WO2018212120A1 - Solid-state battery, battery pack, vehicle, electricity storage system, electric tool and electronic device - Google Patents
Solid-state battery, battery pack, vehicle, electricity storage system, electric tool and electronic device Download PDFInfo
- Publication number
- WO2018212120A1 WO2018212120A1 PCT/JP2018/018471 JP2018018471W WO2018212120A1 WO 2018212120 A1 WO2018212120 A1 WO 2018212120A1 JP 2018018471 W JP2018018471 W JP 2018018471W WO 2018212120 A1 WO2018212120 A1 WO 2018212120A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- battery
- solid
- solid state
- state battery
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- This technology relates to solid state batteries. More specifically, the present technology relates to a solid battery, a battery pack, a vehicle, a power storage system, a power tool, and an electronic device.
- a second layer comprising a composite oxide particle containing one or more elements of Co, Ni and Mn contained in the intermediate layer and a flux containing Li and formed on the intermediate layer.
- Patent Document 1 a method for producing a composite laminate including a firing step of firing the laminate (see Patent Document 1), and a current collector and at least a part of the surface of the current collector
- An electrode plate for a non-aqueous electrolyte secondary battery comprising an electrode active material layer formed on the electrode active material layer, wherein the electrode active material layer contains active material particles and binder material particles, and the binder The metal particles show a lithium ion insertion / extraction reaction
- An electrode plate for a non-aqueous electrolyte secondary battery is proposed in which the average particle size of the binder material particles is smaller than the average particle size of the active material particles (Patent Document). 2).
- a lithium ion secondary battery including a positive electrode current collector, a positive electrode layer, a negative electrode current collector, a negative electrode layer, and a solid electrolyte layer, the solid electrolyte being made of a lithium ion conductive inorganic substance.
- a thin-film solid electrolyte having a thickness of 20 ⁇ m or less containing powder, and at the interface between the positive electrode layer and / or the negative electrode layer and the solid electrolyte layer, the positive electrode layer and / or the negative electrode layer and the solid electrolyte.
- a lithium ion secondary battery in which a layer is mixed is proposed (see Patent Document 3).
- a lithium ion secondary battery including a positive electrode, a negative electrode, and a solid electrolyte, a solid electrolyte-positive electrode interface and / or a solid
- a lithium ion secondary battery characterized in that a fiber layer is formed at the electrolyte-negative electrode interface (see Patent Document 4).
- a positive electrode current collector a positive electrode body formed on the positive electrode current collector and having a positive electrode active material layer containing a positive electrode active material and a solid electrolyte material, a negative electrode current collector, and the negative electrode current collector
- An all-solid battery comprising a negative electrode body having a negative electrode active material layer formed on a body and containing a negative electrode active material and a solid electrolyte material; and a solid electrolyte layer formed between the positive electrode body and the negative electrode body.
- the electrode active material layer of at least one of the positive electrode body and the negative electrode body has the electrode active material relative to the volume (V e (partial)) of the solid electrolyte material contained in a part of the electrode active material layer.
- the electrode active material layer has a composition distribution that increases as the thickness direction of the electrode active material layer approaches the current collector interface side from the solid electrolyte layer interface side, and the porosity of the electrode active material layer is solid in the thickness direction of the electrode active material layer.
- a lithium battery having a solid electrolyte layer in which a solid electrolyte is bound with a low-melting glass a powder mixture of the active material and the solid electrolyte is bound with the low-melting glass between the electrode layer and the solid electrolyte layer.
- an attached mixed layer is provided (see Patent Document 6).
- Patent Documents 1 to 6 may not be able to further improve battery characteristics and reliability.
- the present technology has been made in view of such circumstances, and a solid battery capable of further improving battery characteristics and reliability, and a battery pack, vehicle, power storage system, and electric tool including the solid battery.
- the main purpose is to provide electronic devices.
- the present inventors have surprisingly improved battery characteristics and reliability by paying attention to the interface between the electrode layer and the electrolyte layer. We have succeeded in making this technology complete.
- the present technology includes at least an electrode layer, an electrolyte layer, and a buffer layer disposed between the electrode layer and the electrolyte layer,
- the electrode layer comprises electrode particles
- the buffer layer comprises buffer particles
- the electrode particles contain a first electrode active material
- the buffer particles contain the second electrode active material and / or at least one atom constituting the second electrode active material;
- a solid state battery in which the average particle size (D50) of the buffer particles is smaller than the average particle size (D50) of the electrode particles.
- the ratio of the average particle diameter (D50) of the electrode particles to the average particle diameter (D50) of the buffer particles May be from 4 to 450.
- the first electrode active material includes Co, Mn, Fe, Ni. It may contain at least one atom selected from the group consisting of C, Si, Li, Mg, Al and Ti.
- the second electrode active material includes Co, Mn, Fe, Ni. It may contain at least one atom selected from the group consisting of C, Si, Li, Mg, Al and Ti.
- the electrode layer may be a positive electrode layer. In the solid state battery according to the present technology, the electrode layer may be a negative electrode layer.
- the solid state battery according to the present technology may include the two electrode layers, and each of the two electrode layers may be a positive electrode layer and a negative electrode layer.
- Providing a battery pack comprising a solid state battery according to the present technology; A solid state battery according to the present technology; a control unit that controls a use state of the solid state battery; A battery pack comprising: a switch unit that switches a use state of the solid state battery according to an instruction of the control unit; A solid state battery according to the present technology, a driving force conversion device that receives power supplied from the solid state battery and converts the power into a driving force of the vehicle, a driving unit that drives according to the driving force, and a vehicle control device.
- Providing a power storage system comprising: Providing a power tool comprising a solid state battery according to the present technology and a movable part to which power is supplied from the solid state battery, Provided is an electronic device that includes the solid state battery according to the present technology and receives power supply from the solid state battery.
- the difference in thermal expansion coefficient between the electrode layer and the electrolyte layer may be large during sintering, and the interface between the electrode layer and the electrolyte layer may peel off. Further, if the interface does not contact well, an increase in resistance value, a decrease in charge / discharge efficiency, a decrease in cycle characteristics and the like may occur. Furthermore, when the electrolyte is thinned, if large particles are present at the interface, a short circuit may occur. Therefore, in the present technical field, there is a demand for a solid battery with improved battery characteristics and reliability.
- an intermediate layer made of a metal and / or compound containing at least one of Co, Ni and Mn is formed on the surface of the electrolyte layer containing a garnet-type oxide, and the Co, Ni and Mn contained in the intermediate layer
- This technique is effective for preventing separation at the interface with a garnet-type oxide having a low expansion coefficient, but may not be effective with a glass electrolyte having a large thermal expansion coefficient.
- the electrode active material layer contains active material particles and binder material particles, and the binder material particles are metal oxide particles that exhibit a lithium ion insertion / release reaction, and the average particle size of the binder material particles
- the binder material particles are metal oxide particles that exhibit a lithium ion insertion / release reaction, and the average particle size of the binder material particles
- the solid electrolyte is made of a thin-film solid electrolyte having a thickness of 20 ⁇ m or less containing a powder made of a lithium ion conductive inorganic substance.
- the positive electrode At the interface between the positive electrode layer and / or the negative electrode layer and the solid electrolyte layer, the positive electrode There is a technology related to a lithium ion secondary battery in which a layer and / or a negative electrode layer and a solid electrolyte layer are mixed. This technique is a lithium ion secondary battery in which organic and inorganic materials are mixed, and it may be difficult to further improve battery characteristics and reliability.
- the present technology has been made as a result of extensive research conducted by the present inventors. According to the present technology, it is possible to improve and maintain the battery characteristics and reliability of the solid state battery. More specifically, according to the present technology, the electrode layer and the electrolyte layer are prevented from being separated or short-circuited to improve reliability, and the resistance value is increased, charging / discharging efficiency is decreased, and cycle characteristics are decreased. The battery characteristics are improved.
- the solid state battery according to the present technology is, for example, an all solid state battery, and is a lithium ion secondary battery that is obtained by repeatedly receiving and receiving lithium (Li) and / or lithium ions (Li + ) that are electrode reactants. Can be mentioned.
- lithium ions released from the positive electrode layer are taken into the negative electrode layer through the solid electrolyte layer, and during discharge, lithium ions released from the negative electrode layer are solid. It is taken into the positive electrode layer through the electrolyte layer.
- the solid state battery according to the present technology may include lithium (Li) and / or lithium ions (Li + ).
- the solid state battery according to the present technology may include lithium (Li) and / or lithium ions (Li + ).
- an electrode reactant for example, other alkali metals such as sodium (Na) or potassium (K), alkaline earth metals such as magnesium (Mg) or calcium (Ca), or aluminum ( Other metals such as Al) or silver (Ag) may be applied to the solid state battery according to the present technology.
- the solid state battery according to the present technology can be applied to, for example, a battery pack, a vehicle, a power storage system, a power tool, an electronic device, and the like.
- the solid state battery according to the first embodiment of the present technology includes at least an electrode layer, an electrolyte layer, and a buffer layer disposed between the electrode layer and the electrolyte layer, and the electrode layer includes electrode particles.
- the buffer layer includes buffer particles, the electrode particles contain a first electrode active material, the buffer particles contain at least one atom constituting the second electrode active material and / or the second electrode active material, and the buffer particles Is a solid battery in which the average particle size (D50) is smaller than the average particle size (D50) of the electrode particles.
- the solid battery according to the first embodiment of the present technology exhibits excellent battery characteristics and excellent reliability effects.
- both the excellent battery characteristics and the excellent reliability are achieved, and both the battery characteristics and the reliability can be achieved. Become.
- the introduction of the buffer layer increases the contact area at the interface between the electrode layer and the electrolyte layer, and the electrode layer and the electrolyte layer are separated. Can be prevented, and the resistance of the interface can be reduced. Further, according to the solid state battery of the first embodiment according to the present technology, the difference in the expansion coefficient between the electrode layer and the electrolyte layer is reduced, and the effect of suppressing peeling is exhibited.
- the solid state battery according to the first embodiment of the present technology can improve load characteristics and yield.
- the solid state battery of the first embodiment according to the present technology can suppress a short circuit even when the electrolyte layer is thinned.
- the electrode layer a layer in which electrode particles are present
- buffer layer a layer in which buffer particles are present
- the electrode particles are large particles from the viewpoint of shape retention and side reaction suppression
- the buffer particles are small particles from the viewpoint of improving the contact area and preventing short circuit, It has a structure that uses large particles and small particles separately. That is, in the solid state battery according to the first embodiment of the present technology, the average particle diameter (D50) of the buffer particles is smaller than the average particle diameter (D50) of the electrode particles.
- the ratio of the average particle diameter (D50) of the electrode particles to the average particle diameter (D50) of the buffer particles may be an arbitrary value (however, a value larger than 1), preferably 4 to 450, and preferably 5 to 420. It is more preferable that With this preferable aspect and a more preferable aspect, battery characteristics such as charge / discharge characteristics and reliability such as prevention of separation between the electrode layer and the electrolyte layer can be further improved.
- the average particle diameter (D50) of the electrode particles may be any value, but is preferably 1 to 30 ⁇ m, more preferably 1 to 9 ⁇ m, and even more preferably 2.5 to 4.2 ⁇ m. . According to this preferable aspect, a more preferable aspect, and a further preferable aspect, battery characteristics such as charge / discharge characteristics and reliability such as prevention of peeling between the electrode layer and the electrolyte layer can be further improved.
- the average particle diameter (D50) of the buffer particles may be any value, but is preferably 1 nm to 7.5 ⁇ m, more preferably 1 nm to 5 ⁇ m, and even more preferably 10 to 500 nm.
- battery characteristics such as charge / discharge characteristics and reliability such as prevention of peeling between the electrode layer and the electrolyte layer can be further improved.
- the electrode particles contain a first electrode active material.
- the first electrode active material is not particularly limited and may be any material, but Co, Mn, Fe, Ni. It preferably contains at least one atom selected from the group consisting of C, Si, Li, Mg, Al and Ti. According to this preferred embodiment, battery characteristics such as charge / discharge characteristics and reliability such as prevention of peeling between the electrode layer and the electrolyte layer can be further improved.
- the buffer particles contain at least one atom constituting the second electrode active material and / or the second electrode active material.
- the buffer particles may contain at least one of atoms constituting the second electrode active material and the second electrode active material, or at least constitute the second electrode active material and the second electrode active material. May also contain both of one atom.
- the buffer particles may be a mixture of Co particles and LiCoO 2 particles, or may be composite particles composed of a plurality of atoms.
- the second electrode active material is not particularly limited and may be any material, but Co, Mn, Fe, Ni. It preferably contains at least one atom selected from the group consisting of C, Si, Li, Mg, Al and Ti. According to this preferred embodiment, battery characteristics such as charge / discharge characteristics and reliability such as prevention of peeling between the electrode layer and the electrolyte layer can be further improved.
- the thickness of the buffer layer may be substantially equal to the thickness of the electrode layer, and may be larger or smaller than the thickness of the electrode layer, but is preferably small. That is, the ratio of the electrode layer thickness to the buffer layer thickness (electrode layer thickness / buffer layer thickness) is preferably more than 1, more preferably 1 to 20000, and even more preferably 2 to 4000. According to this preferable aspect, a more preferable aspect, and a further preferable aspect, battery characteristics such as charge / discharge characteristics and reliability such as prevention of peeling between the electrode layer and the electrolyte layer can be further improved. In addition, the thickness of an electrode layer and the thickness of a buffer layer can be measured using a scanning electron microscope.
- the thickness of the electrode layer may be any value, but is preferably 1 to 100 ⁇ m, and more preferably 3 to 20 ⁇ m. With this preferable aspect and a more preferable aspect, battery characteristics such as charge / discharge characteristics and reliability such as prevention of separation between the electrode layer and the electrolyte layer can be further improved.
- the thickness of the buffer layer may be any value, but is preferably 1 nm to 20 ⁇ m, and more preferably 5 nm to 10 ⁇ m. With this preferable aspect and a more preferable aspect, battery characteristics such as charge / discharge characteristics and reliability such as prevention of separation between the electrode layer and the electrolyte layer can be further improved.
- FIG. 1 is a schematic cross-sectional view showing a solid state battery 10 according to a first embodiment of the present technology.
- the solid battery 10 includes an electrode layer 1, a buffer layer 2, and an electrolyte layer 3, and the buffer layer 2 is provided between the electrode layer 1 and the electrolyte layer 3.
- the electrode layer 1 includes electrode particles 4, and the buffer layer 2 includes buffer particles 5.
- the electrode layer 1 may be a positive electrode layer or a negative electrode layer.
- a negative electrode layer (not shown) may be laminated on the other surface opposite to the one surface of the electrolyte layer 3 on which the positive electrode layer is laminated.
- the negative electrode layer (not shown) may also be an electrode layer.
- a buffer layer (not shown) may be provided between the electrolyte layer 3 and the negative electrode layer (not shown).
- the electrode layer 1 when the electrode layer 1 is a negative electrode layer, a positive electrode layer (not shown) is laminated on the other surface opposite to the one surface of the electrolyte layer 3 on which the negative electrode layer is laminated. Good.
- the positive electrode layer (not shown) may be an electrode layer.
- a buffer layer (not shown) may be provided between the electrolyte layer 3 and the positive electrode layer (not shown).
- the solid battery 10 may include a current collecting layer (not shown). In this case, the current collecting layer may be provided outside the positive electrode layer and / or the negative electrode layer. Further, the solid battery 10 may include an insulating layer (not shown). In that case, the insulating layer may be provided outside the current collecting layer.
- the solid state battery of the first embodiment according to the present technology includes an electrode layer.
- the electrode layer may be a positive electrode layer or a negative electrode layer.
- the two electrode layers are a positive electrode layer and a negative electrode layer, respectively.
- the positive electrode layer and the negative electrode layer will be described in detail.
- the positive electrode layer includes one type or two or more types of positive electrode active materials, and may further include an additive such as a binder and a conductive agent, and an electrolyte (for example, a solid electrolyte) as necessary.
- the positive electrode layer is an electrode layer
- the positive electrode active material is the first electrode active material.
- the positive electrode active material includes a positive electrode material capable of occluding and releasing lithium ions that are electrode reactants.
- the positive electrode material is preferably a lithium-containing compound or the like from the viewpoint of obtaining a high energy density, but is not limited thereto.
- This lithium-containing compound is, for example, a composite oxide (lithium transition metal composite oxide) containing lithium and a transition metal element as constituent elements, or a phosphate compound (lithium transition metal) containing lithium and a transition metal element as constituent elements. Phosphate compounds).
- the transition metal element is preferably one or more of cobalt (Co), nickel (Ni), manganese (Mn), and iron (Fe). This is because a higher voltage can be obtained.
- the chemical formula of the lithium transition metal composite oxide is represented by, for example, Li x M1O 2 or Li y M2O 4, and the chemical formula of the lithium transition metal phosphate compound is represented by, for example, Li z M3PO 4 .
- M1 to M3 are one kind or two or more kinds of transition metal elements, and the values of x to z are arbitrary.
- lithium transition metal composite oxide examples include LiCoO 2 , LiNiO 2 , LiVO 2 , LiCrO 2, and LiMn 2 O 4 .
- the lithium transition metal phosphate compound is, for example, LiFePO 4 or LiCoPO 4 .
- the positive electrode active material may be, for example, an oxide, disulfide, chalcogenide, or conductive polymer.
- the oxide include titanium oxide, vanadium oxide, and manganese dioxide.
- the disulfide include titanium disulfide and molybdenum sulfide.
- An example of the chalcogenide is niobium selenide.
- the conductive polymer include sulfur, polyaniline, and polythiophene.
- the positive electrode active material may contain a powder of positive electrode active material particles.
- the surface of the positive electrode active material particles may be coated with a coating agent.
- the coating is not limited to the entire surface of the positive electrode active material particles, and may be a part of the surface of the positive electrode active material particles.
- the coating agent is at least one of a solid electrolyte and a conductive agent, for example.
- the binder is, for example, any one kind or two kinds or more of synthetic rubber or polymer material.
- the synthetic rubber include styrene butadiene rubber, fluorine rubber, and ethylene propylene diene.
- the polymer material is, for example, polyvinylidene fluoride or polyimide.
- the binder is used for binding particles such as a positive electrode active material. However, when the positive electrode is sufficiently bound by a glass material described later, the positive electrode does not contain the binder. It does not have to be.
- the conductive agent includes, for example, a carbon material, a metal, a metal oxide, a conductive polymer, or the like alone or in combination.
- Examples of the carbon material include graphite, carbon black, acetylene black, ketjen black, and carbon fiber.
- An example of the metal oxide is SnO 2 .
- the conductive agent may be any material having conductivity, and is not limited to the above example.
- the negative electrode layer includes one type or two or more types of negative electrode active materials, and may further include additives such as a binder and a conductive agent, and the above-described solid electrolyte as necessary.
- the negative electrode layer is an electrode layer
- the negative electrode active material is the first electrode active material.
- the negative electrode active material includes a negative electrode material capable of occluding and releasing lithium ions that are electrode reactants.
- the negative electrode material is preferably a carbon material or a metal-based material from the viewpoint of obtaining a high energy density, but is not limited thereto.
- Examples of the carbon material include graphitizable carbon, non-graphitizable carbon, graphite, mesocarbon microbeads (MCMB), and highly oriented graphite (HOPG).
- the metal-based material is a material containing, for example, a metal element or a metalloid element capable of forming an alloy with lithium as a constituent element. More specifically, the metal-based material is, for example, silicon (Si), tin (Sn), aluminum (Al), indium (In), magnesium (Mg), boron (B), gallium (Ga), germanium ( Ge), lead (Pb), bismuth (Bi), cadmium (Cd), silver (Ag), zinc (Zn), hafnium (Hf), zirconium (Zr), yttrium (Y), palladium (Pd) or platinum ( Any one or more of simple substance such as Pt), alloy or compound.
- the simple substance is not limited to 100% purity, and may contain a small amount of impurities.
- the metal-based material include Si, Sn, SiB 4 , TiSi 2 , SiC, Si 3 N 4 , SiOv (0 ⁇ v ⁇ 2), LiSiO, SnO w (0 ⁇ w ⁇ 2), SnSiO 3 , LiSnO. Or Mg 2 Sn.
- the metal-based material may be a lithium-containing compound or lithium metal (lithium simple substance).
- This lithium-containing compound is a complex oxide (lithium transition metal complex oxide) containing lithium and a transition metal element as constituent elements, such as Li 4 Ti 5 O 12 .
- the negative electrode active material may contain a powder of negative electrode active material particles.
- the surface of the negative electrode active material particles may be coated with a coating agent.
- the coating is not limited to the entire surface of the negative electrode active material particles, and may be a part of the surface of the negative electrode active material particles.
- the coating agent is at least one of a solid electrolyte and a conductive agent, for example.
- the binder and conductive agent are as described above.
- the electrode layer may include a glass material. Below, a glass material is demonstrated in detail.
- the glass material is preferably a lithium ion conductive oxide crystallized glass containing Li (lithium), Si (silicon) and B (boron), and Li (lithium), Si (silicon) and B A lithium ion conductive oxide crystallized glass containing at least one selected from (boron) is also preferable.
- the glass material may be a material having a glass transition point at 500 ° C. or lower, that is, a so-called low-melting glass material.
- the low-melting glass material has, for example, a glass transition point at 500 ° C. or lower, but preferably has a glass transition point at 300 ° C. to 500 ° C.
- the glass material preferably contains an oxide containing lithium (Li), silicon (Si), and boron (B). More specifically, the glass material contains Li 2 O, SiO 2 and B 2 O 3 .
- the content of Li 2 O with respect to the total amount of Li 2 O, SiO 2 and B 2 O 3 is preferably 40 mol% or more and 73 mol% or less.
- the content of SiO 2 with respect to the total amount of Li 2 O, SiO 2 and B 2 O 3 is preferably 8 mol% or more and 40 mol% or less.
- the content of B 2 O 3 with respect to the total amount of Li 2 O, SiO 2 and B 2 O 3 is preferably 10 mol% or more and 50 mol% or less.
- the glass material includes an oxide containing lithium (Li) (eg, Li 2 O), an oxide containing silicon (Si) (eg, SiO 2 ), and an oxide containing boron (B) (eg, B It is also preferable that at least one oxide selected from 2 O 3 ) is included. Note that these contents can be measured using inductively coupled plasma optical emission spectrometry (ICP-AES) or the like.
- ICP-AES inductively coupled plasma optical emission spectrometry
- oxide glass Ba 2 O 3 ⁇ B 2 O 3
- the glass material may further contain an additive element as necessary.
- the additive element include Na (sodium), Mg (magnesium), Al (aluminum), P (phosphorus), K (potassium), Ca (calcium), Ti (titanium), V (vanadium), and Cr (chromium).
- a plurality of types of amorphous materials are mixed as raw materials.
- a network-forming oxide, a modified oxide, and, if necessary, an intermediate oxide are used.
- the network forming oxide SiO 2 and B 2 O 3 are used.
- Li 2 O is used as the modified oxide.
- the intermediate oxide include Na, Mg, Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Se, Rb, S, Y, One or more oxides selected from the group consisting of Zr, Nb, Mo, Ag, In, Sn, Sb, Cs, Ba, Hf, Ta, W, Pb, Bi, Au, La, Nd, and Eu are used. .
- the blending amount of Li 2 O with respect to the total amount of Li 2 O, SiO 2 and B 2 O 3 is preferably 40 mol% or more and 73 mol% or less.
- the blending amount of Li 2 O with respect to the total amount of Li 2 O, SiO 2 and B 2 O 3 is preferably 8 mol% or more and 40 mol% or less.
- the blending amount of B 2 O 3 with respect to the total amount of Li 2 O, SiO 2 and B 2 O 3 is preferably 10 mol% or more and 50 mol% or less.
- the amount of the intermediate oxide is preferably 10 mol% or less with respect to the total amount of the network forming oxide, the modified oxide, and the intermediate oxide.
- the amorphous material is a network forming oxide (Network WF), a modified oxide (Network modifier), or an intermediate oxide (Intermediate).
- the network forming oxide (Network Former: NWF) can be vitrified by itself such as SiO 2 , B 2 O 3 , P 2 O 5 , GeO 2 .
- NWF Network forming oxide
- the modified oxide (Network modifier) cannot be amorphized by itself, but can be amorphized within the network structure formed by the network oxide, that is, the network can be modified. .
- the modified oxide contains, for example, alkali metals or alkaline earth metals, and is known to have an effect of improving the fluidity by cutting the glass network structure.
- the intermediate oxide (Intermediate) is a raw material having an intermediate property between the network-forming oxide and the modified oxide, and has an effect of, for example, reducing the thermal expansion coefficient among the thermal characteristics of the glass.
- a glass material can be produced by vitrifying the raw material.
- a method for vitrifying the raw material for example, a method in which the raw material is melted to a melt and allowed to cool, a method in which the melt is pressed with a metal plate, a method in which the melt is dropped into mercury, a strip furnace, a splat quench, a roll method ( In addition to single and twin), mechanical milling method, sol-gel method, vapor deposition method, sputtering method, laser ablation method, PLD (pulse laser deposition) method, plasma method and the like can be mentioned.
- the glass transition point of the low-melting glass material can be measured by a known method, but can be measured, for example, by a TG measurement (thermogravimetric measurement) method.
- the solid state battery according to the first embodiment of the present technology includes a buffer layer containing buffer particles.
- the buffer layer may include the glass material described above.
- the second electrode active material contained in the buffer layer is not particularly limited, but is preferably a positive electrode active material or particles containing a component of the positive electrode active material.
- the first electrode active material included in the positive electrode layer (electrode layer) and the second electrode active material included in the buffer layer may be the same type of positive electrode active material or different types of positive electrode active materials.
- the second electrode active material contained in the buffer layer is not particularly limited, but is preferably a particle containing a negative electrode active material or a component of the negative electrode active material.
- the first electrode active material contained in the negative electrode layer (electrode layer) and the second electrode active material contained in the buffer layer may be the same type of negative electrode active material or different types of negative electrode active materials.
- the solid state battery according to the first embodiment of the present technology includes an electrolyte layer.
- the electrolyte layer may be a solid electrolyte layer.
- the glass material described above may be included in the solid electrolyte layer.
- the solid electrolyte layer may further contain a solid electrolyte, and may contain a binder described later as necessary.
- the solid electrolyte examples include one type or two or more types of crystalline solid electrolytes.
- the type of the crystalline solid electrolyte is not particularly limited as long as it is a crystalline solid electrolyte capable of conducting lithium ions, and examples thereof include inorganic materials and polymer materials.
- Inorganic materials include, for example, Li 2 S—P 2 S 5 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 7 P 3 S 11 , Li 3.25 Ge 0.25 P 0.75 S, or Li Sulfides such as 10 GeP 2 S 12 , Li 7 La 3 Zr 2 O 12 , Li 6.75 La 3 Zr 1.75 Nb 0.25 O 12 , Li 6 BaLa 2 Ta 2 O 12 , Li 1 + x Al X An oxide such as Ti 2-x (PO 4 ) 3 or La 2 / 3-x Li 3x TiO 3 .
- the polymer material include polyethylene oxide (PEO).
- the solid state battery of the first embodiment according to the present technology may further include a current collecting layer.
- the current collecting layer is disposed outside the positive electrode layer (electrode layer) and the negative electrode layer (electrode layer). can do.
- the current collecting layer may contain the glass material described above.
- the current collecting layer may include a material having high conductivity in addition to the glass material.
- Examples of the material included in the current collecting layer for the positive electrode include general carbon-based materials such as carbon, graphite, and carbon nanotubes, Cu, Mg, Ti, Fe, Co, Ni, Zn, Al, Ge, and In. , Au, Pt, Ag, Pd, or an alloy containing any of these.
- the material contained in the current collecting layer for the negative electrode the same material as that for the current collecting layer for the positive electrode can be used.
- the material constituting the positive electrode current collecting layer may be the same as or different from the material constituting the positive electrode layer.
- the material constituting the negative electrode current collecting layer may be the same as or different from the material constituting the negative electrode layer.
- the current collecting layer for the positive electrode and the current collecting layer for the negative electrode may include a positive electrode active material and a negative electrode active material, respectively.
- a conductive carbon material (graphite) that is a negative electrode active material may be included in the negative electrode current collecting layer.
- the content ratio is not particularly limited as long as it functions as a current collecting layer, but the volume ratio of the positive electrode current collector / positive electrode active material or the negative electrode current collector / negative electrode active material is in the range of 90/10 to 70/30. It is preferable.
- the positive electrode current collecting layer and the negative electrode current collecting layer contain a positive electrode active material and a negative electrode active material, respectively, so that the positive electrode current collector layer and the positive electrode active material layer, and the negative electrode current collector layer and the negative electrode active material This is desirable because adhesion to the material layer is improved.
- the current collecting layer may further contain an additive such as a binder as necessary.
- the solid state battery of the first embodiment according to the present technology may further include an insulating layer.
- the solid state battery of 1st Embodiment which concerns on this technique can distribute
- the insulating layer may include the glass material described above.
- the insulating layer may include an inorganic insulating material and / or an organic insulating material in addition to the glass material.
- the inorganic insulating material include aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), magnesium oxide (MgO), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), and the like.
- the insulating material include polyvinylidene fluoride, a copolymer of vinylidene fluoride and hexafluoropropylene, and the like.
- the insulating layer may further contain an additive such as a binder as necessary.
- the solid state battery according to the first embodiment of the present technology may further include a protective layer.
- the protective layer may be disposed as the outermost layer of the solid state battery according to the first embodiment of the present technology.
- the protective layer may include the glass material described above.
- the glass material content of the protective layer may be greater or less than the glass material content of each of the positive electrode layer, the negative electrode layer, the current collecting layer, and the insulating layer.
- the protective layer is for electrical, physical, and chemical protection, and can improve the reliability of the solid state battery.
- the protective layer may include a material that is excellent in insulation, durability, and moisture resistance and is environmentally safe.
- a thermosetting resin and a photocurable resin are mentioned.
- the protective layer may further contain an additive such as a binder as necessary.
- the solid state battery of the first embodiment according to the present technology may further include a terminal layer. You may arrange
- the terminal layer may include the glass material described above.
- the content of the glass material of the terminal layer may be larger or smaller than the content of the glass material of each layer of the positive electrode layer, the negative electrode layer, the current collecting layer, and the insulating layer, for example.
- the terminal layer may include a material having a high conductivity, for example, silver, gold, platinum, aluminum, copper, tin, nickel, in addition to the glass material.
- the terminal layer may further contain an additive such as a binder as necessary.
- Solid battery manufacturing method A method for manufacturing the solid state battery according to the first embodiment of the present technology will be described. This manufacturing method uses a coating method to form a positive electrode layer (electrode layer), a negative electrode layer (electrode layer), a buffer layer and an electrolyte layer, and, if necessary, a current collecting layer, an insulating layer, a protective layer, and a terminal layer. A step of forming, and a step of stacking and heating these layers.
- the positive electrode layer (electrode layer), the negative electrode layer (electrode layer), the buffer layer and the electrolyte layer, and the current collecting layer, insulating layer, protective layer and terminal layer may all be green sheets, or the positive electrode At least one of the layer (electrode layer), the negative electrode layer (electrode layer), the buffer layer and the electrolyte layer, and the current collecting layer, insulating layer, protective layer and terminal layer may be a green sheet.
- a positive electrode layer electrode layer
- a negative electrode layer electrolyte layer
- a buffer layer and an electrolyte layer and a current collecting layer, an insulating layer, a protective layer and a terminal layer
- a current collecting layer an insulating layer
- a protective layer and a terminal layer is a green sheet
- at least one green A layer (for example, slurry) other than the green sheet may be formed on the sheet by, for example, a screen printing method or the like.
- the solid state battery according to the first embodiment of the present technology may be manufactured by a method other than the coating method.
- a method other than the coating method for example, a method of press-molding a powder of an electrode mixture containing an active material and a glass material using a press machine or the like may be used.
- the shape of the compact after the pressure molding is not particularly limited, and may be, for example, a pellet shape (coin shape).
- the solid battery can be used as a machine, device, instrument, device, and system (an assembly of a plurality of devices) that can be used as a power source for driving or a power storage source for storing power.
- the solid battery used as a power source may be a main power source (a power source used preferentially) or an auxiliary power source (a power source used in place of or switched from the main power source).
- a solid battery is used as an auxiliary power source, the type of main power source is not limited to a solid battery.
- the usage of the solid battery is as follows, for example.
- It is a portable living device such as an electric shaver.
- Storage devices such as backup power supplies and memory cards.
- Electric tools such as electric drills and electric saws.
- Medical electronic devices such as pacemakers and hearing aids.
- It is a power storage system such as a home battery system that stores electric power in case of an emergency. Of course, other uses
- the solid battery is applied to a battery pack, a vehicle, a power storage system, a power tool, and an electronic device.
- the battery pack is a power source using a solid battery, and is a so-called assembled battery.
- the vehicle is a vehicle that operates (runs) using a solid battery as a driving power source, and may be an automobile (such as a hybrid automobile) that includes a drive source other than the solid battery as described above.
- the power storage system is, for example, a residential power storage system and uses a solid battery as a power storage source.
- An electric power tool is a tool in which a movable part (for example, a drill etc.) moves, using a solid battery as a driving power source.
- An electronic device is a device that exhibits various functions using a solid state battery as a driving power source (power supply source).
- the battery pack according to the second embodiment of the present technology includes the solid state battery according to the first embodiment of the present technology.
- the battery pack according to the second embodiment according to the present technology includes the solid state battery according to the first embodiment according to the present technology, a control unit that controls a use state of the solid state battery, and an instruction from the control unit. And a switch unit that switches a use state of the solid state battery.
- the battery pack of the second embodiment according to the present technology includes the solid state battery of the first embodiment according to the present technology having excellent battery characteristics and excellent reliability. Leads to improvement.
- FIG. 2 shows a block configuration of the battery pack.
- This battery pack includes, for example, a control unit 61, a power source 62, a switch unit 63, a current measurement unit 64, a temperature detection unit 65, and a voltage detection unit inside a housing 60 formed of a plastic material or the like. 66, a switch control unit 67, a memory 68, a temperature detection element 69, a current detection resistor 70, a positive terminal 71 and a negative terminal 72.
- the control unit 61 controls the operation of the entire battery pack (including the usage state of the power supply 62), and includes, for example, a central processing unit (CPU).
- the power source 62 includes one or more solid batteries (not shown).
- the power source 62 is, for example, an assembled battery including two or more solid batteries, and the connection form of these solid batteries may be in series, in parallel, or a mixture of both.
- the power source 62 includes six solid state batteries connected in two parallel three series.
- the switch unit 63 switches the usage state of the power source 62 (whether or not the power source 62 can be connected to an external device) according to an instruction from the control unit 61.
- the switch unit 63 includes, for example, a charge control switch, a discharge control switch, a charging diode, a discharging diode (all not shown), and the like.
- the charge control switch and the discharge control switch are semiconductor switches such as a field effect transistor (MOSFET) using a metal oxide semiconductor, for example.
- the current measurement unit 64 measures current using the current detection resistor 70 and outputs the measurement result to the control unit 61.
- the temperature detection unit 65 measures the temperature using the temperature detection element 69 and outputs the measurement result to the control unit 61. This temperature measurement result is used, for example, when the control unit 61 performs charge / discharge control during abnormal heat generation, or when the control unit 61 performs correction processing when calculating the remaining capacity.
- the voltage detection unit 66 measures the voltage of the solid state battery in the power source 62, converts the measured voltage from analog to digital, and supplies the converted voltage to the control unit 61.
- the switch control unit 67 controls the operation of the switch unit 63 in accordance with signals input from the current measurement unit 64 and the voltage detection unit 66.
- the switch control unit 67 disconnects the switch unit 63 (charge control switch) and controls the charging current not to flow through the current path of the power source 62. .
- the power source 62 can only discharge through the discharging diode.
- the switch control unit 67 is configured to cut off the charging current when a large current flows during charging, for example.
- the switch control unit 67 disconnects the switch unit 63 (discharge control switch) so that the discharge current does not flow in the current path of the power source 62 when the battery voltage reaches the overdischarge detection voltage, for example. .
- the power source 62 can only be charged via the charging diode.
- the switch control unit 67 is configured to cut off the discharge current when a large current flows during discharging.
- the overcharge detection voltage is 4.2V ⁇ 0.05V, and the overdischarge detection voltage is 2.4V ⁇ 0.1V.
- the memory 68 is, for example, an EEPROM which is a nonvolatile memory.
- the memory 68 stores, for example, numerical values calculated by the control unit 61 and information (for example, internal resistance in an initial state) of the solid battery measured in the manufacturing process stage. If the full charge capacity of the solid battery is stored in the memory 68, the control unit 61 can grasp information such as the remaining capacity.
- the temperature detection element 69 measures the temperature of the power supply 62 and outputs the measurement result to the control unit 61, and is, for example, a thermistor.
- the positive electrode terminal 71 and the negative electrode terminal 72 are connected to an external device (for example, a notebook personal computer) operated using a battery pack, an external device (for example, a charger) used to charge the battery pack, or the like. Terminal. Charging / discharging of the power source 62 is performed via the positive terminal 71 and the negative terminal 72.
- an external device for example, a notebook personal computer
- an external device for example, a charger
- the vehicle according to the third embodiment of the present technology includes a solid state battery according to the first embodiment of the present technology, a driving force conversion device that converts electric power supplied from the solid state battery into driving force, and a driving force. And a vehicle control device.
- the vehicle according to the third embodiment according to the present technology includes the solid state battery according to the first embodiment according to the present technology having excellent battery characteristics and excellent reliability. Therefore, the performance and reliability of the vehicle are improved. Leads to.
- FIG. 3 schematically shows an example of the configuration of a hybrid vehicle that employs a series hybrid system to which the present technology is applied.
- a series hybrid system is a car that runs on an electric power driving force conversion device using electric power generated by a generator driven by an engine or electric power once stored in a battery.
- the hybrid vehicle 7200 includes an engine 7201, a generator 7202, a power driving force conversion device 7203, a driving wheel 7204a, a driving wheel 7204b, a wheel 7205a, a wheel 7205b, a battery 7208, a vehicle control device 7209, various sensors 7210, and a charging port 7211. Is installed.
- a power storage device (not shown) is applied to the battery 7208.
- Hybrid vehicle 7200 travels using power driving force conversion device 7203 as a power source.
- An example of the power driving force conversion device 7203 is a motor.
- the electric power / driving force conversion device 7203 is operated by the electric power of the battery 7208, and the rotational force of the electric power / driving force conversion device 7203 is transmitted to the driving wheels 7204a and 7204b.
- the power driving force conversion device 7203 can be applied to either an AC motor or a DC motor by using DC-AC (DC-AC) or reverse conversion (AC-DC conversion) where necessary.
- Various sensors 7210 control the engine speed through the vehicle control device 7209 and control the opening of a throttle valve (throttle opening) (not shown).
- Various sensors 7210 include a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
- the rotational force of the engine 7201 is transmitted to the generator 7202, and the electric power generated by the generator 7202 by the rotational force can be stored in the battery 7208.
- the resistance force at the time of deceleration is applied as a rotational force to the power driving force conversion device 7203, and the regenerative power generated by the power driving force conversion device 7203 by this rotational force is applied to the battery 7208. Accumulated.
- the battery 7208 is connected to an external power source of the hybrid vehicle, so that the battery 7208 can receive power from the external power source using the charging port 211 as an input port and store the received power.
- an information processing device that performs information processing related to vehicle control based on information related to the secondary battery may be provided.
- an information processing apparatus for example, there is an information processing apparatus that displays a remaining battery level based on information on the remaining battery level.
- the series hybrid vehicle that runs on the motor using the power generated by the generator driven by the engine or the power stored once in the battery has been described as an example.
- the present disclosure is also effective for a parallel hybrid vehicle that uses both engine and motor outputs as drive sources, and switches between the three modes of running with the engine alone, running with the motor alone, and engine and motor running as appropriate. Applicable.
- the present technology can be effectively applied to a so-called electric vehicle that travels only by a drive motor without using an engine.
- the power storage system according to the fourth embodiment of the present technology includes a power storage device including the solid state battery according to the first embodiment of the present technology, a power consuming device supplied with power from the solid state battery, and the solid state battery.
- a power storage system includes a control device that controls power supply to a power consuming device and a power generation device that charges a solid state battery.
- the power storage system of the fourth embodiment according to the present technology includes the solid state battery of the first embodiment according to the present technology having excellent battery characteristics and excellent reliability. Leads to improvement.
- a power storage system 9100 for a house 9001 electric power is supplied from a centralized power system 9002 such as a thermal power generation 9002a, a nuclear power generation 9002b, and a hydropower generation 9002c via a power network 9009, an information network 9012, a smart meter 9007, a power hub 9008, and the like.
- the power is supplied to the power storage device 9003.
- power is supplied to the power storage device 9003 from an independent power source such as the home power generation device 9004.
- the electric power supplied to the power storage device 9003 is stored. Electric power used in the house 9001 is supplied using the power storage device 9003.
- the same power storage system can be used not only for the house 9001 but also for buildings.
- the house 9001 is provided with a power generation device 9004, a power consumption device 9005, a power storage device 9003, a control device 9010 that controls each device, a smart meter 9007, and a sensor 9011 that acquires various types of information.
- Each device is connected by a power network 9009 and an information network 9012.
- a solar cell, a fuel cell, or the like is used, and the generated power is supplied to the power consumption device 9005 and / or the power storage device 9003.
- the power consuming apparatus 9005 is a refrigerator 9005a, an air conditioner 9005b, a television receiver 9005c, a bath 9005d, or the like.
- the electric power consumption device 9005 includes an electric vehicle 9006.
- the electric vehicle 9006 is an electric vehicle 9006a, a hybrid car 9006b, and an electric motorcycle 9006c.
- the battery unit according to the present technology (solid battery according to the present technology) described above is applied to the power storage device 9003.
- the power storage device 9003 is composed of a secondary battery or a capacitor.
- a lithium ion battery is used.
- the lithium ion battery may be a stationary type or used in the electric vehicle 9006.
- the smart meter 9007 has a function of measuring the usage amount of commercial power and transmitting the measured usage amount to an electric power company.
- the power network 9009 may be any one or a combination of DC power supply, AC power supply, and non-contact power supply.
- Various sensors 9011 are, for example, human sensors, illuminance sensors, object detection sensors, power consumption sensors, vibration sensors, contact sensors, temperature sensors, infrared sensors, and the like. Information acquired by the various sensors 9011 is transmitted to the control device 9010. Based on the information from the sensor 9011, the weather condition, the condition of the person, and the like can be grasped, and the power consumption device 9005 can be automatically controlled to minimize the energy consumption. Furthermore, the control device 9010 can transmit information regarding the house 9001 to an external power company or the like via the Internet.
- the power hub 9008 performs processing such as branching of power lines and DC / AC conversion.
- Communication methods of the information network 9012 connected to the control device 9010 include a method using a communication interface such as UART (Universal Asynchronous Receiver-Transmitter), Bluetooth (registered trademark), ZigBee, Wi-Fi.
- a communication interface such as UART (Universal Asynchronous Receiver-Transmitter), Bluetooth (registered trademark), ZigBee, Wi-Fi.
- the Bluetooth (registered trademark) system is applied to multimedia communication and can perform one-to-many connection communication.
- ZigBee uses the physical layer of IEEE (Institut-of-Electrical-and-Electronics-Engineers) -802.15.4.
- IEEE 802.15.4 is the name of a short-range wireless network standard called PAN (Personal Area Network) or W (Wireless) PAN.
- the control device 9010 is connected to an external server 9013.
- the server 9013 may be managed by any one of the house 9001, the electric power company, and the service provider.
- Information transmitted / received by the server 9013 is, for example, information on power consumption information, life pattern information, power charges, weather information, natural disaster information, and power transactions. These pieces of information may be transmitted / received from a power consuming device (for example, a television receiver) in the home, or may be transmitted / received from a device outside the home (for example, a mobile phone). Such information may be displayed on a device having a display function, such as a television receiver, a mobile phone, a personal digital assistant (PDA), or the like.
- PDA personal digital assistant
- the control device 9010 that controls each unit includes a CPU, a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and is stored in the power storage device 9003 in this example.
- the control device 9010 is connected to the power storage device 9003, the home power generation device 9004, the power consumption device 9005, the various sensors 9011, the server 9013, and the information network 9012.
- the control device 9010 functions to adjust the amount of commercial power used and the amount of power generation. have. In addition, you may provide the function etc. which carry out an electric power transaction in an electric power market.
- electric power can be stored not only in the centralized power system 9002 such as the thermal power 9002a, the nuclear power 9002b, and the hydropower 9002c but also in the power storage device 9003 in the power generation device 9004 (solar power generation, wind power generation). it can. Therefore, even if the generated power of the home power generation apparatus 9004 fluctuates, it is possible to perform control such that the amount of power to be sent to the outside is constant or discharge is performed as necessary.
- the power obtained by solar power generation is stored in the power storage device 9003, and midnight power with a low charge is stored in the power storage device 9003 at night, and the power stored by the power storage device 9003 is discharged during a high daytime charge. You can also use it.
- control device 9010 is stored in the power storage device 9003 .
- control device 9010 may be stored in the smart meter 9007 or may be configured independently.
- the power storage system 9100 may be used for a plurality of homes in an apartment house, or may be used for a plurality of detached houses.
- the power tool of the fifth embodiment according to the present technology is a power tool including the solid state battery of the first embodiment according to the present technology and a movable part to which power is supplied from the solid state battery. Since the power tool of the fifth embodiment according to the present technology includes the solid state battery of the first embodiment according to the present technology having excellent battery characteristics and excellent reliability, the performance and reliability of the power tool. Leads to improvement.
- FIG. 5 shows a block configuration of the electric tool.
- This electric tool is, for example, an electric drill, and includes a control unit 99 and a power supply 100 inside a tool main body 98 formed of a plastic material or the like.
- a drill portion 101 which is a movable portion is attached to the tool body 98 so as to be operable (rotatable).
- the control unit 99 controls the operation of the entire power tool (including the usage state of the power supply 100), and includes, for example, a CPU.
- the power supply 100 includes one or more solid batteries (not shown).
- the control unit 99 supplies power from the power supply 100 to the drill unit 101 in response to an operation switch (not shown).
- the electronic device according to the sixth embodiment of the present technology is an electronic device that includes the solid state battery according to the first embodiment of the present technology and receives power supply from the solid state battery. As described above, the electronic device according to the sixth embodiment of the present technology is a device that exhibits various functions using a solid battery as a driving power source (power supply source). Since the electronic device of the sixth embodiment according to the present technology includes the solid state battery of the first embodiment according to the present technology having excellent battery characteristics and excellent reliability, the performance and reliability of the electronic device. Leads to improvement.
- the electronic device 400 includes an electronic circuit 401 of the electronic device body and a battery pack 300.
- the battery pack 300 is electrically connected to the electronic circuit 401 via the positive terminal 331a and the negative terminal 331b.
- the electronic device 400 has a configuration in which the battery pack 300 is detachable by a user.
- the configuration of the electronic device 400 is not limited to this, and the battery pack 300 is built in the electronic device 400 so that the user cannot remove the battery pack 300 from the electronic device 400. May be.
- the positive terminal 331a and the negative terminal 331b of the battery pack 300 are connected to the positive terminal and the negative terminal of a charger (not shown), respectively.
- the positive terminal 331a and the negative terminal 331b of the battery pack 300 are connected to the positive terminal and the negative terminal of the electronic circuit 401, respectively.
- Examples of the electronic device 400 include a notebook personal computer, a tablet computer, a mobile phone (for example, a smartphone), a personal digital assistant (PDA), an imaging device (for example, a digital still camera, a digital video camera), and an audio device (for example, Portable audio players), game devices, cordless phones, electronic books, electronic dictionaries, radio, headphones, navigation systems, memory cards, pacemakers, hearing aids, lighting equipment, toys, medical equipment, robots, etc. It is not limited. As a specific example, a head-mounted display and a band-type electronic device will be described.
- the head-mounted display includes an image display device, a mounting device for mounting the image display device on an observer's head, and the image display device.
- the electronic device includes a mounting member for attaching the battery to a mounting device, and uses the solid state battery of the first embodiment according to the present technology or the solid state battery of the second embodiment according to the present technology as a driving power source.
- Type electronic devices connect a plurality of segments connected in a band shape, a plurality of electronic components arranged in the plurality of segments, and a plurality of electronic components in the plurality of segments, and meander in at least one segment
- a flexible circuit board arranged in a shape, for example, as the electronic component, for example, the solid state battery of the first embodiment according to the present technology or the second embodiment according to the present technology.
- Body cell is an electronic device that is disposed above the segment.
- the electronic circuit 401 includes, for example, a CPU, a peripheral logic unit, an interface unit, a storage unit, and the like, and controls the entire electronic device 400.
- the battery pack 300 includes an assembled battery 301 and a charge / discharge circuit 302.
- the assembled battery 301 is configured by connecting a plurality of secondary batteries 301a in series and / or in parallel.
- the plurality of secondary batteries 301a are connected, for example, in n parallel m series (n and m are positive integers).
- FIG. 6 shows an example in which six secondary batteries 301a are connected in two parallel three series (2P3S).
- the secondary battery 301a the secondary battery according to the first embodiment or its modification is used.
- the charging / discharging circuit 302 controls charging of the assembled battery 301.
- the charging / discharging circuit 302 controls the discharging of the electronic device 400.
- Example 1 A solid battery A according to Example 1 was manufactured according to the following experimental method.
- the average particle diameter (D50) of Co particles which are buffer particles used in the solid battery A, was measured using a scanning electron microscope.
- the average particle diameter (D50) of the Co particles was 10 nm.
- garnet-type oxide crystal electrolyte: oxide glass 70: 30 mass ratio (volume ratio 50:50 vol%)), and then the mixture and the acrylic binder are mixed with (garnet-type oxide).
- (Crystal electrolyte + oxide glass): Acrylic binder 70: 30 The mass ratio was mixed, and the mixture was mixed with butyl acetate so that the solid content was 30% by mass, together with 5 mm ⁇ zirconia balls for 4 hours. Stir. It was coated on a release film and dried at 80 ° C. for 10 minutes to produce a solid electrolyte layer of the solid battery A according to Example 1.
- KS6: oxide glass 70: 30 mass ratio (volume ratio 70:30 vol%)
- acrylic binder 70: 30
- the mixture was mixed with butyl acetate so that the solid content was 30% by mass, and stirred with 5 mm ⁇ zirconia balls for 4 hours. It was coated on a release film and dried at 80 ° C. for 10 minutes to produce a current collecting layer of the solid battery A according to Example 1.
- the mixture and the acrylic binder are (Alumina particles + oxide glass):
- Acrylic binder 70:30 mixed at a mass ratio, and the mixture was mixed with butyl acetate so that the solid content was 30% by mass, along with 5 mm ⁇ zirconia balls, Stir for 4 hours. It was coated on a release film and dried at 80 ° C. for 10 minutes to produce a protective layer for the solid battery A according to Example 1.
- the positive electrode layer, the buffer layer, the solid electrolyte layer, the negative electrode layer, the current collecting layer, the insulating layer, and the protective layer are not all green sheets, but directly on a specific green sheet layer by printing, etc.
- a laminated structure may be formed.
- the laminated structure of the positive electrode layer, the buffer layer, the solid electrolyte layer, the negative electrode layer, the current collecting layer, the insulating layer, and the protective layer was heated at 300 ° C. for 10 hours to remove the acrylic binder. Thereafter, the laminated structure was sintered at 400 ° C. for 30 minutes.
- Example 2 A solid battery B according to Example 2 was produced according to the following experimental method.
- the average particle diameter (D50) of LiCoO 2 particles which are buffer particles used in the solid battery A, was measured using a Microtrac particle size analyzer (Nikkiso).
- the average particle diameter (D50) of the LiCoO 2 particles was 500 nm.
- the solid electrolyte layer, the negative electrode layer, the current collecting layer, the insulating layer, and the protective layer of the solid battery B according to Example 2 are the solid electrolyte layer, the negative electrode layer, the current collecting layer, the insulating layer, and the solid battery A according to Example 1. It was produced by the same method as the production method of the protective layer.
- the solid battery B according to Example 2 was produced by the same method as the production method of the solid battery A according to Example 1, and the terminal layer of the solid battery B according to Example 2 was A solid battery B according to Example 2 was obtained in the same manner as the terminal layer of the solid battery A according to 1.
- the solid battery a according to Comparative Example 1 was produced by the same method as the production method of the solid battery A according to Example 1 except that the buffer layer was not produced. That is, the positive electrode layer, the solid electrolyte layer, the negative electrode layer, the current collecting layer, the insulating layer, and the protective layer of the solid battery a according to Comparative Example 1 are the positive electrode layer, the solid electrolyte layer, and the negative electrode layer of the solid battery A according to Example 1. The current collecting layer, the insulating layer, and the protective layer were produced in the same manner as the production method.
- the solid battery a according to Comparative Example 1 was produced by the same method as the production method of the solid battery A according to Example 1, and the terminal layer of the solid battery a according to Comparative Example 1 was The solid battery A according to Comparative Example 1 was obtained in the same manner as the terminal layer of the solid battery A according to Comparative Example 1.
- the evaluation result of charging / discharging is shown by the average value of 3 cells of each of solid battery A, solid battery B, and solid battery a.
- the solid battery a according to Comparative Example 1 was 101.1 mAh / g, whereas the solid battery A according to Example 1 was 143.0 mAh / g. It was confirmed that the performance of the solid battery A was greatly improved with respect to the performance of the solid battery a.
- the solid battery B according to Example 2 was 135.4 mAh / g. It was confirmed that the performance of the solid battery B was greatly improved with respect to the performance of the solid battery a.
- Example 1 solid battery A and Example 2 (solid battery B)
- at least one atom constituting electrode particles (first electrode active material) and buffer particles (second electrode active material or second electrode active material) Co) was used for the above, but for example, Mn, Fe, Ni. C, Si, Li, Mg, Al or Ti, or Co, Mn, Fe, Ni. Even if at least two selected from the group consisting of C, Si, Li, Mg, Al and Ti are used, charging / discharging of Example 1 (solid battery A) and Example 2 (solid battery B) described above is possible. Results similar to the evaluation results are obtained.
- the above-described solid battery can be mounted on a printed circuit board 1202 (print circuit board, hereinafter referred to as “PCB”) together with a charging circuit or the like.
- a solid battery 1203 and an electronic circuit such as a charging circuit can be mounted on the PCB 1202 by a reflow process.
- a battery module 1201 in which an electronic circuit such as a solid battery 1203 and a charging circuit is mounted on a PCB 1202 is referred to as a battery module 1201.
- the battery module 1201 has a card type configuration as necessary, and can be configured as a portable card type mobile battery.
- a charge control IC IntegratedIntegrCircuit
- a battery protection IC 1205, and a battery remaining amount monitoring IC 1206 are also formed.
- the battery protection IC 1205 controls the charging / discharging operation so that the charging voltage does not become excessive at the time of charging / discharging, an overcurrent flows due to a load short circuit, and no overdischarging occurs.
- a USB (Universal Serial Bus) interface 1207 is attached to the PCB 1202.
- the solid state battery 1203 is charged by the power supplied through the USB interface 1207.
- the charging operation is controlled by the charging control IC 1204.
- predetermined power for example, a voltage of 4.2 V
- the remaining battery level of the solid battery 1203 is monitored by the remaining battery level monitoring IC 1206 so that a display (not shown) indicating the remaining battery level can be seen from the outside.
- the USB interface 1207 may be used for load connection.
- a specific example of the load 1209 described above is as follows.
- A. Wearable devices sports watches, watches, hearing aids, etc.
- B. IoT terminals sensor network terminals, etc.
- C. Amusement equipment portable game terminals, game controllers
- D. IC board embedded battery real-time clock IC
- E. Energy harvesting equipment storage elements for power generation elements such as solar power generation, thermoelectric power generation, vibration power generation).
- FIG. 8 shows an example of the configuration of the universal credit card 1301. It has a card type shape and contains an IC chip and a solid battery (not shown) according to the present technology. Further, a display 1302 that consumes less power and an operation unit such as direction keys 1303a and 1303b are provided. Further, a charging terminal 1304 is provided on the surface of the universal credit card 1301.
- the user can specify a credit card or the like loaded in advance on the universal credit card 1301 by operating the direction keys 1303a and 1303b while looking at the display 1302.
- a credit card or the like loaded in advance on the universal credit card 1301 by operating the direction keys 1303a and 1303b while looking at the display 1302.
- information indicating each credit card is displayed on the display 1302, and the user can designate a desired credit card by operating the direction keys 1303a and 1303b. After that, it can be used like a conventional credit card.
- the solid battery according to the present technology can be applied to any electronic card other than the universal credit card 1301.
- a wearable terminal is a wristband type electronic device.
- the wristband type activity meter is also called a smart band, and it is possible to obtain data on human activities such as the number of steps, distance traveled, calories burned, sleep amount, heart rate, etc. just by wrapping around the wrist. It can be done.
- the acquired data can also be managed with a smartphone.
- a mail transmission / reception function can be provided. For example, a mail notification function that notifies a user of an incoming mail by an LED (Light Emitting Diode) lamp and / or vibration is used.
- LED Light Emitting Diode
- FIG. 9 and 10 show an example of a wristband type activity meter that measures, for example, a pulse.
- FIG. 9 shows an example of the external configuration of the wristband type activity meter 1501.
- FIG. 10 shows a configuration example of the main body 1502 of the wristband type activity meter 1501.
- the wristband type activity meter 1501 is a wristband type measuring device that measures, for example, a pulse of a subject by an optical method.
- the wristband type active mass meter 1501 includes a main body 1502 and a band 1503, and the band 1503 is attached to the arm (wrist) 1504 of the subject like a wristwatch.
- the main-body part 1502 irradiates the measurement light of a predetermined wavelength to the part containing the pulse of a test subject's arm 1504, and measures a test subject's pulse based on the intensity
- the main body 1502 is configured to include a substrate 1521, an LED 1522, a light receiving IC 1523, a light shield 1524, an operation unit 1525, an arithmetic processing unit 1526, a display unit 1527, and a wireless device 1528.
- the LED 1522, the light receiving IC 1523, and the light shield 1524 are provided over the substrate 1521.
- the LED 1522 irradiates a portion including the pulse of the arm 1504 of the subject under measurement light of a predetermined wavelength under the control of the light receiving IC 1523.
- the light receiving IC 1523 receives light that has returned after the measurement light is applied to the arm 1504.
- the light receiving IC 1523 generates a digital measurement signal indicating the intensity of the returned light, and supplies the generated measurement signal to the arithmetic processing unit 1526.
- the light shield 1524 is provided between the LED 1522 and the light receiving IC 1523 on the substrate 1521.
- the light shield 1524 prevents measurement light from the LED 1522 from directly entering the light receiving IC 1523.
- the operation unit 1525 is composed of various operation members such as buttons and switches, and is provided on the surface of the main body 1502 or the like.
- the operation unit 1525 is used to operate the wristband type activity meter 1501 and supplies a signal indicating the operation content to the arithmetic processing unit 1526.
- the arithmetic processing unit 1526 performs arithmetic processing for measuring the pulse of the subject based on the measurement signal supplied from the light receiving IC 1523.
- the arithmetic processing unit 1526 supplies the pulse measurement result to the display unit 1527 and the wireless device 1528.
- the display unit 1527 is configured by a display device such as an LCD (Liquid Crystal Display), and is provided on the surface of the main body unit 1502.
- the display unit 1527 displays the measurement result of the subject's pulse and the like.
- the wireless device 1528 transmits the measurement result of the subject's pulse to an external device by wireless communication of a predetermined method. For example, as illustrated in FIG. 10, the wireless device 1528 transmits the measurement result of the subject's pulse to the smartphone 1505 and causes the screen 1506 of the smartphone 1505 to display the measurement result. Furthermore, the measurement result data is managed by the smartphone 1505, and the measurement result can be browsed by the smartphone 1505 or stored in a server on the network. Note that any method can be adopted as a communication method of the wireless device 1528.
- the light receiving IC 1523 can also be used when measuring a pulse in a part other than the subject's arm 1504 (eg, finger, earlobe, etc.).
- the wristband type active mass meter 1501 described above can accurately measure the pulse wave and pulse of the subject by removing the influence of body movement by the signal processing in the light receiving IC 1523. For example, even if the subject performs intense exercise such as running, the pulse wave and pulse of the subject can be accurately measured. In addition, for example, even when the subject wears the wristband type activity meter 1501 for a long time and performs measurement, the influence of the subject's body movement can be removed and the pulse wave and the pulse can be accurately measured. .
- the power consumption of the wristband type activity meter 1501 can be reduced by reducing the amount of calculation. As a result, for example, it is possible to perform measurement by wearing the wristband type activity meter 1501 on the subject for a long time without performing charging or battery replacement.
- the wristband type activity meter 1501 includes an electronic circuit of the main body and a battery pack.
- the battery pack is detachable by the user.
- the electronic circuit is a circuit included in the main body 1502 described above. The present technology can be applied when using an all-solid battery as a battery.
- FIG. 11 shows a structural example of the appearance of a wristband type electronic device 1601 (hereinafter simply referred to as “electronic device 1601”).
- the electronic device 1601 is, for example, a watch-type so-called wearable device that is detachable from the human body.
- the electronic device 1601 includes, for example, a band portion 1611 attached to the arm, a display device 1612 that displays numbers, characters, symbols, and the like, and operation buttons 1613.
- the band portion 1611 is formed with a plurality of hole portions 1611a and protrusions 1611b formed on the inner peripheral surface (the surface that comes into contact with the arm when the electronic device 1601 is attached).
- the electronic device 1601 In the use state, the electronic device 1601 is bent so that the band portion 1611 is substantially circular as shown in FIG. 11, and the protrusion 1611b is inserted into the hole portion 1611a and attached to the arm. By adjusting the position of the hole 1611a into which the protrusion 1611b is inserted, the diameter can be adjusted corresponding to the thickness of the arm.
- the protrusion 1611b is removed from the hole 1611a, and the band 1611 is stored in a substantially flat state.
- the sensor according to the embodiment of the present technology is provided over the entire band portion 1611.
- Smart watches have the same or similar appearance as existing wristwatch designs, and are worn on the user's wrist in the same way as wristwatches. Information displayed on the display is used to receive incoming calls and e-mails. A function for notifying the user of various messages such as. Further, smart watches having functions such as an electronic money function and an activity meter have been proposed. In the smart watch, a display is incorporated on the surface of the main body portion of the electronic device, and various information is displayed on the display. In addition, the smart watch can also cooperate with functions, contents, and the like of the communication terminal by performing short-range wireless communication such as Bluetooth (registered trademark) with a communication terminal (smart phone or the like).
- short-range wireless communication such as Bluetooth (registered trademark)
- a communication terminal smart watch>
- a plurality of segments connected in a band, a plurality of electronic components arranged in the plurality of segments, and a plurality of electronic components in the plurality of segments are connected to each other in at least one segment.
- a device including a flexible circuit board arranged in a meandering shape has been proposed. By having such a meandering shape, the flexible circuit board is not stressed even when the band is bent, and the circuit is prevented from being cut.
- the smart watch of this application example can perform notifications such as e-mails and incoming calls, log recording of user action history, telephone calls, and the like.
- the smart watch has a function as a non-contact IC card, and can perform settlement, authentication, and the like in a non-contact manner.
- the smart watch of this application example has built-in circuit components that perform communication processing and notification processing in a metal band.
- the band is configured by connecting a plurality of segments, and a circuit board, a vibration motor, a battery, and an acceleration sensor are accommodated in each segment.
- Components such as circuit boards, vibration motors, batteries, and acceleration sensors in each segment are connected by a flexible printed circuit board (FPC).
- FPC flexible printed circuit board
- Fig. 12 shows the overall structure (disassembled perspective view) of the smart watch.
- the band-type electronic device 2000 is a metal band attached to the watch main body 3000 and is attached to the user's arm.
- the watch body 3000 includes a dial 3100 for displaying time.
- the watch body 3000 may display the time electronically on a liquid crystal display or the like instead of the dial 3100.
- the band-type electronic device 2000 has a configuration in which a plurality of segments 2110 to 2230 are connected.
- the segment 2110 is attached to one band attachment hole of the watch body 3000, and the segment 2230 is attached to the other band attachment hole of the watch body 3000.
- each of the segments 2110 to 2230 is made of metal.
- FIG. 13 shows a part of the internal configuration of the band-type electronic apparatus 2000.
- the inside of three segments 2170, 2180, 2190, 2200, and 2210 is shown.
- a flexible circuit board 2400 is arranged inside five continuous segments 2170 to 2210.
- Various electronic components are disposed in the segment 2170, and batteries 2411 and 2421 according to the present technology are disposed in the segments 2190 and 2210, and these components are electrically connected by the flexible circuit board 2400.
- a segment 2180 between the segment 2170 and the segment 2190 has a relatively small size, and the flexible circuit board 2400 in a meandering state is disposed.
- the flexible circuit board 2400 is disposed in a state of being sandwiched between waterproofing members.
- the inside of the segments 2170 to 2210 has a waterproof structure.
- FIG. 14 is a block diagram showing a circuit configuration of the band-type electronic apparatus 2000.
- the circuit inside the band-type electronic device 2000 has a configuration independent of the watch main body 3000.
- the watch main body 3000 includes a movement unit 3200 that rotates hands arranged on the dial 3100.
- a battery 3300 is connected to the movement unit 3200.
- the movement unit 3200 and the battery 3300 are built in the casing of the watch main body 3000.
- a data processing unit 4101 In the segment 2170, a data processing unit 4101, a wireless communication unit 4102, an NFC communication unit 4104, and a GPS unit 4106 are arranged.
- Antennas 4103, 4105, and 4107 are connected to the wireless communication unit 4102, the NFC communication unit 4104, and the GPS unit 4106, respectively.
- Each antenna 4103, 4105, 4107 is arranged in the vicinity of a slit 2173 described later of the segment 2170.
- the wireless communication unit 4102 performs short-range wireless communication with other terminals based on, for example, Bluetooth (registered trademark) standards.
- the NFC communication unit 4104 performs wireless communication with an adjacent reader / writer according to the NFC standard.
- the GPS unit 4106 is a positioning unit that receives radio waves from a satellite of a system called GPS (Global Positioning System) and measures the current position. Data obtained by the wireless communication unit 4102, the NFC communication unit 4104, and the GPS unit 4106 is supplied to the data processing unit 4101.
- GPS Global Positioning System
- a display 4108 In the segment 2170, a display 4108, a vibrator 4109, a motion sensor 4110, and an audio processing unit 4111 are arranged.
- the display 4108 and the vibrator 4109 function as a notification unit that notifies the wearer of the band-type electronic device 2000.
- the display 4108 includes a plurality of light emitting diodes, and notifies the user by lighting or blinking of the light emitting diodes.
- the plurality of light emitting diodes are disposed, for example, in a slit 2173 described later of the segment 2170, and notification of incoming calls or reception of e-mails is made by lighting or blinking.
- the display 4108 may be a type that displays characters, numbers, and the like.
- Vibrator 4109 is a member that vibrates segment 2170.
- the band-type electronic device 2000 notifies the incoming call or the reception of an e-mail by the vibration of the segment 2170 by the vibrator 4109.
- the motion sensor 4110 detects the movement of the user wearing the band-type electronic device 2000.
- an acceleration sensor As the motion sensor 4110, an acceleration sensor, a gyro sensor, an electronic compass, an atmospheric pressure sensor, or the like is used.
- the segment 2170 may incorporate a sensor other than the motion sensor 4110.
- a biosensor that detects the pulse of the user wearing the band-type electronic device 2000 may be incorporated.
- a microphone 4112 and a speaker 4113 are connected to the audio processing unit 4111, and the audio processing unit 4111 performs a call process with the other party connected by wireless communication in the wireless communication unit 4102.
- the voice processing unit 4111 can also perform processing for voice input operation.
- the segment 2190 has a built-in battery 2411
- the segment 2210 has a built-in battery 2421.
- the batteries 2411 and 2421 can be configured by a solid state battery according to the present technology, and supply driving power to the circuits in the segment 2170.
- the circuit in the segment 2170 and the batteries 2411 and 2421 are connected by a flexible circuit board 2400 (FIG. 13).
- the segment 2170 includes terminals for charging the batteries 2411 and 2421.
- electronic components other than the batteries 2411 and 2421 may be arranged in the segments 2190 and 2210.
- the segments 2190 and 2210 may include a circuit that controls charging and discharging of the batteries 2411 and 2421.
- the glasses-type terminal described below can display information such as text, symbols, and images superimposed on the scenery in front of you. That is, a light-weight and thin image display device display module dedicated to a transmissive glasses-type terminal is mounted.
- a typical example is a head-mounted display (head mounted display (HMD)).
- This image display device comprises an optical engine and a hologram light guide plate.
- the optical engine emits image light such as an image and text using a micro display lens. This image light is incident on the hologram light guide plate.
- a hologram light guide plate has hologram optical elements incorporated at both ends of a transparent plate, and propagates image light from an optical engine through a very thin transparent plate having a thickness of 1 mm to the eyes of an observer. deliver. With such a configuration, a lens having a transmittance of, for example, 85% and a thickness of 3 mm (including protective plates before and after the light guide plate) is realized. With such a glasses-type terminal, it is possible to see the results of players and teams in real time while watching sports, and to display a tourist guide at a destination.
- the image display unit has a glasses-type configuration as shown in FIG. That is, as with normal glasses, the frame 5003 for holding the right image display unit 5001 and the left image display unit 5002 is provided in front of the eyes.
- the frame 5003 includes a front portion 5004 disposed in front of the observer, and two temple portions 5005 and 5006 that are rotatably attached to both ends of the front portion 5004 via hinges.
- the frame 5003 is made of the same material as that of normal glasses, such as metal, alloy, plastic, or a combination thereof.
- a headphone unit may be provided.
- the right image display unit 5001 and the left image display unit 5002 are arranged so as to be positioned in front of the user's right eye and in front of the left eye, respectively.
- Temple units 5005 and 5006 hold the image display units 5001 and 5002 on the user's head.
- a right display driving unit 5007 is disposed inside the temple unit 5005 at a connection portion between the front unit 5004 and the temple unit 5005.
- a left display driving unit 5008 is arranged inside the temple unit 5006 at a connection portion between the front unit 5004 and the temple unit 5006.
- a solid battery, an acceleration sensor, a gyroscope, an electronic compass, a microphone / speaker, and the like are mounted on the frame 5003. Further, an image pickup apparatus is attached, and still images / moving images can be taken.
- a controller connected to the glasses unit via, for example, a wireless or wired interface is provided.
- the controller is provided with a touch sensor, various buttons, a speaker, a microphone, and the like.
- it has a linkage function with a smartphone. For example, it is possible to provide information according to the user's situation by utilizing the GPS function of a smartphone.
- the present technology is not limited to the above-described embodiments, examples, and application examples, and can be changed without departing from the gist of the present technology.
- the present technology may have the following configurations.
- the electrode layer comprises electrode particles
- the buffer layer comprises buffer particles
- the electrode particles contain a first electrode active material
- the buffer particles contain the second electrode active material and / or at least one atom constituting the second electrode active material
- a solid battery in which an average particle diameter (D50) of the buffer particles is smaller than an average particle diameter (D50) of the electrode particles.
- the ratio of the average particle diameter (D50) of the electrode particles to the average particle diameter (D50) of the buffer particles (the average particle diameter of the electrode particles (D50) / the average particle diameter of the buffer particles (D50)) is 4 to 450
- the first electrode active material is Co, Mn, Fe, Ni.
- the second electrode active material is made of Co, Mn, Fe, Ni.
- a battery pack comprising the solid battery according to any one of [1] to [7].
- a battery pack comprising: a switch unit that switches a use state of the solid state battery in accordance with an instruction from the control unit.
- any one of the solid state batteries A driving force conversion device that receives supply of electric power from the solid state battery and converts it into driving force of a vehicle;
- a vehicle comprising: a drive unit that drives according to the drive force; and a vehicle control device.
- a power storage system comprising: a power generation device that charges the solid state battery.
- the solid battery according to any one of [1] to [7] is provided, An electronic device that is supplied with power from the solid state battery.
- Electrode layer 1 ... electrode layer, 2 ... buffer layer, 3 ... electrolyte layer, 4 ... electrode particles, 5 ... buffer particles, 10 ... solid battery
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
The present invention provides a solid-state battery which is capable of achieving further improved battery characteristics and reliability. Provided is a solid-state battery which comprises at least an electrode layer, an electrolyte layer, and a buffer layer that is arranged between the electrode layer and the electrolyte layer, and which is configured such that: the electrode layer contains electrode particles; the buffer layer contains buffer particles; the electrode particles contain a first electrode active material; the buffer particles contain a second electrode active material and/or at least one kind of atom that constitutes the second electrode active material; and the average particle diameter (D50) of the buffer particles is smaller than the average particle diameter (D50) of the electrode particles.
Description
本技術は固体電池に関する。より詳しくは、本技術は、固体電池、電池パック、車両、蓄電システム、電動工具及び電子機器に関する。
This technology relates to solid state batteries. More specifically, the present technology relates to a solid battery, a battery pack, a vehicle, a power storage system, a power tool, and an electronic device.
近年、PC(パーソナルコンピュータ)や携帯電話などのポータブル機器の開発に伴い、電池の需要が急速に拡大している。また、電気自動車などの普及も加速化し、ますます電池のニーズが高まっている。その中で、電解質を液体系から固体系に代えた固体電池の研究・開発が盛んに行われている。
In recent years, with the development of portable devices such as PCs (personal computers) and mobile phones, the demand for batteries has been rapidly expanding. In addition, the spread of electric vehicles is accelerating, and the need for batteries is increasing. Among them, research and development of solid batteries in which the electrolyte is changed from a liquid system to a solid system are actively performed.
例えば、LiとLaとZrとを少なくとも含有するガーネット型酸化物を含む第1層の表面にCo、Ni及びMnのうち1以上を含む金属及び/又は化合物からなる中間層を形成する形成工程と、前記中間層に含まれるCo、Ni及びMnのうち1以上の元素を含有する複合酸化物の粒子とLiを含有する融剤とを含む第2層を前記中間層の上に形成し積層体とする積層工程と、前記積層体を焼成する焼成工程と、を含む複合積層体の製造方法が提案され(特許文献1を参照)、集電体と、上記集電体の表面の少なくとも一部に形成される電極活物質層と、を備える非水電解液二次電池用電極板であって、上記電極活物質層が、活物質粒子および結着物質粒子を含有しており、上記結着物質粒子が、リチウムイオン挿入脱離反応を示す金属酸化物粒子であって、上記結着物質粒子の平均粒径が、上記活物質粒子の平均粒径より小さいことを特徴とする非水電解液二次電池用電極板が提案されている(特許文献2を参照)。
For example, a forming step of forming an intermediate layer made of a metal and / or a compound containing one or more of Co, Ni and Mn on the surface of the first layer containing a garnet-type oxide containing at least Li, La and Zr; A second layer comprising a composite oxide particle containing one or more elements of Co, Ni and Mn contained in the intermediate layer and a flux containing Li and formed on the intermediate layer. And a method for producing a composite laminate including a firing step of firing the laminate (see Patent Document 1), and a current collector and at least a part of the surface of the current collector An electrode plate for a non-aqueous electrolyte secondary battery comprising an electrode active material layer formed on the electrode active material layer, wherein the electrode active material layer contains active material particles and binder material particles, and the binder The metal particles show a lithium ion insertion / extraction reaction An electrode plate for a non-aqueous electrolyte secondary battery is proposed in which the average particle size of the binder material particles is smaller than the average particle size of the active material particles (Patent Document). 2).
また、例えば、正極集電体、正極層、負極集電体、負極層、及び固体電解質層を備えたリチウムイオン二次電池であって、該固体電解質は、リチウムイオン伝導性の無機物質からなる粉体を含有する厚さ20μm以下の薄膜状固体電解質からなり、該正極層及び/又は該負極層と、該固体電解質層との界面において、該正極層及び/又は該負極層と該固体電解質層とが混じった状態であるリチウムイオン二次電池が提案され(特許文献3を参照)、正極、負極及び固体電解質を備えるリチウムイオン二次電池において、固体電解質-正極の界面、及び/又は固体電解質-負極の界面に、ファイバー層が形成されていることを特徴とするリチウムイオン二次電池が提案されている(特許文献4を参照)。
Further, for example, a lithium ion secondary battery including a positive electrode current collector, a positive electrode layer, a negative electrode current collector, a negative electrode layer, and a solid electrolyte layer, the solid electrolyte being made of a lithium ion conductive inorganic substance. A thin-film solid electrolyte having a thickness of 20 μm or less containing powder, and at the interface between the positive electrode layer and / or the negative electrode layer and the solid electrolyte layer, the positive electrode layer and / or the negative electrode layer and the solid electrolyte. A lithium ion secondary battery in which a layer is mixed is proposed (see Patent Document 3). In a lithium ion secondary battery including a positive electrode, a negative electrode, and a solid electrolyte, a solid electrolyte-positive electrode interface and / or a solid There has been proposed a lithium ion secondary battery characterized in that a fiber layer is formed at the electrolyte-negative electrode interface (see Patent Document 4).
さらに、例えば、正極集電体、ならびに前記正極集電体上に形成され、正極活物質および固体電解質材料を含有する正極活物質層を有する正極体と、負極集電体、ならびに前記負極集電体上に形成され、負極活物質および固体電解質材料を含有する負極活物質層を有する負極体と、前記正極体および前記負極体の間に形成された固体電解質層とを有する全固体電池であって、前記正極体および前記負極体のうち少なくとも一方の電極体の電極活物質層は、前記電極活物質層の一部分に含まれる固体電解質材料の体積(Ve(partial))に対する前記電極活物質層の前記一部分に含まれる電極活物質の体積(Va(partial))の比(Va(partial)/Ve(partial))で表される局所含有体積比が、前記電極活物質層の厚み方向を固体電解質層界面側から集電体界面側へ近づけるほど大きくなる組成分布を有し、前記電極活物質層の空隙率が、前記電極活物質層の厚み方向を固体電解質層界面側から集電体界面側へ近づけるほど大きくなることを特徴とする全固体電池が提案され(特許文献5を参照)、活物質を低融点ガラスで結着した電極層の間に、固体電解質を低融点ガラスで結着した固体電解質層を配設したリチウム電池において、前記電極層と固体電解質層との間に、前記活物質と固体電解質の混合粉体を前記低融点ガラスで結着した混合層を設けたことを特徴とするリチウム電池が提案されている(特許文献6を参照)。
Furthermore, for example, a positive electrode current collector, a positive electrode body formed on the positive electrode current collector and having a positive electrode active material layer containing a positive electrode active material and a solid electrolyte material, a negative electrode current collector, and the negative electrode current collector An all-solid battery comprising a negative electrode body having a negative electrode active material layer formed on a body and containing a negative electrode active material and a solid electrolyte material; and a solid electrolyte layer formed between the positive electrode body and the negative electrode body. The electrode active material layer of at least one of the positive electrode body and the negative electrode body has the electrode active material relative to the volume (V e (partial)) of the solid electrolyte material contained in a part of the electrode active material layer. local content volume ratio expressed by volume of the electrode active material contained in said portion of the layer (V a (partial)) ratio (V a (partial) / V e (partial)) is, before The electrode active material layer has a composition distribution that increases as the thickness direction of the electrode active material layer approaches the current collector interface side from the solid electrolyte layer interface side, and the porosity of the electrode active material layer is solid in the thickness direction of the electrode active material layer. An all-solid battery characterized in that it becomes larger as it approaches the current collector interface side from the electrolyte layer interface side (see Patent Document 5), between the electrode layers in which the active material is bound with low-melting glass, In a lithium battery having a solid electrolyte layer in which a solid electrolyte is bound with a low-melting glass, a powder mixture of the active material and the solid electrolyte is bound with the low-melting glass between the electrode layer and the solid electrolyte layer. There has been proposed a lithium battery characterized in that an attached mixed layer is provided (see Patent Document 6).
しかしながら、特許文献1~6で提案された技術では、電池特性や信頼性の更なる向上が図れないおそれがある。
However, the techniques proposed in Patent Documents 1 to 6 may not be able to further improve battery characteristics and reliability.
そこで、本技術は、このような状況に鑑みてなされたものであり、電池特性や信頼性の更なる向上を実現できる固体電池、並びにその固体電池を備える電池パック、車両、蓄電システム、電動工具及び電子機器を提供することを主目的とする。
Therefore, the present technology has been made in view of such circumstances, and a solid battery capable of further improving battery characteristics and reliability, and a battery pack, vehicle, power storage system, and electric tool including the solid battery. The main purpose is to provide electronic devices.
本発明者らは、上述の目的を解決するために鋭意研究を行った結果、電極層と電解質層との界面に着目することによって、驚くべきことに、電池特性や信頼性を飛躍的に向上させることに成功し、本技術を完成するに至った。
As a result of intensive studies to solve the above-mentioned object, the present inventors have surprisingly improved battery characteristics and reliability by paying attention to the interface between the electrode layer and the electrolyte layer. We have succeeded in making this technology complete.
すなわち、本技術では、少なくとも、電極層と、電解質層と、該電極層と該電解質層との間に配されるバッファー層とを含み、
該電極層が電極粒子を含み、該バッファー層がバッファー粒子を含み、
該電極粒子が第1電極活物質を含有し、
該バッファー粒子が第2電極活物質及び/又は該第2電極活物質を構成する少なくも1つの原子を含有し、
該バッファー粒子の平均粒径(D50)が、該電極粒子の平均粒径(D50)よりも小さい、固体電池を提供する。 That is, the present technology includes at least an electrode layer, an electrolyte layer, and a buffer layer disposed between the electrode layer and the electrolyte layer,
The electrode layer comprises electrode particles, the buffer layer comprises buffer particles;
The electrode particles contain a first electrode active material;
The buffer particles contain the second electrode active material and / or at least one atom constituting the second electrode active material;
Provided is a solid state battery in which the average particle size (D50) of the buffer particles is smaller than the average particle size (D50) of the electrode particles.
該電極層が電極粒子を含み、該バッファー層がバッファー粒子を含み、
該電極粒子が第1電極活物質を含有し、
該バッファー粒子が第2電極活物質及び/又は該第2電極活物質を構成する少なくも1つの原子を含有し、
該バッファー粒子の平均粒径(D50)が、該電極粒子の平均粒径(D50)よりも小さい、固体電池を提供する。 That is, the present technology includes at least an electrode layer, an electrolyte layer, and a buffer layer disposed between the electrode layer and the electrolyte layer,
The electrode layer comprises electrode particles, the buffer layer comprises buffer particles;
The electrode particles contain a first electrode active material;
The buffer particles contain the second electrode active material and / or at least one atom constituting the second electrode active material;
Provided is a solid state battery in which the average particle size (D50) of the buffer particles is smaller than the average particle size (D50) of the electrode particles.
本技術に係る固体電池において、前記バッファー粒子の平均粒径(D50)に対する前記電極粒子の平均粒径(D50)の比(電極粒子の平均粒径(D50)/バッファー粒子の平均粒径(D50))が、4~450でよい。
In the solid state battery according to the present technology, the ratio of the average particle diameter (D50) of the electrode particles to the average particle diameter (D50) of the buffer particles (average particle diameter of electrode particles (D50) / average particle diameter of buffer particles (D50 )) May be from 4 to 450.
本技術に係る固体電池において、前記第1電極活物質が、Co、Mn、Fe、Ni.C、Si、Li、Mg、Al及びTiからなる群から選ばれる少なくとも1種の原子を含んでよい。
本技術に係る固体電池において、前記第2電極活物質が、Co、Mn、Fe、Ni.C、Si、Li、Mg、Al及びTiからなる群から選ばれる少なくとも1種の原子を含んでよい。 In the solid state battery according to the present technology, the first electrode active material includes Co, Mn, Fe, Ni. It may contain at least one atom selected from the group consisting of C, Si, Li, Mg, Al and Ti.
In the solid state battery according to the present technology, the second electrode active material includes Co, Mn, Fe, Ni. It may contain at least one atom selected from the group consisting of C, Si, Li, Mg, Al and Ti.
本技術に係る固体電池において、前記第2電極活物質が、Co、Mn、Fe、Ni.C、Si、Li、Mg、Al及びTiからなる群から選ばれる少なくとも1種の原子を含んでよい。 In the solid state battery according to the present technology, the first electrode active material includes Co, Mn, Fe, Ni. It may contain at least one atom selected from the group consisting of C, Si, Li, Mg, Al and Ti.
In the solid state battery according to the present technology, the second electrode active material includes Co, Mn, Fe, Ni. It may contain at least one atom selected from the group consisting of C, Si, Li, Mg, Al and Ti.
本技術に係る固体電池において、前記電極層が正極層でよい。
本技術に係る固体電池において、前記電極層が負極層でよい。
本技術に係る固体電池が2つの前記電極層を含み、該2つの電極層のそれぞれが正極層と負極層とでよい。 In the solid state battery according to the present technology, the electrode layer may be a positive electrode layer.
In the solid state battery according to the present technology, the electrode layer may be a negative electrode layer.
The solid state battery according to the present technology may include the two electrode layers, and each of the two electrode layers may be a positive electrode layer and a negative electrode layer.
本技術に係る固体電池において、前記電極層が負極層でよい。
本技術に係る固体電池が2つの前記電極層を含み、該2つの電極層のそれぞれが正極層と負極層とでよい。 In the solid state battery according to the present technology, the electrode layer may be a positive electrode layer.
In the solid state battery according to the present technology, the electrode layer may be a negative electrode layer.
The solid state battery according to the present technology may include the two electrode layers, and each of the two electrode layers may be a positive electrode layer and a negative electrode layer.
また、本技術では、
本技術に係る固体電池を備える、電池パックを提供し、
本技術に係る固体電池と、該固体電池の使用状態を制御する制御部と、
該制御部の指示に応じて該固体電池の使用状態を切り換えるスイッチ部と、を備える、電池パックを提供し、
本技術に係る固体電池と、該固体電池から電力の供給を受けて車両の駆動力に変換する駆動力変換装置と、該駆動力に応じて駆動する駆動部と、車両制御装置と、を備える、車両を提供し、
本技術に係る固体電池を有する蓄電装置と、該固体電池から電力が供給される電力消費装置と、該固体電池からの該電力消費装置に対する電力供給を制御する制御装置と、該固体電池を充電する発電装置と、を備える、蓄電システムを提供し、
本技術に係る固体電池と、該固体電池から電力が供給される可動部と、を備える、電動工具を提供し、
本技術に係る固体電池を備え、該固体電池から電力の供給を受ける電子機器を提供する。 In this technology,
Providing a battery pack comprising a solid state battery according to the present technology;
A solid state battery according to the present technology; a control unit that controls a use state of the solid state battery;
A battery pack comprising: a switch unit that switches a use state of the solid state battery according to an instruction of the control unit;
A solid state battery according to the present technology, a driving force conversion device that receives power supplied from the solid state battery and converts the power into a driving force of the vehicle, a driving unit that drives according to the driving force, and a vehicle control device. Provide vehicles,
A power storage device having a solid battery according to the present technology, a power consuming device to which power is supplied from the solid battery, a control device for controlling power supply from the solid battery to the power consuming device, and charging the solid battery Providing a power storage system comprising:
Providing a power tool comprising a solid state battery according to the present technology and a movable part to which power is supplied from the solid state battery,
Provided is an electronic device that includes the solid state battery according to the present technology and receives power supply from the solid state battery.
本技術に係る固体電池を備える、電池パックを提供し、
本技術に係る固体電池と、該固体電池の使用状態を制御する制御部と、
該制御部の指示に応じて該固体電池の使用状態を切り換えるスイッチ部と、を備える、電池パックを提供し、
本技術に係る固体電池と、該固体電池から電力の供給を受けて車両の駆動力に変換する駆動力変換装置と、該駆動力に応じて駆動する駆動部と、車両制御装置と、を備える、車両を提供し、
本技術に係る固体電池を有する蓄電装置と、該固体電池から電力が供給される電力消費装置と、該固体電池からの該電力消費装置に対する電力供給を制御する制御装置と、該固体電池を充電する発電装置と、を備える、蓄電システムを提供し、
本技術に係る固体電池と、該固体電池から電力が供給される可動部と、を備える、電動工具を提供し、
本技術に係る固体電池を備え、該固体電池から電力の供給を受ける電子機器を提供する。 In this technology,
Providing a battery pack comprising a solid state battery according to the present technology;
A solid state battery according to the present technology; a control unit that controls a use state of the solid state battery;
A battery pack comprising: a switch unit that switches a use state of the solid state battery according to an instruction of the control unit;
A solid state battery according to the present technology, a driving force conversion device that receives power supplied from the solid state battery and converts the power into a driving force of the vehicle, a driving unit that drives according to the driving force, and a vehicle control device. Provide vehicles,
A power storage device having a solid battery according to the present technology, a power consuming device to which power is supplied from the solid battery, a control device for controlling power supply from the solid battery to the power consuming device, and charging the solid battery Providing a power storage system comprising:
Providing a power tool comprising a solid state battery according to the present technology and a movable part to which power is supplied from the solid state battery,
Provided is an electronic device that includes the solid state battery according to the present technology and receives power supply from the solid state battery.
本技術によれば、電池特性や信頼性を向上させることができる。なお、ここに記載された効果は、必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果、または、それらと異質な効果であってもよい。
According to the present technology, battery characteristics and reliability can be improved. Note that the effects described herein are not necessarily limited, and may be any of the effects described in the present disclosure, or effects different from those.
以下、本技術を実施するための好適な形態について説明する。以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。
Hereinafter, preferred embodiments for implementing the present technology will be described. The embodiment described below shows an example of a typical embodiment of the present technology, and the scope of the present technology is not interpreted narrowly.
なお、説明は以下の順序で行う。
1.本技術の概要
2.第1の実施形態(固体電池の例)
2-1.固体電池
2-2.電極層(正極層及び負極層)
2-3.バッファー層
2-4.電解質層
2-5.集電層
2-6.絶縁層
2-7.保護層
2-8.端子層
2-9.固体電池の製造方法
3.固体電池の用途
3-1.固体電池の用途の概要
3-2.第2の実施形態(電池パックの例)
3-3.第3の実施形態(車両の例)
3-4.第4の実施形態(蓄電システムの例)
3-5.第5の実施形態(電動工具の例)
3-6.第6の実施形態(電子機器の例) The description will be given in the following order.
1. Overview of this technology First Embodiment (Example of Solid Battery)
2-1. Solid battery 2-2. Electrode layer (positive electrode layer and negative electrode layer)
2-3. Buffer layer 2-4. Electrolyte layer 2-5. Current collecting layer 2-6. Insulating layer 2-7. Protective layer 2-8. Terminal layer 2-9. 2. Solidbattery manufacturing method 3. Use of solid battery 3-1. Overview of solid battery applications 3-2. Second embodiment (example of battery pack)
3-3. Third embodiment (example of vehicle)
3-4. Fourth embodiment (an example of a power storage system)
3-5. Fifth embodiment (example of electric tool)
3-6. Sixth Embodiment (Example of electronic device)
1.本技術の概要
2.第1の実施形態(固体電池の例)
2-1.固体電池
2-2.電極層(正極層及び負極層)
2-3.バッファー層
2-4.電解質層
2-5.集電層
2-6.絶縁層
2-7.保護層
2-8.端子層
2-9.固体電池の製造方法
3.固体電池の用途
3-1.固体電池の用途の概要
3-2.第2の実施形態(電池パックの例)
3-3.第3の実施形態(車両の例)
3-4.第4の実施形態(蓄電システムの例)
3-5.第5の実施形態(電動工具の例)
3-6.第6の実施形態(電子機器の例) The description will be given in the following order.
1. Overview of this technology First Embodiment (Example of Solid Battery)
2-1. Solid battery 2-2. Electrode layer (positive electrode layer and negative electrode layer)
2-3. Buffer layer 2-4. Electrolyte layer 2-5. Current collecting layer 2-6. Insulating layer 2-7. Protective layer 2-8. Terminal layer 2-9. 2. Solid
3-3. Third embodiment (example of vehicle)
3-4. Fourth embodiment (an example of a power storage system)
3-5. Fifth embodiment (example of electric tool)
3-6. Sixth Embodiment (Example of electronic device)
<1.本技術の概要>
まず、本技術の概要について説明をする。 <1. Overview of this technology>
First, an outline of the present technology will be described.
まず、本技術の概要について説明をする。 <1. Overview of this technology>
First, an outline of the present technology will be described.
固体電池の製造工程において、焼結時に電極層と電解質層との熱膨張係数の差が大きく、電極層と電解質層との界面が剥離する場合がある。また、界面が良好に接触しないと抵抗値の上昇、充放電効率の低下、サイクル特性の低下等が生じることがある。さらに、電解質を薄膜化した際に大粒子が界面に存在すると短絡が生じる場合がある。したがって、当該技術分野では、電池特性や信頼性を向上させた固体電池が望まれているのが現状である。
In the manufacturing process of a solid battery, the difference in thermal expansion coefficient between the electrode layer and the electrolyte layer may be large during sintering, and the interface between the electrode layer and the electrolyte layer may peel off. Further, if the interface does not contact well, an increase in resistance value, a decrease in charge / discharge efficiency, a decrease in cycle characteristics and the like may occur. Furthermore, when the electrolyte is thinned, if large particles are present at the interface, a short circuit may occur. Therefore, in the present technical field, there is a demand for a solid battery with improved battery characteristics and reliability.
例えば、ガーネット型酸化物を含む電解質層の表面にCo、Ni及びMnのうち1以上を含む金属及び/又は化合物からなる中間層を形成して、中間層に含まれるCo、Ni及びMnのうち1以上の元素を含有する複合酸化物の粒子とLiを含有する融剤とを含む活物質層を中間層の上に形成し、焼成すると中間層は消滅し界面部となる、積層体に関する技術がある。この技術は、界面の剥離防止に関して、膨張係数が低いガーネット型酸化物では有効であるが、熱膨張係数が大きいガラス電解質では有効ではないことがある。電極活物質層が、活物質粒子および結着物質粒子を含有しており、結着物質粒子が、リチウムイオン挿入脱離反応を示す金属酸化物粒子であって、結着物質粒子の平均粒径が、活物質粒子の平均粒径より小さい、非水電解液二次電池に関する技術がある。この技術は、電極層と電解質層との界面に結着物質粒子を用いていないので、界面の剥離を防止することができないおそれがある。
For example, an intermediate layer made of a metal and / or compound containing at least one of Co, Ni and Mn is formed on the surface of the electrolyte layer containing a garnet-type oxide, and the Co, Ni and Mn contained in the intermediate layer A technique related to a laminate in which an active material layer containing composite oxide particles containing one or more elements and a flux containing Li is formed on an intermediate layer, and the intermediate layer disappears and becomes an interface when fired. There is. This technique is effective for preventing separation at the interface with a garnet-type oxide having a low expansion coefficient, but may not be effective with a glass electrolyte having a large thermal expansion coefficient. The electrode active material layer contains active material particles and binder material particles, and the binder material particles are metal oxide particles that exhibit a lithium ion insertion / release reaction, and the average particle size of the binder material particles However, there is a technique relating to a nonaqueous electrolyte secondary battery that is smaller than the average particle diameter of the active material particles. Since this technique does not use binder particles at the interface between the electrode layer and the electrolyte layer, there is a possibility that peeling of the interface cannot be prevented.
また、固体電解質が、リチウムイオン伝導性の無機物質からなる粉体を含有する厚さ20μm以下の薄膜状固体電解質からなり、正極層及び/又は負極層と、固体電解質層との界面において、正極層及び/又は負極層と固体電解質層とが混じった状態であるリチウムイオン二次電池に関する技術がある。この技術は、有機無機材料が混合されたリチウムイオン二次電池であり、電池特性や信頼性を更に向上させることは困難な場合がある。
The solid electrolyte is made of a thin-film solid electrolyte having a thickness of 20 μm or less containing a powder made of a lithium ion conductive inorganic substance. At the interface between the positive electrode layer and / or the negative electrode layer and the solid electrolyte layer, the positive electrode There is a technology related to a lithium ion secondary battery in which a layer and / or a negative electrode layer and a solid electrolyte layer are mixed. This technique is a lithium ion secondary battery in which organic and inorganic materials are mixed, and it may be difficult to further improve battery characteristics and reliability.
固体電解質-正極の界面及び/又は固体電解質-負極の界面に、ファイバー層が形成されているリチウムイオン二次電池に関する技術がある。しかしながら、リチウムイオン二次電池にファイバー層が用いられると、界面の密着性が低下し、界面形成に不利な方向に働くことがある。活物質層の空隙率が、厚み方向に分布を有する構造や電極と固体電解質の間に、混合層が存在して電極層より粒径が小さい電解質に関する電池の技術があるが、固体電解質の粒径に着目しており、電池特性や信頼性の更なる向上が図れないおそれがある。
There is a technology related to a lithium ion secondary battery in which a fiber layer is formed at a solid electrolyte-positive electrode interface and / or a solid electrolyte-negative electrode interface. However, when a fiber layer is used in a lithium ion secondary battery, the adhesion at the interface is lowered, which may work in a disadvantageous direction for the interface formation. There is a battery technology regarding a structure in which the porosity of the active material layer is distributed in the thickness direction and an electrolyte having a mixed layer between the electrode and the solid electrolyte and having a smaller particle size than the electrode layer. Focusing on the diameter, there is a possibility that further improvement of battery characteristics and reliability cannot be achieved.
以上のような状況下で、本技術は、本発明者らが鋭意研究を重ねた結果の末になされたものである。本技術によれば、固体電池の電池特性や信頼性の向上・維持を図ることができる。より詳しくは、本技術によれば、電極層と電解質層との剥離や短絡を防止して信頼性が向上し、また、抵抗値の上昇や充放電効率の低下やサイクル特性の低下が生じることを防いで、電池特性が向上する。
Under the circumstances as described above, the present technology has been made as a result of extensive research conducted by the present inventors. According to the present technology, it is possible to improve and maintain the battery characteristics and reliability of the solid state battery. More specifically, according to the present technology, the electrode layer and the electrolyte layer are prevented from being separated or short-circuited to improve reliability, and the resistance value is increased, charging / discharging efficiency is decreased, and cycle characteristics are decreased. The battery characteristics are improved.
本技術に係る固体電池は、例えば、全固体電池であり、電極反応物質であるリチウム(Li)及び/又はリチウムイオン(Li+)の授受により電池容量が繰り返して得られるリチウムイオン二次電池が挙げられる。本技術に係る固体電池は、例えば、充電時において、正極層から放出されたリチウムイオンが固体電解質層を介して負極層に取り込まれると共に、放電時において、負極層から放出されたリチウムイオンが固体電解質層を介して正極層に取り込まれる。
The solid state battery according to the present technology is, for example, an all solid state battery, and is a lithium ion secondary battery that is obtained by repeatedly receiving and receiving lithium (Li) and / or lithium ions (Li + ) that are electrode reactants. Can be mentioned. In the solid state battery according to the present technology, for example, during charging, lithium ions released from the positive electrode layer are taken into the negative electrode layer through the solid electrolyte layer, and during discharge, lithium ions released from the negative electrode layer are solid. It is taken into the positive electrode layer through the electrolyte layer.
上述のとおり、電極反応物質としてリチウム(Li)及び/又はリチウムイオン(Li+)を用いることを説明したが、本技術に係る固体電池は、リチウム(Li)及び/又はリチウムイオン(Li+)を用いることに限定されず、電極反応物質として、例えば、ナトリウム(Na)もしくはカリウム(K)などの他のアルカリ金属、マグネシウム(Mg)もしくはカルシウム(Ca)などのアルカリ土類金属、またはアルミニウム(Al)もしくは銀(Ag)などのその他の金属を、本技術に係る固体電池に適用してもよい。
As described above, the use of lithium (Li) and / or lithium ions (Li + ) as the electrode reactant has been described. However, the solid state battery according to the present technology may include lithium (Li) and / or lithium ions (Li + ). As an electrode reactant, for example, other alkali metals such as sodium (Na) or potassium (K), alkaline earth metals such as magnesium (Mg) or calcium (Ca), or aluminum ( Other metals such as Al) or silver (Ag) may be applied to the solid state battery according to the present technology.
そして、本技術に係る固体電池は、例えば、電池パック、車両、蓄電システム、電動工具、電子機器等に適用され得る。
The solid state battery according to the present technology can be applied to, for example, a battery pack, a vehicle, a power storage system, a power tool, an electronic device, and the like.
<2.第1の実施形態(固体電池の例)>
[2-1.固体電池]
本技術に係る第1の実施形態の固体電池は、少なくとも、電極層と、電解質層と、電極層と電解質層との間に配されるバッファー層とを含み、電極層が電極粒子を含み、バッファー層がバッファー粒子を含み、電極粒子が第1電極活物質を含有し、バッファー粒子が第2電極活物質及び/又は第2電極活物質を構成する少なくも1つの原子を含有し、バッファー粒子の平均粒径(D50)が、電極粒子の平均粒径(D50)よりも小さい、固体電池である。 <2. First Embodiment (Example of Solid Battery)>
[2-1. Solid battery]
The solid state battery according to the first embodiment of the present technology includes at least an electrode layer, an electrolyte layer, and a buffer layer disposed between the electrode layer and the electrolyte layer, and the electrode layer includes electrode particles. The buffer layer includes buffer particles, the electrode particles contain a first electrode active material, the buffer particles contain at least one atom constituting the second electrode active material and / or the second electrode active material, and the buffer particles Is a solid battery in which the average particle size (D50) is smaller than the average particle size (D50) of the electrode particles.
[2-1.固体電池]
本技術に係る第1の実施形態の固体電池は、少なくとも、電極層と、電解質層と、電極層と電解質層との間に配されるバッファー層とを含み、電極層が電極粒子を含み、バッファー層がバッファー粒子を含み、電極粒子が第1電極活物質を含有し、バッファー粒子が第2電極活物質及び/又は第2電極活物質を構成する少なくも1つの原子を含有し、バッファー粒子の平均粒径(D50)が、電極粒子の平均粒径(D50)よりも小さい、固体電池である。 <2. First Embodiment (Example of Solid Battery)>
[2-1. Solid battery]
The solid state battery according to the first embodiment of the present technology includes at least an electrode layer, an electrolyte layer, and a buffer layer disposed between the electrode layer and the electrolyte layer, and the electrode layer includes electrode particles. The buffer layer includes buffer particles, the electrode particles contain a first electrode active material, the buffer particles contain at least one atom constituting the second electrode active material and / or the second electrode active material, and the buffer particles Is a solid battery in which the average particle size (D50) is smaller than the average particle size (D50) of the electrode particles.
本技術に係る第1の実施形態の固体電池によれば、優れた電池特性や優れた信頼性の効果が奏される。また、本技術に係る第1の実施形態の固体電池によれば、優れた電池特性と優れた信頼性との両方の効果が奏されて、電池特性と信頼性との効果の両立が可能となる。
The solid battery according to the first embodiment of the present technology exhibits excellent battery characteristics and excellent reliability effects. In addition, according to the solid state battery of the first embodiment according to the present technology, both the excellent battery characteristics and the excellent reliability are achieved, and both the battery characteristics and the reliability can be achieved. Become.
より詳しくは、本技術に係る第1の実施形態の固体電池によれば、バッファー層の導入により、電極層と電解質層との界面の接触面積が増加して、電極層と電解質層との剥離を防止することができ、界面の低抵抗化を図ることができる。また、本技術に係る第1の実施形態の固体電池によれば、電極層及び電解質層の膨張係数の差が縮小し、剥離を抑制する効果が奏される。
More specifically, according to the solid state battery of the first embodiment of the present technology, the introduction of the buffer layer increases the contact area at the interface between the electrode layer and the electrolyte layer, and the electrode layer and the electrolyte layer are separated. Can be prevented, and the resistance of the interface can be reduced. Further, according to the solid state battery of the first embodiment according to the present technology, the difference in the expansion coefficient between the electrode layer and the electrolyte layer is reduced, and the effect of suppressing peeling is exhibited.
さらに、本技術に係る第1の実施形態の固体電池は、負荷特性を向上させて、歩留りを向上させることができる。本技術に係る第1の実施形態の固体電池は、電解質層を薄膜化したときであっても、短絡を抑制することができる。
Furthermore, the solid state battery according to the first embodiment of the present technology can improve load characteristics and yield. The solid state battery of the first embodiment according to the present technology can suppress a short circuit even when the electrolyte layer is thinned.
本技術に係る第1の実施形態の固体電池には、電極粒子が存在する層(電極層)が形成されて、また、バッファー粒子が存在する層(バッファー層)が形成される。本技術に係る第1の実施形態の固体電池は、電極粒子を、形状保持性や副反応抑制の観点から大粒子にして、バッファー粒子を接触面積向上や短絡防止の観点から小粒子して、大粒子と小粒子とを使い分ける構造を有する。すなわち、本技術に係る第1の実施形態の固体電池においては、バッファー粒子の平均粒径(D50)は、電極粒子の平均粒径(D50)よりも小さいこととなる。
In the solid state battery according to the first embodiment of the present technology, a layer in which electrode particles are present (electrode layer) is formed, and a layer in which buffer particles are present (buffer layer) is formed. In the solid state battery according to the first embodiment of the present technology, the electrode particles are large particles from the viewpoint of shape retention and side reaction suppression, and the buffer particles are small particles from the viewpoint of improving the contact area and preventing short circuit, It has a structure that uses large particles and small particles separately. That is, in the solid state battery according to the first embodiment of the present technology, the average particle diameter (D50) of the buffer particles is smaller than the average particle diameter (D50) of the electrode particles.
上記のとおり、バッファー粒子の平均粒径(D50)が、電極粒子の平均粒径(D50)よりも小さければ、バッファー粒子の平均粒径(D50)に対する電極粒子の平均粒径(D50)の比(電極粒子の平均粒径(D50)/バッファー粒子の平均粒径(D50))は、任意の値(但し、1より大きい値)でよいが、4~450であることが好ましく、5~420であることがより好ましい。この好ましい態様やより好ましい態様により、充放電特性等の電池特性や電極層と電解質層との剥離防止等の信頼性を更に向上させることができる。
As described above, if the average particle diameter (D50) of the buffer particles is smaller than the average particle diameter (D50) of the electrode particles, the ratio of the average particle diameter (D50) of the electrode particles to the average particle diameter (D50) of the buffer particles (Average particle diameter of electrode particles (D50) / average particle diameter of buffer particles (D50)) may be an arbitrary value (however, a value larger than 1), preferably 4 to 450, and preferably 5 to 420. It is more preferable that With this preferable aspect and a more preferable aspect, battery characteristics such as charge / discharge characteristics and reliability such as prevention of separation between the electrode layer and the electrolyte layer can be further improved.
電極粒子の平均粒径(D50)は、任意の値でよいが、1~30μmであることが好ましく、1~9μmであることがより好ましく、2.5~4.2μmであることが更に好ましい。この好ましい態様やより好ましい態様や更に好ましい態様により、充放電特性等の電池特性や電極層と電解質層との剥離防止等の信頼性を更に向上させることができる。
The average particle diameter (D50) of the electrode particles may be any value, but is preferably 1 to 30 μm, more preferably 1 to 9 μm, and even more preferably 2.5 to 4.2 μm. . According to this preferable aspect, a more preferable aspect, and a further preferable aspect, battery characteristics such as charge / discharge characteristics and reliability such as prevention of peeling between the electrode layer and the electrolyte layer can be further improved.
一方、バッファー粒子の平均粒径(D50)は、任意の値でよいが、1nm~7.5μmであることが好ましく、1nm~5μmであることがより好ましく、10~500nmであることが更に好ましい。この好ましい態様やより好ましい態様や更に好ましい態様により、充放電特性等の電池特性や電極層と電解質層との剥離防止等の信頼性を更に向上させることができる。
On the other hand, the average particle diameter (D50) of the buffer particles may be any value, but is preferably 1 nm to 7.5 μm, more preferably 1 nm to 5 μm, and even more preferably 10 to 500 nm. . According to this preferable aspect, a more preferable aspect, and a further preferable aspect, battery characteristics such as charge / discharge characteristics and reliability such as prevention of peeling between the electrode layer and the electrolyte layer can be further improved.
電極粒子は、第1電極活物質を含有する。第1電極活物質は、特に限定されることはなく任意の材料でよいが、Co、Mn、Fe、Ni.C、Si、Li、Mg、Al及びTiからなる群から選ばれる少なくとも1種の原子を含むことが好ましい。この好ましい態様により、充放電特性等の電池特性や電極層と電解質層との剥離防止等の信頼性を更に向上させることができる。
The electrode particles contain a first electrode active material. The first electrode active material is not particularly limited and may be any material, but Co, Mn, Fe, Ni. It preferably contains at least one atom selected from the group consisting of C, Si, Li, Mg, Al and Ti. According to this preferred embodiment, battery characteristics such as charge / discharge characteristics and reliability such as prevention of peeling between the electrode layer and the electrolyte layer can be further improved.
バッファー粒子は、第2電極活物質及び/又は第2電極活物質を構成する少なくも1つの原子を含有する。バッファー粒子は、第2電極活物質及び第2電極活物質を構成する少なくも1つの原子のどちらか一方を含有してもよいし、第2電極活物質及び第2電極活物質を構成する少なくも1つの原子の両方を含有してもよい。例えば、バッファー粒子は、Co粒子とLiCoO2粒子とが混在していてもよし、複数の原子から構成される複合粒子でもよい。第2電極活物質は、特に限定されることはなく任意の材料でよいが、Co、Mn、Fe、Ni.C、Si、Li、Mg、Al及びTiからなる群から選ばれる少なくとも1種の原子を含むことが好ましい。この好ましい態様により、充放電特性等の電池特性や電極層と電解質層との剥離防止等の信頼性を更に向上させることができる。
The buffer particles contain at least one atom constituting the second electrode active material and / or the second electrode active material. The buffer particles may contain at least one of atoms constituting the second electrode active material and the second electrode active material, or at least constitute the second electrode active material and the second electrode active material. May also contain both of one atom. For example, the buffer particles may be a mixture of Co particles and LiCoO 2 particles, or may be composite particles composed of a plurality of atoms. The second electrode active material is not particularly limited and may be any material, but Co, Mn, Fe, Ni. It preferably contains at least one atom selected from the group consisting of C, Si, Li, Mg, Al and Ti. According to this preferred embodiment, battery characteristics such as charge / discharge characteristics and reliability such as prevention of peeling between the electrode layer and the electrolyte layer can be further improved.
電極層の厚みとバッファー層の厚みとの関係について説明をする。バッファー層の厚みは、電極層の厚みと略同等でもよく、電極層の厚みに対して大きくてもよく、小さくてもよいが、小さいことが好ましい。すなわち、バッファー層の厚みに対する電極層の厚みの比(電極層の厚み/バッファー層の厚み)は1超が好ましく、1~20000であることがより好ましく、2~4000であることが更に好ましい。この好ましい態様やより好ましい態様や更に好ましい態様により、充放電特性等の電池特性や電極層と電解質層との剥離防止等の信頼性を更に向上させることができる。なお、電極層の厚みとバッファー層の厚みは走査電子顕微鏡を用いて測定することができる。
The relationship between the thickness of the electrode layer and the thickness of the buffer layer will be described. The thickness of the buffer layer may be substantially equal to the thickness of the electrode layer, and may be larger or smaller than the thickness of the electrode layer, but is preferably small. That is, the ratio of the electrode layer thickness to the buffer layer thickness (electrode layer thickness / buffer layer thickness) is preferably more than 1, more preferably 1 to 20000, and even more preferably 2 to 4000. According to this preferable aspect, a more preferable aspect, and a further preferable aspect, battery characteristics such as charge / discharge characteristics and reliability such as prevention of peeling between the electrode layer and the electrolyte layer can be further improved. In addition, the thickness of an electrode layer and the thickness of a buffer layer can be measured using a scanning electron microscope.
電極層の厚みは、任意の値でよいが、1~100μmであることが好ましく、3~20μmであることがより好ましい。この好ましい態様やより好ましい態様により、充放電特性等の電池特性や電極層と電解質層との剥離防止等の信頼性を更に向上させることができる。
The thickness of the electrode layer may be any value, but is preferably 1 to 100 μm, and more preferably 3 to 20 μm. With this preferable aspect and a more preferable aspect, battery characteristics such as charge / discharge characteristics and reliability such as prevention of separation between the electrode layer and the electrolyte layer can be further improved.
バッファー層の厚みは、任意の値でよいが、1nm~20μmであることが好ましく、5nm~10μmであることがより好ましい。この好ましい態様やより好ましい態様により、充放電特性等の電池特性や電極層と電解質層との剥離防止等の信頼性を更に向上させることができる。
The thickness of the buffer layer may be any value, but is preferably 1 nm to 20 μm, and more preferably 5 nm to 10 μm. With this preferable aspect and a more preferable aspect, battery characteristics such as charge / discharge characteristics and reliability such as prevention of separation between the electrode layer and the electrolyte layer can be further improved.
次に、本技術に係る第1の実施形態の固体電池について、図1を用いて更に詳細に説明をする。図1は、本技術に係る第1の実施形態の固体電池10を示す断面模式図である。
Next, the solid state battery according to the first embodiment of the present technology will be described in more detail with reference to FIG. FIG. 1 is a schematic cross-sectional view showing a solid state battery 10 according to a first embodiment of the present technology.
固体電池10は、電極層1、バッファー層2及び電解質層3を含み、バッファー層2が、電極層1と電解質層3との間に設けられている。電極層1は電極粒子4を含み、バッファー層2はバッファー粒子5を含む。
The solid battery 10 includes an electrode layer 1, a buffer layer 2, and an electrolyte layer 3, and the buffer layer 2 is provided between the electrode layer 1 and the electrolyte layer 3. The electrode layer 1 includes electrode particles 4, and the buffer layer 2 includes buffer particles 5.
電極層1は正極層でもよいし、負極層でもよい。固体電池10では、電極層1が正極層の場合は、正極層が積層されている電解質層3の一方の面とは反対側の他方の面に負極層(不図示)が、積層されてよい。なお、負極層(不図示)も電極層でもよい。この場合、固体電池10では、電解質層3と負極層(不図示)との間にバッファー層(不図示)が設けられてよい。
The electrode layer 1 may be a positive electrode layer or a negative electrode layer. In the solid battery 10, when the electrode layer 1 is a positive electrode layer, a negative electrode layer (not shown) may be laminated on the other surface opposite to the one surface of the electrolyte layer 3 on which the positive electrode layer is laminated. . The negative electrode layer (not shown) may also be an electrode layer. In this case, in the solid battery 10, a buffer layer (not shown) may be provided between the electrolyte layer 3 and the negative electrode layer (not shown).
固体電池10では、電極層1が負極層の場合は、負極層が積層されている電解質層3の一方の面とは反対側の他方の面に、正極層(不図示)が、積層されてよい。なお、正極層(不図示)も電極層でもよい。この場合、固体電池10では、電解質層3と正極層(不図示)との間にバッファー層(不図示)が設けられてよい。
In the solid battery 10, when the electrode layer 1 is a negative electrode layer, a positive electrode layer (not shown) is laminated on the other surface opposite to the one surface of the electrolyte layer 3 on which the negative electrode layer is laminated. Good. The positive electrode layer (not shown) may be an electrode layer. In this case, in the solid battery 10, a buffer layer (not shown) may be provided between the electrolyte layer 3 and the positive electrode layer (not shown).
固体電池10は集電層(不図示)を含んでもよく、その場合、集電層は、正極層及び/又は負極層との外側に設けられてよい。また、固体電池10は絶縁層(不図示)を含んでもよく、その場合、絶縁層は、集電層の外側に設けられてよい。
The solid battery 10 may include a current collecting layer (not shown). In this case, the current collecting layer may be provided outside the positive electrode layer and / or the negative electrode layer. Further, the solid battery 10 may include an insulating layer (not shown). In that case, the insulating layer may be provided outside the current collecting layer.
[2-2.電極層]
本技術に係る第1の実施形態の固体電池は電極層を含む。電極層は、上述したとおり、正極層でもよいし、負極層でもよい。また、本技術に係る第1の実施形態の固体電池が、2つの電極層を含むときは、2つの電極層のそれぞれは、正極層と負極層とである。以下に、正極層と負極層とについて詳細に説明をする。 [2-2. Electrode layer]
The solid state battery of the first embodiment according to the present technology includes an electrode layer. As described above, the electrode layer may be a positive electrode layer or a negative electrode layer. Further, when the solid state battery according to the first embodiment of the present technology includes two electrode layers, the two electrode layers are a positive electrode layer and a negative electrode layer, respectively. Hereinafter, the positive electrode layer and the negative electrode layer will be described in detail.
本技術に係る第1の実施形態の固体電池は電極層を含む。電極層は、上述したとおり、正極層でもよいし、負極層でもよい。また、本技術に係る第1の実施形態の固体電池が、2つの電極層を含むときは、2つの電極層のそれぞれは、正極層と負極層とである。以下に、正極層と負極層とについて詳細に説明をする。 [2-2. Electrode layer]
The solid state battery of the first embodiment according to the present technology includes an electrode layer. As described above, the electrode layer may be a positive electrode layer or a negative electrode layer. Further, when the solid state battery according to the first embodiment of the present technology includes two electrode layers, the two electrode layers are a positive electrode layer and a negative electrode layer, respectively. Hereinafter, the positive electrode layer and the negative electrode layer will be described in detail.
(正極層)
正極層は、1種類または2種類以上の正極活物質を含み、必要に応じて結着剤、導電剤などの添加剤、及び電解質(例えば固体電解質)を更に含んでいてもよい。なお、正極層が電極層であるときは、正極活物質が第1電極活物質となる。 (Positive electrode layer)
The positive electrode layer includes one type or two or more types of positive electrode active materials, and may further include an additive such as a binder and a conductive agent, and an electrolyte (for example, a solid electrolyte) as necessary. When the positive electrode layer is an electrode layer, the positive electrode active material is the first electrode active material.
正極層は、1種類または2種類以上の正極活物質を含み、必要に応じて結着剤、導電剤などの添加剤、及び電解質(例えば固体電解質)を更に含んでいてもよい。なお、正極層が電極層であるときは、正極活物質が第1電極活物質となる。 (Positive electrode layer)
The positive electrode layer includes one type or two or more types of positive electrode active materials, and may further include an additive such as a binder and a conductive agent, and an electrolyte (for example, a solid electrolyte) as necessary. When the positive electrode layer is an electrode layer, the positive electrode active material is the first electrode active material.
正極活物質は、電極反応物質であるリチウムイオンを吸蔵放出可能である正極材料を含んでいる。この正極材料は、高いエネルギー密度が得られる観点から、リチウム含有化合物などであることが好ましいが、これに限定されるものではない。このリチウム含有化合物は、例えば、リチウムと遷移金属元素とを構成元素として含む複合酸化物(リチウム遷移金属複合酸化物)や、リチウムと遷移金属元素とを構成元素として含むリン酸化合物(リチウム遷移金属リン酸化合物)などである。中でも、遷移金属元素は、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)および鉄(Fe)のいずれか1種類または2種類以上であることが好ましい。より高い電圧が得られるからである。
The positive electrode active material includes a positive electrode material capable of occluding and releasing lithium ions that are electrode reactants. The positive electrode material is preferably a lithium-containing compound or the like from the viewpoint of obtaining a high energy density, but is not limited thereto. This lithium-containing compound is, for example, a composite oxide (lithium transition metal composite oxide) containing lithium and a transition metal element as constituent elements, or a phosphate compound (lithium transition metal) containing lithium and a transition metal element as constituent elements. Phosphate compounds). Among these, the transition metal element is preferably one or more of cobalt (Co), nickel (Ni), manganese (Mn), and iron (Fe). This is because a higher voltage can be obtained.
リチウム遷移金属複合酸化物の化学式は、例えば、LixM1O2またはLiyM2O4などで表されると共に、リチウム遷移金属リン酸化合物の化学式は、例えば、LizM3PO4などで表される。但し、M1~M3は1種類または2種類以上の遷移金属元素であり、x~zの値は任意である。
The chemical formula of the lithium transition metal composite oxide is represented by, for example, Li x M1O 2 or Li y M2O 4, and the chemical formula of the lithium transition metal phosphate compound is represented by, for example, Li z M3PO 4 . However, M1 to M3 are one kind or two or more kinds of transition metal elements, and the values of x to z are arbitrary.
リチウム遷移金属複合酸化物は、例えば、LiCoO2、LiNiO2、LiVO2、LiCrO2またはLiMn2O4などである。リチウム遷移金属リン酸化合物は、例えば、LiFePO4またはLiCoPO4などである。
Examples of the lithium transition metal composite oxide include LiCoO 2 , LiNiO 2 , LiVO 2 , LiCrO 2, and LiMn 2 O 4 . The lithium transition metal phosphate compound is, for example, LiFePO 4 or LiCoPO 4 .
この他、正極活物質は、例えば、酸化物、二硫化物、カルコゲン化物または導電性高分子などでもよい。酸化物は、例えば、酸化チタン、酸化バナジウムまたは二酸化マンガンなどである。二硫化物は、例えば、二硫化チタンまたは硫化モリブデンなどである。カルコゲン化物は、例えば、セレン化ニオブなどである。導電性高分子は、例えば、硫黄、ポリアニリンまたはポリチオフェンなどである。
In addition, the positive electrode active material may be, for example, an oxide, disulfide, chalcogenide, or conductive polymer. Examples of the oxide include titanium oxide, vanadium oxide, and manganese dioxide. Examples of the disulfide include titanium disulfide and molybdenum sulfide. An example of the chalcogenide is niobium selenide. Examples of the conductive polymer include sulfur, polyaniline, and polythiophene.
正極活物質は、正極活物質粒子の粉末を含んでいてもよい。正極活物質粒子の表面が、被覆剤により被覆されていてもよい。ここで、被覆は、正極活物質粒子の表面の全体に限定されるものではなく、正極活物質粒子の表面の一部であってもよい。被覆剤は、例えば、固体電解質および導電剤のうち少なくとも1種である。正極活物質粒子の表面を被覆剤で被覆することで、正極活物質と固体電解質との界面抵抗を低減することができる。また、正極活物質の構造の崩壊を抑制できるので、掃引電位幅を広げ、多くのリチウムを反応に使えるようになると共に、サイクル特性も向上できる。
The positive electrode active material may contain a powder of positive electrode active material particles. The surface of the positive electrode active material particles may be coated with a coating agent. Here, the coating is not limited to the entire surface of the positive electrode active material particles, and may be a part of the surface of the positive electrode active material particles. The coating agent is at least one of a solid electrolyte and a conductive agent, for example. By covering the surfaces of the positive electrode active material particles with a coating agent, the interface resistance between the positive electrode active material and the solid electrolyte can be reduced. In addition, since the collapse of the structure of the positive electrode active material can be suppressed, the sweep potential width can be widened so that more lithium can be used for the reaction, and the cycle characteristics can be improved.
結着剤は、例えば、合成ゴムまたは高分子材料などのいずれか1種類または2種類以上である。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴムまたはエチレンプロピレンジエンなどである。高分子材料は、例えば、ポリフッ化ビニリデンまたはポリイミドなどである。なお、結着剤は正極活物質などの粒子を結着させるためのものであるが、正極が、後述するガラス材料によって十分に結着される場合には、正極は結着剤を含んでいなくてもよい。
The binder is, for example, any one kind or two kinds or more of synthetic rubber or polymer material. Examples of the synthetic rubber include styrene butadiene rubber, fluorine rubber, and ethylene propylene diene. The polymer material is, for example, polyvinylidene fluoride or polyimide. The binder is used for binding particles such as a positive electrode active material. However, when the positive electrode is sufficiently bound by a glass material described later, the positive electrode does not contain the binder. It does not have to be.
導電剤は、例えば、炭素材料、金属、金属酸化物または導電性高分子などを単独でまたは2種以上含んでいる。炭素材料は、例えば、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラックまたはカーボンファイバーなどである。金属酸化物は、例えば、SnO2などである。なお、導電剤は、導電性を有する材料であればよく、上述の例に限定されるものではない。
The conductive agent includes, for example, a carbon material, a metal, a metal oxide, a conductive polymer, or the like alone or in combination. Examples of the carbon material include graphite, carbon black, acetylene black, ketjen black, and carbon fiber. An example of the metal oxide is SnO 2 . Note that the conductive agent may be any material having conductivity, and is not limited to the above example.
(負極層)
負極層は、1種類または2種類以上の負極活物質を含み、必要に応じて結着剤および導電剤などの添加剤、及び上述した固体電解質を更に含んでいてもよい。なお、負極層が電極層であるときは、負極活物質が第1電極活物質となる。 (Negative electrode layer)
The negative electrode layer includes one type or two or more types of negative electrode active materials, and may further include additives such as a binder and a conductive agent, and the above-described solid electrolyte as necessary. When the negative electrode layer is an electrode layer, the negative electrode active material is the first electrode active material.
負極層は、1種類または2種類以上の負極活物質を含み、必要に応じて結着剤および導電剤などの添加剤、及び上述した固体電解質を更に含んでいてもよい。なお、負極層が電極層であるときは、負極活物質が第1電極活物質となる。 (Negative electrode layer)
The negative electrode layer includes one type or two or more types of negative electrode active materials, and may further include additives such as a binder and a conductive agent, and the above-described solid electrolyte as necessary. When the negative electrode layer is an electrode layer, the negative electrode active material is the first electrode active material.
負極活物質は、電極反応物質であるリチウムイオンを吸蔵放出可能である負極材料を含んでいる。この負極材料は、高いエネルギー密度が得られる観点から、炭素材料または金属系材料などであることが好ましいが、これに限定されるものではない。
The negative electrode active material includes a negative electrode material capable of occluding and releasing lithium ions that are electrode reactants. The negative electrode material is preferably a carbon material or a metal-based material from the viewpoint of obtaining a high energy density, but is not limited thereto.
炭素材料は、例えば、易黒鉛化性炭素、難黒鉛化性炭素、黒鉛、メソカーボンマイクロビーズ(MCMB)または高配向性グラファイト(HOPG)などである。
Examples of the carbon material include graphitizable carbon, non-graphitizable carbon, graphite, mesocarbon microbeads (MCMB), and highly oriented graphite (HOPG).
金属系材料は、例えば、リチウムと合金を形成可能な金属元素または半金属元素を構成元素として含む材料である。より具体的には、金属系材料は、例えば、ケイ素(Si)、スズ(Sn)、アルミニウム(Al)、インジウム(In)、マグネシウム(Mg)、ホウ素(B)、ガリウム(Ga)、ゲルマニウム(Ge)、鉛(Pb)、ビスマス(Bi)、カドミウム(Cd)、銀(Ag)、亜鉛(Zn)、ハフニウム(Hf)、ジルコニウム(Zr)、イットリウム(Y)、パラジウム(Pd)または白金(Pt)などの単体、合金または化合物のいずれか1種類または2種類以上である。但し、単体は、純度100%に限らず、微量の不純物を含んでいてもよい。この金属系材料は、例えば、Si、Sn、SiB4、TiSi2、SiC、Si3N4、SiOv(0<v≦2)、LiSiO、SnOw(0<w≦2)、SnSiO3、LiSnOまたはMg2Snなどである。
The metal-based material is a material containing, for example, a metal element or a metalloid element capable of forming an alloy with lithium as a constituent element. More specifically, the metal-based material is, for example, silicon (Si), tin (Sn), aluminum (Al), indium (In), magnesium (Mg), boron (B), gallium (Ga), germanium ( Ge), lead (Pb), bismuth (Bi), cadmium (Cd), silver (Ag), zinc (Zn), hafnium (Hf), zirconium (Zr), yttrium (Y), palladium (Pd) or platinum ( Any one or more of simple substance such as Pt), alloy or compound. However, the simple substance is not limited to 100% purity, and may contain a small amount of impurities. Examples of the metal-based material include Si, Sn, SiB 4 , TiSi 2 , SiC, Si 3 N 4 , SiOv (0 <v ≦ 2), LiSiO, SnO w (0 <w ≦ 2), SnSiO 3 , LiSnO. Or Mg 2 Sn.
この他、金属系材料は、リチウム含有化合物またはリチウム金属(リチウムの単体)でもよい。このリチウム含有化合物は、リチウムと遷移金属元素とを構成元素として含む複合酸化物(リチウム遷移金属複合酸化物)であり、例えば、Li4Ti5O12などである。
In addition, the metal-based material may be a lithium-containing compound or lithium metal (lithium simple substance). This lithium-containing compound is a complex oxide (lithium transition metal complex oxide) containing lithium and a transition metal element as constituent elements, such as Li 4 Ti 5 O 12 .
負極活物質は、負極活物質粒子の粉末を含んでいてもよい。負極活物質粒子の表面が、被覆剤で被覆されていてもよい。ここで、被覆は、負極活物質粒子の表面の全体に限定されるものではなく、負極活物質粒子の表面の一部であってもよい。被覆剤は、例えば、固体電解質および導電剤のうち少なくとも1種である。負極活物質粒子の表面を被覆剤で被覆することで、負極活物質と固体電解質との界面抵抗を低減することができる。また、負極活物質の構造の崩壊を抑制できるので、掃引電位幅を広げ、多くのリチウムを反応に使えるようになると共に、サイクル特性も向上できる。
The negative electrode active material may contain a powder of negative electrode active material particles. The surface of the negative electrode active material particles may be coated with a coating agent. Here, the coating is not limited to the entire surface of the negative electrode active material particles, and may be a part of the surface of the negative electrode active material particles. The coating agent is at least one of a solid electrolyte and a conductive agent, for example. By covering the surfaces of the negative electrode active material particles with a coating agent, the interface resistance between the negative electrode active material and the solid electrolyte can be reduced. In addition, since the collapse of the structure of the negative electrode active material can be suppressed, the sweep potential width can be widened, and a large amount of lithium can be used for the reaction, and the cycle characteristics can be improved.
結着剤及び導電剤は上記で説明をしたとおりである。
The binder and conductive agent are as described above.
電極層にはガラス材料が含まれてよい。以下に、ガラス材料について詳細に説明をする。
The electrode layer may include a glass material. Below, a glass material is demonstrated in detail.
また、ガラス材料は、Li(リチウム)、Si(ケイ素)およびB(ホウ素)を含むリチウムイオン伝導性酸化物結晶化ガラスであることが好ましく、また、Li(リチウム)、Si(ケイ素)およびB(ホウ素)から選ばれる少なくとも1つを含むリチウムイオン伝導性酸化物結晶化ガラスであることも好ましい。
The glass material is preferably a lithium ion conductive oxide crystallized glass containing Li (lithium), Si (silicon) and B (boron), and Li (lithium), Si (silicon) and B A lithium ion conductive oxide crystallized glass containing at least one selected from (boron) is also preferable.
ガラス材料は、500℃以下にガラス転移点を有する材料、いわゆる低融性ガラス材料でもよい。低融性ガラス材料は、例えば、500℃以下にガラス転移点を有するが、300℃~500℃にガラス転移点を有することが好ましい。
The glass material may be a material having a glass transition point at 500 ° C. or lower, that is, a so-called low-melting glass material. The low-melting glass material has, for example, a glass transition point at 500 ° C. or lower, but preferably has a glass transition point at 300 ° C. to 500 ° C.
さらに、ガラス材料は、リチウム(Li)、ケイ素(Si)およびホウ素(B)を含む酸化物を含んでいることが好ましい。より具体的には、ガラス材料は、Li2O、SiO2およびB2O3を含んでいる。Li2O、SiO2およびB2O3の総量に対するLi2Oの含有量は、40mol%以上73mol%以下であることが好ましい。Li2O、SiO2およびB2O3の総量に対するSiO2の含有量は、8mol%以上40mol%以下であることが好ましい。Li2O、SiO2およびB2O3の総量に対するB2O3の含有量は、10mol%以上50mol%以下であることが好ましい。またさらに、ガラス材料は、リチウム(Li)を含む酸化物(例えば、Li2O)、ケイ素(Si)を含む酸化物(例えば、SiO2)およびホウ素(B)を含む酸化物(例えば、B2O3)から選ばれる少なくとも1つの酸化物を含んでいることも好ましい。なお、これらの含有量は、誘導結合プラズマ発光分光分析法(ICP-AES)などを用いて測定することが可能である。
Furthermore, the glass material preferably contains an oxide containing lithium (Li), silicon (Si), and boron (B). More specifically, the glass material contains Li 2 O, SiO 2 and B 2 O 3 . The content of Li 2 O with respect to the total amount of Li 2 O, SiO 2 and B 2 O 3 is preferably 40 mol% or more and 73 mol% or less. The content of SiO 2 with respect to the total amount of Li 2 O, SiO 2 and B 2 O 3 is preferably 8 mol% or more and 40 mol% or less. The content of B 2 O 3 with respect to the total amount of Li 2 O, SiO 2 and B 2 O 3 is preferably 10 mol% or more and 50 mol% or less. Still further, the glass material includes an oxide containing lithium (Li) (eg, Li 2 O), an oxide containing silicon (Si) (eg, SiO 2 ), and an oxide containing boron (B) (eg, B It is also preferable that at least one oxide selected from 2 O 3 ) is included. Note that these contents can be measured using inductively coupled plasma optical emission spectrometry (ICP-AES) or the like.
ガラス材料は、好適には、酸化物ガラス(Li2O:SiO2:B2O3=54:11:35)や酸化物ガラス(Bi2O3・B2O3)が用いられる。
As the glass material, oxide glass (Li 2 O: SiO 2 : B 2 O 3 = 54: 11: 35) or oxide glass (Bi 2 O 3 · B 2 O 3 ) is preferably used.
ガラス材料は、必要に応じて添加元素をさらに含んでいてもよい。添加元素としては、例えば、Na(ナトリウム)、Mg(マグネシウム)、Al(アルミニウム)、P(リン)、K(カリウム)、Ca(カルシウム)、Ti(チタン)、V(バナジウム)、Cr(クロム)、Mn(マンガン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Cu(銅)、Zn(亜鉛)、Ga(ガリウム)、Ge(ゲルマニウム)、Se(セレン)、Rb(ルビジウム)、S(硫黄)、Y(イットリウム)、Zr(ジルコニウム)、Nb(ニオブ)、Mo(モリブデン)、Ag(銀)、In(インジウム)、Sn(スズ)、Sb(アンチモン)、Cs(セシウム)、Ba(バナジウム)、Hf(ハフニウム)、Ta(タンタル)、W(タングステン)、Pb(鉛)、Bi(ビスマス)、Au(金)、La(ランタン)、Nd(ネオジム)およびEu(ユーロピウム)からなる群より選ばれる1種以上が挙げられる。
The glass material may further contain an additive element as necessary. Examples of the additive element include Na (sodium), Mg (magnesium), Al (aluminum), P (phosphorus), K (potassium), Ca (calcium), Ti (titanium), V (vanadium), and Cr (chromium). ), Mn (manganese), Fe (iron), Co (cobalt), Ni (nickel), Cu (copper), Zn (zinc), Ga (gallium), Ge (germanium), Se (selenium), Rb (rubidium) ), S (sulfur), Y (yttrium), Zr (zirconium), Nb (niobium), Mo (molybdenum), Ag (silver), In (indium), Sn (tin), Sb (antimony), Cs (cesium) ), Ba (vanadium), Hf (hafnium), Ta (tantalum), W (tungsten), Pb (lead), Bi (bismuth), Au (gold), La (lanthanum) Nd (neodymium) and Eu 1 or more members selected from the group consisting of (europium), and the like.
以下に、ガラス材料の製造方法の一例について説明する。
Hereinafter, an example of a method for producing a glass material will be described.
まず、原料として複数種の非晶質系材料を混合する。非晶質系材料としては、網目形成酸化物と、修飾酸化物と、必要に応じて中間酸化物とが用いられる。網目形成酸化物としては、SiO2およびB2O3が用いられる。修飾酸化物としては、Li2Oが用いられる。中間酸化物としては、例えば、Na、Mg、Al、P、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Se、Rb、S、Y、Zr、Nb、Mo、Ag、In、Sn、Sb、Cs、Ba、Hf、Ta、W、Pb、Bi、Au、La、NdおよびEuからなる群より選ばれる1種以上の酸化物が用いられる。
First, a plurality of types of amorphous materials are mixed as raw materials. As the amorphous material, a network-forming oxide, a modified oxide, and, if necessary, an intermediate oxide are used. As the network forming oxide, SiO 2 and B 2 O 3 are used. Li 2 O is used as the modified oxide. Examples of the intermediate oxide include Na, Mg, Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Se, Rb, S, Y, One or more oxides selected from the group consisting of Zr, Nb, Mo, Ag, In, Sn, Sb, Cs, Ba, Hf, Ta, W, Pb, Bi, Au, La, Nd, and Eu are used. .
Li2O、SiO2およびB2O3の総量に対するLi2Oの配合量は、40mol%以上73mol%以下であることが好ましい。Li2O、SiO2およびB2O3の総量に対するLi2Oの配合量は、8mol%以上40mol%以下であることが好ましい。Li2O、SiO2およびB2O3の総量に対するB2O3の配合量は、10mol%以上50mol%以下であることが好ましい。
The blending amount of Li 2 O with respect to the total amount of Li 2 O, SiO 2 and B 2 O 3 is preferably 40 mol% or more and 73 mol% or less. The blending amount of Li 2 O with respect to the total amount of Li 2 O, SiO 2 and B 2 O 3 is preferably 8 mol% or more and 40 mol% or less. The blending amount of B 2 O 3 with respect to the total amount of Li 2 O, SiO 2 and B 2 O 3 is preferably 10 mol% or more and 50 mol% or less.
非晶質系材料として中間酸化物を用いる場合には、網目形成酸化物、修飾酸化物および中間酸化物の総量に対する中間酸化物の配合量は、10mol%以下であることが好ましい。
When an intermediate oxide is used as the amorphous material, the amount of the intermediate oxide is preferably 10 mol% or less with respect to the total amount of the network forming oxide, the modified oxide, and the intermediate oxide.
一般的に非晶質系材料とは、網目形成酸化物(Network former:NWF)、修飾酸化物(Network modifier)、中間酸化物(Intermediate)である。網目形成酸化物(Network former:NWF)は、SiO2、B2O3、P2O5、GeO2など、それ自身でガラス化することができるものである。修飾酸化物(Network modifier)は、それ自身では非晶質化できないが、上記の網目状酸化物の形成するネットワーク構造内では非晶質化が可能なもの、すなわち網目を修飾可能なものである。修飾酸化物は、例えばアルカリ金属類またはアルカリ土類金属類を含み、ガラスの網目構造の切断を行い、流動性を向上させる効果があることが知られている。中間酸化物(Intermediate)は、網目形成酸化物および修飾酸化物の中間的な性質を持つ原料であり、例えばガラスの熱特性のうち熱膨張係数を低下させるなどの効果を有する。
In general, the amorphous material is a network forming oxide (Network WF), a modified oxide (Network modifier), or an intermediate oxide (Intermediate). The network forming oxide (Network Former: NWF) can be vitrified by itself such as SiO 2 , B 2 O 3 , P 2 O 5 , GeO 2 . The modified oxide (Network modifier) cannot be amorphized by itself, but can be amorphized within the network structure formed by the network oxide, that is, the network can be modified. . The modified oxide contains, for example, alkali metals or alkaline earth metals, and is known to have an effect of improving the fluidity by cutting the glass network structure. The intermediate oxide (Intermediate) is a raw material having an intermediate property between the network-forming oxide and the modified oxide, and has an effect of, for example, reducing the thermal expansion coefficient among the thermal characteristics of the glass.
最後に、原料をガラス化することで、ガラス材料を作製することができる。原料をガラス化する方法として、例えば、原料を融液まで溶融し、放冷する方法、融液を金属板などでプレスする方法、水銀中に投下する方法、ストリップ炉、スプラット急冷、ロール法(シングル、ツイン)の他に、メカニカルミリング法、ゾル・ゲル法、蒸着法、スパッタリング法、レーザーアブレーション法、PLD(パルスレーザーディポジッション)法、プラズマ法などが挙げられる。
Finally, a glass material can be produced by vitrifying the raw material. As a method for vitrifying the raw material, for example, a method in which the raw material is melted to a melt and allowed to cool, a method in which the melt is pressed with a metal plate, a method in which the melt is dropped into mercury, a strip furnace, a splat quench, a roll method ( In addition to single and twin), mechanical milling method, sol-gel method, vapor deposition method, sputtering method, laser ablation method, PLD (pulse laser deposition) method, plasma method and the like can be mentioned.
低融性ガラス材料のガラス転移点は、公知の方法で測定できるが、例えばTG測定(熱重量測定)の方法で測定することができる。
The glass transition point of the low-melting glass material can be measured by a known method, but can be measured, for example, by a TG measurement (thermogravimetric measurement) method.
[2-3.バッファー層]
本技術に係る第1の実施形態の固体電池は、バッファー粒子を含有するバッファー層を含む。バッファー層には、上述したガラス材料が含まれてよい。 [2-3. Buffer layer]
The solid state battery according to the first embodiment of the present technology includes a buffer layer containing buffer particles. The buffer layer may include the glass material described above.
本技術に係る第1の実施形態の固体電池は、バッファー粒子を含有するバッファー層を含む。バッファー層には、上述したガラス材料が含まれてよい。 [2-3. Buffer layer]
The solid state battery according to the first embodiment of the present technology includes a buffer layer containing buffer particles. The buffer layer may include the glass material described above.
電極層が正極層であるときは、バッファー層に含まれる第2電極活物質は、特に限定されないが正極活物質又は正極活物質の成分を含む粒子であることが好ましい。正極層(電極層)に含まれる第1電極活物質と、バッファー層に含まれる第2電極活物質とは、同種の正極活物質でもよいし、異種の正極活物質でもよい。電極層が負極層であるときは、バッファー層に含まれる第2電極活物質は特に限定されないが負極活物質又は負極活物質の成分を含む粒子であることが好ましい。負極層(電極層)に含まれる第1電極活物質とバッファー層に含まれる第2電極活物質とは、同種の負極活物質でもよいし、異種の負極活物質でもよい。
When the electrode layer is a positive electrode layer, the second electrode active material contained in the buffer layer is not particularly limited, but is preferably a positive electrode active material or particles containing a component of the positive electrode active material. The first electrode active material included in the positive electrode layer (electrode layer) and the second electrode active material included in the buffer layer may be the same type of positive electrode active material or different types of positive electrode active materials. When the electrode layer is a negative electrode layer, the second electrode active material contained in the buffer layer is not particularly limited, but is preferably a particle containing a negative electrode active material or a component of the negative electrode active material. The first electrode active material contained in the negative electrode layer (electrode layer) and the second electrode active material contained in the buffer layer may be the same type of negative electrode active material or different types of negative electrode active materials.
[2-4.電解質層]
本技術に係る第1の実施形態の固体電池は電解質層を含む。電解質層は固体電解質層でよい。 [2-4. Electrolyte layer]
The solid state battery according to the first embodiment of the present technology includes an electrolyte layer. The electrolyte layer may be a solid electrolyte layer.
本技術に係る第1の実施形態の固体電池は電解質層を含む。電解質層は固体電解質層でよい。 [2-4. Electrolyte layer]
The solid state battery according to the first embodiment of the present technology includes an electrolyte layer. The electrolyte layer may be a solid electrolyte layer.
固体電解質層には、上述したガラス材料が含まれてよい。そして、固体電解質層には固体電解質を更に含んでもよく、また、後述する結着剤を必要に応じて含んでもよい。
The glass material described above may be included in the solid electrolyte layer. The solid electrolyte layer may further contain a solid electrolyte, and may contain a binder described later as necessary.
固体電解質としては、例えば1種類または2種類以上の結晶性固体電解質が挙げられる。結晶性固体電解質の種類は、リチウムイオンを伝導可能である結晶性の固体電解質であれば特に限定されないが、例えば、無機材料または高分子材料などである。無機材料は、例えば、Li2S-P2S5、Li2S-SiS2-Li3PO4、Li7P3S11、Li3.25Ge0.25P0.75S、またはLi10GeP2S12などの硫化物や、Li7La3Zr2O12、Li6.75La3Zr1.75Nb0.25O12、Li6BaLa2Ta2O12、Li1+xAlXTi2-x(PO4)3またはLa2/3-xLi3xTiO3などの酸化物である。高分子材料は、例えば、ポリエチレンオキシド(PEO)などである。
Examples of the solid electrolyte include one type or two or more types of crystalline solid electrolytes. The type of the crystalline solid electrolyte is not particularly limited as long as it is a crystalline solid electrolyte capable of conducting lithium ions, and examples thereof include inorganic materials and polymer materials. Inorganic materials include, for example, Li 2 S—P 2 S 5 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 7 P 3 S 11 , Li 3.25 Ge 0.25 P 0.75 S, or Li Sulfides such as 10 GeP 2 S 12 , Li 7 La 3 Zr 2 O 12 , Li 6.75 La 3 Zr 1.75 Nb 0.25 O 12 , Li 6 BaLa 2 Ta 2 O 12 , Li 1 + x Al X An oxide such as Ti 2-x (PO 4 ) 3 or La 2 / 3-x Li 3x TiO 3 . Examples of the polymer material include polyethylene oxide (PEO).
[2-5.集電層]
本技術に係る第1の実施形態の固体電池は、集電層を更に含んでもよい。上記において、図1を用いて説明をしたとおり、本技術に係る第1の実施形態の固体電池は、集電層を、正極層(電極層)及び/負極層(電極層)の外側に配することができる。 [2-5. Current collecting layer]
The solid state battery of the first embodiment according to the present technology may further include a current collecting layer. In the above, as described with reference to FIG. 1, in the solid state battery according to the first embodiment of the present technology, the current collecting layer is disposed outside the positive electrode layer (electrode layer) and the negative electrode layer (electrode layer). can do.
本技術に係る第1の実施形態の固体電池は、集電層を更に含んでもよい。上記において、図1を用いて説明をしたとおり、本技術に係る第1の実施形態の固体電池は、集電層を、正極層(電極層)及び/負極層(電極層)の外側に配することができる。 [2-5. Current collecting layer]
The solid state battery of the first embodiment according to the present technology may further include a current collecting layer. In the above, as described with reference to FIG. 1, in the solid state battery according to the first embodiment of the present technology, the current collecting layer is disposed outside the positive electrode layer (electrode layer) and the negative electrode layer (electrode layer). can do.
集電層には、上述したガラス材料が含まれてよい。集電層は、ガラス材料の他に、導電率が大きい材料を含んでもよい。正極用の集電層に含まれる材料としては、例えば、炭素、グラファイト、カーボンナノチューブなどの一般的な炭素系材料や、Cu、Mg、Ti、Fe、Co、Ni、Zn、Al、Ge、In、Au、Pt、Ag、Pdなど、又はこれらの何れかを含む合金が挙げられる。負極用の集電層に含まれる材料としても、正極用の集電層と同様の材料を用いることができる。
The current collecting layer may contain the glass material described above. The current collecting layer may include a material having high conductivity in addition to the glass material. Examples of the material included in the current collecting layer for the positive electrode include general carbon-based materials such as carbon, graphite, and carbon nanotubes, Cu, Mg, Ti, Fe, Co, Ni, Zn, Al, Ge, and In. , Au, Pt, Ag, Pd, or an alloy containing any of these. As the material contained in the current collecting layer for the negative electrode, the same material as that for the current collecting layer for the positive electrode can be used.
また、正極用の集電層を構成する材料は正極層を構成する材料と同じであってもよいし、異なっていてもよい。さらに、負極用の集電層を構成する材料は負極層を構成する材料と同じであってもよいし、異なっていてもよい。
Further, the material constituting the positive electrode current collecting layer may be the same as or different from the material constituting the positive electrode layer. Furthermore, the material constituting the negative electrode current collecting layer may be the same as or different from the material constituting the negative electrode layer.
また、正極用の集電層及び負極用の集電層は、それぞれ正極活物質及び負極活物質を含んでもよい。例えば、負極活物質である導電性炭素物質(グラファイト)が、負極用の集電層に含まれてもよい。含有比は、集電層として機能する限り特に限定はされないが、正極集電体/正極活物質、又は負極集電体/負極活物質が体積比率で90/10から70/30の範囲であることが好ましい。正極用の集電層及び負極用の集電層が、それぞれ正極活物質及び負極活物質を含むことにより、正極用の集電層と正極活物質層、及び負極用の集電層と負極活物質層との密着性が向上するため望ましい。
Further, the current collecting layer for the positive electrode and the current collecting layer for the negative electrode may include a positive electrode active material and a negative electrode active material, respectively. For example, a conductive carbon material (graphite) that is a negative electrode active material may be included in the negative electrode current collecting layer. The content ratio is not particularly limited as long as it functions as a current collecting layer, but the volume ratio of the positive electrode current collector / positive electrode active material or the negative electrode current collector / negative electrode active material is in the range of 90/10 to 70/30. It is preferable. The positive electrode current collecting layer and the negative electrode current collecting layer contain a positive electrode active material and a negative electrode active material, respectively, so that the positive electrode current collector layer and the positive electrode active material layer, and the negative electrode current collector layer and the negative electrode active material This is desirable because adhesion to the material layer is improved.
集電層には、必要に応じて結着剤などの添加剤を更に含んでいてもよい。
The current collecting layer may further contain an additive such as a binder as necessary.
[2-6.絶縁層]
本技術に係る第1の実施形態の固体電池は絶縁層を更に含んでもよい。上記において、図1を用いて説明をしたとおり、本技術に係る第1の実施形態の固体電池は、絶縁層を、集電層の外側に配することができる。また、電解質層と正極層(電極層)との間及び/又は電解質層と負極層(電極層)との間に配することができる。 [2-6. Insulation layer]
The solid state battery of the first embodiment according to the present technology may further include an insulating layer. In the above, as demonstrated using FIG. 1, the solid state battery of 1st Embodiment which concerns on this technique can distribute | arrange an insulating layer on the outer side of a current collection layer. Moreover, it can arrange | position between an electrolyte layer and a positive electrode layer (electrode layer) and / or between an electrolyte layer and a negative electrode layer (electrode layer).
本技術に係る第1の実施形態の固体電池は絶縁層を更に含んでもよい。上記において、図1を用いて説明をしたとおり、本技術に係る第1の実施形態の固体電池は、絶縁層を、集電層の外側に配することができる。また、電解質層と正極層(電極層)との間及び/又は電解質層と負極層(電極層)との間に配することができる。 [2-6. Insulation layer]
The solid state battery of the first embodiment according to the present technology may further include an insulating layer. In the above, as demonstrated using FIG. 1, the solid state battery of 1st Embodiment which concerns on this technique can distribute | arrange an insulating layer on the outer side of a current collection layer. Moreover, it can arrange | position between an electrolyte layer and a positive electrode layer (electrode layer) and / or between an electrolyte layer and a negative electrode layer (electrode layer).
絶縁層には、上述したガラス材料が含まれてよい。絶縁層は、ガラス材料の他に、無機絶縁性材料及び/又は有機絶縁性材料を含んでもよい。無機絶縁性材料としては、例えば、酸化アルミニウム(Al2O3)、酸化ケイ素(SiO2)、酸化マグネシウム(MgO)、酸化チタン(TiO2)、酸化ジルコニウム(ZrO2)等が挙げられ、有機絶縁性材料としては、ポリフッ化ビニリデン、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体等が挙げられる。
The insulating layer may include the glass material described above. The insulating layer may include an inorganic insulating material and / or an organic insulating material in addition to the glass material. Examples of the inorganic insulating material include aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), magnesium oxide (MgO), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), and the like. Examples of the insulating material include polyvinylidene fluoride, a copolymer of vinylidene fluoride and hexafluoropropylene, and the like.
絶縁層には、必要に応じて結着剤などの添加剤を更に含んでいてもよい。
The insulating layer may further contain an additive such as a binder as necessary.
[2-7.保護層]
本技術に係る第1の実施形態の固体電池は、保護層を更に含むことができる。保護層は、本技術に係る第1の実施形態の固体電池の最外層として配置されてよい。 [2-7. Protective layer]
The solid state battery according to the first embodiment of the present technology may further include a protective layer. The protective layer may be disposed as the outermost layer of the solid state battery according to the first embodiment of the present technology.
本技術に係る第1の実施形態の固体電池は、保護層を更に含むことができる。保護層は、本技術に係る第1の実施形態の固体電池の最外層として配置されてよい。 [2-7. Protective layer]
The solid state battery according to the first embodiment of the present technology may further include a protective layer. The protective layer may be disposed as the outermost layer of the solid state battery according to the first embodiment of the present technology.
保護層には、上述したガラス材料が含まれてよい。例えば、保護層のガラス材料の含有量は、正極層、負極層、集電層、及び絶縁層のそれぞれの層のガラス材料の含有量よりも多くてもよいし、少なくてもよい。
The protective layer may include the glass material described above. For example, the glass material content of the protective layer may be greater or less than the glass material content of each of the positive electrode layer, the negative electrode layer, the current collecting layer, and the insulating layer.
保護層は、電気的、物理的、化学的に保護するためのものであり、固体電池の信頼性を向上することができる。保護層には、ガラス材料の他に、絶縁性、耐久性、耐湿性に優れ、環境的に安全である材料が含まれてもよい。例えば、熱硬化性樹脂や光硬化性樹脂が挙げられる。
The protective layer is for electrical, physical, and chemical protection, and can improve the reliability of the solid state battery. In addition to the glass material, the protective layer may include a material that is excellent in insulation, durability, and moisture resistance and is environmentally safe. For example, a thermosetting resin and a photocurable resin are mentioned.
保護層には、必要に応じて結着剤などの添加剤を更に含んでいてもよい。
The protective layer may further contain an additive such as a binder as necessary.
[2-8.端子層]
本技術に係る第1の実施形態の固体電池は端子層を更に含むことができる。電極層、すなわち、正極層及び/又は負極層の電極取り出し部に配置されてよい。 [2-8. Terminal layer]
The solid state battery of the first embodiment according to the present technology may further include a terminal layer. You may arrange | position in the electrode extraction part of an electrode layer, ie, a positive electrode layer, and / or a negative electrode layer.
本技術に係る第1の実施形態の固体電池は端子層を更に含むことができる。電極層、すなわち、正極層及び/又は負極層の電極取り出し部に配置されてよい。 [2-8. Terminal layer]
The solid state battery of the first embodiment according to the present technology may further include a terminal layer. You may arrange | position in the electrode extraction part of an electrode layer, ie, a positive electrode layer, and / or a negative electrode layer.
端子層には、上述したガラス材料が含まれてよい。例えば、端子層のガラス材料の含有量は、例えば、正極層、負極層、集電層、及び絶縁層のそれぞれの層のガラス材料の含有量よりも多くてもよいし、少なくてもよい。
The terminal layer may include the glass material described above. For example, the content of the glass material of the terminal layer may be larger or smaller than the content of the glass material of each layer of the positive electrode layer, the negative electrode layer, the current collecting layer, and the insulating layer, for example.
端子層には、ガラス材料の他に、導電率が大きい材料、例えば銀、金、プラチナ、アルミニウム、銅、スズ、ニッケルが含まれてもよい。
The terminal layer may include a material having a high conductivity, for example, silver, gold, platinum, aluminum, copper, tin, nickel, in addition to the glass material.
端子層には、必要に応じて結着剤などの添加剤を更に含んでいてもよい。
The terminal layer may further contain an additive such as a binder as necessary.
[2-9.固体電池の製造方法]
本技術に係る第1の実施形態の固体電池の製造方法について説明する。この製造方法は、塗布法を用いて、正極層(電極層)、負極層(電極層)、バッファー層及び電解質層、並びに必要に応じて、集電層、絶縁層、保護層及び端子層を形成する工程と、これらの層を積層して加熱処理する工程とを備える。なお、正極層(電極層)、負極層(電極層)、バッファー層及び電解質層、並びに集電層、絶縁層、保護層及び端子層のすべての層がグリーンシートであってもよいし、正極層(電極層)、負極層(電極層)、バッファー層及び電解質層、並びに集電層、絶縁層、保護層及び端子層のうちの少なくとも一つがグリーンシートでもよい。正極層(電極層)、負極層(電極層)、バッファー層及び電解質層、並びに集電層、絶縁層、保護層及び端子層のうちの少なくとも一つがグリーンシートである場合、その少なくとも一つのグリーンシートに、グリーンシート以外の層(例えば、スラリー)を例えば、スクリーン印刷法等で形成してもよい。 [2-9. Solid battery manufacturing method]
A method for manufacturing the solid state battery according to the first embodiment of the present technology will be described. This manufacturing method uses a coating method to form a positive electrode layer (electrode layer), a negative electrode layer (electrode layer), a buffer layer and an electrolyte layer, and, if necessary, a current collecting layer, an insulating layer, a protective layer, and a terminal layer. A step of forming, and a step of stacking and heating these layers. The positive electrode layer (electrode layer), the negative electrode layer (electrode layer), the buffer layer and the electrolyte layer, and the current collecting layer, insulating layer, protective layer and terminal layer may all be green sheets, or the positive electrode At least one of the layer (electrode layer), the negative electrode layer (electrode layer), the buffer layer and the electrolyte layer, and the current collecting layer, insulating layer, protective layer and terminal layer may be a green sheet. When at least one of a positive electrode layer (electrode layer), a negative electrode layer (electrode layer), a buffer layer and an electrolyte layer, and a current collecting layer, an insulating layer, a protective layer and a terminal layer is a green sheet, at least one green A layer (for example, slurry) other than the green sheet may be formed on the sheet by, for example, a screen printing method or the like.
本技術に係る第1の実施形態の固体電池の製造方法について説明する。この製造方法は、塗布法を用いて、正極層(電極層)、負極層(電極層)、バッファー層及び電解質層、並びに必要に応じて、集電層、絶縁層、保護層及び端子層を形成する工程と、これらの層を積層して加熱処理する工程とを備える。なお、正極層(電極層)、負極層(電極層)、バッファー層及び電解質層、並びに集電層、絶縁層、保護層及び端子層のすべての層がグリーンシートであってもよいし、正極層(電極層)、負極層(電極層)、バッファー層及び電解質層、並びに集電層、絶縁層、保護層及び端子層のうちの少なくとも一つがグリーンシートでもよい。正極層(電極層)、負極層(電極層)、バッファー層及び電解質層、並びに集電層、絶縁層、保護層及び端子層のうちの少なくとも一つがグリーンシートである場合、その少なくとも一つのグリーンシートに、グリーンシート以外の層(例えば、スラリー)を例えば、スクリーン印刷法等で形成してもよい。 [2-9. Solid battery manufacturing method]
A method for manufacturing the solid state battery according to the first embodiment of the present technology will be described. This manufacturing method uses a coating method to form a positive electrode layer (electrode layer), a negative electrode layer (electrode layer), a buffer layer and an electrolyte layer, and, if necessary, a current collecting layer, an insulating layer, a protective layer, and a terminal layer. A step of forming, and a step of stacking and heating these layers. The positive electrode layer (electrode layer), the negative electrode layer (electrode layer), the buffer layer and the electrolyte layer, and the current collecting layer, insulating layer, protective layer and terminal layer may all be green sheets, or the positive electrode At least one of the layer (electrode layer), the negative electrode layer (electrode layer), the buffer layer and the electrolyte layer, and the current collecting layer, insulating layer, protective layer and terminal layer may be a green sheet. When at least one of a positive electrode layer (electrode layer), a negative electrode layer (electrode layer), a buffer layer and an electrolyte layer, and a current collecting layer, an insulating layer, a protective layer and a terminal layer is a green sheet, at least one green A layer (for example, slurry) other than the green sheet may be formed on the sheet by, for example, a screen printing method or the like.
また、本技術に係る第1の実施形態の固体電池は、塗布法以外の方法で作製してもよい。塗布法以外の方法としては、例えば、プレス機などを用いて、活物質およびガラス材料を含む電極合剤の粉末を加圧成形する方法を用いてもよい。この加圧成形後の成形体の形状は特に限定されず、例えば、ペレット状(コイン型)などであってもよい。
Further, the solid state battery according to the first embodiment of the present technology may be manufactured by a method other than the coating method. As a method other than the coating method, for example, a method of press-molding a powder of an electrode mixture containing an active material and a glass material using a press machine or the like may be used. The shape of the compact after the pressure molding is not particularly limited, and may be, for example, a pellet shape (coin shape).
<3.固体電池の用途>
固体電池の用途について下記に詳細に説明する。 <3. Applications of solid batteries>
The use of the solid battery will be described in detail below.
固体電池の用途について下記に詳細に説明する。 <3. Applications of solid batteries>
The use of the solid battery will be described in detail below.
<3-1.固体電池の用途の概要>
固体電池の用途は、その固体電池を駆動用の電源または電力蓄積用の電力貯蔵源などとして利用可能な機械、機器、器具、装置およびシステム(複数の機器などの集合体)などであれば、特に限定されない。電源として使用される固体電池は、主電源(優先的に使用される電源)でもよいし、補助電源(主電源に代えて、または主電源から切り換えて使用される電源)でもよい。固体電池を補助電源として利用する場合には、主電源の種類は固体電池に限られない。 <3-1. Overview of solid battery applications>
The solid battery can be used as a machine, device, instrument, device, and system (an assembly of a plurality of devices) that can be used as a power source for driving or a power storage source for storing power. There is no particular limitation. The solid battery used as a power source may be a main power source (a power source used preferentially) or an auxiliary power source (a power source used in place of or switched from the main power source). When a solid battery is used as an auxiliary power source, the type of main power source is not limited to a solid battery.
固体電池の用途は、その固体電池を駆動用の電源または電力蓄積用の電力貯蔵源などとして利用可能な機械、機器、器具、装置およびシステム(複数の機器などの集合体)などであれば、特に限定されない。電源として使用される固体電池は、主電源(優先的に使用される電源)でもよいし、補助電源(主電源に代えて、または主電源から切り換えて使用される電源)でもよい。固体電池を補助電源として利用する場合には、主電源の種類は固体電池に限られない。 <3-1. Overview of solid battery applications>
The solid battery can be used as a machine, device, instrument, device, and system (an assembly of a plurality of devices) that can be used as a power source for driving or a power storage source for storing power. There is no particular limitation. The solid battery used as a power source may be a main power source (a power source used preferentially) or an auxiliary power source (a power source used in place of or switched from the main power source). When a solid battery is used as an auxiliary power source, the type of main power source is not limited to a solid battery.
固体電池の用途は、例えば、以下の通りである。ノート型パーソナルコンピュータ、タブレット型コンピュータ、携帯電話(例えばスマートフォンなど)、携帯情報端末(Personal Digital Assistants:PDA)、撮像装置(例えばデジタルスチルカメラ、デジタルビデオカメラなど)、オーディオ機器(例えばポータブルオーディオプレイヤー)、ゲーム機器、コードレスフォン子機、電子書籍、電子辞書、ラジオ、ヘッドホン、ナビゲーションシステム、メモリーカード、ペースメーカー、補聴器、照明機器、玩具、医療機器、ロボットなどの電子機器(携帯用電子機器を含む)である。電気シェーバなどの携帯用生活器具である。バックアップ電源およびメモリーカードなどの記憶用装置である。電動ドリルおよび電動鋸などの電動工具である。着脱可能な電源としてノート型パソコンなどに用いられる電池パックである。ペースメーカーおよび補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む)などに用いられる車両である。非常時などに備えて電力を蓄積しておく家庭用バッテリシステムなどの蓄電システムである。勿論、上記以外の用途でもよい。
The usage of the solid battery is as follows, for example. Notebook personal computers, tablet computers, mobile phones (for example, smart phones), personal digital assistants (PDAs), imaging devices (for example, digital still cameras, digital video cameras), audio devices (for example, portable audio players) , Game devices, cordless phones, electronic books, electronic dictionaries, radios, headphones, navigation systems, memory cards, pacemakers, hearing aids, lighting devices, toys, medical devices, robots, and other electronic devices (including portable electronic devices) It is. It is a portable living device such as an electric shaver. Storage devices such as backup power supplies and memory cards. Electric tools such as electric drills and electric saws. It is a battery pack used for a notebook computer or the like as a detachable power source. Medical electronic devices such as pacemakers and hearing aids. It is a vehicle used for an electric vehicle (including a hybrid vehicle). It is a power storage system such as a home battery system that stores electric power in case of an emergency. Of course, other uses may be used.
なかでも、固体電池は、電池パック、車両、蓄電システム、電動工具、及び電子機器に適用されることが有効である。優れた電池特性が要求されるため、本技術の固体電池を用いることで、有効に性能向上を図ることができるからである。なお、電池パックは、固体電池を用いた電源であり、いわゆる組電池などである。車両は、固体電池を駆動用電源として作動(走行)する車両であり、上記したように、固体電池以外の駆動源を併せて備えた自動車(ハイブリッド自動車など)でもよい。蓄電システムは、例えば、住宅用の蓄電システムが挙げられ、固体電池を電力貯蔵源として用いるシステムである。蓄電システムでは、電力貯蔵源である固体電池に電力が蓄積されているため、その電力を利用して電力消費装置、例えば、家庭用の電気製品が使用可能になる。電動工具は、固体電池を駆動用の電源として可動部(例えばドリルなど)が可動する工具である。電子機器は、固体電池を駆動用の電源(電力供給源)として各種機能を発揮する機器である。
Especially, it is effective that the solid battery is applied to a battery pack, a vehicle, a power storage system, a power tool, and an electronic device. This is because, since excellent battery characteristics are required, performance can be effectively improved by using the solid battery of the present technology. The battery pack is a power source using a solid battery, and is a so-called assembled battery. The vehicle is a vehicle that operates (runs) using a solid battery as a driving power source, and may be an automobile (such as a hybrid automobile) that includes a drive source other than the solid battery as described above. The power storage system is, for example, a residential power storage system and uses a solid battery as a power storage source. In the power storage system, since power is stored in a solid state battery that is a power storage source, a power consuming device, for example, a household electric product can be used by using the power. An electric power tool is a tool in which a movable part (for example, a drill etc.) moves, using a solid battery as a driving power source. An electronic device is a device that exhibits various functions using a solid state battery as a driving power source (power supply source).
ここで、固体電池のいくつかの適用例について具体的に説明する。なお、以下で説明する各適用例の構成はあくまで一例であるため、適宜変更可能である。
Here, some application examples of the solid state battery will be specifically described. In addition, since the structure of each application example demonstrated below is an example to the last, it can change suitably.
<3-2.第2の実施形態(電池パック)>
本技術に係る第2の実施形態の電池パックは、本技術に係る第1の実施形態の固体電池を備える。例えば、本技術に係る第2の実施形態の電池パックは、本技術に係る第1の実施形態の固体電池と、固体電池の使用状態を制御する制御部と、制御部の指示に応じて、固体電池の使用状態を切り換えるスイッチ部と、を備える、電池パックである。本技術に係る第2の実施形態の電池パックは、優れた電池特性や優れた信頼性を有する本技術に係る第1の実施形態の固体電池を備えているので、電池パックの性能や信頼性の向上につながる。 <3-2. Second Embodiment (Battery Pack)>
The battery pack according to the second embodiment of the present technology includes the solid state battery according to the first embodiment of the present technology. For example, the battery pack according to the second embodiment according to the present technology includes the solid state battery according to the first embodiment according to the present technology, a control unit that controls a use state of the solid state battery, and an instruction from the control unit. And a switch unit that switches a use state of the solid state battery. The battery pack of the second embodiment according to the present technology includes the solid state battery of the first embodiment according to the present technology having excellent battery characteristics and excellent reliability. Leads to improvement.
本技術に係る第2の実施形態の電池パックは、本技術に係る第1の実施形態の固体電池を備える。例えば、本技術に係る第2の実施形態の電池パックは、本技術に係る第1の実施形態の固体電池と、固体電池の使用状態を制御する制御部と、制御部の指示に応じて、固体電池の使用状態を切り換えるスイッチ部と、を備える、電池パックである。本技術に係る第2の実施形態の電池パックは、優れた電池特性や優れた信頼性を有する本技術に係る第1の実施形態の固体電池を備えているので、電池パックの性能や信頼性の向上につながる。 <3-2. Second Embodiment (Battery Pack)>
The battery pack according to the second embodiment of the present technology includes the solid state battery according to the first embodiment of the present technology. For example, the battery pack according to the second embodiment according to the present technology includes the solid state battery according to the first embodiment according to the present technology, a control unit that controls a use state of the solid state battery, and an instruction from the control unit. And a switch unit that switches a use state of the solid state battery. The battery pack of the second embodiment according to the present technology includes the solid state battery of the first embodiment according to the present technology having excellent battery characteristics and excellent reliability. Leads to improvement.
以下に、本技術に係る第2の実施形態の電池パックの一例について、図面を参照しながら説明する。
Hereinafter, an example of the battery pack according to the second embodiment of the present technology will be described with reference to the drawings.
図2は、電池パックのブロック構成を表している。この電池パックは、例えば、プラスチック材料などにより形成された筐体60の内部に、制御部61と、電源62と、スイッチ部63と、電流測定部64と、温度検出部65と、電圧検出部66と、スイッチ制御部67と、メモリ68と、温度検出素子69と、電流検出抵抗70と、正極端子71および負極端子72とを備えている。
FIG. 2 shows a block configuration of the battery pack. This battery pack includes, for example, a control unit 61, a power source 62, a switch unit 63, a current measurement unit 64, a temperature detection unit 65, and a voltage detection unit inside a housing 60 formed of a plastic material or the like. 66, a switch control unit 67, a memory 68, a temperature detection element 69, a current detection resistor 70, a positive terminal 71 and a negative terminal 72.
制御部61は、電池パック全体の動作(電源62の使用状態を含む)を制御するものであり、例えば、中央演算処理装置(CPU)などを含んでいる。電源62は、1または2以上の固体電池(図示せず)を含んでいる。この電源62は、例えば、2以上の固体電池を含む組電池であり、それらの固体電池の接続形式は、直列でもよいし、並列でもよいし、双方の混合型でもよい。一例を挙げると、電源62は、2並列3直列となるように接続された6つの固体電池を含んでいる。
The control unit 61 controls the operation of the entire battery pack (including the usage state of the power supply 62), and includes, for example, a central processing unit (CPU). The power source 62 includes one or more solid batteries (not shown). The power source 62 is, for example, an assembled battery including two or more solid batteries, and the connection form of these solid batteries may be in series, in parallel, or a mixture of both. As an example, the power source 62 includes six solid state batteries connected in two parallel three series.
スイッチ部63は、制御部61の指示に応じて電源62の使用状態(電源62と外部機器との接続の可否)を切り換えるものである。このスイッチ部63は、例えば、充電制御スイッチ、放電制御スイッチ、充電用ダイオードおよび放電用ダイオード(いずれも図示せず)などを含んでいる。充電制御スイッチおよび放電制御スイッチは、例えば、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などの半導体スイッチである。
The switch unit 63 switches the usage state of the power source 62 (whether or not the power source 62 can be connected to an external device) according to an instruction from the control unit 61. The switch unit 63 includes, for example, a charge control switch, a discharge control switch, a charging diode, a discharging diode (all not shown), and the like. The charge control switch and the discharge control switch are semiconductor switches such as a field effect transistor (MOSFET) using a metal oxide semiconductor, for example.
電流測定部64は、電流検出抵抗70を用いて電流を測定して、その測定結果を制御部61に出力するものである。温度検出部65は、温度検出素子69を用いて温度を測定して、その測定結果を制御部61に出力するようになっている。この温度測定結果は、例えば、異常発熱時において制御部61が充放電制御を行う場合や、制御部61が残容量の算出時において補正処理を行う場合などに用いられる。電圧検出部66は、電源62中における固体電池の電圧を測定して、その測定電圧をアナログ-デジタル変換して制御部61に供給するものである。
The current measurement unit 64 measures current using the current detection resistor 70 and outputs the measurement result to the control unit 61. The temperature detection unit 65 measures the temperature using the temperature detection element 69 and outputs the measurement result to the control unit 61. This temperature measurement result is used, for example, when the control unit 61 performs charge / discharge control during abnormal heat generation, or when the control unit 61 performs correction processing when calculating the remaining capacity. The voltage detection unit 66 measures the voltage of the solid state battery in the power source 62, converts the measured voltage from analog to digital, and supplies the converted voltage to the control unit 61.
スイッチ制御部67は、電流測定部64および電圧検出部66から入力される信号に応じて、スイッチ部63の動作を制御するものである。
The switch control unit 67 controls the operation of the switch unit 63 in accordance with signals input from the current measurement unit 64 and the voltage detection unit 66.
このスイッチ制御部67は、例えば、電池電圧が過充電検出電圧に到達した場合に、スイッチ部63(充電制御スイッチ)を切断して、電源62の電流経路に充電電流が流れないように制御する。これにより、電源62では、放電用ダイオードを介して放電のみが可能になる。なお、スイッチ制御部67は、例えば、充電時に大電流が流れた場合に、充電電流を遮断するようになっている。
For example, when the battery voltage reaches the overcharge detection voltage, the switch control unit 67 disconnects the switch unit 63 (charge control switch) and controls the charging current not to flow through the current path of the power source 62. . As a result, the power source 62 can only discharge through the discharging diode. The switch control unit 67 is configured to cut off the charging current when a large current flows during charging, for example.
また、スイッチ制御部67は、例えば、電池電圧が過放電検出電圧に到達した場合に、スイッチ部63(放電制御スイッチ)を切断して、電源62の電流経路に放電電流が流れないようにする。これにより、電源62では、充電用ダイオードを介して充電のみが可能になる。なお、スイッチ制御部67は、例えば、放電時に大電流が流れた場合に、放電電流を遮断するようになっている。
Further, the switch control unit 67 disconnects the switch unit 63 (discharge control switch) so that the discharge current does not flow in the current path of the power source 62 when the battery voltage reaches the overdischarge detection voltage, for example. . As a result, the power source 62 can only be charged via the charging diode. For example, the switch control unit 67 is configured to cut off the discharge current when a large current flows during discharging.
なお、固体電池では、例えば、過充電検出電圧は4.2V±0.05Vであり、過放電検出電圧は2.4V±0.1Vである。
In the solid state battery, for example, the overcharge detection voltage is 4.2V ± 0.05V, and the overdischarge detection voltage is 2.4V ± 0.1V.
メモリ68は、例えば、不揮発性メモリであるEEPROMなどである。このメモリ68には、例えば、制御部61により演算された数値や、製造工程段階において測定された固体電池の情報(例えば初期状態の内部抵抗)などが記憶されている。なお、メモリ68に固体電池の満充電容量を記憶させておけば、制御部61が残容量などの情報を把握可能になる。
The memory 68 is, for example, an EEPROM which is a nonvolatile memory. The memory 68 stores, for example, numerical values calculated by the control unit 61 and information (for example, internal resistance in an initial state) of the solid battery measured in the manufacturing process stage. If the full charge capacity of the solid battery is stored in the memory 68, the control unit 61 can grasp information such as the remaining capacity.
温度検出素子69は、電源62の温度を測定すると共にその測定結果を制御部61に出力するものであり、例えば、サーミスタなどである。
The temperature detection element 69 measures the temperature of the power supply 62 and outputs the measurement result to the control unit 61, and is, for example, a thermistor.
正極端子71および負極端子72は、電池パックを用いて稼働される外部機器(例えばノート型のパーソナルコンピュータなど)や、電池パックを充電するために用いられる外部機器(例えば充電器など)などに接続される端子である。電源62の充放電は、正極端子71および負極端子72を介して行われる。
The positive electrode terminal 71 and the negative electrode terminal 72 are connected to an external device (for example, a notebook personal computer) operated using a battery pack, an external device (for example, a charger) used to charge the battery pack, or the like. Terminal. Charging / discharging of the power source 62 is performed via the positive terminal 71 and the negative terminal 72.
<3-3.第3の実施形態(車両)>
本技術に係る第3の実施形態の車両は、本技術に係る第1の実施形態の固体電池と、固体電池から供給された電力を駆動力に変換する駆動力変換装置と、駆動力に応じて駆動する駆動部と、車両制御装置と、を備える、車両である。本技術に係る第3の実施形態の車両は、優れた電池特性や優れた信頼性を有する本技術に係る第1の実施形態の固体電池を備えているので、車両の性能や信頼性の向上につながる。 <3-3. Third Embodiment (Vehicle)>
The vehicle according to the third embodiment of the present technology includes a solid state battery according to the first embodiment of the present technology, a driving force conversion device that converts electric power supplied from the solid state battery into driving force, and a driving force. And a vehicle control device. The vehicle according to the third embodiment according to the present technology includes the solid state battery according to the first embodiment according to the present technology having excellent battery characteristics and excellent reliability. Therefore, the performance and reliability of the vehicle are improved. Leads to.
本技術に係る第3の実施形態の車両は、本技術に係る第1の実施形態の固体電池と、固体電池から供給された電力を駆動力に変換する駆動力変換装置と、駆動力に応じて駆動する駆動部と、車両制御装置と、を備える、車両である。本技術に係る第3の実施形態の車両は、優れた電池特性や優れた信頼性を有する本技術に係る第1の実施形態の固体電池を備えているので、車両の性能や信頼性の向上につながる。 <3-3. Third Embodiment (Vehicle)>
The vehicle according to the third embodiment of the present technology includes a solid state battery according to the first embodiment of the present technology, a driving force conversion device that converts electric power supplied from the solid state battery into driving force, and a driving force. And a vehicle control device. The vehicle according to the third embodiment according to the present technology includes the solid state battery according to the first embodiment according to the present technology having excellent battery characteristics and excellent reliability. Therefore, the performance and reliability of the vehicle are improved. Leads to.
以下に、本技術に係る第3の実施形態の車両について、図3を参照しながら説明する。
Hereinafter, a vehicle according to a third embodiment of the present technology will be described with reference to FIG.
図3に、本技術が適用されるシリーズハイブリッドシステムを採用するハイブリッドの車両の構成の一例を概略的に示す。シリーズハイブリッドシステムはエンジンで動かす発電機で発電された電力、あるいはそれをバッテリーに一旦貯めておいた電力を用いて、電力駆動力変換装置で走行する車である。
FIG. 3 schematically shows an example of the configuration of a hybrid vehicle that employs a series hybrid system to which the present technology is applied. A series hybrid system is a car that runs on an electric power driving force conversion device using electric power generated by a generator driven by an engine or electric power once stored in a battery.
このハイブリッド車両7200には、エンジン7201、発電機7202、電力駆動力変換装置7203、駆動輪7204a、駆動輪7204b、車輪7205a、車輪7205b、バッテリー7208、車両制御装置7209、各種センサ7210、充電口7211が搭載されている。バッテリー7208に対して、蓄電装置(不図示)が適用される。
The hybrid vehicle 7200 includes an engine 7201, a generator 7202, a power driving force conversion device 7203, a driving wheel 7204a, a driving wheel 7204b, a wheel 7205a, a wheel 7205b, a battery 7208, a vehicle control device 7209, various sensors 7210, and a charging port 7211. Is installed. A power storage device (not shown) is applied to the battery 7208.
ハイブリッド車両7200は、電力駆動力変換装置7203を動力源として走行する。電力駆動力変換装置7203の一例は、モータである。バッテリー7208の電力によって電力駆動力変換装置7203が作動し、この電力駆動力変換装置7203の回転力が駆動輪7204a、7204bに伝達される。なお、必要な個所に直流-交流(DC-AC)あるいは逆変換(AC-DC変換)を用いることによって、電力駆動力変換装置7203が交流モータでも直流モータでも適用可能である。各種センサ7210は、車両制御装置7209を介してエンジン回転数を制御したり、図示しないスロットルバルブの開度(スロットル開度)を制御したりする。各種センサ7210には、速度センサ、加速度センサ、エンジン回転数センサなどが含まれる。
Hybrid vehicle 7200 travels using power driving force conversion device 7203 as a power source. An example of the power driving force conversion device 7203 is a motor. The electric power / driving force conversion device 7203 is operated by the electric power of the battery 7208, and the rotational force of the electric power / driving force conversion device 7203 is transmitted to the driving wheels 7204a and 7204b. Note that the power driving force conversion device 7203 can be applied to either an AC motor or a DC motor by using DC-AC (DC-AC) or reverse conversion (AC-DC conversion) where necessary. Various sensors 7210 control the engine speed through the vehicle control device 7209 and control the opening of a throttle valve (throttle opening) (not shown). Various sensors 7210 include a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
エンジン7201の回転力は発電機7202に伝えられ、その回転力によって発電機7202により生成された電力をバッテリー7208に蓄積することが可能である。
The rotational force of the engine 7201 is transmitted to the generator 7202, and the electric power generated by the generator 7202 by the rotational force can be stored in the battery 7208.
図示しない制動機構によりハイブリッド車両が減速すると、その減速時の抵抗力が電力駆動力変換装置7203に回転力として加わり、この回転力によって電力駆動力変換装置7203により生成された回生電力がバッテリー7208に蓄積される。
When the hybrid vehicle decelerates by a braking mechanism (not shown), the resistance force at the time of deceleration is applied as a rotational force to the power driving force conversion device 7203, and the regenerative power generated by the power driving force conversion device 7203 by this rotational force is applied to the battery 7208. Accumulated.
バッテリー7208は、ハイブリッド車両の外部の電源に接続されることで、その外部電源から充電口211を入力口として電力供給を受け、受けた電力を蓄積することも可能である。
The battery 7208 is connected to an external power source of the hybrid vehicle, so that the battery 7208 can receive power from the external power source using the charging port 211 as an input port and store the received power.
図示しないが、二次電池に関する情報に基づいて車両制御に関する情報処理を行なう情報処理装置を備えていても良い。このような情報処理装置としては、例えば、電池の残量に関する情報に基づき、電池残量表示を行う情報処理装置などがある。
Although not shown, an information processing device that performs information processing related to vehicle control based on information related to the secondary battery may be provided. As such an information processing apparatus, for example, there is an information processing apparatus that displays a remaining battery level based on information on the remaining battery level.
なお、以上は、エンジンで動かす発電機で発電された電力、或いはそれをバッテリーに一旦貯めておいた電力を用いて、モータで走行するシリーズハイブリッド車を例として説明した。しかしながら、エンジンとモータの出力がいずれも駆動源とし、エンジンのみで走行、モータのみで走行、エンジンとモータ走行という3つの方式を適宜切り替えて使用するパラレルハイブリッド車に対しても本開示は有効に適用可能である。さらに、エンジンを用いず駆動モータのみによる駆動で走行する所謂、電動車両に対しても本技術は有効に適用可能である。
In the above description, the series hybrid vehicle that runs on the motor using the power generated by the generator driven by the engine or the power stored once in the battery has been described as an example. However, the present disclosure is also effective for a parallel hybrid vehicle that uses both engine and motor outputs as drive sources, and switches between the three modes of running with the engine alone, running with the motor alone, and engine and motor running as appropriate. Applicable. Furthermore, the present technology can be effectively applied to a so-called electric vehicle that travels only by a drive motor without using an engine.
<3-4.第4の実施形態(蓄電システム)>
本技術に係る第4の実施形態の蓄電システムは、本技術に係る第1の実施形態の固体電池を有する蓄電装置と、固体電池から電力が供給される電力消費装置と、固体電池からの該電力消費装置に対する電力供給を制御する制御装置と、固体電池を充電する発電装置と、を備える、蓄電システムである。本技術に係る第4の実施形態の蓄電システムは、優れた電池特性や優れた信頼性を有する本技術に係る第1の実施形態の固体電池を備えているので、蓄電システムの性能や信頼性の向上につながる。 <3-4. Fourth Embodiment (Power Storage System)>
The power storage system according to the fourth embodiment of the present technology includes a power storage device including the solid state battery according to the first embodiment of the present technology, a power consuming device supplied with power from the solid state battery, and the solid state battery. A power storage system includes a control device that controls power supply to a power consuming device and a power generation device that charges a solid state battery. The power storage system of the fourth embodiment according to the present technology includes the solid state battery of the first embodiment according to the present technology having excellent battery characteristics and excellent reliability. Leads to improvement.
本技術に係る第4の実施形態の蓄電システムは、本技術に係る第1の実施形態の固体電池を有する蓄電装置と、固体電池から電力が供給される電力消費装置と、固体電池からの該電力消費装置に対する電力供給を制御する制御装置と、固体電池を充電する発電装置と、を備える、蓄電システムである。本技術に係る第4の実施形態の蓄電システムは、優れた電池特性や優れた信頼性を有する本技術に係る第1の実施形態の固体電池を備えているので、蓄電システムの性能や信頼性の向上につながる。 <3-4. Fourth Embodiment (Power Storage System)>
The power storage system according to the fourth embodiment of the present technology includes a power storage device including the solid state battery according to the first embodiment of the present technology, a power consuming device supplied with power from the solid state battery, and the solid state battery. A power storage system includes a control device that controls power supply to a power consuming device and a power generation device that charges a solid state battery. The power storage system of the fourth embodiment according to the present technology includes the solid state battery of the first embodiment according to the present technology having excellent battery characteristics and excellent reliability. Leads to improvement.
以下に、本技術に係る第4の実施形態の蓄電システムの一例である住宅用の蓄電システムについて、図4を参照しながら説明する。
Hereinafter, a residential power storage system that is an example of the power storage system according to the fourth embodiment of the present technology will be described with reference to FIG. 4.
例えば、住宅9001用の蓄電システム9100においては、火力発電9002a、原子力発電9002b、水力発電9002c等の集中型電力系統9002から電力網9009、情報網9012、スマートメータ9007、パワーハブ9008等を介し、電力が蓄電装置9003に供給される。これと共に、家庭内発電装置9004等の独立電源から電力が蓄電装置9003に供給される。蓄電装置9003に供給された電力が蓄電される。蓄電装置9003を使用して、住宅9001で使用する電力が給電される。住宅9001に限らずビルに関しても同様の蓄電システムを使用できる。
For example, in a power storage system 9100 for a house 9001, electric power is supplied from a centralized power system 9002 such as a thermal power generation 9002a, a nuclear power generation 9002b, and a hydropower generation 9002c via a power network 9009, an information network 9012, a smart meter 9007, a power hub 9008, and the like. The power is supplied to the power storage device 9003. At the same time, power is supplied to the power storage device 9003 from an independent power source such as the home power generation device 9004. The electric power supplied to the power storage device 9003 is stored. Electric power used in the house 9001 is supplied using the power storage device 9003. The same power storage system can be used not only for the house 9001 but also for buildings.
住宅9001には、発電装置9004、電力消費装置9005、蓄電装置9003、各装置を制御する制御装置9010、スマートメータ9007、各種情報を取得するセンサ9011が設けられている。各装置は、電力網9009および情報網9012によって接続されている。発電装置9004として、太陽電池、燃料電池等が利用され、発電した電力が電力消費装置9005および/または蓄電装置9003に供給される。電力消費装置9005は、冷蔵庫9005a、空調装置9005b、テレビジョン受信機9005c、風呂9005d等である。さらに、電力消費装置9005には、電動車両9006が含まれる。電動車両9006は、電気自動車9006a、ハイブリッドカー9006b、電気バイク9006cである。
The house 9001 is provided with a power generation device 9004, a power consumption device 9005, a power storage device 9003, a control device 9010 that controls each device, a smart meter 9007, and a sensor 9011 that acquires various types of information. Each device is connected by a power network 9009 and an information network 9012. As the power generation device 9004, a solar cell, a fuel cell, or the like is used, and the generated power is supplied to the power consumption device 9005 and / or the power storage device 9003. The power consuming apparatus 9005 is a refrigerator 9005a, an air conditioner 9005b, a television receiver 9005c, a bath 9005d, or the like. Furthermore, the electric power consumption device 9005 includes an electric vehicle 9006. The electric vehicle 9006 is an electric vehicle 9006a, a hybrid car 9006b, and an electric motorcycle 9006c.
蓄電装置9003に対して、上述した本技術に係るバッテリユニット(本技術に係る固体電池)が適用される。蓄電装置9003は、二次電池又はキャパシタから構成されている。例えば、リチウムイオン電池によって構成されている。リチウムイオン電池は、定置型であっても、電動車両9006で使用されるものでも良い。スマートメータ9007は、商用電力の使用量を測定し、測定された使用量を、電力会社に送信する機能を備えている。電力網9009は、直流給電、交流給電、非接触給電の何れか一つまたは複数を組み合わせてもよい。
The battery unit according to the present technology (solid battery according to the present technology) described above is applied to the power storage device 9003. The power storage device 9003 is composed of a secondary battery or a capacitor. For example, a lithium ion battery is used. The lithium ion battery may be a stationary type or used in the electric vehicle 9006. The smart meter 9007 has a function of measuring the usage amount of commercial power and transmitting the measured usage amount to an electric power company. The power network 9009 may be any one or a combination of DC power supply, AC power supply, and non-contact power supply.
各種のセンサ9011は、例えば人感センサ、照度センサ、物体検知センサ、消費電力センサ、振動センサ、接触センサ、温度センサ、赤外線センサ等である。各種センサ9011により取得された情報は、制御装置9010に送信される。センサ9011からの情報によって、気象の状態、人の状態等が把握されて電力消費装置9005を自動的に制御してエネルギー消費を最小とすることができる。さらに、制御装置9010は、住宅9001に関する情報を、インターネットを介して外部の電力会社等に送信することができる。
Various sensors 9011 are, for example, human sensors, illuminance sensors, object detection sensors, power consumption sensors, vibration sensors, contact sensors, temperature sensors, infrared sensors, and the like. Information acquired by the various sensors 9011 is transmitted to the control device 9010. Based on the information from the sensor 9011, the weather condition, the condition of the person, and the like can be grasped, and the power consumption device 9005 can be automatically controlled to minimize the energy consumption. Furthermore, the control device 9010 can transmit information regarding the house 9001 to an external power company or the like via the Internet.
パワーハブ9008によって、電力線の分岐、直流交流変換等の処理がなされる。制御装置9010と接続される情報網9012の通信方式としては、UART(Universal Asynchronous Receiver-Transmitter:非同期シリアル通信用送受信回路)等の通信インターフェースを使う方法、Bluetooth(登録商標)、ZigBee、Wi-Fi等の無線通信規格によるセンサーネットワークを利用する方法がある。Bluetooth(登録商標)方式は、マルチメディア通信に適用され、一対多接続の通信を行うことができる。ZigBeeは、IEEE(Institute of Electrical and Electronics Engineers) 802.15.4の物理層を使用するものである。IEEE802.15.4は、PAN(Personal Area Network) またはW(Wireless)PANと呼ばれる短距離無線ネットワーク規格の名称である。
The power hub 9008 performs processing such as branching of power lines and DC / AC conversion. Communication methods of the information network 9012 connected to the control device 9010 include a method using a communication interface such as UART (Universal Asynchronous Receiver-Transmitter), Bluetooth (registered trademark), ZigBee, Wi-Fi. There is a method of using a sensor network based on a wireless communication standard such as. The Bluetooth (registered trademark) system is applied to multimedia communication and can perform one-to-many connection communication. ZigBee uses the physical layer of IEEE (Institut-of-Electrical-and-Electronics-Engineers) -802.15.4. IEEE 802.15.4 is the name of a short-range wireless network standard called PAN (Personal Area Network) or W (Wireless) PAN.
制御装置9010は、外部のサーバ9013と接続されている。このサーバ9013は、住宅9001、電力会社、サービスプロバイダーの何れかによって管理されていても良い。サーバ9013が送受信する情報は、たとえば、消費電力情報、生活パターン情報、電力料金、天気情報、天災情報、電力取引に関する情報である。これらの情報は、家庭内の電力消費装置(たとえばテレビジョン受信機)から送受信しても良いが、家庭外の装置(たとえば、携帯電話機等)から送受信しても良い。これらの情報は、表示機能を持つ機器、たとえば、テレビジョン受信機、携帯電話機、携帯情報端末(PDA)等に、表示されてもよい。
The control device 9010 is connected to an external server 9013. The server 9013 may be managed by any one of the house 9001, the electric power company, and the service provider. Information transmitted / received by the server 9013 is, for example, information on power consumption information, life pattern information, power charges, weather information, natural disaster information, and power transactions. These pieces of information may be transmitted / received from a power consuming device (for example, a television receiver) in the home, or may be transmitted / received from a device outside the home (for example, a mobile phone). Such information may be displayed on a device having a display function, such as a television receiver, a mobile phone, a personal digital assistant (PDA), or the like.
各部を制御する制御装置9010は、CPU、RAM(Random Access Memory)、ROM(Read Only Memory)等で構成され、この例では、蓄電装置9003に格納されている。制御装置9010は、蓄電装置9003、家庭内発電装置9004、電力消費装置9005、各種センサ9011、サーバ9013と情報網9012により接続され、例えば、商用電力の使用量と、発電量とを調整する機能を有している。なお、その他にも、電力市場で電力取引を行う機能等を備えていてもよい。
The control device 9010 that controls each unit includes a CPU, a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and is stored in the power storage device 9003 in this example. The control device 9010 is connected to the power storage device 9003, the home power generation device 9004, the power consumption device 9005, the various sensors 9011, the server 9013, and the information network 9012. For example, the control device 9010 functions to adjust the amount of commercial power used and the amount of power generation. have. In addition, you may provide the function etc. which carry out an electric power transaction in an electric power market.
以上のように、電力が火力9002a、原子力9002b、水力9002c等の集中型電力系統9002のみならず、家庭内発電装置9004(太陽光発電、風力発電)の発電電力を蓄電装置9003に蓄えることができる。したがって、家庭内発電装置9004の発電電力が変動しても、外部に送出する電力量を一定にしたり、または、必要なだけ放電するといった制御を行うことができる。例えば、太陽光発電で得られた電力を蓄電装置9003に蓄えると共に、夜間は料金が安い深夜電力を蓄電装置9003に蓄え、昼間の料金が高い時間帯に蓄電装置9003によって蓄電した電力を放電して利用するといった使い方もできる。
As described above, electric power can be stored not only in the centralized power system 9002 such as the thermal power 9002a, the nuclear power 9002b, and the hydropower 9002c but also in the power storage device 9003 in the power generation device 9004 (solar power generation, wind power generation). it can. Therefore, even if the generated power of the home power generation apparatus 9004 fluctuates, it is possible to perform control such that the amount of power to be sent to the outside is constant or discharge is performed as necessary. For example, the power obtained by solar power generation is stored in the power storage device 9003, and midnight power with a low charge is stored in the power storage device 9003 at night, and the power stored by the power storage device 9003 is discharged during a high daytime charge. You can also use it.
なお、この例では、制御装置9010が蓄電装置9003内に格納される例を説明したが、スマートメータ9007内に格納されてもよいし、単独で構成されていてもよい。さらに、蓄電システム9100は、集合住宅における複数の家庭を対象として用いられてもよいし、複数の戸建て住宅を対象として用いられてもよい。
In this example, the example in which the control device 9010 is stored in the power storage device 9003 has been described. However, the control device 9010 may be stored in the smart meter 9007 or may be configured independently. Furthermore, the power storage system 9100 may be used for a plurality of homes in an apartment house, or may be used for a plurality of detached houses.
<3-5.第5の実施形態(電動工具)>
本技術に係る第5の実施形態の電動工具は、本技術に係る第1の実施形態の固体電池と、固体電池から電力が供給される可動部とを備える、電動工具である。本技術に係る第5の実施形態の電動工具は、優れた電池特性や優れた信頼性を有する本技術に係る第1の実施形態の固体電池を備えているので、電動工具の性能や信頼性の向上につながる。 <3-5. Fifth Embodiment (Electric Tool)>
The power tool of the fifth embodiment according to the present technology is a power tool including the solid state battery of the first embodiment according to the present technology and a movable part to which power is supplied from the solid state battery. Since the power tool of the fifth embodiment according to the present technology includes the solid state battery of the first embodiment according to the present technology having excellent battery characteristics and excellent reliability, the performance and reliability of the power tool. Leads to improvement.
本技術に係る第5の実施形態の電動工具は、本技術に係る第1の実施形態の固体電池と、固体電池から電力が供給される可動部とを備える、電動工具である。本技術に係る第5の実施形態の電動工具は、優れた電池特性や優れた信頼性を有する本技術に係る第1の実施形態の固体電池を備えているので、電動工具の性能や信頼性の向上につながる。 <3-5. Fifth Embodiment (Electric Tool)>
The power tool of the fifth embodiment according to the present technology is a power tool including the solid state battery of the first embodiment according to the present technology and a movable part to which power is supplied from the solid state battery. Since the power tool of the fifth embodiment according to the present technology includes the solid state battery of the first embodiment according to the present technology having excellent battery characteristics and excellent reliability, the performance and reliability of the power tool. Leads to improvement.
以下に、本技術に係る第5の実施形態の電動工具について、図5を参照しながら説明する。
Hereinafter, a power tool according to a fifth embodiment of the present technology will be described with reference to FIG.
図5は、電動工具のブロック構成を表している。この電動工具は、例えば、電動ドリルであり、プラスチック材料などにより形成された工具本体98の内部に、制御部99と、電源100とを備えている。この工具本体98には、例えば、可動部であるドリル部101が稼働(回転)可能に取り付けられている。
FIG. 5 shows a block configuration of the electric tool. This electric tool is, for example, an electric drill, and includes a control unit 99 and a power supply 100 inside a tool main body 98 formed of a plastic material or the like. For example, a drill portion 101 which is a movable portion is attached to the tool body 98 so as to be operable (rotatable).
制御部99は、電動工具全体の動作(電源100の使用状態を含む)を制御するものであり、例えば、CPUなどを含んでいる。電源100は、1または2以上の固体電池(図示せず)を含んでいる。この制御部99は、図示しない動作スイッチの操作に応じて、電源100からドリル部101に電力を供給するようになっている。
The control unit 99 controls the operation of the entire power tool (including the usage state of the power supply 100), and includes, for example, a CPU. The power supply 100 includes one or more solid batteries (not shown). The control unit 99 supplies power from the power supply 100 to the drill unit 101 in response to an operation switch (not shown).
<3-6.第6の実施形態(電子機器)>
本技術に係る第6の実施形態の電子機器は、本技術に係る第1の実施形態の固体電池を備え、固体電池から電力の供給を受ける、電子機器である。上述したように、本技術に係る第6の実施形態の電子機器は、固体電池を駆動用の電源(電力供給源)として各種機能を発揮する機器である。本技術に係る第6の実施形態の電子機器は、優れた電池特性や優れた信頼性を有する本技術に係る第1の実施形態の固体電池を備えているので、電子機器の性能や信頼性の向上につながる。 <3-6. Sixth Embodiment (Electronic Device)>
The electronic device according to the sixth embodiment of the present technology is an electronic device that includes the solid state battery according to the first embodiment of the present technology and receives power supply from the solid state battery. As described above, the electronic device according to the sixth embodiment of the present technology is a device that exhibits various functions using a solid battery as a driving power source (power supply source). Since the electronic device of the sixth embodiment according to the present technology includes the solid state battery of the first embodiment according to the present technology having excellent battery characteristics and excellent reliability, the performance and reliability of the electronic device. Leads to improvement.
本技術に係る第6の実施形態の電子機器は、本技術に係る第1の実施形態の固体電池を備え、固体電池から電力の供給を受ける、電子機器である。上述したように、本技術に係る第6の実施形態の電子機器は、固体電池を駆動用の電源(電力供給源)として各種機能を発揮する機器である。本技術に係る第6の実施形態の電子機器は、優れた電池特性や優れた信頼性を有する本技術に係る第1の実施形態の固体電池を備えているので、電子機器の性能や信頼性の向上につながる。 <3-6. Sixth Embodiment (Electronic Device)>
The electronic device according to the sixth embodiment of the present technology is an electronic device that includes the solid state battery according to the first embodiment of the present technology and receives power supply from the solid state battery. As described above, the electronic device according to the sixth embodiment of the present technology is a device that exhibits various functions using a solid battery as a driving power source (power supply source). Since the electronic device of the sixth embodiment according to the present technology includes the solid state battery of the first embodiment according to the present technology having excellent battery characteristics and excellent reliability, the performance and reliability of the electronic device. Leads to improvement.
以下に、本技術に係る第6の実施形態の電子機器について、図6を参照しながら説明する。
Hereinafter, an electronic apparatus according to a sixth embodiment of the present technology will be described with reference to FIG.
本技術の第6の実施形態に係る電子機器400の構成の一例について説明する。電子機器400は、電子機器本体の電子回路401と、電池パック300とを備える。電池パック300は、正極端子331aおよび負極端子331bを介して電子回路401に対して電気的に接続されている。電子機器400は、例えば、ユーザにより電池パック300を着脱自在な構成を有している。なお、電子機器400の構成はこれに限定されるものではなく、ユーザにより電池パック300を電子機器400から取り外しできないように、電池パック300が電子機器400内に内蔵されている構成を有していてもよい。
An example of the configuration of the electronic device 400 according to the sixth embodiment of the present technology will be described. The electronic device 400 includes an electronic circuit 401 of the electronic device body and a battery pack 300. The battery pack 300 is electrically connected to the electronic circuit 401 via the positive terminal 331a and the negative terminal 331b. For example, the electronic device 400 has a configuration in which the battery pack 300 is detachable by a user. The configuration of the electronic device 400 is not limited to this, and the battery pack 300 is built in the electronic device 400 so that the user cannot remove the battery pack 300 from the electronic device 400. May be.
電池パック300の充電時には、電池パック300の正極端子331a、負極端子331bがそれぞれ、充電器(図示せず)の正極端子、負極端子に接続される。一方、電池パック300の放電時(電子機器400の使用時)には、電池パック300の正極端子331a、負極端子331bがそれぞれ、電子回路401の正極端子、負極端子に接続される。
When charging the battery pack 300, the positive terminal 331a and the negative terminal 331b of the battery pack 300 are connected to the positive terminal and the negative terminal of a charger (not shown), respectively. On the other hand, when the battery pack 300 is discharged (when the electronic apparatus 400 is used), the positive terminal 331a and the negative terminal 331b of the battery pack 300 are connected to the positive terminal and the negative terminal of the electronic circuit 401, respectively.
電子機器400としては、例えば、ノート型パーソナルコンピュータ、タブレット型コンピュータ、携帯電話(例えばスマートフォンなど)、携帯情報端末(PDA)、撮像装置(例えばデジタルスチルカメラ、デジタルビデオカメラなど)、オーディオ機器(例えばポータブルオーディオプレイヤー)、ゲーム機器、コードレスフォン子機、電子書籍、電子辞書、ラジオ、ヘッドホン、ナビゲーションシステム、メモリーカード、ペースメーカー、補聴器、照明機器、玩具、医療機器、ロボットなどが挙げられるが、これらに限定されるものではない。具体例として、頭部装着型ディスプレイ及びバンド型電子機器を説明すると、頭部装着型ディスプレイは、画像表示装置、画像表示装置を観察者の頭部に装着するための装着装置、及び画像表示装置を装着装置に取り付けるための取付け部材を備え、本技術に係る第1の実施形態の固体電池又は本技術に係る第2の実施形態の固体電池を駆動用の電源とした電子機器であり、バンド型電子機器は、バンド状に連結される複数のセグメントと、複数のセグメント内に配置される複数の電子部品と、複数のセグメント内の複数の電子部品を接続し、少なくとも1つのセグメント内に蛇行形状で配置されるフレキシブル回路基板と、を備え、上記電子部品として、例えば、本技術に係る第1の実施形態の固体電池又は本技術に係る第2の実施形態の固体電池が、上記セグメントに配される電子機器である。
Examples of the electronic device 400 include a notebook personal computer, a tablet computer, a mobile phone (for example, a smartphone), a personal digital assistant (PDA), an imaging device (for example, a digital still camera, a digital video camera), and an audio device (for example, Portable audio players), game devices, cordless phones, electronic books, electronic dictionaries, radio, headphones, navigation systems, memory cards, pacemakers, hearing aids, lighting equipment, toys, medical equipment, robots, etc. It is not limited. As a specific example, a head-mounted display and a band-type electronic device will be described. The head-mounted display includes an image display device, a mounting device for mounting the image display device on an observer's head, and the image display device. The electronic device includes a mounting member for attaching the battery to a mounting device, and uses the solid state battery of the first embodiment according to the present technology or the solid state battery of the second embodiment according to the present technology as a driving power source. Type electronic devices connect a plurality of segments connected in a band shape, a plurality of electronic components arranged in the plurality of segments, and a plurality of electronic components in the plurality of segments, and meander in at least one segment A flexible circuit board arranged in a shape, for example, as the electronic component, for example, the solid state battery of the first embodiment according to the present technology or the second embodiment according to the present technology. Body cell is an electronic device that is disposed above the segment.
電子回路401は、例えば、CPU、周辺ロジック部、インターフェース部および記憶部などを備え、電子機器400の全体を制御する。
The electronic circuit 401 includes, for example, a CPU, a peripheral logic unit, an interface unit, a storage unit, and the like, and controls the entire electronic device 400.
電池パック300は、組電池301と、充放電回路302とを備える。組電池301は、複数の二次電池301aを直列および/または並列に接続して構成されている。複数の二次電池301aは、例えばn並列m直列(n、mは正の整数)に接続される。なお、図6では、6つの二次電池301aが2並列3直列(2P3S)に接続された例が示されている。二次電池301aとしては、第1の実施形態またはその変形例に係る二次電池が用いられる。
The battery pack 300 includes an assembled battery 301 and a charge / discharge circuit 302. The assembled battery 301 is configured by connecting a plurality of secondary batteries 301a in series and / or in parallel. The plurality of secondary batteries 301a are connected, for example, in n parallel m series (n and m are positive integers). FIG. 6 shows an example in which six secondary batteries 301a are connected in two parallel three series (2P3S). As the secondary battery 301a, the secondary battery according to the first embodiment or its modification is used.
充電時には、充放電回路302は、組電池301に対する充電を制御する。一方、放電時(すなわち電子機器400の使用時)には、充放電回路302は、電子機器400に対する放電を制御する。
At the time of charging, the charging / discharging circuit 302 controls charging of the assembled battery 301. On the other hand, at the time of discharging (that is, when the electronic device 400 is used), the charging / discharging circuit 302 controls the discharging of the electronic device 400.
以下に、実施例を挙げて、本技術の効果について具体的に説明をする。なお、本技術の範囲は実施例に限定されるものではない。
Hereinafter, the effects of the present technology will be described in detail with examples. Note that the scope of the present technology is not limited to the examples.
<実施例1>
以下の実験方法にしたがって、実施例1に係る固体電池Aを作製した。 <Example 1>
A solid battery A according to Example 1 was manufactured according to the following experimental method.
以下の実験方法にしたがって、実施例1に係る固体電池Aを作製した。 <Example 1>
A solid battery A according to Example 1 was manufactured according to the following experimental method.
[実験方法]
(正極用の電極粒子の平均粒径(D50)の測定)
まず、固体電池Aに用いられる正極用の電極粒子(第1電極活物質)である、Aldrich社製のコバルト酸リチウム(LiCoO2)の平均粒径(D50)及びD90を、マイクロトラック粒度分析計(日機装)を用いて測定した。コバルト酸リチウム(LiCoO2)の平均粒径(D50)は、4.2μmであった。また、D90は、13.3μmであった。 [experimental method]
(Measurement of average particle diameter (D50) of electrode particles for positive electrode)
First, the average particle diameter (D50) and D90 of lithium cobalt oxide (LiCoO 2 ) manufactured by Aldrich, which are electrode particles for the positive electrode (first electrode active material) used in the solid battery A, were measured with a microtrack particle size analyzer. (Nikkiso) was used for measurement. The average particle diameter (D50) of lithium cobaltate (LiCoO 2 ) was 4.2 μm. Moreover, D90 was 13.3 micrometers.
(正極用の電極粒子の平均粒径(D50)の測定)
まず、固体電池Aに用いられる正極用の電極粒子(第1電極活物質)である、Aldrich社製のコバルト酸リチウム(LiCoO2)の平均粒径(D50)及びD90を、マイクロトラック粒度分析計(日機装)を用いて測定した。コバルト酸リチウム(LiCoO2)の平均粒径(D50)は、4.2μmであった。また、D90は、13.3μmであった。 [experimental method]
(Measurement of average particle diameter (D50) of electrode particles for positive electrode)
First, the average particle diameter (D50) and D90 of lithium cobalt oxide (LiCoO 2 ) manufactured by Aldrich, which are electrode particles for the positive electrode (first electrode active material) used in the solid battery A, were measured with a microtrack particle size analyzer. (Nikkiso) was used for measurement. The average particle diameter (D50) of lithium cobaltate (LiCoO 2 ) was 4.2 μm. Moreover, D90 was 13.3 micrometers.
(バッファー粒子の平均粒径(D50)の測定)
固体電池Aに用いられるバッファー粒子である、Co粒子の平均粒径(D50)を、走査電子顕微鏡を用いて測定した。Co粒子の平均粒径(D50)は、10nmであった。 (Measurement of average particle diameter (D50) of buffer particles)
The average particle diameter (D50) of Co particles, which are buffer particles used in the solid battery A, was measured using a scanning electron microscope. The average particle diameter (D50) of the Co particles was 10 nm.
固体電池Aに用いられるバッファー粒子である、Co粒子の平均粒径(D50)を、走査電子顕微鏡を用いて測定した。Co粒子の平均粒径(D50)は、10nmであった。 (Measurement of average particle diameter (D50) of buffer particles)
The average particle diameter (D50) of Co particles, which are buffer particles used in the solid battery A, was measured using a scanning electron microscope. The average particle diameter (D50) of the Co particles was 10 nm.
(粒径比の算出)
上記の正極用の電極粒子の平均粒径(D50)の測定結果及びバッファー粒子の平均粒径(D50)の測定結果を用いて、粒径比(電極粒子の平均粒径(D50)/バッファー粒子の平均粒径(D50))を算出した。算出結果として、粒径比は、420(4.2μm/10nm)であった。 (Calculation of particle size ratio)
Using the measurement result of the average particle diameter (D50) of the electrode particles for positive electrodes and the measurement result of the average particle diameter (D50) of the buffer particles, the particle diameter ratio (average particle diameter of electrode particles (D50) / buffer particles) Average particle diameter (D50)) was calculated. As a calculation result, the particle size ratio was 420 (4.2 μm / 10 nm).
上記の正極用の電極粒子の平均粒径(D50)の測定結果及びバッファー粒子の平均粒径(D50)の測定結果を用いて、粒径比(電極粒子の平均粒径(D50)/バッファー粒子の平均粒径(D50))を算出した。算出結果として、粒径比は、420(4.2μm/10nm)であった。 (Calculation of particle size ratio)
Using the measurement result of the average particle diameter (D50) of the electrode particles for positive electrodes and the measurement result of the average particle diameter (D50) of the buffer particles, the particle diameter ratio (average particle diameter of electrode particles (D50) / buffer particles) Average particle diameter (D50)) was calculated. As a calculation result, the particle size ratio was 420 (4.2 μm / 10 nm).
(正極層の作製)
上記のように平均粒径(D50)を測定したコバルト酸リチウム(LiCoO2)と、酸化物ガラス(Li2O:SiO2:B2O3=54:11:35、ガラス転移温度:380℃)とを、所定の質量比(例えば、コバルト酸リチウム:酸化物ガラス=80:20の質量比(体積比60:40vol%))で混合したのち、前記混合物とアクリルバインダとを、(コバルト酸リチウム+酸化物ガラス):アクリルバインダ=70:30の質量比で混合し、その混合したものを、酢酸ブチルに固形分が30質量%になるように混合し、5mmφのジルコニアボールとともに、4時間攪拌した。それを離形フィルム上に塗布し、80℃で10分乾燥して、実施例1に係る固体電池Aの正極層を作製した。 (Preparation of positive electrode layer)
Lithium cobaltate (LiCoO 2 ) whose average particle diameter (D50) was measured as described above, and oxide glass (Li 2 O: SiO 2 : B 2 O 3 = 54: 11: 35, glass transition temperature: 380 ° C. ) At a predetermined mass ratio (for example, lithium cobaltate: oxide glass = 80: 20 mass ratio (volume ratio 60:40 vol%)), and then the mixture and the acrylic binder are (cobalt acid) Lithium + oxide glass): Acrylic binder = 70: 30 and mixed, and the mixture was mixed with butyl acetate so that the solid content was 30% by mass, together with 5 mmφ zirconia balls for 4 hours. Stir. It was coated on a release film and dried at 80 ° C. for 10 minutes to produce a positive electrode layer of solid battery A according to Example 1.
上記のように平均粒径(D50)を測定したコバルト酸リチウム(LiCoO2)と、酸化物ガラス(Li2O:SiO2:B2O3=54:11:35、ガラス転移温度:380℃)とを、所定の質量比(例えば、コバルト酸リチウム:酸化物ガラス=80:20の質量比(体積比60:40vol%))で混合したのち、前記混合物とアクリルバインダとを、(コバルト酸リチウム+酸化物ガラス):アクリルバインダ=70:30の質量比で混合し、その混合したものを、酢酸ブチルに固形分が30質量%になるように混合し、5mmφのジルコニアボールとともに、4時間攪拌した。それを離形フィルム上に塗布し、80℃で10分乾燥して、実施例1に係る固体電池Aの正極層を作製した。 (Preparation of positive electrode layer)
Lithium cobaltate (LiCoO 2 ) whose average particle diameter (D50) was measured as described above, and oxide glass (Li 2 O: SiO 2 : B 2 O 3 = 54: 11: 35, glass transition temperature: 380 ° C. ) At a predetermined mass ratio (for example, lithium cobaltate: oxide glass = 80: 20 mass ratio (volume ratio 60:40 vol%)), and then the mixture and the acrylic binder are (cobalt acid) Lithium + oxide glass): Acrylic binder = 70: 30 and mixed, and the mixture was mixed with butyl acetate so that the solid content was 30% by mass, together with 5 mmφ zirconia balls for 4 hours. Stir. It was coated on a release film and dried at 80 ° C. for 10 minutes to produce a positive electrode layer of solid battery A according to Example 1.
(バッファー層の作製)
上記のように平均粒径(D50)を測定したCo粒子と、酸化物ガラス(Li2O:SiO2:B2O3=54:11:35、ガラス転移温度:380℃)とを、所定の質量比(例えば、コバルト酸リチウム:酸化物ガラス=80:20の質量比(体積比60:40vol%))で混合したのち、前記混合物とアクリルバインダとを、(コバルト酸リチウム+酸化物ガラス):アクリルバインダ=70:30の質量比で混合し、その混合したものを、酢酸ブチルに固形分が30質量%になるように混合し、5mmφのジルコニアボールとともに、4時間攪拌した。それを離形フィルム上に塗布し、80℃で10分乾燥して、実施例1に係る固体電池Aのバッファー層を作製した。 (Preparation of buffer layer)
Co particles whose average particle diameter (D50) was measured as described above, and oxide glass (Li 2 O: SiO 2 : B 2 O 3 = 54: 11: 35, glass transition temperature: 380 ° C.) were predetermined. (For example, lithium cobaltate: oxide glass = 80: 20 mass ratio (volume ratio 60:40 vol%)), and then the mixture and the acrylic binder are (lithium cobaltate + oxide glass). ): Acrylic binder = 70: 30 The mass ratio was mixed, and the mixture was mixed with butyl acetate so that the solid content was 30% by mass, and stirred with 5 mmφ zirconia balls for 4 hours. It was applied onto a release film and dried at 80 ° C. for 10 minutes to produce a buffer layer of solid battery A according to Example 1.
上記のように平均粒径(D50)を測定したCo粒子と、酸化物ガラス(Li2O:SiO2:B2O3=54:11:35、ガラス転移温度:380℃)とを、所定の質量比(例えば、コバルト酸リチウム:酸化物ガラス=80:20の質量比(体積比60:40vol%))で混合したのち、前記混合物とアクリルバインダとを、(コバルト酸リチウム+酸化物ガラス):アクリルバインダ=70:30の質量比で混合し、その混合したものを、酢酸ブチルに固形分が30質量%になるように混合し、5mmφのジルコニアボールとともに、4時間攪拌した。それを離形フィルム上に塗布し、80℃で10分乾燥して、実施例1に係る固体電池Aのバッファー層を作製した。 (Preparation of buffer layer)
Co particles whose average particle diameter (D50) was measured as described above, and oxide glass (Li 2 O: SiO 2 : B 2 O 3 = 54: 11: 35, glass transition temperature: 380 ° C.) were predetermined. (For example, lithium cobaltate: oxide glass = 80: 20 mass ratio (volume ratio 60:40 vol%)), and then the mixture and the acrylic binder are (lithium cobaltate + oxide glass). ): Acrylic binder = 70: 30 The mass ratio was mixed, and the mixture was mixed with butyl acetate so that the solid content was 30% by mass, and stirred with 5 mmφ zirconia balls for 4 hours. It was applied onto a release film and dried at 80 ° C. for 10 minutes to produce a buffer layer of solid battery A according to Example 1.
(固体電解質層の作製)
ガーネット型酸化物結晶電解質(Li6BaLa2Ta2O12)と酸化物ガラス(Li2O:SiO2:B2O3=54:11:35、ガラス転移温度:380℃)とを、所定の質量比(例えば、ガーネット型酸化物結晶電解質:酸化物ガラス=70:30の質量比(体積比50:50vol%))で混合したのち、前記混合物とアクリルバインダとを、(ガーネット型酸化物結晶電解質+酸化物ガラス):アクリルバインダ=70:30の質量比で混合し、その混合したものを酢酸ブチルに固形分が30質量%になるように混合し、5mmφのジルコニアボールとともに、4時間攪拌した。それを離形フィルム上に塗布し、80℃で10分乾燥して、実施例1に係る固体電池Aの固体電解質層を作製した。 (Preparation of solid electrolyte layer)
Garnet-type oxide crystal electrolyte (Li 6 BaLa 2 Ta 2 O 12 ) and oxide glass (Li 2 O: SiO 2 : B 2 O 3 = 54: 11: 35, glass transition temperature: 380 ° C.) are predetermined. (For example, garnet-type oxide crystal electrolyte: oxide glass = 70: 30 mass ratio (volume ratio 50:50 vol%)), and then the mixture and the acrylic binder are mixed with (garnet-type oxide). (Crystal electrolyte + oxide glass): Acrylic binder = 70: 30 The mass ratio was mixed, and the mixture was mixed with butyl acetate so that the solid content was 30% by mass, together with 5 mmφ zirconia balls for 4 hours. Stir. It was coated on a release film and dried at 80 ° C. for 10 minutes to produce a solid electrolyte layer of the solid battery A according to Example 1.
ガーネット型酸化物結晶電解質(Li6BaLa2Ta2O12)と酸化物ガラス(Li2O:SiO2:B2O3=54:11:35、ガラス転移温度:380℃)とを、所定の質量比(例えば、ガーネット型酸化物結晶電解質:酸化物ガラス=70:30の質量比(体積比50:50vol%))で混合したのち、前記混合物とアクリルバインダとを、(ガーネット型酸化物結晶電解質+酸化物ガラス):アクリルバインダ=70:30の質量比で混合し、その混合したものを酢酸ブチルに固形分が30質量%になるように混合し、5mmφのジルコニアボールとともに、4時間攪拌した。それを離形フィルム上に塗布し、80℃で10分乾燥して、実施例1に係る固体電池Aの固体電解質層を作製した。 (Preparation of solid electrolyte layer)
Garnet-type oxide crystal electrolyte (Li 6 BaLa 2 Ta 2 O 12 ) and oxide glass (Li 2 O: SiO 2 : B 2 O 3 = 54: 11: 35, glass transition temperature: 380 ° C.) are predetermined. (For example, garnet-type oxide crystal electrolyte: oxide glass = 70: 30 mass ratio (volume ratio 50:50 vol%)), and then the mixture and the acrylic binder are mixed with (garnet-type oxide). (Crystal electrolyte + oxide glass): Acrylic binder = 70: 30 The mass ratio was mixed, and the mixture was mixed with butyl acetate so that the solid content was 30% by mass, together with 5 mmφ zirconia balls for 4 hours. Stir. It was coated on a release film and dried at 80 ° C. for 10 minutes to produce a solid electrolyte layer of the solid battery A according to Example 1.
(負極層の作製)
球状天然黒鉛と、酸化物ガラス(Li2O:SiO2:B2O3=54:11:35、ガラス転移温度:380℃)とを、所定の質量比(例えば、球状天然黒鉛:酸化物ガラス=80:20の質量比(体積比80:20vol%))で混合したのち、前記混合物とアクリルバインダとを、(球状天然黒鉛+酸化物ガラス):アクリルバインダ=70:30の質量比で混合し、その混合したものを、酢酸ブチルに固形分が30質量%になるように混合し、5mmφのジルコニアボールとともに4時間攪拌した。それを離形フィルム上に塗布し、80℃で10分乾燥して、実施例1に係る固体電池Aの負極層を作製した。 (Preparation of negative electrode layer)
Spherical natural graphite and oxide glass (Li 2 O: SiO 2 : B 2 O 3 = 54: 11: 35, glass transition temperature: 380 ° C.) and a predetermined mass ratio (for example, spherical natural graphite: oxide) After mixing at a mass ratio of glass = 80: 20 (volume ratio 80:20 vol%)), the mixture and the acrylic binder were (spherical natural graphite + oxide glass): acryl binder = 70: 30 in a mass ratio. The mixture was mixed with butyl acetate so that the solid content was 30% by mass, and stirred with 5 mmφ zirconia balls for 4 hours. It was coated on a release film and dried at 80 ° C. for 10 minutes to produce a negative electrode layer of the solid battery A according to Example 1.
球状天然黒鉛と、酸化物ガラス(Li2O:SiO2:B2O3=54:11:35、ガラス転移温度:380℃)とを、所定の質量比(例えば、球状天然黒鉛:酸化物ガラス=80:20の質量比(体積比80:20vol%))で混合したのち、前記混合物とアクリルバインダとを、(球状天然黒鉛+酸化物ガラス):アクリルバインダ=70:30の質量比で混合し、その混合したものを、酢酸ブチルに固形分が30質量%になるように混合し、5mmφのジルコニアボールとともに4時間攪拌した。それを離形フィルム上に塗布し、80℃で10分乾燥して、実施例1に係る固体電池Aの負極層を作製した。 (Preparation of negative electrode layer)
Spherical natural graphite and oxide glass (Li 2 O: SiO 2 : B 2 O 3 = 54: 11: 35, glass transition temperature: 380 ° C.) and a predetermined mass ratio (for example, spherical natural graphite: oxide) After mixing at a mass ratio of glass = 80: 20 (volume ratio 80:20 vol%)), the mixture and the acrylic binder were (spherical natural graphite + oxide glass): acryl binder = 70: 30 in a mass ratio. The mixture was mixed with butyl acetate so that the solid content was 30% by mass, and stirred with 5 mmφ zirconia balls for 4 hours. It was coated on a release film and dried at 80 ° C. for 10 minutes to produce a negative electrode layer of the solid battery A according to Example 1.
(集電層の作製)
TIMCAL社製KS6と、酸化物ガラス(Li2O:SiO2:B2O3=54:11:35、ガラス転移温度:380℃)とを、所定の質量比(例えば、KS6:酸化物ガラス=70:30の質量比(体積比70:30vol%))で混合したのち、前記混合物とアクリルバインダとを、(KS6+酸化物ガラス):アクリルバインダ=70:30の質量比で混合し、その混合したものを、酢酸ブチルに固形分が30質量%になるように混合し、5mmφのジルコニアボールとともに、4時間攪拌した。それを離形フィルム上に塗布し、80℃で10分乾燥して、実施例1に係る固体電池Aの集電層を作製した。 (Preparation of current collecting layer)
TIMCAL KS6 and oxide glass (Li 2 O: SiO 2 : B 2 O 3 = 54: 11: 35, glass transition temperature: 380 ° C.) in a predetermined mass ratio (for example, KS6: oxide glass) = 70: 30 mass ratio (volume ratio 70:30 vol%)), the mixture and the acrylic binder were mixed at a mass ratio of (KS6 + oxide glass): acrylic binder = 70: 30, The mixture was mixed with butyl acetate so that the solid content was 30% by mass, and stirred with 5 mmφ zirconia balls for 4 hours. It was coated on a release film and dried at 80 ° C. for 10 minutes to produce a current collecting layer of the solid battery A according to Example 1.
TIMCAL社製KS6と、酸化物ガラス(Li2O:SiO2:B2O3=54:11:35、ガラス転移温度:380℃)とを、所定の質量比(例えば、KS6:酸化物ガラス=70:30の質量比(体積比70:30vol%))で混合したのち、前記混合物とアクリルバインダとを、(KS6+酸化物ガラス):アクリルバインダ=70:30の質量比で混合し、その混合したものを、酢酸ブチルに固形分が30質量%になるように混合し、5mmφのジルコニアボールとともに、4時間攪拌した。それを離形フィルム上に塗布し、80℃で10分乾燥して、実施例1に係る固体電池Aの集電層を作製した。 (Preparation of current collecting layer)
TIMCAL KS6 and oxide glass (Li 2 O: SiO 2 : B 2 O 3 = 54: 11: 35, glass transition temperature: 380 ° C.) in a predetermined mass ratio (for example, KS6: oxide glass) = 70: 30 mass ratio (volume ratio 70:30 vol%)), the mixture and the acrylic binder were mixed at a mass ratio of (KS6 + oxide glass): acrylic binder = 70: 30, The mixture was mixed with butyl acetate so that the solid content was 30% by mass, and stirred with 5 mmφ zirconia balls for 4 hours. It was coated on a release film and dried at 80 ° C. for 10 minutes to produce a current collecting layer of the solid battery A according to Example 1.
(絶縁層の作製)
アルミナ粒子(AHP300 日本軽金属)と、酸化物ガラス(Li2O:SiO2:B2O3=54:11:35)とを、所定の質量比(例えば、アルミナ粒子:酸化物ガラス=75:25の質量比(体積比60:40vol%)の場合)で混合したのち、前記混合物とアクリルバインダとを、(アルミナ粒子+酸化物ガラス):アクリルバインダ=70:30の質量比で混合し、その混合したものを、酢酸ブチルに固形分が30質量%になるように混合し、5mmφのジルコニアボールとともに、4時間攪拌した。それを離形フィルム上に塗布し、80℃で10分乾燥して、実施例1に係る固体電池Aの絶縁層を作製した。 (Preparation of insulating layer)
Alumina particles (AHP300 Nippon Light Metal) and oxide glass (Li 2 O: SiO 2 : B 2 O 3 = 54: 11: 35) are mixed at a predetermined mass ratio (for example, alumina particles: oxide glass = 75: After mixing at a mass ratio of 25 (volume ratio 60:40 vol%), the mixture and the acrylic binder were mixed at a mass ratio of (alumina particles + oxide glass): acrylic binder = 70: 30, The mixture was mixed with butyl acetate so that the solid content was 30% by mass, and stirred with 5 mmφ zirconia balls for 4 hours. It was applied onto a release film and dried at 80 ° C. for 10 minutes to produce an insulating layer of the solid battery A according to Example 1.
アルミナ粒子(AHP300 日本軽金属)と、酸化物ガラス(Li2O:SiO2:B2O3=54:11:35)とを、所定の質量比(例えば、アルミナ粒子:酸化物ガラス=75:25の質量比(体積比60:40vol%)の場合)で混合したのち、前記混合物とアクリルバインダとを、(アルミナ粒子+酸化物ガラス):アクリルバインダ=70:30の質量比で混合し、その混合したものを、酢酸ブチルに固形分が30質量%になるように混合し、5mmφのジルコニアボールとともに、4時間攪拌した。それを離形フィルム上に塗布し、80℃で10分乾燥して、実施例1に係る固体電池Aの絶縁層を作製した。 (Preparation of insulating layer)
Alumina particles (AHP300 Nippon Light Metal) and oxide glass (Li 2 O: SiO 2 : B 2 O 3 = 54: 11: 35) are mixed at a predetermined mass ratio (for example, alumina particles: oxide glass = 75: After mixing at a mass ratio of 25 (volume ratio 60:40 vol%), the mixture and the acrylic binder were mixed at a mass ratio of (alumina particles + oxide glass): acrylic binder = 70: 30, The mixture was mixed with butyl acetate so that the solid content was 30% by mass, and stirred with 5 mmφ zirconia balls for 4 hours. It was applied onto a release film and dried at 80 ° C. for 10 minutes to produce an insulating layer of the solid battery A according to Example 1.
(保護層の作製)
アルミナ粒子(AHP300 日本軽金属)と、酸化物ガラス(Li2O:SiO2:B2O3=54:11:35)とを、下記の表1に示される体積分率(体積%(vol%))になるように所定の質量比(例えば、アルミナ粒子:酸化物ガラス=65:35の質量比(体積比50:50vol%)の場合)で混合したのち、前記混合物とアクリルバインダとを、(アルミナ粒子+酸化物ガラス):アクリルバインダ=70:30の質量比で混合し、その混合したものを、酢酸ブチルに固形分が30質量%になるように混合し、5mmφのジルコニアボールとともに、4時間攪拌した。それを離形フィルム上に塗布し、80℃で10分乾燥して、実施例1に係る固体電池Aの保護層を作製した。 (Preparation of protective layer)
Alumina particles (AHP300 Nippon Light Metal) and oxide glass (Li 2 O: SiO 2 : B 2 O 3 = 54: 11: 35) were used for volume fractions (volume% (vol%) shown in Table 1 below. )) After mixing at a predetermined mass ratio (for example, when the alumina particles: oxide glass = 65: 35 mass ratio (volume ratio 50:50 vol%)), the mixture and the acrylic binder are (Alumina particles + oxide glass): Acrylic binder = 70:30 mixed at a mass ratio, and the mixture was mixed with butyl acetate so that the solid content was 30% by mass, along with 5 mmφ zirconia balls, Stir for 4 hours. It was coated on a release film and dried at 80 ° C. for 10 minutes to produce a protective layer for the solid battery A according to Example 1.
アルミナ粒子(AHP300 日本軽金属)と、酸化物ガラス(Li2O:SiO2:B2O3=54:11:35)とを、下記の表1に示される体積分率(体積%(vol%))になるように所定の質量比(例えば、アルミナ粒子:酸化物ガラス=65:35の質量比(体積比50:50vol%)の場合)で混合したのち、前記混合物とアクリルバインダとを、(アルミナ粒子+酸化物ガラス):アクリルバインダ=70:30の質量比で混合し、その混合したものを、酢酸ブチルに固形分が30質量%になるように混合し、5mmφのジルコニアボールとともに、4時間攪拌した。それを離形フィルム上に塗布し、80℃で10分乾燥して、実施例1に係る固体電池Aの保護層を作製した。 (Preparation of protective layer)
Alumina particles (AHP300 Nippon Light Metal) and oxide glass (Li 2 O: SiO 2 : B 2 O 3 = 54: 11: 35) were used for volume fractions (volume% (vol%) shown in Table 1 below. )) After mixing at a predetermined mass ratio (for example, when the alumina particles: oxide glass = 65: 35 mass ratio (volume ratio 50:50 vol%)), the mixture and the acrylic binder are (Alumina particles + oxide glass): Acrylic binder = 70:30 mixed at a mass ratio, and the mixture was mixed with butyl acetate so that the solid content was 30% by mass, along with 5 mmφ zirconia balls, Stir for 4 hours. It was coated on a release film and dried at 80 ° C. for 10 minutes to produce a protective layer for the solid battery A according to Example 1.
(固体電池の作製)
上記で得られたそれぞれの正極層、バッファー層、固体電解質層、負極層、集電層、絶縁層及び保護層を、所定の形状に加工して、その後、離型フィルムから離型して、保護層、絶縁層、集電層、負極層、固体電解質層、バッファー層、正極層、集電層、絶縁層及び保護層(計9層)を、この順で積層した後、100℃10分間で圧着して、実施例1(固体電池A)で用いられる積層構造体を得た。なお、積層構造に関しては、バイポーラ型に積層してもよい。また、正極層、バッファー層、固体電解質層、負極層、集電層、絶縁層及び保護層の各層の全てをグリーンシート層にするのではなく、ある特定のグリーンシート層に印刷等で、直接積層構造を形成してもよい。 (Production of solid battery)
Each positive electrode layer, buffer layer, solid electrolyte layer, negative electrode layer, current collecting layer, insulating layer and protective layer obtained above are processed into a predetermined shape, and then released from the release film, After laminating a protective layer, an insulating layer, a current collecting layer, a negative electrode layer, a solid electrolyte layer, a buffer layer, a positive electrode layer, a current collecting layer, an insulating layer and a protective layer (9 layers in total) in this order, 100 ° C. for 10 minutes The laminated structure used in Example 1 (solid battery A) was obtained by pressure bonding. Note that the stacked structure may be stacked in a bipolar type. Also, the positive electrode layer, the buffer layer, the solid electrolyte layer, the negative electrode layer, the current collecting layer, the insulating layer, and the protective layer are not all green sheets, but directly on a specific green sheet layer by printing, etc. A laminated structure may be formed.
上記で得られたそれぞれの正極層、バッファー層、固体電解質層、負極層、集電層、絶縁層及び保護層を、所定の形状に加工して、その後、離型フィルムから離型して、保護層、絶縁層、集電層、負極層、固体電解質層、バッファー層、正極層、集電層、絶縁層及び保護層(計9層)を、この順で積層した後、100℃10分間で圧着して、実施例1(固体電池A)で用いられる積層構造体を得た。なお、積層構造に関しては、バイポーラ型に積層してもよい。また、正極層、バッファー層、固体電解質層、負極層、集電層、絶縁層及び保護層の各層の全てをグリーンシート層にするのではなく、ある特定のグリーンシート層に印刷等で、直接積層構造を形成してもよい。 (Production of solid battery)
Each positive electrode layer, buffer layer, solid electrolyte layer, negative electrode layer, current collecting layer, insulating layer and protective layer obtained above are processed into a predetermined shape, and then released from the release film, After laminating a protective layer, an insulating layer, a current collecting layer, a negative electrode layer, a solid electrolyte layer, a buffer layer, a positive electrode layer, a current collecting layer, an insulating layer and a protective layer (9 layers in total) in this order, 100 ° C. for 10 minutes The laminated structure used in Example 1 (solid battery A) was obtained by pressure bonding. Note that the stacked structure may be stacked in a bipolar type. Also, the positive electrode layer, the buffer layer, the solid electrolyte layer, the negative electrode layer, the current collecting layer, the insulating layer, and the protective layer are not all green sheets, but directly on a specific green sheet layer by printing, etc. A laminated structure may be formed.
100℃10分間で圧着後、正極層、バッファー層、固体電解質層、負極層、集電層、絶縁層及び保護層の積層構造体を300℃10時間で加熱してアクリルバインダを除去した。その後、積層構造体を400℃30分で焼結した。
After pressure bonding at 100 ° C. for 10 minutes, the laminated structure of the positive electrode layer, the buffer layer, the solid electrolyte layer, the negative electrode layer, the current collecting layer, the insulating layer, and the protective layer was heated at 300 ° C. for 10 hours to remove the acrylic binder. Thereafter, the laminated structure was sintered at 400 ° C. for 30 minutes.
(端子層の作製)
Ag粉末(大研化学工業)と、酸化物ガラス(Bi-B系ガラス 旭硝子社製ASF1096)とを所定の質量比(例えば、Ag粉末:酸化物ガラス=60:40の質量比(体積比50:50vol%))で混合したのち、前記混合物とアクリルバインダとを、(Ag粉末+酸化物ガラス):アクリルバインダ=70:30の質量比で混合し、その混合したものを、テルピネオールに固形分が50質量%になるように混合し、5mmφのジルコニアボールとともに、4時間攪拌した。それを離形フィルム上に塗布したのち、電極が露出した端面を上記の積層構造体に付着させ、400℃1時間で焼結して、端子電極を形成した。 (Preparation of terminal layer)
Ag powder (Daiken Chemical Co., Ltd.) and oxide glass (Bi-B glass ASF1096 manufactured by Asahi Glass Co., Ltd.) have a predetermined mass ratio (for example, Ag powder: oxide glass = 60: 40 mass ratio (volume ratio 50). : 50 vol%)), and the mixture and the acrylic binder were mixed at a mass ratio of (Ag powder + oxide glass): acrylic binder = 70: 30, and the mixture was mixed with terpineol as a solid content. Was mixed so as to be 50% by mass, and stirred with 5 mmφ zirconia balls for 4 hours. After coating it on a release film, the end face where the electrode was exposed was attached to the above laminated structure and sintered at 400 ° C. for 1 hour to form a terminal electrode.
Ag粉末(大研化学工業)と、酸化物ガラス(Bi-B系ガラス 旭硝子社製ASF1096)とを所定の質量比(例えば、Ag粉末:酸化物ガラス=60:40の質量比(体積比50:50vol%))で混合したのち、前記混合物とアクリルバインダとを、(Ag粉末+酸化物ガラス):アクリルバインダ=70:30の質量比で混合し、その混合したものを、テルピネオールに固形分が50質量%になるように混合し、5mmφのジルコニアボールとともに、4時間攪拌した。それを離形フィルム上に塗布したのち、電極が露出した端面を上記の積層構造体に付着させ、400℃1時間で焼結して、端子電極を形成した。 (Preparation of terminal layer)
Ag powder (Daiken Chemical Co., Ltd.) and oxide glass (Bi-B glass ASF1096 manufactured by Asahi Glass Co., Ltd.) have a predetermined mass ratio (for example, Ag powder: oxide glass = 60: 40 mass ratio (volume ratio 50). : 50 vol%)), and the mixture and the acrylic binder were mixed at a mass ratio of (Ag powder + oxide glass): acrylic binder = 70: 30, and the mixture was mixed with terpineol as a solid content. Was mixed so as to be 50% by mass, and stirred with 5 mmφ zirconia balls for 4 hours. After coating it on a release film, the end face where the electrode was exposed was attached to the above laminated structure and sintered at 400 ° C. for 1 hour to form a terminal electrode.
上記で得られた端子層(端子電極)に電流リードを設置して、実施例1に係る固体電池Aを得た。
Current leads were placed on the terminal layer (terminal electrode) obtained above to obtain a solid battery A according to Example 1.
<実施例2>
以下の実験方法にしたがって、実施例2に係る固体電池Bを作製した。 <Example 2>
A solid battery B according to Example 2 was produced according to the following experimental method.
以下の実験方法にしたがって、実施例2に係る固体電池Bを作製した。 <Example 2>
A solid battery B according to Example 2 was produced according to the following experimental method.
[実験方法]
(正極用の電極粒子の平均粒径(D50)の測定)
まず、固体電池Bに用いられる正極用の電極粒子(第1電極活物質)である、Aldrich社製のコバルト酸リチウム(LiCoO2)の平均粒径(D50)を、マイクロトラック粒度分析計(日機装)を用いて測定した。コバルト酸リチウム(LiCoO2)の平均粒径(D50)は、2.5μmであった。 [experimental method]
(Measurement of average particle diameter (D50) of electrode particles for positive electrode)
First, an average particle diameter (D50) of lithium cobaltate (LiCoO 2 ) manufactured by Aldrich, which is a positive electrode particle (first electrode active material) used in the solid battery B, was measured with a microtrack particle size analyzer (Nikkiso). ). The average particle diameter (D50) of lithium cobaltate (LiCoO 2 ) was 2.5 μm.
(正極用の電極粒子の平均粒径(D50)の測定)
まず、固体電池Bに用いられる正極用の電極粒子(第1電極活物質)である、Aldrich社製のコバルト酸リチウム(LiCoO2)の平均粒径(D50)を、マイクロトラック粒度分析計(日機装)を用いて測定した。コバルト酸リチウム(LiCoO2)の平均粒径(D50)は、2.5μmであった。 [experimental method]
(Measurement of average particle diameter (D50) of electrode particles for positive electrode)
First, an average particle diameter (D50) of lithium cobaltate (LiCoO 2 ) manufactured by Aldrich, which is a positive electrode particle (first electrode active material) used in the solid battery B, was measured with a microtrack particle size analyzer (Nikkiso). ). The average particle diameter (D50) of lithium cobaltate (LiCoO 2 ) was 2.5 μm.
(バッファー粒子の平均粒径(D50)の測定)
固体電池Aに用いられるバッファー粒子である、LiCoO2粒子の平均粒径(D50)を、マイクロトラック粒度分析計(日機装)を用いて測定した。LiCoO2粒子の平均粒径(D50)は、500nmであった。 (Measurement of average particle diameter (D50) of buffer particles)
The average particle diameter (D50) of LiCoO 2 particles, which are buffer particles used in the solid battery A, was measured using a Microtrac particle size analyzer (Nikkiso). The average particle diameter (D50) of the LiCoO 2 particles was 500 nm.
固体電池Aに用いられるバッファー粒子である、LiCoO2粒子の平均粒径(D50)を、マイクロトラック粒度分析計(日機装)を用いて測定した。LiCoO2粒子の平均粒径(D50)は、500nmであった。 (Measurement of average particle diameter (D50) of buffer particles)
The average particle diameter (D50) of LiCoO 2 particles, which are buffer particles used in the solid battery A, was measured using a Microtrac particle size analyzer (Nikkiso). The average particle diameter (D50) of the LiCoO 2 particles was 500 nm.
(粒径比の算出)
上記の正極用の電極粒子の平均粒径(D50)の測定結果及びバッファー粒子の平均粒径(D50)の測定結果を用いて、粒径比(電極粒子の平均粒径(D50)/バッファー粒子の平均粒径(D50))を算出した。算出結果として、粒径比は、5(2.5μm/500nm)であった。 (Calculation of particle size ratio)
Using the measurement result of the average particle diameter (D50) of the electrode particles for positive electrodes and the measurement result of the average particle diameter (D50) of the buffer particles, the particle diameter ratio (average particle diameter of electrode particles (D50) / buffer particles) Average particle diameter (D50)) was calculated. As a calculation result, the particle size ratio was 5 (2.5 μm / 500 nm).
上記の正極用の電極粒子の平均粒径(D50)の測定結果及びバッファー粒子の平均粒径(D50)の測定結果を用いて、粒径比(電極粒子の平均粒径(D50)/バッファー粒子の平均粒径(D50))を算出した。算出結果として、粒径比は、5(2.5μm/500nm)であった。 (Calculation of particle size ratio)
Using the measurement result of the average particle diameter (D50) of the electrode particles for positive electrodes and the measurement result of the average particle diameter (D50) of the buffer particles, the particle diameter ratio (average particle diameter of electrode particles (D50) / buffer particles) Average particle diameter (D50)) was calculated. As a calculation result, the particle size ratio was 5 (2.5 μm / 500 nm).
(正極層の作製)
上記のように平均粒径(D50)を測定したコバルト酸リチウム(LiCoO2)と、酸化物ガラス(Li2O:SiO2:B2O3=54:11:35、ガラス転移温度:380℃)とを、所定の質量比(例えば、コバルト酸リチウム:酸化物ガラス=80:20の質量比(体積比60:40vol%))で混合したのち、前記混合物とアクリルバインダとを、(コバルト酸リチウム+酸化物ガラス):アクリルバインダ=70:30の質量比で混合し、その混合したものを、酢酸ブチルに固形分が30質量%になるように混合し、5mmφのジルコニアボールとともに、4時間攪拌した。それを離形フィルム上に塗布し、80℃で10分乾燥して、実施例2に係る固体電池Bの正極層を作製した。 (Preparation of positive electrode layer)
Lithium cobaltate (LiCoO 2 ) whose average particle diameter (D50) was measured as described above, and oxide glass (Li 2 O: SiO 2 : B 2 O 3 = 54: 11: 35, glass transition temperature: 380 ° C. ) At a predetermined mass ratio (for example, lithium cobaltate: oxide glass = 80: 20 mass ratio (volume ratio 60:40 vol%)), and then the mixture and the acrylic binder are (cobalt acid) Lithium + oxide glass): Acrylic binder = 70: 30 and mixed, and the mixture was mixed with butyl acetate so that the solid content was 30% by mass, together with 5 mmφ zirconia balls for 4 hours. Stir. It was coated on a release film and dried at 80 ° C. for 10 minutes to produce a positive electrode layer of solid battery B according to Example 2.
上記のように平均粒径(D50)を測定したコバルト酸リチウム(LiCoO2)と、酸化物ガラス(Li2O:SiO2:B2O3=54:11:35、ガラス転移温度:380℃)とを、所定の質量比(例えば、コバルト酸リチウム:酸化物ガラス=80:20の質量比(体積比60:40vol%))で混合したのち、前記混合物とアクリルバインダとを、(コバルト酸リチウム+酸化物ガラス):アクリルバインダ=70:30の質量比で混合し、その混合したものを、酢酸ブチルに固形分が30質量%になるように混合し、5mmφのジルコニアボールとともに、4時間攪拌した。それを離形フィルム上に塗布し、80℃で10分乾燥して、実施例2に係る固体電池Bの正極層を作製した。 (Preparation of positive electrode layer)
Lithium cobaltate (LiCoO 2 ) whose average particle diameter (D50) was measured as described above, and oxide glass (Li 2 O: SiO 2 : B 2 O 3 = 54: 11: 35, glass transition temperature: 380 ° C. ) At a predetermined mass ratio (for example, lithium cobaltate: oxide glass = 80: 20 mass ratio (volume ratio 60:40 vol%)), and then the mixture and the acrylic binder are (cobalt acid) Lithium + oxide glass): Acrylic binder = 70: 30 and mixed, and the mixture was mixed with butyl acetate so that the solid content was 30% by mass, together with 5 mmφ zirconia balls for 4 hours. Stir. It was coated on a release film and dried at 80 ° C. for 10 minutes to produce a positive electrode layer of solid battery B according to Example 2.
(バッファー層の作製)
上記のように平均粒径(D50)を測定したLiCoO2粒子と、酸化物ガラス(Li2O:SiO2:B2O3=54:11:35、ガラス転移温度:380℃)とを、所定の質量比(例えば、コバルト酸リチウム:酸化物ガラス=80:20の質量比(体積比60:40vol%))で混合したのち、前記混合物とアクリルバインダとを、(コバルト酸リチウム+酸化物ガラス):アクリルバインダ=70:30の質量比で混合し、その混合したものを、酢酸ブチルに固形分が30質量%になるように混合し、5mmφのジルコニアボールとともに、4時間攪拌した。それを離形フィルム上に塗布し、80℃で10分乾燥して、実施例2に係る固体電池Bのバッファー層を作製した。 (Preparation of buffer layer)
LiCoO 2 particles whose average particle diameter (D50) was measured as described above and oxide glass (Li 2 O: SiO 2 : B 2 O 3 = 54: 11: 35, glass transition temperature: 380 ° C.) After mixing at a predetermined mass ratio (for example, lithium cobalt oxide: oxide glass = 80: 20 mass ratio (volume ratio 60:40 vol%)), the mixture and the acrylic binder are combined with (lithium cobalt oxide + oxide). Glass): Acrylic binder = 70: 30 The mass ratio was mixed, and the mixture was mixed with butyl acetate so that the solid content was 30% by mass, and stirred with 5 mmφ zirconia balls for 4 hours. It was coated on a release film and dried at 80 ° C. for 10 minutes to produce a buffer layer of solid battery B according to Example 2.
上記のように平均粒径(D50)を測定したLiCoO2粒子と、酸化物ガラス(Li2O:SiO2:B2O3=54:11:35、ガラス転移温度:380℃)とを、所定の質量比(例えば、コバルト酸リチウム:酸化物ガラス=80:20の質量比(体積比60:40vol%))で混合したのち、前記混合物とアクリルバインダとを、(コバルト酸リチウム+酸化物ガラス):アクリルバインダ=70:30の質量比で混合し、その混合したものを、酢酸ブチルに固形分が30質量%になるように混合し、5mmφのジルコニアボールとともに、4時間攪拌した。それを離形フィルム上に塗布し、80℃で10分乾燥して、実施例2に係る固体電池Bのバッファー層を作製した。 (Preparation of buffer layer)
LiCoO 2 particles whose average particle diameter (D50) was measured as described above and oxide glass (Li 2 O: SiO 2 : B 2 O 3 = 54: 11: 35, glass transition temperature: 380 ° C.) After mixing at a predetermined mass ratio (for example, lithium cobalt oxide: oxide glass = 80: 20 mass ratio (volume ratio 60:40 vol%)), the mixture and the acrylic binder are combined with (lithium cobalt oxide + oxide). Glass): Acrylic binder = 70: 30 The mass ratio was mixed, and the mixture was mixed with butyl acetate so that the solid content was 30% by mass, and stirred with 5 mmφ zirconia balls for 4 hours. It was coated on a release film and dried at 80 ° C. for 10 minutes to produce a buffer layer of solid battery B according to Example 2.
実施例2に係る固体電池Bの固体電解質層、負極層、集電層、絶縁層及び保護層は、実施例1に係る固体電池Aの固体電解質層、負極層、集電層、絶縁層及び保護層の作製方法と全く同様な方法で作製した。
The solid electrolyte layer, the negative electrode layer, the current collecting layer, the insulating layer, and the protective layer of the solid battery B according to Example 2 are the solid electrolyte layer, the negative electrode layer, the current collecting layer, the insulating layer, and the solid battery A according to Example 1. It was produced by the same method as the production method of the protective layer.
続いて、実施例2に係る固体電池Bは、実施例1に係る固体電池Aの作製方法と全く同様な方法で作製し、さらに、実施例2に係る固体電池Bの端子層は、実施例1に係る固体電池Aの端子層の作製方法と全く同様な方法で作製し、実施例2に係る固体電池Bを得た。
Subsequently, the solid battery B according to Example 2 was produced by the same method as the production method of the solid battery A according to Example 1, and the terminal layer of the solid battery B according to Example 2 was A solid battery B according to Example 2 was obtained in the same manner as the terminal layer of the solid battery A according to 1.
<比較例1>
比較例1に係る固体電池aは、バッファー層を作製しなかった以外は、実施例1に係る固体電池Aの作製方法と全く同様な方法で作製した。すなわち、比較例1に係る固体電池aの正極層、固体電解質層、負極層、集電層、絶縁層及び保護層は、実施例1に係る固体電池Aの正極層、固体電解質層、負極層、集電層、絶縁層及び保護層の作製方法と全く同様な方法で作製した。 <Comparative Example 1>
The solid battery a according to Comparative Example 1 was produced by the same method as the production method of the solid battery A according to Example 1 except that the buffer layer was not produced. That is, the positive electrode layer, the solid electrolyte layer, the negative electrode layer, the current collecting layer, the insulating layer, and the protective layer of the solid battery a according to Comparative Example 1 are the positive electrode layer, the solid electrolyte layer, and the negative electrode layer of the solid battery A according to Example 1. The current collecting layer, the insulating layer, and the protective layer were produced in the same manner as the production method.
比較例1に係る固体電池aは、バッファー層を作製しなかった以外は、実施例1に係る固体電池Aの作製方法と全く同様な方法で作製した。すなわち、比較例1に係る固体電池aの正極層、固体電解質層、負極層、集電層、絶縁層及び保護層は、実施例1に係る固体電池Aの正極層、固体電解質層、負極層、集電層、絶縁層及び保護層の作製方法と全く同様な方法で作製した。 <Comparative Example 1>
The solid battery a according to Comparative Example 1 was produced by the same method as the production method of the solid battery A according to Example 1 except that the buffer layer was not produced. That is, the positive electrode layer, the solid electrolyte layer, the negative electrode layer, the current collecting layer, the insulating layer, and the protective layer of the solid battery a according to Comparative Example 1 are the positive electrode layer, the solid electrolyte layer, and the negative electrode layer of the solid battery A according to Example 1. The current collecting layer, the insulating layer, and the protective layer were produced in the same manner as the production method.
続いて、比較例1に係る固体電池aは、実施例1に係る固体電池Aの作製方法と全く同様な方法で作製し、さらに、比較例1に係る固体電池aの端子層は、実施例1に係る固体電池Aの端子層の作製方法と全く同様な方法で作製し、比較例1に係る固体電池aを得た。
Subsequently, the solid battery a according to Comparative Example 1 was produced by the same method as the production method of the solid battery A according to Example 1, and the terminal layer of the solid battery a according to Comparative Example 1 was The solid battery A according to Comparative Example 1 was obtained in the same manner as the terminal layer of the solid battery A according to Comparative Example 1.
[充放電評価及び結果]
上記で作製された固体電池A,固体電池B及び固体電池aを用いて充放電評価を行った。固体電池A,固体電池B及び固体電池aを、各3セルずつ作製し、室温で充放電測定(充電:0.1C4.2Vcccv、放電:0.1C2Vcc)をした。 [Charge / discharge evaluation and results]
Charging / discharging evaluation was performed using the solid battery A, the solid battery B, and the solid battery a produced as described above. The solid battery A, the solid battery B, and the solid battery a were each produced 3 cells, and charge / discharge measurement (charge: 0.1C4.2Vcccc, discharge: 0.1C2Vcc) was performed at room temperature.
上記で作製された固体電池A,固体電池B及び固体電池aを用いて充放電評価を行った。固体電池A,固体電池B及び固体電池aを、各3セルずつ作製し、室温で充放電測定(充電:0.1C4.2Vcccv、放電:0.1C2Vcc)をした。 [Charge / discharge evaluation and results]
Charging / discharging evaluation was performed using the solid battery A, the solid battery B, and the solid battery a produced as described above. The solid battery A, the solid battery B, and the solid battery a were each produced 3 cells, and charge / discharge measurement (charge: 0.1C4.2Vcccc, discharge: 0.1C2Vcc) was performed at room temperature.
充放電の評価結果を、固体電池A,固体電池B及び固体電池aのそれぞれの3セルの平均値で示す。比較例1に係る固体電池aが、101.1mAh/gであったのに対して、実施例1に係る固体電池Aは143.0mAh/gであった。固体電池Aの性能は、固体電池aの性能に対して、大幅に改善されていることが確認された。また、実施例2に係る固体電池Bは、135.4mAh/gであった。固体電池Bの性能は、固体電池aの性能に対して、大幅に改善されていることが確認された。実施例1(固体電池A)及び実施例2(固体電池B)では、電極粒子(第1電極活物質)及びバッファー粒子(第2電極活物質又は第2電極活物質を構成する少なくとも1つの原子)として、Coを用いたが、例えば、Mn、Fe、Ni.C、Si、Li、Mg、Al若しくはTi、又はCo、Mn、Fe、Ni.C、Si、Li、Mg、Al及びTiからなる群から選ばれる少なくも2種を用いても、上記で述べた実施例1(固体電池A)及び実施例2(固体電池B)の充放電評価の結果と同様な結果が得られる。
The evaluation result of charging / discharging is shown by the average value of 3 cells of each of solid battery A, solid battery B, and solid battery a. The solid battery a according to Comparative Example 1 was 101.1 mAh / g, whereas the solid battery A according to Example 1 was 143.0 mAh / g. It was confirmed that the performance of the solid battery A was greatly improved with respect to the performance of the solid battery a. Moreover, the solid battery B according to Example 2 was 135.4 mAh / g. It was confirmed that the performance of the solid battery B was greatly improved with respect to the performance of the solid battery a. In Example 1 (solid battery A) and Example 2 (solid battery B), at least one atom constituting electrode particles (first electrode active material) and buffer particles (second electrode active material or second electrode active material) Co) was used for the above, but for example, Mn, Fe, Ni. C, Si, Li, Mg, Al or Ti, or Co, Mn, Fe, Ni. Even if at least two selected from the group consisting of C, Si, Li, Mg, Al and Ti are used, charging / discharging of Example 1 (solid battery A) and Example 2 (solid battery B) described above is possible. Results similar to the evaluation results are obtained.
以下に、応用例1~5を挙げて、本技術について更に具体的に説明をする。
In the following, the present technology will be described more specifically with application examples 1 to 5.
<応用例1:プリント回路基板>
上述した固体電池は、図7に示すように、プリント回路基板1202(Print circuit board、以下「PCB」と称する。)上に充電回路等と共に実装することができる。例えば、PCB1202上に固体電池1203及び充電回路等の電子回路をリフロー工程でもって実装することができる。PCB1202上に固体電池1203及び充電回路等の電子回路が実装されたものを電池モジュール1201と称する。電池モジュール1201は、必要に応じてカード型の構成とされ、携帯可能なカード型モバイルバッテリとして構成することができる。 <Application Example 1: Printed Circuit Board>
As shown in FIG. 7, the above-described solid battery can be mounted on a printed circuit board 1202 (print circuit board, hereinafter referred to as “PCB”) together with a charging circuit or the like. For example, asolid battery 1203 and an electronic circuit such as a charging circuit can be mounted on the PCB 1202 by a reflow process. A battery module 1201 in which an electronic circuit such as a solid battery 1203 and a charging circuit is mounted on a PCB 1202 is referred to as a battery module 1201. The battery module 1201 has a card type configuration as necessary, and can be configured as a portable card type mobile battery.
上述した固体電池は、図7に示すように、プリント回路基板1202(Print circuit board、以下「PCB」と称する。)上に充電回路等と共に実装することができる。例えば、PCB1202上に固体電池1203及び充電回路等の電子回路をリフロー工程でもって実装することができる。PCB1202上に固体電池1203及び充電回路等の電子回路が実装されたものを電池モジュール1201と称する。電池モジュール1201は、必要に応じてカード型の構成とされ、携帯可能なカード型モバイルバッテリとして構成することができる。 <Application Example 1: Printed Circuit Board>
As shown in FIG. 7, the above-described solid battery can be mounted on a printed circuit board 1202 (print circuit board, hereinafter referred to as “PCB”) together with a charging circuit or the like. For example, a
PCB1202上には、また、充電制御IC(Integrated Circuit)1204、電池保護IC1205及び電池残量監視IC1206が形成されている。電池保護IC1205は、充放電時に充電電圧が過大となったり、負荷短絡によって過電流が流れたり、過放電が生じることがないように充放電動作を制御する。
On the PCB 1202, a charge control IC (IntegratedIntegrCircuit) 1204, a battery protection IC 1205, and a battery remaining amount monitoring IC 1206 are also formed. The battery protection IC 1205 controls the charging / discharging operation so that the charging voltage does not become excessive at the time of charging / discharging, an overcurrent flows due to a load short circuit, and no overdischarging occurs.
PCB1202に対してUSB(Universal Serial Bus)インターフェース1207が取り付けられている。USBインターフェース1207を通じて供給される電力によって固体電池1203が充電される。この場合、充電制御IC1204によって充電動作が制御される。さらに、PCB1202に取り付けられている負荷接続端子1208a及び1208bから負荷1209に対して所定の電力(例えば電圧が4.2V)が供給される。固体電池1203の電池残量が電池残量監視IC1206によって監視され、電池残量を表す表示(図示しない)が外部から分かるようになされる。なお、負荷接続のためにUSBインターフェース1207を使用してもよい。
A USB (Universal Serial Bus) interface 1207 is attached to the PCB 1202. The solid state battery 1203 is charged by the power supplied through the USB interface 1207. In this case, the charging operation is controlled by the charging control IC 1204. Furthermore, predetermined power (for example, a voltage of 4.2 V) is supplied to the load 1209 from the load connection terminals 1208a and 1208b attached to the PCB 1202. The remaining battery level of the solid battery 1203 is monitored by the remaining battery level monitoring IC 1206 so that a display (not shown) indicating the remaining battery level can be seen from the outside. Note that the USB interface 1207 may be used for load connection.
上述した負荷1209の具体例は以下のようなものである。
A.ウェアラブル機器(スポーツウオッチ、時計、補聴器等)、
B.IoT端末(センサネットワーク端末等)、
C.アミューズメント機器(ポータブルゲーム端末、ゲームコントローラ)、
D.IC基板埋め込み電池(リアルタイムクロックIC)、
E.環境発電機器(太陽光発電、熱電発電、振動発電等の発電素子用の蓄電素子)。 A specific example of theload 1209 described above is as follows.
A. Wearable devices (sports watches, watches, hearing aids, etc.)
B. IoT terminals (sensor network terminals, etc.)
C. Amusement equipment (portable game terminals, game controllers),
D. IC board embedded battery (real-time clock IC),
E. Energy harvesting equipment (storage elements for power generation elements such as solar power generation, thermoelectric power generation, vibration power generation).
A.ウェアラブル機器(スポーツウオッチ、時計、補聴器等)、
B.IoT端末(センサネットワーク端末等)、
C.アミューズメント機器(ポータブルゲーム端末、ゲームコントローラ)、
D.IC基板埋め込み電池(リアルタイムクロックIC)、
E.環境発電機器(太陽光発電、熱電発電、振動発電等の発電素子用の蓄電素子)。 A specific example of the
A. Wearable devices (sports watches, watches, hearing aids, etc.)
B. IoT terminals (sensor network terminals, etc.)
C. Amusement equipment (portable game terminals, game controllers),
D. IC board embedded battery (real-time clock IC),
E. Energy harvesting equipment (storage elements for power generation elements such as solar power generation, thermoelectric power generation, vibration power generation).
<応用例2:ユニバーサルクレジットカード>
現在、複数枚のクレジットカードを持ち歩いている人が多い。しかしながら、クレジットカードの枚数が多くなるほど、紛失、盗難等の危険性が増す問題がある。そこで、複数枚のクレジットカードやポイントカードなどの機能を1枚のカードに集約した、ユニバーサルクレジットカードと呼ばれるカードが実用化されている。このカードの中には、例えば、様々なクレジットカードやポイントカードの番号や有効期限等の情報を取り込むことができるので、そのカード1枚を財布等の中の入れておけば、好きな時に好きなカードを選択して利用することができる。 <Application Example 2: Universal Credit Card>
Currently, many people carry multiple credit cards. However, there is a problem that the risk of loss, theft, etc. increases as the number of credit cards increases. Therefore, a card called a universal credit card in which functions such as a plurality of credit cards and point cards are integrated into one card has been put into practical use. For example, information such as the number and expiration date of various credit cards and point cards can be taken into this card, so if you put one card in your wallet, you can use it whenever you want. You can select and use the correct card.
現在、複数枚のクレジットカードを持ち歩いている人が多い。しかしながら、クレジットカードの枚数が多くなるほど、紛失、盗難等の危険性が増す問題がある。そこで、複数枚のクレジットカードやポイントカードなどの機能を1枚のカードに集約した、ユニバーサルクレジットカードと呼ばれるカードが実用化されている。このカードの中には、例えば、様々なクレジットカードやポイントカードの番号や有効期限等の情報を取り込むことができるので、そのカード1枚を財布等の中の入れておけば、好きな時に好きなカードを選択して利用することができる。 <Application Example 2: Universal Credit Card>
Currently, many people carry multiple credit cards. However, there is a problem that the risk of loss, theft, etc. increases as the number of credit cards increases. Therefore, a card called a universal credit card in which functions such as a plurality of credit cards and point cards are integrated into one card has been put into practical use. For example, information such as the number and expiration date of various credit cards and point cards can be taken into this card, so if you put one card in your wallet, you can use it whenever you want. You can select and use the correct card.
図8はユニバーサルクレジットカード1301の構成の一例を示す。カード型形状を有し、ICチップ及び本技術に係る固体電池(不図示)が内蔵されている。さらに、小電力消費のディスプレイ1302及び操作部例えば方向キー1303a及び1303bが設けられている。さらに、充電用端子1304がユニバーサルクレジットカード1301の表面に設けられている。
FIG. 8 shows an example of the configuration of the universal credit card 1301. It has a card type shape and contains an IC chip and a solid battery (not shown) according to the present technology. Further, a display 1302 that consumes less power and an operation unit such as direction keys 1303a and 1303b are provided. Further, a charging terminal 1304 is provided on the surface of the universal credit card 1301.
例えば、ユーザはディスプレイ1302を見ながら方向キー1303a及び1303bを操作して予めユニバーサルクレジットカード1301にロードされているクレジットカード等を特定することができる。複数のクレジットカードが予めロードされている場合には、ディスプレイ1302に各クレジットカードを示す情報が表示され、ユーザが方向キー1303a及び1303bを操作して所望のクレジットカードを指定することができる。その後は、従来のクレジットカードと同様に使用することができる。なお、上記は一例であって、本技術による固体電池は、ユニバーサルクレジットカード1301以外のあらゆる電子カードに適用可能であることは言うまでもない。
For example, the user can specify a credit card or the like loaded in advance on the universal credit card 1301 by operating the direction keys 1303a and 1303b while looking at the display 1302. When a plurality of credit cards are loaded in advance, information indicating each credit card is displayed on the display 1302, and the user can designate a desired credit card by operating the direction keys 1303a and 1303b. After that, it can be used like a conventional credit card. Note that the above is an example, and it goes without saying that the solid battery according to the present technology can be applied to any electronic card other than the universal credit card 1301.
<応用例3:リストバンド型電子機器>
ウェアラブル端末の一例として、リストバンド型電子機器がある。その中でも、リストバンド型活動量計は、スマートバンドとも呼ばれ、腕に巻き付けておくのみで、歩数、移動距離、消費カロリー、睡眠量、心拍数などの人の活動に関するデータを取得することができるものである。さらに、取得されたデータをスマートフォンで管理することもできる。さらに、メールの送受信機能を備えることもでき、例えば、メールの着信をLED(Light Emitting Diode)ランプ及び/又はバイブレーションでユーザに知らせる通知機能を有するものが使用されている。 <Application Example 3: Wristband Electronic Device>
An example of a wearable terminal is a wristband type electronic device. Among them, the wristband type activity meter is also called a smart band, and it is possible to obtain data on human activities such as the number of steps, distance traveled, calories burned, sleep amount, heart rate, etc. just by wrapping around the wrist. It can be done. Furthermore, the acquired data can also be managed with a smartphone. Further, a mail transmission / reception function can be provided. For example, a mail notification function that notifies a user of an incoming mail by an LED (Light Emitting Diode) lamp and / or vibration is used.
ウェアラブル端末の一例として、リストバンド型電子機器がある。その中でも、リストバンド型活動量計は、スマートバンドとも呼ばれ、腕に巻き付けておくのみで、歩数、移動距離、消費カロリー、睡眠量、心拍数などの人の活動に関するデータを取得することができるものである。さらに、取得されたデータをスマートフォンで管理することもできる。さらに、メールの送受信機能を備えることもでき、例えば、メールの着信をLED(Light Emitting Diode)ランプ及び/又はバイブレーションでユーザに知らせる通知機能を有するものが使用されている。 <Application Example 3: Wristband Electronic Device>
An example of a wearable terminal is a wristband type electronic device. Among them, the wristband type activity meter is also called a smart band, and it is possible to obtain data on human activities such as the number of steps, distance traveled, calories burned, sleep amount, heart rate, etc. just by wrapping around the wrist. It can be done. Furthermore, the acquired data can also be managed with a smartphone. Further, a mail transmission / reception function can be provided. For example, a mail notification function that notifies a user of an incoming mail by an LED (Light Emitting Diode) lamp and / or vibration is used.
図9及び図10は、例えば脈拍を計測するリストバンド型活動量計の一例を示す。図9は、リストバンド型活動量計1501の外観の構成例を示している。図10は、リストバンド型活動量計1501の本体部1502の構成例を示している。
9 and 10 show an example of a wristband type activity meter that measures, for example, a pulse. FIG. 9 shows an example of the external configuration of the wristband type activity meter 1501. FIG. 10 shows a configuration example of the main body 1502 of the wristband type activity meter 1501.
リストバンド型活動量計1501は、光学方式により被験者の例えば脈拍を計測するリストバンド型の計測装置である。図9に示されるように、リストバンド型活動量計1501は、本体部1502とバンド1503により構成され、腕時計のようにバンド1503が被験者の腕(手首)1504に装着される。そして、本体部1502が、所定の波長の計測光を被験者の腕1504の脈を含む部分に照射し、戻ってきた光の強度に基づいて、被験者の脈拍の計測を行う。
The wristband type activity meter 1501 is a wristband type measuring device that measures, for example, a pulse of a subject by an optical method. As shown in FIG. 9, the wristband type active mass meter 1501 includes a main body 1502 and a band 1503, and the band 1503 is attached to the arm (wrist) 1504 of the subject like a wristwatch. And the main-body part 1502 irradiates the measurement light of a predetermined wavelength to the part containing the pulse of a test subject's arm 1504, and measures a test subject's pulse based on the intensity | strength of the returned light.
本体部1502は、基板1521、LED1522、受光IC1523、遮光体1524、操作部1525、演算処理部1526、表示部1527、及び無線装置1528を含むように構成される。LED1522、受光IC1523、及び、遮光体1524は、基板1521上に設けられている。LED1522は、受光IC1523の制御の下に、所定の波長の計測光を被験者の腕1504の脈を含む部分に照射する。
The main body 1502 is configured to include a substrate 1521, an LED 1522, a light receiving IC 1523, a light shield 1524, an operation unit 1525, an arithmetic processing unit 1526, a display unit 1527, and a wireless device 1528. The LED 1522, the light receiving IC 1523, and the light shield 1524 are provided over the substrate 1521. The LED 1522 irradiates a portion including the pulse of the arm 1504 of the subject under measurement light of a predetermined wavelength under the control of the light receiving IC 1523.
受光IC1523は、計測光が腕1504に照射された後に戻ってきた光を受光する。受光IC1523は、戻ってきた光の強度を示すデジタルの計測信号を生成し、生成した計測信号を演算処理部1526に供給する。
The light receiving IC 1523 receives light that has returned after the measurement light is applied to the arm 1504. The light receiving IC 1523 generates a digital measurement signal indicating the intensity of the returned light, and supplies the generated measurement signal to the arithmetic processing unit 1526.
遮光体1524は、基板1521上においてLED1522と受光IC1523の間に設けられている。遮光体1524は、LED1522からの計測光が、受光IC1523に直接入射されることを防止する。
The light shield 1524 is provided between the LED 1522 and the light receiving IC 1523 on the substrate 1521. The light shield 1524 prevents measurement light from the LED 1522 from directly entering the light receiving IC 1523.
操作部1525は、例えば、ボタン、スイッチ等の各種の操作部材により構成され、本体部1502の表面等に設けられる。操作部1525は、リストバンド型活動量計1501の操作に用いられ、操作内容を示す信号を演算処理部1526に供給する。
The operation unit 1525 is composed of various operation members such as buttons and switches, and is provided on the surface of the main body 1502 or the like. The operation unit 1525 is used to operate the wristband type activity meter 1501 and supplies a signal indicating the operation content to the arithmetic processing unit 1526.
演算処理部1526は、受光IC1523から供給される計測信号に基づいて、被験者の脈拍を計測するための演算処理を行う。演算処理部1526は、脈拍の計測結果を表示部1527及び無線装置1528に供給する。
The arithmetic processing unit 1526 performs arithmetic processing for measuring the pulse of the subject based on the measurement signal supplied from the light receiving IC 1523. The arithmetic processing unit 1526 supplies the pulse measurement result to the display unit 1527 and the wireless device 1528.
表示部1527は、例えば、LCD(Liquid Crystal Display)等の表示装置により構成され、本体部1502の表面に設けられる。表示部1527は、被験者の脈拍の計測結果等を表示する。
The display unit 1527 is configured by a display device such as an LCD (Liquid Crystal Display), and is provided on the surface of the main body unit 1502. The display unit 1527 displays the measurement result of the subject's pulse and the like.
無線装置1528は、所定の方式の無線通信により、被験者の脈拍の計測結果を外部の装置に送信する。例えば、図10に示されるように、無線装置1528は、被験者の脈拍の計測結果をスマートフォン1505に送信し、スマートフォン1505の画面1506に計測結果を表示させる。さらに、計測結果のデータがスマートフォン1505によって管理され、計測結果をスマートフォン1505によって閲覧したり、ネットワーク上のサーバに保存することが可能とされている。なお、無線装置1528の通信方式には、任意の方式を採用することができる。なお、受光IC1523は、被験者の腕1504以外の部位(例えば、指、耳たぶ等)において脈拍の計測を行う場合にも用いることができる。
The wireless device 1528 transmits the measurement result of the subject's pulse to an external device by wireless communication of a predetermined method. For example, as illustrated in FIG. 10, the wireless device 1528 transmits the measurement result of the subject's pulse to the smartphone 1505 and causes the screen 1506 of the smartphone 1505 to display the measurement result. Furthermore, the measurement result data is managed by the smartphone 1505, and the measurement result can be browsed by the smartphone 1505 or stored in a server on the network. Note that any method can be adopted as a communication method of the wireless device 1528. The light receiving IC 1523 can also be used when measuring a pulse in a part other than the subject's arm 1504 (eg, finger, earlobe, etc.).
上述したリストバンド型活動量計1501は、受光IC1523における信号処理によって、体動の影響を除去して、正確に被験者の脈波及び脈拍を計測することができる。例えば、被験者がランニング等の激しい運動を行っても、正確に被験者の脈波及び脈拍を計測することができる。また、例えば、被験者がリストバンド型活動量計1501を長時間装着して計測を行う場合にも、被験者の体動の影響を除去して、正確に脈波及び脈拍を計測し続けることができる。
The wristband type active mass meter 1501 described above can accurately measure the pulse wave and pulse of the subject by removing the influence of body movement by the signal processing in the light receiving IC 1523. For example, even if the subject performs intense exercise such as running, the pulse wave and pulse of the subject can be accurately measured. In addition, for example, even when the subject wears the wristband type activity meter 1501 for a long time and performs measurement, the influence of the subject's body movement can be removed and the pulse wave and the pulse can be accurately measured. .
また、演算量を削減することにより、リストバンド型活動量計1501の消費電力を下げることができる。その結果、例えば、充電や電池の交換を行わずに、リストバンド型活動量計1501を被験者に長時間装着して、計測を行うことが可能になる。
Moreover, the power consumption of the wristband type activity meter 1501 can be reduced by reducing the amount of calculation. As a result, for example, it is possible to perform measurement by wearing the wristband type activity meter 1501 on the subject for a long time without performing charging or battery replacement.
なお、電源として例えば薄型の電池がバンド1503内に収納されている。リストバンド型活動量計1501は、本体の電子回路と、電池パックを備える。例えばユーザにより電池パックが着脱自在な構成を有している。電子回路は、上述した本体部1502に含まれる回路である。電池として全固体電池を使用する場合に本技術を適用することができる。
Note that, for example, a thin battery is housed in the band 1503 as a power source. The wristband type activity meter 1501 includes an electronic circuit of the main body and a battery pack. For example, the battery pack is detachable by the user. The electronic circuit is a circuit included in the main body 1502 described above. The present technology can be applied when using an all-solid battery as a battery.
図11にリストバンド型電子機器1601(以下、単に「電子機器1601」と称する。)の外観の構成例を示す。
FIG. 11 shows a structural example of the appearance of a wristband type electronic device 1601 (hereinafter simply referred to as “electronic device 1601”).
電子機器1601は、例えば、人体に着脱自在とされる時計型のいわゆるウェアラブル機器である。電子機器1601は、例えば、腕に装着されるバンド部1611と、数字や文字、図柄等を表示する表示装置1612と、操作ボタン1613とを備えている。バンド部1611には、複数の孔部1611aと、内周面(電子機器1601の装着時に腕に接触する側の面)側に形成される突起1611bとが形成されている。
The electronic device 1601 is, for example, a watch-type so-called wearable device that is detachable from the human body. The electronic device 1601 includes, for example, a band portion 1611 attached to the arm, a display device 1612 that displays numbers, characters, symbols, and the like, and operation buttons 1613. The band portion 1611 is formed with a plurality of hole portions 1611a and protrusions 1611b formed on the inner peripheral surface (the surface that comes into contact with the arm when the electronic device 1601 is attached).
電子機器1601は、使用状態においては、図11に示すようにバンド部1611が略円形となるように折り曲げられ、孔部1611aに突起1611bが挿入されて腕に装着される。突起1611bを挿入する孔部1611aの位置を調整することにより、腕の太さに対応して径の大きさを調整することができる。電子機器1601は、使用されない状態では、孔部1611aから突起1611bが取り外され、バンド部1611が略平坦な状態で保管される。本技術の一実施形態に係るセンサは、例えば、バンド部1611の全体にわたって設けられている。
In the use state, the electronic device 1601 is bent so that the band portion 1611 is substantially circular as shown in FIG. 11, and the protrusion 1611b is inserted into the hole portion 1611a and attached to the arm. By adjusting the position of the hole 1611a into which the protrusion 1611b is inserted, the diameter can be adjusted corresponding to the thickness of the arm. When the electronic device 1601 is not used, the protrusion 1611b is removed from the hole 1611a, and the band 1611 is stored in a substantially flat state. For example, the sensor according to the embodiment of the present technology is provided over the entire band portion 1611.
<応用例4:スマートウオッチ>
スマートウオッチは、既存の腕時計のデザインと同様ないし類似の外観を有し、腕時計と同様にユーザの腕に装着して使用するものであり、ディスプレイに表示される情報で、電話や電子メールの着信などの各種メッセージをユーザに通知する機能を有する。さらに、電子マネー機能、活動量計等の機能を有するスマートウオッチも提案されている。スマートウオッチは、電子機器の本体部分の表面にディスプレイが組み込まれ、ディスプレイに様々な情報が表示される。また、スマートウオッチは、例えば、通信端末(スマートフォン等)とBluetooth(登録商標)などの近距離無線通信を行うことによって、通信端末
等の機能やコンテンツ等と連携することも可能である。 <Application example 4: Smart watch>
Smart watches have the same or similar appearance as existing wristwatch designs, and are worn on the user's wrist in the same way as wristwatches. Information displayed on the display is used to receive incoming calls and e-mails. A function for notifying the user of various messages such as. Further, smart watches having functions such as an electronic money function and an activity meter have been proposed. In the smart watch, a display is incorporated on the surface of the main body portion of the electronic device, and various information is displayed on the display. In addition, the smart watch can also cooperate with functions, contents, and the like of the communication terminal by performing short-range wireless communication such as Bluetooth (registered trademark) with a communication terminal (smart phone or the like).
スマートウオッチは、既存の腕時計のデザインと同様ないし類似の外観を有し、腕時計と同様にユーザの腕に装着して使用するものであり、ディスプレイに表示される情報で、電話や電子メールの着信などの各種メッセージをユーザに通知する機能を有する。さらに、電子マネー機能、活動量計等の機能を有するスマートウオッチも提案されている。スマートウオッチは、電子機器の本体部分の表面にディスプレイが組み込まれ、ディスプレイに様々な情報が表示される。また、スマートウオッチは、例えば、通信端末(スマートフォン等)とBluetooth(登録商標)などの近距離無線通信を行うことによって、通信端末
等の機能やコンテンツ等と連携することも可能である。 <Application example 4: Smart watch>
Smart watches have the same or similar appearance as existing wristwatch designs, and are worn on the user's wrist in the same way as wristwatches. Information displayed on the display is used to receive incoming calls and e-mails. A function for notifying the user of various messages such as. Further, smart watches having functions such as an electronic money function and an activity meter have been proposed. In the smart watch, a display is incorporated on the surface of the main body portion of the electronic device, and various information is displayed on the display. In addition, the smart watch can also cooperate with functions, contents, and the like of the communication terminal by performing short-range wireless communication such as Bluetooth (registered trademark) with a communication terminal (smart phone or the like).
スマートウオッチの一つとして、バンド状に連結される複数のセグメントと、複数のセグメント内に配置される複数の電子部品と、複数のセグメント内の複数の電子部品を接続し少なくとも1つのセグメント内に蛇行形状で配置されるフレキシブル回路基板とを備えるものが提案されている。このような蛇行形状を有することで、フレキシブル回路基板は、バンドが屈曲しても、ストレスが加わらず、回路の切断が防止される。また、ウオッチ本体を構成する筐体ではなく、そのウオッチ本体に取り付けられるバンド側のセグメントに、電子回路部品を内蔵させることが可能になり、ウオッチ本体側には変更を加える必要がなくなり、従来の時計のデザインと同様のデザインのスマートウオッチを構成することが可能となる。また、本応用例のスマートウオッチは、電子メールや着信などの通知、ユーザの行動履歴などのログの記録、通話などを行うことができる。また、スマートウオッチは、非接触式ICカードとしての機能を備え、非接触で決済や認証等を行うことができる。
As one of the smart watches, a plurality of segments connected in a band, a plurality of electronic components arranged in the plurality of segments, and a plurality of electronic components in the plurality of segments are connected to each other in at least one segment. A device including a flexible circuit board arranged in a meandering shape has been proposed. By having such a meandering shape, the flexible circuit board is not stressed even when the band is bent, and the circuit is prevented from being cut. In addition, it is possible to incorporate electronic circuit components in the band-side segment attached to the watch body instead of the chassis that makes up the watch body, eliminating the need to make changes on the watch body side. It is possible to construct a smart watch having the same design as the watch. In addition, the smart watch of this application example can perform notifications such as e-mails and incoming calls, log recording of user action history, telephone calls, and the like. In addition, the smart watch has a function as a non-contact IC card, and can perform settlement, authentication, and the like in a non-contact manner.
本応用例のスマートウオッチは、金属製のバンド内に、通信処理や通知処理を行う回路部品を内蔵している。金属製のバンドを薄型化しながら、電子機器として機能するようにするために、バンドが複数のセグメントを連結した構成とされ、各セグメントに回路基板,振動モータ、電池,加速度センサが収納される。各セグメントの回路基板,振動モータ,電池,加速度センサなどの部品は、フレキシブルプリント回路基板(FPC)で接続されている。
The smart watch of this application example has built-in circuit components that perform communication processing and notification processing in a metal band. In order to function as an electronic device while reducing the thickness of a metal band, the band is configured by connecting a plurality of segments, and a circuit board, a vibration motor, a battery, and an acceleration sensor are accommodated in each segment. Components such as circuit boards, vibration motors, batteries, and acceleration sensors in each segment are connected by a flexible printed circuit board (FPC).
図12にスマートウオッチの全体構成(分解斜視図)を示す。バンド型電子機器2000は、時計本体3000に取り付けられる金属製のバンドであり、ユーザの腕に装着される。時計本体3000は、時刻を表示する文字盤3100を備える。時計本体3000は、文字盤3100の代わりに、液晶ディスプレイなどで電子的に時刻を表示してもよい。
Fig. 12 shows the overall structure (disassembled perspective view) of the smart watch. The band-type electronic device 2000 is a metal band attached to the watch main body 3000 and is attached to the user's arm. The watch body 3000 includes a dial 3100 for displaying time. The watch body 3000 may display the time electronically on a liquid crystal display or the like instead of the dial 3100.
バンド型電子機器2000は、複数のセグメント2110~2230を連結した構成である。時計本体3000の一方のバンド取付孔にセグメント2110が取り付けられ、時計本体3000の他方のバンド取付孔にセグメント2230が取り付けられる。本例では、それぞれのセグメント2110~2230は金属で構成される。
The band-type electronic device 2000 has a configuration in which a plurality of segments 2110 to 2230 are connected. The segment 2110 is attached to one band attachment hole of the watch body 3000, and the segment 2230 is attached to the other band attachment hole of the watch body 3000. In this example, each of the segments 2110 to 2230 is made of metal.
(セグメントの内部の概要)
図13は、バンド型電子機器2000の内部構成の一部を示す。例えば3個のセグメント2170,2180,2190、2200、2210の内部を示す。バンド型電子機器2000では、連続した5個のセグメント2170~2210の内部にフレキシブル回路基板2400が配置される。セグメント2170内には、種々の電子部品が配置され、セグメント2190,2210には本技術に係るバッテリー2411,2421が配置され、これらの部品がフレキシブル回路基板2400で電気的に接続される。セグメント2170とセグメント2190との間のセグメント2180は、比較的小さなサイズであり、蛇行状態のフレキシブル回路基板2400が配置される。セグメント2180の内部では、防水部材に挟まれた状態でフレキシブル回路基板2400が配置される。なお、セグメント2170~2210の内部は、防水構造とされている。 (Segment internal overview)
FIG. 13 shows a part of the internal configuration of the band-typeelectronic apparatus 2000. For example, the inside of three segments 2170, 2180, 2190, 2200, and 2210 is shown. In the band-type electronic device 2000, a flexible circuit board 2400 is arranged inside five continuous segments 2170 to 2210. Various electronic components are disposed in the segment 2170, and batteries 2411 and 2421 according to the present technology are disposed in the segments 2190 and 2210, and these components are electrically connected by the flexible circuit board 2400. A segment 2180 between the segment 2170 and the segment 2190 has a relatively small size, and the flexible circuit board 2400 in a meandering state is disposed. Inside the segment 2180, the flexible circuit board 2400 is disposed in a state of being sandwiched between waterproofing members. The inside of the segments 2170 to 2210 has a waterproof structure.
図13は、バンド型電子機器2000の内部構成の一部を示す。例えば3個のセグメント2170,2180,2190、2200、2210の内部を示す。バンド型電子機器2000では、連続した5個のセグメント2170~2210の内部にフレキシブル回路基板2400が配置される。セグメント2170内には、種々の電子部品が配置され、セグメント2190,2210には本技術に係るバッテリー2411,2421が配置され、これらの部品がフレキシブル回路基板2400で電気的に接続される。セグメント2170とセグメント2190との間のセグメント2180は、比較的小さなサイズであり、蛇行状態のフレキシブル回路基板2400が配置される。セグメント2180の内部では、防水部材に挟まれた状態でフレキシブル回路基板2400が配置される。なお、セグメント2170~2210の内部は、防水構造とされている。 (Segment internal overview)
FIG. 13 shows a part of the internal configuration of the band-type
(スマートウオッチの回路構成)
図14は、バンド型電子機器2000の回路構成を示すブロック図である。バンド型電子機器2000の内部の回路は、時計本体3000とは独立した構成である。時計本体3000は、文字盤3100に配置された針を回転させるムーブメント部3200を備える。ムーブメント部3200には、バッテリー3300が接続されている。これらのムーブメント部3200やバッテリー3300は、時計本体3000の筐体内に内蔵されている。 (Smart watch circuit configuration)
FIG. 14 is a block diagram showing a circuit configuration of the band-typeelectronic apparatus 2000. The circuit inside the band-type electronic device 2000 has a configuration independent of the watch main body 3000. The watch main body 3000 includes a movement unit 3200 that rotates hands arranged on the dial 3100. A battery 3300 is connected to the movement unit 3200. The movement unit 3200 and the battery 3300 are built in the casing of the watch main body 3000.
図14は、バンド型電子機器2000の回路構成を示すブロック図である。バンド型電子機器2000の内部の回路は、時計本体3000とは独立した構成である。時計本体3000は、文字盤3100に配置された針を回転させるムーブメント部3200を備える。ムーブメント部3200には、バッテリー3300が接続されている。これらのムーブメント部3200やバッテリー3300は、時計本体3000の筐体内に内蔵されている。 (Smart watch circuit configuration)
FIG. 14 is a block diagram showing a circuit configuration of the band-type
時計本体3000に接続されたバンド型電子機器2000は、3つのセグメント2170,2190,2210に、電子部品が配置される。セグメント2170には、データ処理部4101と無線通信部4102とNFC通信部4104とGPS部4106とが配置される。無線通信部4102,NFC通信部4104,GPS部4106には、それぞれアンテナ4103,4105,4107が接続されている。それぞれのアンテナ4103,4105,4107は、セグメント2170の後述するスリット2173の近傍に配置される。
In the band-type electronic device 2000 connected to the watch body 3000, electronic components are arranged in the three segments 2170, 2190, and 2210. In the segment 2170, a data processing unit 4101, a wireless communication unit 4102, an NFC communication unit 4104, and a GPS unit 4106 are arranged. Antennas 4103, 4105, and 4107 are connected to the wireless communication unit 4102, the NFC communication unit 4104, and the GPS unit 4106, respectively. Each antenna 4103, 4105, 4107 is arranged in the vicinity of a slit 2173 described later of the segment 2170.
無線通信部4102は、例えばBluetooth(登録商標)の規格で他の端末と近距離無線通信を行う。NFC通信部4104は、NFCの規格で、近接したリーダー/ライタと無線通信を行う。GPS部4106は、GPS(Global Positioning System)と称されるシステムの衛星からの電波を受信して、現在位置の測位を行う測位部である。これらの無線通信部4102,NFC通信部4104,GPS部4106で得たデータは、データ処理部4101に供給される。
The wireless communication unit 4102 performs short-range wireless communication with other terminals based on, for example, Bluetooth (registered trademark) standards. The NFC communication unit 4104 performs wireless communication with an adjacent reader / writer according to the NFC standard. The GPS unit 4106 is a positioning unit that receives radio waves from a satellite of a system called GPS (Global Positioning System) and measures the current position. Data obtained by the wireless communication unit 4102, the NFC communication unit 4104, and the GPS unit 4106 is supplied to the data processing unit 4101.
また、セグメント2170には、ディスプレイ4108とバイブレータ4109とモーションセンサ4110と音声処理部4111とが配置されている。ディスプレイ4108とバイブレータ4109は、バンド型電子機器2000の装着者に通知する通知部として機能するものである。ディスプレイ4108は、複数個の発光ダイオードで構成され、発光ダイオードの点灯や点滅でユーザに通知を行う。複数個の発光ダイオードは、例えばセグメント2170の後述するスリット2173の内部に配置され、電話の着信や電子メールの受信などが点灯又は点滅で通知される。ディスプレイ4108としては、文字や数字などを表示するタイプのものが使用されてもよい。バイブレータ4109は、セグメント2170を振動させる部材である。バンド型電子機器2000は、バイブレータ4109によるセグメント2170の振動で、電話の着信や電子メールの受信などを通知する。
In the segment 2170, a display 4108, a vibrator 4109, a motion sensor 4110, and an audio processing unit 4111 are arranged. The display 4108 and the vibrator 4109 function as a notification unit that notifies the wearer of the band-type electronic device 2000. The display 4108 includes a plurality of light emitting diodes, and notifies the user by lighting or blinking of the light emitting diodes. The plurality of light emitting diodes are disposed, for example, in a slit 2173 described later of the segment 2170, and notification of incoming calls or reception of e-mails is made by lighting or blinking. The display 4108 may be a type that displays characters, numbers, and the like. Vibrator 4109 is a member that vibrates segment 2170. The band-type electronic device 2000 notifies the incoming call or the reception of an e-mail by the vibration of the segment 2170 by the vibrator 4109.
モーションセンサ4110は、バンド型電子機器2000を装着したユーザの動きを検出する。モーションセンサ4110としては、加速度センサ、ジャイロセンサ、電子コンパス、気圧センサなどが使用される。また、セグメント2170は、モーションセンサ4110以外のセンサを内蔵してもよい。例えば、バンド型電子機器2000を装着したユーザの脈拍などを検出するバイオセンサが内蔵されてもよい。音声処理部4111には、マイクロホン4112とスピーカ4113とが接続され、音声処理部4111が、無線通信部4102での無線通信で接続された相手と通話の処理を行う。また、音声処理部4111は、音声入力操作のための処理を行うこともできる。
The motion sensor 4110 detects the movement of the user wearing the band-type electronic device 2000. As the motion sensor 4110, an acceleration sensor, a gyro sensor, an electronic compass, an atmospheric pressure sensor, or the like is used. The segment 2170 may incorporate a sensor other than the motion sensor 4110. For example, a biosensor that detects the pulse of the user wearing the band-type electronic device 2000 may be incorporated. A microphone 4112 and a speaker 4113 are connected to the audio processing unit 4111, and the audio processing unit 4111 performs a call process with the other party connected by wireless communication in the wireless communication unit 4102. The voice processing unit 4111 can also perform processing for voice input operation.
そして、セグメント2190にはバッテリー2411が内蔵され、セグメント2210にはバッテリー2421が内蔵される。バッテリー2411,2421は、本技術に係る固体電池によって構成することができ、セグメント2170内の回路に駆動用の電源を供給する。セグメント2170内の回路とバッテリー2411,2421は、フレキシブル回路基板2400(図13)により接続されている。なお、図14には示さないが、セグメント2170は、バッテリー2411,2421を充電するための端子を備える。また、セグメント2190,2210には、バッテリー2411,2421以外の電子部品が配置されてもよい。例えば、セグメント2190,2210は、バッテリー2411,2421の充放電を制御する回路を備えるようにしてもよい。
The segment 2190 has a built-in battery 2411, and the segment 2210 has a built-in battery 2421. The batteries 2411 and 2421 can be configured by a solid state battery according to the present technology, and supply driving power to the circuits in the segment 2170. The circuit in the segment 2170 and the batteries 2411 and 2421 are connected by a flexible circuit board 2400 (FIG. 13). Although not shown in FIG. 14, the segment 2170 includes terminals for charging the batteries 2411 and 2421. Further, electronic components other than the batteries 2411 and 2421 may be arranged in the segments 2190 and 2210. For example, the segments 2190 and 2210 may include a circuit that controls charging and discharging of the batteries 2411 and 2421.
<応用例5:眼鏡型端末>
以下に説明するメガネ型端末は、目の前の風景にテキスト、シンボル、画像等の情報を重畳して表示することができるものである。すなわち、透過式メガネ型端末専用の軽量、かつ、薄型の画像表示装置ディスプレイモジュールを搭載している。代表的なものとして、頭部装着型ディスプレイ(ヘッドマウントディスプレイ(HMD)がある。 <Application Example 5: Eyeglass Type Terminal>
The glasses-type terminal described below can display information such as text, symbols, and images superimposed on the scenery in front of you. That is, a light-weight and thin image display device display module dedicated to a transmissive glasses-type terminal is mounted. A typical example is a head-mounted display (head mounted display (HMD)).
以下に説明するメガネ型端末は、目の前の風景にテキスト、シンボル、画像等の情報を重畳して表示することができるものである。すなわち、透過式メガネ型端末専用の軽量、かつ、薄型の画像表示装置ディスプレイモジュールを搭載している。代表的なものとして、頭部装着型ディスプレイ(ヘッドマウントディスプレイ(HMD)がある。 <Application Example 5: Eyeglass Type Terminal>
The glasses-type terminal described below can display information such as text, symbols, and images superimposed on the scenery in front of you. That is, a light-weight and thin image display device display module dedicated to a transmissive glasses-type terminal is mounted. A typical example is a head-mounted display (head mounted display (HMD)).
この画像表示装置は、光学エンジンとホログラム導光板からなる。光学エンジンは、マイクロディスプレイレンズを使用して画像、テキスト等の映像光を出射する。この映像光がホログラム導光板に入射される。ホログラム導光板は、透明板の両端部にホログラム光学素子が組み込まれたもので、光学エンジンからの映像光を厚さ1mmのような非常に薄い透明板の中を伝搬させて観察者の目に届ける。このような構成によって、透過率が例えば85%という厚さ3mm(導光板前後の保護プレートを含む)レンズを実現している。かかるメガネ型端末によって、スポーツ観戦中にプレーヤ、チームの成績等をリアルタイムで見ることができたり、旅先での観光ガイドを表示したりできる。
This image display device comprises an optical engine and a hologram light guide plate. The optical engine emits image light such as an image and text using a micro display lens. This image light is incident on the hologram light guide plate. A hologram light guide plate has hologram optical elements incorporated at both ends of a transparent plate, and propagates image light from an optical engine through a very thin transparent plate having a thickness of 1 mm to the eyes of an observer. deliver. With such a configuration, a lens having a transmittance of, for example, 85% and a thickness of 3 mm (including protective plates before and after the light guide plate) is realized. With such a glasses-type terminal, it is possible to see the results of players and teams in real time while watching sports, and to display a tourist guide at a destination.
メガネ型端末の具体例は、図15に示すように、画像表示部が眼鏡型の構成とされている。すなわち、通常の眼鏡と同様に、眼前に右画像表示部5001及び左画像表示部5002を保持するためのフレーム5003を有する。フレーム5003は、観察者の正面に配置されるフロント部5004と、フロント部5004の両端に蝶番を介して回動自在に取り付けられた2つのテンプル部5005,5006から成る。フレーム5003は、金属や合金、プラスチック、これらの組合せといった、通常の眼鏡を構成する材料と同じ材料から作製されている。なお、ヘッドホン部を設けるようにしてもよい。
As a specific example of the glasses-type terminal, the image display unit has a glasses-type configuration as shown in FIG. That is, as with normal glasses, the frame 5003 for holding the right image display unit 5001 and the left image display unit 5002 is provided in front of the eyes. The frame 5003 includes a front portion 5004 disposed in front of the observer, and two temple portions 5005 and 5006 that are rotatably attached to both ends of the front portion 5004 via hinges. The frame 5003 is made of the same material as that of normal glasses, such as metal, alloy, plastic, or a combination thereof. A headphone unit may be provided.
右画像表示部5001および左画像表示部5002は、利用者の右の眼前と、左の眼前とにそれぞれ位置するように配置されている。テンプル部5005,5006が利用者の頭部に画像表示部5001および5002を保持する。フロント部5004とテンプル部5005の接続箇所において、テンプル部5005の内側に右表示駆動部5007が配置されている。フロント部5004とテンプル部5006の接続箇所において、テンプル部5006の内側に左表示駆動部5008が配置されている。
The right image display unit 5001 and the left image display unit 5002 are arranged so as to be positioned in front of the user's right eye and in front of the left eye, respectively. Temple units 5005 and 5006 hold the image display units 5001 and 5002 on the user's head. A right display driving unit 5007 is disposed inside the temple unit 5005 at a connection portion between the front unit 5004 and the temple unit 5005. A left display driving unit 5008 is arranged inside the temple unit 5006 at a connection portion between the front unit 5004 and the temple unit 5006.
図15では省略されているが、フレーム5003には、本技術に係る固体電池、加速度センサ、ジャイロ、電子コンパス、マイクロホン/スピーカ等が搭載されている。さらに、撮像装置が取り付けられ、静止画/動画の撮影が可能とされている。さらに、メガネ部と例えば無線又は有線のインターフェースでもって接続されたコントローラを備えている。コントローラには、タッチセンサ、各種ボタン、スピーカ、マイクロホン等が設けられている。さらに、スマートフォンとの連携機能を有している。例えばスマートフォンのGPS機能を活用してユーザの状況に応じた情報を提供することが可能とされている。
Although omitted in FIG. 15, a solid battery, an acceleration sensor, a gyroscope, an electronic compass, a microphone / speaker, and the like according to the present technology are mounted on the frame 5003. Further, an image pickup apparatus is attached, and still images / moving images can be taken. In addition, a controller connected to the glasses unit via, for example, a wireless or wired interface is provided. The controller is provided with a touch sensor, various buttons, a speaker, a microphone, and the like. Furthermore, it has a linkage function with a smartphone. For example, it is possible to provide information according to the user's situation by utilizing the GPS function of a smartphone.
本技術は、上記各実施形態、各実施例、各応用例に限定されるものではなく、本技術の要旨を逸脱しない範囲内において変更することが可能である。
The present technology is not limited to the above-described embodiments, examples, and application examples, and can be changed without departing from the gist of the present technology.
なお、本技術の効果は、固体電池に用いられる電極反応物質であれば電極反応物質の種類に依存せずに得られるはずであるため、その電極反応物質の種類を変更しても同様の効果を得ることができる。また、化合物等の化学式は代表的なものであって、同じ化合物の一般名称であれば、記載された価数等に限定されない。
In addition, since the effect of this technique should be obtained without depending on the type of the electrode reactant if it is an electrode reactant used in a solid state battery, the same effect can be obtained even if the type of the electrode reactant is changed. Can be obtained. In addition, chemical formulas of compounds and the like are representative and are not limited to the described valences and the like as long as they are general names of the same compounds.
また、本技術は、以下のような構成も取ることができる。
[1]
少なくとも、電極層と、電解質層と、該電極層と該電解質層との間に配されるバッファー層とを含み、
該電極層が電極粒子を含み、該バッファー層がバッファー粒子を含み、
該電極粒子が第1電極活物質を含有し、
該バッファー粒子が第2電極活物質及び/又は該第2電極活物質を構成する少なくも1つの原子を含有し、
該バッファー粒子の平均粒径(D50)が、該電極粒子の平均粒径(D50)よりも小さい、固体電池。
[2]
前記バッファー粒子の平均粒径(D50)に対する前記電極粒子の平均粒径(D50)の比(電極粒子の平均粒径(D50)/バッファー粒子の平均粒径(D50))が、4~450である、[1]に記載の固体電池。
[3]
前記第1電極活物質が、Co、Mn、Fe、Ni.C、Si、Li、Mg、Al及びTiからなる群から選ばれる少なくとも1種の原子を含む、[1]又は[2]に記載の固体電池。
[4]
前記第2電極活物質が、Co、Mn、Fe、Ni.C、Si、Li、Mg、Al及びTiからなる群から選ばれる少なくとも1種の原子を含む、[1]から[3]のいずれか1つに記載の固体電池。
[5]
前記電極層が正極層である、[1]から[4]のいずれか1つに記載の固体電池。
[6]
前記電極層が負極層である、[1]から[4]のいずれか1つに記載の固体電池。
[7]
2つの前記電極層を含み、該2つの電極層のそれぞれが正極層と負極層とである、[1]から[4]のいずれか1つに記載の固体電池。
[8]
[1]から[7]のいずれか1つに記載の固体電池を備える、電池パック。
[9]
[1]から[7]のいずれか1つに記載の固体電池と、
該固体電池の使用状態を制御する制御部と、
該制御部の指示に応じて該固体電池の使用状態を切り換えるスイッチ部と、を備える、電池パック。
[10]
[1]から[7]のいずれか1つに記載の固体電池と、
該固体電池から電力の供給を受けて車両の駆動力に変換する駆動力変換装置と、
該駆動力に応じて駆動する駆動部と
車両制御装置と、を備える、車両。
[11]
[1]から[7]のいずれか1つに記載の固体電池を有する蓄電装置と、
該固体電池から電力が供給される電力消費装置と、
該固体電池からの該電力消費装置に対する電力供給を制御する制御装置と、
該固体電池を充電する発電装置と、を備える、蓄電システム。
[12]
[1]から[7]のいずれか1つに記載の固体電池と、
該固体電池から電力が供給される可動部と、を備える、電動工具。
[13]
[1]から[7]のいずれか1つに記載の固体電池を備え、
該固体電池から電力の供給を受ける電子機器。 In addition, the present technology may have the following configurations.
[1]
At least an electrode layer, an electrolyte layer, and a buffer layer disposed between the electrode layer and the electrolyte layer,
The electrode layer comprises electrode particles, the buffer layer comprises buffer particles;
The electrode particles contain a first electrode active material;
The buffer particles contain the second electrode active material and / or at least one atom constituting the second electrode active material;
A solid battery in which an average particle diameter (D50) of the buffer particles is smaller than an average particle diameter (D50) of the electrode particles.
[2]
The ratio of the average particle diameter (D50) of the electrode particles to the average particle diameter (D50) of the buffer particles (the average particle diameter of the electrode particles (D50) / the average particle diameter of the buffer particles (D50)) is 4 to 450 The solid battery according to [1].
[3]
The first electrode active material is Co, Mn, Fe, Ni. The solid battery according to [1] or [2], comprising at least one atom selected from the group consisting of C, Si, Li, Mg, Al and Ti.
[4]
The second electrode active material is made of Co, Mn, Fe, Ni. The solid battery according to any one of [1] to [3], including at least one atom selected from the group consisting of C, Si, Li, Mg, Al, and Ti.
[5]
The solid battery according to any one of [1] to [4], wherein the electrode layer is a positive electrode layer.
[6]
The solid battery according to any one of [1] to [4], wherein the electrode layer is a negative electrode layer.
[7]
The solid battery according to any one of [1] to [4], including the two electrode layers, each of the two electrode layers being a positive electrode layer and a negative electrode layer.
[8]
A battery pack comprising the solid battery according to any one of [1] to [7].
[9]
[1] to [7] any one of the solid state batteries,
A control unit for controlling the use state of the solid state battery;
A battery pack comprising: a switch unit that switches a use state of the solid state battery in accordance with an instruction from the control unit.
[10]
[1] to [7] any one of the solid state batteries,
A driving force conversion device that receives supply of electric power from the solid state battery and converts it into driving force of a vehicle;
A vehicle comprising: a drive unit that drives according to the drive force; and a vehicle control device.
[11]
[1] to [7] A power storage device having the solid state battery according to any one of
A power consuming device to which power is supplied from the solid state battery;
A control device for controlling power supply from the solid state battery to the power consuming device;
A power storage system comprising: a power generation device that charges the solid state battery.
[12]
[1] to [7] any one of the solid state batteries,
And a movable part to which electric power is supplied from the solid state battery.
[13]
The solid battery according to any one of [1] to [7] is provided,
An electronic device that is supplied with power from the solid state battery.
[1]
少なくとも、電極層と、電解質層と、該電極層と該電解質層との間に配されるバッファー層とを含み、
該電極層が電極粒子を含み、該バッファー層がバッファー粒子を含み、
該電極粒子が第1電極活物質を含有し、
該バッファー粒子が第2電極活物質及び/又は該第2電極活物質を構成する少なくも1つの原子を含有し、
該バッファー粒子の平均粒径(D50)が、該電極粒子の平均粒径(D50)よりも小さい、固体電池。
[2]
前記バッファー粒子の平均粒径(D50)に対する前記電極粒子の平均粒径(D50)の比(電極粒子の平均粒径(D50)/バッファー粒子の平均粒径(D50))が、4~450である、[1]に記載の固体電池。
[3]
前記第1電極活物質が、Co、Mn、Fe、Ni.C、Si、Li、Mg、Al及びTiからなる群から選ばれる少なくとも1種の原子を含む、[1]又は[2]に記載の固体電池。
[4]
前記第2電極活物質が、Co、Mn、Fe、Ni.C、Si、Li、Mg、Al及びTiからなる群から選ばれる少なくとも1種の原子を含む、[1]から[3]のいずれか1つに記載の固体電池。
[5]
前記電極層が正極層である、[1]から[4]のいずれか1つに記載の固体電池。
[6]
前記電極層が負極層である、[1]から[4]のいずれか1つに記載の固体電池。
[7]
2つの前記電極層を含み、該2つの電極層のそれぞれが正極層と負極層とである、[1]から[4]のいずれか1つに記載の固体電池。
[8]
[1]から[7]のいずれか1つに記載の固体電池を備える、電池パック。
[9]
[1]から[7]のいずれか1つに記載の固体電池と、
該固体電池の使用状態を制御する制御部と、
該制御部の指示に応じて該固体電池の使用状態を切り換えるスイッチ部と、を備える、電池パック。
[10]
[1]から[7]のいずれか1つに記載の固体電池と、
該固体電池から電力の供給を受けて車両の駆動力に変換する駆動力変換装置と、
該駆動力に応じて駆動する駆動部と
車両制御装置と、を備える、車両。
[11]
[1]から[7]のいずれか1つに記載の固体電池を有する蓄電装置と、
該固体電池から電力が供給される電力消費装置と、
該固体電池からの該電力消費装置に対する電力供給を制御する制御装置と、
該固体電池を充電する発電装置と、を備える、蓄電システム。
[12]
[1]から[7]のいずれか1つに記載の固体電池と、
該固体電池から電力が供給される可動部と、を備える、電動工具。
[13]
[1]から[7]のいずれか1つに記載の固体電池を備え、
該固体電池から電力の供給を受ける電子機器。 In addition, the present technology may have the following configurations.
[1]
At least an electrode layer, an electrolyte layer, and a buffer layer disposed between the electrode layer and the electrolyte layer,
The electrode layer comprises electrode particles, the buffer layer comprises buffer particles;
The electrode particles contain a first electrode active material;
The buffer particles contain the second electrode active material and / or at least one atom constituting the second electrode active material;
A solid battery in which an average particle diameter (D50) of the buffer particles is smaller than an average particle diameter (D50) of the electrode particles.
[2]
The ratio of the average particle diameter (D50) of the electrode particles to the average particle diameter (D50) of the buffer particles (the average particle diameter of the electrode particles (D50) / the average particle diameter of the buffer particles (D50)) is 4 to 450 The solid battery according to [1].
[3]
The first electrode active material is Co, Mn, Fe, Ni. The solid battery according to [1] or [2], comprising at least one atom selected from the group consisting of C, Si, Li, Mg, Al and Ti.
[4]
The second electrode active material is made of Co, Mn, Fe, Ni. The solid battery according to any one of [1] to [3], including at least one atom selected from the group consisting of C, Si, Li, Mg, Al, and Ti.
[5]
The solid battery according to any one of [1] to [4], wherein the electrode layer is a positive electrode layer.
[6]
The solid battery according to any one of [1] to [4], wherein the electrode layer is a negative electrode layer.
[7]
The solid battery according to any one of [1] to [4], including the two electrode layers, each of the two electrode layers being a positive electrode layer and a negative electrode layer.
[8]
A battery pack comprising the solid battery according to any one of [1] to [7].
[9]
[1] to [7] any one of the solid state batteries,
A control unit for controlling the use state of the solid state battery;
A battery pack comprising: a switch unit that switches a use state of the solid state battery in accordance with an instruction from the control unit.
[10]
[1] to [7] any one of the solid state batteries,
A driving force conversion device that receives supply of electric power from the solid state battery and converts it into driving force of a vehicle;
A vehicle comprising: a drive unit that drives according to the drive force; and a vehicle control device.
[11]
[1] to [7] A power storage device having the solid state battery according to any one of
A power consuming device to which power is supplied from the solid state battery;
A control device for controlling power supply from the solid state battery to the power consuming device;
A power storage system comprising: a power generation device that charges the solid state battery.
[12]
[1] to [7] any one of the solid state batteries,
And a movable part to which electric power is supplied from the solid state battery.
[13]
The solid battery according to any one of [1] to [7] is provided,
An electronic device that is supplied with power from the solid state battery.
1…電極層、2…バッファー層、3…電解質層、4…電極粒子、5…バッファー粒子、10…固体電池
1 ... electrode layer, 2 ... buffer layer, 3 ... electrolyte layer, 4 ... electrode particles, 5 ... buffer particles, 10 ... solid battery
Claims (13)
- 少なくとも、電極層と、電解質層と、該電極層と該電解質層との間に配されるバッファー層とを含み、
該電極層が電極粒子を含み、該バッファー層がバッファー粒子を含み、
該電極粒子が第1電極活物質を含有し、
該バッファー粒子が第2電極活物質及び/又は該第2電極活物質を構成する少なくも1つの原子を含有し、
該バッファー粒子の平均粒径(D50)が、該電極粒子の平均粒径(D50)よりも小さい、固体電池。 At least an electrode layer, an electrolyte layer, and a buffer layer disposed between the electrode layer and the electrolyte layer,
The electrode layer comprises electrode particles, the buffer layer comprises buffer particles;
The electrode particles contain a first electrode active material;
The buffer particles contain the second electrode active material and / or at least one atom constituting the second electrode active material;
A solid battery in which an average particle diameter (D50) of the buffer particles is smaller than an average particle diameter (D50) of the electrode particles. - 前記バッファー粒子の平均粒径(D50)に対する前記電極粒子の平均粒径(D50)の比(電極粒子の平均粒径(D50)/バッファー粒子の平均粒径(D50))が、4~450である、請求項1に記載の固体電池。 The ratio of the average particle diameter (D50) of the electrode particles to the average particle diameter (D50) of the buffer particles (the average particle diameter of the electrode particles (D50) / the average particle diameter of the buffer particles (D50)) is 4 to 450 The solid battery according to claim 1.
- 前記第1電極活物質が、Co、Mn、Fe、Ni.C、Si、Li、Mg、Al及びTiからなる群から選ばれる少なくとも1種の原子を含む、請求項1に記載の固体電池。 The first electrode active material is Co, Mn, Fe, Ni. The solid state battery according to claim 1, comprising at least one atom selected from the group consisting of C, Si, Li, Mg, Al and Ti.
- 前記第2電極活物質が、Co、Mn、Fe、Ni.C、Si、Li、Mg、Al及びTiからなる群から選ばれる少なくとも1種の原子を含む、請求項1に記載の固体電池。 The second electrode active material is Co, Mn, Fe, Ni. The solid state battery according to claim 1, comprising at least one atom selected from the group consisting of C, Si, Li, Mg, Al and Ti.
- 前記電極層が正極層である、請求項1に記載の固体電池。 The solid state battery according to claim 1, wherein the electrode layer is a positive electrode layer.
- 前記電極層が負極層である、請求項1に記載の固体電池。 The solid state battery according to claim 1, wherein the electrode layer is a negative electrode layer.
- 2つの前記電極層を含み、該2つの電極層のそれぞれが正極層と負極層とである、請求項1に記載の固体電池。 The solid state battery according to claim 1, comprising two electrode layers, each of the two electrode layers being a positive electrode layer and a negative electrode layer.
- 請求項1に記載の固体電池を備える、電池パック。 A battery pack comprising the solid state battery according to claim 1.
- 請求項1に記載の固体電池と、
該固体電池の使用状態を制御する制御部と、
該制御部の指示に応じて該固体電池の使用状態を切り換えるスイッチ部と、を備える、電池パック。 A solid state battery according to claim 1;
A control unit for controlling the use state of the solid state battery;
A battery pack comprising: a switch unit that switches a use state of the solid state battery in accordance with an instruction from the control unit. - 請求項1に記載の固体電池と、
該固体電池から電力の供給を受けて車両の駆動力に変換する駆動力変換装置と、
該駆動力に応じて駆動する駆動部と
車両制御装置と、を備える、車両。 A solid state battery according to claim 1;
A driving force conversion device that receives supply of electric power from the solid state battery and converts it into driving force of a vehicle;
A vehicle comprising: a drive unit that drives according to the drive force; and a vehicle control device. - 請求項1に記載の固体電池を有する蓄電装置と、
該固体電池から電力が供給される電力消費装置と、
該固体電池からの該電力消費装置に対する電力供給を制御する制御装置と、
該固体電池を充電する発電装置と、を備える、蓄電システム。 A power storage device having the solid state battery according to claim 1;
A power consuming device to which power is supplied from the solid state battery;
A control device for controlling power supply from the solid state battery to the power consuming device;
A power storage system comprising: a power generation device that charges the solid state battery. - 請求項1に記載の固体電池と、
該固体電池から電力が供給される可動部と、を備える、電動工具。 A solid state battery according to claim 1;
And a movable part to which electric power is supplied from the solid state battery. - 請求項1に記載の固体電池を備え、
該固体電池から電力の供給を受ける電子機器。 A solid battery according to claim 1 is provided,
An electronic device that is supplied with power from the solid state battery.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017097620 | 2017-05-16 | ||
JP2017-097620 | 2017-05-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018212120A1 true WO2018212120A1 (en) | 2018-11-22 |
Family
ID=64273885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/018471 WO2018212120A1 (en) | 2017-05-16 | 2018-05-14 | Solid-state battery, battery pack, vehicle, electricity storage system, electric tool and electronic device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018212120A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110137443A (en) * | 2019-03-18 | 2019-08-16 | 宁德新能源科技有限公司 | Positive electrode and electrochemical appliance comprising the positive electrode |
JPWO2020203879A1 (en) * | 2019-03-29 | 2020-10-08 | ||
US20210135204A1 (en) * | 2019-11-05 | 2021-05-06 | Seiko Epson Corporation | Solid electrolyte coated positive electrode active material powder and method for producing solid electrolyte coated positive electrode active material powder |
US11069898B2 (en) * | 2017-03-28 | 2021-07-20 | Tdk Corporation | All-solid-state secondary battery |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009181920A (en) * | 2008-01-31 | 2009-08-13 | Ohara Inc | Solid battery |
JP2012146395A (en) * | 2011-01-06 | 2012-08-02 | Sumitomo Electric Ind Ltd | Electrode body, manufacturing method for the same, and nonaqueous electrolyte battery |
JP2013168254A (en) * | 2012-02-14 | 2013-08-29 | Sony Corp | Battery, battery unit, battery module, battery pack, electronic equipment, electric vehicle, power storage device, and power system |
-
2018
- 2018-05-14 WO PCT/JP2018/018471 patent/WO2018212120A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009181920A (en) * | 2008-01-31 | 2009-08-13 | Ohara Inc | Solid battery |
JP2012146395A (en) * | 2011-01-06 | 2012-08-02 | Sumitomo Electric Ind Ltd | Electrode body, manufacturing method for the same, and nonaqueous electrolyte battery |
JP2013168254A (en) * | 2012-02-14 | 2013-08-29 | Sony Corp | Battery, battery unit, battery module, battery pack, electronic equipment, electric vehicle, power storage device, and power system |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11069898B2 (en) * | 2017-03-28 | 2021-07-20 | Tdk Corporation | All-solid-state secondary battery |
CN110137443A (en) * | 2019-03-18 | 2019-08-16 | 宁德新能源科技有限公司 | Positive electrode and electrochemical appliance comprising the positive electrode |
JPWO2020203879A1 (en) * | 2019-03-29 | 2020-10-08 | ||
WO2020203879A1 (en) * | 2019-03-29 | 2020-10-08 | 株式会社村田製作所 | Solid-state battery |
CN113614968A (en) * | 2019-03-29 | 2021-11-05 | 株式会社村田制作所 | Solid-state battery |
JP7396352B2 (en) | 2019-03-29 | 2023-12-12 | 株式会社村田製作所 | solid state battery |
US20210135204A1 (en) * | 2019-11-05 | 2021-05-06 | Seiko Epson Corporation | Solid electrolyte coated positive electrode active material powder and method for producing solid electrolyte coated positive electrode active material powder |
CN112786850A (en) * | 2019-11-05 | 2021-05-11 | 精工爱普生株式会社 | Solid electrolyte-coated positive electrode active material powder and method for producing solid electrolyte-coated positive electrode active material powder |
EP3819965A1 (en) * | 2019-11-05 | 2021-05-12 | Seiko Epson Corporation | Positive electrode active material powder coated with solid electrolyte and method for producing the same. |
CN112786850B (en) * | 2019-11-05 | 2024-01-16 | 精工爱普生株式会社 | Solid electrolyte-coated positive electrode active material powder and method for producing solid electrolyte-coated positive electrode active material powder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6729716B2 (en) | Solid-state battery, method of manufacturing solid-state battery, battery pack, vehicle, power storage system, power tool, and electronic device | |
US11196090B2 (en) | Solid battery, battery pack, vehicle, power storage system, power tool, and electronic device | |
US11165095B2 (en) | Solid-state battery, battery pack, electric motor vehicle, power storage system, electric tool, and electronic device | |
US11710855B2 (en) | All-solid-state battery, electronic device, electronic card, wearable device, and electric motor vehicle | |
US11374252B2 (en) | Lithium ion secondary battery system, charging unit, and method for controlling lithium ion secondary battery | |
JP6933250B2 (en) | All-solid-state batteries, electronic devices, electronic cards, wearable devices and electric vehicles | |
CN111480259B (en) | All-solid battery | |
WO2018163514A1 (en) | All-solid state battery and manufacturing method therefor, and electronic device and electronic card | |
JP6848980B2 (en) | Lithium-ion conductors, all-solid-state batteries, electronic devices, electronic cards, wearable devices and electric vehicles | |
WO2018212120A1 (en) | Solid-state battery, battery pack, vehicle, electricity storage system, electric tool and electronic device | |
WO2018092434A1 (en) | All-solid-state battery, electronic device, electronic card, wearable device, and electric vehicle | |
JP6870285B2 (en) | Charging device | |
JPWO2019031380A1 (en) | Electrodes, batteries, battery packs, vehicles, power storage systems, power tools and electronic devices | |
WO2018074021A1 (en) | Charging-discharging device, charging-discharging method, electronic device, electric vehicle and powering system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18801576 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18801576 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |