WO2018207356A1 - Optical scanning device - Google Patents
Optical scanning device Download PDFInfo
- Publication number
- WO2018207356A1 WO2018207356A1 PCT/JP2017/018056 JP2017018056W WO2018207356A1 WO 2018207356 A1 WO2018207356 A1 WO 2018207356A1 JP 2017018056 W JP2017018056 W JP 2017018056W WO 2018207356 A1 WO2018207356 A1 WO 2018207356A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical system
- illumination
- light
- illumination optical
- unit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
Definitions
- the present invention relates to an optical scanning device.
- Patent Document 1 a confocal fluorescence image is acquired by providing an objective optical system in front of the tip of an optical fiber. That is, the tip of the optical fiber is disposed at the front focal point of the objective optical system, and only the fluorescence at a position optically conjugate with the tip of the optical fiber is detected through the objective optical system and the optical fiber. Yes.
- Patent Document 1 discloses that a chart image is acquired for calibration for evaluating image distortion and resolution. In order to acquire a clear chart image, the objective optical system needs to be focused on the chart.
- parallel light is irradiated from behind to a chart disposed in front of an optical fiber, light transmitted through the chart is received through the optical fiber, and the position where the amount of received light is maximized is determined as the focal point of the objective optical system. Is detected as a position that fits the chart.
- Patent Document 1 can adjust the position of the objective optical system in the optical axis direction, but adjusts the relative position between the optical fiber and the objective optical system in the direction intersecting the optical axis. I can't.
- Patent Document 1 since a light source is provided outside, even if the relative position between the optical fiber and the objective optical system is deviated from the ideal position in the optical axis direction, Light easily enters the optical fiber. Therefore, the amount of change in the amount of received light with respect to the amount of change in the optical axis direction of the relative position between the optical fiber and the objective optical system becomes small. Therefore, it is difficult to accurately detect the relative position of the optical fiber and the objective optical system in the optical axis direction based on the amount of received light, and it is difficult to perform position adjustment with high accuracy.
- the present invention has been made in view of the above-described circumstances, and can adjust the relative position in the direction intersecting the optical axis of the illumination optical system and the scanning unit, and adjust the relative position in the optical axis direction.
- An object of the present invention is to provide an optical scanning device capable of performing the above with high accuracy.
- an illumination optical system that irradiates a subject with illumination light from a light source in a spot shape, and illumination light that enters the illumination optical system from the light source intersects the optical axis of the illumination optical system.
- a scanning section that scans in a direction, and is arranged to face the illumination optical system, and the illumination light emitted from the illumination optical system in parallel to the optical axis is parallel to the optical axis toward the illumination optical system.
- a reflecting part that reflects in the direction; a light receiving part that receives the illumination light reflected by the reflecting part through an optical path of the illumination light in the illumination optical system; and a parallel to the optical axis of the illumination optical system.
- a position adjusting unit that adjusts the relative position of the scanning unit and the illumination optical system in a normal direction and a vertical direction, and a control that controls the position adjusting unit based on the amount of received illumination light received by the light receiving unit And optical scanning It is the location.
- the illumination light emitted from the illumination optical system is reflected by the reflection unit, and returns to the illumination optical system through the same optical path as the illumination light from the illumination optical system to the reflection unit.
- the illuminated light is received by the light receiving unit.
- the emission direction of the illumination light emitted from the illumination optical system changes according to the relative position in the direction (XY direction) intersecting the optical axis of the scanning unit and the illumination optical system, and is emitted from the illumination optical system.
- the divergence angle (or convergence angle) of the illumination light changes according to the relative position of the scanning unit and the illumination optical system in the optical axis direction (Z direction).
- the reflecting section is configured to turn a light ray parallel to the optical axis of the illumination optical system 180 ° and reflect a light ray inclined to the optical axis in a direction inclined to the optical axis.
- the direction and divergence angle (or convergence angle) of the illumination light irradiated from the illumination optical system to the reflection unit are changed according to the relative positions of the scanning unit and the illumination optical system in the XY direction and the Z direction, and reflected.
- the direction and divergence angle (convergence angle) of the illumination light reflected by the part also vary. Therefore, the efficiency with which the illumination light emitted from the illumination optical system returns to the illumination optical system via the reflection unit, following the same optical path from the illumination optical system to the reflection unit is as follows. It fluctuates sensitively not only to the relative position in the XY direction but also to the change in the relative position in the Z direction.
- control unit detects an accurate relative position between the scanning unit and the illumination optical system based on the amount of illumination light received by the light receiving unit, and determines the relative position between the scanning unit and the illumination optical system in the XY direction.
- position adjustment unit can adjust the position with high accuracy.
- an illumination optical system that irradiates a subject with illumination light from a light source in a spot shape, and illumination light that enters the illumination optical system from the light source intersects the optical axis of the illumination optical system.
- a scanning section that scans in a direction, and is arranged to face the illumination optical system, and the illumination light emitted from the illumination optical system in parallel to the optical axis is parallel to the optical axis toward the illumination optical system.
- a reflecting part that reflects in the direction, a light receiving part that receives the illumination light reflected by the reflecting part in the vicinity of the illumination optical system, and a direction parallel to and perpendicular to the optical axis of the illumination optical system
- Optical scanning comprising: a position adjusting unit that adjusts a relative position between the scanning unit and the illumination optical system in the case; and a control unit that controls the position adjusting unit based on a received light amount of the illumination light received by the light receiving unit.
- the illumination light emitted from the illumination optical system is reflected by the reflection unit, and reaches the light receiving unit by following substantially the same optical path as the illumination light from the illumination optical system to the reflection unit.
- the illuminated light is received by the light receiving unit.
- the efficiency with which the illumination light emitted from the illumination optical system reaches the light receiving unit through the reflection unit, following the optical path from the illumination optical system to the reflection unit, is substantially the same between the scanning unit and the illumination optical system. It fluctuates sensitively not only to the relative position in the XY direction but also to the change in the relative position in the Z direction.
- control unit detects an accurate relative position between the scanning unit and the illumination optical system based on the amount of illumination light received by the light receiving unit, and determines the relative position between the scanning unit and the illumination optical system in the XY direction.
- position adjustment unit can adjust the position with high accuracy.
- the illumination optical system has a positive refractive power for converting the illumination light incident as a divergent light beam into a parallel light beam, and the control unit is received by the light receiving unit.
- the position adjustment unit may be controlled so that the illumination optical system is arranged at a position where the amount of received illumination light is maximized.
- the relative position of an illumination optical system and a scanning part is adjusted so that illumination light may be inject
- illumination light having a small spot diameter can be irradiated even on a subject far from the illumination optical system.
- the scanning unit may include a lens system closest to the illumination optical system.
- a space can be secured between the scanning unit and the illumination optical system by optically coupling the scanning unit with the illumination optical system via the lens system.
- the aberration of the illumination optical system can be corrected by the lens system provided in the scanning unit.
- the relative position in the direction intersecting the optical axis of the illumination optical system and the scanning unit can be adjusted, and the relative position in the optical axis direction can be adjusted with high accuracy. Play.
- FIG. 1 is an overall configuration diagram of an optical scanning device and an optical scanning endoscope according to a first embodiment of the present invention. It is a figure which shows the structural example of the reflection part in the optical scanning device of FIG. It is a figure which shows the other structural example of the reflection part in the optical scanning device of FIG. It is a figure which shows the other structural example of the reflection part in the optical scanning device of FIG. It is a figure which shows the other structural example of the reflection part in the optical scanning device of FIG. It is a figure which shows the other structural example of the reflection part in the optical scanning device of FIG. 3 is a flowchart illustrating a position adjustment method for a scanning unit and an illumination optical system in the optical scanning device of FIG. 1. 4 is a received light amount distribution in the X and Y directions of the reflected laser beam acquired in step S2 of FIG.
- the optical scanning endoscope 100 includes a long insertion portion 2 that can be inserted into the body, a housing 3 connected to the proximal end of the insertion portion 2, An optical scanning device 1 that emits laser light (illumination light) L from the distal end of the insertion portion 2 and scans the laser light L is provided.
- the optical scanning endoscope 100 scans a laser beam L on a subject facing the distal end of the insertion unit 2 and observes light (for example, reflected light of the laser beam L or laser beam) generated on the subject by irradiation with the laser beam L. (Fluorescence excited by L) is observed.
- the optical scanning device 1 includes a laser light source (light source) 4, a scanning unit 5 that scans the laser light L output from the laser light source 4, and the laser beam L that is scanned by the scanning unit 5 faces the tip of the insertion unit 2.
- the illumination optical system 6 that emits light toward the subject and collects light from the subject
- the reflection unit 7 that is disposed opposite to the illumination optical system 6 and reflects the laser light L
- the light collected by the illumination optical system 6 Is received through the optical path of the laser light L in the illumination optical system 6 and the scanning unit 5, a position adjustment unit 9 that adjusts the position of the illumination optical system 6, and light reception by the light receiving unit 8.
- a control unit 10 that controls the position adjustment unit 9 based on the amount.
- the laser light source 4 is a semiconductor light source such as an LD (laser diode) and is provided in the housing 3.
- the scanning unit 5 includes an optical fiber 51 for illumination that is disposed along the longitudinal direction in the insertion unit 2 and guides the laser light L from the laser light source 4 to the distal end of the insertion unit 2, and a distal end 51 a of the optical fiber 51. And an actuator 52 that vibrates in the radial direction of the optical fiber 51.
- the proximal end of the optical fiber 51 is connected to the laser light source 4, and the distal end 51 a of the optical fiber 51 is disposed on the proximal end side with respect to the illumination optical system 6.
- the actuator 52 is, for example, a piezoelectric type that includes a piezoelectric element fixed to the outer peripheral surface of the optical fiber 51 and vibrates the tip 51 a by expanding and contracting the piezoelectric element in the longitudinal direction of the optical fiber 51.
- the actuator 52 includes a magnetic body fixed to the outer peripheral surface of the optical fiber 51 and an electromagnetic coil, and vibrates the tip 51a by applying a radial magnetic field of the optical fiber 51 from the electromagnetic coil to the magnetic body. It may be electromagnetic.
- the illumination optical system 6 has a positive refractive power as a whole, and is provided at the tip of the insertion portion 2.
- the illumination optical system 6 is shown as a single lens, but the illumination optical system 6 may be composed of a plurality of lenses.
- the illumination optical system 6 is disposed in a recess formed in the distal end surface of the insertion portion 2, and is supported by a holding member 91 of a position adjustment portion 9 described later so as to be movable in a direction parallel to and perpendicular to the optical axis. ing.
- the illumination optical system 6 is roughly aligned with the tip 51a of the optical fiber 51 so that the front focal point of the illumination optical system 6 is positioned at or near the tip 51a of the optical fiber 51 in a stationary state.
- the illumination optical system 6 may include a flat plate or the like that transmits light on the bottom surface of the recess facing the tip 51 a of the optical fiber 51.
- the illumination optical system 6 is in focus at infinity, and the subject is irradiated with the laser light L from the illumination optical system 6 in a spot shape.
- a laser beam L having a small spot diameter is also irradiated to a subject that is far from the distal end of the insertion portion 2, a high resolving power can be obtained.
- the laser light L (reflected laser light L ′) reflected by the reflecting portion 7 returns to the illumination optical system 6 and enters the tip 51a of the optical fiber 51.
- the laser light L is guided in the opposite direction.
- the reflecting unit 7 is used when adjusting the relative position between the scanning unit 5 and the illumination optical system 6 so that the position of the front focal point F of the illumination optical system 6 coincides with the position of the tip 51a of the optical fiber 51.
- the reflection unit 7 has a reflection surface 7 a that reflects the laser light L, and is disposed in front of the distal end of the insertion unit 2 so that the reflection surface 7 a faces the illumination optical system 6.
- the reflection unit 7 is configured to be detachable from the distal end portion of the insertion portion 2, and is parallel to the optical axis of the laser light L emitted from the illumination optical system 6 while being attached to the distal end portion of the insertion portion 2.
- the reflection surface 7a is configured to bend the light rays by 180 °.
- 2A to 2D show a configuration example of the reflection unit 7.
- 2A is provided on the bottom surface of a columnar recess 3a that is formed in the housing 3 and the distal end of the insertion portion 2 is fitted in the longitudinal direction.
- the reflection surface 7a is a flat surface perpendicular to the longitudinal direction of the recess 3a, and is disposed at a position spaced from the tip of the insertion portion 2 fitted in the recess 3a in the optical axis direction of the illumination optical system 6. .
- the vertical relationship between the optical axis of the illumination optical system 6 and the reflecting surface 7a is ensured by fitting the recess 3a with the tip of the insertion portion 2.
- the 2B is provided at one end of a cylindrical cap 12 that covers the distal end portion of the insertion portion 2.
- the cap 12 is opened at the other end, and the cap 12 and the distal end portion of the insertion portion 2 inserted into the cap 12 from the opening at the other end are fitted with each other.
- the reflecting surface 7 a is a flat surface perpendicular to the longitudinal direction of the cap 12, and is disposed at a position spaced from the distal end of the insertion portion 2 fitted in the cap 12 in the optical axis direction of the illumination optical system 6. .
- the vertical relationship between the optical axis of the illumination optical system 6 and the reflecting surface 7a is secured by fitting the cap 12 with the distal end portion of the insertion portion 2.
- the reflective surface 7a in FIGS. 2A and 2B is a flat surface and is disposed at a position spaced from the illumination optical system 6. However, the reflective surface 7a has illumination optics as shown in FIGS. 2C and 2D. It may be arranged without a gap between the system 6 and may be a non-flat surface.
- 2C is a member disposed adjacent to the distal end surface of the insertion portion 2, and has a concave spherical shape complementary to the distal end surface of the illumination optical system 6, and the distal end surface of the illumination optical system 6. It has a reflective surface 7a arranged in contact.
- 2D includes the tip surface of the illumination optical system 6. That is, the tip surface of the illumination optical system 6 plays the role of the reflecting surface 7a.
- the light receiving unit 8 includes an optical fiber 81 that receives the reflected laser beam L ′ via the optical fiber 51, and a photodetector 82 that detects the reflected laser beam L ′ received by the optical fiber 81.
- the optical fiber 81 branches from the optical fiber 51 between the laser light source 4 and the actuator 52, separates the reflected laser light L ′ guided through the optical fiber 51 from the laser light L, and guides it to the photodetector 82. To do.
- the photodetector 82 photoelectrically converts the reflected laser light L ′ incident from the optical fiber 81 to generate an electrical signal corresponding to the received light amount of the reflected laser light L ′, and uses the electrical signal as received light amount information as the control unit 10. Send to.
- the position adjusting unit 9 includes a holding member 91 that holds the illumination optical system 6 and an XYZ driving unit 92 such as a three-axis motor that moves the holding member 91 in the X, Y, and Z directions.
- the X direction and the Y direction are directions orthogonal to each other and orthogonal to the optical axis of the illumination optical system 6, and the Z direction is a direction parallel to the optical axis of the illumination optical system 6.
- the XYZ driving unit 92 transmits the X, Y, and Z positions of the illumination optical system 6 to the control unit 10 and moves the illumination optical system 6 in the X, Y, and Z directions according to a control signal from the control unit 10.
- the control unit 10 sequentially adjusts the position adjustment of the illumination optical system 6 in the XY direction and the position adjustment in the Z direction so that the amount of the reflected laser light L ′ received by the light receiving unit 8 is maximized. 9 is executed.
- the position adjustment in the Z direction is performed after the position adjustment in the XY direction is performed.
- the position adjustment in the Z direction may be executed after the position adjustment in the XY direction, and then the position adjustment in the XY direction and the position adjustment in the Z direction may be repeated a plurality of times in the same order.
- the position adjustment process is executed in a state where the tip 5a of the optical fiber 51 is stationary using the reflection unit 7 instead of the subject.
- the position adjustment process is executed, for example, before the observation of the subject by the optical scanning endoscope 100 is started.
- the control unit 10 starts outputting the laser light L from the laser light source 4 (step S1).
- control unit 10 controls the position adjusting unit 9 so as to move the illumination optical system 6 two-dimensionally in the X direction and the Y direction, and while the illumination optical system 6 is moving, the reflected laser beam L ′. Detection and transmission of received light amount information are repeatedly executed by the photodetector 82. Thereby, as shown in FIG. 4, the control unit 10 acquires the received light amount distribution of the reflected laser light L ′ in the XY directions (step S2). Next, the control unit 10 controls the position adjustment unit 9 to move the illumination optical system 6 to the XY position where the received light amount is maximum in the received light amount distribution in the XY directions (step S3).
- the received light amount of the reflected laser light L ′ becomes maximum, and the optical axis A of the illumination optical system 6 is obtained.
- the optical axis of the optical fiber 51 are larger in the XY direction, the received light amount of the reflected laser light L ′ decreases.
- FIG. That is, when the optical axis A of the illumination optical system 6 and the optical axis of the optical fiber 51 are aligned in a straight line (see the lower diagram in FIG. 5), the reflected laser light L ′ from the reflecting surface 7a is converted into the optical axis.
- the optical fiber 51 returns to the tip 5a along A.
- the optical axis 51 is inclined with respect to the optical axis of the optical fiber 51.
- the laser light L is emitted from the illumination optical system 6, the reflected laser light L ′ passing outside the tip 51a of the optical fiber 51 increases.
- the optical axis A of the illumination optical system 6 is aligned with the optical axis of the optical fiber 51.
- the scanning unit 5 and the illumination optical system 6 can be aligned. Thereby, the position adjustment of the illumination optical system 6 in the XY directions is completed.
- control unit 10 controls the position adjustment unit 9 so as to move the illumination optical system 6 one-dimensionally in the Z direction, and detects the reflected laser light L ′ and moves the illumination optical system 6.
- the photodetector 82 is repeatedly executed to transmit the received light amount information.
- the control unit 10 acquires the received light amount distribution of the reflected laser light L ′ in the Z direction as shown in FIG. 6 (step S4).
- the control unit 10 controls the position adjustment unit 9 to move the illumination optical system 6 to the Z position where the received light amount is maximum in the received light amount distribution in the Z direction (step S5).
- the reflected laser light L ′ from 7a returns to the tip 5a of the optical fiber 51 along the optical axis A, the position of the front focal point F of the illumination optical system 6 and the position of the tip 51a of the optical fiber 51 are different.
- the laser light L emitted from the illumination optical system 6 has a divergence angle or a convergence angle, so that the outside of the tip 51a of the optical fiber 51 is outside. This is because the reflected laser beam L ′ passing therethrough increases.
- the broken lines in FIG. 6 indicate changes in the amount of received light when parallel light is incident on the illumination optical system 6 from the front of the illumination optical system 6 as in Patent Document 1.
- the position of the front focal point F of the illumination optical system 6 coincides with the position of the tip 51a of the optical fiber 51 by arranging the illumination optical system 6 at the Z position where the received light amount is maximum in the received light amount distribution in the Z direction.
- the alignment between the scanning unit 5 and the illumination optical system 6 can be performed. Thereby, the position adjustment of the illumination optical system 6 in the Z direction is completed.
- the housing 3 contains a processor such as a central processing unit (CPU), a main storage device such as a RAM, and an auxiliary storage device such as a hard disk drive.
- the auxiliary storage device stores a control program for causing the processor to execute the above-described position adjustment processing of the control unit 10.
- the control program is loaded from the auxiliary storage device to the main storage device, and the processor executes processing according to the control program, thereby realizing the function of the control unit 10.
- the efficiency with which the laser light L emitted from the tip 51a of the optical fiber 51 returns to the tip 51a through the reflecting surface 7a and following the same optical path as the laser light L is: It changes sensitively with respect to a change in the relative position between the tip 51a of the optical fiber 51 and the front focal point F of the illumination optical system 6, and the position of the tip 51a of the optical fiber 51 and the position of the front focal point F of the illumination optical system 6 change.
- the amount of received reflected laser light L ′ changes sharply with respect to the deviation.
- the scanning unit 5 and the illumination optical system 6 are arranged so that the position of the tip 51a of the optical fiber 51 and the position of the front focal point F of the illumination optical system 6 are exactly matched. There is an advantage that the relative position can be adjusted with high accuracy.
- an optical scanning device 20 and an optical scanning endoscope 101 according to a second embodiment of the present invention will be described with reference to FIGS.
- a configuration different from that of the first embodiment will be described, and a configuration common to the first embodiment will be denoted by the same reference numeral and description thereof will be omitted.
- the optical scanning device 20 and the optical scanning endoscope 101 according to the present embodiment are different from the first embodiment in the configuration and arrangement of the light receiving unit 80.
- the optical scanning endoscope 101 includes an insertion portion 2, a housing 3, and an optical scanning device 20.
- the optical scanning device 20 includes a laser light source 4, a scanning unit 5, an illumination optical system 6, a reflecting unit 7, a light receiving unit 80 that receives the reflected laser light L ′ from the reflecting unit 7, and a position adjusting unit 9.
- the control unit 10 is provided.
- the light receiving unit 80 includes a light receiving optical fiber 83 disposed around the illumination optical system 6 and a photodetector 82.
- the optical fiber 83 is disposed in the insertion section 2 along the longitudinal direction of the insertion section 2, and the optical fiber 83 is disposed at the distal end of the insertion section 2 so as to be positioned in the vicinity of the illumination optical system 6.
- the base end of 83 is connected to the photodetector 82.
- the reflected laser light L ′ from the reflecting surface 7 a enters the tip of the optical fiber 83, is guided to the photodetector 82 by the optical fiber 83, and is detected by the photodetector 82.
- optical fiber 83 Although only one optical fiber 83 may be provided, a plurality of optical fibers 83 are arranged in the circumferential direction of the illumination optical system 6 and connected to a common photodetector 82, and reflected lasers received by the plurality of optical fibers 83.
- the light L ′ may be configured to be detected by the photodetector 82.
- FIG. 9 shows the arrangement of the reflecting surface 7 a with respect to the illumination optical system 6 during the position adjustment process by the control unit 10.
- the reflecting surface 7 a is disposed at a position that satisfies the following expression (1) with respect to the illumination optical system 6. D ⁇ f (H + P) / 2P (1)
- D is the distance between the front end surface of the illumination optical system 6 and the reflecting surface 7a in the Z direction
- H is the distance of the illumination optical system 6 in the direction orthogonal to the optical axis A of the illumination optical system 6.
- f is the focal length of the illumination optical system 6
- P is the optical axis A of the illumination optical system 6 in the XY directions and the illumination This is the maximum allowable deviation from the optical axis of the optical fiber 51 for use.
- the larger the ⁇ p the larger the spot diameter of the laser light L irradiated to the subject from the illumination optical system 6 and the lower the resolving power.
- the maximum deviation amount P is set so that the spot diameter of the laser light L on the subject becomes a size suitable for practical use. For example, it is set experimentally or based on simulation.
- the position adjustment process of the illumination optical system 6 by the control unit 10 is the same as that in the first embodiment.
- the optical axis of the optical fiber 83 that receives the reflected laser beam L ′ are shifted in the XY directions. Therefore, as a result of adjusting the position of the illumination optical system 6 according to steps S1 to S5, as shown in FIG. 9, the tip 51a of the optical fiber 51 and the front focal point F of the illumination optical system 6 are shifted by ⁇ p in the XY direction.
- the relative position of the scanning unit 5 and the illumination optical system 6 is adjusted to the position.
- FIG. 9 shows a case where the scanning unit 5 is moved.
- the laser beam L emitted from the tip 51a of the optical fiber 51 follows the optical path substantially the same as the laser beam L via the reflecting surface 7a and receives light in the vicinity of the illumination optical system 6.
- the efficiency of reaching the optical fiber 83 changes sensitively to changes in the relative position between the tip 51a of the optical fiber 51 and the front focal point F of the illumination optical system 6, and the optical fiber
- the amount of the reflected laser beam L ′ received by the light receiving optical fiber 83 changes sharply with respect to the deviation between the position of the tip 51a of 51 and the position of the front focus F of the illumination optical system 6.
- the scanning unit 5 and the illumination optical system 6 are arranged so that the position of the tip 51a of the optical fiber 51 and the position of the front focal point F of the illumination optical system 6 are exactly matched. There is an advantage that the relative position can be adjusted.
- the light receiving unit 80 can be used to detect observation light generated in the subject by irradiation with the laser light L. That is, the common light receiving unit 80 can be used to detect the reflected laser beam L ′ and the observation light for adjusting the relative position between the scanning unit 5 and the illumination optical system 6, and the optical scanning endoscope There is an advantage that the configuration of 101 can be simplified.
- the position adjustment unit 9 moves the illumination optical system 6, but instead, the position adjustment unit 9 may include only the scanning unit 5 or the scanning unit.
- the relative position between the tip 51a of the optical fiber 51 and the illumination optical system 6 may be adjusted by moving both the illumination optical system 5 and the illumination optical system 6.
