.000 description 14
- 238000011156 evaluation Methods 0.000 description 13
- 239000000314 lubricant Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 12
- 229910052725 zinc Inorganic materials 0.000 description 12
- 230000008878 coupling Effects 0.000 description 11
- 238000010168 coupling process Methods 0.000 description 11
- 238000005859 coupling reaction Methods 0.000 description 11
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 11
- 229910052759 nickel Inorganic materials 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000002585 base Substances 0.000 description 10
- 239000003129 oil well Substances 0.000 description 10
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 10
- 239000004810 polytetrafluoroethylene Substances 0.000 description 10
- 238000005507 spraying Methods 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 9
- 238000001816 cooling Methods 0.000 description 9
- 239000004519 grease Substances 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 239000006061 abrasive grain Substances 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000000049 pigment Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 239000011135 tin Substances 0.000 description 7
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000005038 ethylene vinyl acetate Substances 0.000 description 5
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 5
- 238000005488 sandblasting Methods 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 4
- 239000008186 active pharmaceutical agent Substances 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 4
- 229910001385 heavy metal Inorganic materials 0.000 description 4
- 239000010702 perfluoropolyether Substances 0.000 description 4
- 229920005672 polyolefin resin Polymers 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910001297 Zn alloy Inorganic materials 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 239000012943 hotmelt Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000003879 lubricant additive Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 2
- 229910018605 Ni—Zn Inorganic materials 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- NNLOHLDVJGPUFR-UHFFFAOYSA-L calcium;3,4,5,6-tetrahydroxy-2-oxohexanoate Chemical compound [Ca+2].OCC(O)C(O)C(O)C(=O)C([O-])=O.OCC(O)C(O)C(O)C(=O)C([O-])=O NNLOHLDVJGPUFR-UHFFFAOYSA-L 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 229910001431 copper ion Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- QLOAVXSYZAJECW-UHFFFAOYSA-N methane;molecular fluorine Chemical compound C.FF QLOAVXSYZAJECW-UHFFFAOYSA-N 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 2
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 2
- 229910001453 nickel ion Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 229910001432 tin ion Inorganic materials 0.000 description 2
- AFNRRBXCCXDRPS-UHFFFAOYSA-N tin(ii) sulfide Chemical compound [Sn]=S AFNRRBXCCXDRPS-UHFFFAOYSA-N 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 241001163841 Albugo ipomoeae-panduratae Species 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910017518 Cu Zn Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910017752 Cu-Zn Inorganic materials 0.000 description 1
- 229910017943 Cu—Zn Inorganic materials 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(III) oxide Inorganic materials O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- ABXXWVKOBZHNNF-UHFFFAOYSA-N chromium(3+);dioxido(dioxo)chromium Chemical compound [Cr+3].[Cr+3].[O-][Cr]([O-])(=O)=O.[O-][Cr]([O-])(=O)=O.[O-][Cr]([O-])(=O)=O ABXXWVKOBZHNNF-UHFFFAOYSA-N 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- 238000005536 corrosion prevention Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 125000002510 isobutoxy group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])O* 0.000 description 1
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920005638 polyethylene monopolymer Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 230000001012 protector Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 125000004213 tert-butoxy group Chemical group [H]C([H])([H])C(O*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L15/00—Screw-threaded joints; Forms of screw-threads for such joints
- F16L15/08—Screw-threaded joints; Forms of screw-threads for such joints with supplementary elements
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M107/00—Lubricating compositions characterised by the base-material being a macromolecular compound
- C10M107/38—Lubricating compositions characterised by the base-material being a macromolecular compound containing halogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M145/00—Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
- C10M145/18—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M147/00—Lubricating compositions characterised by the additive being a macromolecular compound containing halogen
- C10M147/02—Monomer containing carbon, hydrogen and halogen only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M147/00—Lubricating compositions characterised by the additive being a macromolecular compound containing halogen
- C10M147/04—Monomer containing carbon, hydrogen, halogen and oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M149/00—Lubricating compositions characterised by the additive being a macromolecular compound containing nitrogen
- C10M149/12—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M149/14—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds a condensation reaction being involved
- C10M149/16—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds a condensation reaction being involved between the nitrogen-containing monomer and an aldehyde or ketone
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M149/00—Lubricating compositions characterised by the additive being a macromolecular compound containing nitrogen
- C10M149/12—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M149/14—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds a condensation reaction being involved
- C10M149/18—Polyamides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/10—Electroplating with more than one layer of the same or of different metals
- C25D5/12—Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/34—Pretreatment of metallic surfaces to be electroplated
- C25D5/36—Pretreatment of metallic surfaces to be electroplated of iron or steel
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/04—Tubes; Rings; Hollow bodies
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B17/00—Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
- E21B17/02—Couplings; joints
- E21B17/04—Couplings; joints between rod or the like and bit or between rod and rod or the like
- E21B17/042—Threaded
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L15/00—Screw-threaded joints; Forms of screw-threads for such joints
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L58/00—Protection of pipes or pipe fittings against corrosion or incrustation
- F16L58/02—Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
- F16L58/04—Coatings characterised by the materials used
- F16L58/08—Coatings characterised by the materials used by metal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L58/00—Protection of pipes or pipe fittings against corrosion or incrustation
- F16L58/02—Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
- F16L58/04—Coatings characterised by the materials used
- F16L58/10—Coatings characterised by the materials used by rubber or plastics
- F16L58/1054—Coatings characterised by the materials used by rubber or plastics the coating being placed outside the pipe
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L58/00—Protection of pipes or pipe fittings against corrosion or incrustation
- F16L58/18—Protection of pipes or pipe fittings against corrosion or incrustation specially adapted for pipe fittings
- F16L58/182—Protection of pipes or pipe fittings against corrosion or incrustation specially adapted for pipe fittings for screw-threaded joints
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L15/00—Screw-threaded joints; Forms of screw-threads for such joints
- F16L15/001—Screw-threaded joints; Forms of screw-threads for such joints with conical threads
- F16L15/004—Screw-threaded joints; Forms of screw-threads for such joints with conical threads with axial sealings having at least one plastically deformable sealing surface
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L15/00—Screw-threaded joints; Forms of screw-threads for such joints
- F16L15/006—Screw-threaded joints; Forms of screw-threads for such joints with straight threads
- F16L15/009—Screw-threaded joints; Forms of screw-threads for such joints with straight threads with axial sealings having at least one plastically deformable sealing surface
Definitions
- the present invention relates to a threaded joint for pipes and a method for producing a threaded joint for pipes, and more particularly relates to a threaded joint for oil well pipes and a method for producing a threaded joint for oil well pipes.
- Oil well pipes are used for mining oil fields and natural gas fields.
- the oil well pipe is formed by connecting a plurality of steel pipes according to the depth of the well.
- the steel pipes are connected by screwing pipe threaded joints formed at the ends of the steel pipes.
- the oil well pipe is pulled up for inspection or the like, unscrewed, inspected, screwed again, and used again.
- Threaded joints for pipes are provided with pins and boxes.
- the pin includes a male screw portion and an unthreaded metal contact portion formed on the outer peripheral surface of the tip portion of the steel pipe.
- the box includes an internal thread portion and an unthreaded metal contact portion formed on the inner peripheral surface of the distal end portion of the steel pipe.
- the threaded portion of the pin and box and the unthreaded metal contact portion are repeatedly subjected to strong friction during screw tightening and unscrewing of the threaded joint. If these parts do not have sufficient durability against friction, goling (seizure that cannot be repaired) occurs when screwing and unscrewing are repeated. Therefore, the threaded joint for pipes is required to have sufficient durability against friction, that is, excellent seizure resistance.
- a compound grease containing a heavy metal called a dope has been used.
- compound grease By applying compound grease to the surface of the threaded joint for pipes, the seizure resistance of the threaded joint for pipes can be improved.
- heavy metals such as Pb, Zn and Cu contained in the compound grease may affect the environment. For this reason, development of the threaded joint for pipes which does not use compound grease is desired.
- Patent Document 1 Japanese Laid-Open Patent Publication No. 2002-221288 (Patent Document 1) and Japanese Laid-Open Patent Publication No. 2008-215473 (Patent Document 2) propose a threaded joint for pipes that has excellent seizure resistance even without compound grease.
- a porous Zn or Zn alloy layer is formed on at least one threaded part or unthreaded metal contacted part of the threaded joint for pipes by impact plating.
- a liquid lubricating film containing no solid metal powder or heavy metal powder eg, a film mainly composed of a highly basic organic metal salt such as highly basic sulfonate
- a liquid lubricant containing heavy metal powder such as compound grease, it has high anticorrosive properties, and can suppress the occurrence of seizure and deterioration of airtightness due to the occurrence of rust during repeated tightening and loosening.
- the threaded joint for pipes described in Patent Document 2 is characterized in that at least one contact surface of the pin and the box has a first plating layer made of a Cu—Zn alloy.
- the screw joint has excellent leakage resistance and seizure resistance, and further, crevice corrosion when a lubricating coating is formed on the plating layer is described in Patent Document 2. Yes.
- the evaluation of seizure resistance is usually carried out in a state where the cores of the steel pipes to be screwed are matched.
- the threaded joint for pipes when the threaded joint for pipes is actually tightened, the cores of the steel pipes to be tightened (or the steel pipe and the coupling) may be misaligned. This is called misalignment.
- misalignment occurs, the threaded portions of the pin and box and the unthreaded metal contact are subjected to strong shear stress in addition to strong friction. This shear stress is significantly larger than that without misalignment. Therefore, if misalignment occurs, seizure is more likely to occur. Therefore, the threaded joint for pipes is required to have the ability to suppress seizure even when misalignment occurs, that is, misalignment resistance.
- the above-described screwless metal contact portion includes a metal seal portion and a shoulder portion.
- shouldering torque When screwing the threaded joint for pipes, the shoulder portions of the pin and the box come into contact with each other. The torque generated at this time is called shouldering torque.
- further tightening is performed until the fastening is completed. Thereby, the airtightness of the threaded joint for pipes is increased.
- yield torque The torque generated at this time is called yield torque.
- fastening torque The torque at the completion of fastening (hereinafter referred to as fastening torque) is set so that a sufficient seal surface pressure can be obtained regardless of the amount of screw interference. If there is a sufficient difference between the shouldering torque and the yield torque (hereinafter referred to as torque-on-shoulder resistance ⁇ T ′), the range of the fastening torque becomes wide. As a result, the fastening torque can be easily adjusted. Therefore, the threaded joint for pipes is required to have a high torque on shoulder resistance ⁇ T ′ in addition to the misalignment resistance described above.
- oil well pipes are manufactured, transported by ship, etc., and stored for a certain period until they are used.
- the transportation and storage of oil well pipes may take a long time.
- oil wells may be stored outdoors. When stored outdoors for a long period of time, rust is generated in the threaded joint for pipes, and the airtightness and seizure resistance of the threaded joint for pipes may be reduced. Therefore, the pipe threaded joint is required to have excellent corrosion resistance in addition to the above-described misalignment resistance and high torque-on-shoulder resistance ⁇ T ′.
- the Zn or Zn alloy layer is porous. Therefore, the adhesiveness with the solid lubricating coating layer is good, and sufficient seizure resistance is provided. However, since it is porous, a void is generated between the Zn or Zn alloy layer and the base material. For this reason, the base material of the generated void portion may corrode during a long period of time.
- the threaded joint for pipes disclosed in Patent Document 2 has been studied for seizure resistance but has not been studied for misalignment resistance. Therefore, even if the seizure resistance when misalignment does not occur is sufficient, the misalignment resistance may be low. Further, the torque-on-shoulder resistance ⁇ T ′ may decrease, or the adhesion of the solid lubricating coating layer may be low and the corrosion resistance may be low.
- An object of the present invention is to provide a threaded joint for pipes having excellent misalignment resistance and high torque-on-shoulder resistance ⁇ T ′, and excellent corrosion resistance, and a method for producing the same.
- the threaded joint for pipes of this embodiment includes a pin and a box.
- Pins and boxes have contact surfaces with threaded and unthreaded metal contacts.
- the contact surface of at least one of the pin and the box has a surface roughness with an arithmetic average roughness Ra of 1 to 8 ⁇ m and a maximum height roughness Rz of 10 to 40 ⁇ m.
- the threaded joint for pipes includes a contact surface having the above-described surface roughness, a Zn—Ni alloy plating layer made of a Zn—Ni alloy, a Cu—Sn—Zn alloy plating layer made of a Cu—Sn—Zn alloy, and a solid lubricant.
- a coating layer is a coating layer.
- the solid lubricating coating layer contains at least one selected from the group consisting of epoxy resins and polyamideimide resins, and fluororesin particles.
- the method for manufacturing a threaded joint for pipes of the present embodiment is a method for manufacturing a threaded joint for pipes including a pin and a box. Pins and boxes have contact surfaces with threaded and unthreaded metal contacts.
- the manufacturing method of the present embodiment includes a surface roughness forming step, a Zn—Ni alloy plating layer forming step, a Cu—Sn—Zn alloy plating layer forming step, and a solid lubricating coating layer forming step.
- a surface roughness having an arithmetic average roughness Ra of 1 to 8 ⁇ m and a maximum height roughness Rz of 10 to 40 ⁇ m is formed by blasting on at least one contact surface of the pin and the box.
- a Zn—Ni alloy plating layer made of a Zn—Ni alloy is formed by electroplating on the contact surface having the surface roughness described above.
- a Cu—Sn—Zn alloy plating layer made of a Cu—Sn—Zn alloy is formed by electroplating.
- the solid lubricant film layer forming step the solid lubricant film layer is formed after the Cu—Sn—Zn alloy plating layer is formed.
- the threaded joint for pipes of this embodiment has excellent misalignment resistance, high torque-on-shoulder resistance ⁇ T ′, and excellent corrosion resistance.
- FIG. 1 is a schematic diagram of screw tightening of a threaded joint for pipes when misalignment occurs.
- FIG. 2 is a diagram showing the relationship between the rotational speed and torque of the threaded joint for pipes.
- FIG. 3 is a diagram showing the configuration of the threaded joint for pipes according to the present embodiment.
- FIG. 4 is a cross-sectional view of the threaded joint for pipes according to the present embodiment.
- FIG. 5 is a cross-sectional view of the contact surface of the threaded joint for pipes according to the present embodiment.
- FIG. 6 is a diagram for explaining the torque on shoulder resistance ⁇ T ′ in the embodiment.
- the present inventor conducted various studies on the relationship between the threaded joint for pipes, misalignment resistance, torque-on-shoulder resistance ⁇ T ′, and corrosion resistance. As a result, the following knowledge was obtained.
- misalignment resistance In conventional threaded joints for pipes, even if the seizure resistance is sufficient when misalignment does not occur, the misalignment resistance may be insufficient. Misalignment refers to the situation shown in FIG. Referring to FIG. 1, a coupling 2 is attached to the tip of a steel pipe 1. A pin 3 is formed at the other end of the steel pipe 1. A coupling 5 is attached to the tip of another steel pipe 4. A box is formed on the inner peripheral surface of the coupling 5. The pin 3 of the steel pipe 1 is inserted into the coupling 5 and screwed. Thereby, the steel pipe 1 is connected with the steel pipe 4.
