[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018212290A1 - Information processing device, control method, program and storage medium - Google Patents

Information processing device, control method, program and storage medium Download PDF

Info

Publication number
WO2018212290A1
WO2018212290A1 PCT/JP2018/019150 JP2018019150W WO2018212290A1 WO 2018212290 A1 WO2018212290 A1 WO 2018212290A1 JP 2018019150 W JP2018019150 W JP 2018019150W WO 2018212290 A1 WO2018212290 A1 WO 2018212290A1
Authority
WO
WIPO (PCT)
Prior art keywords
feature
landmark
information
reliability
unit
Prior art date
Application number
PCT/JP2018/019150
Other languages
French (fr)
Japanese (ja)
Inventor
岩井 智昭
多史 藤谷
加藤 正浩
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Publication of WO2018212290A1 publication Critical patent/WO2018212290A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • G09B29/10Map spot or coordinate position indicators; Map reading aids

Definitions

  • the present invention relates to a technique for measuring a position.
  • Patent Document 1 discloses a technique for estimating a self-position by collating the output of a measurement sensor with the position information of a feature registered in advance on a map.
  • Patent Document 2 discloses a vehicle position estimation technique using a Kalman filter.
  • a feature that serves as a reference for position estimation from measurement data obtained by an external sensor such as a lidar
  • it is a landmark because it is occluded by other vehicles traveling around the vehicle or trees on the road edge.
  • an accurate landmark position cannot be measured. In this case, if position estimation is performed using an erroneous landmark measurement position as it is, an incorrect position estimation result is obtained.
  • the present invention has been made to solve the above-described problems, and provides an information processing apparatus capable of outputting information related to the measurement position of a landmark in consideration of the possibility of occlusion.
  • the main purpose is to solve the above-described problems, and provides an information processing apparatus capable of outputting information related to the measurement position of a landmark in consideration of the possibility of occlusion.
  • the invention according to claim 1 is an information processing apparatus, wherein a first acquisition unit that acquires feature information stored in a storage unit and an output signal of a measurement unit that measures surrounding features are acquired. And an output unit that outputs information related to the reliability of the measurement position of the feature generated from the output signal based on the feature information and the output signal.
  • the invention according to claim 7 is a control method executed by the information processing apparatus, the first obtaining step for obtaining the feature information stored in the storage unit, and the output of the measuring unit for measuring surrounding features.
  • the invention according to claim 8 is a program executed by a computer, and acquires an output signal of a first acquisition unit that acquires feature information stored in a storage unit and a measurement unit that measures surrounding features.
  • the computer is caused to function as an output unit that outputs information on the reliability of the measurement position of the feature generated from the output signal based on the second acquisition unit, the feature information, and the output signal. .
  • the functional block block diagram of a vehicle equipment is shown. Indicates the landmark measurement position according to the presence or absence of occlusion.
  • the distribution of measurement points by a lidar or the like on the measurement surface of the landmark is shown.
  • the positional relationship of landmarks with reference to the vehicle coordinate system is shown. It is a flowchart of the own vehicle position estimation process.
  • the information processing apparatus acquires a first acquisition unit that acquires feature information stored in the storage unit, and an output signal of a measurement unit that measures surrounding features. And an output unit that outputs information related to the reliability of the measurement position of the feature generated from the output signal based on the feature information and the output signal.
  • the information processing apparatus can preferably output information on the reliability of the measurement position of the feature based on the output signal of the measurement unit that measures the surrounding feature.
  • the feature information includes information indicating a size of the feature
  • the output unit includes the size of the feature specified from the feature information
  • the reliability is determined based on the size of the feature specified from the output signal. According to this aspect, the information processing apparatus can suitably execute the determination of the reliability reflecting the degree of occlusion with respect to the feature.
  • the output unit includes a horizontal width of the feature, a width in the height direction of the feature, an area of the feature, or the ground measured by the measurement unit.
  • the reliability is determined using at least one of the number of points of the object as an index indicating the size of the feature. According to this aspect, the information processing apparatus can suitably execute the determination of the reliability reflecting the degree of occlusion with respect to the feature.
  • the feature information includes direction information indicating a direction of the feature
  • the output unit is based on the direction of the feature specified from the direction information.
  • the reliability is determined.
  • the output unit determines the reliability in the first direction based on the size of the feature in the first direction, and the feature in the second direction intersecting with the first direction.
  • the reliability in the second direction may be determined based on the magnitude of.
  • the information processing apparatus predicts the feature based on a prediction unit that predicts a self-position, a measurement distance by the measurement unit to the feature, and the feature information. And a correction unit that corrects the self-position based on a difference from the predicted distance until the correction unit decreases the gain for correcting the self-position based on the difference as the reliability decreases.
  • the information processing apparatus suitably corrects the self-position according to the reliability of the measurement position of the feature serving as a reference for position estimation, and suitably suppresses a decrease in position estimation accuracy when the occlusion occurs. Can do.
  • a control method executed by the information processing apparatus the first acquisition step of acquiring the feature information stored in the storage unit, and the surrounding features are measured. Based on the second acquisition step of acquiring the output signal of the measurement unit, the feature information, and the output signal, an output that outputs information on the reliability of the measurement position of the feature generated from the output signal And a process.
  • the information processing apparatus can suitably output reliability information for the measurement position of the feature.
  • a program executed by a computer includes a first acquisition unit that acquires feature information stored in a storage unit, and a measurement unit that measures surrounding features.
  • a measurement unit that measures surrounding features.
  • the computer can suitably output reliability information for the measurement position of the feature.
  • the program is stored in a storage medium.
  • FIG. 1 is a schematic configuration diagram of a driving support system according to the present embodiment.
  • the driving support system shown in FIG. 1 is mounted on a vehicle and controls an on-vehicle device 1 that performs control related to driving support of the vehicle, and an external sensor such as a lidar (Lider: Light Detection and Ranging or Laser Illuminated Detection And Ranging) 2.
  • an internal sensor such as a gyro sensor 3, a vehicle speed sensor 4, and a satellite positioning sensor 5.
  • the in-vehicle device 1 is electrically connected to an external sensor such as a lidar 2 and an internal sensor such as a gyro sensor 3, a vehicle speed sensor 4, and a satellite positioning sensor 5, and the in-vehicle device 1 is mounted based on these outputs.
  • the position of the vehicle also referred to as “own vehicle position” is estimated.
  • the vehicle equipment 1 performs automatic driving
  • the in-vehicle device 1 calculates the measurement position of the landmark Ltag based on the measurement data obtained by an external sensor such as the lidar 2 with respect to the feature (which is also referred to as “landmark Ltag”) used as a reference in position estimation. .
  • the in-vehicle device 1 generates information on the reliability of the measurement position of the landmark Ltag (also referred to as “reliability R”).
  • the landmark Ltag is, for example, a feature such as a kilometer post, a 100 m post, a delineator, a traffic infrastructure facility (for example, a sign, a direction signboard, a signal), a power pole, a streetlight, and the like periodically arranged along the road.
  • the lidar 2 emits a pulse laser in a predetermined angle range in the horizontal direction and the vertical direction, thereby discretely measuring the distance to an object existing in the outside world, and a three-dimensional point indicating the position of the object Generate group information.
  • the lidar 2 includes an irradiation unit that emits laser light while changing the irradiation direction, a light receiving unit that receives reflected light (scattered light) of the irradiated laser light, and scan data based on a light reception signal output by the light receiving unit. Output unit.
  • the scan data is generated based on the irradiation direction corresponding to the laser beam received by the light receiving unit and the response delay time of the laser beam specified based on the above-described received light signal.
  • the lidar 2 is an example of the “measurement unit” in the present invention.
  • the server device 7 stores an advanced map DB (Data Base) 10 for distribution to the vehicle-mounted device 1 or the like.
  • advanced map DB Data Base
  • landmark information that is information related to the feature serving as the landmark Ltag is stored in addition to the road data.
  • the landmark information is used for the vehicle position estimation process and the reliability R determination process performed by the in-vehicle device 1.
  • the configuration of the driving support system shown in FIG. 1 is an example, and the configuration of the driving support system to which the present invention can be applied is not limited to the configuration shown in FIG.
  • the electronic control device of the vehicle may execute the processing of the in-vehicle device 1.
  • the in-vehicle device 1 may store information corresponding to the advanced map DB 10 by itself instead of acquiring landmark information from the server device 7.
  • FIG. 2 is a diagram showing the position of the vehicle-mounted device 1 mounted on the vehicle on a two-dimensional coordinate.
  • the traveling direction of the vehicle is defined as “X v axis” in the vehicle coordinate system
  • the direction perpendicular thereto is defined as “Y v axis” in the vehicle coordinate system.
  • the position of the landmark in the map coordinate system (also referred to as “landmark map position”) is included as part of the landmark information registered in the advanced map DB 10.
  • the landmark map position is (mx m , my m )
  • the provisional vehicle position (“predicted vehicle position”) in the map coordinate system predicted based on the output of the internal sensor such as the gyro sensor 3 is used. Is also given by (x ⁇ m , y ⁇ m ), and the provisional vehicle azimuth (also called “predicted vehicle azimuth”) in the map coordinate system is given by “ ⁇ ⁇ m ”.
  • the in-vehicle device 1 uses the coordinates (L ⁇ x v , L ⁇ y v ) of the vehicle coordinate system of the provisional predicted position of the landmark (also referred to as “landmark predicted position”) as the landmark map position.
  • the landmark predicted position also referred to as “landmark predicted position”
  • the following calculation (1) is performed.
  • the in-vehicle device 1 determines a range where the landmark is predicted to exist (also referred to as “landmark predicted range WL”) based on the landmark predicted position.
  • the landmark prediction range WL is set to a range within a predetermined distance from the landmark prediction position, for example.
  • the in-vehicle device 1 may change the size of the landmark prediction range WL according to the size of the error indicated by the error information. In this case, the in-vehicle device 1 can prevent a detection failure of the landmark Ltag by increasing the landmark prediction range WL as the error in the predicted vehicle position increases, and the landmark as the error in the predicted vehicle position decreases.
  • the in-vehicle device 1 may change the size of the landmark prediction range WL according to the measurement accuracy of the external sensor (for example, the angular resolution of the lidar 2).
  • the vehicle-mounted device 1 extracts the scan data measured as the feature points within the set landmark prediction range WL as data obtained by measuring the landmarks (also referred to as “landmark measurement data WLD”). For example, when the vehicle-mounted device 1 uses the lidar 2 as a landmark Ltag to measure a sign or signboard having a higher retroreflectivity than other features as a landmark Ltag, the reflection intensity is more than a predetermined degree from the point cloud data of the measured measurement points. Data of measurement points to be extracted as landmark measurement data WLD.
  • the vehicle unit 1 calculates the center of gravity (average) in the vehicle coordinate system of a coordinate indicated by each measurement point landmarks measurement data WLD, as landmarks measurement position (Lx v, Ly v). In the example of FIG. 2, there is a difference between the predicted landmark position and the landmark measurement position due to an error in the predicted vehicle position.
  • the in-vehicle device 1 calculates a predicted own vehicle position, and a measurement update step that calculates the estimated own vehicle position by correcting the predicted own vehicle position calculated in the immediately preceding prediction step based on the equation (2).
  • the state estimation filter used in these steps can use various filters developed to perform Bayesian estimation, and is not limited to the extended Kalman filter, and may be, for example, an unscented Kalman filter, a particle filter, or the like. .
  • the in-vehicle device 1 estimates the degree of occlusion with respect to the landmark Ltag based on the landmark information registered in the map DB 10 and the landmark measurement data WLD, and the reliability R according to the degree of occlusion. Determine. The method for determining the reliability R will be described in the section [Determining the reliability].
  • FIG. 3 shows a functional block configuration diagram of the in-vehicle device 1.
  • the in-vehicle device 1 mainly includes a host vehicle position prediction unit 13, a communication unit 14, a landmark information acquisition unit 15, a landmark position / attribute prediction unit 16, a landmark feature detection / position measurement unit 17, A reliability determination unit 18 and a vehicle position estimation unit 19 are provided.
  • the own vehicle position prediction unit 13, the landmark information acquisition unit 15, the landmark position / attribute prediction unit 16, the landmark feature detection / position measurement unit 17, the reliability determination unit 18, and the own vehicle position estimation unit 19 Actually, it is realized by a computer such as a CPU executing a program prepared in advance.
