WO2018214612A1 - 一种3d打印用喂料及其制备方法和应用 - Google Patents
一种3d打印用喂料及其制备方法和应用 Download PDFInfo
- Publication number
- WO2018214612A1 WO2018214612A1 PCT/CN2018/078306 CN2018078306W WO2018214612A1 WO 2018214612 A1 WO2018214612 A1 WO 2018214612A1 CN 2018078306 W CN2018078306 W CN 2018078306W WO 2018214612 A1 WO2018214612 A1 WO 2018214612A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- feed
- printing
- polymer binder
- linear
- degreasing
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/10—Formation of a green body
- B22F10/18—Formation of a green body by mixing binder with metal in filament form, e.g. fused filament fabrication [FFF]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
- B33Y70/10—Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
- B22F1/102—Metallic powder coated with organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/1017—Multiple heating or additional steps
- B22F3/1021—Removal of binder or filler
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/22—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
- B22F3/227—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by organic binder assisted extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/20—Refractory metals
- B22F2301/205—Titanium, zirconium or hafnium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present application relates to the field of metal material preparation, such as a 3D printing feed and a preparation method and application thereof.
- 3D printing technology also known as 3D printing technology, is a technique for constructing objects by layer-by-layer printing based on digital model files using adhesive materials such as powdered metal or plastic. It eliminates the need for machining or any mold to create parts of any shape directly from computer graphics data, dramatically reducing product development cycles, increasing productivity and reducing production costs. Products such as lampshades, body organs, jewelry, football boots tailored to the player's foot, racing parts, solid-state batteries, and custom-made cell phones, violins, etc. can be manufactured using this technology.
- 3D printing technology is actually a collective term for a series of rapid prototyping technologies.
- the basic principle is lamination manufacturing.
- the rapid prototyping machine forms the cross-sectional shape of the workpiece by scanning in the XY plane, and intermittently makes the layer thickness in the Z coordinate. The displacement eventually forms a three-dimensional piece.
- the rapid prototyping technology on the market is divided into 3DP technology, SLA (full name Service-Level Agreement) stereo light curing technology, SLS (full name Selective Laser Sintering) selective laser sintering technology, DMLS (full name Direct Metal Laser-Sintering) direct metal laser Sintering technology and FDM (Fused Deposition Modeling) fusion layer forming technology.
- FDM fusion layer forming technology is the main method at present. It is to melt and melt the hot melt material, and the three-dimensional nozzle is selectively coated on the worktable according to the sectional profile information under the control of the computer. After rapid cooling. Form a section. After one layer has been formed, the machine table is lowered to a height (ie, layer thickness) to continue forming until the entire solid shape is formed. It has many kinds of molding materials, high precision of molded parts and low price, and is mainly suitable for molding small plastic parts. However, the plastic products produced in this way have low strength and cannot meet the requirements of customers.
- the DMLS technology uses an alloy material as a raw material, and the raw material is melted by metal laser sintering to perform 3D printing. It has the characteristics of high precision, high strength, fast speed, smooth surface of the finished product, etc. It is generally used in the aerospace and industrial parts manufacturing industry, and can be used in high-end mold design. However, the laser sintering equipment is complicated, and the energy consumption in the preparation process is high. Considering factors such as product resolution, equipment cost, product appearance requirements and mass production capacity, it is currently not widely applicable.
- Powder injection molding technology has the characteristics of high precision, uniform organization, excellent performance and low production cost, and has been rapidly developed in recent years.
- the product In the sintering process, the product has a shrinkage characteristic of 10-30%, so the surface roughness and precision of the final product are much better than the DMLS technology. Therefore, if powder injection molding technology and 3D printing can be combined, the advantages of the two technologies can be effectively integrated, the quality of the product can be improved, the production cost can be reduced, and the product can be popularized at the same time.
- CN106270510A discloses a method for manufacturing metal/alloy parts by using a plastic 3D printer, which comprises the steps of sintering raw material pretreatment, raw material coating, powder reduction, 3D printing, degreasing, sintering, and the like.
- CN106426916A discloses a 3D printing method comprising: mixing powdery material to be processed and powdered nylon material; melting the nylon material by selective laser sintering technology to bond the material to be processed to form a green body; heating the The green body is thermally degreased to volatilize the nylon material; the green body is heated to a sintering temperature of the material to be processed to sinter the green body; and the ambient temperature of the green body is lowered to room temperature to obtain a dense Components.
- the feeding modes are powder or granular, which mainly has the following disadvantages: when using powdery or granular raw materials for 3D printing, it is necessary to The raw materials are spread and spread from the bottom to the top in the whole area, which greatly increases the feeding amount and causes waste of materials.
- the hot zone since the hot zone is too large, the materials are easily melt-crosslinked, and when laser heating is used for melting and bonding, the melting point of the polymer material is low, and the surrounding material is also heated and melted, thereby affecting the accuracy and appearance of the product.
- the shape of the powder or granular feed is irregular, so that it is impossible to carry out effective uniform coating, which may cause uneven thickness of the surface of the product.
- the embodiments of the present invention provide a feed for 3D printing, wherein the feeding is linear, thereby avoiding the combination of the existing powder injection molding technology and the 3D printing technology, due to the feeding form.
- the embodiment of the present invention adopts the following technical solutions:
- an embodiment of the present invention provides a feed for 3D printing, wherein the feed is a metal powder wrapped with a polymer binder and is linear.
- the embodiment of the present invention combines powder injection molding technology with 3D printing technology to obtain a linear 3D printing feed.
- the feeding can be performed according to the required amount of material for each layer of the printing piece, thereby saving the raw materials; at the same time, the surface of the product can be controlled by selecting different wire diameters of the feeding and controlling the heating temperature. Accuracy; and the feed prepared by the embodiment of the invention can be melted by ordinary thermocouple heating, and no expensive laser equipment is needed.
- the feed consists of the following components in terms of volume percent: 15-75% metal powder; 25-85% polymer binder.
- the content of the metal powder in the feed is 15-75% by volume, for example, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70% or 75%, and the specific point value between the above values, limited by space and for the sake of concise considerations, this article is not exhaustive.
- the content of the polymer binder in the feed is 25-85% by volume, for example, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%. , 65%, 70%, 75%, 80% or 85%, and the specific point value between the above values, limited by space and for the sake of concise considerations, this article is no longer exhaustive.
- the sum of the metal powder and the polymer binder is 100% by volume.
- the linear feed has a diameter of 0.1-5 mm, for example 0.1 mm, 0.5 mm, 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm or 5 mm, And the specific point values between the above values, limited by space and for the sake of concise considerations, this article is no longer exhaustive.
- the diameter of the linear feed in the embodiment of the invention is preferably from 1 to 3 mm.
- the metal powder is titanium and/or titanium alloy powder, copper and/or copper alloy powder, aluminum and/or aluminum alloy powder, iron and/or iron alloy powder, niobium and/or Or any of the niobium alloy powders, preferably titanium and/or titanium alloy powders.
- the polymeric binder is a plastic based binder or a wax based binder.
- the plastic-based binder and the wax-based binder are all commonly used binders in a metal injection molding process, and specific components thereof are not particularly limited herein; preferably, the main body of the plastic-based binder
- the filler is polyoxymethylene (POM), and the main filler of the wax-based binder is paraffin wax (PW).
- the embodiment of the present invention provides a method for preparing a 3D printing feed according to the first aspect, the method comprising the following steps:
- the temperature of the kneading in the step (1) is 165-200 ° C, for example, 165 ° C, 170 ° C, 175 ° C, 180 ° C, 185 ° C, 190 ° C, 195 ° C or 200 ° C, and
- the specific point values between the above values are limited in length and for the sake of brevity, this article is not exhaustive.
- the temperature of the kneading in the step (1) of the embodiment of the present invention is preferably 175 to 190 ° C, and more preferably 185 ° C.
- the mixing time of the step (1) is 0.5-2 h, for example, 0.5 h, 0.8 h, 1 h, 1.2 h, 1.5 h, 1.8 h or 2 h, and specific between the above values. Point values, limited by length and for concise considerations, this article is no longer exhaustive.
- the mixing time of the step (1) in the embodiment of the present invention is preferably 1 h.
- the obtained linear feed is selected to be wound into a disk shape, which is advantageous for continuous operation production.
- an embodiment of the present invention provides the use of the feed of the first aspect, the feed being applied to 3D printing.
- the application comprises the following steps:
- the sintered part obtained in the step (3) is subjected to post-processing.
- the removal amount of the polymer binder in the brown body in the step (2) is 8-12% of the total amount, for example, 8%, 8.5%, 9%, 9.5%, 10%, 10.5%, 11%, 11.5% or 12%, and the specific point value between the above values, limited by space and for the sake of concise considerations, this article is no longer exhaustive.
- the degreasing method in the step (2) is any one of thermal degreasing, water degreasing, acid degreasing, or organic solvent degreasing.
- the acid degreasing medium is nitric acid or oxalic acid.
- the sintering temperature in the step (3) is 1200-1450 ° C, for example, 1200 ° C, 1210 ° C, 1220 ° C, 1230 ° C, 1240 ° C, 1250 ° C, 1260 ° C, 1270 ° C, 1280 ° C , 1290 ° C, 1300 ° C, 1360 ° C, 1400 ° C or 1450 ° C, and the specific values between the above values, limited by space and for the sake of concise considerations, this article is not exhaustive.
- the temperature of the sintering in the step (3) of the embodiment of the present invention is preferably 1240-1360 °C.
- the sintering time in the step (3) is 2-3 h, for example, it may be 2 h, 2.1 h, 2.2 h, 2.3 h, 2.4 h, 2.5 h, 2.6 h, 2.7 h, 2.8 h, 2.9. h or 3h, and the specific point value between the above values, limited by space and for the sake of concise considerations, this article is no longer exhaustive.
- the embodiment of the invention has at least the following beneficial effects:
- FIG. 1 is a process flow diagram of a feed preparation and application provided by a specific embodiment of the present application.
- a process for preparing and applying a feed may be: mixing a metal powder and a polymer binder to prepare a linear feed, which will be obtained.
- the raw material is obtained by 3D printing to obtain a green body, and the obtained raw embryos are sequentially subjected to degreasing, sintering and post-processing to obtain a finished product.
- a method for preparing a 3D printing feed is as follows:
- the application of the feed for 3D printing in this embodiment includes the following steps:
- the green body obtained in the step (1) is degreased at 110 ° C for 10 h using nitric acid as a medium, and 10% of the polymer binder is removed to obtain a brown billet;
- a method for preparing a 3D printing feed is as follows:
- the application of the feed for 3D printing in this embodiment includes the following steps:
- a method for preparing a 3D printing feed is as follows:
- the application of the feed for 3D printing in this embodiment includes the following steps:
- a method for preparing a 3D printing feed is as follows:
- the raw material is added to an internal mixer and kneaded at 185 ° C for 1 h;
- the application of the feed for 3D printing in this embodiment includes the following steps:
- a method for preparing a 3D printing feed is as follows:
- the application of the feed for 3D printing in this embodiment includes the following steps:
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Civil Engineering (AREA)
- Composite Materials (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Powder Metallurgy (AREA)
Abstract
一种3D打印用喂料,所述喂料为高分子粘结剂包裹的金属粉体,呈线状。还公开了上述喂料的制备方法和应用,将配方量的金属粉体和高分子粘结剂进行混炼,得到的经高分子粘结剂包裹的金属粉体挤出成型为线状,冷却后得到所述3D打印用喂料,线状喂料经由3D打印机打印出预设形状的生坯后,依次经过脱脂、烧结,可得到结构复杂、精度高的金属产品。在3D打印中应用上述线状喂料,能够避免对原料的浪费;可以通过选择喂料的不同线径以及控制加热温度来控制产品表面的精度,提高产品的质量;同时可利用简单的热电偶进行熔融处理,不需要复杂且昂贵的激光加热设备,降低了生产成本。
Description
本申请涉及金属料体制备领域,例如一种3D打印用喂料及其制备方法和应用。
3D打印(3D printing)技术又称三维打印技术,是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。它无需机械加工或任何模具,就能直接从计算机图形数据中生成任何形状的零件,从而极大地缩短产品的研制周期,提高生产率和降低生产成本。诸如灯罩、身体器官、珠宝、根据球员脚型定制的足球靴、赛车零件、固态电池以及为个人定制的手机、小提琴等产品都可以用该技术制造出来。
3D打印技术实际上是一系列快速原型成型技术的统称,其基本原理都是叠层制造,由快速原型机在X-Y平面内通过扫描形式形成工件的截面形状,而在Z坐标间断地作层面厚度的位移,最终形成三维制件。目前市场上的快速成型技术分为3DP技术、SLA(全称Service-Level Agreement)立体光固化技术、SLS(全称Selective Laser Sintering)选择性激光烧结技术、DMLS(全称Direct Metal Laser-Sintering)直接金属激光烧结技术及FDM(全称Fused Deposition Modeling)熔融层积成型技术等。
3D打印技术最早应用在塑料材料上。FDM熔融层积成型技术是目前主要方式,它是将热熔性材料加热融化,同时三维喷头在计算机的控制下,根据截面轮廓信息,将材料选择性地涂敷在工作台上,快速冷却后形成一层截面。一层成型完成后,机器工作台下降一个高度(即分层厚度)继续成型,直至形成整 个实体造型。其成型材料种类多,成型件精度较高、价格便宜,主要适用于成型小塑料件。然而这种方式产生的塑料产品强度低并不能满足客户的要求。为了增加产品的强度,改善产品的性能,DMLS技术采用合金材料为原料,利用金属激光烧结将原料熔融后进行3D打印。其具有高精度、高强度,速度快,成品表面光滑等特点,一般应用于航空航天以及工业用配件制造行业,可用于高阶模具设计等。但激光烧结设备复杂,制备过程能耗高,综合考虑产品分辨率、设备费用、产品外观要求及量产能力等因素,目前其无法大量普及应用。
粉末注射成型技术(PIM)具有精度高、组织均匀、性能优异以及生产成本低等特点,近年来得到了快速发展。在烧结过程中,产品有10-30%的收缩特性,所以最终产品的表面粗糙度及精度较DMLS技术要好很多。因此如果可以将粉末注射成型技术和3D打印结合,则能有效整合两种技术的优点,提高产品的质量,降低生产成本,同时实现产品的普及。
CN106270510A中公开了一种利用塑料3D打印机打印制造金属/合金零件的方法,该方法包括烧结原材料前处理、原材料包覆、粉末还原、3D打印、脱脂、烧结等步骤。CN106426916A中公开了一种3D打印方法,包括:混合粉末状待加工材料及粉末状尼龙材料;采用选择性激光烧结技术熔化所述尼龙材料以粘结所述待加工材料形成生坯;加热所述生坯进行热脱脂以使所述尼龙材料挥发;加热所述生坯至所述待加工材料的烧结温度以对所述生坯进行烧结;将所述生坯的环境温度降至室温以得到致密零件。上述两种方法虽然都将粉末注塑成型和3D打印技术相结合,但是其喂料模式均为粉状或颗粒状,主要存在以下缺点:使用粉状或颗粒状的原料进行3D打印时,需要将原料由下至上逐层在全区铺展涂布,大大增加了喂料量,造成了材料的浪费。在熔融过程中由于热区过大,材料之间易熔融交联,使用激光加热熔解结合时,因高分子材料的熔 点低而易造成周边材料也被加热熔融,进而影响其产品精度及外观。同时粉体状或颗粒状喂料的形态不规则,因此无法进行有效均匀的涂布,易造成产品表面厚度不均。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
针对现有技术中存在的不足,本发明实施例提供一种3D打印用喂料,所述喂料为线状,进而避免了现有粉末注射成型技术与3D打印技术结合时,因喂料形态而导致的原料浪费、设备复杂昂贵、精度不足等问题。
为达此目的,本发明实施例采用以下技术方案:
第一方面,本发明实施例提供一种3D打印用喂料,所述喂料为高分子粘结剂包裹的金属粉体,呈线状。
本发明实施例将粉末注射成型技术与3D打印技术相结合,得到一种线状的3D打印用喂料。将所述喂料应用到3D打印时,可以根据打印件每层所需的用料量进行供料,节省了原料;同时可以通过选择喂料的不同线径以及控制加热温度来控制产品表面的精度;且本发明实施例制备的喂料采用普通的热电偶加热即可熔融,不需要昂贵的激光设备。
根据本发明实施例,按体积百分含量计,所述喂料由以下组分组成:15-75%金属粉体;25-85%高分子粘结剂。
按体积百分含量计,所述喂料中金属粉体的含量为15-75%,例如可以是15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%或75%,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本文不再穷尽列举。
按体积百分含量计,所述喂料中高分子粘结剂的含量为25-85%,例如可以是25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%或85%,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本文不再穷尽列举。
按体积百分含量计,所述金属粉体和高分子粘结剂之和为100%。
根据本发明实施例,所述线状喂料的直径为0.1-5mm,例如可以是0.1mm、0.5mm、1mm、1.5mm、2mm、2.5mm、3mm、3.5mm、4mm、4.5mm或5mm,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本文不再穷尽列举。
本发明实施例中所述线状喂料的直径优选为1-3mm。
根据本发明实施例,所述金属粉体为钛和/或钛合金粉体、铜和/或铜合金粉体、铝和/或铝合金粉体、铁和/或铁合金粉体、钕和/或钕合金粉体中的任意一种,优选为钛和/或钛合金粉体。
根据本发明实施例,所述高分子粘结剂为塑基粘结剂或蜡基粘结剂。所述塑基粘结剂和蜡基粘结剂均为金属注射成型工艺中常用的粘结剂,本文对其具体的组分不做特殊限定;优选地,所述塑基粘结剂的主填充剂为聚甲醛(POM),所述蜡基粘结剂的主填充剂为石蜡(PW)。
第二方面,本发明实施例提供一种如第一方面所述的3D打印用喂料的制备方法,所述方法包括以下步骤:
(1)将配方量的金属粉体和高分子粘结剂进行混炼,使所述高分子粘结剂包裹在金属粉体的表面;
(2)将步骤(1)得到的经高分子粘结剂包裹的金属粉体挤出成型为线状,冷却后得到所述3D打印用喂料。
根据本发明实施例,步骤(1)所述混炼的温度为165-200℃,例如可以是165℃、170℃、175℃、180℃、185℃、190℃、195℃或200℃,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本文不再穷尽列举。
本发明实施例步骤(1)所述混炼的温度优选为175-190℃,进一步优选为185℃。
根据本发明实施例,步骤(1)所述混炼的时间为0.5-2h,例如可以是0.5h、0.8h、1h、1.2h、1.5h、1.8h或2h,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本文不再穷尽列举。
本发明实施例步骤(1)所述混炼的时间优选为1h。
本发明实施例选择将制得的线状喂料卷绕为盘状,有利于进行连续操作生产。
第三方面,本发明实施例提供如第一方面所述的喂料的应用,所述喂料应用于3D打印中。
优选地,所述应用包括以下步骤:
(1)将所述线状的喂料作为原料,经由3D打印机打印出预设形状的生坯;
(2)将步骤(1)得到的生坯进行脱脂,得到褐坯;
(3)将步骤(3)得到的褐坯进行烧结,得到烧结件;
(4)任选地,对步骤(3)得到的烧结件进行后加工。
根据本发明实施例,步骤(2)中所述褐坯中高分子粘结剂脱除量为总量的8-12%,例如可以是8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%或12%,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本文不再穷尽列举。
根据本发明实施例,步骤(2)所述脱脂的方法为热脱脂、水脱脂、酸脱脂 或有机溶剂脱脂中的任意一种。
根据本发明实施例,所述酸脱脂的介质为硝酸或草酸。
根据本发明实施例,步骤(3)所述烧结的温度为1200-1450℃,例如可以是1200℃、1210℃、1220℃、1230℃、1240℃、1250℃、1260℃、1270℃、1280℃、1290℃、1300℃、1360℃、1400℃或1450℃,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本文不再穷尽列举。
本发明实施例步骤(3)所述烧结的温度优选为1240-1360℃。
根据本发明实施例,步骤(3)所述烧结的时间为2-3h,例如可以是2h、2.1h、2.2h、2.3h、2.4h、2.5h、2.6h、2.7h、2.8h、2.9h或3h,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本文不再穷尽列举。
与现有技术相比,本发明实施例至少具有以下有益效果:
(1)避免了对原料的浪费,可以通过选择喂料的不同线径以及控制加热温度来控制产品表面的精度,提高产品的质量。
(2)可通过简单的热电偶进行加熔融处理,不需要复杂且昂贵的激光加热设备,减少了能耗,降低了生产成本。
(3)将粉末注射成型技术和3D打印技术相结合,可以快速打印制作复杂的产品,缩短开发流程,实现量产普及化。
在阅读并理解了附图和详细描述后,可以明白其他方面。
图1为本申请的一种具体实施方式提供的喂料制备及应用的工艺流程图。
下面对本发明实施例进一步详细说明。但下述的实例仅仅是本申请的简易例子,并不代表或限制本申请的权利保护范围,本申请的保护范围以权利要求书为准。
下面结合附图并通过具体实施方式来进一步说明本申请的技术方案。
如图1所示,本申请的一种具体实施方式提供的喂料制备及应用的工艺流程可以为:将金属粉体和高分子粘结剂混炼制备线状的喂料,将得到的喂料利用3D打印成型得到生坯,将所得生胚依次经过脱脂、烧结和后加工,得到成品件。
为更好地说明本申请,便于理解本申请的技术方案,本申请的典型但非限制性的实施例如下:
实施例1
一种3D打印用喂料的制备方法如下所示:
(1)将60vol%钛金属粉与40vol%的高分子粘结剂混合,所述高分子粘结剂包括:聚甲醛85wt%、聚丙烯14wt%、硬脂酸1wt%;将所述原料加入密炼机中,在170℃下混炼1h;
(2)利用挤出机将步骤(1)混炼后得到的材料挤出为直径为2mm的线状材料,冷却后得到所述3D打印用喂料,将所述线状喂料卷绕为盘状备用。
本实施例得到3D打印用喂料的应用包括以下步骤:
(1)将所述线状喂料作为原料,经由3D打印机打印出预设形状的生坯;
(2)将步骤(1)得到的生坯在110℃下,使用硝酸为介质脱脂4h,脱除10%的高分子粘结剂后得到褐坯;
(3)将步骤(2)得到的褐坯置于真空炉中,在1250℃下烧结3h,冷却后得到钛基产品。
实施例2
一种3D打印用喂料的制备方法如下所示:
(1)将50vol%钛合金粉与50vol%的高分子粘结剂混合,所述高分子粘结剂包括:石蜡80wt%、聚乙烯19.5wt%、硬脂酸0.5wt%;将所述原料加入密炼机中,在200℃下混炼0.5h;
(2)利用挤出机将步骤(1)混炼后得到的材料挤出为直径为3mm的线状材料,冷却后得到所述3D打印用喂料,将所述线状喂料卷绕为盘状备用。
本实施例得到3D打印用喂料的应用包括以下步骤:
(1)将所述线状喂料作为原料,经由3D打印机打印出预设形状的生坯;
(2)将步骤(1)得到的生坯在80℃下,使用正庚烷为介质浸泡6h,脱除12%的高分子粘结剂后得到褐坯;
(3)将步骤(2)得到的褐坯置于真空炉中,在1260℃下烧结2.5h,冷却后得到钛合金基产品;
(4)依据客户的要求对步骤(3)得到的钛合金基产品进行后加工。
实施例3
一种3D打印用喂料的制备方法如下所示:
(1)将70vol%铜金属粉与30vol%的高分子粘结剂混合,所述高分子粘结剂包括:石蜡84wt%、聚丙烯14wt%、硬脂酸2wt%;将所述原料加入密炼机中,在165℃下混炼2h;
(2)利用挤出机将步骤(1)混炼后得到的材料挤出为直径为5mm的线状材料,冷却后得到所述3D打印用喂料,将所述线状喂料卷绕为盘状备用。
本实施例得到3D打印用喂料的应用包括以下步骤:
(1)将所述线状喂料作为原料,经由3D打印机打印出预设形状的生坯;
(2)将步骤(1)得到的生坯在60℃下,使用正庚烷为介质浸泡8h,脱除11%的高分子粘结剂后得到褐坯;
(3)将步骤(2)得到的褐坯置于真空炉中,在1030℃下烧结2h,冷却后得到铜基产品。
实施例4
一种3D打印用喂料的制备方法如下所示:
(1)将50vol%钛金属粉与50vol%的高分子粘结剂混合,所述高分子粘结剂包括:聚甲醛70wt%、聚丙烯27.5wt%、硬脂酸2.5wt%;将所述原料加入密炼机中,在185℃下混炼1h;
(2)利用挤出机将步骤(1)混炼后得到的材料挤出为直径为1.5mm的线状材料,冷却后得到所述3D打印用喂料,将所述线状喂料卷绕为盘状备用。
本实施例得到3D打印用喂料的应用包括以下步骤:
(1)将所述线状喂料作为原料,经由3D打印机打印出预设形状的生坯;
(2)将步骤(1)得到的生坯在120℃下,使用硝酸为介质浸泡3h,脱除8%的高分子粘结剂后得到褐坯;
(3)将步骤(2)得到的褐坯置于真空炉中,在1250℃下烧结3h,冷却后得到钛基产品。
实施例5
一种3D打印用喂料的制备方法如下所示:
(1)将60vol%不锈钢金属粉与40vol%的高分子粘结剂混合,所述高分子粘结剂包括:聚甲醛70wt%、聚丙烯28wt%、硬脂酸2.0wt%;将所述原料加入密炼机中,在185℃下混炼1h;
(2)利用挤出机将步骤(1)混炼后得到的材料挤出为直径为1.75mm的线状材料,冷却后得到所述3D打印用喂料,将所述线状喂料卷绕为盘状备用。
本实施例得到3D打印用喂料的应用包括以下步骤:
(1)将所述线状喂料作为原料,经由3D打印机打印出预设形状的生坯;
(2)将步骤(1)得到的生坯在120℃下,使用硝酸为介质浸泡3h,脱除8%的高分子粘结剂后得到褐坯;
(3)将步骤(2)得到的褐坯置于真空炉中,在1360℃下烧结3h,冷却后得到不锈钢金属基产品。
以上详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
Claims (12)
- 一种3D打印用喂料,其中,所述喂料为高分子粘结剂包裹的金属粉体,呈线状。
- 如权利要求1所述的喂料,其中,按体积百分含量计,所述喂料由以下组分组成:15-75%金属粉体;25-85%高分子粘结剂。
- 如权利要求2所述的喂料,其中,所述线状喂料的直径为0.1-5mm。
- 如权利要求3所述的喂料,其中,所述线状喂料的直径为1-3mm。
- 如权利要求1至4中任一项所述的喂料,其中,所述金属粉体为钛和/或钛合金粉体、铜和/或铜合金粉体、铝和/或铝合金粉体、铁和/或铁合金粉体、钕和/或钕合金粉体中的任意一种,优选为钛和/或钛合金粉体;优选地,所述高分子粘结剂为塑基粘结剂或蜡基粘结剂。
- 如权利要求1-5中任一项所述的3D打印用喂料的制备方法,其中,所述方法包括以下步骤:(1)将配方量的金属粉体和高分子粘结剂进行混炼,使所述高分子粘结剂包裹在金属粉体的表面;(2)将步骤(1)得到的经高分子粘结剂包裹的金属粉体挤出成型为线状,冷却后得到所述3D打印用喂料。
- 如权利要求6所述的方法,其中,步骤(1)所述混炼的温度为165-200℃,优选为175-190℃,进一步优选为185℃;优选地,步骤(1)所述混炼的时间为0.5-2h,优选为1h。
- 如权利要求6或7所述的方法,其中,将步骤(2)得到的线状喂料卷绕为盘状备用。
- 如权利要求1-5中任一项所述的喂料的应用,其中,所述喂料应用于3D打印中。
- 如权利要求9所述的应用,其中,所述应用包括以下步骤:(1)将所述线状的喂料作为原料,经由3D打印机打印出预设形状的生坯;(2)将步骤(1)得到的生坯进行脱脂,得到褐坯;(3)将步骤(3)得到的褐坯进行烧结,得到烧结件;(4)任选地,对步骤(3)得到的烧结件进行后加工。
- 如权利要求10所述的应用,其中,步骤(2)中所述褐坯中高分子粘结剂脱除量为总量的8-12%;优选地,步骤(2)所述脱脂的方法为热脱脂、水脱脂、酸脱脂或有机溶剂脱脂中的任意一种;优选地,所述酸脱脂的介质为硝酸或草酸。
- 如权利要求10或11所述的应用,其中,步骤(3)所述烧结的温度为1200-1450℃,优选为1240-1360℃;优选地,步骤(3)所述烧结的时间为2-3h。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018525413A JP2019524981A (ja) | 2017-05-23 | 2018-03-07 | 3dプリント用素材及びその調製方法と使用 |
US16/069,475 US20210205888A1 (en) | 2017-05-23 | 2018-03-07 | Feedstock for 3d printing, preparation method and application thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710367897.5 | 2017-05-23 | ||
CN201710367897.5A CN106984805B (zh) | 2017-05-23 | 2017-05-23 | 一种3d打印用喂料及其制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018214612A1 true WO2018214612A1 (zh) | 2018-11-29 |
Family
ID=59419970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/078306 WO2018214612A1 (zh) | 2017-05-23 | 2018-03-07 | 一种3d打印用喂料及其制备方法和应用 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20210205888A1 (zh) |
JP (1) | JP2019524981A (zh) |
CN (1) | CN106984805B (zh) |
TW (1) | TW201900427A (zh) |
WO (1) | WO2018214612A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020139203A (ja) * | 2019-02-28 | 2020-09-03 | セイコーエプソン株式会社 | 粉末冶金用析出硬化系ステンレス鋼粉末、コンパウンド、造粒粉末および析出硬化系ステンレス鋼焼結体 |
CN112480851A (zh) * | 2020-11-23 | 2021-03-12 | 华南理工大学 | 一种降低固化收缩率的uv粘结剂及其制备方法 |
CN113755739A (zh) * | 2021-09-22 | 2021-12-07 | 天津大学 | 一种提高增材制造奥氏体钢力学性能的方法 |
CN114505491A (zh) * | 2022-04-18 | 2022-05-17 | 天津大学 | 一种基于纳米颗粒增材制造成形件的脱脂烧结方法 |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106984805B (zh) * | 2017-05-23 | 2020-07-10 | 昆山卡德姆新材料科技有限公司 | 一种3d打印用喂料及其制备方法和应用 |
CN107824777B (zh) * | 2017-09-21 | 2020-06-02 | 东莞华晶粉末冶金有限公司 | 铝合金注射成型喂料、铝合金注射成型件及制备方法 |
CN108503355B (zh) * | 2018-04-18 | 2020-08-04 | 昆山卡德姆新材料科技有限公司 | 一种3d打印用料、其制备方法和用途 |
CN108356269B (zh) * | 2018-05-04 | 2024-03-22 | 昆山卡德姆新材料科技有限公司 | 一种3d打印机头及3d打印机 |
CN108607984A (zh) * | 2018-06-29 | 2018-10-02 | 上海六晶科技股份有限公司 | 一种钨合金3d打印浆料及其制备方法 |
CN109108267B (zh) * | 2018-08-03 | 2019-12-20 | 深圳市富荣新材料科技有限公司 | 一种组合物、制备方法及在金属注塑成型材料领域的应用 |
CN109307613B (zh) * | 2018-10-18 | 2021-07-02 | 中国石油天然气股份有限公司 | 一种制备人造岩心的方法及装置 |
CN109692967B (zh) * | 2019-02-15 | 2022-06-17 | 中圣德投资(深圳)有限公司 | 一种3d打印用团状粉料及其制备方法和打印方法 |
CN110405213A (zh) * | 2019-07-25 | 2019-11-05 | 中国第一汽车股份有限公司 | 一种汽车金属支架类零件的制造方法 |
CN113681008B (zh) * | 2019-07-26 | 2023-06-27 | 昆山卡德姆新材料科技有限公司 | 一种金属零件 |
JP7347044B2 (ja) * | 2019-09-10 | 2023-09-20 | セイコーエプソン株式会社 | 積層造形用粉末、積層造形体、積層造形体の製造方法および金属焼結体の製造方法 |
US11328696B2 (en) * | 2020-01-17 | 2022-05-10 | Matthew CANEL | Stringed instrument |
CN111283185A (zh) * | 2020-03-17 | 2020-06-16 | 丽水学院 | 低成本不锈钢间接增材制造方法 |
CN111360247A (zh) * | 2020-03-18 | 2020-07-03 | 丽水学院 | 低成本钛铝金属间化合物间接3d打印方法 |
CN112296353A (zh) * | 2020-10-09 | 2021-02-02 | 安徽元琛环保科技股份有限公司 | 一种金属和高分子材料复合3d打印丝的制备方法 |
CN112338200A (zh) * | 2020-10-20 | 2021-02-09 | 深圳市贝斯特精工科技有限公司 | 一种3d打印用金属喂料、线材及其制备方法和应用 |
CN112872355B (zh) * | 2021-01-11 | 2022-04-08 | 上海交通大学 | 一种具有多级孔结构的金属吸液芯材料及其制备方法 |
CN113953531B (zh) * | 2021-10-22 | 2022-07-22 | 西安交通大学 | 减小激光增材制造零件侧表面粘粉的方法 |
CN114851549B (zh) * | 2022-05-14 | 2024-01-26 | 重庆理工大学 | 一种选择性激光烧结成形的产品制造方法 |
CN116348275B (zh) * | 2022-12-08 | 2024-08-30 | 苏州聚复科技股份有限公司 | 用于生产3d打印线材的结晶控制装置与方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01184205A (ja) * | 1988-01-20 | 1989-07-21 | Mitsubishi Pencil Co Ltd | 可塑性を有する金属グリーンワイヤー及びその製造方法 |
CN104057090A (zh) * | 2013-03-20 | 2014-09-24 | 江苏天一超细金属粉末有限公司 | 打印金属、陶瓷制品的金属、陶瓷粉末与聚合物混融材料及聚合物在成型品中的脱除方法 |
CN104711442A (zh) * | 2015-03-11 | 2015-06-17 | 北京科技大学 | 一种3d打印制造硬质合金的方法 |
CN105880583A (zh) * | 2016-04-18 | 2016-08-24 | 四川大学 | 用于3d打印制作钛制品的复合丝材及其制备方法 |
US20160256610A1 (en) * | 2015-03-03 | 2016-09-08 | Yujie Zhou | Method of producing personalized biomimetic drug-eluting coronary stents by 3d-printing |
CN106312047A (zh) * | 2016-09-05 | 2017-01-11 | 东莞市兴茂橡塑科技有限公司 | 一种3d打印材料及利用该3d打印材料成型制品的方法 |
CN106984805A (zh) * | 2017-05-23 | 2017-07-28 | 昆山卡德姆新材料科技有限公司 | 一种3d打印用喂料及其制备方法和应用 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101518820B (zh) * | 2009-03-31 | 2010-07-28 | 北京科技大学 | 一种金属粉末凝胶-挤压成形方法 |
WO2011031813A2 (en) * | 2009-09-10 | 2011-03-17 | Schlumberger Canada Limited | Scintered powder metal shaped charges |
CN105408095A (zh) * | 2013-06-24 | 2016-03-16 | 哈佛学院院长等 | 打印的三维(3d)功能部件及其制造方法 |
CN103769587A (zh) * | 2013-11-28 | 2014-05-07 | 王利民 | 一种金属3d打印法产品生产方法及设备 |
JP6447983B2 (ja) * | 2014-07-08 | 2019-01-09 | エメリー オレオケミカルズ ゲーエムベーハー | 3d印刷デバイス用の焼結可能な供給原料 |
DE102014018081A1 (de) * | 2014-12-06 | 2016-06-09 | Universität Rostock | Verfahren und Anlage zur additiven Fertigung von Metallteilen mittels eines Extrusionsverfahren - Composite Extrusion Modeling (CEM) |
CN105583402A (zh) * | 2016-02-19 | 2016-05-18 | 珠海天威飞马打印耗材有限公司 | 三维打印材料、fdm三维打印机及其打印方法 |
CN106238731B (zh) * | 2016-09-28 | 2018-07-13 | 深圳市首熙机械设备有限公司 | 一种混合金属3d立体打印装置 |
-
2017
- 2017-05-23 CN CN201710367897.5A patent/CN106984805B/zh active Active
-
2018
- 2018-03-07 WO PCT/CN2018/078306 patent/WO2018214612A1/zh active Application Filing
- 2018-03-07 JP JP2018525413A patent/JP2019524981A/ja active Pending
- 2018-03-07 US US16/069,475 patent/US20210205888A1/en not_active Abandoned
- 2018-03-23 TW TW107110014A patent/TW201900427A/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01184205A (ja) * | 1988-01-20 | 1989-07-21 | Mitsubishi Pencil Co Ltd | 可塑性を有する金属グリーンワイヤー及びその製造方法 |
CN104057090A (zh) * | 2013-03-20 | 2014-09-24 | 江苏天一超细金属粉末有限公司 | 打印金属、陶瓷制品的金属、陶瓷粉末与聚合物混融材料及聚合物在成型品中的脱除方法 |
US20160256610A1 (en) * | 2015-03-03 | 2016-09-08 | Yujie Zhou | Method of producing personalized biomimetic drug-eluting coronary stents by 3d-printing |
CN104711442A (zh) * | 2015-03-11 | 2015-06-17 | 北京科技大学 | 一种3d打印制造硬质合金的方法 |
CN105880583A (zh) * | 2016-04-18 | 2016-08-24 | 四川大学 | 用于3d打印制作钛制品的复合丝材及其制备方法 |
CN106312047A (zh) * | 2016-09-05 | 2017-01-11 | 东莞市兴茂橡塑科技有限公司 | 一种3d打印材料及利用该3d打印材料成型制品的方法 |
CN106984805A (zh) * | 2017-05-23 | 2017-07-28 | 昆山卡德姆新材料科技有限公司 | 一种3d打印用喂料及其制备方法和应用 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020139203A (ja) * | 2019-02-28 | 2020-09-03 | セイコーエプソン株式会社 | 粉末冶金用析出硬化系ステンレス鋼粉末、コンパウンド、造粒粉末および析出硬化系ステンレス鋼焼結体 |
JP7263840B2 (ja) | 2019-02-28 | 2023-04-25 | セイコーエプソン株式会社 | 粉末冶金用析出硬化系ステンレス鋼粉末、コンパウンド、造粒粉末および析出硬化系ステンレス鋼焼結体 |
CN112480851A (zh) * | 2020-11-23 | 2021-03-12 | 华南理工大学 | 一种降低固化收缩率的uv粘结剂及其制备方法 |
CN113755739A (zh) * | 2021-09-22 | 2021-12-07 | 天津大学 | 一种提高增材制造奥氏体钢力学性能的方法 |
CN114505491A (zh) * | 2022-04-18 | 2022-05-17 | 天津大学 | 一种基于纳米颗粒增材制造成形件的脱脂烧结方法 |
CN114505491B (zh) * | 2022-04-18 | 2022-06-24 | 天津大学 | 一种基于纳米颗粒增材制造成形件的脱脂烧结方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2019524981A (ja) | 2019-09-05 |
US20210205888A1 (en) | 2021-07-08 |
CN106984805A (zh) | 2017-07-28 |
TW201900427A (zh) | 2019-01-01 |
CN106984805B (zh) | 2020-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018214612A1 (zh) | 一种3d打印用喂料及其制备方法和应用 | |
TWI655982B (zh) | 一種3d列印材料、其製備方法及用途 | |
JP6519100B2 (ja) | 焼結造形方法、液状結合剤、および焼結造形物 | |
US20150125334A1 (en) | Materials and Process Using a Three Dimensional Printer to Fabricate Sintered Powder Metal Components | |
JP5819503B1 (ja) | 3dプリンターで積層造形する粉末冶金用ロストワックス型の製造方法 | |
CN106312047A (zh) | 一种3d打印材料及利用该3d打印材料成型制品的方法 | |
CN111570802B (zh) | 一种超薄金属基金刚石切割片的3d打印制作工艺 | |
CN104388849A (zh) | 一种金属基复合材料零部件的快速成形方法 | |
CN106118588A (zh) | 用于钛合金粉末注射成型的粘结剂以及注射成形钛合金零件的方法 | |
CN105290404A (zh) | 一种注射成形硬质合金产品的制备方法 | |
JP5624593B2 (ja) | 複合金属の一体成形方法 | |
CN105880583A (zh) | 用于3d打印制作钛制品的复合丝材及其制备方法 | |
CN107321990A (zh) | 一种硬质合金制品及其制备方法以及制备硬质合金制品的装置 | |
KR20190074535A (ko) | 금속 분말을 원료로 이용하는 3d 프린팅 방법 | |
KR20170142390A (ko) | 3d 프린터용 필라멘트 조성물 | |
CN113182529A (zh) | 一种3d打印材料、其制备方法及打印方法 | |
JP2010202928A (ja) | 金属造形物の製造方法及び積層造形用の金属樹脂複合体粉末 | |
Villalon | Electron beam fabrication of injection mold tooling with conformal cooling channels | |
KR20170037255A (ko) | 3d 프린팅을 이용한 입체 조형물의 제조 방법 | |
CN108015288B (zh) | 一种低熔点金属零部件熔融挤出成形方法 | |
JP2003013107A (ja) | 三次元形状焼結部品の製造方法 | |
JP2019081958A (ja) | 焼結造形方法、液状結合剤、および焼結造形物 | |
US11618218B2 (en) | Methods and systems for increasing print speed during additive manufacturing | |
Wang et al. | 3D printing technology and the adaptability of printing material | |
KR20160097565A (ko) | 적층가공을 통한 고강도 3차원 구조체 제조방법 및 이를 위한 합금재료 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018525413 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18805069 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18805069 Country of ref document: EP Kind code of ref document: A1 |