- FIG. 1 shows misalignment with a crossing angle of ⁇ °. If screw tightening is performed in a state where misalignment has occurred, seizure is more likely to occur than in the case of no misalignment.
- a Zn—Ni alloy plating layer, a Cu—Sn—Zn alloy plating layer, and a solid lubricating coating layer are collectively referred to simply as a coating.
- the adhesion of the coating is increased.
- Surface roughness with an arithmetic average roughness Ra of 1 to 8 ⁇ m and a maximum height roughness Rz of 10 to 40 ⁇ m on at least one threaded portion of the pin and box and an unthreaded metal contact portion hereeinafter referred to as contact surface
- contact surface hereinafter also referred to as “specific surface roughness”.
- the adhesion is enhanced by a so-called anchor effect. If the adhesion of the film is high, even if the film is repeatedly exposed to high and low temperatures, peeling of the film is suppressed. If peeling of the film is suppressed, high lubricity is maintained during screw tightening and screw unwinding. Therefore, the misalignment resistance of the threaded joint for pipes is increased.
- a plating layer having a high hardness and a high melting point is further formed on the contact surface. If the hardness of the plating layer is high, the plating layer is less likely to be damaged when the screw joint for pipes is tightened and unscrewed. Furthermore, if the melting point of the plating layer is high, the plating layer is unlikely to melt even when the temperature is locally high during screw tightening and unscrewing of the pipe threaded joint.
- Cu—Sn—Zn alloys have high hardness and high melting point. Therefore, in this embodiment, a Cu—Sn—Zn alloy plating layer made of a Cu—Sn—Zn alloy is provided. Therefore, the misalignment resistance of the threaded joint for pipes is further enhanced.
- FIG. 2 is a diagram illustrating the relationship between the rotational speed of the steel pipe and the torque when the threaded joint for pipes having a shoulder portion is tightened.
- the frictional resistance is reduced in order to reduce the shouldering torque.
- the lubricity of the solid lubricating coating layer is increased in order to reduce the frictional resistance. If the solid lubricating coating layer contains at least one selected from the group consisting of fluororesin particles and epoxy resins and polyamideimide resins, the lubricity is enhanced. In this case, the shouldering torque can be kept low.
- Zinc (Zn) is a base metal compared to iron (Fe), nickel (Ni) and chromium (Cr). Therefore, if a plating layer containing zinc (Zn) is formed on the contact surface, the plating layer is preferentially corroded over the steel material (sacrificial corrosion protection). Thereby, the corrosion resistance of the threaded joint for pipes is increased.
- the stacking order of the Zn—Ni alloy plating layer, the Cu—Sn—Zn alloy plating layer, and the solid lubricating coating layer is important.
- the stacking order of the Zn—Ni alloy plating layer and the Cu—Sn—Zn alloy plating layer is important. Table 1 shown below is a partial excerpt of data of examples described later.
- Table 1 shows the configuration of the coating of the threaded joint for pipes of Test No. 1 and Test No. 8 in Examples described later, and the evaluation results.
- the pin surface refers to the contact surface of the pin.
- the box surface is the contact surface of the box.
- Test No. 1 and No. 8 were the same in all conditions except the stacking order of the plating layers on the box surface.
- the surface roughness before plating was the same. Specifically, the arithmetic average roughness Ra of the pin surface was 0.3 ⁇ m, and the maximum height roughness Rz was 5.8 ⁇ m.
- the arithmetic mean roughness Ra of the box surface was 2.0 ⁇ m, and the maximum height roughness Rz was 24.0 ⁇ m.
- a chromate film was formed on the Zn—Ni alloy plating layer on the pin surface.
- a solid lubricating coating layer containing 10% polytetrafluoroethylene particles and an epoxy resin was formed on the outermost layer on the surface of the box.
- the threaded joint for test of No. 8 was provided with a Zn—Ni alloy plating layer, a Cu—Sn—Zn alloy plating layer, and a solid lubricating coating layer.
- the threaded joint for pipe of test number 8 was provided with a Zn—Ni alloy plating layer on the Cu—Sn—Zn alloy plating layer.
- the seizure resistance of the threaded joint for pipe of test number 8 was 5 times in the evaluation by hand tight and 5 times in the evaluation in the misalignment resistance evaluation test. In the screw joint box for test No. 8, rust was generated after 750 hours in the salt spray test. On the other hand, the seizure resistance of the threaded joint for test No.
- the reason why the stacking order of each alloy plating layer greatly affects the performance of threaded joints for pipes is considered as follows.
- the Zn—Ni alloy plating layer improves the corrosion resistance of the threaded joint for pipes by sacrificial corrosion prevention.
- the Zn—Ni alloy plating layer is separated from the base material of the threaded joint for pipes, the effect of sacrificial protection is reduced. Therefore, the corrosion resistance of the threaded joint for pipes decreases.
- the Cu—Sn—Zn alloy plating layer has a high hardness and a high melting point. Thereby, even if there is a misalignment, the Zn—Ni alloy plating layer under the Cu—Sn—Zn alloy plating layer is protected from damage.
- the threaded joint for pipes can improve all of misalignment resistance, torque-on-shoulder resistance ⁇ T ′ and corrosion resistance only by laminating alloy plating layers having a specific composition in a specific order.
- the threaded joint for pipes of this embodiment completed based on the above knowledge includes a pin and a box.
- Pins and boxes have contact surfaces with threaded and unthreaded metal contacts.
- the contact surface of at least one of the pin and the box has a surface roughness with an arithmetic average roughness Ra of 1 to 8 ⁇ m and a maximum height roughness Rz of 10 to 40 ⁇ m.
- the threaded joint for pipes includes a contact surface having the above-described surface roughness, a Zn—Ni alloy plating layer made of a Zn—Ni alloy, a Cu—Sn—Zn alloy plating layer made of a Cu—Sn—Zn alloy, and a solid lubricant.
- a coating layer is a coating layer.
- the solid lubricating coating layer contains at least one selected from the group consisting of epoxy resins and polyamideimide resins, and fluororesin particles.
- the threaded joint for pipes of this embodiment has excellent misalignment resistance, high torque-on-shoulder resistance ⁇ T ′, and excellent corrosion resistance.
- the hardness of the Zn—Ni alloy plating layer is preferably 300 or more by micro Vickers, and the thickness of the Zn—Ni alloy plating layer is preferably 5 to 20 ⁇ m.
- the corrosion resistance is further increased.
- the hardness of the Cu—Sn—Zn alloy plating layer is preferably 500 or more by micro Vickers, and the thickness of the Cu—Sn—Zn alloy plating layer is preferably 5 to 20 ⁇ m.
- the hardness of the solid lubricating coating layer is preferably 15 to 25 in micro Vickers, and the thickness of the solid lubricating coating layer is preferably 10 to 40 ⁇ m.
- the fluororesin particles are polytetrafluoroethylene, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene / hexafluoropropylene copolymer (4.6 fluoride), tetrafluoroethylene / ethylene copolymer. It is 1 type, or 2 or more types selected from the group which consists of a coalescence, polyvinylidene fluoride (difluoride), and polychlorotrifluoroethylene (trifluoride).
- the method for manufacturing a threaded joint for pipes of the present embodiment is a method for manufacturing a threaded joint for pipes including a pin and a box. Pins and boxes have contact surfaces with threaded and unthreaded metal contacts.
- the manufacturing method of the present embodiment includes a surface roughness forming step, a Zn—Ni alloy plating layer forming step, a Cu—Sn—Zn alloy plating layer forming step, and a solid lubricating coating layer forming step.
- a surface roughness having an arithmetic average roughness Ra of 1 to 8 ⁇ m and a maximum height roughness Rz of 10 to 40 ⁇ m is formed by blasting on at least one contact surface of the pin and the box.
- a Zn—Ni alloy plating layer made of a Zn—Ni alloy is formed by electroplating on the contact surface having the surface roughness described above.
- a Cu—Sn—Zn alloy plating layer made of a Cu—Sn—Zn alloy is formed by electroplating.
- the solid lubricant film layer forming step the solid lubricant film layer is formed after the Cu—Sn—Zn alloy plating layer is formed.
- a threaded joint for a pipe having a specific surface roughness, a Zn—Ni alloy plating layer, a Cu—Sn—Zn alloy plating layer, and a solid lubricating coating layer on at least one contact surface of a pin and a box is manufactured by the manufacturing method of this embodiment. it can.
- the threaded joint for pipes is excellent in misalignment resistance and corrosion resistance. Furthermore, since the threaded joint for pipes has a high torque-on-shoulder resistance ⁇ T ′, it is easy to adjust the fastening torque.
- the threaded joint for pipes includes a pin and a box.
- FIG. 3 is a diagram showing the configuration of the threaded joint for pipes according to the present embodiment.
- the pipe threaded joint includes a steel pipe 11 and a coupling 12. At both ends of the steel pipe 11, pins 13 having external thread portions on the outer surface are formed. At both ends of the coupling 12, boxes 14 having internal thread portions on the inner surface are formed.
- the coupling 12 is attached to the end of the steel pipe 11 by screwing the pin 13 and the box 14 together.
- there is an integral type threaded joint for pipes in which one end of the steel pipe 11 is a pin 13 and the other end is a box 14 without using the coupling 12.
- the threaded joint for pipes of this embodiment can be used for both threaded joints for pipes of the coupling type and integral type.
- FIG. 4 is a cross-sectional view of the threaded joint for pipes according to the present embodiment.
- pin 13 includes a male screw portion 15 and a non-threaded metal contact portion.
- the box 14 includes an internal thread portion 20 and an unthreaded metal contact portion.
- the unthreaded metal contact portion is formed at the tip of the pin 13 and the box 14 and includes metal seal portions 16 and 19 and shoulder portions 17 and 18. Portions that come into contact when the pin 13 and the box 14 are screwed together are referred to as contact surfaces 130 and 140.
- the pin-side contact surface 130 includes the shoulder portion 17, the metal seal portion 16, and the male screw portion 15.
- the box-side contact surface 140 includes a shoulder portion 18, a metal seal portion 19, and a female screw portion 20.
- FIG. 5 is a cross-sectional view of the contact surfaces 130 and 140 of the threaded joint for pipes according to the present embodiment.
- the threaded joint for pipes has a specific surface roughness (not shown) on at least one contact surface 130, 140 of pin 13 and box 14.
- the threaded joint for pipes includes a Zn—Ni alloy plating layer 21, a Cu—Sn—Zn alloy plating layer 22, and a solid lubricating coating layer 23 on contact surfaces 130 and 140 having a specific surface roughness. These layers are laminated in this order from the contact surfaces 130 and 140, the Zn—Ni alloy plating layer 21, the Cu—Sn—Zn alloy plating layer 22, and the solid lubricating coating layer 23.
- a surface roughness (specific surface roughness) having an arithmetic average roughness Ra of 1 to 8 ⁇ m and a maximum height roughness Rz of 10 to 40 ⁇ m is formed on at least one contact surface 130 or 140 of the pin 13 and the box 14. .
- the specific surface roughness is formed by blasting. In this case, the contact surfaces 130 and 140 have irregularities. Therefore, the adhesion of the Zn—Ni alloy plating layer 21 described later is enhanced by the anchor effect. If the adhesion of the Zn—Ni alloy plating layer 21 is increased, the misalignment resistance of the threaded joint for pipes is increased.
- the lower limit of the arithmetic average roughness Ra is preferably 1.5 ⁇ m, more preferably 2 ⁇ m.
- the upper limit of the arithmetic average roughness Ra is preferably 7 ⁇ m, more preferably 5 ⁇ m.
- the lower limit of the maximum height roughness Rz is preferably 12 ⁇ m, more preferably 15 ⁇ m.
- the upper limit of the maximum height roughness Rz is preferably 35 ⁇ m, more preferably 30 ⁇ m.
- the arithmetic average roughness Ra and the maximum height roughness Rz referred to in this specification are measured based on JIS B0601 (2013). Measured using a scanning probe microscope SPI3800N manufactured by SII Nanotechnology. The measurement condition is the number of acquired data 1024 ⁇ 1024 in the area of 2 ⁇ m ⁇ 2 ⁇ m of the sample as a unit of the number of acquired data. The reference length is 2.5 mm.
- the larger the arithmetic average roughness Ra and the surface height roughness Rz the higher the contact area with the Zn—Ni alloy plating layer 21. For this reason, the adhesion with the Zn—Ni alloy plating layer 21 is enhanced by the anchor effect. If the adhesion of the Zn—Ni alloy plating layer 21 is increased, the misalignment resistance of the threaded joint for pipes is increased.
- the blasting process may be a known method according to JIS Z0310 (2016). For example, sand blast, shot blast, grit blast and the like.
- a desired surface roughness can be obtained by adjusting the type and size of the abrasive grains, the spraying pressure, the projection angle, the distance from the nozzle, and the time zone according to the object. If the size of the abrasive grains is about 100 mesh, the specific surface roughness of the present invention can be obtained relatively easily.
- Zn—Ni alloy plating layer 21 A Zn—Ni alloy plating layer 21 made of a Zn—Ni alloy is formed on the contact surfaces 130 and 140 having a specific surface roughness.
- the Zn—Ni alloy plating layer 21 is formed by electroplating, for example.
- Zn contained in the Zn—Ni alloy plating layer 21 is a base metal. Therefore, if the plating layer containing Zn is formed on the contact surfaces 130 and 140, the plating layer is preferentially corroded over the steel material (sacrificial corrosion protection). Thereby, the corrosion resistance of the threaded joint for pipes is increased. If the stacking order of the Zn—Ni alloy plating layer 21 and the Cu—Sn—Zn alloy plating layer 22 described later is switched, the sacrificial corrosion protection effect by Zn cannot be obtained. Therefore, the Zn—Ni alloy plating layer 21 is formed on the contact surface having a specific surface roughness.
- the Zn—Ni alloy contains Zn and Ni, and the balance consists of impurities.
- the preferable Zn content of the Zn—Ni alloy plating layer 21 is 85 to 90% by mass, and the preferable Ni content is 10 to 15% by mass.
- the Zn—Ni alloy plating layer 21 has a large Zn content. Therefore, the effect of sacrificial corrosion protection is great.
- the lower limit of the Ni content of the Zn—Ni alloy is more preferably 12% by mass.
- the upper limit of the Ni content of the Zn—Ni alloy is more preferably 14% by mass.
- the lower limit of the Zn content of the Zn—Ni alloy is more preferably 86% by mass.
- the upper limit of the Zn content of the Zn—Ni alloy is more preferably 88% by mass.