  • the own vehicle position prediction unit 13 is based on the output of the internal sensor 11 including the gyro sensor 3, the vehicle speed sensor 4, and the satellite positioning sensor 5, and uses the GNSS (Global Navigation Satellite System) / IMU (Inertia Measurement Unit) combined navigation. And the predicted vehicle position is supplied to the landmark position / attribute prediction unit 16.
  • the own vehicle position prediction unit 13 is an example of the “prediction unit” in the present invention.
  • the communication unit 14 is a communication unit for wirelessly communicating with the server device 7.
  • the landmark information acquisition unit 15 receives landmark information related to the landmark Ltag existing around the vehicle from the server device 7 via the communication unit 14.
  • the landmark information includes at least position information indicating the landmark map position and size information for each feature serving as the landmark Ltag.
  • the size information is information indicating the size of the feature.
  • the size information may be information indicating the area of the surface formed on the feature. Information on the width and length of the surface formed on the feature may be used. It may be shown.
  • the landmark information acquisition unit 15 is an example of the “first acquisition unit” in the present invention.
  • the landmark information is an example of “feature information” in the present invention.
  • the landmark position / attribute prediction unit 16 calculates the landmark by the above-described equation (1). A predicted position is calculated and supplied to the reliability determination unit 18. Further, the landmark position / attribute prediction unit 16 determines a landmark prediction range WL based on the landmark prediction position, and supplies the landmark prediction range WL to the landmark feature detection / position measurement unit 17. Further, the landmark position / attribute prediction unit 16 specifies an attribute (for example, a width) related to the size of the landmark Ltag based on the landmark information, and supplies the specified attribute to the reliability determination unit 18.
  • an attribute for example, a width
  • the landmark feature detection / position measurement unit 17 acquires measurement data from the external sensor 12.
  • the external sensor 12 is a sensor that detects an object around the vehicle, and includes the lidar 2 and the stereo camera 6. Then, the landmark feature detection / position measurement unit 17 calculates the land from the measurement data based on the landmark prediction range WL supplied from the landmark position / attribute prediction unit 16 and the measurement data acquired from the external sensor 12. Mark measurement data WLD is extracted.
  • the landmark feature detection / position measurement unit 17 calculates the landmark measurement position based on the landmark measurement data WLD. Then, the landmark feature detection / position measurement unit 17 supplies the extracted landmark measurement data WLD and the calculated landmark measurement position information to the reliability determination unit 18.
  • the landmark feature detection / position measurement unit 17 is an example of the “second acquisition unit” in the present invention.
  • the reliability determination unit 18 is based on the attribute relating to the size of the landmark Ltag supplied from the landmark position / attribute prediction unit 16 and the landmark measurement data WLD supplied from the landmark feature detection / position measurement unit 17.
  • the reliability R is determined.
  • the own vehicle position estimation unit 19 calculates an estimated own vehicle position based on the predicted landmark position, the landmark measurement position, the reliability R, and the like. In addition, the determination method of the reliability R by the reliability determination part 18 and the calculation method of the estimated own vehicle position using the reliability R are mentioned later.
  • the reliability determination unit 18 is an example of an “output unit” in the present invention, and the own vehicle position estimation unit 19 is an example of a “correction unit” in the present invention.
  • the in- vehicle device 1 measures the width in the horizontal direction (that is, the horizontal direction) indicated by the size information of the landmark information with respect to the landmark Ltag (also referred to as “map width”) and the measured land.
  • the reliability R is determined based on the horizontal width (also referred to as “measurement lateral width”) of the mark Ltag. Thereby, the vehicle equipment 1 sets suitably the reliability R according to the degree of occlusion.
  • FIG. 4A shows the landmark measurement position (Lx v , Ly v ) when no occlusion has occurred in the landmark Ltag
  • FIG. 4B shows that the occlusion of the landmark Ltag is caused by another vehicle.
  • the landmark measurement position (Lx v , Ly v ) is shown.
  • W M represents the map width with respect to the landmark Ltag
  • W L represents the measured width of the landmark Ltag measured by the lidar 2 or the like.
  • the in-vehicle device 1 can preferably improve the position estimation accuracy by performing the vehicle position estimation using the landmark measurement position calculated in the case of FIG.
  • the landmark measurement position (Lx v , Ly v ) is biased to the right of the landmark Ltag where no occlusion has occurred, and is a position that matches the landmark map position (ie, the land in FIG. 4A). It will deviate from the mark measurement position. Therefore, when the vehicle-mounted device 1 performs its own vehicle position estimation using the landmark measurement position calculated in the case of FIG. 4B, the position estimation accuracy decreases.
  • the in-vehicle device 1 determines the reliability R to be a value from 0 to 1 based on the ratio “W L / W M ” of the measured width W L to the map width W M.
  • the in-vehicle device 1 determines that the ratio of the measured width W L to the map width W M is equal to or greater than a predetermined threshold “Wth” (for example, 0.8), that is, “W When L / W M ⁇ Wth ”, it is determined that the reliability R is“ 1 ”, and the ratio of the measured width W L to the map width W M is less than the threshold value Wth, that is,“ W L / W M ⁇ In the case of “Wth”, it is determined that the reliability R is “0”.
  • the threshold value Wth is set in advance based on, for example, experiments in consideration of the degree of deterioration in position estimation accuracy.
  • the in-vehicle device 1 is set so that the reliability R approaches 1 as the ratio of the measurement width W L to the map width W M increases.
  • the in-vehicle device 1 sets the reliability R based on the following equation (3).
  • the in-vehicle device 1 determines the reliability R based on the combination of the first example and the second example. For example, the vehicle-mounted device 1 is set to "0" the reliability R when the ratio of the measured width W L for map width W M is less than the threshold value Wth, measuring the width W L of the ratio threshold Wth for map width W M In the above case, the reliability R is set based on the above equation (3).
  • the in-vehicle device 1 can be trusted by further considering the vertical width of the landmark Ltag when the vertical width (that is, the width in the height direction) of the landmark landmark Ltag can be acquired from the size information of the landmark information.
  • the degree R may be determined.
  • the in-vehicle device 1 has a vertical width indicated by the landmark information (also referred to as “map vertical width H M ”) and a vertical width of the measured landmark Ltag (also referred to as “measurement vertical width H L ”).
  • the in-vehicle device 1 sets the reliability R based on the following equation (4).
  • the vehicle-mounted device 1 has the measurement area “W L ⁇ H L ” of the measurement surface with respect to the area “W M ⁇ H M ” of the measurement surface of the landmark Ltag based on the landmark information.
  • the reliability R is determined based on the ratio.
  • 5A to 5C show the distribution of measurement points by the lidar 2 and the like on the measurement target surface of the landmark Ltag.
  • the map width W M and the measured width W L, map vertical width H M and the measured vertical width H L are equal, respectively. Therefore, in this case, the reliability R based on Expression (4) is “1”.
  • the reliability R based on the formula (4) is a value (about 0.5) corresponding to the ratio of the measured width W L to the map width W M.
  • the measured horizontal width W L is about half of the map horizontal width W M
  • the measured vertical width H L is the map. It is about half of the vertical width H M. Therefore, in this case, the reliability R based on Equation (4) is about 0.25.
  • the in- vehicle device 1 may determine the reliability R based on the number of measurement points measured by the external sensor 12 such as the lidar 2.
  • the in-vehicle device 1 first generates occlusion based on the size of the landmark Ltag (for example, the area of the surface to be measured) indicated by the landmark information, the angular resolution of the lidar 2, etc., the distance to the landmark Ltag, and the like. If not, the number of measurement points for the landmark Ltag (also referred to as “ideal point group number N”) is calculated. Further, the in-vehicle device 1 calculates the number of measurement points indicated by the landmark measurement data WLD (also referred to as “measurement point group number n”). And the vehicle equipment 1 sets the reliability R low, so that the ratio "n / N" of the number n of measurement point groups with respect to the number N of ideal point groups is low.
  • the number of measurement points for the landmark Ltag also referred to as “ideal point group number N”
  • WLD also referred to as “measurement point group number n”
  • the vehicle equipment 1 sets the reliability R low, so that the ratio "n / N" of the number n
  • the vehicle-mounted device 1 may determine the reliability R by further considering the direction information. .
  • FIG. 6A shows the positional relationship of the landmark Ltag with reference to the vehicle coordinate system.
  • FIG. 6 (B) a normal angle “theta L” indicating the normal direction of the landmark Ltag that specified on the basis of the landmark measurement data WLD, width in X v-axis of the measuring width W L "W LX” indicating the width "W LY” in Y v-axis of the measurement width W L and respectively.
  • normal angle theta L indicates the normal direction of angle landmarks Ltag relative to the X v axis.
  • the in-vehicle device 1 first calculates a plane (measurement plane) formed by the measurement point indicated by the landmark measurement data WLD based on regression analysis or the like, and sets a normal angle ⁇ L indicating the normal direction of the plane. Identify.
  • the in-vehicle device 1 calculates the measurement width W L that is the width of the measurement plane of the landmark Ltag based on the landmark measurement data WLD, and calculates the widths W LX and W LY based on the following formula (5), respectively. Calculate geometrically.
  • the in-vehicle device 1 also includes the map width W M indicated by the size information of the landmark information, the azimuth angle “ ⁇ M ” of the landmark Ltag indicated by the azimuth information of the landmark information, and the predicted own vehicle azimuth angle ⁇ ⁇ m .
  • the basis is calculated based on equation (6) below and the width "W MY” in Y v-axis as the width "W MX” in X v-axis of the map width W M.
  • the vehicle unit 1 determines the ratio “W LX / W MX ” of the measured width W LX to the map width W MX as the reliability R of the Xv axis, and the ratio “W of the measured width W LY to the map width W MY LY / W MY "the judges that the reliability R of Y v-axis.
  • the vehicle-mounted unit 1 it is possible to calculate the respective reliability R in the X v-axis and Y v axes, such as in vehicle position estimation processing, the reliability R is higher direction of correction
  • the amount can be made relatively larger than the correction amount in the direction of low reliability R, and the position estimation accuracy can be suitably improved.
  • the reliability R obtained in this way is output in association with the calculation result of the landmark measurement position, and is used for the vehicle position estimation. For example, in the vehicle position estimation, weighting is performed based on the reliability R when the vehicle position is estimated based on the landmark measurement position. Thereby, the landmark measurement position with low reliability is not used for the vehicle position estimation or is used with low weighting. Thus, it is possible to prevent the vehicle position estimation with low accuracy from being performed based on the landmark measurement position with low reliability.
  • FIG. 7 shows a flowchart executed by the vehicle-mounted device 1 in this embodiment.
  • the in-vehicle device 1 acquires a predicted host vehicle position based on the outputs of the internal sensors 11 such as the gyro sensor 3 and the vehicle speed sensor 4 (step S101). And the vehicle equipment 1 acquires the landmark information in which the positional information in the periphery of the prediction own vehicle position is included from the advanced map DB 10 (step S102).
  • the vehicle equipment 1 determines the landmark prediction range WL based on the landmark map position specified from the position information of the acquired landmark information and the predicted host vehicle position acquired in step S101 (step S103). . And the vehicle equipment 1 acquires measurement data from the external sensors 12 such as the lidar 2 (step S104). And the vehicle equipment 1 extracts the landmark measurement data WLD satisfying a predetermined condition from the measurement data within the landmark prediction range WL, and calculates the landmark measurement position from the landmark measurement data WLD (step S105).
  • the in-vehicle device 1 determines the reliability R based on the landmark measurement data WLD and the size information included in the landmark information (step S106). In this case, the in-vehicle device 1 executes at least one of the determination methods of the reliability R described in the section “Decision of reliability” to determine the reliability R.
  • the vehicle-mounted device 1 estimates its own vehicle position based on the landmark measurement position calculated in step S105, the landmark predicted position calculated based on the equation (1), and the reliability R determined in step S106. (Step S107).
  • the in-vehicle device 1 sets the reliability R of the X v axis to “R X ” and the reliability R of the Y v axis to “R”. If “ Y ”, the Kalman gain K (t) is set as shown in the following equation (7).
  • the landmark information acquisition unit 15 of the vehicle-mounted device 1 acquires landmark information stored in the advanced map DB 10 of the server device 7.
  • the landmark feature detection / position measurement unit 17 acquires an output signal of the external sensor 12 such as the lidar 2 that measures the landmark Ltag that is a surrounding feature.
  • the reliability determination unit 18 determines the reliability R of the landmark measurement position calculated from the landmark measurement data WLD based on the landmark information and the landmark measurement data WLD extracted from the output signal. Information is output to the vehicle position estimation unit 19.
  • the vehicle equipment 1 can improve the position estimation accuracy suitably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Educational Technology (AREA)
  • Educational Administration (AREA)
  • Business, Economics & Management (AREA)
  • Mathematical Physics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

A landmark information acquisition unit 15 of an in-vehicle device 1 acquires landmark information stored in a feature-enhanced map DB 10 of a server device 7. A landmark characteristic detection/location measurement unit 17 acquires an output signal from an external sensor 12 such as a lidar 2 for measuring a landmark Ltag, which is a peripheral physical object. In addition, a reliability determination unit 18 outputs, to a vehicle location estimation unit 19, information about the reliability R of the landmark measurement location calculated from the landmark measurement data WLD on the basis of the landmark information and the landmark measurement data WLD extracted from the output signal.

Description

情報処理装置、制御方法、プログラム及び記憶媒体Information processing apparatus, control method, program, and storage medium
 本発明は、位置を計測する技術に関する。 The present invention relates to a technique for measuring a position.
 従来から、車両の周囲に設置される地物をレーダやカメラを用いて検出し、その検出結果に基づいて自車位置を校正する技術が知られている。例えば、特許文献1には、計測センサの出力と、予め地図上に登録された地物の位置情報とを照合させることで自己位置を推定する技術が開示されている。また、特許文献2には、カルマンフィルタを用いた自車位置推定技術が開示されている。 2. Description of the Related Art Conventionally, a technique for detecting features installed around a vehicle using a radar or a camera and calibrating the position of the vehicle based on the detection result is known. For example, Patent Document 1 discloses a technique for estimating a self-position by collating the output of a measurement sensor with the position information of a feature registered in advance on a map. Patent Document 2 discloses a vehicle position estimation technique using a Kalman filter.
特開2013-257742号公報JP 2013-257742 A 特開2017-72422号公報JP 2017-72422 A
 ライダなどの外界センサによる計測データから位置推定における基準となる地物(ランドマーク)の位置を計測する場合、自車周辺を走行する他車両や、道路端の樹木などによるオクルージョンのため、ランドマークの一部分のみしか計測できず正確なランドマーク位置が計測できない場合がある。この場合、そのまま誤ったランドマークの計測位置を利用して位置推定を行うと、誤った位置推定結果となってしまう。 When measuring the position of a feature (landmark) that serves as a reference for position estimation from measurement data obtained by an external sensor such as a lidar, it is a landmark because it is occluded by other vehicles traveling around the vehicle or trees on the road edge. In some cases, only a part of the area can be measured, and an accurate landmark position cannot be measured. In this case, if position estimation is performed using an erroneous landmark measurement position as it is, an incorrect position estimation result is obtained.
 本発明は、上記のような課題を解決するためになされたものであり、オクルージョンの可能性を好適に勘案してランドマークの計測位置に関する情報を出力することが可能な情報処理装置を提供することを主な目的とする。 The present invention has been made to solve the above-described problems, and provides an information processing apparatus capable of outputting information related to the measurement position of a landmark in consideration of the possibility of occlusion. The main purpose.
 請求項1に記載の発明は、情報処理装置であって、記憶部に記憶された地物情報を取得する第1取得部と、周囲の地物を計測する計測部の出力信号を取得する第2取得部と、前記地物情報と、前記出力信号とに基づいて、前記出力信号から生成された前記地物の計測位置の信頼度に関する情報を出力する出力部と、を備える。 The invention according to claim 1 is an information processing apparatus, wherein a first acquisition unit that acquires feature information stored in a storage unit and an output signal of a measurement unit that measures surrounding features are acquired. And an output unit that outputs information related to the reliability of the measurement position of the feature generated from the output signal based on the feature information and the output signal.
 請求項7に記載の発明は、情報処理装置が実行する制御方法であって、記憶部に記憶された地物情報を取得する第1取得工程と、周囲の地物を計測する計測部の出力信号を取得する第2取得工程と、前記地物情報と、前記出力信号とに基づいて、前記出力信号から生成された前記地物の計測位置の信頼度に関する情報を出力する出力工程と、を有する。 The invention according to claim 7 is a control method executed by the information processing apparatus, the first obtaining step for obtaining the feature information stored in the storage unit, and the output of the measuring unit for measuring surrounding features. A second acquisition step of acquiring a signal; and an output step of outputting information on the reliability of the measurement position of the feature generated from the output signal based on the feature information and the output signal. Have.
 請求項8に記載の発明は、コンピュータが実行するプログラムであって、記憶部に記憶された地物情報を取得する第1取得部と、周囲の地物を計測する計測部の出力信号を取得する第2取得部と、前記地物情報と、前記出力信号とに基づいて、前記出力信号から生成された前記地物の計測位置の信頼度に関する情報を出力する出力部として前記コンピュータを機能させる。 The invention according to claim 8 is a program executed by a computer, and acquires an output signal of a first acquisition unit that acquires feature information stored in a storage unit and a measurement unit that measures surrounding features. The computer is caused to function as an output unit that outputs information on the reliability of the measurement position of the feature generated from the output signal based on the second acquisition unit, the feature information, and the output signal. .
運転支援システムの概略構成図である。It is a schematic block diagram of a driving assistance system. 車両の位置を2次元座標上に示した図である。It is the figure which showed the position of the vehicle on the two-dimensional coordinate. 車載機の機能的なブロック構成図を示す。The functional block block diagram of a vehicle equipment is shown. オクルージョンの有無に応じたランドマーク計測位置を示す。Indicates the landmark measurement position according to the presence or absence of occlusion. ランドマークの被計測面上でのライダ等による計測点の分布を示す。The distribution of measurement points by a lidar or the like on the measurement surface of the landmark is shown. 車両座標系を基準としたランドマークの位置関係を示す。The positional relationship of landmarks with reference to the vehicle coordinate system is shown. 自車位置推定処理のフローチャートである。It is a flowchart of the own vehicle position estimation process.
 本発明の好適な実施形態によれば、情報処理装置は、記憶部に記憶された地物情報を取得する第1取得部と、周囲の地物を計測する計測部の出力信号を取得する第2取得部と、前記地物情報と、前記出力信号とに基づいて、前記出力信号から生成された前記地物の計測位置の信頼度に関する情報を出力する出力部と、を備える。この態様により、情報処理装置は、周囲の地物を計測する計測部の出力信号に基づく地物の計測位置に対する信頼度の情報を好適に出力することができる。 According to a preferred embodiment of the present invention, the information processing apparatus acquires a first acquisition unit that acquires feature information stored in the storage unit, and an output signal of a measurement unit that measures surrounding features. And an output unit that outputs information related to the reliability of the measurement position of the feature generated from the output signal based on the feature information and the output signal. According to this aspect, the information processing apparatus can preferably output information on the reliability of the measurement position of the feature based on the output signal of the measurement unit that measures the surrounding feature.
 上記情報処理装置の一態様では、前記地物情報には、前記地物の大きさを示す情報が含まれ、前記出力部は、前記地物情報から特定される前記地物の大きさと、前記出力信号から特定される前記地物の大きさとに基づき、前記信頼度を判定する。この態様により、情報処理装置は、地物に対するオクルージョンの度合いを反映した信頼度の判定を好適に実行することができる。 In one aspect of the information processing apparatus, the feature information includes information indicating a size of the feature, and the output unit includes the size of the feature specified from the feature information, The reliability is determined based on the size of the feature specified from the output signal. According to this aspect, the information processing apparatus can suitably execute the determination of the reliability reflecting the degree of occlusion with respect to the feature.
 上記情報処理装置の他の一態様では、前記出力部は、前記地物の水平方向の幅、前記地物の高さ方向の幅、前記地物の面積又は前記計測部により計測される前記地物の点群数の少なくともいずれかを、前記地物の大きさを示す指標として用いて前記信頼度を判定する。この態様により、情報処理装置は、地物に対するオクルージョンの度合いを反映した信頼度の判定を好適に実行することができる。 In another aspect of the information processing apparatus, the output unit includes a horizontal width of the feature, a width in the height direction of the feature, an area of the feature, or the ground measured by the measurement unit. The reliability is determined using at least one of the number of points of the object as an index indicating the size of the feature. According to this aspect, the information processing apparatus can suitably execute the determination of the reliability reflecting the degree of occlusion with respect to the feature.
 上記情報処理装置の他の一態様では、前記地物情報には、前記地物の向きを示す方位情報が含まれ、前記出力部は、前記方位情報から特定される前記地物の向きに基づき、前記信頼度を判定する。この場合の好適な例では、前記出力部は、第1方向における前記地物の大きさに基づき前記第1方向における信頼度を判定すると共に、前記第1方向に交わる第2方向における前記地物の大きさに基づき前記第2方向における信頼度を判定するとよい。これにより、情報処理装置は、第1方向と第2方向のそれぞれでの地物の計測位置に関する信頼度を的確に判定及び出力することができる。 In another aspect of the information processing apparatus, the feature information includes direction information indicating a direction of the feature, and the output unit is based on the direction of the feature specified from the direction information. The reliability is determined. In a preferred example in this case, the output unit determines the reliability in the first direction based on the size of the feature in the first direction, and the feature in the second direction intersecting with the first direction. The reliability in the second direction may be determined based on the magnitude of. Thereby, the information processing apparatus can accurately determine and output the reliability related to the measurement position of the feature in each of the first direction and the second direction.
 上記情報処理装置の他の一態様では、情報処理装置は、自己位置を予測する予測部と、前記地物までの前記計測部による計測距離と、前記地物情報に基づき予測された前記地物までの予測距離との差分に基づいて、前記自己位置を補正する補正部と、をさらに備え、前記補正部は、前記信頼度が低いほど、前記差分により前記自己位置を補正する利得を小さくする。この態様により、情報処理装置は、位置推定の基準となる地物の計測位置の信頼度に応じて自己位置を好適に補正し、オクルージョン発生時での位置推定精度の低下を好適に抑制することができる。 In another aspect of the information processing apparatus, the information processing apparatus predicts the feature based on a prediction unit that predicts a self-position, a measurement distance by the measurement unit to the feature, and the feature information. And a correction unit that corrects the self-position based on a difference from the predicted distance until the correction unit decreases the gain for correcting the self-position based on the difference as the reliability decreases. . According to this aspect, the information processing apparatus suitably corrects the self-position according to the reliability of the measurement position of the feature serving as a reference for position estimation, and suitably suppresses a decrease in position estimation accuracy when the occlusion occurs. Can do.
 本発明の他の好適な実施形態によれば、情報処理装置が実行する制御方法であって、記憶部に記憶された地物情報を取得する第1取得工程と、周囲の地物を計測する計測部の出力信号を取得する第2取得工程と、前記地物情報と、前記出力信号とに基づいて、前記出力信号から生成された前記地物の計測位置の信頼度に関する情報を出力する出力工程と、を有する。情報処理装置は、この制御方法を実行することで、地物の計測位置に対する信頼度の情報を好適に出力することができる。 According to another preferred embodiment of the present invention, a control method executed by the information processing apparatus, the first acquisition step of acquiring the feature information stored in the storage unit, and the surrounding features are measured. Based on the second acquisition step of acquiring the output signal of the measurement unit, the feature information, and the output signal, an output that outputs information on the reliability of the measurement position of the feature generated from the output signal And a process. By executing this control method, the information processing apparatus can suitably output reliability information for the measurement position of the feature.
 本発明の他の好適な実施形態によれば、コンピュータが実行するプログラムであって、記憶部に記憶された地物情報を取得する第1取得部と、周囲の地物を計測する計測部の出力信号を取得する第2取得部と、前記地物情報と、前記出力信号とに基づいて、前記出力信号から生成された前記地物の計測位置の信頼度に関する情報を出力する出力部として前記コンピュータを機能させる。コンピュータは、このプログラムを実行することで、地物の計測位置に対する信頼度の情報を好適に出力することができる。好適には、上記プログラムは、記憶媒体に記憶される。 According to another preferred embodiment of the present invention, a program executed by a computer includes a first acquisition unit that acquires feature information stored in a storage unit, and a measurement unit that measures surrounding features. As an output unit that outputs information on the reliability of the measurement position of the feature generated from the output signal based on the second acquisition unit that acquires an output signal, the feature information, and the output signal Make the computer work. By executing this program, the computer can suitably output reliability information for the measurement position of the feature. Preferably, the program is stored in a storage medium.
 以下、図面を参照して本発明の好適な実施例について説明する。なお、任意の記号の上に「^」または「-」が付された文字を、本明細書では便宜上、「A」または「A」(「A」は任意の文字)と表す。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. For convenience, a character with “^” or “-” attached on an arbitrary symbol is represented as “A ^ ” or “A ” (“A” is an arbitrary character) in this specification.
 [概略構成]
 図1は、本実施例に係る運転支援システムの概略構成図である。図1に示す運転支援システムは、車両に搭載され、車両の運転支援に関する制御を行う車載機1と、ライダ(Lidar:Light Detection and Ranging、または、Laser Illuminated Detection And Ranging)2などの外界センサと、ジャイロセンサ3、車速センサ4、衛星測位センサ5などの内界センサとを有する。
[Schematic configuration]
FIG. 1 is a schematic configuration diagram of a driving support system according to the present embodiment. The driving support system shown in FIG. 1 is mounted on a vehicle and controls an on-vehicle device 1 that performs control related to driving support of the vehicle, and an external sensor such as a lidar (Lider: Light Detection and Ranging or Laser Illuminated Detection And Ranging) 2. And an internal sensor such as a gyro sensor 3, a vehicle speed sensor 4, and a satellite positioning sensor 5.
 車載機1は、ライダ2などの外界センサと、ジャイロセンサ3、車速センサ4、及び衛星測位センサ5などの内界センサと電気的に接続し、これらの出力に基づき、車載機1が搭載される車両の位置(「自車位置」とも呼ぶ。)の推定を行う。そして、車載機1は、自車位置の推定結果に基づき、車両の自動運転制御などを行う。本実施例では、車載機1は、位置推定において基準となる地物(「ランドマークLtag」とも呼ぶ。)に対するライダ2等の外界センサによる計測データに基づき、ランドマークLtagの計測位置を算出する。この場合、車載機1は、ランドマークLtagの計測位置の信頼度(「信頼度R」とも呼ぶ。)に関する情報を生成する。ランドマークLtagは、例えば、道路脇に周期的に並んでいるキロポスト、100mポスト、デリニエータ、交通インフラ設備(例えば標識、方面看板、信号)、電柱、街灯などの地物である。 The in-vehicle device 1 is electrically connected to an external sensor such as a lidar 2 and an internal sensor such as a gyro sensor 3, a vehicle speed sensor 4, and a satellite positioning sensor 5, and the in-vehicle device 1 is mounted based on these outputs. The position of the vehicle (also referred to as “own vehicle position”) is estimated. And the vehicle equipment 1 performs automatic driving | operation control etc. of a vehicle based on the estimation result of the own vehicle position. In the present embodiment, the in-vehicle device 1 calculates the measurement position of the landmark Ltag based on the measurement data obtained by an external sensor such as the lidar 2 with respect to the feature (which is also referred to as “landmark Ltag”) used as a reference in position estimation. . In this case, the in-vehicle device 1 generates information on the reliability of the measurement position of the landmark Ltag (also referred to as “reliability R”). The landmark Ltag is, for example, a feature such as a kilometer post, a 100 m post, a delineator, a traffic infrastructure facility (for example, a sign, a direction signboard, a signal), a power pole, a streetlight, and the like periodically arranged along the road.
 ライダ2は、水平方向および垂直方向の所定の角度範囲に対してパルスレーザを出射することで、外界に存在する物体までの距離を離散的に測定し、当該物体の位置を示す3次元の点群情報を生成する。この場合、ライダ2は、照射方向を変えながらレーザ光を照射する照射部と、照射したレーザ光の反射光(散乱光)を受光する受光部と、受光部が出力する受光信号に基づくスキャンデータを出力する出力部とを有する。スキャンデータは、受光部が受光したレーザ光に対応する照射方向と、上述の受光信号に基づき特定される当該レーザ光の応答遅延時間とに基づき生成される。ライダ2は、本発明における「計測部」の一例である。 The lidar 2 emits a pulse laser in a predetermined angle range in the horizontal direction and the vertical direction, thereby discretely measuring the distance to an object existing in the outside world, and a three-dimensional point indicating the position of the object Generate group information. In this case, the lidar 2 includes an irradiation unit that emits laser light while changing the irradiation direction, a light receiving unit that receives reflected light (scattered light) of the irradiated laser light, and scan data based on a light reception signal output by the light receiving unit. Output unit. The scan data is generated based on the irradiation direction corresponding to the laser beam received by the light receiving unit and the response delay time of the laser beam specified based on the above-described received light signal. The lidar 2 is an example of the “measurement unit” in the present invention.
 サーバ装置7は、車載機1等に配信するための高度化地図DB(Data Base)10を記憶する。高度化地図DB10には、道路データに加え、ランドマークLtagとなる地物に関する情報であるランドマーク情報が記憶されている。ランドマーク情報は、車載機1による自車位置推定処理及び信頼度Rの判定処理に用いられる。 The server device 7 stores an advanced map DB (Data Base) 10 for distribution to the vehicle-mounted device 1 or the like. In the advanced map DB 10, landmark information that is information related to the feature serving as the landmark Ltag is stored in addition to the road data. The landmark information is used for the vehicle position estimation process and the reliability R determination process performed by the in-vehicle device 1.
 なお、図1に示す運転支援システムの構成は一例であり、本発明が適用可能な運転支援システムの構成は図1に示す構成に限定されない。例えば、運転支援システムは、車載機1を有する代わりに、車両の電子制御装置が車載機1の処理を実行してもよい。他の例では、車載機1は、サーバ装置7からランドマーク情報を取得する代わりに、高度化地図DB10に相当する情報を自ら記憶してもよい。 The configuration of the driving support system shown in FIG. 1 is an example, and the configuration of the driving support system to which the present invention can be applied is not limited to the configuration shown in FIG. For example, instead of having the in-vehicle device 1 in the driving support system, the electronic control device of the vehicle may execute the processing of the in-vehicle device 1. In another example, the in-vehicle device 1 may store information corresponding to the advanced map DB 10 by itself instead of acquiring landmark information from the server device 7.
 [自車位置推定処理の概要]
 まず、本実施例における自車位置推定処理の概要について説明する。なお、信頼度Rを反映した自車位置推定については後述する。
[Outline of the vehicle position estimation process]
First, the outline | summary of the own vehicle position estimation process in a present Example is demonstrated. The vehicle position estimation reflecting the reliability R will be described later.
 図2は、車両に搭載された車載機1の位置を2次元座標上に示した図である。図示のように、地図座標系(X,Y)に車載機1を搭載した車両が存在し、車両の位置を基準として車両座標系(X,Y)が規定される。具体的に、車両の進行方向を車両座標系の「X軸」とし、それに垂直な方向を車両座標系の「Y軸」とする。 FIG. 2 is a diagram showing the position of the vehicle-mounted device 1 mounted on the vehicle on a two-dimensional coordinate. As shown in the figure, there is a vehicle equipped with the vehicle-mounted device 1 in the map coordinate system (X m , Y m ), and the vehicle coordinate system (X v , Y v ) is defined based on the position of the vehicle. Specifically, the traveling direction of the vehicle is defined as “X v axis” in the vehicle coordinate system, and the direction perpendicular thereto is defined as “Y v axis” in the vehicle coordinate system.
 図2では、車両の左側方にランドマークLtagとなる平板状の地物が存在する。ランドマークの地図座標系における位置(「ランドマーク地図位置」とも呼ぶ。)は、高度化地図DB10に登録されたランドマーク情報の一部として含まれている。図2では、ランドマーク地図位置は(mx、my)であり、ジャイロセンサ3などの内界センサの出力に基づき予測した地図座標系における暫定的な自車位置(「予測自車位置」とも呼ぶ。)は(x ,y )で与えられ、地図座標系における暫定的な自車方位角(「予測自車方位角」とも呼ぶ。)は「Ψ 」で与えられる。 In FIG. 2, there is a flat feature that becomes the landmark Ltag on the left side of the vehicle. The position of the landmark in the map coordinate system (also referred to as “landmark map position”) is included as part of the landmark information registered in the advanced map DB 10. In FIG. 2, the landmark map position is (mx m , my m ), and the provisional vehicle position (“predicted vehicle position”) in the map coordinate system predicted based on the output of the internal sensor such as the gyro sensor 3 is used. Is also given by (x m , y m ), and the provisional vehicle azimuth (also called “predicted vehicle azimuth”) in the map coordinate system is given by “Ψ m ”. .
 ここで、車載機1は、ランドマークの暫定的な予測位置(「ランドマーク予測位置」とも呼ぶ。)の車両座標系の座標(L,L)を、ランドマーク地図位置(mx,my)と、予測自車位置(x ,y )と、予測自車方位角Ψ とを用いて、以下の式(1)により算出する。 Here, the in-vehicle device 1 uses the coordinates (L x v , L y v ) of the vehicle coordinate system of the provisional predicted position of the landmark (also referred to as “landmark predicted position”) as the landmark map position. Using (mx m , my m ), the predicted host vehicle position (x m , y m ), and the predicted host vehicle azimuth angle Ψ m , the following calculation (1) is performed.
Figure JPOXMLDOC01-appb-M000001
 また、車載機1は、ランドマーク予測位置に基づいて、ランドマークが存在すると予測される範囲(「ランドマーク予測範囲WL」とも呼ぶ。)を決定する。ランドマーク予測範囲WLは、例えば、ランドマーク予測位置から所定距離以内の範囲に設定される。なお、車載機1は、予測自車位置の誤差情報を取得可能な場合、当該誤差情報が示す誤差の大きさに応じて、ランドマーク予測範囲WLの大きさを変更してもよい。この場合、車載機1は、予測自車位置の誤差が大きいほどランドマーク予測範囲WLを大きくすることでランドマークLtagの検出漏れを防ぐことができ、予測自車位置の誤差が小さいほどランドマーク予測範囲WLを小さくすることでノイズの影響の低減及び処理量低減を実現することができる。同様に、車載機1は、外界センサの計測精度(例えばライダ2の角度分解能)に応じてランドマーク予測範囲WLの大きさを変更してもよい。
Figure JPOXMLDOC01-appb-M000001
Further, the in-vehicle device 1 determines a range where the landmark is predicted to exist (also referred to as “landmark predicted range WL”) based on the landmark predicted position. The landmark prediction range WL is set to a range within a predetermined distance from the landmark prediction position, for example. In addition, when the error information of the predicted vehicle position can be acquired, the in-vehicle device 1 may change the size of the landmark prediction range WL according to the size of the error indicated by the error information. In this case, the in-vehicle device 1 can prevent a detection failure of the landmark Ltag by increasing the landmark prediction range WL as the error in the predicted vehicle position increases, and the landmark as the error in the predicted vehicle position decreases. By reducing the prediction range WL, it is possible to reduce the influence of noise and reduce the processing amount. Similarly, the in-vehicle device 1 may change the size of the landmark prediction range WL according to the measurement accuracy of the external sensor (for example, the angular resolution of the lidar 2).
 次に、車載機1は、設定したランドマーク予測範囲WL内において特徴点として計測されたスキャンデータを、ランドマークを計測したデータ(「ランドマーク計測データWLD」とも呼ぶ。)として抽出する。例えば、車載機1は、他の地物よりも再帰反射性が高い標識や看板などをランドマークLtagとしてライダ2により計測する場合、計測された計測点の点群データから反射強度が所定度以上となる計測点のデータを、ランドマーク計測データWLDとして抽出する。そして、車載機1は、ランドマーク計測データWLDの各計測点が示す座標の車両座標系での重心(平均)を、ランドマーク計測位置(Lx,Ly)として算出する。なお、図2の例では、予測自車位置の誤差に起因して、ランドマーク予測位置とランドマーク計測位置とにずれが生じている。 Next, the vehicle-mounted device 1 extracts the scan data measured as the feature points within the set landmark prediction range WL as data obtained by measuring the landmarks (also referred to as “landmark measurement data WLD”). For example, when the vehicle-mounted device 1 uses the lidar 2 as a landmark Ltag to measure a sign or signboard having a higher retroreflectivity than other features as a landmark Ltag, the reflection intensity is more than a predetermined degree from the point cloud data of the measured measurement points. Data of measurement points to be extracted as landmark measurement data WLD. The vehicle unit 1 calculates the center of gravity (average) in the vehicle coordinate system of a coordinate indicated by each measurement point landmarks measurement data WLD, as landmarks measurement position (Lx v, Ly v). In the example of FIG. 2, there is a difference between the predicted landmark position and the landmark measurement position due to an error in the predicted vehicle position.
 そして、車載機1は、ランドマーク予測位置とランドマーク計測位置との差に基づき、予測自車位置を補正した自車位置(「推定自車位置」とも呼ぶ。)を算出する。例えば、車載機1は、拡張カルマンフィルタを用いた自車位置推定を行う場合、基準時刻(即ち現在時刻)を「t」とし、カルマンゲインを「K(t)」とすると、以下の式(2)に基づき、推定自車位置を示す状態変数ベクトル「X(t)=(x (t),y (t)、Ψ (t))」を算出する。 The in-vehicle device 1 calculates a vehicle position (also referred to as “estimated vehicle position”) obtained by correcting the predicted vehicle position based on the difference between the landmark predicted position and the landmark measurement position. For example, when the in-vehicle device 1 performs vehicle position estimation using the extended Kalman filter, if the reference time (that is, the current time) is “t” and the Kalman gain is “K (t)”, the following equation (2) ) To calculate the state variable vector “X ^ (t) = (x ^ m (t), y ^ m (t), Ψ ^ m (t)) T " indicating the estimated host vehicle position.
Figure JPOXMLDOC01-appb-M000002
 ここで、X(t)=(x (t),y (t)、Ψ (t))、Z(t)=(Lx,Ly、Z(t)=(L,Lとなる。そして、車載機1は、予測自車位置を算出する予測ステップと、直前の予測ステップで算出した予測自車位置を式(2)に基づき補正して推定自車位置を算出する計測更新ステップとを交互に実行する。なお、これらのステップで用いる状態推定フィルタは、ベイズ推定を行うように開発された様々のフィルタが利用可能であり、拡張カルマンフィルタに限定されず、例えばアンセンテッドカルマンフィルタ、パーティクルフィルタなどであってもよい。
Figure JPOXMLDOC01-appb-M000002
Here, X - (t) = ( x - m (t), y - m (t), Ψ - m (t)) T, Z (t) = (Lx v, Ly v) T, Z - ( t) = (L x v , L y v ) T. Then, the in-vehicle device 1 calculates a predicted own vehicle position, and a measurement update step that calculates the estimated own vehicle position by correcting the predicted own vehicle position calculated in the immediately preceding prediction step based on the equation (2). Execute alternately. The state estimation filter used in these steps can use various filters developed to perform Bayesian estimation, and is not limited to the extended Kalman filter, and may be, for example, an unscented Kalman filter, a particle filter, or the like. .
 ここで、自車周辺を走行する車両や道路端の樹木などによるオクルージョンが発生してランドマークLtagの一部分しか計測できない場合、ランドマーク計測位置を正確に計測できない。そして、誤ったランドマーク計測位置を利用して式(2)等に基づく位置推定を行うと、推定自車位置の精度が低下してしまう。以上を勘案し、車載機1は、地図DB10に登録されたランドマーク情報と、ランドマーク計測データWLDとに基づき、ランドマークLtagに対するオクルージョンの度合いを推定し、オクルージョンの度合いに応じた信頼度Rを判定する。信頼度Rの判定方法については、[信頼度の判定]のセクションで説明する。 Here, when occlusion occurs due to vehicles traveling around the vehicle or trees on the road edge, and only a part of the landmark Ltag can be measured, the landmark measurement position cannot be measured accurately. And if position estimation based on Formula (2) etc. is performed using an incorrect landmark measurement position, the accuracy of the estimated own vehicle position will be reduced. Considering the above, the in-vehicle device 1 estimates the degree of occlusion with respect to the landmark Ltag based on the landmark information registered in the map DB 10 and the landmark measurement data WLD, and the reliability R according to the degree of occlusion. Determine. The method for determining the reliability R will be described in the section [Determining the reliability].
 [ブロック構成]
 図3は、車載機1の機能的なブロック構成図を示す。車載機1は、主に、自車位置予測部13と、通信部14と、ランドマーク情報取得部15と、ランドマーク位置・属性予測部16と、ランドマーク特徴検出・位置計測部17と、信頼度判定部18と、自車位置推定部19と、を有する。なお、自車位置予測部13、ランドマーク情報取得部15、ランドマーク位置・属性予測部16、ランドマーク特徴検出・位置計測部17、信頼度判定部18、及び自車位置推定部19は、実際には、CPUなどのコンピュータが予め用意されたプログラムを実行することにより実現される。
[Block configuration]
FIG. 3 shows a functional block configuration diagram of the in-vehicle device 1. The in-vehicle device 1 mainly includes a host vehicle position prediction unit 13, a communication unit 14, a landmark information acquisition unit 15, a landmark position / attribute prediction unit 16, a landmark feature detection / position measurement unit 17, A reliability determination unit 18 and a vehicle position estimation unit 19 are provided. The own vehicle position prediction unit 13, the landmark information acquisition unit 15, the landmark position / attribute prediction unit 16, the landmark feature detection / position measurement unit 17, the reliability determination unit 18, and the own vehicle position estimation unit 19 Actually, it is realized by a computer such as a CPU executing a program prepared in advance.
 自車位置予測部13は、ジャイロセンサ3、車速センサ4及び衛星測位センサ5を含む内界センサ11の出力に基づいて、GNSS(Global Navigation Satellite System)/IMU(Inertia Measurement Unit)複合航法により車両の自車位置を予測し、予測自車位置をランドマーク位置・属性予測部16に供給する。自車位置予測部13は、本発明における「予測部」の一例である。 The own vehicle position prediction unit 13 is based on the output of the internal sensor 11 including the gyro sensor 3, the vehicle speed sensor 4, and the satellite positioning sensor 5, and uses the GNSS (Global Navigation Satellite System) / IMU (Inertia Measurement Unit) combined navigation. And the predicted vehicle position is supplied to the landmark position / attribute prediction unit 16. The own vehicle position prediction unit 13 is an example of the “prediction unit” in the present invention.
 通信部14は、サーバ装置7と無線通信するための通信ユニットである。ランドマーク情報取得部15は、車両の周辺に存在するランドマークLtagに関するランドマーク情報を、通信部14を介してサーバ装置7から受信する。ここで、図3に示すように、ランドマーク情報には、少なくとも、ランドマークLtagとなる地物ごとに、ランドマーク地図位置を示す位置情報と、サイズ情報とが含まれる。サイズ情報は、地物の大きさを表す情報であり、例えば、地物に形成された面の面積を示す情報であってもよく、地物に形成された面の横幅と縦幅の情報を示すものであってもよい。ランドマーク情報取得部15は、本発明における「第1取得部」の一例である。また、ランドマーク情報は、本発明における「地物情報」の一例である。 The communication unit 14 is a communication unit for wirelessly communicating with the server device 7. The landmark information acquisition unit 15 receives landmark information related to the landmark Ltag existing around the vehicle from the server device 7 via the communication unit 14. Here, as shown in FIG. 3, the landmark information includes at least position information indicating the landmark map position and size information for each feature serving as the landmark Ltag. The size information is information indicating the size of the feature. For example, the size information may be information indicating the area of the surface formed on the feature. Information on the width and length of the surface formed on the feature may be used. It may be shown. The landmark information acquisition unit 15 is an example of the “first acquisition unit” in the present invention. The landmark information is an example of “feature information” in the present invention.
 ランドマーク位置・属性予測部16は、ランドマーク情報の位置情報が示すランドマーク地図位置と自車位置予測部13から取得した予測自車位置とに基づいて、前述の式(1)によりランドマーク予測位置を算出し、信頼度判定部18へ供給する。また、ランドマーク位置・属性予測部16は、ランドマーク予測位置に基づいて、ランドマーク予測範囲WLを決定し、ランドマーク特徴検出・位置計測部17へ供給する。さらに、ランドマーク位置・属性予測部16は、ランドマーク情報に基づき、ランドマークLtagのサイズに関する属性(例えば横幅)を特定し、特定した属性を信頼度判定部18へ供給する。 Based on the landmark map position indicated by the position information of the landmark information and the predicted vehicle position acquired from the vehicle position prediction unit 13, the landmark position / attribute prediction unit 16 calculates the landmark by the above-described equation (1). A predicted position is calculated and supplied to the reliability determination unit 18. Further, the landmark position / attribute prediction unit 16 determines a landmark prediction range WL based on the landmark prediction position, and supplies the landmark prediction range WL to the landmark feature detection / position measurement unit 17. Further, the landmark position / attribute prediction unit 16 specifies an attribute (for example, a width) related to the size of the landmark Ltag based on the landmark information, and supplies the specified attribute to the reliability determination unit 18.
 ランドマーク特徴検出・位置計測部17は、外界センサ12から計測データを取得する。ここで、外界センサ12は、車両の周辺の物体を検出するセンサであり、ライダ2やステレオカメラ6などを含む。そして、ランドマーク特徴検出・位置計測部17は、ランドマーク位置・属性予測部16から供給されたランドマーク予測範囲WLと、外界センサ12から取得した計測データとに基づいて、当該計測データからランドマーク計測データWLDを抽出する。また、ランドマーク特徴検出・位置計測部17は、ランドマーク計測データWLDに基づき、ランドマーク計測位置を算出する。そして、ランドマーク特徴検出・位置計測部17は、抽出したランドマーク計測データWLD及び算出したランドマーク計測位置の情報を信頼度判定部18へ供給する。ランドマーク特徴検出・位置計測部17は、本発明における「第2取得部」の一例である。 The landmark feature detection / position measurement unit 17 acquires measurement data from the external sensor 12. Here, the external sensor 12 is a sensor that detects an object around the vehicle, and includes the lidar 2 and the stereo camera 6. Then, the landmark feature detection / position measurement unit 17 calculates the land from the measurement data based on the landmark prediction range WL supplied from the landmark position / attribute prediction unit 16 and the measurement data acquired from the external sensor 12. Mark measurement data WLD is extracted. The landmark feature detection / position measurement unit 17 calculates the landmark measurement position based on the landmark measurement data WLD. Then, the landmark feature detection / position measurement unit 17 supplies the extracted landmark measurement data WLD and the calculated landmark measurement position information to the reliability determination unit 18. The landmark feature detection / position measurement unit 17 is an example of the “second acquisition unit” in the present invention.
 信頼度判定部18は、ランドマーク位置・属性予測部16から供給されるランドマークLtagのサイズに関する属性と、ランドマーク特徴検出・位置計測部17から供給されるランドマーク計測データWLDとに基づき、信頼度Rを判定する。自車位置推定部19は、ランドマーク予測位置、ランドマーク計測位置、及び信頼度R等に基づき、推定自車位置を算出する。なお、信頼度判定部18による信頼度Rの判定方法及び信頼度Rを用いた推定自車位置の算出方法については後述する。信頼度判定部18は、本発明における「出力部」の一例であり、自車位置推定部19は、本発明における「補正部」の一例である。 The reliability determination unit 18 is based on the attribute relating to the size of the landmark Ltag supplied from the landmark position / attribute prediction unit 16 and the landmark measurement data WLD supplied from the landmark feature detection / position measurement unit 17. The reliability R is determined. The own vehicle position estimation unit 19 calculates an estimated own vehicle position based on the predicted landmark position, the landmark measurement position, the reliability R, and the like. In addition, the determination method of the reliability R by the reliability determination part 18 and the calculation method of the estimated own vehicle position using the reliability R are mentioned later. The reliability determination unit 18 is an example of an “output unit” in the present invention, and the own vehicle position estimation unit 19 is an example of a “correction unit” in the present invention.
 [信頼度の判定]
 次に、信頼度Rの判定方法について具体的に説明する。
[Judgment of reliability]
Next, a method for determining the reliability R will be specifically described.
 (1)幅に基づく信頼度判定
 車載機1は、ランドマークLtagに対するランドマーク情報のサイズ情報が示す水平方向(即ち横方向)の幅(「地図横幅」とも呼ぶ。)と、計測されたランドマークLtagの水平方向の幅(「計測横幅」とも呼ぶ。)とに基づき、信頼度Rを判定する。これにより、車載機1は、オクルージョンの度合いに応じた信頼度Rを好適に設定する。
(1) Reliability Determination Based on Width The in- vehicle device 1 measures the width in the horizontal direction (that is, the horizontal direction) indicated by the size information of the landmark information with respect to the landmark Ltag (also referred to as “map width”) and the measured land. The reliability R is determined based on the horizontal width (also referred to as “measurement lateral width”) of the mark Ltag. Thereby, the vehicle equipment 1 sets suitably the reliability R according to the degree of occlusion.
 図4(A)は、ランドマークLtagにオクルージョンが発生していない場合のランドマーク計測位置(Lx,Ly)を示し、図4(B)は、他車両によるランドマークLtagのオクルージョンが発生している場合のランドマーク計測位置(Lx,Ly)を示す。ここで、「W」は、ランドマークLtagに対する地図横幅を表し、「W」は、ライダ2等により計測されたランドマークLtagの計測横幅を示す。 FIG. 4A shows the landmark measurement position (Lx v , Ly v ) when no occlusion has occurred in the landmark Ltag, and FIG. 4B shows that the occlusion of the landmark Ltag is caused by another vehicle. The landmark measurement position (Lx v , Ly v ) is shown. Here, “W M ” represents the map width with respect to the landmark Ltag, and “W L ” represents the measured width of the landmark Ltag measured by the lidar 2 or the like.
 図4(A)の例では、オクルージョンが発生していないため、ランドマークLtagの正面全体が計測対象となり、地図横幅Wと計測横幅Wとが実質的に同一となっている。この場合、ランドマーク計測位置(Lx,Ly)は、ランドマーク情報が示すランドマーク地図位置と整合する。よって、車載機1は、図4(A)の場合に算出されるランドマーク計測位置を用いて自車位置推定を行うことで、好適に位置推定精度を高めることができる。 In the example of FIG. 4A, since no occlusion has occurred, the entire front surface of the landmark Ltag is a measurement target, and the map width W M and the measurement width W L are substantially the same. In this case, the landmark measurement position (Lx v , Ly v ) matches the landmark map position indicated by the landmark information. Therefore, the in-vehicle device 1 can preferably improve the position estimation accuracy by performing the vehicle position estimation using the landmark measurement position calculated in the case of FIG.
 一方、図4(B)の例では、他車両によるオクルージョンが発生しており、ランドマークLtagの一部のみが計測対象となり、地図横幅Wよりも計測横幅Wが短くなっている。この場合、ランドマーク計測位置(Lx,Ly)は、オクルージョンが発生していないランドマークLtagの右側に偏ることになり、ランドマーク地図位置と整合する位置(即ち図4(A)のランドマーク計測位置)からずれることになる。よって、車載機1は、図4(B)の場合に算出されるランドマーク計測位置を用いて自車位置推定を行った場合、位置推定精度が低下する。 On the other hand, in the example of FIG. 4 (B), and occlusion is generated by another vehicle, only a part of the landmark Ltag is a measurement target, than the map width W M measurement width W L is shorter. In this case, the landmark measurement position (Lx v , Ly v ) is biased to the right of the landmark Ltag where no occlusion has occurred, and is a position that matches the landmark map position (ie, the land in FIG. 4A). It will deviate from the mark measurement position. Therefore, when the vehicle-mounted device 1 performs its own vehicle position estimation using the landmark measurement position calculated in the case of FIG. 4B, the position estimation accuracy decreases.
 このように、オクルージョンが発生している場合には、地図横幅Wよりも計測横幅Wが短くなり、オクルージョンの度合いが高いほど、地図横幅Wに対する計測横幅Wの比「W/W」が低くなる。以上を勘案し、車載機1は、地図横幅Wに対する計測横幅Wの比「W/W」に基づき、0から1までの値になるように信頼度Rを判定する。 Thus, if the occlusion has occurred, rather than the map width W M shorter measurement width W L, the more the degree of occlusion is high, the width measurement for map width W M W L ratio "W L / W M "becomes lower. Considering the above, the in-vehicle device 1 determines the reliability R to be a value from 0 to 1 based on the ratio “W L / W M ” of the measured width W L to the map width W M.
 この場合の信頼度Rの第1の設定例では、車載機1は、地図横幅Wに対する計測横幅Wの比が所定の閾値「Wth」(例えば0.8)以上の場合、即ち「W/W≧Wth」の場合、信頼度Rが「1」であると判定し、地図横幅Wに対する計測横幅Wの比が閾値Wth未満の場合、即ち、「W/W<Wth」の場合、信頼度Rが「0」であると判定する。閾値Wthは、例えば、位置推定精度の悪化の度合いを勘案し、実験等に基づき予め設定される。 In the first setting example of the reliability R in this case, the in-vehicle device 1 determines that the ratio of the measured width W L to the map width W M is equal to or greater than a predetermined threshold “Wth” (for example, 0.8), that is, “W When L / W M ≧ Wth ”, it is determined that the reliability R is“ 1 ”, and the ratio of the measured width W L to the map width W M is less than the threshold value Wth, that is,“ W L / W M < In the case of “Wth”, it is determined that the reliability R is “0”. The threshold value Wth is set in advance based on, for example, experiments in consideration of the degree of deterioration in position estimation accuracy.
 第2の設定例では、車載機1は、地図横幅Wに対する計測横幅Wの比が大きいほど、信頼度Rが1に近づくように設定する。例えば、車載機1は、以下の式(3)に基づき、信頼度Rを設定する。 In the second setting example, the in-vehicle device 1 is set so that the reliability R approaches 1 as the ratio of the measurement width W L to the map width W M increases. For example, the in-vehicle device 1 sets the reliability R based on the following equation (3).
Figure JPOXMLDOC01-appb-M000003
 この場合、地図横幅Wと計測横幅Wが等しいときには、信頼度Rは「1」となり、地図横幅Wに対して計測横幅Wが半分のときには、信頼度Rは「0.5」となる。
Figure JPOXMLDOC01-appb-M000003
In this case, when the map width W M and the measured width W L are equal, the reliability R is "1", when the map width W M relative measurement width W L is half, the reliability R is "0.5" It becomes.
 第3の設定例では、車載機1は、第1の例と第2の例との組み合わせに基づき信頼度Rを判定する。例えば、車載機1は、地図横幅Wに対する計測横幅Wの比が閾値Wth未満の場合に信頼度Rを「0」に設定し、地図横幅Wに対する計測横幅Wの比が閾値Wth以上の場合には上述の式(3)に基づき信頼度Rを設定する。 In the third setting example, the in-vehicle device 1 determines the reliability R based on the combination of the first example and the second example. For example, the vehicle-mounted device 1 is set to "0" the reliability R when the ratio of the measured width W L for map width W M is less than the threshold value Wth, measuring the width W L of the ratio threshold Wth for map width W M In the above case, the reliability R is set based on the above equation (3).
 また、車載機1は、ランドマーク情報のサイズ情報からランドマークランドマークLtagの縦幅(即ち高さ方向の幅)が取得可能な場合には、ランドマークLtagの縦幅をさらに勘案して信頼度Rを判定してもよい。例えば、車載機1は、ランドマーク情報が示す縦幅(「地図縦幅H」とも呼ぶ。)と、計測されたランドマークLtagの縦幅(「計測縦幅H」とも呼ぶ。)との比「H/H」が低いほど、信頼度Rが低くなるように設定する。例えば、車載機1は、以下の式(4)に基づき信頼度Rを設定する。 In addition, the in-vehicle device 1 can be trusted by further considering the vertical width of the landmark Ltag when the vertical width (that is, the width in the height direction) of the landmark landmark Ltag can be acquired from the size information of the landmark information. The degree R may be determined. For example, the in-vehicle device 1 has a vertical width indicated by the landmark information (also referred to as “map vertical width H M ”) and a vertical width of the measured landmark Ltag (also referred to as “measurement vertical width H L ”). The lower the ratio “H L / H M ” is, the lower the reliability R is set. For example, the in-vehicle device 1 sets the reliability R based on the following equation (4).
Figure JPOXMLDOC01-appb-M000004
 式(4)では、結果として、車載機1は、ランドマーク情報に基づくランドマークLtagの被計測面の面積「W×H」に対する当該計測面の計測面積「W×H」の比に基づき信頼度Rを判定している。
Figure JPOXMLDOC01-appb-M000004
In Formula (4), as a result, the vehicle-mounted device 1 has the measurement area “W L × H L ” of the measurement surface with respect to the area “W M × H M ” of the measurement surface of the landmark Ltag based on the landmark information. The reliability R is determined based on the ratio.
 図5(A)~(C)は、ランドマークLtagの被計測面上でのライダ2等による計測点の分布を示す。図5(A)の例では、オクルージョンが発生していないため、地図横幅Wと計測横幅W、地図縦幅Hと計測縦幅Hがそれぞれ等しくなる。よって、この場合、式(4)に基づく信頼度Rは「1」となる。図5(B)の例では、ランドマークLtagの横幅方向にオクルージョンが発生しており、計測横幅Wが地図横幅Wの約半分となっている。よって、この場合、式(4)に基づく信頼度Rは、地図横幅Wに対する計測横幅Wの比に応じた値(約0.5程度)となる。また、図5(C)の例では、ランドマークLtagの横幅方向及び縦幅方向にオクルージョンが発生しており、計測横幅Wが地図横幅Wの約半分となり、計測縦幅Hが地図縦幅Hの約半分となっている。よって、この場合、この場合、式(4)に基づく信頼度Rは、約0.25程度となる。 5A to 5C show the distribution of measurement points by the lidar 2 and the like on the measurement target surface of the landmark Ltag. In the example of FIG. 5 (A), because the occlusion has not occurred, the map width W M and the measured width W L, map vertical width H M and the measured vertical width H L are equal, respectively. Therefore, in this case, the reliability R based on Expression (4) is “1”. In the example of FIG. 5B, occlusion occurs in the width direction of the landmark Ltag, and the measured width W L is about half of the map width W M. Therefore, in this case, the reliability R based on the formula (4) is a value (about 0.5) corresponding to the ratio of the measured width W L to the map width W M. In the example of FIG. 5C, occlusion occurs in the horizontal width direction and the vertical width direction of the landmark Ltag, the measured horizontal width W L is about half of the map horizontal width W M , and the measured vertical width H L is the map. It is about half of the vertical width H M. Therefore, in this case, the reliability R based on Equation (4) is about 0.25.
 (2)計測点の数に基づく信頼度判定
 車載機1は、ライダ2等の外界センサ12により計測された計測点の数に基づき信頼度Rを判定してもよい。
(2) Reliability Determination Based on Number of Measurement Points The in- vehicle device 1 may determine the reliability R based on the number of measurement points measured by the external sensor 12 such as the lidar 2.
 この場合、車載機1は、まず、ランドマーク情報が示すランドマークLtagのサイズ(例えば被計測面の面積)、ライダ2等の角度分解能、及びランドマークLtagまでの距離等に基づき、オクルージョンが発生しない場合のランドマークLtagに対する計測点の数(「理想点群数N」とも呼ぶ。)を算出する。また、車載機1は、ランドマーク計測データWLDが示す計測点の数(「計測点群数n」とも呼ぶ。)を算出する。そして、車載機1は、理想点群数Nに対する計測点群数nの比率「n/N」が低いほど、信頼度Rを低く設定する。 In this case, the in-vehicle device 1 first generates occlusion based on the size of the landmark Ltag (for example, the area of the surface to be measured) indicated by the landmark information, the angular resolution of the lidar 2, etc., the distance to the landmark Ltag, and the like. If not, the number of measurement points for the landmark Ltag (also referred to as “ideal point group number N”) is calculated. Further, the in-vehicle device 1 calculates the number of measurement points indicated by the landmark measurement data WLD (also referred to as “measurement point group number n”). And the vehicle equipment 1 sets the reliability R low, so that the ratio "n / N" of the number n of measurement point groups with respect to the number N of ideal point groups is low.
 (3)方位情報に基づく信頼度判定
 車載機1は、ランドマーク情報にランドマークLtagの向きを示す方位情報が含まれる場合、当該方位情報をさらに勘案して信頼度Rを判定してもよい。
(3) Reliability Determination Based on Direction Information When the landmark information includes the direction information indicating the direction of the landmark Ltag, the vehicle-mounted device 1 may determine the reliability R by further considering the direction information. .
 図6(A)は、車両座標系を基準としたランドマークLtagの位置関係を示す。また、図6(B)は、ランドマーク計測データWLDに基づき特定したランドマークLtagの法線方向を示す法線角度「θ」と、計測横幅WのX軸における幅「WLX」と、計測横幅WのY軸における幅「WLY」とをそれぞれ示す。ここで、法線角度θは、X軸を基準としたランドマークLtagの法線方向の角度を示す。 FIG. 6A shows the positional relationship of the landmark Ltag with reference to the vehicle coordinate system. Also, FIG. 6 (B), a normal angle "theta L" indicating the normal direction of the landmark Ltag that specified on the basis of the landmark measurement data WLD, width in X v-axis of the measuring width W L "W LX" indicating the width "W LY" in Y v-axis of the measurement width W L and respectively. Here, normal angle theta L indicates the normal direction of angle landmarks Ltag relative to the X v axis.
 この場合、まず、車載機1は、ランドマーク計測データWLDが示す計測点が形成する平面(計測平面)を回帰分析等に基づき算出し、当該平面の法線方向を示す法線角度θを特定する。そして、車載機1は、ランドマークLtagの計測平面の横幅である計測横幅Wをランドマーク計測データWLDに基づき算出すると共に、幅WLX、WLYとをそれぞれ以下の式(5)に基づき幾何学的に算出する。 In this case, the in-vehicle device 1 first calculates a plane (measurement plane) formed by the measurement point indicated by the landmark measurement data WLD based on regression analysis or the like, and sets a normal angle θ L indicating the normal direction of the plane. Identify. The in-vehicle device 1 calculates the measurement width W L that is the width of the measurement plane of the landmark Ltag based on the landmark measurement data WLD, and calculates the widths W LX and W LY based on the following formula (5), respectively. Calculate geometrically.
Figure JPOXMLDOC01-appb-M000005
 また、車載機1は、ランドマーク情報のサイズ情報が示す地図横幅Wと、ランドマーク情報の方位情報が示すランドマークLtagの方位角度「θ」と、予測自車方位角Ψ とに基づき、地図横幅WのX軸における幅「WMX」とY軸における幅「WMY」とを以下の式(6)に基づき算出する。
Figure JPOXMLDOC01-appb-M000005
The in-vehicle device 1 also includes the map width W M indicated by the size information of the landmark information, the azimuth angle “θ M ” of the landmark Ltag indicated by the azimuth information of the landmark information, and the predicted own vehicle azimuth angle Ψ m . the basis is calculated based on equation (6) below and the width "W MY" in Y v-axis as the width "W MX" in X v-axis of the map width W M.
Figure JPOXMLDOC01-appb-M000006
 そして、車載機1は、X軸を基準とした信頼度Rを、地図横幅WMXと計測横幅WLXとに基づき判定すると共に、Y軸を基準とした信頼度Rを、地図横幅WMYと計測横幅WLYとに基づき判定する。例えば、車載機1は、地図横幅WMXに対する計測横幅WLXの比「WLX/WMX」をX軸の信頼度Rと判定し、地図横幅WMYに対する計測横幅WLYの比「WLY/WMY」をY軸の信頼度Rと判定する。
Figure JPOXMLDOC01-appb-M000006
The vehicle unit 1, the reliability R relative to the X v-axis, as well as determination based on a map width W MX and measuring the width W LX, Y v reliability R relative to the axis, a map width W A determination is made based on MY and the measured lateral width WLY . For example, the in-vehicle device 1 determines the ratio “W LX / W MX ” of the measured width W LX to the map width W MX as the reliability R of the Xv axis, and the ratio “W of the measured width W LY to the map width W MY LY / W MY "the judges that the reliability R of Y v-axis.
 この例によれば、車載機1は、X軸とY軸とでのそれぞれの信頼度Rを算出することができるため、自車位置推定処理などにおいて、信頼度Rが高い方向の補正量を信頼度Rが低い方向の補正量よりも相対的に大きくし、位置推定精度を好適に高めることができる。 According to this example, the vehicle-mounted unit 1, it is possible to calculate the respective reliability R in the X v-axis and Y v axes, such as in vehicle position estimation processing, the reliability R is higher direction of correction The amount can be made relatively larger than the correction amount in the direction of low reliability R, and the position estimation accuracy can be suitably improved.
 こうして得られた信頼度Rは、ランドマーク計測位置の計算結果と対応付けて出力され、自車位置推定に利用される。例えば、自車位置推定においては、ランドマーク計測位置に基づいて自車位置を推定する際に、信頼度Rに基づいて重み付けを行う。これにより、信頼度の低いランドマーク計測位置は、自車位置推定に使用されないか、低い重み付けで使用されるようになる。こうして、信頼度の低いランドマーク計測位置に基づいて精度の低い自車位置推定が行われることが防止される。 The reliability R obtained in this way is output in association with the calculation result of the landmark measurement position, and is used for the vehicle position estimation. For example, in the vehicle position estimation, weighting is performed based on the reliability R when the vehicle position is estimated based on the landmark measurement position. Thereby, the landmark measurement position with low reliability is not used for the vehicle position estimation or is used with low weighting. Thus, it is possible to prevent the vehicle position estimation with low accuracy from being performed based on the landmark measurement position with low reliability.
 [処理フロー]
 図7は、本実施例において車載機1が実行するフローチャートを示す。
[Processing flow]
FIG. 7 shows a flowchart executed by the vehicle-mounted device 1 in this embodiment.
 まず、車載機1は、ジャイロセンサ3や車速センサ4などの内界センサ11の出力に基づき、予測自車位置を取得する(ステップS101)。そして、車載機1は、高度化地図DB10から予測自車位置周辺にある位置情報が含まれるランドマーク情報を取得する(ステップS102)。 First, the in-vehicle device 1 acquires a predicted host vehicle position based on the outputs of the internal sensors 11 such as the gyro sensor 3 and the vehicle speed sensor 4 (step S101). And the vehicle equipment 1 acquires the landmark information in which the positional information in the periphery of the prediction own vehicle position is included from the advanced map DB 10 (step S102).
 そして、車載機1は、取得したランドマーク情報の位置情報から特定されるランドマーク地図位置と、ステップS101で取得した予測自車位置とに基づき、ランドマーク予測範囲WLを決定する(ステップS103)。そして、車載機1は、ライダ2等の外界センサ12から計測データを取得する(ステップS104)。そして、車載機1は、ランドマーク予測範囲WL内の計測データから所定の条件を満たすランドマーク計測データWLDを抽出し、ランドマーク計測データWLDからランドマーク計測位置を算出する(ステップS105)。 And the vehicle equipment 1 determines the landmark prediction range WL based on the landmark map position specified from the position information of the acquired landmark information and the predicted host vehicle position acquired in step S101 (step S103). . And the vehicle equipment 1 acquires measurement data from the external sensors 12 such as the lidar 2 (step S104). And the vehicle equipment 1 extracts the landmark measurement data WLD satisfying a predetermined condition from the measurement data within the landmark prediction range WL, and calculates the landmark measurement position from the landmark measurement data WLD (step S105).
 次に、車載機1は、ランドマーク計測データWLDと、ランドマーク情報に含まれるサイズ情報等とに基づき、信頼度Rを判定する(ステップS106)。この場合、車載機1は、[信頼度の判定]のセクションで述べた信頼度Rの判定方法の少なくともいずれかを実行し、信頼度Rを決定する。 Next, the in-vehicle device 1 determines the reliability R based on the landmark measurement data WLD and the size information included in the landmark information (step S106). In this case, the in-vehicle device 1 executes at least one of the determination methods of the reliability R described in the section “Decision of reliability” to determine the reliability R.
 そして、車載機1は、ステップS105で算出したランドマーク計測位置と、式(1)に基づき算出されるランドマーク予測位置と、ステップS106で判定した信頼度Rとに基づき自車位置推定を行う(ステップS107)。 Then, the vehicle-mounted device 1 estimates its own vehicle position based on the landmark measurement position calculated in step S105, the landmark predicted position calculated based on the equation (1), and the reliability R determined in step S106. (Step S107).
 例えば、式(2)に基づき、拡張カルマンフィルタを用いた自車位置推定を行う場合、車載機1は、X軸の信頼度Rを「R」、Y軸の信頼度Rを「R」とすると、以下の式(7)に示されるようにカルマンゲインK(t)を設定する。 For example, when performing vehicle position estimation using an extended Kalman filter based on Expression (2), the in-vehicle device 1 sets the reliability R of the X v axis to “R X ” and the reliability R of the Y v axis to “R”. IfY ”, the Kalman gain K (t) is set as shown in the following equation (7).
Figure JPOXMLDOC01-appb-M000007
 なお、X軸とY軸とで特に区別せずに信頼度Rを算出する場合には、「R=R=R」として式(7)に基づきカルマンゲインK(t)を設定するとよい。このように、カルマンゲインK(t)を信頼度R(R、R)に基づき調整することで、車載機1は、信頼度Rの低いランドマーク計測位置を用いて精度の低い自車位置推定を行うのを好適に防止することができる。
Figure JPOXMLDOC01-appb-M000007
Incidentally, when calculating the reliability R without particular distinction between the X v-axis and Y v axes, sets the Kalman gain K (t) based on equation (7) as "R X = R Y = R" Good. In this way, by adjusting the Kalman gain K (t) based on the reliability R (R X , R Y ), the in-vehicle device 1 uses the landmark measurement position with the low reliability R and uses the low-accuracy vehicle. It is possible to suitably prevent the position estimation.
 以上説明したように、本実施例に係る車載機1のランドマーク情報取得部15は、サーバ装置7の高度化地図DB10に記憶されたランドマーク情報を取得する。そして、ランドマーク特徴検出・位置計測部17は、周囲の地物であるランドマークLtagを計測するライダ2等の外界センサ12の出力信号を取得する。そして、信頼度判定部18は、ランドマーク情報と、上述の出力信号から抽出したランドマーク計測データWLDとに基づいて、当該ランドマーク計測データWLDから算出されたランドマーク計測位置の信頼度Rの情報を自車位置推定部19へ出力する。この態様により、車載機1は、位置推定精度を好適に高めることができる。 As described above, the landmark information acquisition unit 15 of the vehicle-mounted device 1 according to the present embodiment acquires landmark information stored in the advanced map DB 10 of the server device 7. The landmark feature detection / position measurement unit 17 acquires an output signal of the external sensor 12 such as the lidar 2 that measures the landmark Ltag that is a surrounding feature. Then, the reliability determination unit 18 determines the reliability R of the landmark measurement position calculated from the landmark measurement data WLD based on the landmark information and the landmark measurement data WLD extracted from the output signal. Information is output to the vehicle position estimation unit 19. By this aspect, the vehicle equipment 1 can improve the position estimation accuracy suitably.
 1 車載機
 2 ライダ
 3 ジャイロセンサ
 4 車速センサ
 5 衛星測位センサ
 7 サーバ装置
 10 高度化地図DB
DESCRIPTION OF SYMBOLS 1 In-vehicle apparatus 2 Lidar 3 Gyro sensor 4 Vehicle speed sensor 5 Satellite positioning sensor 7 Server apparatus 10 Sophisticated map DB

Claims (9)

  1.  記憶部に記憶された地物情報を取得する第1取得部と、
     周囲の地物を計測する計測部の出力信号を取得する第2取得部と、
     前記地物情報と、前記出力信号とに基づいて、前記出力信号から生成された前記地物の計測位置の信頼度に関する情報を出力する出力部と、
    を備える情報処理装置。
    A first acquisition unit that acquires feature information stored in the storage unit;
    A second acquisition unit that acquires an output signal of a measurement unit that measures surrounding features;
    Based on the feature information and the output signal, an output unit that outputs information on the reliability of the measurement position of the feature generated from the output signal;
    An information processing apparatus comprising:
  2.  前記地物情報には、前記地物の大きさを示す情報が含まれ、
     前記出力部は、前記地物情報から特定される前記地物の大きさと、前記出力信号から特定される前記地物の大きさとに基づき、前記信頼度を判定する請求項1に記載の情報処理装置。
    The feature information includes information indicating the size of the feature,
    The information processing according to claim 1, wherein the output unit determines the reliability based on a size of the feature specified from the feature information and a size of the feature specified from the output signal. apparatus.
  3.  前記出力部は、前記地物の水平方向の幅、前記地物の高さ方向の幅、前記地物の面積又は前記計測部により計測される前記地物の点群数の少なくともいずれかを、前記地物の大きさを示す指標として用いて前記信頼度を判定する請求項2に記載の情報処理装置。 The output unit includes at least one of a horizontal width of the feature, a width in the height direction of the feature, an area of the feature, or the number of point clouds of the feature measured by the measurement unit, The information processing apparatus according to claim 2, wherein the reliability is determined using an index indicating a size of the feature.
  4.  前記地物情報には、前記地物の向きを示す方位情報が含まれ、
     前記出力部は、前記方位情報から特定される前記地物の向きに基づき、前記信頼度を判定する請求項1~3のいずれか一項に記載の情報処理装置。
    The feature information includes direction information indicating the direction of the feature,
    The information processing apparatus according to any one of claims 1 to 3, wherein the output unit determines the reliability based on a direction of the feature specified from the orientation information.
  5.  前記出力部は、第1方向における前記地物の大きさに基づき前記第1方向における信頼度を判定すると共に、前記第1方向に交わる第2方向における前記地物の大きさに基づき前記第2方向における信頼度を判定する請求項4に記載の情報処理装置。 The output unit determines the reliability in the first direction based on the size of the feature in the first direction, and the second based on the size of the feature in the second direction intersecting with the first direction. The information processing apparatus according to claim 4, wherein reliability in the direction is determined.
  6.  自己位置を予測する予測部と、
     前記地物までの前記計測部による計測距離と、前記地物情報に基づき予測された前記地物までの予測距離との差分に基づいて、前記自己位置を補正する補正部と、をさらに備え、
     前記補正部は、前記信頼度が低いほど、前記差分により前記自己位置を補正する利得を小さくする請求項1~5のいずれか一項に記載の情報処理装置。
    A prediction unit for predicting self-position;
    A correction unit that corrects the self-position based on a difference between a measurement distance by the measurement unit to the feature and a predicted distance to the feature predicted based on the feature information;
    6. The information processing apparatus according to claim 1, wherein the correction unit reduces the gain for correcting the self-position based on the difference as the reliability is lower.
  7.  情報処理装置が実行する制御方法であって、
     記憶部に記憶された地物情報を取得する第1取得工程と、
     周囲の地物を計測する計測部の出力信号を取得する第2取得工程と、
     前記地物情報と、前記出力信号とに基づいて、前記出力信号から生成された前記地物の計測位置の信頼度に関する情報を出力する出力工程と、
    を有する制御方法。
    A control method executed by the information processing apparatus,
    A first acquisition step of acquiring feature information stored in the storage unit;
    A second acquisition step of acquiring an output signal of a measurement unit that measures surrounding features;
    An output step of outputting information on the reliability of the measurement position of the feature generated from the output signal based on the feature information and the output signal;
    A control method.
  8.  コンピュータが実行するプログラムであって、
     記憶部に記憶された地物情報を取得する第1取得部と、
     周囲の地物を計測する計測部の出力信号を取得する第2取得部と、
     前記地物情報と、前記出力信号とに基づいて、前記出力信号から生成された前記地物の計測位置の信頼度に関する情報を出力する出力部
    として前記コンピュータを機能させるプログラム。
    A program executed by a computer,
    A first acquisition unit that acquires feature information stored in the storage unit;
    A second acquisition unit that acquires an output signal of a measurement unit that measures surrounding features;
    The program which makes the said computer function as an output part which outputs the information regarding the reliability of the measurement position of the said feature produced | generated from the said output signal based on the said feature information and the said output signal.
  9.  請求項8に記載のプログラムを記憶した記憶媒体。 A storage medium storing the program according to claim 8.
PCT/JP2018/019150 2017-05-19 2018-05-17 Information processing device, control method, program and storage medium WO2018212290A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017100201 2017-05-19
JP2017-100201 2017-05-19

Publications (1)

Publication Number Publication Date
WO2018212290A1 true WO2018212290A1 (en) 2018-11-22

Family

ID=64273907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019150 WO2018212290A1 (en) 2017-05-19 2018-05-17 Information processing device, control method, program and storage medium

Country Status (1)

Country Link
WO (1) WO2018212290A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022124816A (en) * 2021-02-16 2022-08-26 三菱ロジスネクスト株式会社 Moving vehicle control method, moving vehicle, and program

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164384A (en) * 2006-12-27 2008-07-17 Aisin Aw Co Ltd Device and method for recognizing position of local substance
JP2009264983A (en) * 2008-04-25 2009-11-12 Mitsubishi Electric Corp Position locating device, position locating system, user interface device of the position locating system, locating server device of the position locating system, and position locating method
JP2010190647A (en) * 2009-02-17 2010-09-02 Mitsubishi Electric Corp Vehicle position measuring instrument and vehicle position measuring program
US20120310516A1 (en) * 2011-06-01 2012-12-06 GM Global Technology Operations LLC System and method for sensor based environmental model construction
JP2016048226A (en) * 2014-08-28 2016-04-07 パイオニア株式会社 Information processing apparatus, information processing method, and program for information processing and recording medium
JP2017009554A (en) * 2015-06-26 2017-01-12 日産自動車株式会社 Vehicle location determination device and vehicle location determination method
JP2017072422A (en) * 2015-10-05 2017-04-13 パイオニア株式会社 Information processing device, control method, program, and storage medium
JP2018036067A (en) * 2016-08-29 2018-03-08 株式会社Soken Own vehicle position recognition device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164384A (en) * 2006-12-27 2008-07-17 Aisin Aw Co Ltd Device and method for recognizing position of local substance
JP2009264983A (en) * 2008-04-25 2009-11-12 Mitsubishi Electric Corp Position locating device, position locating system, user interface device of the position locating system, locating server device of the position locating system, and position locating method
JP2010190647A (en) * 2009-02-17 2010-09-02 Mitsubishi Electric Corp Vehicle position measuring instrument and vehicle position measuring program
US20120310516A1 (en) * 2011-06-01 2012-12-06 GM Global Technology Operations LLC System and method for sensor based environmental model construction
JP2016048226A (en) * 2014-08-28 2016-04-07 パイオニア株式会社 Information processing apparatus, information processing method, and program for information processing and recording medium
JP2017009554A (en) * 2015-06-26 2017-01-12 日産自動車株式会社 Vehicle location determination device and vehicle location determination method
JP2017072422A (en) * 2015-10-05 2017-04-13 パイオニア株式会社 Information processing device, control method, program, and storage medium
JP2018036067A (en) * 2016-08-29 2018-03-08 株式会社Soken Own vehicle position recognition device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022124816A (en) * 2021-02-16 2022-08-26 三菱ロジスネクスト株式会社 Moving vehicle control method, moving vehicle, and program
JP7257431B2 (en) 2021-02-16 2023-04-13 三菱ロジスネクスト株式会社 Mobile object control method, mobile object and program

Similar Documents

Publication Publication Date Title
WO2018212292A1 (en) Information processing device, control method, program and storage medium
JP2022113746A (en) Determination device
JP7155284B2 (en) Measurement accuracy calculation device, self-position estimation device, control method, program and storage medium
JP6980010B2 (en) Self-position estimator, control method, program and storage medium
JP2022176322A (en) Self-position estimation device, control method, program, and storage medium
JP2023075184A (en) Output device, control method, program, and storage medium
JP2023164553A (en) Position estimation device, estimation device, control method, program and storage medium
JP2023118751A (en) Self-position estimation device
JP2023078138A (en) Output device, control method, program, and storage medium
JP6740470B2 (en) Measuring device, measuring method and program
WO2018212302A1 (en) Self-position estimation device, control method, program, and storage medium
WO2018212290A1 (en) Information processing device, control method, program and storage medium
JP2022034051A (en) Measuring device, measuring method and program
JP2021170029A (en) Measurement device, measurement method, and program
JP2021179443A (en) Measuring device, measuring method and program
JP2024161105A (en) Self-location estimation device, control method, program, and storage medium
JP2024161585A (en) Self-location estimation device
JP2024161130A (en) Self-location estimation device, control method, program, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18802239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP