[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018214628A1 - 阵列基板、其制作方法、液晶显示面板及显示装置 - Google Patents

阵列基板、其制作方法、液晶显示面板及显示装置 Download PDF

Info

Publication number
WO2018214628A1
WO2018214628A1 PCT/CN2018/079887 CN2018079887W WO2018214628A1 WO 2018214628 A1 WO2018214628 A1 WO 2018214628A1 CN 2018079887 W CN2018079887 W CN 2018079887W WO 2018214628 A1 WO2018214628 A1 WO 2018214628A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
array substrate
thin film
film transistor
pixel electrode
Prior art date
Application number
PCT/CN2018/079887
Other languages
English (en)
French (fr)
Inventor
方浩博
薛艳娜
包智颖
张勇
米磊
白璐
华刚
王景棚
院凌翔
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/300,255 priority Critical patent/US11397348B2/en
Publication of WO2018214628A1 publication Critical patent/WO2018214628A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133357Planarisation layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136231Active matrix addressed cells for reducing the number of lithographic steps
    • G02F1/136236Active matrix addressed cells for reducing the number of lithographic steps using a grey or half tone lithographic process
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/02Function characteristic reflective

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to an array substrate, a method of fabricating the same, a liquid crystal display panel, and a display device.
  • the related art liquid crystal panel requires a backlight (BackLight) to provide a light source for display, and the backlight is a light source behind a liquid crystal display (LCD), and its light-emitting effect directly affects the liquid crystal display module (LCM). Visual effects.
  • BackLight Backlight
  • LCD liquid crystal display
  • LCD liquid crystal display module
  • the raised structure being located above the substrate
  • the thin film transistor being located above the film layer of the reflective layer;
  • the pixel electrode being located above a film layer of the thin film transistor
  • the flat layer comprises: a gate insulating layer in the thin film transistor.
  • the flat layer further includes: a first insulating layer between the thin film transistor and the reflective layer.
  • the gate insulating layer and the first insulating layer are made of the same material.
  • the thin film transistor is a bottom gate type thin film transistor.
  • the orthographic projections of the reflective layer and the pixel electrode on the substrate coincide with each other.
  • the convex structure and the orthographic projection of the thin film transistor on the substrate do not overlap each other.
  • the protruding structure includes a multi-layer sub-protrusion structure.
  • the material of the protruding structure is resin or silicon nitride.
  • the method further includes: a base layer between the protruding structure and the substrate.
  • the present disclosure further provides a liquid crystal display panel, including the above array substrate provided by the embodiments of the present disclosure.
  • the present disclosure also provides a display device including the above liquid crystal display panel provided by an embodiment of the present disclosure.
  • the present disclosure further provides a method for fabricating the above array substrate, including:
  • the forming the flat layer comprises:
  • a gate insulating layer in the thin film transistor is formed.
  • the forming the flat layer further includes:
  • a first insulating layer is formed over the film layer on which the reflective layer is located.
  • the forming a convex structure on the substrate comprises:
  • a bump structure is formed on the substrate using a halftone or gray tone mask.
  • the reflective layer and the pixel electrode are formed by using the same mask.
  • FIG. 1 is a schematic cross-sectional view of an array substrate according to an embodiment of the present disclosure
  • FIG. 2 is a schematic cross-sectional view of another array substrate according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic cross-sectional view of another array substrate according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic cross-sectional view of another array substrate according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic cross-sectional view of a liquid crystal display panel according to an embodiment of the present disclosure.
  • an array substrate provided by an embodiment of the present disclosure includes:
  • the raised structure 2 is located above the substrate 1;
  • the thin film transistor 4 is located above the film layer of the reflective layer 3;
  • the pixel electrode 5 is located above the film layer of the thin film transistor 4;
  • the flat layer 6 is located between the pixel electrode 5 and the reflective layer 3.
  • the reflective layer 3 disposed between the pixel electrode 5 and the substrate 1 can realize a light reflection function, thereby saving a backlight structure and reducing overall power consumption.
  • the convex structure 2 disposed between the reflective layer 3 and the substrate 1 can make the surface of the reflective layer 3 overlying the convex structure 2 uneven, thereby satisfying the diffuse reflection condition of the light and increasing the lateral visibility. angle.
  • the flat layer 6 located on the uneven surface of the reflective layer 3 can ensure that the surface of the pixel electrode 5 on the surface is relatively flat, and the diffuse reflection function is realized with respect to the pixel electrode directly using the uneven surface, and the surface of the pixel electrode 5 is relatively flat. It is advantageous to maintain the electric field form formed between the pixel electrode 5 and the common electrode.
  • the material of the substrate 1 is not limited.
  • the glass substrate or the substrate of other materials may be used, and the thickness thereof is not limited, and may be determined according to actual needs. .
  • the material of the bump structure 2 includes silicon nitride, and of course, a resin material may also be used, but the silicon nitride is lower in cost and nitrided than the resin material.
  • the adhesion of silicon to the substrate 1 is stronger, so that the use of silicon nitride to form the bump structure 2 not only saves cost, but also eliminates the planarization operation before the bump structure 2 is fabricated.
  • the height of the convex structure 2 is not limited, for example, in order to make the height of the convex structure 2 better satisfy the diffuse reflection condition of light,
  • the height of the raised structure 2 is set in the range of 3,000 to 4,000 angstroms.
  • the orthographic projections of the convex structure 2 and the thin film transistor 3 on the substrate 1 do not coincide with each other. That is, the convex structure 2 can be considered to be located in the effective display area of the pixel, and the thin film transistor 3 is located in the non-display area of the pixel. Such a design can ensure that the uneven structure of the bump structure 2 does not affect the flatness of the thin film transistor 3 and affect its performance. Moreover, the convex structure 2 is located in the display area, so that the reflective layer 3 covering the convex structure 2 has an uneven surface on the display area, satisfies the diffuse reflection condition of light, and forms diffused reflection of light in the display area.
  • the convex structure 2 may include a multi-layer sub-protrusion structure, such as shown in FIG. 2, including the first layer sub-protrusion structure 2a and the second The layer raised structure 2b.
  • the arrangement of the multi-layered sub-convex structure can make the surface concavity and convexity of the reflective layer 3 more obvious, and better satisfy the diffuse reflection condition of the light, so that the light can better achieve the diffuse reflection and further increase the lateral viewing angle.
  • the base layer 7 between the protruding structure 2 and the substrate 1 may be further included, and the base layer 7 is beneficial to improve the convex structure 2 and the substrate. 1 between the adhesion.
  • the material of the base layer 7 and the material of the convex structure 2 may be identical, for example, all of silicon nitride.
  • the thickness is not limited and may be determined according to specific needs.
  • the base layer 7 can cover the entire surface of the substrate 1, so that the base layer 7 can not only further function as a film layer provided by the flat convex structure 2, but can further improve the relationship between the convex structure 2 and the substrate 1. Adhesion to prevent the raised structure 2 from falling off.
  • the thin film transistor 4 may be a top gate type thin film transistor or a bottom gate type thin film transistor, which is not limited herein.
  • the bottom gate type thin film transistor 4 includes a gate electrode 41, a gate insulating layer 42, an active layer 43, and a source and drain electrode 44 which are sequentially stacked.
  • the top gate type thin film transistor 4 includes an active layer 43, a gate insulating layer 42, a gate electrode 41, an insulating layer 45, and a source and drain electrode 44 which are sequentially stacked.
  • the thin film transistor 4 uses a bottom gate type thin film transistor
  • the orthographic projections of the reflective layer 3 and the pixel electrode 5 on the substrate 1 may coincide with each other.
  • the reflective layer 3 and the pixel electrode 5 can be formed using the same mask, thereby saving manufacturing costs.
  • the reflective layer 3 may extend below the thin film transistor 3 as a light shielding layer, so that reflection is utilized. Layer 3 occludes active layer 43 while avoiding leakage currents affecting the display drive. It should be noted that, at this time, since the orthographic projections of the convex structure 2 and the thin film transistor 3 on the substrate 1 do not coincide with each other, the surface of the reflective layer 3 under the thin film transistor 3 is relatively flat, and does not face the upper film. The fabrication of the transistor 3 has an adverse effect.
  • the material of the reflective layer 3 may be a metal material, for example, other materials, or a mixture of other materials and metal materials.
  • the metal material may be, for example, copper, iron, aluminum or a compound of a plurality of metal materials.
  • the reflective layer 3 may be a single layer of metal material or a plurality of metal materials.
  • the flat layer 6 may include a gate insulating layer 42 in the thin film transistor 4 .
  • a gate insulating layer 42 is provided between the gate electrode 41 and the active layer 43, and the gate insulating layer 42 is provided. Can play a flat role. Moreover, in order to optimize the flatness effect, the gate insulating layer 42 may be appropriately thickened, but the gate insulating layer 42 is too thick, which may affect the turn-on voltage of the gate electrode 41, thereby increasing the driving power consumption.
  • the flat layer 6 may further include: a first insulating layer 61 between the thin film transistor 4 and the reflective layer 3 .
  • the first insulating layer 61 located between the thin film transistor 4 and the reflective layer 3 can preferably perform a flat function on the one hand, and can also function as an insulating layer between the reflective layer 3 and the thin film transistor 4 on the other hand.
  • the pattern of the reflective layer 3 can be disposed over the entire surface without being limited by the pattern of the thin film transistor 4.
  • the first insulating layer 61 can be used to isolate signal interference between the reflective layer 3 and the thin film transistor 4 to ensure normal driving of the pixel electrode 5.
  • the material of the first insulating layer 61 may be silicon nitride or a resin, which is not limited herein.
  • the materials of the gate insulating layer 42 and the first insulating layer 61 may be the same.
  • an embodiment of the present disclosure further provides a liquid crystal display panel.
  • the array substrate 01 provided by the embodiment of the present disclosure further includes an opposite substrate 02, and the opposite substrate 02 and the array.
  • the common electrode layer 8 that cooperates with the pixel electrode 5 to generate an electric field for controlling the liquid crystal layer 03 may be disposed on a side of the opposite substrate 02 facing the array substrate 01, or may be disposed on a side of the array substrate 01 facing the opposite substrate 02. This is not limited.
  • an embodiment of the present disclosure further provides a display device, including the above liquid crystal display panel provided by an embodiment of the present disclosure.
  • the display device may be, for example, a smart phone, a liquid crystal television, a tablet computer, a Light Emitting Diode (LED) display, an LCD, or the like, having any display function.
  • LED Light Emitting Diode
  • an embodiment of the present disclosure further provides a method for fabricating the above array substrate, including:
  • forming the planar layer may include: forming a gate insulating layer in the thin film transistor. That is, the gate insulating layer is used as a part of the flat layer.
  • forming the planar layer may further include: forming a first insulating layer over the film layer where the reflective layer is located. That is, the first insulating layer between the reflective layer and the thin film transistor is used as another part of the flat layer, and the flat layer formed by overlapping the first insulating layer and the gate insulating layer has a thickness such that the film layer becomes flat without affecting The pixel electrode is made flat.
  • forming a convex structure on the substrate specifically includes: forming a convex structure on the substrate by using a halftone or gray tone mask.
  • a multilayered raised structure can be made.
  • the fabrication of the raised structure 2 is made in two parts. First, a first half of the bump is formed on the base layer by a half exposure (HTM) mask. The structure 2a is then used to form a second layer sub-protrusion structure 2b using a half exposure (HTM) mask stack that fabricates the first layer sub-protrusion structure 2a.
  • HTM half exposure
  • the reflective layer and the pixel electrode may be formed by using the same mask.
  • the reflective layer and the pixel electrode are formed by the same mask plate, and the new mask layer can be omitted, and the area of the thin film transistor can be avoided without affecting the pixel driving.
  • a method for fabricating an array substrate includes:
  • Step 1 forming a base layer 7 on the substrate 1 as a substrate.
  • the substrate 1 it is also possible to directly use the substrate 1 as a substrate without using the base layer 7, that is, this step can be omitted;
  • Step 2 forming a convex structure 2 on the display layer by using the first mask plate and etching the upper layer 7 , and the height of the convex structure 2 can be determined according to actual needs;
  • Step 3 on the raised structure 2, using the second mask to make the reflective layer 3;
  • Step four forming a first insulating layer 61 on the reflective layer 3;
  • Step 5 sequentially forming a gate electrode 41, a gate insulating layer 42, an active layer 43, and a source and drain electrode 44 in a non-display region above the first insulating layer 61;
  • Step 6 In the display area, the pixel electrode 5 is formed by using a second mask.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种阵列基板(01)及其制作方法、液晶显示面板及显示装置,在像素电极(5)与基板(1)之间设置反射层(3)以实现光的反射功能,从而节省背光源结构,降低整体功耗。在反射层(3)与基板(1)之间设置凸起结构(2)以使覆盖在凸起结构(2)之上的反射层(3)的表面凹凸不平,从而满足光的漫反射条件,增大侧向可视角度。而位于表面凹凸不平的反射层(3)之上的平坦层(6)可以保证其上的像素电极(5)的表面相对平整,相对于直接采用表面凹凸不平的像素电极(5)实现漫反射功能,像素电极(5)表面相对平整有利于保持像素电极(5)和公共电极之间形成的电场形态。

Description

阵列基板、其制作方法、液晶显示面板及显示装置
相关申请的交叉引用
本公开要求在2017年05月23日提交中国专利局、申请号为201710369924.2、发明名称为“一种像素结构、显示面板、显示装置及像素结构制作方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示技术领域,尤其涉及一种阵列基板、其制作方法、液晶显示面板及显示装置。
背景技术
相关技术的液晶面板进行显示时需要背光源(BackLight)提供光源,背光源是位于液晶显示器(Liquid Crystal Display,LCD)背后的一种光源,它的发光效果将直接影响到液晶显示模块(LCM)的视觉效果。
但是,相关技术中的背光源的功耗较大。
发明内容
本公开实施例提供的一种阵列基板,包括:
基板;
凸起结构,所述凸起结构位于所述基板之上;
反射层,所述反射层覆盖所述凸起结构之上;
薄膜晶体管,所述薄膜晶体管位于所述反射层的所在膜层之上;
像素电极,所述像素电极位于所述薄膜晶体管的所在膜层之上;
以及,平坦层,所述平坦层位于所述像素电极与所述反射层之间。
可选地,在本公开实施例提供的上述阵列基板中,所述平坦层包括:所 述薄膜晶体管中的栅绝缘层。
可选地,在本公开实施例提供的上述阵列基板中,所述平坦层还包括:位于所述薄膜晶体管与所述反射层之间的第一绝缘层。
可选地,在本公开实施例提供的上述阵列基板中,所述栅绝缘层和所述第一绝缘层的材料相同。
可选地,在本公开实施例提供的上述阵列基板中,所述薄膜晶体管为底栅型薄膜晶体管。
可选地,在本公开实施例提供的上述阵列基板中,所述反射层和所述像素电极在所述基板上的正投影相互重合。
可选地,在本公开实施例提供的上述阵列基板中,所述凸起结构与所述薄膜晶体管在所述基板上的正投影互不重叠。
可选地,在本公开实施例提供的上述阵列基板中,所述凸起结构包括多层子凸起结构。
可选地,在本公开实施例提供的上述阵列基板中,所述凸起结构的材料为树脂或氮化硅。
可选地,在本公开实施例提供的上述阵列基板中,还包括:位于所述凸起结构和所述基板之间的基底层。
另一方面,本公开还提供了一种液晶显示面板,包括本公开实施例提供的上述阵列基板。
另一方面,本公开还提供了一种显示装置,包括本公开实施例提供的上述液晶显示面板。
另一方面,本公开还提供了一种上述阵列基板的制作方法,其中,包括:
在基板上形成凸起结构;
在所述凸起结构之上形成反射层;
在所述反射层的所在膜层之上形成薄膜晶体管;
在所述薄膜晶体管的所在膜层之上形成像素电极;
以及,在形成所述反射层之后,且形成所述像素电极之前,形成平坦层。
可选地,在本公开实施例提供的上述方法中,所述形成平坦层,包括:
形成所述薄膜晶体管中的栅绝缘层。
可选地,在本公开实施例提供的上述方法中,所述形成平坦层,还包括:
在所述反射层所在膜层之上形成第一绝缘层。
可选地,在本公开实施例提供的上述方法中,所述在基板上形成凸起结构,包括:
采用半色调或灰色调掩模板,在基板上形成凸起结构。
可选地,在本公开实施例提供的上述方法中,采用同一掩模板形成所述反射层和所述像素电极。
附图说明
图1为根据本公开实施例提供的一种阵列基板的剖面结构示意图;
图2为根据本公开实施例提供的另一种阵列基板的剖面结构示意图;
图3为根据本公开实施例提供的另一种阵列基板的剖面结构示意图;
图4为根据本公开实施例提供的另一种阵列基板的剖面结构示意图;
图5为根据本公开实施例提供的一种液晶显示面板的剖面结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
参见图1,本公开实施例提供的一种阵列基板,包括:
基板1;
凸起结构2,凸起结构2位于基板1之上;
反射层3,反射层3覆盖凸起结构2之上;
薄膜晶体管4,薄膜晶体管4位于反射层3的所在膜层之上;
像素电极5,像素电极5位于薄膜晶体管4的所在膜层之上;
以及,平坦层6,平坦层6位于像素电极5与反射层3之间。
具体地,在本公开实施例提供的上述阵列基板中,在像素电极5与基板1之间设置的反射层3可以实现光的反射功能,从而节省背光源结构,降低整体功耗。并且,在反射层3与基板1之间设置的凸起结构2可以使覆盖在凸起结构2之上的反射层3的表面凹凸不平,从而满足光的漫反射条件,增大侧向可视角度。而位于表面凹凸不平的反射层3之上的平坦层6可以保证其上的像素电极5的表面相对平整,相对于直接采用表面凹凸不平的像素电极实现漫反射功能,像素电极5表面相对平整有利于保持像素电极5和公共电极之间形成的电场形态。
具体地,在本公开实施例提供的上述阵列基板中,对基板1的材料不进行限制,例如可以是玻璃基板也可以是其他材质的基板,其厚度也不进行限制,可以根据实际需要而定。
可选地,本公开实施例提供的上述阵列基板中,凸起结构2的材料包括氮化硅,当然也可以采用树脂材料,但是,氮化硅相比树脂材料,成本更低,且氮化硅与基板1的粘附力更强,从而采用氮化硅制作凸起结构2不仅可以节约成本,还可以省去在制作凸起结构2之前的平坦化操作。
可选地,本公开实施例提供的上述阵列基板中,对凸起结构2的高度也不进行限制,例如,为了使得凸起结构2的高度能更好地满足光的漫反射条件,可以将凸起结构2的高度设置在3000至4000埃的范围内。
可选地,本公开实施例提供的上述阵列基板中,凸起结构2与薄膜晶体管3在基板1上的正投影互不重合。即可以认为凸起结构2位于像素的有效显示区内,薄膜晶体管3位于像素的非显示区内。这样的设计可以保证凸起结构2的凹凸不平结构不会影响薄膜晶体管3的平坦度而影响其性能。并且,凸起结构2位于显示区内,使覆盖于凸起结构2之上的反射层3在显示区具有凹凸不平的表面,满足光的漫反射条件,在显示区内形成光的漫反射。
可选地,本公开实施例提供的上述阵列基板中,参见图2,凸起结构2可 以包括多层子凸起结构,例如图2所示,包括第一层子凸起结构2a和第二层子凸起结构2b。多层子凸起结构的设置可以使反射层3的表面凹凸更加明显,更好地满足光的漫反射条件,从而可以使得光线更好地实现漫反射,进一步增大侧向的可视角度。
可选地,本公开实施例提供的上述阵列基板中,参见图3,还可以包括:位于凸起结构2与基板1之间的基底层7,基底层7有利于提高凸起结构2与基板1之间的粘附力。
可选地,本公开实施例提供的上述阵列基板中,基底层7的材料与凸起结构2的材料可以一致,例如都是氮化硅。其厚度不进行限制,可以根据具体需要而定。具体地,基底层7可以覆盖基板1整面,从而使得基底层7不仅可以进一步起到了平坦凸起结构2所设置的膜层的作用,还可以进一步提高凸起结构2与基板1之间的粘附力,避免凸起结构2脱落。
具体地,在本公开实施例提供的上述阵列基板中,薄膜晶体管4可以采用顶栅型薄膜晶体管,也可以采用底栅型薄膜晶体管,在此不做限定。其中,参见图1,底栅型的薄膜晶体管4包括:依次层叠设置的栅极41、栅绝缘层42、有源层43和源漏极44。参见图4,顶栅型的薄膜晶体管4包括:依次层叠设置的有源层43、栅绝缘层42、栅极41、绝缘层45和源漏极44。
可选地,在本公开实施例提供的上述阵列基板中,参见图1,当薄膜晶体管4采用底栅型薄膜晶体管时,反射层3和像素电极5在基板1上的正投影可以相互重合,这样可以采用同一张掩模板制作反射层3和像素电极5,从而节省制作成本。
可选地,在本公开实施例提供的上述阵列基板中,参见图4,当薄膜晶体管4采用顶栅型薄膜晶体管时,反射层3可以延伸至薄膜晶体管3的下方作为遮光层,这样利用反射层3对有源层43进行遮挡,而避免产生漏电流影响显示驱动。值得注意的是,此时,由于凸起结构2与薄膜晶体管3在基板1上的正投影互不重合,因此,反射层3在薄膜晶体管3下方的区域表面相对平坦,不会对上方的薄膜晶体管3的制作产生不良影响。
可选地,本公开实施例提供的上述阵列基板中,反射层3的材料,例如可以是金属材质,当然也可以是其他材质,或者是其他材质和金属材质的混合。其中,金属材质例如可以是铜、铁、铝或多种金属材料的化合物等。反射层3可以是单层金属材质,也可以由多层金属材质组成。
可选地,在本公开实施例提供的上述阵列基板中,参见图1,平坦层6可以包括:薄膜晶体管4中的栅绝缘层42。
具体地,不管是在顶栅型的薄膜晶体管4中,还是底栅型的薄膜晶体管3中,在栅极41和有源层43之间均会设置有栅绝缘层42,该栅绝缘层42可以起到平坦的作用。并且,为了优化平坦作用,可以将栅绝缘层42适当增厚,但栅绝缘层42过厚,会影响栅极41的开启电压,进而增加驱动功耗。
可选地,在本公开实施例提供的上述阵列基板中,参见图1,平坦层6还可以包括:位于薄膜晶体管4与反射层3之间的第一绝缘层61。
具体地,位于薄膜晶体管4与反射层3之间的第一绝缘层61,一方面可以起到较佳地平坦作用,另一方面,可以起到反射层3与薄膜晶体管4的绝缘作用,使反射层3的图案可以整面设置,而不受薄膜晶体管4的图案限制。并且,第一绝缘层61可以用来隔离反射层3和薄膜晶体管4之间的信号干扰,保证像素电极5的正常驱动。
具体地,第一绝缘层61的材料可以是氮化硅,也可以是树脂,在此不做限定。
可选地,在本公开实施例提供的上述阵列基板中,栅绝缘层42和第一绝缘层61的材料可以相同。
可选地,在本公开实施例提供的上述阵列基板中,还可以包括其他现有层结构膜层,在此不再赘述。
基于同一发明构思,本公开实施例还提供了一种液晶显示面板,参见图5,包括本公开实施例提供的上述阵列基板01,一般还包括对向基板02,以及位于对向基板02与阵列基板01之间的液晶层03。与像素电极5相互配合产生控制液晶层03的电场的公共电极层8可以设置在对向基板02面向阵列基板 01的一侧,也可以设置在阵列基板01面向对向基板02的一侧,在此不做限定。
基于同一发明构思,本公开实施例还提供了一种显示装置,包括本公开实施例提供的上述液晶显示面板。具体地,显示装置例如可以是智能手机、液晶电视机、平板电脑、发光二极管(Light Emitting Diode,LED)显示屏、LCD等任何具有显示功能的产品。
基于同一发明构思,本公开实施例还提供了一种上述阵列基板的制作方法,包括:
在基板上形成凸起结构;
在凸起结构之上形成反射层;
在反射层的所在膜层之上形成薄膜晶体管;
在薄膜晶体管的所在膜层之上形成像素电极;
以及,在形成反射层之后,且形成像素电极之前,形成平坦层。
可选地,在本公开实施例提供的上述制作方法中,形成平坦层,可以包括:形成薄膜晶体管中的栅绝缘层。即采用栅绝缘层作为平坦层的一部分。
可选地,在本公开实施例提供的上述制作方法中,形成平坦层,还可以包括:在反射层所在膜层之上形成第一绝缘层。即采用在反射层与薄膜晶体管之间的第一绝缘层作为平坦层的另一部分,第一绝缘层和栅绝缘层交叠后构成的平坦层,其厚度可以使得膜层变得平坦,不影响制作的像素电极平坦性。
可选地,在本公开实施例提供的上述制作方法中,在基板上形成凸起结构,具体包括:采用半色调或灰色调掩模板,在基板上形成凸起结构。
具体地,为了将凸起结构的高度满足要求,例如做到
Figure PCTCN2018079887-appb-000001
,可以做多层子凸起结构,例如,参见图2,凸起结构2的制作分两部分制作,首先在基底层上用一张半曝光(HTM)掩膜板制作第一层子凸起结构2a,然后使用制作第一层子凸起结构2a的半曝光(HTM)掩膜板堆叠生成第二层子凸起结构2b。
可选地,在本公开实施例提供的上述制作方法中,可以采用同一掩模板形成反射层和像素电极。
具体地,反射层和像素电极共用同一张掩膜板制作,可以不增加新的掩膜板,还可以避开薄膜晶体管的区域,不会对像素驱动造成影响。
下面结合附图给出本公开实施例的一种阵列基板的制作方法的举例说明。
例如,参见图3,本申请实施例提供的阵列基板的制作方法包括:
步骤一:在基板1上制作一层基底层7作为基底,当然,也可以不用制作基底层7,直接使用基板1作为基底,即本步骤可以省略;
步骤二:在基底层7之上通过使用第一掩膜板并加以刻蚀工艺,在显示区形成凸起结构2,凸起结构2的高度都可以根据实际需要而定;
步骤三:在凸起结构2之上,使用第二掩膜板制作反射层3;
步骤四:在反射层3上制作第一绝缘层61;
步骤五:在第一绝缘层61之上的非显示区内,依次制作栅极41、栅绝缘层42、有源层43、源漏极44;
步骤六:在显示区内,采用第二掩膜板形成像素电极5。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (17)

  1. 一种阵列基板,其中,包括:
    基板;
    凸起结构,所述凸起结构位于所述基板之上;
    反射层,所述反射层覆盖所述凸起结构之上;
    薄膜晶体管,所述薄膜晶体管位于所述反射层的所在膜层之上;
    像素电极,所述像素电极位于所述薄膜晶体管的所在膜层之上;
    以及,平坦层,所述平坦层位于所述像素电极与所述反射层之间。
  2. 根据权利要求1所述的阵列基板,其中,所述平坦层包括:所述薄膜晶体管中的栅绝缘层。
  3. 根据权利要求2所述的阵列基板,其中,所述平坦层还包括:位于所述薄膜晶体管与所述反射层之间的第一绝缘层。
  4. 根据权利要求3所述的阵列基板,其中,所述栅绝缘层和所述第一绝缘层的材料相同。
  5. 根据权利要求1所述的阵列基板,其中,所述薄膜晶体管为底栅型薄膜晶体管。
  6. 根据权利要求5所述的阵列基板,其中,所述反射层和所述像素电极在所述基板上的正投影相互重合。
  7. 根据权利要求1所述的阵列基板,其中,所述凸起结构与所述薄膜晶体管在所述基板上的正投影互不重叠。
  8. 根据权利要求1-7任一项所述的阵列基板,其中,所述凸起结构包括多层子凸起结构。
  9. 根据权利要求1-7任一项所述的阵列基板,其中,所述凸起结构的材料为树脂或氮化硅。
  10. 根据权利要求1-7任一项所述的阵列基板,其中,还包括:位于所述凸起结构和所述基板之间的基底层。
  11. 一种液晶显示面板,其中,包括权利要求1至10任一权项所述的阵列基板。
  12. 一种显示装置,其中,包括如权利要求11所述的液晶显示面板。
  13. 一种如权利要求1-10任一项所述的阵列基板的制作方法,其中,包括:
    在基板上形成凸起结构;
    在所述凸起结构之上形成反射层;
    在所述反射层的所在膜层之上形成薄膜晶体管;
    在所述薄膜晶体管的所在膜层之上形成像素电极;
    以及,在形成所述反射层之后,且形成所述像素电极之前,形成平坦层。
  14. 根据权利要求13所述的方法,其中,所述形成平坦层,包括:
    形成所述薄膜晶体管中的栅绝缘层。
  15. 根据权利要求14所述的方法,其中,所述形成平坦层,还包括:
    在所述反射层所在膜层之上形成第一绝缘层。
  16. 根据权利要求14所述的方法,其中,所述在基板上形成凸起结构,包括:
    采用半色调或灰色调掩模板,在基板上形成凸起结构。
  17. 根据权利要求14所述的方法,其中,采用同一掩模板形成所述反射层和所述像素电极。
PCT/CN2018/079887 2017-05-23 2018-03-21 阵列基板、其制作方法、液晶显示面板及显示装置 WO2018214628A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/300,255 US11397348B2 (en) 2017-05-23 2018-03-21 Array substrate having convex component, method for fabricating the same, liquid crystal display panel, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710369924.2 2017-05-23
CN201710369924.2A CN107065328A (zh) 2017-05-23 2017-05-23 一种像素结构、显示面板、显示装置及像素结构制作方法

Publications (1)

Publication Number Publication Date
WO2018214628A1 true WO2018214628A1 (zh) 2018-11-29

Family

ID=59610465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079887 WO2018214628A1 (zh) 2017-05-23 2018-03-21 阵列基板、其制作方法、液晶显示面板及显示装置

Country Status (3)

Country Link
US (1) US11397348B2 (zh)
CN (1) CN107065328A (zh)
WO (1) WO2018214628A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107065328A (zh) 2017-05-23 2017-08-18 京东方科技集团股份有限公司 一种像素结构、显示面板、显示装置及像素结构制作方法
WO2022134029A1 (zh) * 2020-12-25 2022-06-30 京东方科技集团股份有限公司 显示面板、显示面板的制造方法以及显示装置
CN115718387B (zh) * 2022-11-28 2023-11-07 京东方科技集团股份有限公司 反射型阵列基板及其制作方法、显示装置及其制作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1118077A (zh) * 1994-05-12 1996-03-06 卡西欧计算机公司 反射型彩色液晶显示装置
US5940154A (en) * 1996-11-05 1999-08-17 Nec Corporation Reflection type liquid crystal display and method of fabricating the same
CN1246634A (zh) * 1998-07-31 2000-03-08 株式会社日立制作所 漫反射片和使用它的液晶显示装置及其制造方法
JP2004184565A (ja) * 2002-12-02 2004-07-02 Casio Comput Co Ltd 反射型表示装置
US20040135944A1 (en) * 2002-04-15 2004-07-15 Lg.Philips Lcd Co., Ltd. Reflection-type liquid crystal display device and method of fabricating the same
CN101103302A (zh) * 2004-12-10 2008-01-09 统宝香港控股有限公司 漫反射结构及其制造方法以及使用该结构之显示装置
KR20080004989A (ko) * 2006-07-07 2008-01-10 삼성전자주식회사 박막 트랜지스터 어레이 기판의 제조 방법
CN107065328A (zh) * 2017-05-23 2017-08-18 京东方科技集团股份有限公司 一种像素结构、显示面板、显示装置及像素结构制作方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2812851B2 (ja) * 1993-03-24 1998-10-22 シャープ株式会社 反射型液晶表示装置
JP2990046B2 (ja) * 1995-08-16 1999-12-13 日本電気株式会社 反射型液晶表示装置及びその製造方法
JP3019831B2 (ja) * 1998-03-11 2000-03-13 日本電気株式会社 反射型液晶表示装置及びその製造方法
JP3406242B2 (ja) * 1998-10-15 2003-05-12 シャープ株式会社 液晶表示装置
JP3085530B2 (ja) * 1998-11-18 2000-09-11 日本電気株式会社 液晶表示装置及びその製造方法
KR100661825B1 (ko) * 1999-12-28 2006-12-27 엘지.필립스 엘시디 주식회사 반사투과형 액정 표시장치의 어레이 기판 및 그의 제조방법
JP2001194662A (ja) * 2000-01-14 2001-07-19 Nec Corp 反射型液晶表示装置及びその製造方法
JP4785229B2 (ja) * 2000-05-09 2011-10-05 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP3866522B2 (ja) * 2001-02-14 2007-01-10 日本電気株式会社 アクティブマトリクス型液晶表示装置及びその製造方法
KR100483979B1 (ko) * 2001-06-22 2005-04-18 엔이씨 엘씨디 테크놀로지스, 엘티디. 반사판, 그 제조방법, 액정표시장치 및 그 제조방법
JP4718725B2 (ja) * 2001-07-03 2011-07-06 Nec液晶テクノロジー株式会社 液晶表示装置の製造方法
JP4213897B2 (ja) * 2001-08-07 2009-01-21 株式会社日立製作所 マイクロレンズアレイの転写原型の製造方法
JP2003122267A (ja) * 2001-10-04 2003-04-25 Koninkl Philips Electronics Nv 光反射体及びそれを用いた表示装置
JP4087620B2 (ja) * 2002-03-01 2008-05-21 株式会社半導体エネルギー研究所 液晶表示装置の作製方法
KR100475637B1 (ko) * 2002-12-20 2005-03-10 엘지.필립스 엘시디 주식회사 반사형 액정표시장치 및 그의 제조방법
KR101012778B1 (ko) * 2003-09-15 2011-02-08 티피오 홍콩 홀딩 리미티드 발산 반사의 방향성을 가진 반사 구조와 이를 구비한 장치
KR100752214B1 (ko) * 2003-10-16 2007-08-28 엘지.필립스 엘시디 주식회사 반투과형 액정표시소자의 제조방법
TWI313367B (en) * 2003-11-04 2009-08-11 Innolux Display Corp A liquid crystal display device
KR20070083018A (ko) * 2006-02-20 2007-08-23 삼성전자주식회사 액정표시장치의 제조방법
CN103500752A (zh) * 2013-09-27 2014-01-08 京东方科技集团股份有限公司 一种oled像素结构和oled显示装置
CN103760707A (zh) * 2014-01-09 2014-04-30 北京京东方光电科技有限公司 一种阵列基板、液晶显示面板及显示装置
CN104576656A (zh) * 2014-12-23 2015-04-29 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示装置
CN104751821B (zh) * 2015-04-21 2018-04-03 京东方科技集团股份有限公司 显示面板及其驱动方法
US10684500B2 (en) * 2015-05-27 2020-06-16 Semiconductor Energy Laboratory Co., Ltd. Touch panel
CN104867948B (zh) * 2015-06-10 2018-01-19 京东方科技集团股份有限公司 阵列基板及其制造方法、控制方法、控制组件和显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1118077A (zh) * 1994-05-12 1996-03-06 卡西欧计算机公司 反射型彩色液晶显示装置
US5940154A (en) * 1996-11-05 1999-08-17 Nec Corporation Reflection type liquid crystal display and method of fabricating the same
CN1246634A (zh) * 1998-07-31 2000-03-08 株式会社日立制作所 漫反射片和使用它的液晶显示装置及其制造方法
US20040135944A1 (en) * 2002-04-15 2004-07-15 Lg.Philips Lcd Co., Ltd. Reflection-type liquid crystal display device and method of fabricating the same
JP2004184565A (ja) * 2002-12-02 2004-07-02 Casio Comput Co Ltd 反射型表示装置
CN101103302A (zh) * 2004-12-10 2008-01-09 统宝香港控股有限公司 漫反射结构及其制造方法以及使用该结构之显示装置
KR20080004989A (ko) * 2006-07-07 2008-01-10 삼성전자주식회사 박막 트랜지스터 어레이 기판의 제조 방법
CN107065328A (zh) * 2017-05-23 2017-08-18 京东方科技集团股份有限公司 一种像素结构、显示面板、显示装置及像素结构制作方法

Also Published As

Publication number Publication date
CN107065328A (zh) 2017-08-18
US11397348B2 (en) 2022-07-26
US20190155099A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
US9933667B2 (en) Liquid crystal panel and manufacture method thereof
CN108695370B (zh) Oled基板及制作方法、显示装置
WO2021169944A1 (zh) 阵列基板、其制作方法、显示面板及显示装置
US9823522B2 (en) COA type liquid crystal display panel and method for manufacturing the same
CN106449657B (zh) Oled显示面板、显示装置、阵列基板及其制作方法
CN107808892B (zh) 显示设备
US20040141096A1 (en) Flat display device with touch panel
JP4943454B2 (ja) 液晶表示装置
JP5010586B2 (ja) 液晶表示装置および液晶表示装置の製造方法
US20210210560A1 (en) Array substrate and manufacturing method thereof, display panel and display device
CN109860224B (zh) 显示基板及其制作方法、显示面板、显示装置
US11049886B2 (en) Thin-film transistor array substrate and manufacturing method thereof
WO2018214628A1 (zh) 阵列基板、其制作方法、液晶显示面板及显示装置
WO2021068337A1 (zh) 显示面板及显示装置
WO2019052043A1 (zh) 显示面板及其制造方法
WO2024017343A1 (zh) 显示面板及其制作方法、显示装置
WO2015096221A1 (zh) 阵列基板及用该阵列基板的液晶显示面板
WO2020088368A1 (zh) 薄膜晶体管及其制作方法、阵列基板、显示装置
WO2021238343A1 (zh) 显示面板及显示装置
WO2020113654A1 (zh) 显示面板和显示装置
US20190072796A1 (en) Organic thin film transistor having perpendicular channels in pixel structure and method for manufacturing same
US20180254434A1 (en) Display device
WO2018223480A1 (zh) 显示面板及其应用的显示装置
CN109037485B (zh) 显示面板及显示装置
WO2021120282A1 (zh) 一种显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.05.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18805986

Country of ref document: EP

Kind code of ref document: A1