- the chemical composition of the Zn—Ni alloy plating layer 21 is measured by the following method. Measurement is performed using a hand-held X-ray fluorescence analyzer (DP2000 (trade name DELTA Premium) manufactured by JEOL Ltd.). In the measurement, composition analysis is performed at four locations on the surface of the Zn—Ni alloy plating layer 21 (four locations at 0 °, 90 °, 180 °, and 270 ° in the pipe circumferential direction of the pipe thread joint). The measured contents of Zn and Ni are obtained by the Alloy Plus mode. The Ni content (mass%) is obtained by dividing the measured content of Ni by the total measured content of Zn and Ni.
- the Zn content (mass%) is obtained by dividing the measured content of Zn by the total obtained content of Zn and Ni. Let Ni content (mass%) and Zn content (mass%) be the arithmetic average of the measurement result of 4 places which analyzed the composition.
- the hardness of the Zn—Ni alloy plating layer 21 is preferably 300 or more in micro Vickers. If the hardness of the Zn—Ni alloy plating layer 21 is 300 or more, the corrosion resistance of the threaded joint for pipes is further stably increased.
- the lower limit of the hardness of the Zn—Ni alloy plating layer 21 is more preferably 350 with micro Vickers, and even more preferably 400 with micro Vickers.
- the upper limit of the hardness of the Zn—Ni alloy plating layer 21 is not particularly limited. However, the upper limit of the hardness of the Zn—Ni alloy plating layer 21 is 700 for micro Vickers, for example.
- the hardness of the Zn—Ni alloy plating layer 21 is measured as follows. In the Zn—Ni alloy plating layer 21 of the obtained threaded joint for pipes, five arbitrary regions are selected. In each selected area, Vickers hardness (HV) is measured according to JIS Z2244 (2009). The test conditions are a test temperature of room temperature (25 ° C.) and a test force of 2.94 N (300 gf). The average of the obtained values (5 in total) is defined as the hardness of the Zn—Ni alloy plating layer 21.
- the thickness of the Zn—Ni alloy plating layer 21 is preferably 5 to 20 ⁇ m.
- the thickness of the Zn—Ni alloy plating layer 21 is 5 ⁇ m or more, the corrosion resistance of the threaded joint for pipes can be stably improved. If the thickness of the Zn—Ni alloy plating layer 21 is 20 ⁇ m or less, the adhesion of plating is stable. Therefore, the thickness of the Zn—Ni alloy plating layer 21 is preferably 5 to 20 ⁇ m.
- the lower limit of the thickness of the Zn—Ni alloy plating layer 21 is more preferably 6 ⁇ m, and even more preferably 8 ⁇ m.
- the upper limit of the thickness of the Zn—Ni alloy plating layer 21 is more preferably 18 ⁇ m, and even more preferably 15 ⁇ m.
- the thickness of the Zn—Ni alloy plating layer 21 is measured as follows. On the Zn—Ni alloy plating layer 21, a probe of an eddy current phase type film thickness measuring instrument conforming to ISO (International Organization for Standardization) 21968 (2005) is brought into contact. The phase difference between the high frequency magnetic field on the input side of the probe and the eddy current on the Zn—Ni alloy plating layer 21 excited thereby is measured. This phase difference is converted into the thickness of the Zn—Ni alloy plating layer 21.
- Cu-Sn-Zn alloy plating layer 22 A Cu—Sn—Zn alloy plating layer 22 is formed on the Zn—Ni alloy plating layer 21.
- the Cu—Sn—Zn alloy plating layer 22 is formed by electroplating, for example.
- the Cu—Sn—Zn alloy plating layer 22 is made of a Cu—Sn—Zn alloy.
- the hardness and melting point of the Cu—Sn—Zn alloy plating layer 22 are high. Therefore, even if screw tightening and screw unscrewing are repeated, it has high misalignment resistance.
- the Cu—Sn—Zn alloy contains Cu, Sn, and Zn, and the balance consists of impurities.
- a preferable Cu content in the Cu—Sn—Zn alloy plating layer 22 is 40 to 70% by mass, a preferable Sn content is 20 to 50% by mass, and a preferable Zn content is 2 to 20% by mass.
- the lower limit of the Cu content of the Cu—Sn—Zn alloy is more preferably 45% by mass, and still more preferably 50% by mass.
- the upper limit of the Cu content of the Cu—Sn—Zn alloy is more preferably 65% by mass, and still more preferably 60% by mass.
- the lower limit of the Sn content of the Cu—Sn—Zn alloy is more preferably 25% by mass, and further preferably 30% by mass.
- the upper limit of the Sn content of the Cu—Sn—Zn alloy is more preferably 45% by mass, and still more preferably 40% by mass.
- the lower limit of the Zn content of the Cu—Sn—Zn alloy is more preferably 5% by mass, and even more preferably 10% by mass.
- the upper limit of the Zn content of the Cu—Sn—Zn alloy is more preferably 18% by mass, and even more preferably 15% by mass.
- the chemical composition of the Cu—Sn—Zn alloy plating layer 22 is measured by the same method as the chemical composition of the Zn—Ni alloy plating layer 21 described above.
- the hardness of the Cu—Sn—Zn alloy plating layer 22 is preferably 500 or more in micro Vickers. When the hardness of the Cu—Sn—Zn alloy plating layer 22 is 500 or more, the misalignment resistance of the threaded joint for pipes is further stably increased. The hardness of the Cu—Sn—Zn alloy plating layer 22 is measured by the same method as that for the Zn—Ni alloy plating layer 21 described above.
- the lower limit of the hardness of the Cu—Sn—Zn alloy plating layer 22 is more preferably 550 for micro Vickers, and even more preferably 600 for micro Vickers.
- the upper limit of the hardness of the Cu—Sn—Zn alloy plating layer 22 is not particularly limited. However, the upper limit of the hardness of the Cu—Sn—Zn alloy plating layer 22 is, for example, 800 for micro Vickers.
- the thickness of the Cu—Sn—Zn alloy plating layer 22 is preferably 5 to 20 ⁇ m. If the thickness of the Cu—Sn—Zn alloy plating layer 22 is 5 ⁇ m or more, the misalignment resistance of the threaded joint for pipes can be stably improved. When the thickness of the Cu—Sn—Zn alloy plating layer 22 is 20 ⁇ m or less, the adhesion of plating is stable. Therefore, the thickness of the Cu—Sn—Zn alloy plating layer 22 is preferably 5 to 20 ⁇ m. The thickness of the Cu—Sn—Zn alloy plating layer 22 is measured by the same method as that for the Zn—Ni alloy plating layer 21 described above.
- the lower limit of the thickness of the Cu—Sn—Zn alloy plating layer 22 is more preferably 6 ⁇ m, and even more preferably 8 ⁇ m.
- the upper limit of the thickness of the Cu—Sn—Zn alloy plating layer 22 is more preferably 18 ⁇ m, and even more preferably 15 ⁇ m.
- Solid lubricating coating layer 23 A solid lubricating coating layer 23 is formed on the Cu—Sn—Zn alloy plating layer 22.
- the solid lubricating coating layer 23 increases the lubricity of the threaded joint for pipes.
- the solid lubricating coating layer 23 includes a binder and a lubricating additive.
- the binder contained in the solid lubricating coating layer 23 is at least one selected from the group consisting of epoxy resins and polyamideimide resins.
- the solid lubricating coating layer 23 contains fluororesin particles.
- the solid lubricating coating layer 23 may contain a solvent and other components as necessary.
- the binder binds the lubricating additive into the solid lubricating coating layer 23.
- the binder is at least one selected from the group consisting of an epoxy resin and a polyamideimide resin. In this embodiment, another binder may be contained.
- thermosetting resin is, for example, one selected from the group consisting of epoxy resin, polyimide resin, polycarbodiimide resin, polyether sulfone resin, polyether ether ketone resin, phenol resin, furan resin, urea resin, and acrylic resin, or 2 or more types.
- thermoplastic resin is, for example, one or more selected from the group consisting of polyamideimide resin, polyethylene resin, polypropylene resin, polystyrene resin, and ethylene vinyl acetate resin.
- polymetalloxane When an inorganic resin is used, polymetalloxane can be used.
- the polymetalloxane refers to a polymer compound in which a repeating metal-oxygen bond is a main chain skeleton.
- the inorganic resin is one or more selected from the group consisting of polytitanoxane (Ti—O) and polysiloxane (Si—O). These inorganic resins are obtained by hydrolyzing and condensing metal alkoxide.
- the alkoxy group of the metal alkoxide is, for example, a lower alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an isobutoxy group, a butoxy group and a tert-butoxy group.
- the binder preferably contains at least one selected from the group consisting of ethylene vinyl acetate resins and polyolefin resins having a melting temperature (or softening temperature) of 80 to 320 ° C. More preferably, the binder preferably contains at least one selected from the group consisting of ethylene vinyl acetate resins and polyolefin resins having a melting temperature (or softening temperature) of 90 to 200 ° C.
- the ethylene vinyl acetate resin is preferably a mixture of two or more ethylene vinyl acetate resins having different melting temperatures in order to suppress rapid softening due to temperature rise.
- the polyolefin resin is also preferably a mixture of two or more polyolefin resins having different melting temperatures.
- the content of the binder in the solid lubricating coating layer 23 is preferably 60 to 80% by mass. If the content of the binder is 60% by mass or more, the adhesion of the solid lubricating coating layer 23 is further increased. If the content of the binder is 80% by mass or less, the lubricity of the solid lubricating coating layer 23 is better maintained.
- the lower limit of the binder content in the solid lubricating coating layer 23 is more preferably 65% by mass, and even more preferably 68% by mass.
- the upper limit of the binder content in the solid lubricating coating layer 23 is more preferably 78% by mass, and even more preferably 75% by mass.
- the solid lubricating coating layer 23 contains fluororesin particles.
- the fluororesin particles are PTFE (polytetrafluoroethylene), PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer), FEP (tetrafluoroethylene / hexafluoropropylene copolymer (4.6 fluoride)), ETFE. 1 or 2 types selected from the group consisting of (tetrafluoroethylene / ethylene copolymer), PVDF (polyvinylidene fluoride (difluoride)), and PCTFE (polychlorotrifluoroethylene (trifluoride)) That's it.
- PTFE is particularly preferable.
- the fluororesin particles are polymer polymer particles having a C—F bond in the molecular structure.
- the C—F bond of the fluororesin particles is strong. Due to this molecular structure, the fluororesin particles are extremely excellent in chemical resistance, heat resistance and electrical characteristics.
- the fluororesin particles exhibit a very low friction coefficient at a low surface pressure of 100 ° C. or lower, but the friction coefficient increases when the surface pressure exceeds 100 ° C. In this case, a high torque on shoulder resistance ⁇ T ′ can be obtained.
- the fluororesin particles contribute to lower friction during the shouldering in which the metal seal portions 16 and 19 and the shoulder portions 17 and 18 have a low surface pressure and little frictional heat generation, and lower the shouldering torque.
- a preferable content of the fluororesin particles is 2% by mass to 20% by mass.
- the lower limit of the content of the fluororesin particles is more preferably 5% by mass, and still more preferably 8% by mass.
- the upper limit of the content of the fluororesin particles is more preferably 15% by mass, and still more preferably 12% by mass.
- the solid lubricating coating layer 23 may further contain a lubricating additive.
- Lubricating additive is a general term for additives having lubricating properties.
- the lubricating additive reduces the friction coefficient of the surface of the solid lubricating coating layer 23.
- Lubricating additives are roughly classified into the following five types.
- the lubricating additive contains at least one selected from the group consisting of the following (1) to (5).
- Specific slippery crystal structure such as hexagonal layered crystal structure that exhibits lubricity (for example, graphite, zinc oxide, boron nitride), (2) Those having a lubricity by having a reactive element in addition to the crystal structure (for example, molybdenum disulfide, tungsten disulfide, graphite fluoride, tin sulfide, bismuth sulfide), (3) Those that exhibit lubricity due to chemical reactivity (for example, thiosulfate compounds), (4) that exhibits lubricity due to plasticity or viscoplastic behavior under frictional stress (for example, polyamide), and (5) is liquid or grease-like and exists directly at the boundary of the contact surface. Those that exhibit lubricity by preventing contact (for example, perfluoropolyether (PFPE)).
- PFPE perfluoropolyether
- the lubricating additives (1) to (5) above can be used.
- the lubricating additive may be used in combination with a plurality of the above (1) to (5) in addition to the fluororesin particles.
- the solid lubricating coating layer 23 is made of, in addition to PTFE, for example, graphite, zinc oxide, boron nitride, molybdenum disulfide, tungsten disulfide, graphite fluoride, tin sulfide, bismuth sulfide, thiosulfate compound, polyamide, And one or more selected from the group consisting of perfluoropolyether (PFPE).
- PFPE perfluoropolyether
- the content of the lubricating additive in the solid lubricating coating layer 23 is preferably 10 to 25% by mass.
- the torque on shoulder resistance ⁇ T ′ is further increased.
- the strength of the solid lubricating coating layer 23 is further increased. For this reason, the wear of the solid lubricating coating layer 23 can be suppressed.
- the lower limit of the content of the lubricating additive in the solid lubricating coating layer 23 is more preferably 12% by mass, and even more preferably 15% by mass.
- the upper limit of the content of the lubricating additive in the solid lubricating coating layer 23 is more preferably 23% by mass, and even more preferably 20% by mass.
- the solvent is not particularly limited as long as it can disperse or dissolve the components contained in the solid lubricating coating layer 23.
- an organic solvent or water can be used as the solvent.
- Organic solvents are, for example, toluene and isopropyl alcohol. Most of the solvent is volatilized when the solid lubricant film layer 23 is formed. However, the solvent may remain in the solid lubricant film layer 23 by 1% by mass or less, for example.
- the solid lubricating coating layer 23 of the present embodiment is a small amount of additional components such as rust preventive additives, plasticizers, surfactants, colorants, antioxidants, and inorganic powders for adjusting sliding properties. It may contain.
- the inorganic powder is, for example, titanium dioxide and bismuth oxide.
- the content of other components is, for example, 5% by mass or less in total.
- the composition can further contain an extreme pressure agent, a liquid oil, etc., as long as it is a very small amount of 2% by mass or less.
- the content of other components in the solid lubricating coating layer 23 is, for example, 10% by mass or less in total.
- the hardness of the solid lubricating coating layer 23 is preferably 15 to 25 in micro Vickers. If the hardness of the solid lubricating coating layer 23 is 15 to 25, the torque on shoulder resistance ⁇ T ′ is further increased. The hardness of the solid lubricating coating layer 23 is measured by the same method as that for the Zn—Ni alloy plating layer 21 described above.
- the lower limit of the hardness of the solid lubricating coating layer 23 is more preferably 16 for micro Vickers, and still more preferably 18 for micro Vickers.
- the upper limit of the hardness of the solid lubricating coating layer 23 is more preferably 24 for micro Vickers, and even more preferably 22 for micro Vickers.
- the thickness of the solid lubricating coating layer 23 is preferably 10 to 40 ⁇ m.
- the thickness of the solid lubricating coating layer 23 is 10 ⁇ m or more, high lubricity can be stably obtained.
- the thickness of the solid lubricating coating layer 23 is 40 ⁇ m or less, the adhesion of the solid lubricating coating layer 23 is stabilized.
- the thickness of the solid lubricating coating layer 23 is 40 ⁇ m or less, the screw tolerance (clearance) of the sliding surface becomes wide, and the surface pressure during sliding becomes low. Therefore, it can suppress that fastening torque becomes high too much. Therefore, the thickness of the solid lubricating coating layer 23 is preferably 10 to 40 ⁇ m.
- the lower limit of the thickness of the solid lubricating coating layer 23 is more preferably 15 ⁇ m, and even more preferably 20 ⁇ m.
- the upper limit of the thickness of the solid lubricating coating layer 23 is more preferably 35 ⁇ m, and even more preferably 30 ⁇ m.
- the thickness of the solid lubricating coating layer 23 is measured by the following method.
- the pin 13 or the box 14 provided with the solid lubricating coating layer 23 is prepared.
- the pin 13 or box 14 is cut perpendicular to the axial direction of the tube.
- the cross section including the solid lubricating coating layer 23 is observed with a microscope.
- the magnification for microscopic observation is 500 times. Thereby, the thickness of the solid lubricating coating layer 23 is obtained.
- the arithmetic average of the measured values at any three locations is taken as the thickness of the solid lubricating coating layer 23.
- the above-described threaded joint for pipes has a specific surface roughness on the contact surfaces 130 and 140 of at least one of the pin 13 and the box 14.
- the threaded joint for pipes further includes a Zn—Ni alloy plating layer 21, a Cu—Sn—Zn alloy plating layer 22, and a solid lubricating coating layer 23 on the contact surfaces 130 and 140 having a specific surface roughness.
- the threaded joint for pipes may further include a solid anticorrosive coating on the other contact surfaces 130 and 140 of the pin 13 and the box 14.
- the threaded joint for pipes may be stored for a long time before it is actually used. In this case, if the solid anticorrosive film is formed, the anticorrosive property of the pin 13 or the box 14 is enhanced.
- the solid anticorrosion film is, for example, a chromate film made of chromate.
- the chromate film is formed by a known trivalent chromate treatment.
- the solid anticorrosion film is not limited to the chromate film.
- Other solid anticorrosion coatings contain, for example, UV curable resins.
- the solid anticorrosive film has a strength that is not destroyed by the force applied when the protector is attached. Further, the solid anticorrosion coating does not dissolve during transportation or storage even when exposed to condensed water due to the dew point. Furthermore, the solid anticorrosion film is not easily softened even at high temperatures exceeding 40 ° C.
- the ultraviolet curable resin is a known resin composition.
- the ultraviolet curable resin is not particularly limited as long as it contains a monomer, an oligomer, and a photopolymerization initiator and causes a photopolymerization reaction to form a cured film when irradiated with ultraviolet rays.
- a specific surface roughness, a Zn—Ni alloy plating layer 21, a Cu—Sn—Zn alloy plating layer 22 and a solid lubricating coating layer 23 are formed on the other contact surfaces 130 and 140 of the threaded joint for pipes.
- the above-described solid anticorrosion film may be formed on the layer 23, or the solid anticorrosion film may be directly formed on the other contact surfaces 130 and 140.
- the composition of the base material of the threaded joint for pipes is not particularly limited.
- the base material include carbon steel, stainless steel, and alloy steel.
- alloy steels duplex stainless steels containing alloy elements such as Cr, Ni and Mo and high alloy steels such as Ni alloys have high corrosion resistance. Therefore, if these high alloy steels are used as a base material, excellent corrosion resistance can be obtained in a corrosive environment containing hydrogen sulfide, carbon dioxide and the like.
- the method for manufacturing a threaded joint for pipes according to the present embodiment includes a surface roughness forming step, a Zn—Ni alloy plating layer forming step, a Cu—Sn—Zn alloy plating layer forming step, and a solid lubricating coating layer forming step. .
- Each step is performed in the order of a surface roughness forming step, a Zn—Ni alloy plating layer forming step, a Cu—Sn—Zn alloy plating layer forming step, and a solid lubricating coating layer forming step.
- a specific surface roughness is formed on at least one of the contact surfaces 130 and 140 of the pin 13 and the box 14.
- the specific surface roughness is formed by blasting using a blasting apparatus.
- the blasting process may be a known method according to JIS Z0310 (2016). For example, sand blast, shot blast, grit blast and the like.
- a blast material abrasive
- compressed air are mixed and projected onto the contact surfaces 130 and 140.
- the surface roughness of the contact surfaces 130 and 140 can be increased by blasting.
- Sandblasting can be performed by a known method. For example, the air is compressed with a compressor, and the compressed air and the blast material are mixed.
- the material of the blast material is, for example, stainless steel, aluminum, ceramic, alumina or the like.
- the desired specific surface roughness can be obtained by adjusting the type and size of the abrasive grains, the spraying pressure, the projection angle, the distance from the nozzle, and the time zone. If the size of the abrasive grains is about 100 mesh, the specific surface roughness of the present invention can be obtained relatively easily. Thereby, a specific surface roughness is formed on the surface of the threaded joint for pipes.
- the specific surface roughness is an arithmetic average roughness Ra of 1 to 8 ⁇ m and a maximum height roughness Rz of 10 to 40 ⁇ m.
- Step of forming Zn—Ni alloy plating layer 21 In the step of forming the Zn—Ni alloy plating layer 21, the Zn—Ni alloy plating layer 21 made of a Zn—Ni alloy is formed on the contact surfaces 130 and 140 having the specific surface roughness.
- the Zn—Ni alloy plating layer 21 is formed by electroplating. Electroplating is performed by immersing at least one of the contact surfaces 130 and 140 of the pin 13 and the box 14 having surface roughness in a plating bath containing zinc ions and nickel ions, and energizing them. A commercially available plating bath can be used.
- the plating bath preferably contains zinc ions: 1 to 100 g / L and nickel ions: 1 to 50 g / L.
- the conditions for electroplating can be set as appropriate.
- the electroplating conditions are, for example, plating bath pH: 1 to 10, plating bath temperature: 10 to 60 ° C., current density: 1 to 100 A / dm 2 , and processing time: 0.1 to 30 minutes.
- Cu-Sn-Zn alloy plating layer 22 forming step In the Cu—Sn—Zn alloy plating layer 22 formation step, a Cu—Sn—Zn alloy plating layer 22 made of a Cu—Sn—Zn alloy is formed on the Zn—Ni alloy plating layer 21.
- the Cu—Sn—Zn alloy plating layer 22 is formed by electroplating. The electroplating is performed by immersing the contact surfaces 130 and 140 of the pin 13 and the box 14 on which the Zn—Ni alloy plating layer 21 is formed in a plating bath containing copper ions, tin ions and zinc ions, and energizing them.
- the plating bath preferably contains copper ions: 1 to 50 g / L, tin ions: 1 to 50 g / L, and zinc ions: 1 to 50 g / L.
- the conditions for electroplating can be set as appropriate.
- the electroplating conditions are, for example, plating bath pH: 1 to 14, plating bath temperature: 10 to 60 ° C., current density: 1 to 100 A / dm 2 , and processing time: 0.1 to 40 minutes.
- Solid lubricating coating layer 23 forming step After the step of forming the Cu—Sn—Zn alloy plating layer 22, the step of forming the solid lubricant film layer 23 is performed.
- the solid lubricant film layer 23 forming step includes an application step and a solidifying step.
- the coating step the above-described composition is coated on the Cu—Sn—Zn alloy plating layer 22.
- the solid lubricant film layer 23 is formed by solidifying the composition applied to the contact surfaces 130 and 140.
- the solventless composition can be produced, for example, by heating a binder to a molten state, adding a lubricant additive, an antirust additive and a plasticizer and kneading.
- a powder mixture in which all components are mixed in powder form may be used as the composition.
- the solvent-type composition can be produced, for example, by dissolving or dispersing a binder, a lubricant additive, an antirust additive and a plasticizer in a solvent and mixing them.
- the composition is applied to the contact surfaces 130 and 140 by a well-known method.
- the composition can be applied using a hot melt method.
- the hot melt method the composition is heated to melt the binder to a low viscosity flow state.
- the composition in a fluid state is sprayed from a spray gun having a temperature holding function.
- the composition is heated and melted in a tank equipped with a suitable stirring device, supplied to a spray head (maintained at a predetermined temperature) of a spray gun via a metering pump by a compressor, and sprayed.
- the holding temperature in the tank and the spray head is adjusted according to the melting point of the binder in the composition.
- the application method may be brush application, immersion, or the like instead of spray application.
- the heating temperature of the composition is preferably 10 to 50 ° C. higher than the melting point of the binder.
- it is preferable that at least one of the contact surfaces 130 and 140 of the pin 13 and the box 14 to which the composition is applied is heated to a temperature higher than the melting point of the base. Thereby, good coverage can be obtained.
- the composition in a solution state is applied to the contact surfaces 130 and 140 by spray coating or the like. In this case, the viscosity is adjusted so that the composition can be spray-coated in an environment of normal temperature and normal pressure.
- the solid lubricant film layer 23 is formed by solidifying the composition applied to the contact surfaces 130 and 140.
- the composition applied to the contact surfaces 130 and 140 is cooled to solidify the molten composition and form the solid lubricating coating layer 23.
- the cooling method can be performed by a known method.
- the cooling method is, for example, air cooling and air cooling.
- the composition applied to the contact surfaces 130 and 140 is dried, so that the composition is solidified and the solid lubricating coating layer 23 is formed.
- a drying method can be implemented by a well-known method. Examples of the drying method include natural drying, low-temperature air drying, and vacuum drying.
- the solidification step may be performed by rapid cooling such as a nitrogen gas and carbon dioxide cooling system.
- rapid cooling such as a nitrogen gas and carbon dioxide cooling system.
- cooling is indirectly performed from the opposite surface of the contact surfaces 130 and 140 (in the case of the box 14, the outer surface of the steel pipe 11 or the coupling 12, and in the case of the pin 13, the inner surface of the steel pipe 11).
- the pin 13 or the box 14 to which the composition is applied may be dried by heating. Heat drying can be carried out using a commercially available hot air dryer or the like. As a result, the composition is cured, and a solid lubricating coating layer 23 is formed on the Cu—Sn—Zn alloy plating layer 22.
- the conditions for the heat drying can be appropriately set in consideration of the boiling point and melting point of each component contained in the composition.
- a surface roughness forming process, a Zn—Ni alloy plating layer 21 forming process, a Cu—Sn—Zn alloy plating layer 22 forming process, and a solid are formed on at least one contact surface 130, 140 of the pin 13 and the box 14.
- the lubricating coating layer 23 forming step is performed to form the specific surface roughness, the Zn—Ni alloy plating layer 21, the Cu—Sn—Zn alloy plating layer 22 and the solid lubricating coating layer 23.
- a specific surface roughness, a Zn—Ni alloy plating layer 21, a Cu—Sn—Zn alloy plating layer 22, and a solid lubricating coating layer 23 are formed on the other contact surfaces 130 and 140 of the pin 13 and the box 14.
- a plating layer and / or a solid anticorrosion film may be formed.
- a solid anticorrosive film composed of the Zn—Ni alloy plating layer 21 and the chromate film is formed on the other contact surfaces 130 and 140 will be described.
- the above-described electroplating step is performed to form the Zn—Ni alloy plating layer 21.
- a trivalent chromate treatment is performed to form a solid anticorrosion coating.
- the trivalent chromate treatment is a treatment for forming a trivalent chromium chromate film (chromate film).
- the chromate film formed by the trivalent chromate treatment suppresses white rust on the surface of the Zn—Ni alloy plating layer 21. This improves the product appearance.
- the trivalent chromate treatment can be performed by a known method.
- the contact surfaces 130 and 140 of at least one of the pin 13 and the box 14 are immersed in the chromate treatment liquid, or the chromate treatment liquid is spray-coated on the contact surfaces 130 and 140. Thereafter, the contact surfaces 130 and 140 are washed with water.
- the contact surfaces 130 and 140 may be immersed in a chromate treatment solution, washed with water after being energized.
- a chromate treatment solution may be applied to the contact surfaces 130 and 140 and dried by heating.
- the treatment conditions for trivalent chromate can be set as appropriate.
- the manufacturing method may include a base treatment step before the surface roughness forming step, the Zn—Ni alloy plating layer 21 formation step, and the Cu—Sn—Zn alloy plating layer 22 formation step, if necessary.
- the ground treatment process is, for example, pickling and alkali degreasing. In the ground treatment process, oil and the like adhering to the contact surfaces 130 and 140 are washed.
- the contact surface of the pin is referred to as the pin surface
- the contact surface of the box is referred to as the box surface.
- % in an Example means the mass%.
- VAM21 (registered trademark) manufactured by Nippon Steel & Sumitomo Metal Corporation was used.
- VAM21 (registered trademark) is a threaded joint for pipes having an outer diameter of 24.448 cm (9-5 / 8 inch) and a wall thickness of 1.199 cm (0.472 inch).
- the steel type was 13Cr steel.
- the composition of 13Cr steel is as follows: C: 0.19%, Si: 0.25%, Mn: 0.8%, P: 0.02%, S: 0.01%, Cu: 0.04%, Ni: 0.10%, Cr: 13.0%, Mo: 0.04%, balance: Fe and impurities.
- each Zn—Ni alloy plating layer, Cu—Sn—Zn alloy plating layer, solid lubricating coating layer and solid anticorrosion coating was as follows.
- the hardness and film thickness of each Zn—Ni alloy plating layer, Cu—Sn—Zn alloy plating layer, solid lubricating coating layer, and solid anticorrosion coating were as shown in Tables 2 and 3. Note that the solid lubricating coating layer formed on the surface of the box of test number 12 was very soft, and the micro Vickers hardness could not be measured.
- Test number 1 In test number 1, the pin surface was subjected to Zn—Ni alloy plating by electroplating to form a Zn—Ni alloy plating layer.
- Zn—Ni alloy plating bath trade name “Dynedin Alloy N-PL” manufactured by Daiwa Kasei Co., Ltd. was used.
- the electroplating conditions were plating bath pH: 6.5, plating bath temperature: 25 ° C., current density: 2 A / dm 2 , and treatment time: 18 minutes.
- the composition of the Zn—Ni alloy plating layer was Zn: 85% and Ni: 15%. Further, a trivalent chromate treatment was performed on the obtained Zn—Ni alloy plating layer to form a solid anticorrosion coating.
- the trivalent chromate treatment solution Dyne Chromate TR-02 manufactured by Daiwa Kasei Co., Ltd. was used.
- the trivalent chromate treatment conditions were bath pH: 4.0, bath temperature: 25 ° C., and treatment time: 50 seconds.
- the surface roughness of arithmetic average roughness Ra and maximum height roughness Rz as shown in Table 2 was formed on the box surface by blasting.
- the blasting was sand blasting (abrasive grain Mesh100).
- a Zn—Ni alloy plating layer was formed on the surface of the box having surface roughness in the same manner as the pin.
- Cu—Sn—Zn alloy plating was performed by electroplating to form a Cu—Sn—Zn alloy plating layer.
- As the Cu—Sn—Zn alloy plating bath a plating bath manufactured by Nippon Chemical Industry Co., Ltd. was used.
- the Cu—Sn—Zn alloy plating layer was formed by electroplating.
- the electroplating conditions were plating bath pH: 14, plating bath temperature: 45 ° C., current density: 2 A / dm 2, and treatment time: 40 minutes.
- the composition of the Cu—Sn—Zn alloy plating layer was Cu: 60%, Sn: 30%, and Zn: 10%.
- a solid lubricating coating layer forming composition was applied on the Cu—Sn—Zn alloy plating layer.
- the composition for forming a solid lubricating coating layer comprises epoxy resin (22%), PTFE particles (10%), solvent (18% in total), water (40%) and other additives (including pigment) (10%). Contained. After spraying the composition for forming a solid lubricating coating layer, it was dried by heating at 90 ° C. for 5 minutes to form a solid lubricating coating layer.
- Test number 2 In Test No. 2, a Zn—Ni alloy plating layer was formed on the pin surface by electroplating.
- Zn—Ni alloy plating bath trade name “Dynedin Alloy N-PL” manufactured by Daiwa Kasei Co., Ltd. was used.
- the electroplating conditions were plating bath pH: 6.5, plating bath temperature: 25 ° C., current density: 2 A / dm 2 , and treatment time: 18 minutes.
- the composition of the Zn—Ni alloy plating layer was Zn: 85% and Ni: 15%.
- a trivalent chromate treatment was performed on the Zn—Ni alloy plating layer in the same manner as the test No. 1 pin.
- the composition for forming a solid lubricating coating layer is composed of polyamideimide resin (22%), PTFE particles (5%), solvent (18% in total), water (40%), other additives (including pigment) (15%) Contained. After spraying the composition for forming a solid lubricating coating layer, it was dried by heating at 90 ° C. for 5 minutes to form a solid lubricating coating layer.
- Test No. 3 the surface roughness, the Zn—Ni alloy plating layer, and the Cu—Sn—Zn alloy plating layer were formed on each of the pin and the box in the same manner as the test No. 1 box.
- the Cu—Sn—Zn alloy plating bath is a plating bath manufactured by Nippon Chemical Industry Co., Ltd.
- the electroplating conditions are: plating bath pH: 14, plating bath temperature: 45 ° C., current density: 2A / dm 2 and treatment time: 40 minutes.
- the composition for forming a solid lubricating coating layer was applied on the Cu—Sn—Zn alloy plating layer of the pin and the box.
- the composition for forming a solid lubricating coating layer comprises epoxy resin (22%), PTFE particles (10%), solvent (18% in total), water (40%) and other additives (including pigment) (10%). Contained. After spraying the composition for forming a solid lubricating coating layer, it was dried by heating at 90 ° C. for 5 minutes. After heat drying, a curing treatment was further performed at 210 ° C. for 20 minutes to form a solid lubricating coating layer.
- Test number 4 In test number 4, the surface was roughened by blasting the pins in the same manner as the test number 1 box. Zn-Ni alloy plating was performed by electroplating on the pin having the surface roughness to form a Zn-Ni alloy plating layer.
- Zn—Ni alloy plating bath trade name “Dynedin Alloy N-PL” manufactured by Daiwa Kasei Co., Ltd. was used.
- the electroplating conditions were plating bath pH: 6.5, plating bath temperature: 25 ° C., current density: 2 A / dm 2 , and treatment time: 18 minutes.
- the composition of the Zn—Ni alloy plating layer was Zn: 85% and Ni: 15%.
- Cu—Sn—Zn alloy plating was performed by electroplating to form a Cu—Sn—Zn alloy plating layer.
- As the Cu—Sn—Zn alloy plating bath a plating bath manufactured by Nippon Chemical Industry Co., Ltd. was used.
- the Cu—Sn—Zn alloy plating layer was formed by electroplating.
- the electroplating conditions were plating bath pH: 14, plating bath temperature: 45 ° C., current density: 2 A / dm 2, and treatment time: 40 minutes.
- the composition of the Cu—Sn—Zn alloy plating layer was Cu: 60%, Sn: 30%, and Zn: 10%.
- a solid lubricating coating layer forming composition was applied on the Cu—Sn—Zn alloy plating layer.
- the composition for forming a solid lubricating coating layer comprises epoxy resin (22%), PTFE particles (10%), solvent (18% in total), water (40%) and other additives (including pigment) (10%). Contained. After spraying the composition for forming a solid lubricating coating layer, it was dried by heating at 90 ° C. for 5 minutes to form a solid lubricating coating layer. For the box, similarly to the pin of test number 1, a Zn—Ni alloy plating layer was formed and trivalent chromate treatment was performed.
- Test No. 5 similarly to the pin of Test No. 1, a Zn—Ni alloy plating layer was formed on the pin, and trivalent chromate treatment was performed. For the box, the surface roughness, the Zn—Ni alloy plating layer, and the Cu—Sn—Zn alloy plating layer were formed in the same manner as the test number 1 box. On the Cu—Sn—Zn alloy plating layer, a composition for forming a solid lubricating coating layer was applied.
- the composition for forming a solid lubricating layer coating comprises epoxy resin (22%), PTFE particles (10%), solvent (18% in total), water (40%) and other additives (including pigment) (10%). Contained.
- the composition for forming a solid lubricating coating layer After spraying the composition for forming a solid lubricating coating layer, it was dried by heating at 90 ° C. for 5 minutes. After heat drying, a curing treatment was further performed at 190 ° C. for 20 minutes to form a solid lubricating coating layer.
- Test No. 6 similarly to the pin of Test No. 1, a Zn—Ni alloy plating layer was formed on the pin, and trivalent chromate treatment was performed.
- a surface roughness, a Zn—Ni alloy plating layer, and a solid lubricating coating layer were formed under the same conditions as in the test No. 1 box. That is, it was the same as Test No. 1 except that the Cu—Sn—Zn alloy plating layer was not formed on the box.
- Test No. 7 In Test No. 7, similarly to the pin of Test No. 1, a Zn—Ni alloy plating layer was formed on the pin, and trivalent chromate treatment was performed. For the box, the surface roughness, Cu—Sn—Zn alloy plating layer, and solid lubricant film layer were formed in the same manner as in the test No. 1 box. That is, it was the same as Test No. 1 except that the Zn—Ni alloy plating layer was not formed on the box.
- Test No. 8 similarly to the pin of Test No. 1, a Zn—Ni alloy plating layer was formed on the pin, and trivalent chromate treatment was performed.
- each step was performed in the order of a surface roughness forming step, a Cu—Sn—Zn alloy plating layer forming step, a Zn—Ni alloy plating layer forming step, and a solid lubricating coating layer forming step.
- the implementation conditions for each step were the same as in the test number 1 box. That is, the positions of the Zn—Ni alloy plating layer and the Cu—Sn—Zn alloy plating layer of the box of test number 1 were changed with respect to the box to form each layer.
- the Cu—Sn—Zn alloy plating layer was originally formed at the position where the Zn—Ni alloy plating layer was to be formed, and the Zn—Ni—Zn alloy plating layer was originally formed at the position where the Cu—Sn—Zn alloy plating layer was to be formed.
- a Ni alloy plating layer was formed. Therefore, in Table 3, the column of Zn—Ni alloy plating layer describes the Cu—Sn—Zn alloy plating layer, and the column of Cu—Sn—Zn alloy plating layer describes the Zn—Ni alloy plating layer.
- Test number 9 In Test No. 9, a Zn—Ni alloy plating layer was formed on the pin in the same manner as the Pin of Test No. 1, and trivalent chromate treatment was performed. For the box, a Zn—Ni alloy plating layer, a Cu—Sn—Zn alloy plating layer, and a solid lubricating coating layer were formed under the same conditions as in the test No. 1 box. That is, the surface roughness of test number 1 was not formed on the box.
- Test number 10 In test No. 10, a Zn—Ni alloy plating layer was formed on the pin in the same manner as the test No. 1 pin, and trivalent chromate treatment was performed. For the box, the surface roughness, the Zn—Ni alloy plating layer, and the Cu—Sn—Zn alloy plating layer were formed in the same manner as the test number 1 box. On the Cu—Sn—Zn alloy plating layer, a composition for forming a solid lubricating coating layer was applied. The composition for forming a solid lubricating coating layer is composed of epoxy resin (22%), MoS 2 particles (10%), solvent (18% in total), water (40%) and other additives (including pigment) (10%) Contained. After spraying the composition for forming a solid lubricating coating layer, it was dried by heating at 90 ° C. for 5 minutes to form a solid lubricating coating layer.
- Test number 11 In Test No. 11, similarly to the pin of Test No. 1, a Zn—Ni alloy plating layer was formed on the pin, and trivalent chromate treatment was performed. For the box, the surface roughness, the Zn—Ni alloy plating layer, and the Cu—Sn—Zn alloy plating layer were formed in the same manner as the test number 1 box. On the Cu—Sn—Zn alloy plating layer, a composition for forming a solid lubricating coating layer was applied.
- the composition for forming the solid lubricating coating layer is composed of polyamideimide resin (22%), graphite particles (10%), solvent (total 18%), water (40%) and other additives (including pigment) (10%). Contained. After spraying the composition for forming a solid lubricating coating layer, it was dried by heating at 90 ° C. for 5 minutes to form a solid lubricating coating layer.
- Test No. 12 the pin surface was subjected to Zn—Ni alloy plating by electroplating to form a Zn—Ni alloy plating layer.
- Zn—Ni alloy plating bath trade name “Dynedin Alloy N-PL” manufactured by Daiwa Kasei Co., Ltd. was used.
- the electroplating conditions were plating bath pH: 6.5, plating bath temperature: 25 ° C., current density: 2 A / dm 2 , and treatment time: 18 minutes.
- the composition of the Zn—Ni alloy plating layer was Zn: 85% and Ni: 15%.
- a trivalent chromate treatment was performed on the obtained Ni—Zn alloy plating layer to form a solid anticorrosion coating.
- the trivalent chromate treatment solution Dyne Chromate TR-02 manufactured by Daiwa Kasei Co., Ltd. was used.
- the trivalent chromate treatment conditions were bath pH: 4.0, bath temperature: 25 ° C., and treatment time: 50 seconds.
- the surface roughness of arithmetic average roughness Ra and maximum height roughness Rz as shown in Table 3 was formed on the box surface by blasting.
- the blasting was sand blasting (abrasive grain Mesh100).
- a Zn—Ni alloy plating layer was formed on the surface of the box having surface roughness in the same manner as the pin.
- Cu—Sn—Zn alloy plating was performed by electroplating to form a Cu—Sn—Zn alloy plating layer.
- As the Cu—Sn—Zn alloy plating bath a plating bath manufactured by Nippon Chemical Industry Co., Ltd. was used.
- the Cu—Sn—Zn alloy plating layer was formed by electroplating.
- the electroplating conditions were plating bath pH: 14, plating bath temperature: 45 ° C., current density: 2 A / dm 2, and treatment time: 40 minutes.
- the composition of the Cu—Sn—Zn alloy plating layer was Cu: 60%, Sn: 30%, and Zn: 10%. Further, a solid lubricating coating layer forming composition was applied on the Cu—Sn—Zn alloy plating layer.
- the composition for forming a solid lubricating coating layer was a polyethylene homopolymer (COWAX TM PE520: 9% manufactured by CLARIANT), carnauba wax (15%), zinc stearate (15%), liquid polyalkyl methacrylate (VISCOPLEX TM manufactured by ROHMAX).
- the method for applying the composition for forming a solid lubricating coating layer was as follows. The composition for forming a solid lubricating coating layer was heated to 150 ° C.
- the surface of the box subjected to the above-mentioned base treatment was preheated to 130 ° C. by induction heating.
- the molten solid lubricating coating layer forming composition was spray applied and then cooled to form a solid lubricating coating layer.
- seizure resistance was evaluated by two types of repeated fastening tests. An evaluation test using hand tight and a misalignment resistance evaluation test.
- Torque-on-shoulder resistance ⁇ T ′ was measured using the pins and boxes of Test No. 1 to Test No. 12. Specifically, screws were tightened at a tightening speed of 10 rpm and a tightening torque of 42.8 kN ⁇ m. Torque was measured during screw tightening, and a torque chart as shown in FIG. 6 was created. Ts in FIG. 6 represents a shouldering torque. MTV in FIG. 6 represents a torque value at which the line segment L and the torque chart intersect. The line segment L is a straight line having the same inclination as the inclination of the linear region in the torque chart after shouldering and having a rotational speed 0.2% higher than that of the linear region.
- API standard dope is a compound grease for oil well pipe screws manufactured according to API Bull 5A2.
- the composition of API standard dope is based on grease and specified to contain graphite powder: 18 ⁇ 1.0%, lead powder: 30.5 ⁇ 0.6%, and copper flake: 3.3 ⁇ 0.3% ing. In this component range, it is understood that the compound grease for oil well pipe screws has equivalent performance.
- the threaded joints for pipes of test numbers 1 to 5 have an arithmetic average roughness Ra of 1 to 8 ⁇ m and a maximum height roughness on at least one contact surface of the pin and box.
- Rz had a surface roughness of 10 to 40 ⁇ m, a Zn—Ni alloy plating layer, a Cu—Sn—Zn alloy plating layer, and a solid lubricating coating layer.
- the stacking order of each layer was also appropriate. Therefore, seizure did not occur and excellent seizure resistance was exhibited even when there was hand tight, when misalignment was involved, and even when screw tightening and unscrewing were repeated 10 times. Further, the torque on shoulder resistance ⁇ T ′ exceeded 100.
- the result of the salt spray test was “no rust for 4000 hours”, indicating excellent corrosion resistance.
- test No. 1 to No. 3 box had a solid lubricating coating layer hardness of 15 or more in micro Vickers. Therefore, the seizure resistance was higher than that of test number 5.
- the Zn-Ni alloy plating layer was not formed on the surface of the test No. 7 box. Therefore, the seizure resistance was low. Further, in the salt spray test, rust was generated after 500 hours (pitching), and the corrosion resistance was low.
- the stacking order of the Zn—Ni alloy plating layer and the Cu—Sn—Zn alloy plating layer was reversed. Therefore, the seizure resistance was low. Further, in the salt spray test, rust was generated after 750 hours (pitching), and the corrosion resistance was low.
- the box surface of test number 9 was not blasted. Therefore, both the arithmetic average roughness Ra and the maximum height roughness Rz were below the range of the present invention, and the seizure resistance was low.
- the box surface of Test No. 10 had a solid lubricating coating layer containing no fluororesin particles. Therefore, the torque on shoulder resistance ⁇ T ′ was less than 100.
- the box surface of Test No. 11 had a solid lubricating coating layer containing no fluororesin particles. Therefore, the torque on shoulder resistance ⁇ T ′ was less than 100.
- the surface of the box of Test No. 12 contained a solid lubricating coating layer containing neither an epoxy resin nor a polyamideimide resin. Therefore, the torque on shoulder resistance ⁇ T ′ was less than 100. This is probably because the friction coefficient of the solid lubricating coating layer was low.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Geochemistry & Mineralogy (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Electroplating Methods And Accessories (AREA)
- Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
- Lubricants (AREA)
- Chemically Coating (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
従来の管用ねじ継手では、ミスアライメントが生じない場合の耐焼付き性は十分であっても、耐ミスアライメント性が不十分である場合がある。ミスアライメントとは、図1に示す状況を指す。図1を参照して、鋼管1の先端にはカップリング2が取り付けられる。鋼管1の他方の先端には、ピン3が形成される。別の鋼管4の先端には、カップリング5が取り付けられる。カップリング5の内周面にはボックスが形成される。鋼管1のピン3がカップリング5に挿入され、ねじ締めされる。これにより、鋼管1は、鋼管4と連結する。ねじ締めの際、鋼管1の長手方向の中心軸と鋼管4の長手方向の中心軸とが揃わず、交叉することがある。これをミスアライメントという。図1では交叉角がθ°のミスアライメントを示す。ミスアライメントが生じた状態でねじ締めを実施すれば、ミスアライメント無しの場合と比較して、より焼付きを生じやすい。
鋼管同士をねじ締めする際、ねじ締めを終了する最適なトルクがあらかじめ決められている。図2は、ショルダー部を有する管用ねじ継手をねじ締めした際の、鋼管の回転数とトルクとの関係を示す図である。図2を参照して、管用ねじ継手をねじ締めすれば、初めは、回転数に比例してトルクが上昇する。この時のトルクの上昇率は低い。さらにねじ締めをすれば、ショルダー部同士が接触する。この時のトルクを、ショルダリングトルクという。ショルダリングトルクに達した後、さらにねじ締めをすれば、再び回転数に比例してトルクが上昇する。この時のトルクの上昇率は高い。トルクが所定の数値(締結トルク)に達した時点で、ねじ締めは完了する。ねじ締めの際のトルクが、締結トルクに達していれば、金属シール部同士が適切な面圧で干渉し合う。この場合、管用ねじ継手の気密性が高まる。
Zn-Ni合金を用いれば、管用ねじ継手の耐食性を高めることができる。亜鉛(Zn)は鉄(Fe)、ニッケル(Ni)及びクロム(Cr)と比較して卑な金属である。したがって、亜鉛(Zn)を含むめっき層を接触表面に形成すれば、鋼材よりも優先的にめっき層が腐食される(犠牲防食)。これにより、管用ねじ継手の耐食性が高まる。
本実施形態において、Zn-Ni合金めっき層、Cu-Sn-Zn合金めっき層及び固体潤滑被膜層の積層順は重要である。特に、Zn-Ni合金めっき層とCu-Sn-Zn合金めっき層との積層順は重要である。次に示す表1は、後述の実施例のデータを一部抜粋したものである。
管用ねじ継手は、ピン及びボックスを備える。図3は、本実施形態による管用ねじ継手の構成を示す図である。図3を参照して、管用ねじ継手は、鋼管11とカップリング12とを備える。鋼管11の両端には、外面に雄ねじ部を有するピン13が形成される。カップリング12の両端には、内面に雌ねじ部を有するボックス14が形成される。ピン13とボックス14とをねじ締めすることによって、鋼管11の端に、カップリング12が取り付けられる。一方で、カップリング12を使用せず、鋼管11の一方の端をピン13とし、他方の端をボックス14とした、インテグラル形式の管用ねじ継手もある。本実施形態の管用ねじ継手は、カップリング方式及びインテグラル形式の両方の管用ねじ継手に使用できる。
算術平均粗さRaが1~8μm、かつ最大高さ粗さRzが10~40μmの表面粗さ(特定表面粗さ)を、ピン13及びボックス14の少なくとも一方の接触表面130,140に形成する。特定表面粗さは、ブラスト加工により形成される。この場合、接触表面130,140は凹凸を有する。したがって、アンカー効果により後述のZn-Ni合金めっき層21の密着性が高まる。Zn-Ni合金めっき層21の密着性が高まれば、管用ねじ継手の耐ミスアライメント性が高まる。
特定表面粗さを有する接触表面130,140上に、Zn-Ni合金からなるZn-Ni合金めっき層21を形成する。Zn-Ni合金めっき層21は、たとえば電気めっきにより形成する。
Zn-Ni合金めっき層21上に、Cu-Sn-Zn合金めっき層22を形成する。Cu-Sn-Zn合金めっき層22は、たとえば電気めっきにより形成する。
Cu-Sn-Zn合金めっき層22上に、固体潤滑被膜層23を形成する。固体潤滑被膜層23により、管用ねじ継手の潤滑性が高まる。固体潤滑被膜層23は、結合剤及び潤滑添加剤を含む。本実施形態において、固体潤滑被膜層23が含有する結合剤は、エポキシ樹脂及びポリアミドイミド樹脂からなる群から選ばれる少なくとも1種以上である。本実施形態において、固体潤滑被膜層23は、フッ素樹脂粒子を含有する。固体潤滑被膜層23は、必要に応じて、溶媒及び他の成分を含有してもよい。
結合剤は、潤滑添加剤を固体潤滑被膜層23中に結合させる。本実施形態において、結合剤は、エポキシ樹脂及びポリアミドイミド樹脂からなる群から選ばれる少なくとも1種以上である。本実施形態において、さらに別の結合剤を含有してもよい。
固体潤滑被膜層23は、フッ素樹脂粒子を含有する。
(1)滑り易い特定の結晶構造、たとえば、六方晶層状結晶構造を有することにより潤滑性を示すもの(たとえば、黒鉛、酸化亜鉛、窒化硼素)、
(2)結晶構造に加えて反応性元素を有することにより潤滑性を示すもの(たとえば、二硫化モリブデン、二硫化タングステン、フッ化黒鉛、硫化スズ、硫化ビスマス)、
(3)化学反応性により潤滑性を示すもの(たとえば、チオ硫酸塩化合物)、
(4)摩擦応力下での塑性または粘塑性挙動により潤滑性を示すもの(たとえば、ポリアミド)、及び
(5)液状又はグリス状であり、接触面の境界に存在して面と面との直接接触を防ぐことにより潤滑性を示すもの(たとえば、パーフルオロポリエーテル(PFPE))。
本実施形態の固体潤滑被膜層23は、上記成分以外に、防錆添加剤、可塑剤、界面活性剤、着色剤、酸化防止剤及び摺動性の調整のための無機粉末等の少量添加成分を含有してもよい。無機粉末は例えば、二酸化チタンと酸化ビスマスである。その他の成分の含有量はたとえば、合計で5質量%以下である。組成物はさらに、極圧剤、液状油剤なども2質量%以下のごく少量であれば、含有することができる。固体潤滑被膜層23中のその他の成分の含有量はたとえば、合計で10質量%以下である。
上述の管用ねじ継手は、ピン13及びボックス14の少なくとも一方の接触表面130,140に特定表面粗さを有する。管用ねじ継手はさらに、特定表面粗さを有する接触表面130,140に、Zn-Ni合金めっき層21、Cu-Sn-Zn合金めっき層22及び固体潤滑被膜層23を備える。管用ねじ継手はさらに、ピン13及びボックス14の他方の接触表面130、140に、固体防食被膜を備えてもよい。上述したように、管用ねじ継手は実際に使用するまでの間に、長期間保管される場合がある。この場合、固体防食被膜が形成されていれば、ピン13又はボックス14の防食性が高まる。
管用ねじ継手の母材の組成は、特に限定されない。母材はたとえば、炭素鋼、ステンレス鋼及び合金鋼等である。合金鋼の中でも、Cr、Ni及びMo等の合金元素を含んだ二相ステンレス鋼及びNi合金等の高合金鋼は耐食性が高い。そのため、これらの高合金鋼を母材に使用すれば、硫化水素や二酸化炭素等を含有する腐食環境において、優れた耐食性が得られる。
本実施形態による管用ねじ継手の製造方法は、表面粗さ形成工程と、Zn-Ni合金めっき層形成工程と、Cu-Sn-Zn合金めっき層形成工程と、固体潤滑被膜層形成工程とを備える。各工程は、表面粗さ形成工程、Zn-Ni合金めっき層形成工程、Cu-Sn-Zn合金めっき層形成工程、及び、固体潤滑被膜層形成工程の順に実施される。
表面粗さ形成工程では、ピン13及びボックス14の少なくとも一方の接触表面130,140に、特定表面粗さを形成する。表面粗さ形成工程では、ブラスト装置を用いてブラスト加工することにより特定表面粗さを形成する。
Zn-Ni合金めっき層21形成工程では、特定表面粗さを形成した接触表面130,140に、Zn-Ni合金からなるZn-Ni合金めっき層21を形成する。Zn-Ni合金めっき層21は、電気めっきにより形成される。電気めっきは、亜鉛イオン及びニッケルイオンを含有するめっき浴に、表面粗さを形成したピン13及びボックス14の少なくとも一方の接触表面130,140を浸漬し、通電することによって行う。めっき浴は市販のものを使用できる。めっき浴には、好ましくは、亜鉛イオン:1~100g/L及びニッケルイオン:1~50g/Lが含有される。電気めっきの条件は適宜設定できる。電気めっきの条件はたとえば、めっき浴pH:1~10、めっき浴温度:10~60℃、電流密度:1~100A/dm2、及び、処理時間:0.1~30分である。
Cu-Sn-Zn合金めっき層22形成工程では、Zn-Ni合金めっき層21上に、Cu-Sn-Zn合金からなるCu-Sn-Zn合金めっき層22を形成する。Cu-Sn-Zn合金めっき層22は、電気めっきにより形成される。電気めっきは、銅イオン、錫イオン及び亜鉛イオンを含有するめっき浴にピン13及びボックス14の、Zn-Ni合金めっき層21を形成した接触表面130,140を浸漬し、通電することによって行う。めっき浴には、好ましくは、銅イオン:1~50g/L、錫イオン:1~50g/L及び亜鉛イオン:1~50g/Lが含有される。電気めっきの条件は適宜設定できる。電気めっきの条件はたとえば、めっき浴pH:1~14、めっき浴温度:10~60℃、電流密度:1~100A/dm2、及び、処理時間:0.1~40分である。
Cu-Sn-Zn合金めっき層22形成工程の後に、固体潤滑被膜層23形成工程を実施する。固体潤滑被膜層23形成工程では、塗布工程と固化工程とを含む。塗布工程では、Cu-Sn-Zn合金めっき層22上に、上述の組成物を塗布する。固化工程では、接触表面130,140に塗布された組成物を固化して固体潤滑被膜層23を形成する。
塗布工程では、組成物を周知の方法で接触表面130,140に塗布する。無溶剤型の組成物の場合、ホットメルト法を用いて組成物を塗布できる。ホットメルト法では、組成物を加熱して結合剤を溶融させ、低粘度の流動状態にする。流動状態の組成物を、温度保持機能を有するスプレーガンから噴霧することにより行われる。組成物は、適当な撹拌装置を備えたタンク内で加熱して溶融され、コンプレッサーにより計量ポンプを経てスプレーガンの噴霧ヘッド(所定温度に保持)に供給されて、噴霧される。タンク内と噴霧ヘッドの保持温度は組成物中の結合剤の融点に応じて調整される。塗布方法は、スプレー塗布に替えて、刷毛塗り及び浸漬等でもよい。組成物の加熱温度は、結合剤の融点より10~50℃高い温度とすることが好ましい。組成物を塗布する際、組成物が塗布されるピン13及びボックス14の少なくとも一方の接触表面130,140は、基剤の融点より高い温度に加熱しておくことが好ましい。それにより良好な被覆性を得ることができる。溶剤型の組成物の場合、溶液状態となった組成物をスプレー塗布等で接触表面130,140に塗布する。この場合、組成物を、常温及び常圧の環境下で、スプレー塗布できるよう粘度を調整する。
固化工程では、接触表面130,140に塗布された組成物を固化して固体潤滑被膜層23を形成する。無溶剤型の組成物の場合、接触表面130,140に塗布された組成物を冷却することにより、溶融状態の組成物が固化して固体潤滑被膜層23が形成される。冷却方法は周知の方法で実施できる。冷却方法はたとえば、大気放冷及び空冷である。溶剤型の組成物の場合、接触表面130,140に塗布された組成物を乾燥させることにより、組成物が固化して固体潤滑被膜層23が形成される。乾燥方法は周知の方法で実施できる。乾燥方法はたとえば、自然乾燥、低温送風乾燥及び真空乾燥である。固化工程は、窒素ガス及び炭酸ガス冷却システム等の急速冷却によって実施してもよい。急速冷却を実施する場合、接触表面130,140の反対面(ボックス14の場合は鋼管11又はカップリング12の外面、ピン13の場合は鋼管11の内面)から間接的に冷却する。これにより、固体潤滑被膜層23の急速冷却による劣化を抑制できる。
上述のとおり、ピン13及びボックス14の少なくとも一方の接触表面130,140に、表面粗さ形成工程、Zn-Ni合金めっき層21形成工程、Cu-Sn-Zn合金めっき層22形成工程、及び固体潤滑被膜層23形成工程を実施して、特定表面粗さ、Zn-Ni合金めっき層21、Cu-Sn-Zn合金めっき層22及び固体潤滑被膜層23を形成する。
製造方法は、必要に応じて、表面粗さ形成工程、Zn-Ni合金めっき層21形成工程及びCu-Sn-Zn合金めっき層22形成工程の前に下地処理工程を備えてもよい。下地処理工程はたとえば、酸洗及びアルカリ脱脂である。下地処理工程では、接触表面130,140に付着した油分等を洗浄する。
試験番号1では、ピン表面に対し、電気めっきによりZn-Ni合金めっきを実施して、Zn-Ni合金めっき層を形成した。Zn-Ni合金めっき浴は、大和化成株式会社製の商品名ダインジンアロイN-PLを使用した。電気めっきの条件は、めっき浴pH:6.5、めっき浴温度:25℃、電流密度:2A/dm2、及び、処理時間:18分であった。Zn-Ni合金めっき層の組成は、Zn:85%及びNi:15%であった。さらに、得られたZn-Ni合金めっき層上に、三価クロメート処理を実施して固体防食被膜を形成した。三価クロメート処理液は、大和化成株式会社製の商品名ダインクロメートTR-02を使用した。三価クロメート処理条件は、浴pH:4.0、浴温度:25℃、及び処理時間:50秒であった。
試験番号2では、ピン表面に対し、電気めっきによりZn-Ni合金めっき層を形成した。Zn-Ni合金めっき浴は、大和化成株式会社製の商品名ダインジンアロイN-PLを使用した。電気めっきの条件は、めっき浴pH:6.5、めっき浴温度:25℃、電流密度:2A/dm2、及び、処理時間:18分であった。Zn-Ni合金めっき層の組成は、Zn:85%及びNi:15%であった。Zn-Ni合金めっき層上に、試験番号1のピンと同様に、三価クロメート処理を実施した。
試験番号3では、ピン及びボックスのそれぞれに、試験番号1のボックスと同様に、表面粗さ及びZn-Ni合金めっき層及びCu-Sn-Zn合金めっき層を形成した。ボックスにおいては、Cu-Sn-Zn合金めっき浴は、日本化学産業株式会社製のめっき浴を用い、電気めっきの条件は、めっき浴pH:14、めっき浴温度:45℃、電流密度:2A/dm2及び、処理時間:40分であった。ピン及びボックスのCu-Sn-Zn合金めっき層の上に、固体潤滑被膜層形成用組成物を塗布した。固体潤滑被膜層形成用組成物は、エポキシ樹脂(22%)、PTFE粒子(10%)、溶剤(合計18%)、水(40%)及びその他添加物(顔料を含む)(10%)を含有した。固体潤滑被膜層形成用組成物をスプレー塗布した後、90℃で5分間加熱乾燥を行った。加熱乾燥後、さらに210℃で20分間の硬化処理を行い、固体潤滑被膜層を形成した。
試験番号4では、ピンに対して、試験番号1のボックスと同様に、ブラスト加工を実施して表面粗さを形成した。表面粗さを形成したピンに対して、電気めっきによりZn-Ni合金めっきを実施して、Zn-Ni合金めっき層を形成した。Zn-Ni合金めっき浴は、大和化成株式会社製の商品名ダインジンアロイN-PLを使用した。電気めっきの条件は、めっき浴pH:6.5、めっき浴温度:25℃、電流密度:2A/dm2、及び、処理時間:18分であった。Zn-Ni合金めっき層の組成は、Zn:85%及びNi:15%であった。Zn-Ni合金めっき層の上に、電気めっきによりCu-Sn-Zn合金めっきを実施して、Cu-Sn-Zn合金めっき層を形成した。Cu-Sn-Zn合金めっき浴は、日本化学産業株式会社製のめっき浴を用いた。Cu-Sn-Zn合金めっき層は電気めっきにより形成された。電気めっきの条件は、めっき浴pH:14、めっき浴温度:45℃、電流密度:2A/dm2及び、処理時間:40分であった。Cu-Sn-Zn合金めっき層の組成は、Cu:60%、Sn:30%、Zn:10%であった。さらに、Cu-Sn-Zn合金めっき層の上に、固体潤滑被膜層形成用組成物を塗布した。固体潤滑被膜層形成用組成物は、エポキシ樹脂(22%)、PTFE粒子(10%)、溶剤(合計18%)、水(40%)及びその他添加物(顔料を含む)(10%)を含有した。固体潤滑被膜層形成用組成物をスプレー塗布した後、90℃で5分間加熱乾燥を行い、固体潤滑被膜層を形成した。ボックスに対しては、試験番号1のピンと同様に、Zn-Ni合金めっき層を形成し、三価クロメート処理を実施した。
試験番号5では、ピンに対して、試験番号1のピンと同様に、Zn-Ni合金めっき層を形成し、三価クロメート処理を実施した。ボックスに対しては、試験番号1のボックスと同様に、表面粗さ、Zn-Ni合金めっき層、及びCu-Sn-Zn合金めっき層を形成した。Cu-Sn-Zn合金めっき層の上に、固体潤滑被膜層形成用組成物を塗布した。固体潤滑層被膜形成用組成物は、エポキシ樹脂(22%)、PTFE粒子(10%)、溶剤(合計18%)、水(40%)及びその他添加物(顔料を含む)(10%)を含有した。固体潤滑被膜層形成用組成物をスプレー塗布した後、90℃で5分間加熱乾燥を行った。加熱乾燥後、さらに190℃で20分間の硬化処理を行い、固体潤滑被膜層を形成した。
試験番号6では、ピンに対して、試験番号1のピンと同様に、Zn-Ni合金めっき層を形成し、三価クロメート処理を実施した。ボックスに対しては、試験番号1のボックスと同じ条件で、表面粗さ、Zn-Ni合金めっき層、及び固体潤滑被膜層を形成した。つまり、ボックスに対してCu-Sn-Zn合金めっき層を形成しなかった点以外は、試験番号1と同様であった。
試験番号7では、ピンに対して、試験番号1のピンと同様に、Zn-Ni合金めっき層を形成し、三価クロメート処理を実施した。ボックスに対しては、試験番号1のボックスと同様に、表面粗さ、Cu-Sn-Zn合金めっき層、及び固体潤滑被膜層を形成した。つまり、ボックスに対してZn-Ni合金めっき層を形成しなかった点以外は、試験番号1と同様であった。
試験番号8では、ピンに対して、試験番号1のピンと同様に、Zn-Ni合金めっき層を形成し、三価クロメート処理を実施した。ボックスに対しては、表面粗さ形成工程、Cu-Sn-Zn合金めっき層形成工程、Zn-Ni合金めっき層形成工程、及び固体潤滑被膜層形成工程の順に、各工程を実施した。各工程の実施条件は、試験番号1のボックスと同じであった。つまり、ボックスに対して、試験番号1のボックスのZn-Ni合金めっき層とCu-Sn-Zn合金めっき層との位置を入替えて、各層を形成した。試験番号8では、本来Zn-Ni合金めっき層が形成されるべき位置にCu-Sn-Zn合金めっき層が形成され、本来Cu-Sn-Zn合金めっき層が形成されるべき位置に、Zn-Ni合金めっき層が形成された。そのため、表3中、Zn-Ni合金めっき層の欄にはCu-Sn-Zn合金めっき層について、Cu-Sn-Zn合金めっき層の欄にはZn-Ni合金めっき層について記載する。
試験番号9では、ピンに対して、試験番号1のピンと同様に、Zn-Ni合金めっき層を形成し、三価クロメート処理を実施した。ボックスに対しては、試験番号1のボックスと同じ条件で、Zn-Ni合金めっき層、Cu-Sn-Zn合金めっき層、及び固体潤滑被膜層を形成した。つまりボックスに対しては、試験番号1の表面粗さを形成しなかった。
試験番号10では、ピンに対して、試験番号1のピンと同様に、Zn-Ni合金めっき層を形成し、三価クロメート処理を実施した。ボックスに対しては、試験番号1のボックスと同様に、表面粗さ、Zn-Ni合金めっき層、Cu-Sn-Zn合金めっき層を形成した。Cu-Sn-Zn合金めっき層の上に、固体潤滑被膜層形成用組成物を塗布した。固体潤滑被膜層形成用組成物は、エポキシ樹脂(22%)、MoS2粒子(10%)、溶剤(合計18%)、水(40%)及びその他添加物(顔料を含む)(10%)を含有した。固体潤滑被膜層形成用組成物をスプレー塗布した後、90℃で5分間加熱乾燥を行い、固体潤滑被膜層を形成した。
試験番号11では、ピンに対して、試験番号1のピンと同様に、Zn-Ni合金めっき層を形成し、三価クロメート処理を実施した。ボックスに対しては、試験番号1のボックスと同様に、表面粗さ、Zn-Ni合金めっき層、Cu-Sn-Zn合金めっき層を形成した。Cu-Sn-Zn合金めっき層の上に、固体潤滑被膜層形成用組成物を塗布した。固体潤滑被膜層形成用組成物は、ポリアミドイミド樹脂(22%)、黒鉛粒子(10%)、溶剤(合計18%)、水(40%)及びその他添加物(顔料を含む)(10%)を含有した。固体潤滑被膜層形成用組成物をスプレー塗布した後、90℃で5分間加熱乾燥を行い、固体潤滑被膜層を形成した。
試験番号12では、ピン表面に対し、電気めっきによりZn-Ni合金めっきを実施して、Zn-Ni合金めっき層を形成した。Zn-Ni合金めっき浴は、大和化成株式会社製の商品名ダインジンアロイN-PLを使用した。電気めっきの条件は、めっき浴pH:6.5、めっき浴温度:25℃、電流密度:2A/dm2、及び、処理時間:18分であった。Zn-Ni合金めっき層の組成は、Zn:85%及びNi:15%であった。さらに、得られたNi-Zn合金めっき層上に、三価クロメート処理を実施して固体防食被膜を形成した。三価クロメート処理液は、大和化成株式会社製の商品名ダインクロメートTR-02を使用した。三価クロメート処理条件は、浴pH:4.0、浴温度:25℃、及び処理時間:50秒であった。
締結性能は、耐焼付き性及びトルクオンショルダー抵抗ΔT’について評価した。
耐焼付き性は、2種類の繰返し締結試験により評価した。ハンドタイトによる評価試験、及び、耐ミスアライメント性評価試験である。
試験番号1~試験番号12のピン及びボックスを用いて、ハンドタイト(人力で締結する状態)により、締結初期にねじがかみ合うまで締結した。ハンドタイトでの締結後、パワートングでねじ締め及びねじ戻しを繰り返し、耐焼付き性を評価した。ねじ締め及びねじ戻しを1回行うごとに、ピン表面及びボックス表面を目視により観察した。目視観察により、焼付きの発生状況を確認した。焼付きが軽微であり、回復可能な場合には、焼付き疵を補修して試験を続行した。回復不能な焼付きを生ずることなく、ねじ締め及びねじ戻しができた回数を測定した。結果を表4の「ハンドタイト」欄に示す。表4中、「20<」は、ねじ締め及びねじ戻しができた回数が20回を超えたことを意味する。
試験番号1~試験番号12のピン及びボックスを用いて、ハンドタイトを行わず、最初からパワートングで締結した。そのため、ミスアライメントを伴うねじ締め及びねじ戻しを繰り返し、耐ミスアライメント性を評価した。ミスアライメントの交叉角θは5°であった。ねじ締め及びねじ戻しの締付け速度は10rpm、締付けトルクは42.8kN・mであった。ねじ締め及びねじ戻しを1回行うごとに、ピン表面及びボックス表面を目視により観察した。目視観察により、焼付きの発生状況を確認した。焼付きが軽微であり、回復可能な場合には、焼付き疵を補修して試験を続行した。回復不能な焼付きを生ずることなく、ねじ締め及びねじ戻しができた回数を測定した。結果を表4に示す。表4中、「20<」は、ねじ締め及びねじ戻しができた回数が20回を超えたことを意味する。
試験番号1~試験番号12のピン及びボックスを用いて、トルクオンショルダー抵抗ΔT’を測定した。具体的には、締付け速度10rpm、締付けトルク42.8kN・mでねじ締めを行った。ねじ締めの際にトルクを測定し、図6に示す様なトルクチャートを作成した。図6中のTsは、ショルダリングトルクを表す。図6中のMTVは、線分Lと、トルクチャートとが交わるトルク値を表す。線分Lは、ショルダリング後のトルクチャートにおける線形域の傾きと同じ傾きを持ち、同線形域と比べて回転数が0.2%多い直線である。通常、トルクオンショルダー抵抗ΔT’を測定する場合には、Ty(イールドトルク)を使用する。しかしながら、本実施例では、イールドトルク(ショルダリング後におけるトルクチャートにおける、線形域と非線形域との境界)が不明瞭であった。そのため、線分Lを用いて、MTVを規定した。MTVとTsとの差分を、トルクオンショルダー抵抗ΔT’とした。トルクオンショルダー抵抗ΔT’は、試験番号1の固体潤滑被膜層の代わりにAPI規格ドープを使用した際の数値を基準(100)として、相対値として求めた。結果を表4に示す。
[塩水噴霧試験]
試験番号1~試験番号12のボックス表面に対して、塩水噴霧試験を実施した。塩水噴霧試験はJIS Z2371(2015)に記載された方法に基づいて実施した。試験片の大きさは70mm×150mmであり、厚さは1mmであった。目視観察により各試験番号の試験片表面に赤錆が発生した時間を計測した。結果を表4に示す。なお、試験時間は、最大4000時間とした。1500時間以上錆びが発生しなければ、長期保管時の防錆性において問題ないと判断した。
表2~表4を参照して、試験番号1~試験番号5の管用ねじ継手は、ピン及びボックスの少なくとも一方の接触表面に、算術平均粗さRaが1~8μm、かつ最大高さ粗さRzが10~40μmの表面粗さ、Zn-Ni合金めっき層、Cu-Sn-Zn合金めっき層、及び、固体潤滑被膜層を有した。また、各層の積層順も適切であった。そのため、ハンドタイトがある場合も、ミスアライメントを伴う場合も、ねじ締め及びねじ戻しを10回繰り返しても、焼付きが発生せず、優れた耐焼付き性を示した。さらに、トルクオンショルダー抵抗ΔT’が100を超えた。さらに、塩水噴霧試験の結果が「4000時間錆び無し」となり、優れた耐食性を示した。
14 ボックス
15 雄ねじ部
16、19 金属シール部
17、18 ショルダー部
20 雌ねじ部
21 Zn-Ni合金めっき層
22 Cu-Sn-Zn合金めっき層
23 固体潤滑被膜層
130、140 接触表面
Claims (6)
- ピン及びボックスを備える管用ねじ継手であって、
前記ピン及び前記ボックスは、ねじ部及びねじ無し金属接触部を有する接触表面を備え、
前記ピン及び前記ボックスの少なくとも一方の前記接触表面は、算術平均粗さRaが1~8μm、かつ最大高さ粗さRzが10~40μmの表面粗さを有し、
前記管用ねじ継手は、前記表面粗さを有する前記接触表面に、Zn-Ni合金からなるZn-Ni合金めっき層と、
前記Zn-Ni合金めっき層上に、Cu-Sn-Zn合金からなるCu-Sn-Zn合金めっき層と、
前記Cu-Sn-Zn合金めっき層上に、固体潤滑被膜層とを備え、
前記固体潤滑被膜層は、エポキシ樹脂及びポリアミドイミド樹脂からなる群から選ばれる少なくとも1種以上、及び、フッ素樹脂粒子を含有する、管用ねじ継手。 - 請求項1に記載の管用ねじ継手であって、
前記Zn-Ni合金めっき層の硬度がマイクロビッカースで300以上、かつ、前記Zn-Ni合金めっき層の厚さが5~20μmである、管用ねじ継手。 - 請求項1又は請求項2に記載の管用ねじ継手であって、
前記Cu-Sn-Zn合金めっき層の硬度がマイクロビッカースで500以上、かつ、前記Cu-Sn-Zn合金めっき層の厚さが5~20μmである、管用ねじ継手。 - 請求項1~請求項3のいずれか1項に記載の管用ねじ継手であって、
前記固体潤滑被膜層の硬度がマイクロビッカースで15~25、かつ、前記固体潤滑被膜層の厚さが10~40μmである、管用ねじ継手。 - 請求項1~請求項4のいずれか1項に記載の管用ねじ継手であって、
前記フッ素樹脂粒子が、ポリテトラフルオロエチレン、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(4.6フッ化)、テトラフルオロエチレン・エチレン共重合体、ポリビニリデンフルオライド(2フッ化)、及びポリクロロトリフルオロエチレン(3フッ化)からなる群から選択される1種又は2種以上である、管用ねじ継手。 - ピン及びボックスを備える管用ねじ継手の製造方法であって、
前記ピン及び前記ボックスは、ねじ部及びねじ無し金属接触部を有する接触表面を備え、
前記管用ねじ継手の製造方法は、前記ピン及び前記ボックスの少なくとも一方の前記接触表面に、
ブラスト加工により算術平均粗さRaが1~8μm、かつ最大高さ粗さRzが10~40μmの表面粗さを形成する工程と、
前記表面粗さを形成した後に、電気めっきによりZn-Ni合金からなるZn-Ni合金めっき層を形成する工程と、
前記Zn-Ni合金めっき層を形成した後に、電気めっきによりCu-Sn-Zn合金からなるCu-Sn-Zn合金めっき層を形成する工程と、
前記Cu-Sn-Zn合金めっき層を形成した後に、固体潤滑被膜層を形成する工程とを備える、管用ねじ継手の製造方法。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3062608A CA3062608C (en) | 2017-05-22 | 2018-05-10 | Threaded connection for pipes or tubes and method for producing the threaded connection for pipes or tubes |
BR112019023551-5A BR112019023551B1 (pt) | 2017-05-22 | 2018-05-10 | Conexão roscada para canos ou tubos e método de produção da conexão roscada para canos ou tubos |
CN201880033451.1A CN110651147B (zh) | 2017-05-22 | 2018-05-10 | 管用螺纹接头及管用螺纹接头的制造方法 |
EP18806355.6A EP3633256B1 (en) | 2017-05-22 | 2018-05-10 | Threaded connection for pipes or tubes and method for producing the threaded connection for pipes or tubes |
MX2019013834A MX2019013834A (es) | 2017-05-22 | 2018-05-10 | Conexion roscada para tuberias o tubos y metodo para producir la conexion roscada para tuberias o tubos. |
US16/613,899 US11391400B2 (en) | 2017-05-22 | 2018-05-10 | Threaded connection for pipes or tubes and method for producing the threaded connection for pipes or tubes |
JP2019519564A JP6815498B2 (ja) | 2017-05-22 | 2018-05-10 | 管用ねじ継手及び管用ねじ継手の製造方法 |
RU2019142718A RU2729482C1 (ru) | 2017-05-22 | 2018-05-10 | Резьбовое соединение для труб или трубок и способ изготовления резьбового соединения для труб или трубок |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-100607 | 2017-05-22 | ||
JP2017100607 | 2017-05-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018216497A1 true WO2018216497A1 (ja) | 2018-11-29 |
Family
ID=64395552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/018221 WO2018216497A1 (ja) | 2017-05-22 | 2018-05-10 | 管用ねじ継手及び管用ねじ継手の製造方法 |
Country Status (10)
Country | Link |
---|---|
US (1) | US11391400B2 (ja) |
EP (1) | EP3633256B1 (ja) |
JP (1) | JP6815498B2 (ja) |
CN (1) | CN110651147B (ja) |
AR (1) | AR111948A1 (ja) |
BR (1) | BR112019023551B1 (ja) |
CA (1) | CA3062608C (ja) |
MX (1) | MX2019013834A (ja) |
RU (1) | RU2729482C1 (ja) |
WO (1) | WO2018216497A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11933431B2 (en) | 2019-02-12 | 2024-03-19 | Nippon Steel Corporation | Threaded connection for pipes |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6566376B1 (ja) * | 2019-02-22 | 2019-08-28 | 三桜工業株式会社 | 管継手及び管継手付きチューブ並びに管継手の製造方法 |
JP2021028535A (ja) * | 2019-08-09 | 2021-02-25 | 三桜工業株式会社 | 管継手及び管継手付きチューブ |
RU2759274C1 (ru) * | 2020-08-25 | 2021-11-11 | Евгения Александровна Ершова | Способ получения многофункционального композитного покрытия |
CN112531431A (zh) * | 2020-10-31 | 2021-03-19 | 东莞市川富电子有限公司 | 高稳定性低阻抗弹簧针电连接器的制备及探针电镀工艺 |
RU2749954C1 (ru) * | 2020-11-18 | 2021-06-21 | Общество с ограниченной ответственностью "Уральский инжиниринговый центр" | Установка для хромирования внутренних поверхностей деталей |
EP4060093A1 (de) * | 2021-03-17 | 2022-09-21 | Rosenberger Hochfrequenztechnik GmbH & Co. KG | Tribologisch verbesserte oberflächen für elektrische kontakte |
USD991416S1 (en) * | 2022-06-25 | 2023-07-04 | Jiangsu Mingqian Intellectual Property Co., Ltd. | Threaded connection pipe |
NL2034218B1 (en) | 2023-02-23 | 2024-09-05 | Tenaris Connections Bv | Thread profile for threaded connection |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5817285A (ja) * | 1981-07-23 | 1983-02-01 | 住友金属工業株式会社 | 油井管継手 |
JP2002221288A (ja) | 2001-01-25 | 2002-08-09 | Sumitomo Metal Ind Ltd | 耐焼付き性及び防錆性に優れた鋼管用ねじ継手 |
JP2008069883A (ja) * | 2006-09-14 | 2008-03-27 | Sumitomo Metal Ind Ltd | 鋼管用ねじ継手 |
JP2008215473A (ja) | 2007-03-02 | 2008-09-18 | Sumitomo Metal Ind Ltd | 鋼管用ねじ継手 |
JP2013087829A (ja) * | 2011-10-17 | 2013-05-13 | Jfe Steel Corp | 管のねじ継手 |
WO2014042144A1 (ja) * | 2012-09-12 | 2014-03-20 | 新日鐵住金株式会社 | 固体被膜形成用組成物及び管状ねじ継手 |
JP2015506445A (ja) * | 2012-05-23 | 2015-03-02 | 新日鐵住金株式会社 | 高トルク締結性能に優れた管状ねじ継手 |
WO2017047722A1 (ja) * | 2015-09-18 | 2017-03-23 | 新日鐵住金株式会社 | 組成物、その組成物から形成された固体潤滑被膜を備えた管用ねじ継手、及び、その管用ねじ継手の製造方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3314450A (en) * | 1963-08-05 | 1967-04-18 | Owens Illinois Inc | Transparent reinforced glass pipe |
US4146060A (en) * | 1977-07-25 | 1979-03-27 | Smith International, Inc. | Drill pipe wear belt assembly |
WO1997004949A1 (en) * | 1995-07-28 | 1997-02-13 | Ico, Inc. | Metallized layer corrosion protection system for pipe or tubing |
ITRM20020512A1 (it) * | 2002-10-10 | 2004-04-11 | Tenaris Connections Bv | Tubo filettato con trattamento superficiale. |
JP2005127496A (ja) * | 2003-10-24 | 2005-05-19 | Nbl Kk | 高圧管の製造および管の積層構造 |
US7922968B2 (en) * | 2005-10-25 | 2011-04-12 | Posco | Corrosion resistance improved steel sheet for automotive muffler and method of producing the steel sheet |
EP1873198A1 (de) | 2006-06-30 | 2008-01-02 | Lanxess Deutschland GmbH | Mischungen aus Alkylester und Benzylester von Polycarbonsäuren |
EP2017074A3 (de) * | 2007-06-13 | 2009-07-01 | TI Automotive (Heidelberg) GmbH | Aluminiumbeschichtete Kraftfahrzeugrohrleitung aus Metall und Verfahren zur Herstellung einer Kraftfahrzeugrohrleitung mittels Schmelztauchbeschichten |
EA017538B1 (ru) * | 2007-11-02 | 2013-01-30 | Сумитомо Метал Индастриз, Лтд. | Резьбовое соединение для труб, имеющее смазочное покрытие |
EP2216576B1 (en) * | 2007-12-04 | 2017-09-20 | Nippon Steel & Sumitomo Metal Corporation | Pipe screw joint |
FR2960619B1 (fr) * | 2010-06-01 | 2013-02-15 | Vallourec Mannesmann Oil & Gas | Extremite filetee d'un composant tubulaire pour le forage ou l'exploitation des puits d'hydrocarbures, et joint resultant |
UA105334C2 (uk) * | 2010-11-05 | 2014-04-25 | Ниппон Стил Энд Сумитомо Метал Корпорэйшн | Нарізне з'єднання труб, що має поліпшені характеристики при високому крутному моменті |
CA2880414C (en) * | 2012-08-06 | 2017-02-14 | Nippon Steel & Sumitomo Metal Corporation | Tubular threaded joint and lubricating coating forming composition for use therein |
FR3011308B1 (fr) * | 2013-10-02 | 2017-01-13 | Vallourec Oil & Gas France | Element de connexion d'un composant tubulaire recouvert d'un depot metallique composite |
US10066768B2 (en) * | 2014-05-07 | 2018-09-04 | Baker Hughes, A Ge Company, Llc | Tubular connecting arrangement and method of sealingly connecting tubulars |
CN204164530U (zh) * | 2014-10-09 | 2015-02-18 | 江苏申视新材料科技有限公司 | 一种扣压式管接头 |
AR106975A1 (es) * | 2015-12-25 | 2018-03-07 | Nippon Steel & Sumitomo Metal Corp | Conexión roscada para caño o tubo y método para producir la conexión roscada para caño o tubo |
-
2018
- 2018-05-10 EP EP18806355.6A patent/EP3633256B1/en active Active
- 2018-05-10 CN CN201880033451.1A patent/CN110651147B/zh active Active
- 2018-05-10 BR BR112019023551-5A patent/BR112019023551B1/pt active IP Right Grant
- 2018-05-10 CA CA3062608A patent/CA3062608C/en active Active
- 2018-05-10 WO PCT/JP2018/018221 patent/WO2018216497A1/ja active Application Filing
- 2018-05-10 MX MX2019013834A patent/MX2019013834A/es unknown
- 2018-05-10 JP JP2019519564A patent/JP6815498B2/ja not_active Expired - Fee Related
- 2018-05-10 US US16/613,899 patent/US11391400B2/en active Active
- 2018-05-10 RU RU2019142718A patent/RU2729482C1/ru active
- 2018-05-21 AR ARP180101338A patent/AR111948A1/es active IP Right Grant
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5817285A (ja) * | 1981-07-23 | 1983-02-01 | 住友金属工業株式会社 | 油井管継手 |
JP2002221288A (ja) | 2001-01-25 | 2002-08-09 | Sumitomo Metal Ind Ltd | 耐焼付き性及び防錆性に優れた鋼管用ねじ継手 |
JP2008069883A (ja) * | 2006-09-14 | 2008-03-27 | Sumitomo Metal Ind Ltd | 鋼管用ねじ継手 |
JP2008215473A (ja) | 2007-03-02 | 2008-09-18 | Sumitomo Metal Ind Ltd | 鋼管用ねじ継手 |
JP2013087829A (ja) * | 2011-10-17 | 2013-05-13 | Jfe Steel Corp | 管のねじ継手 |
JP2015506445A (ja) * | 2012-05-23 | 2015-03-02 | 新日鐵住金株式会社 | 高トルク締結性能に優れた管状ねじ継手 |
WO2014042144A1 (ja) * | 2012-09-12 | 2014-03-20 | 新日鐵住金株式会社 | 固体被膜形成用組成物及び管状ねじ継手 |
WO2017047722A1 (ja) * | 2015-09-18 | 2017-03-23 | 新日鐵住金株式会社 | 組成物、その組成物から形成された固体潤滑被膜を備えた管用ねじ継手、及び、その管用ねじ継手の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3633256A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11933431B2 (en) | 2019-02-12 | 2024-03-19 | Nippon Steel Corporation | Threaded connection for pipes |
Also Published As
Publication number | Publication date |
---|---|
CN110651147B (zh) | 2021-06-01 |
CN110651147A (zh) | 2020-01-03 |
EP3633256A1 (en) | 2020-04-08 |
JP6815498B2 (ja) | 2021-01-20 |
US20210364119A1 (en) | 2021-11-25 |
CA3062608C (en) | 2022-03-15 |
RU2729482C1 (ru) | 2020-08-07 |
EP3633256A4 (en) | 2021-01-13 |
BR112019023551A2 (pt) | 2020-05-26 |
EP3633256B1 (en) | 2021-09-29 |
BR112019023551B1 (pt) | 2022-12-20 |
US11391400B2 (en) | 2022-07-19 |
AR111948A1 (es) | 2019-09-04 |
JPWO2018216497A1 (ja) | 2020-03-12 |
MX2019013834A (es) | 2020-01-15 |
CA3062608A1 (en) | 2019-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6815498B2 (ja) | 管用ねじ継手及び管用ねじ継手の製造方法 | |
JP6893978B2 (ja) | 管用ねじ継手及び管用ねじ継手の製造方法 | |
JP6368440B2 (ja) | 管用ねじ継手及び管用ねじ継手の製造方法 | |
JP5677635B1 (ja) | 高トルク締結性能に優れた管状ねじ継手 | |
AU2016324630B2 (en) | Composition, threaded joint for pipes including solid lubricant coating formed from the composition, and method for producing the threaded joint for pipes | |
CN108474502B (zh) | 管用螺纹接头和管用螺纹接头的制造方法 | |
JP6964678B2 (ja) | 管用ねじ継手及び管用ねじ継手の製造方法 | |
WO2018003455A1 (ja) | 管用ねじ継手及び管用ねじ継手の製造方法 | |
WO2020149310A1 (ja) | 管用ねじ継手及び管用ねじ継手の製造方法 | |
JP2018123349A (ja) | 管用ねじ継手及び管用ねじ継手の製造方法 | |
JP2018123831A (ja) | 管用ねじ継手及び管用ねじ継手の製造方法 | |
WO2020021691A1 (ja) | 管用ねじ継手及び管用ねじ継手の製造方法 | |
WO2023063385A1 (ja) | 油井用金属管 | |
WO2023063384A1 (ja) | 油井用金属管 | |
EA045795B1 (ru) | Металлическая труба для нефтяной скважины и способ ее изготовления | |
OA19360A (en) | Threaded joint for pipe and method for producing threaded joint for pipe. | |
OA18803A (en) | Threaded joint for pipe, and manufacturing method of threaded joint for pipe. | |
OA18804A (en) | Threaded Joint for pipe and manufacturing method of threaded Joint for pipe. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18806355 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019519564 Country of ref document: JP Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112019023551 Country of ref document: BR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018806355 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2018806355 Country of ref document: EP Effective date: 20200102 |
|
ENP | Entry into the national phase |
Ref document number: 112019023551 Country of ref document: BR Kind code of ref document: A2 Effective date: 20191108 |