- FIG. 10 shows an example in which the position of the illumination optical system 6 is fixed and only the scanning unit 5 is moved.
- the laser light L is directly incident on the illumination optical system 6 from the tip 51a of the optical fiber 51.
- the scanning unit 5 is shown in FIG.
- a lens system 53 including at least one lens may be further provided closest to the illumination optical system 6.
- the lens system 53 can correct the aberration generated in the illumination optical system 6.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Endoscopes (AREA)
Abstract
An optical scanning device (1) comprises: a lighting system (6); a scanning module (5) for scanning illumination light that enters the lighting system (6) from a light source (4); a reflector (7) that reflects, in a direction parallel to the optical axis, the illumination light emitted in a direction parallel to the optical axis from the lighting system (6); a light receiving unit (8) that receives the illumination light reflected by the reflector (7) via the optical path for the illumination light in the lighting system (6); a position adjusting unit (9) that adjusts the relative position between the scanning module (5) and the lighting system (6) along the directions parallel to and perpendicular to the optical axis of the lighting system (6); and a control unit (10) that controls the position adjusting unit (9) on the basis of the amount of light received by the light receiving unit (8).
Description
本発明は、光走査装置に関するものである。
The present invention relates to an optical scanning device.
従来、光ファイバの先端を振動させることで光ファイバの先端から被写体に照射される励起光を走査し、照明光の照射位置からの蛍光を受光して画像化する光走査型内視鏡が知られている(例えば、特許文献1参照。)。特許文献1では、光ファイバの先端の前方に対物光学系を設けることで、共焦点蛍光画像を取得している。すなわち、対物光学系の前側焦点に光ファイバの先端が配置されており、光ファイバの先端と光学的に共役な位置の蛍光のみが対物光学系および光ファイバを介して検出されるようになっている。
Conventionally, there has been known an optical scanning endoscope that scans excitation light irradiated on a subject from the tip of the optical fiber by vibrating the tip of the optical fiber, and receives and images fluorescence from the irradiation position of the illumination light. (For example, refer to Patent Document 1). In Patent Document 1, a confocal fluorescence image is acquired by providing an objective optical system in front of the tip of an optical fiber. That is, the tip of the optical fiber is disposed at the front focal point of the objective optical system, and only the fluorescence at a position optically conjugate with the tip of the optical fiber is detected through the objective optical system and the optical fiber. Yes.
また、特許文献1には、画像の歪みや解像度を評価するためのキャリブレーション用にチャートの画像を取得することが開示されている。鮮明なチャートの画像を取得するためには、対物光学系の焦点がチャートに合っている必要がある。特許文献1では、光ファイバの前方に配置されたチャートに背後から平行光を照射し、チャートを透過した光を光ファイバを介して受光し、受光量が最大となる位置を対物光学系の焦点がチャートに合う位置として検出している。
Patent Document 1 discloses that a chart image is acquired for calibration for evaluating image distortion and resolution. In order to acquire a clear chart image, the objective optical system needs to be focused on the chart. In Patent Document 1, parallel light is irradiated from behind to a chart disposed in front of an optical fiber, light transmitted through the chart is received through the optical fiber, and the position where the amount of received light is maximized is determined as the focal point of the objective optical system. Is detected as a position that fits the chart.
対物光学系を介して被写体に照射される光のスポット径を制御するためには、光ファイバと対物光学系との相対位置を正確に調整する必要がある。特許文献1に開示されている移動機構は、対物光学系の位置を光軸方向に調整することはできるが、光軸に交差する方向における光ファイバと対物光学系との相対位置の調整を行うことができない。
In order to control the spot diameter of light irradiated to the subject via the objective optical system, it is necessary to accurately adjust the relative position between the optical fiber and the objective optical system. The moving mechanism disclosed in Patent Document 1 can adjust the position of the objective optical system in the optical axis direction, but adjusts the relative position between the optical fiber and the objective optical system in the direction intersecting the optical axis. I can't.
また、特許文献1においては、外部に光源が設けられているため、光ファイバと対物光学系との相対位置が理想の位置から光軸方向にずれている場合であっても、対物光学系から光ファイバに光が入射しやすい。そのため、光ファイバと対物光学系との相対位置の光軸方向の変化量に対する受光量の変化量が小さくなる。したがって、光ファイバと対物光学系との光軸方向の相対位置を受光量に基づいて正確に検出することが困難であり、高い精度で位置調整を行うことが難しいという問題がある。
In Patent Document 1, since a light source is provided outside, even if the relative position between the optical fiber and the objective optical system is deviated from the ideal position in the optical axis direction, Light easily enters the optical fiber. Therefore, the amount of change in the amount of received light with respect to the amount of change in the optical axis direction of the relative position between the optical fiber and the objective optical system becomes small. Therefore, it is difficult to accurately detect the relative position of the optical fiber and the objective optical system in the optical axis direction based on the amount of received light, and it is difficult to perform position adjustment with high accuracy.
本発明は、上述した事情に鑑みてなされたものであって、照明光学系および走査部の光軸に交差する方向の相対位置の調整を行うことができるとともに、光軸方向の相対位置の調整を高い精度で行うことができる光走査装置を提供することを目的とする。
The present invention has been made in view of the above-described circumstances, and can adjust the relative position in the direction intersecting the optical axis of the illumination optical system and the scanning unit, and adjust the relative position in the optical axis direction. An object of the present invention is to provide an optical scanning device capable of performing the above with high accuracy.
上記目的を達成するため、本発明は以下の手段を提供する。
本発明の第1の態様は、光源からの照明光を被写体にスポット状に照射する照明光学系と、前記光源から前記照明光学系に入射する照明光を前記照明光学系の光軸に交差する方向に走査する走査部と、前記照明光学系と対向して配置され、該照明光学系から前記光軸に平行に射出された前記照明光を前記照明光学系に向かって前記光軸に平行な方向に反射する反射部と、該反射部によって反射された前記照明光を前記照明光学系における前記照明光の光路を介して受光する受光部と、前記照明光学系の前記光軸に対して平行な方向および垂直な方向における前記走査部および前記照明光学系の相対位置を調整する位置調整部と、前記受光部によって受光された前記照明光の受光量に基づいて前記位置調整部を制御する制御部とを備える光走査装置である。 In order to achieve the above object, the present invention provides the following means.
According to a first aspect of the present invention, an illumination optical system that irradiates a subject with illumination light from a light source in a spot shape, and illumination light that enters the illumination optical system from the light source intersects the optical axis of the illumination optical system. A scanning section that scans in a direction, and is arranged to face the illumination optical system, and the illumination light emitted from the illumination optical system in parallel to the optical axis is parallel to the optical axis toward the illumination optical system. A reflecting part that reflects in the direction; a light receiving part that receives the illumination light reflected by the reflecting part through an optical path of the illumination light in the illumination optical system; and a parallel to the optical axis of the illumination optical system. A position adjusting unit that adjusts the relative position of the scanning unit and the illumination optical system in a normal direction and a vertical direction, and a control that controls the position adjusting unit based on the amount of received illumination light received by the light receiving unit And optical scanning It is the location.
本発明の第1の態様は、光源からの照明光を被写体にスポット状に照射する照明光学系と、前記光源から前記照明光学系に入射する照明光を前記照明光学系の光軸に交差する方向に走査する走査部と、前記照明光学系と対向して配置され、該照明光学系から前記光軸に平行に射出された前記照明光を前記照明光学系に向かって前記光軸に平行な方向に反射する反射部と、該反射部によって反射された前記照明光を前記照明光学系における前記照明光の光路を介して受光する受光部と、前記照明光学系の前記光軸に対して平行な方向および垂直な方向における前記走査部および前記照明光学系の相対位置を調整する位置調整部と、前記受光部によって受光された前記照明光の受光量に基づいて前記位置調整部を制御する制御部とを備える光走査装置である。 In order to achieve the above object, the present invention provides the following means.
According to a first aspect of the present invention, an illumination optical system that irradiates a subject with illumination light from a light source in a spot shape, and illumination light that enters the illumination optical system from the light source intersects the optical axis of the illumination optical system. A scanning section that scans in a direction, and is arranged to face the illumination optical system, and the illumination light emitted from the illumination optical system in parallel to the optical axis is parallel to the optical axis toward the illumination optical system. A reflecting part that reflects in the direction; a light receiving part that receives the illumination light reflected by the reflecting part through an optical path of the illumination light in the illumination optical system; and a parallel to the optical axis of the illumination optical system. A position adjusting unit that adjusts the relative position of the scanning unit and the illumination optical system in a normal direction and a vertical direction, and a control that controls the position adjusting unit based on the amount of received illumination light received by the light receiving unit And optical scanning It is the location.
上記第1の態様によれば、照明光学系から射出された照明光は、反射部によって反射され、照明光学系から反射部までの照明光の光路と同一の光路を辿って照明光学系まで戻った照明光が受光部によって受光される。
ここで、照明光学系から射出される照明光の射出方向は、走査部と照明光学系との光軸に交差する方向(XY方向)の相対位置に応じて変化し、照明光学系から射出される照明光の発散角(または収束角)は、走査部と照明光学系との光軸方向(Z方向)の相対位置に応じて変化する。また、反射部は、照明光学系の光軸に平行な光線を180°折り返し、光軸に傾斜する光線を光軸に傾斜する方向に反射するようになっている。 According to the first aspect, the illumination light emitted from the illumination optical system is reflected by the reflection unit, and returns to the illumination optical system through the same optical path as the illumination light from the illumination optical system to the reflection unit. The illuminated light is received by the light receiving unit.
Here, the emission direction of the illumination light emitted from the illumination optical system changes according to the relative position in the direction (XY direction) intersecting the optical axis of the scanning unit and the illumination optical system, and is emitted from the illumination optical system. The divergence angle (or convergence angle) of the illumination light changes according to the relative position of the scanning unit and the illumination optical system in the optical axis direction (Z direction). The reflecting section is configured to turn a light ray parallel to the optical axis of the illumination optical system 180 ° and reflect a light ray inclined to the optical axis in a direction inclined to the optical axis.
ここで、照明光学系から射出される照明光の射出方向は、走査部と照明光学系との光軸に交差する方向(XY方向)の相対位置に応じて変化し、照明光学系から射出される照明光の発散角(または収束角)は、走査部と照明光学系との光軸方向(Z方向)の相対位置に応じて変化する。また、反射部は、照明光学系の光軸に平行な光線を180°折り返し、光軸に傾斜する光線を光軸に傾斜する方向に反射するようになっている。 According to the first aspect, the illumination light emitted from the illumination optical system is reflected by the reflection unit, and returns to the illumination optical system through the same optical path as the illumination light from the illumination optical system to the reflection unit. The illuminated light is received by the light receiving unit.
Here, the emission direction of the illumination light emitted from the illumination optical system changes according to the relative position in the direction (XY direction) intersecting the optical axis of the scanning unit and the illumination optical system, and is emitted from the illumination optical system. The divergence angle (or convergence angle) of the illumination light changes according to the relative position of the scanning unit and the illumination optical system in the optical axis direction (Z direction). The reflecting section is configured to turn a light ray parallel to the optical axis of the illumination optical system 180 ° and reflect a light ray inclined to the optical axis in a direction inclined to the optical axis.
このように、走査部と照明光学系とのXY方向およびZ方向の相対位置に応じて照明光学系から反射部に照射される照明光の方向および発散角(または収束角)が変動し、反射部によって反射された照明光の方向および発散角(収束角)も変動する。そのため、照明光学系から射出された照明光が、反射部を経由し、照明光学系から反射部までの光路と同一の光路を辿って照明光学系まで戻る効率は、走査部と照明光学系とのXY方向の相対位置のみならずZ方向の相対位置の変化に対しても敏感に変動する。したがって、制御部は、受光部によって受光された照明光の受光量に基づいて走査部と照明光学系との正確な相対位置を検出し、走査部と照明光学系との相対位置を、XY方向のみならずZ方向にも位置調整部によって高い精度で調整することができる。
As described above, the direction and divergence angle (or convergence angle) of the illumination light irradiated from the illumination optical system to the reflection unit are changed according to the relative positions of the scanning unit and the illumination optical system in the XY direction and the Z direction, and reflected. The direction and divergence angle (convergence angle) of the illumination light reflected by the part also vary. Therefore, the efficiency with which the illumination light emitted from the illumination optical system returns to the illumination optical system via the reflection unit, following the same optical path from the illumination optical system to the reflection unit is as follows. It fluctuates sensitively not only to the relative position in the XY direction but also to the change in the relative position in the Z direction. Therefore, the control unit detects an accurate relative position between the scanning unit and the illumination optical system based on the amount of illumination light received by the light receiving unit, and determines the relative position between the scanning unit and the illumination optical system in the XY direction. In addition to the Z direction, the position adjustment unit can adjust the position with high accuracy.
本発明の第2の態様は、光源からの照明光を被写体にスポット状に照射する照明光学系と、前記光源から前記照明光学系に入射する照明光を前記照明光学系の光軸に交差する方向に走査する走査部と、前記照明光学系と対向して配置され、該照明光学系から前記光軸に平行に射出された前記照明光を前記照明光学系に向かって前記光軸に平行な方向に反射する反射部と、該反射部によって反射された前記照明光を前記照明光学系の近傍において受光する受光部と、前記照明光学系の前記光軸に対して平行な方向および垂直な方向における前記走査部および前記照明光学系の相対位置を調整する位置調整部と、前記受光部によって受光された前記照明光の受光量に基づいて前記位置調整部を制御する制御部とを備える光走査装置である。
According to a second aspect of the present invention, an illumination optical system that irradiates a subject with illumination light from a light source in a spot shape, and illumination light that enters the illumination optical system from the light source intersects the optical axis of the illumination optical system. A scanning section that scans in a direction, and is arranged to face the illumination optical system, and the illumination light emitted from the illumination optical system in parallel to the optical axis is parallel to the optical axis toward the illumination optical system. A reflecting part that reflects in the direction, a light receiving part that receives the illumination light reflected by the reflecting part in the vicinity of the illumination optical system, and a direction parallel to and perpendicular to the optical axis of the illumination optical system Optical scanning comprising: a position adjusting unit that adjusts a relative position between the scanning unit and the illumination optical system in the case; and a control unit that controls the position adjusting unit based on a received light amount of the illumination light received by the light receiving unit. Device.
上記第2の態様によれば、照明光学系から射出された照明光は、反射部によって反射され、照明光学系から反射部までの照明光の光路と略同一の光路を辿って受光部に到達した照明光が受光部によって受光される。照明光学系から射出された照明光が、反射部を経由し、照明光学系から反射部までの光路と略同一の光路を辿って受光部まで到達する効率は、走査部と照明光学系とのXY方向の相対位置のみならずZ方向の相対位置の変化に対しても敏感に変動する。したがって、制御部は、受光部によって受光された照明光の受光量に基づいて走査部と照明光学系との正確な相対位置を検出し、走査部と照明光学系との相対位置を、XY方向のみならずZ方向にも位置調整部によって高い精度で調整することができる。
According to the second aspect, the illumination light emitted from the illumination optical system is reflected by the reflection unit, and reaches the light receiving unit by following substantially the same optical path as the illumination light from the illumination optical system to the reflection unit. The illuminated light is received by the light receiving unit. The efficiency with which the illumination light emitted from the illumination optical system reaches the light receiving unit through the reflection unit, following the optical path from the illumination optical system to the reflection unit, is substantially the same between the scanning unit and the illumination optical system. It fluctuates sensitively not only to the relative position in the XY direction but also to the change in the relative position in the Z direction. Therefore, the control unit detects an accurate relative position between the scanning unit and the illumination optical system based on the amount of illumination light received by the light receiving unit, and determines the relative position between the scanning unit and the illumination optical system in the XY direction. In addition to the Z direction, the position adjustment unit can adjust the position with high accuracy.
上記第1および第2の態様においては、前記照明光学系が、発散光束として入射する前記照明光を平行光束に変換する正の屈折力を有し、前記制御部が、前記受光部によって受光される前記照明光の受光量が最大となる位置に前記照明光学系を配置するように前記位置調整部を制御してもよい。
このようにすることで、照明光学系から照明光が平行光束として射出されるように、照明光学系と走査部との相対位置が調整される。これにより、照光学系から遠い被写体にも小さなスポット径の照明光を照射することができる。 In the first and second aspects, the illumination optical system has a positive refractive power for converting the illumination light incident as a divergent light beam into a parallel light beam, and the control unit is received by the light receiving unit. The position adjustment unit may be controlled so that the illumination optical system is arranged at a position where the amount of received illumination light is maximized.
By doing in this way, the relative position of an illumination optical system and a scanning part is adjusted so that illumination light may be inject | emitted as a parallel light beam from an illumination optical system. As a result, illumination light having a small spot diameter can be irradiated even on a subject far from the illumination optical system.
このようにすることで、照明光学系から照明光が平行光束として射出されるように、照明光学系と走査部との相対位置が調整される。これにより、照光学系から遠い被写体にも小さなスポット径の照明光を照射することができる。 In the first and second aspects, the illumination optical system has a positive refractive power for converting the illumination light incident as a divergent light beam into a parallel light beam, and the control unit is received by the light receiving unit. The position adjustment unit may be controlled so that the illumination optical system is arranged at a position where the amount of received illumination light is maximized.
By doing in this way, the relative position of an illumination optical system and a scanning part is adjusted so that illumination light may be inject | emitted as a parallel light beam from an illumination optical system. As a result, illumination light having a small spot diameter can be irradiated even on a subject far from the illumination optical system.
上記第1および第2の態様においては、前記走査部が、最も前記照明光学系側にレンズ系を備えていてもよい。
このように、走査部をレンズ系を介して照明光学系と光学的に結合することで、走査部と照明光学系との間にスペースを確保することができる。また、走査部に設けられたレンズ系によって照明光学系の収差を補正することができる。 In the first and second aspects, the scanning unit may include a lens system closest to the illumination optical system.
Thus, a space can be secured between the scanning unit and the illumination optical system by optically coupling the scanning unit with the illumination optical system via the lens system. In addition, the aberration of the illumination optical system can be corrected by the lens system provided in the scanning unit.
このように、走査部をレンズ系を介して照明光学系と光学的に結合することで、走査部と照明光学系との間にスペースを確保することができる。また、走査部に設けられたレンズ系によって照明光学系の収差を補正することができる。 In the first and second aspects, the scanning unit may include a lens system closest to the illumination optical system.
Thus, a space can be secured between the scanning unit and the illumination optical system by optically coupling the scanning unit with the illumination optical system via the lens system. In addition, the aberration of the illumination optical system can be corrected by the lens system provided in the scanning unit.
本発明によれば、照明光学系および走査部の光軸に交差する方向の相対位置の調整を行うことができるとともに、光軸方向の相対位置の調整を高い精度で行うことができるという効果を奏する。
According to the present invention, the relative position in the direction intersecting the optical axis of the illumination optical system and the scanning unit can be adjusted, and the relative position in the optical axis direction can be adjusted with high accuracy. Play.
(第1の実施形態)
本発明の第1の実施形態に係る光走査装置1およびこれを備える光走査型内視鏡100について図1から図7を参照して説明する。
本実施形態に係る光走査型内視鏡100は、図1に示されるように、体内に挿入可能な長尺の挿入部2と、挿入部2の基端に接続された筐体3と、挿入部2の先端からレーザ光(照明光)Lを射出するとともにレーザ光Lを走査する光走査装置1とを備えている。
光走査型内視鏡100は、挿入部2の先端と対向する被写体上でレーザ光Lを走査し、レーザ光Lの照射によって被写体で生じる観察光(例えば、レーザ光Lの反射光またはレーザ光Lによって励起された蛍光)を観察するようになっている。 (First embodiment)
Anoptical scanning device 1 according to a first embodiment of the present invention and an optical scanning endoscope 100 including the same will be described with reference to FIGS.
As shown in FIG. 1, theoptical scanning endoscope 100 according to the present embodiment includes a long insertion portion 2 that can be inserted into the body, a housing 3 connected to the proximal end of the insertion portion 2, An optical scanning device 1 that emits laser light (illumination light) L from the distal end of the insertion portion 2 and scans the laser light L is provided.
Theoptical scanning endoscope 100 scans a laser beam L on a subject facing the distal end of the insertion unit 2 and observes light (for example, reflected light of the laser beam L or laser beam) generated on the subject by irradiation with the laser beam L. (Fluorescence excited by L) is observed.
本発明の第1の実施形態に係る光走査装置1およびこれを備える光走査型内視鏡100について図1から図7を参照して説明する。
本実施形態に係る光走査型内視鏡100は、図1に示されるように、体内に挿入可能な長尺の挿入部2と、挿入部2の基端に接続された筐体3と、挿入部2の先端からレーザ光(照明光)Lを射出するとともにレーザ光Lを走査する光走査装置1とを備えている。
光走査型内視鏡100は、挿入部2の先端と対向する被写体上でレーザ光Lを走査し、レーザ光Lの照射によって被写体で生じる観察光(例えば、レーザ光Lの反射光またはレーザ光Lによって励起された蛍光)を観察するようになっている。 (First embodiment)
An
As shown in FIG. 1, the
The
光走査装置1は、レーザ光源(光源)4と、レーザ光源4から出力されたレーザ光Lを走査する走査部5と、走査部5によって走査されるレーザ光Lを挿入部2の先端と対向する被写体に向けて射出するとともに被写体からの光を集める照明光学系6と、照明光学系6と対向して配置されレーザ光Lを反射する反射部7と、照明光学系6によって集められた光を照明光学系6および走査部5におけるレーザ光Lの光路を介して受光する受光部8と、照明光学系6の位置を調整する位置調整部9と、受光部8によって受光された光の受光量に基づいて位置調整部9を制御する制御部10とを備えている。
The optical scanning device 1 includes a laser light source (light source) 4, a scanning unit 5 that scans the laser light L output from the laser light source 4, and the laser beam L that is scanned by the scanning unit 5 faces the tip of the insertion unit 2. The illumination optical system 6 that emits light toward the subject and collects light from the subject, the reflection unit 7 that is disposed opposite to the illumination optical system 6 and reflects the laser light L, and the light collected by the illumination optical system 6 Is received through the optical path of the laser light L in the illumination optical system 6 and the scanning unit 5, a position adjustment unit 9 that adjusts the position of the illumination optical system 6, and light reception by the light receiving unit 8. And a control unit 10 that controls the position adjustment unit 9 based on the amount.
レーザ光源4は、LD(レーザダイオード)のような半導体光源であり、筐体3内に設けられている。
走査部5は、挿入部2内に長手方向に沿って配置されレーザ光源4から挿入部2の先端部までレーザ光Lを導光する照明用の光ファイバ51と、光ファイバ51の先端51aを光ファイバ51の径方向に振動させるアクチュエータ52とを備えている。
光ファイバ51の基端はレーザ光源4に接続され、光ファイバ51の先端51aは照明光学系6よりも基端側に配置されている。 Thelaser light source 4 is a semiconductor light source such as an LD (laser diode) and is provided in the housing 3.
Thescanning unit 5 includes an optical fiber 51 for illumination that is disposed along the longitudinal direction in the insertion unit 2 and guides the laser light L from the laser light source 4 to the distal end of the insertion unit 2, and a distal end 51 a of the optical fiber 51. And an actuator 52 that vibrates in the radial direction of the optical fiber 51.
The proximal end of theoptical fiber 51 is connected to the laser light source 4, and the distal end 51 a of the optical fiber 51 is disposed on the proximal end side with respect to the illumination optical system 6.
走査部5は、挿入部2内に長手方向に沿って配置されレーザ光源4から挿入部2の先端部までレーザ光Lを導光する照明用の光ファイバ51と、光ファイバ51の先端51aを光ファイバ51の径方向に振動させるアクチュエータ52とを備えている。
光ファイバ51の基端はレーザ光源4に接続され、光ファイバ51の先端51aは照明光学系6よりも基端側に配置されている。 The
The
The proximal end of the
アクチュエータ52は、例えば、光ファイバ51の外周面に固定された圧電素子を備え、圧電素子を光ファイバ51の長手方向に伸縮させることで先端51aを振動させる圧電式である。あるいは、アクチュエータ52は、光ファイバ51の外周面に固定された磁性体と、電磁コイルとを備え、光ファイバ51の径方向の磁場を電磁コイルから磁性体に作用させることで先端51aを振動させる電磁式であってもよい。
The actuator 52 is, for example, a piezoelectric type that includes a piezoelectric element fixed to the outer peripheral surface of the optical fiber 51 and vibrates the tip 51 a by expanding and contracting the piezoelectric element in the longitudinal direction of the optical fiber 51. Alternatively, the actuator 52 includes a magnetic body fixed to the outer peripheral surface of the optical fiber 51 and an electromagnetic coil, and vibrates the tip 51a by applying a radial magnetic field of the optical fiber 51 from the electromagnetic coil to the magnetic body. It may be electromagnetic.
照明光学系6は、全体として正の屈折力を有し、挿入部2の先端に設けられている。図1では、照明光学系6が1枚のレンズとして示されているが、照明光学系6は複数枚のレンズから構成されていてもよい。照明光学系6は、挿入部2の先端面に形成された凹部内に配置され、後述する位置調整部9の保持部材91によって、光軸に平行な方向および直交する方向に移動可能に支持されている。照明光学系6は、静止している状態の光ファイバ51の先端51aまたはその近傍に照明光学系6の前側焦点が位置するように、光ファイバ51の先端51aに対して大まかに位置合わせされている。照明光学系6は、光ファイバ51の先端51aと対向する凹部の底面に、光を透過させる平板等を含んでいてもよい。
The illumination optical system 6 has a positive refractive power as a whole, and is provided at the tip of the insertion portion 2. In FIG. 1, the illumination optical system 6 is shown as a single lens, but the illumination optical system 6 may be composed of a plurality of lenses. The illumination optical system 6 is disposed in a recess formed in the distal end surface of the insertion portion 2, and is supported by a holding member 91 of a position adjustment portion 9 described later so as to be movable in a direction parallel to and perpendicular to the optical axis. ing. The illumination optical system 6 is roughly aligned with the tip 51a of the optical fiber 51 so that the front focal point of the illumination optical system 6 is positioned at or near the tip 51a of the optical fiber 51 in a stationary state. Yes. The illumination optical system 6 may include a flat plate or the like that transmits light on the bottom surface of the recess facing the tip 51 a of the optical fiber 51.
照明光学系6の前側焦点Fの位置が光ファイバ51の先端51aの位置と一致しているとき(図7の下図参照。)、光ファイバ51の先端51aから発散光束として射出されるレーザ光Lは照明光学系6によって平行光束に変換され、平行光束が照明光学系6から射出される。この状態において、照明光学系6は無限遠に焦点が合った状態となり、照明光学系6から被写体にレーザ光Lがスポット状に照射される。また、挿入部2の先端からの距離が遠い被写体にも小さいスポット径のレーザ光Lが照射されるので、高い解像力を得ることができる。また、この状態において、後述するように、反射部7によって反射されたレーザ光L(反射レーザ光L’)が照明光学系6に戻って光ファイバ51の先端51aに入射し、光ファイバ51をレーザ光Lとは逆方向に導光するようになっている。
When the position of the front focal point F of the illumination optical system 6 coincides with the position of the tip 51a of the optical fiber 51 (see the lower diagram in FIG. 7), the laser light L emitted as a divergent light beam from the tip 51a of the optical fiber 51. Is converted into a parallel light beam by the illumination optical system 6, and the parallel light beam is emitted from the illumination optical system 6. In this state, the illumination optical system 6 is in focus at infinity, and the subject is irradiated with the laser light L from the illumination optical system 6 in a spot shape. In addition, since a laser beam L having a small spot diameter is also irradiated to a subject that is far from the distal end of the insertion portion 2, a high resolving power can be obtained. Further, in this state, as will be described later, the laser light L (reflected laser light L ′) reflected by the reflecting portion 7 returns to the illumination optical system 6 and enters the tip 51a of the optical fiber 51. The laser light L is guided in the opposite direction.
反射部7は、照明光学系6の前側焦点Fの位置が光ファイバ51の先端51aの位置と一致するように走査部5と照明光学系6との相対位置の調整を実施するときに使用される。反射部7は、レーザ光Lを反射する反射面7aを有し、反射面7aが照明光学系6と対向するように、挿入部2の先端前方に配置される。反射部7は、例えば、挿入部2の先端部に着脱可能に構成され、挿入部2の先端部に装着された状態で、照明光学系6から射出されたレーザ光Lのうち光軸に平行な光線を反射面7aが180°折り返すようになっている。
The reflecting unit 7 is used when adjusting the relative position between the scanning unit 5 and the illumination optical system 6 so that the position of the front focal point F of the illumination optical system 6 coincides with the position of the tip 51a of the optical fiber 51. The The reflection unit 7 has a reflection surface 7 a that reflects the laser light L, and is disposed in front of the distal end of the insertion unit 2 so that the reflection surface 7 a faces the illumination optical system 6. For example, the reflection unit 7 is configured to be detachable from the distal end portion of the insertion portion 2, and is parallel to the optical axis of the laser light L emitted from the illumination optical system 6 while being attached to the distal end portion of the insertion portion 2. The reflection surface 7a is configured to bend the light rays by 180 °.
図2Aから図2Dは、反射部7の構成例を示している。
図2Aの反射部7は、筐体3に形成され挿入部2の先端部が長手方向に嵌合する柱状の凹部3aの底面に設けられている。反射面7aは、凹部3aの長手方向に垂直な平坦面であり、凹部3a内に嵌合された挿入部2の先端から照明光学系6の光軸方向に間隔を置いた位置に配置される。凹部3aと挿入部2の先端部との嵌合によって、照明光学系6の光軸と反射面7aとの垂直関係が確保されるようになっている。 2A to 2D show a configuration example of thereflection unit 7.
2A is provided on the bottom surface of acolumnar recess 3a that is formed in the housing 3 and the distal end of the insertion portion 2 is fitted in the longitudinal direction. The reflection surface 7a is a flat surface perpendicular to the longitudinal direction of the recess 3a, and is disposed at a position spaced from the tip of the insertion portion 2 fitted in the recess 3a in the optical axis direction of the illumination optical system 6. . The vertical relationship between the optical axis of the illumination optical system 6 and the reflecting surface 7a is ensured by fitting the recess 3a with the tip of the insertion portion 2.
図2Aの反射部7は、筐体3に形成され挿入部2の先端部が長手方向に嵌合する柱状の凹部3aの底面に設けられている。反射面7aは、凹部3aの長手方向に垂直な平坦面であり、凹部3a内に嵌合された挿入部2の先端から照明光学系6の光軸方向に間隔を置いた位置に配置される。凹部3aと挿入部2の先端部との嵌合によって、照明光学系6の光軸と反射面7aとの垂直関係が確保されるようになっている。 2A to 2D show a configuration example of the
2A is provided on the bottom surface of a
図2Bの反射部7は、挿入部2の先端部に被せられる円筒状のキャップ12の一端に設けられている。キャップ12は他端において開口しており、キャップ12と他端の開口からキャップ12内に挿入された挿入部2の先端部とが相互に嵌合するようになっている。反射面7aは、キャップ12の長手方向に垂直な平坦面であり、キャップ12内に嵌合された挿入部2の先端から照明光学系6の光軸方向に間隔を置いた位置に配置される。キャップ12と挿入部2の先端部との嵌合によって、照明光学系6の光軸と反射面7aとの垂直関係が確保されるようになっている。
2B is provided at one end of a cylindrical cap 12 that covers the distal end portion of the insertion portion 2. The cap 12 is opened at the other end, and the cap 12 and the distal end portion of the insertion portion 2 inserted into the cap 12 from the opening at the other end are fitted with each other. The reflecting surface 7 a is a flat surface perpendicular to the longitudinal direction of the cap 12, and is disposed at a position spaced from the distal end of the insertion portion 2 fitted in the cap 12 in the optical axis direction of the illumination optical system 6. . The vertical relationship between the optical axis of the illumination optical system 6 and the reflecting surface 7a is secured by fitting the cap 12 with the distal end portion of the insertion portion 2.
図2Aおよび図2Bの反射面7aは、平坦面であり、照明光学系6から間隔を置いた位置に配置されるが、反射面7aは、図2Cおよび図2Dに示されるように、照明光学系6との間に間隔を置かずに配置されてもよく、非平坦面であってもよい。
図2Cの反射部7は、挿入部2の先端面に隣接して配置される部材であり、照明光学系6の先端面と相補的な凹球面形状を有し照明光学系6の先端面と接触して配置される反射面7aを有している。
図2Dの反射部7は、照明光学系6の先端面からなる。すなわち、照明光学系6の先端面が反射面7aの役割を担っている。 Thereflective surface 7a in FIGS. 2A and 2B is a flat surface and is disposed at a position spaced from the illumination optical system 6. However, the reflective surface 7a has illumination optics as shown in FIGS. 2C and 2D. It may be arranged without a gap between the system 6 and may be a non-flat surface.
2C is a member disposed adjacent to the distal end surface of theinsertion portion 2, and has a concave spherical shape complementary to the distal end surface of the illumination optical system 6, and the distal end surface of the illumination optical system 6. It has a reflective surface 7a arranged in contact.
2D includes the tip surface of the illuminationoptical system 6. That is, the tip surface of the illumination optical system 6 plays the role of the reflecting surface 7a.
図2Cの反射部7は、挿入部2の先端面に隣接して配置される部材であり、照明光学系6の先端面と相補的な凹球面形状を有し照明光学系6の先端面と接触して配置される反射面7aを有している。
図2Dの反射部7は、照明光学系6の先端面からなる。すなわち、照明光学系6の先端面が反射面7aの役割を担っている。 The
2C is a member disposed adjacent to the distal end surface of the
2D includes the tip surface of the illumination
受光部8は、光ファイバ51を介して反射レーザ光L’を受光する光ファイバ81と、光ファイバ81によって受光された反射レーザ光L’を検出する光検出器82とを備えている。
光ファイバ81は、レーザ光源4とアクチュエータ52との間において光ファイバ51から分岐し、光ファイバ51内を導光する反射レーザ光L’をレーザ光Lから分離して光検出器82へ導光する。
光検出器82は、光ファイバ81から入射した反射レーザ光L’を光電変換することで反射レーザ光L’の受光量に相当する電気信号を生成し、電気信号を受光量情報として制御部10に送信する。 Thelight receiving unit 8 includes an optical fiber 81 that receives the reflected laser beam L ′ via the optical fiber 51, and a photodetector 82 that detects the reflected laser beam L ′ received by the optical fiber 81.
Theoptical fiber 81 branches from the optical fiber 51 between the laser light source 4 and the actuator 52, separates the reflected laser light L ′ guided through the optical fiber 51 from the laser light L, and guides it to the photodetector 82. To do.
Thephotodetector 82 photoelectrically converts the reflected laser light L ′ incident from the optical fiber 81 to generate an electrical signal corresponding to the received light amount of the reflected laser light L ′, and uses the electrical signal as received light amount information as the control unit 10. Send to.
光ファイバ81は、レーザ光源4とアクチュエータ52との間において光ファイバ51から分岐し、光ファイバ51内を導光する反射レーザ光L’をレーザ光Lから分離して光検出器82へ導光する。
光検出器82は、光ファイバ81から入射した反射レーザ光L’を光電変換することで反射レーザ光L’の受光量に相当する電気信号を生成し、電気信号を受光量情報として制御部10に送信する。 The
The
The
位置調整部9は、照明光学系6を保持する保持部材91と、保持部材91をX、Y、Z方向に移動させる3軸モータのようなXYZ駆動部92とを備えている。X方向およびY方向は、照明光学系6の光軸にそれぞれ直交するとともに相互に直交する方向であり、Z方向は照明光学系6の光軸に平行な方向である。XYZ駆動部92は、照明光学系6のX、YおよびZ位置を制御部10に送信するとともに、制御部10からの制御信号に従って照明光学系6をX、YおよびZ方向に移動させる。
The position adjusting unit 9 includes a holding member 91 that holds the illumination optical system 6 and an XYZ driving unit 92 such as a three-axis motor that moves the holding member 91 in the X, Y, and Z directions. The X direction and the Y direction are directions orthogonal to each other and orthogonal to the optical axis of the illumination optical system 6, and the Z direction is a direction parallel to the optical axis of the illumination optical system 6. The XYZ driving unit 92 transmits the X, Y, and Z positions of the illumination optical system 6 to the control unit 10 and moves the illumination optical system 6 in the X, Y, and Z directions according to a control signal from the control unit 10.
制御部10は、受光部8によって受光される反射レーザ光L’の受光量が最大となるように、照明光学系6のXY方向の位置調整とZ方向の位置調整とを順番に位置調整部9に実行させる。
なお、本発明において、照明光学系6のXY方向の位置がZ方向の調整に影響するため、XY方向の位置調整を実行した後にZ方向の位置調整を実行する。調整の精度を高めるために、XY方向の位置調整の後にZ方向の位置調整を実行し、その後に、同じ順番でXY方向の位置調整とZ方向の位置調整とを複数回繰り返してもよい。 Thecontrol unit 10 sequentially adjusts the position adjustment of the illumination optical system 6 in the XY direction and the position adjustment in the Z direction so that the amount of the reflected laser light L ′ received by the light receiving unit 8 is maximized. 9 is executed.
In the present invention, since the position in the XY direction of the illuminationoptical system 6 affects the adjustment in the Z direction, the position adjustment in the Z direction is performed after the position adjustment in the XY direction is performed. In order to increase the accuracy of the adjustment, the position adjustment in the Z direction may be executed after the position adjustment in the XY direction, and then the position adjustment in the XY direction and the position adjustment in the Z direction may be repeated a plurality of times in the same order.
なお、本発明において、照明光学系6のXY方向の位置がZ方向の調整に影響するため、XY方向の位置調整を実行した後にZ方向の位置調整を実行する。調整の精度を高めるために、XY方向の位置調整の後にZ方向の位置調整を実行し、その後に、同じ順番でXY方向の位置調整とZ方向の位置調整とを複数回繰り返してもよい。 The
In the present invention, since the position in the XY direction of the illumination
次に、制御部10による照明光学系6の位置調整処理について説明する。位置調整処理は、被写体の代わりに反射部7を使用して、光ファイバ51の先端5aを静止させた状態で実行される。位置調整処理は、例えば、光走査型内視鏡100による被写体の観察を開始する前に実行される。
制御部10は、図3に示されるように、レーザ光源4からレーザ光Lの出力を開始させる(ステップS1)。 Next, the position adjustment process of the illuminationoptical system 6 by the control unit 10 will be described. The position adjustment process is executed in a state where the tip 5a of the optical fiber 51 is stationary using the reflection unit 7 instead of the subject. The position adjustment process is executed, for example, before the observation of the subject by the optical scanning endoscope 100 is started.
As shown in FIG. 3, thecontrol unit 10 starts outputting the laser light L from the laser light source 4 (step S1).
制御部10は、図3に示されるように、レーザ光源4からレーザ光Lの出力を開始させる(ステップS1)。 Next, the position adjustment process of the illumination
As shown in FIG. 3, the
次に、制御部10は、照明光学系6をX方向およびY方向に2次元的に移動させるように位置調整部9を制御するとともに、照明光学系6の移動中に、反射レーザ光L’の検出および受光量情報の送信を光検出器82に繰り返し実行させる。これにより、制御部10は、図4に示されるように、XY方向における反射レーザ光L’の受光量分布を取得する(ステップS2)。
次に、制御部10は、XY方向の受光量分布において受光量が最大であるXY位置に照明光学系6を移動させるように位置調整部9を制御する(ステップS3)。 Next, thecontrol unit 10 controls the position adjusting unit 9 so as to move the illumination optical system 6 two-dimensionally in the X direction and the Y direction, and while the illumination optical system 6 is moving, the reflected laser beam L ′. Detection and transmission of received light amount information are repeatedly executed by the photodetector 82. Thereby, as shown in FIG. 4, the control unit 10 acquires the received light amount distribution of the reflected laser light L ′ in the XY directions (step S2).
Next, thecontrol unit 10 controls the position adjustment unit 9 to move the illumination optical system 6 to the XY position where the received light amount is maximum in the received light amount distribution in the XY directions (step S3).
次に、制御部10は、XY方向の受光量分布において受光量が最大であるXY位置に照明光学系6を移動させるように位置調整部9を制御する(ステップS3)。 Next, the
Next, the
図4に示されるように、照明光学系6の光軸Aと光ファイバ51の光軸とが一直線に並ぶときに反射レーザ光L’の受光量が最大となり、照明光学系6の光軸Aと光ファイバ51の光軸とのXY方向のずれ量が大きい程、反射レーザ光L’の受光量が少なくなる。これは、図5によって説明される。すなわち、照明光学系6の光軸Aと光ファイバ51の光軸とが一直線に並んでいるとき(図5の下図参照。)には、反射面7aからの反射レーザ光L’が、光軸Aに沿って光ファイバ51の先端5aまで戻る。一方、照明光学系6の光軸Aと光ファイバ51の光軸とがXY方向にずれているとき(図5の上図参照。)には、光ファイバ51の光軸に対して斜め方向に照明光学系6からレーザ光Lが射出されることで、光ファイバ51の先端51aの外側を通る反射レーザ光L’が増大する。
As shown in FIG. 4, when the optical axis A of the illumination optical system 6 and the optical axis of the optical fiber 51 are aligned, the received light amount of the reflected laser light L ′ becomes maximum, and the optical axis A of the illumination optical system 6 is obtained. And the optical axis of the optical fiber 51 are larger in the XY direction, the received light amount of the reflected laser light L ′ decreases. This is illustrated by FIG. That is, when the optical axis A of the illumination optical system 6 and the optical axis of the optical fiber 51 are aligned in a straight line (see the lower diagram in FIG. 5), the reflected laser light L ′ from the reflecting surface 7a is converted into the optical axis. The optical fiber 51 returns to the tip 5a along A. On the other hand, when the optical axis A of the illumination optical system 6 and the optical axis of the optical fiber 51 are shifted in the XY direction (see the upper diagram of FIG. 5), the optical axis 51 is inclined with respect to the optical axis of the optical fiber 51. As the laser light L is emitted from the illumination optical system 6, the reflected laser light L ′ passing outside the tip 51a of the optical fiber 51 increases.
したがって、XY方向の受光量分布において受光量が最大であるXY位置に照明光学系6を配置することで、照明光学系6の光軸Aが光ファイバ51の光軸と一直線に並ぶように、走査部5と照明光学系6との位置合わせを行うことができる。これにより、照明光学系6のXY方向の位置調整が完了する。
Therefore, by arranging the illumination optical system 6 at the XY position where the received light amount is maximum in the received light amount distribution in the XY directions, the optical axis A of the illumination optical system 6 is aligned with the optical axis of the optical fiber 51. The scanning unit 5 and the illumination optical system 6 can be aligned. Thereby, the position adjustment of the illumination optical system 6 in the XY directions is completed.
次に、制御部10は、照明光学系6をZ方向に1次元的に移動させるように位置調整部9を制御するとともに、照明光学系6の移動中に、反射レーザ光L’の検出および受光量情報の送信を光検出器82に繰り返し実行させる。これにより、制御部10は、図6に示されるように、Z方向における反射レーザ光L’の受光量分布を取得する(ステップS4)。
次に、制御部10は、Z方向の受光量分布において受光量が最大であるZ位置に照明光学系6を移動させるように位置調整部9を制御する(ステップS5)。 Next, thecontrol unit 10 controls the position adjustment unit 9 so as to move the illumination optical system 6 one-dimensionally in the Z direction, and detects the reflected laser light L ′ and moves the illumination optical system 6. The photodetector 82 is repeatedly executed to transmit the received light amount information. As a result, the control unit 10 acquires the received light amount distribution of the reflected laser light L ′ in the Z direction as shown in FIG. 6 (step S4).
Next, thecontrol unit 10 controls the position adjustment unit 9 to move the illumination optical system 6 to the Z position where the received light amount is maximum in the received light amount distribution in the Z direction (step S5).
次に、制御部10は、Z方向の受光量分布において受光量が最大であるZ位置に照明光学系6を移動させるように位置調整部9を制御する(ステップS5)。 Next, the
Next, the
図6に実線で示されるように、照明光学系6の前側焦点Fが光ファイバ51の先端51aと一致しているときに反射レーザ光L’の受光量が最大となり、照明光学系6の前側焦点Fと光ファイバ51の先端51aとのZ方向のずれ量が大きい程、反射レーザ光L’の受光量が少なくなる。これは、図7に示されるように、照明光学系6の前側焦点Fの位置と光ファイバ51の先端51aの位置とが一致しているとき(図7の下図参照。)には、反射面7aからの反射レーザ光L’の全部が光軸Aに沿って光ファイバ51の先端5aまで戻るのに対し、照明光学系6の前側焦点Fの位置と光ファイバ51の先端51aの位置とがZ方向にずれているとき(図7の上図参照。)には、照明光学系6から射出されるレーザ光Lが発散角または収束角を有することで、光ファイバ51の先端51aの外側を通る反射レーザ光L’が増大するからである。
なお、図6の破線は、特許文献1のように照明光学系6の前方から当該照明光学系6に平行光を入射させたときの、受光量の変化を示している。 As indicated by a solid line in FIG. 6, when the front focal point F of the illuminationoptical system 6 is coincident with the tip 51 a of the optical fiber 51, the amount of received reflected laser light L ′ is maximized, and the front side of the illumination optical system 6. The greater the amount of deviation in the Z direction between the focal point F and the tip 51a of the optical fiber 51, the smaller the amount of received reflected laser light L '. As shown in FIG. 7, when the position of the front focal point F of the illumination optical system 6 coincides with the position of the tip 51a of the optical fiber 51 (see the lower diagram of FIG. 7), the reflecting surface. While all of the reflected laser light L ′ from 7a returns to the tip 5a of the optical fiber 51 along the optical axis A, the position of the front focal point F of the illumination optical system 6 and the position of the tip 51a of the optical fiber 51 are different. When shifted in the Z direction (see the upper diagram of FIG. 7), the laser light L emitted from the illumination optical system 6 has a divergence angle or a convergence angle, so that the outside of the tip 51a of the optical fiber 51 is outside. This is because the reflected laser beam L ′ passing therethrough increases.
The broken lines in FIG. 6 indicate changes in the amount of received light when parallel light is incident on the illuminationoptical system 6 from the front of the illumination optical system 6 as in Patent Document 1.
なお、図6の破線は、特許文献1のように照明光学系6の前方から当該照明光学系6に平行光を入射させたときの、受光量の変化を示している。 As indicated by a solid line in FIG. 6, when the front focal point F of the illumination
The broken lines in FIG. 6 indicate changes in the amount of received light when parallel light is incident on the illumination
したがって、Z方向の受光量分布において受光量が最大であるZ位置に照明光学系6を配置することで、照明光学系6の前側焦点Fの位置が光ファイバ51の先端51aの位置に一致するように、走査部5と照明光学系6との位置合わせを行うことができる。これにより、照明光学系6のZ方向の位置調整が完了する。
Therefore, the position of the front focal point F of the illumination optical system 6 coincides with the position of the tip 51a of the optical fiber 51 by arranging the illumination optical system 6 at the Z position where the received light amount is maximum in the received light amount distribution in the Z direction. As described above, the alignment between the scanning unit 5 and the illumination optical system 6 can be performed. Thereby, the position adjustment of the illumination optical system 6 in the Z direction is completed.
なお、このような制御部10は、例えば、コンピュータによって実行される制御プログラムとして実現される。具体的には、筐体3に、中央演算処理装置(CPU)のようなプロセッサと、RAMのような主記憶装置と、ハードディスクドライブのような補助記憶装置が内蔵されている。補助記憶装置には、制御部10の上述の位置調整処理をプロセッサに実行させるための制御プログラムが記憶されている。制御プログラムが補助記憶装置から主記憶装置にロードされ、制御プログラムに従ってプロセッサが処理を実行することで、制御部10の機能が実現されるようになっている。
In addition, such a control part 10 is implement | achieved as a control program run by a computer, for example. Specifically, the housing 3 contains a processor such as a central processing unit (CPU), a main storage device such as a RAM, and an auxiliary storage device such as a hard disk drive. The auxiliary storage device stores a control program for causing the processor to execute the above-described position adjustment processing of the control unit 10. The control program is loaded from the auxiliary storage device to the main storage device, and the processor executes processing according to the control program, thereby realizing the function of the control unit 10.
このように、本実施形態によれば、光ファイバ51の先端51aから射出されたレーザ光Lが、反射面7aを経由し、レーザ光Lと同一の光路を辿って先端51aまで戻る効率は、光ファイバ51の先端51aと照明光学系6の前側焦点Fとの相対位置の変化に対して敏感に変化し、光ファイバ51の先端51aの位置と照明光学系6の前側焦点Fの位置とのずれに対して反射レーザ光L’の受光量が急峻に変化する。したがって、反射レーザ光L’の受光量に基づいて、光ファイバ51の先端51aの位置と照明光学系6の前側焦点Fの位置とが正確に一致するように、走査部5と照明光学系6との相対位置を高精度に調整することができるという利点がある。
Thus, according to the present embodiment, the efficiency with which the laser light L emitted from the tip 51a of the optical fiber 51 returns to the tip 51a through the reflecting surface 7a and following the same optical path as the laser light L is: It changes sensitively with respect to a change in the relative position between the tip 51a of the optical fiber 51 and the front focal point F of the illumination optical system 6, and the position of the tip 51a of the optical fiber 51 and the position of the front focal point F of the illumination optical system 6 change. The amount of received reflected laser light L ′ changes sharply with respect to the deviation. Therefore, based on the received light amount of the reflected laser beam L ′, the scanning unit 5 and the illumination optical system 6 are arranged so that the position of the tip 51a of the optical fiber 51 and the position of the front focal point F of the illumination optical system 6 are exactly matched. There is an advantage that the relative position can be adjusted with high accuracy.
(第2の実施形態)
次に、本発明の第2の実施形態に係る光走査装置20および光走査型内視鏡101について図8および図9を参照して説明する。
本実施形態においては、第1の実施形態と異なる構成について説明し、第1の実施形態と共通する構成については同一の符号を付して説明を省略する。
本実施形態に係る光走査装置20および光走査型内視鏡101は、受光部80の構成および配置において第1の実施形態と異なっている。 (Second Embodiment)
Next, anoptical scanning device 20 and an optical scanning endoscope 101 according to a second embodiment of the present invention will be described with reference to FIGS.
In the present embodiment, a configuration different from that of the first embodiment will be described, and a configuration common to the first embodiment will be denoted by the same reference numeral and description thereof will be omitted.
Theoptical scanning device 20 and the optical scanning endoscope 101 according to the present embodiment are different from the first embodiment in the configuration and arrangement of the light receiving unit 80.
次に、本発明の第2の実施形態に係る光走査装置20および光走査型内視鏡101について図8および図9を参照して説明する。
本実施形態においては、第1の実施形態と異なる構成について説明し、第1の実施形態と共通する構成については同一の符号を付して説明を省略する。
本実施形態に係る光走査装置20および光走査型内視鏡101は、受光部80の構成および配置において第1の実施形態と異なっている。 (Second Embodiment)
Next, an
In the present embodiment, a configuration different from that of the first embodiment will be described, and a configuration common to the first embodiment will be denoted by the same reference numeral and description thereof will be omitted.
The
本実施形態に係る光走査型内視鏡101は、図8に示されるように、挿入部2と、筐体3と、光走査装置20とを備えている。
光走査装置20は、レーザ光源4と、走査部5と、照明光学系6と、反射部7と、反射部7からの反射レーザ光L’を受光する受光部80と、位置調整部9と、制御部10とを備えている。 As shown in FIG. 8, theoptical scanning endoscope 101 according to the present embodiment includes an insertion portion 2, a housing 3, and an optical scanning device 20.
Theoptical scanning device 20 includes a laser light source 4, a scanning unit 5, an illumination optical system 6, a reflecting unit 7, a light receiving unit 80 that receives the reflected laser light L ′ from the reflecting unit 7, and a position adjusting unit 9. The control unit 10 is provided.
光走査装置20は、レーザ光源4と、走査部5と、照明光学系6と、反射部7と、反射部7からの反射レーザ光L’を受光する受光部80と、位置調整部9と、制御部10とを備えている。 As shown in FIG. 8, the
The
受光部80は、照明光学系6の周囲に配置された受光用の光ファイバ83と、光検出器82とを備えている。
光ファイバ83は、挿入部2内に挿入部2の長手方向に沿って配置され、光ファイバ83の先端は照明光学系6の近傍に位置するように挿入部2の先端に配置され、光ファイバ83の基端は光検出器82に接続されている。反射面7aからの反射レーザ光L’は、光ファイバ83の先端に入射し、光ファイバ83によって光検出器82まで導光され、光検出器82によって検出される。光ファイバ83は1つのみでもよいが、複数の光ファイバ83が照明光学系6の周方向に配列されるとともに共通の光検出器82に接続され、複数の光ファイバ83によって受光された反射レーザ光L’が光検出器82によって検出されるように構成されていてもよい。 Thelight receiving unit 80 includes a light receiving optical fiber 83 disposed around the illumination optical system 6 and a photodetector 82.
Theoptical fiber 83 is disposed in the insertion section 2 along the longitudinal direction of the insertion section 2, and the optical fiber 83 is disposed at the distal end of the insertion section 2 so as to be positioned in the vicinity of the illumination optical system 6. The base end of 83 is connected to the photodetector 82. The reflected laser light L ′ from the reflecting surface 7 a enters the tip of the optical fiber 83, is guided to the photodetector 82 by the optical fiber 83, and is detected by the photodetector 82. Although only one optical fiber 83 may be provided, a plurality of optical fibers 83 are arranged in the circumferential direction of the illumination optical system 6 and connected to a common photodetector 82, and reflected lasers received by the plurality of optical fibers 83. The light L ′ may be configured to be detected by the photodetector 82.
光ファイバ83は、挿入部2内に挿入部2の長手方向に沿って配置され、光ファイバ83の先端は照明光学系6の近傍に位置するように挿入部2の先端に配置され、光ファイバ83の基端は光検出器82に接続されている。反射面7aからの反射レーザ光L’は、光ファイバ83の先端に入射し、光ファイバ83によって光検出器82まで導光され、光検出器82によって検出される。光ファイバ83は1つのみでもよいが、複数の光ファイバ83が照明光学系6の周方向に配列されるとともに共通の光検出器82に接続され、複数の光ファイバ83によって受光された反射レーザ光L’が光検出器82によって検出されるように構成されていてもよい。 The
The
図9は、制御部10による位置調整処理の際の、照明光学系6に対する反射面7aの配置を示している。反射面7aは、照明光学系6に対して下式(1)を満足する位置に配置される。
D≧f(H+P)/2P …(1) FIG. 9 shows the arrangement of the reflectingsurface 7 a with respect to the illumination optical system 6 during the position adjustment process by the control unit 10. The reflecting surface 7 a is disposed at a position that satisfies the following expression (1) with respect to the illumination optical system 6.
D ≧ f (H + P) / 2P (1)
D≧f(H+P)/2P …(1) FIG. 9 shows the arrangement of the reflecting
D ≧ f (H + P) / 2P (1)
式(1)において、Dは、Z方向における照明光学系6の先端面と反射面7aとの距離であり、Hは、照明光学系6の光軸Aに直交する方向における照明光学系6の光軸Aと受光用の光ファイバ83の先端における光軸との距離であり、fは、照明光学系6の焦点距離であり、Pは、XY方向における照明光学系6の光軸Aと照明用の光ファイバ51の光軸との許容される最大ずれ量である。Δpが大きい程、照明光学系6から被写体に照射されるレーザ光Lのスポット径が大きくなり、解像力が低下する。したがって、被写体を観察する際の照明光学系6と被写体との間の照明距離を考慮して被写体上におけるレーザ光Lのスポット径が実用に適ったサイズとなるように、最大ずれ量Pは、例えば実験的にまたはシミュレーションに基づいて、設定される。
制御部10による照明光学系6の位置調整処理は、第1の実施形態と同一である。 In Expression (1), D is the distance between the front end surface of the illuminationoptical system 6 and the reflecting surface 7a in the Z direction, and H is the distance of the illumination optical system 6 in the direction orthogonal to the optical axis A of the illumination optical system 6. The distance between the optical axis A and the optical axis at the tip of the optical fiber 83 for light reception, f is the focal length of the illumination optical system 6, and P is the optical axis A of the illumination optical system 6 in the XY directions and the illumination This is the maximum allowable deviation from the optical axis of the optical fiber 51 for use. The larger the Δp, the larger the spot diameter of the laser light L irradiated to the subject from the illumination optical system 6 and the lower the resolving power. Therefore, in consideration of the illumination distance between the illumination optical system 6 and the subject when observing the subject, the maximum deviation amount P is set so that the spot diameter of the laser light L on the subject becomes a size suitable for practical use. For example, it is set experimentally or based on simulation.
The position adjustment process of the illuminationoptical system 6 by the control unit 10 is the same as that in the first embodiment.
制御部10による照明光学系6の位置調整処理は、第1の実施形態と同一である。 In Expression (1), D is the distance between the front end surface of the illumination
The position adjustment process of the illumination
レーザ光Lの射出および反射レーザ光L’の受光が同一の光路を介して行われる第1の実施形態とは異なり、本実施形態では、レーザ光Lを射出する照明光学系6の光軸Aと反射レーザ光L’を受光する光ファイバ83の光軸とがXY方向にずれている。そのため、ステップS1~S5に従って照明光学系6の位置調整を行った結果、図9に示されるように、光ファイバ51の先端51aと照明光学系6の前側焦点FとがXY方向にΔpだけずれた位置に、走査部5および照明光学系6の相対位置が調整される。
なお、上述のステップS1~S5では照明光学系6を移動させているが、図9には、走査部5を移動させた場合を示している。 Unlike the first embodiment in which the laser beam L is emitted and the reflected laser beam L ′ is received through the same optical path, in this embodiment, the optical axis A of the illuminationoptical system 6 that emits the laser beam L. And the optical axis of the optical fiber 83 that receives the reflected laser beam L ′ are shifted in the XY directions. Therefore, as a result of adjusting the position of the illumination optical system 6 according to steps S1 to S5, as shown in FIG. 9, the tip 51a of the optical fiber 51 and the front focal point F of the illumination optical system 6 are shifted by Δp in the XY direction. The relative position of the scanning unit 5 and the illumination optical system 6 is adjusted to the position.
Although the illuminationoptical system 6 is moved in steps S1 to S5 described above, FIG. 9 shows a case where the scanning unit 5 is moved.
なお、上述のステップS1~S5では照明光学系6を移動させているが、図9には、走査部5を移動させた場合を示している。 Unlike the first embodiment in which the laser beam L is emitted and the reflected laser beam L ′ is received through the same optical path, in this embodiment, the optical axis A of the illumination
Although the illumination
Δpは、図9に示される幾何的関係から以下のように表される。
Δp+H=2ΔpD/f …(2)
式(2)から、ずれ量Δpが、XY方向の位置調整で許容される最大ずれ量P以下であるためには、下式(3)を満足すればよい。
P≧Δp=fH/(2D-f)
式(3)を変形することにより、式(1)が導かれる。 Δp is expressed as follows from the geometric relationship shown in FIG.
Δp + H = 2ΔpD / f (2)
From equation (2), in order for the deviation amount Δp to be equal to or less than the maximum deviation amount P allowed for position adjustment in the XY directions, the following equation (3) may be satisfied.
P ≧ Δp = fH / (2D−f)
By transforming equation (3), equation (1) is derived.
Δp+H=2ΔpD/f …(2)
式(2)から、ずれ量Δpが、XY方向の位置調整で許容される最大ずれ量P以下であるためには、下式(3)を満足すればよい。
P≧Δp=fH/(2D-f)
式(3)を変形することにより、式(1)が導かれる。 Δp is expressed as follows from the geometric relationship shown in FIG.
Δp + H = 2ΔpD / f (2)
From equation (2), in order for the deviation amount Δp to be equal to or less than the maximum deviation amount P allowed for position adjustment in the XY directions, the following equation (3) may be satisfied.
P ≧ Δp = fH / (2D−f)
By transforming equation (3), equation (1) is derived.
本実施形態によれば、光ファイバ51の先端51aから射出されたレーザ光Lが、反射面7aを経由して、レーザ光Lと略同一の光路を辿って照明光学系6の近傍の受光用の光ファイバ83まで到達する効率は、第1の実施形態と同様に、光ファイバ51の先端51aと照明光学系6の前側焦点Fとの相対位置の変化に対して敏感に変化し、光ファイバ51の先端51aの位置と照明光学系6の前側焦点Fの位置とのずれに対して受光用の光ファイバ83による反射レーザ光L’の受光量が急峻に変化する。したがって、反射レーザ光L’の受光量に基づいて、光ファイバ51の先端51aの位置と照明光学系6の前側焦点Fの位置とが正確に一致するように、走査部5と照明光学系6との相対位置を調整することができるという利点がある。
According to the present embodiment, the laser beam L emitted from the tip 51a of the optical fiber 51 follows the optical path substantially the same as the laser beam L via the reflecting surface 7a and receives light in the vicinity of the illumination optical system 6. As in the first embodiment, the efficiency of reaching the optical fiber 83 changes sensitively to changes in the relative position between the tip 51a of the optical fiber 51 and the front focal point F of the illumination optical system 6, and the optical fiber The amount of the reflected laser beam L ′ received by the light receiving optical fiber 83 changes sharply with respect to the deviation between the position of the tip 51a of 51 and the position of the front focus F of the illumination optical system 6. Therefore, based on the received light amount of the reflected laser beam L ′, the scanning unit 5 and the illumination optical system 6 are arranged so that the position of the tip 51a of the optical fiber 51 and the position of the front focal point F of the illumination optical system 6 are exactly matched. There is an advantage that the relative position can be adjusted.
また、レーザ光Lの照射によって被写体で生じる観察光の検出に受光部80を使用することができる。すなわち、走査部5と照明光学系6との相対位置調整のための反射レーザ光L’の検出および観察光の検出に、共通の受光部80を使用することができ、光走査型内視鏡101の構成を簡素化することができるという利点がある。
Further, the light receiving unit 80 can be used to detect observation light generated in the subject by irradiation with the laser light L. That is, the common light receiving unit 80 can be used to detect the reflected laser beam L ′ and the observation light for adjusting the relative position between the scanning unit 5 and the illumination optical system 6, and the optical scanning endoscope There is an advantage that the configuration of 101 can be simplified.
上述した第1および第2の実施形態においては、位置調整部9が、照明光学系6を移動させることとしたが、これに代えて、位置調整部9は、走査部5のみ、または走査部5および照明光学系6の両方を移動させることで、光ファイバ51の先端51aと照明光学系6との相対位置を調整してもよい。
図10には、照明光学系6の位置が固定されており、走査部5のみを移動させる例が示されている。 In the first and second embodiments described above, theposition adjustment unit 9 moves the illumination optical system 6, but instead, the position adjustment unit 9 may include only the scanning unit 5 or the scanning unit. The relative position between the tip 51a of the optical fiber 51 and the illumination optical system 6 may be adjusted by moving both the illumination optical system 5 and the illumination optical system 6.
FIG. 10 shows an example in which the position of the illuminationoptical system 6 is fixed and only the scanning unit 5 is moved.
図10には、照明光学系6の位置が固定されており、走査部5のみを移動させる例が示されている。 In the first and second embodiments described above, the
FIG. 10 shows an example in which the position of the illumination
上述した第1および第2の実施形態においては、光ファイバ51の先端51aから照明光学系6へレーザ光Lを直接入射させることとしたが、これに代えて、走査部5が、図11に示されるように、最も照明光学系6側に、少なくとも1枚のレンズを含むレンズ系53をさらに備えていてもよい。
In the first and second embodiments described above, the laser light L is directly incident on the illumination optical system 6 from the tip 51a of the optical fiber 51. Instead, the scanning unit 5 is shown in FIG. As shown, a lens system 53 including at least one lens may be further provided closest to the illumination optical system 6.
このように、光ファイバ51の先端51aと照明光学系6との間にレンズ系53を設けることで、光ファイバ51の先端51aと照明光学系6との間により大きなスペースを確保することができ、これは走査部5の組み立て作業等において有利である。また、レンズ系53によって、照明光学系6で発生する収差を補正することができる。
Thus, by providing the lens system 53 between the tip 51a of the optical fiber 51 and the illumination optical system 6, a larger space can be secured between the tip 51a of the optical fiber 51 and the illumination optical system 6. This is advantageous in assembling work of the scanning unit 5 and the like. Further, the lens system 53 can correct the aberration generated in the illumination optical system 6.
100,101 光走査型内視鏡
1,20 光走査装置
2 挿入部
3 筐体
4 レーザ光源(光源)
5 走査部
51 光ファイバ
52 アクチュエータ
53 レンズ系
6 照明光学系
7 反射部
7a 反射面
8,80 受光部
81,83 光ファイバ
82 光検出器
9 位置調整部
91 保持部材
92 XYZ駆動部
10 制御部
L レーザ光(照明光)
L’ 反射レーザ光 DESCRIPTION OF SYMBOLS 100,101 Optical scanning endoscope 1,20 Optical scanning apparatus 2 Insertion part 3 Case 4 Laser light source (light source)
DESCRIPTION OFSYMBOLS 5 Scan part 51 Optical fiber 52 Actuator 53 Lens system 6 Illumination optical system 7 Reflection part 7a Reflection surface 8,80 Light reception part 81,83 Optical fiber 82 Photodetector 9 Position adjustment part 91 Holding member 92 XYZ drive part 10 Control part L Laser light (illumination light)
L 'Reflected laser light
1,20 光走査装置
2 挿入部
3 筐体
4 レーザ光源(光源)
5 走査部
51 光ファイバ
52 アクチュエータ
53 レンズ系
6 照明光学系
7 反射部
7a 反射面
8,80 受光部
81,83 光ファイバ
82 光検出器
9 位置調整部
91 保持部材
92 XYZ駆動部
10 制御部
L レーザ光(照明光)
L’ 反射レーザ光 DESCRIPTION OF SYMBOLS 100,101
DESCRIPTION OF
L 'Reflected laser light
Claims (4)
- 光源からの照明光を被写体にスポット状に照射する照明光学系と、
前記光源から前記照明光学系に入射する照明光を前記照明光学系の光軸に交差する方向に走査する走査部と、
前記照明光学系と対向して配置され、該照明光学系から前記光軸に平行に射出された前記照明光を前記照明光学系に向かって前記光軸に平行な方向に反射する反射部と、
該反射部によって反射された前記照明光を前記照明光学系における前記照明光の光路を介して受光する受光部と、
前記照明光学系の前記光軸に対して平行な方向および垂直な方向における前記走査部および前記照明光学系の相対位置を調整する位置調整部と、
前記受光部によって受光された前記照明光の受光量に基づいて前記位置調整部を制御する制御部とを備える光走査装置。 An illumination optical system for irradiating a subject with illumination light from a light source in a spot shape;
A scanning unit that scans illumination light incident on the illumination optical system from the light source in a direction intersecting an optical axis of the illumination optical system;
A reflector that is disposed opposite to the illumination optical system and reflects the illumination light emitted from the illumination optical system in parallel to the optical axis toward the illumination optical system in a direction parallel to the optical axis;
A light receiving unit that receives the illumination light reflected by the reflecting unit through an optical path of the illumination light in the illumination optical system;
A position adjusting unit that adjusts the relative position of the scanning unit and the illumination optical system in a direction parallel to and perpendicular to the optical axis of the illumination optical system;
An optical scanning device comprising: a control unit that controls the position adjustment unit based on the amount of received illumination light received by the light receiving unit. - 光源からの照明光を被写体にスポット状に照射する照明光学系と、
前記光源から前記照明光学系に入射する照明光を前記照明光学系の光軸に交差する方向に走査する走査部と、
前記照明光学系と対向して配置され、該照明光学系から前記光軸に平行に射出された前記照明光を前記照明光学系に向かって前記光軸に平行な方向に反射する反射部と、
該反射部によって反射された前記照明光を前記照明光学系の近傍において受光する受光部と、
前記照明光学系の前記光軸に対して平行な方向および垂直な方向における前記走査部および前記照明光学系の相対位置を調整する位置調整部と、
前記受光部によって受光された前記照明光の受光量に基づいて前記位置調整部を制御する制御部とを備える光走査装置。 An illumination optical system for irradiating a subject with illumination light from a light source in a spot shape;
A scanning unit that scans illumination light incident on the illumination optical system from the light source in a direction intersecting an optical axis of the illumination optical system;
A reflector that is disposed opposite to the illumination optical system and reflects the illumination light emitted from the illumination optical system in parallel to the optical axis toward the illumination optical system in a direction parallel to the optical axis;
A light receiving unit that receives the illumination light reflected by the reflecting unit in the vicinity of the illumination optical system;
A position adjusting unit that adjusts the relative position of the scanning unit and the illumination optical system in a direction parallel to and perpendicular to the optical axis of the illumination optical system;
An optical scanning device comprising: a control unit that controls the position adjustment unit based on the amount of received illumination light received by the light receiving unit. - 前記照明光学系が、発散光束として入射する前記照明光を平行光束に変換する正の屈折力を有し、
前記制御部が、前記受光部によって受光される前記照明光の受光量が最大となる位置に前記照明光学系を配置するように前記位置調整部を制御する請求項1または請求項2に記載の光走査装置。 The illumination optical system has a positive refractive power for converting the illumination light incident as a divergent light beam into a parallel light beam,
The said control part controls the said position adjustment part so that the said illumination optical system may be arrange | positioned in the position where the light-receiving amount of the said illumination light received by the said light-receiving part becomes the maximum. Optical scanning device. - 前記走査部が、最も前記照明光学系側にレンズ系を備える請求項1から請求項3のいずれかに記載の光走査装置。 The optical scanning device according to any one of claims 1 to 3, wherein the scanning unit includes a lens system closest to the illumination optical system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/018056 WO2018207356A1 (en) | 2017-05-12 | 2017-05-12 | Optical scanning device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/018056 WO2018207356A1 (en) | 2017-05-12 | 2017-05-12 | Optical scanning device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018207356A1 true WO2018207356A1 (en) | 2018-11-15 |
Family
ID=64104445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/018056 WO2018207356A1 (en) | 2017-05-12 | 2017-05-12 | Optical scanning device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018207356A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008504557A (en) * | 2004-06-28 | 2008-02-14 | ユニヴァーシティ オブ ワシントン | Multi-mode optical imaging method and optical fiber scanner thereof |
JP2009080132A (en) * | 2001-10-31 | 2009-04-16 | Olympus Corp | Optical scanning observation apparatus |
JP2012231910A (en) * | 2011-04-28 | 2012-11-29 | Olympus Corp | Optical scan type observation device |
JP2014149354A (en) * | 2013-01-31 | 2014-08-21 | Hoya Corp | Calibration method and scanning type endoscope system |
JP2016106726A (en) * | 2014-12-03 | 2016-06-20 | オリンパス株式会社 | Scanning endoscope apparatus |
-
2017
- 2017-05-12 WO PCT/JP2017/018056 patent/WO2018207356A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009080132A (en) * | 2001-10-31 | 2009-04-16 | Olympus Corp | Optical scanning observation apparatus |
JP2008504557A (en) * | 2004-06-28 | 2008-02-14 | ユニヴァーシティ オブ ワシントン | Multi-mode optical imaging method and optical fiber scanner thereof |
JP2012231910A (en) * | 2011-04-28 | 2012-11-29 | Olympus Corp | Optical scan type observation device |
JP2014149354A (en) * | 2013-01-31 | 2014-08-21 | Hoya Corp | Calibration method and scanning type endoscope system |
JP2016106726A (en) * | 2014-12-03 | 2016-06-20 | オリンパス株式会社 | Scanning endoscope apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11330170B2 (en) | Extended depth of focus for high-resolution optical image scanning | |
US8926500B2 (en) | Light irradiating device, scanning endoscopic device, manufacturing method of light irradiating device, and manufacturing method of scanning endoscopic device | |
US7953308B2 (en) | System and method for fiber optic bundle-based illumination for imaging system | |
JP3996783B2 (en) | Scanning microscope and scanning microscope module | |
JP6375254B2 (en) | Fluorescence observation unit and fluorescence observation apparatus | |
CN104135909A (en) | Calibration apparatus | |
JP2008531112A (en) | Scanning beam device having a detector assembly | |
JP7175123B2 (en) | Variable focal length lens device | |
CN102782557A (en) | Scanning microscope and method for optically scanning one or more samples | |
JP7342101B2 (en) | Improved scanning optical microscope | |
CN104781651A (en) | Devices, systems, and methods for calibrating an OCT imaging system in a laser surgical system | |
US20090073553A1 (en) | Focus adjustment unit and optical scanning microscope | |
JP6226730B2 (en) | Optical scanning device and optical scanning observation device | |
WO2020196783A1 (en) | Confocal microscope unit and confocal microscope | |
US20160324409A1 (en) | Endoscope light source system | |
WO2016151633A1 (en) | Method for measuring scanning trajectory of optical scanning device, scanning trajectory measurement device, and image calibration method | |
JP5734758B2 (en) | Laser microscope | |
US11484192B2 (en) | Optical-scanning-type observation probe and optical-scanning-type observation device | |
JP2017075785A (en) | Scanning type probe microscope | |
WO2018207356A1 (en) | Optical scanning device | |
JP2010014837A (en) | Optical scanning microscope | |
CN107427182B (en) | Scanning type observation device and image display method for scanning type observation device | |
KR101685004B1 (en) | Apparatus for scanning oral cavity using microlens array | |
JP5513017B2 (en) | Angle measuring device | |
JP2006118944A (en) | Evaluation device of lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17909316 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17909316 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |