WO2018205661A1 - 一种oled阵列基板及其制作方法、触控显示装置 - Google Patents
一种oled阵列基板及其制作方法、触控显示装置 Download PDFInfo
- Publication number
- WO2018205661A1 WO2018205661A1 PCT/CN2018/071530 CN2018071530W WO2018205661A1 WO 2018205661 A1 WO2018205661 A1 WO 2018205661A1 CN 2018071530 W CN2018071530 W CN 2018071530W WO 2018205661 A1 WO2018205661 A1 WO 2018205661A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- touch electrode
- touch
- substrate
- electrode
- layer
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 220
- 238000000034 method Methods 0.000 title claims abstract description 60
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 230000008569 process Effects 0.000 claims description 51
- 239000004020 conductor Substances 0.000 claims description 36
- 238000000059 patterning Methods 0.000 claims description 36
- 238000000151 deposition Methods 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 20
- 239000011159 matrix material Substances 0.000 claims description 15
- 238000005538 encapsulation Methods 0.000 claims description 8
- 239000010409 thin film Substances 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 164
- 229920001621 AMOLED Polymers 0.000 description 16
- 239000000243 solution Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000002346 layers by function Substances 0.000 description 7
- 239000011368 organic material Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 6
- 229910052814 silicon oxide Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 239000011810 insulating material Substances 0.000 description 5
- 238000000206 photolithography Methods 0.000 description 5
- 238000005530 etching Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 229910021389 graphene Inorganic materials 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229910007541 Zn O Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000001723 curing Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000001029 thermal curing Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/40—OLEDs integrated with touch screens
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0446—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0412—Digitisers structurally integrated in a display
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04103—Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/122—Pixel-defining structures or layers, e.g. banks
Definitions
- the present disclosure relates to the field of display technologies, and in particular, to an OLED array substrate, a method for fabricating the same, and a touch display device.
- AMOLED Active Matrix Organic Light Emitting Diode Display
- LCD Liquid Crystal Display
- a typical AMOLED typically requires a package cover to achieve the barrier to water oxygen.
- the above package cover may be a glass cover.
- the touch structure when the touch structure is integrated in the AMOLED, the touch structure can be disposed on the outer surface of the glass cover by an On Cell process.
- the flexible AMOLED usually adopts a Thin Film Encapsulation (TFE) process. Since the package film layer used in the film packaging process is soft, the touch structure cannot be integrated by the On Cell process, thereby reducing the application range of the flexible AMOLED.
- TFE Thin Film Encapsulation
- Embodiments of the present disclosure provide an OLED array substrate and a method of fabricating the same, and a touch display device capable of at least partially alleviating or eliminating one or more of the above mentioned problems.
- an OLED array substrate including: a substrate substrate; a transistor on the substrate substrate; a planarization layer covering the transistor; and a touch integrated in the OLED array substrate
- the touch sensor is located on a side of the planarization layer facing away from the transistor, and includes a first touch electrode and a second touch electrode insulated from each other.
- the first touch electrode and the second touch electrode are located in different layers, and the touch sensor further includes a dielectric layer between the first touch electrode and the second touch electrode, and the first The touch electrode and the second touch electrode are insulated from each other by a dielectric layer.
- the first touch electrode is a strip electrode extending in the first direction
- the second touch electrode is a strip electrode extending in the second direction
- the first direction is perpendicular to the second direction
- the touch sensor further includes a dielectric layer, and the first touch electrode and the second touch electrode are insulated from each other by a dielectric layer, and the first touch electrode is a strip electrode extending in the first direction
- the second touch electrode includes a bulk electrode arranged in a matrix between the strip electrodes, and a bonding lead electrically connecting the adjacent bulk electrodes in the second direction, the first direction being perpendicular to the second direction, and The first touch electrode is located in the same layer as the bulk electrode, and the lap lead is located in a layer different from the first touch electrode and the bulk electrode.
- the edge of the first touch electrode facing away from the upper surface of the substrate substrate along the first direction has a shape of inwardly recessed, outwardly convex or serrated, and/or the second touch electrode
- the side of the upper surface facing away from the base substrate in the second direction has a shape that is inwardly recessed, outwardly convex or serrated.
- the edge of the first touch electrode facing away from the upper surface of the base substrate in the first direction has a shape that is inwardly recessed, outwardly convex or sawtooth, and/or a deviation of the bulk electrode
- the side of the upper surface of the base substrate in the second direction has a shape that is inwardly recessed, outwardly convex or serrated.
- the OLED array substrate further includes a pixel defining layer on a side of the planarization layer that faces away from the transistor.
- the touch sensor is located between the pixel defining layer and the planarization layer, and an orthographic projection of the touch sensor on the substrate substrate and the pixel defining layer on the substrate The orthographic projections overlap.
- the OLED array substrate further includes an anode located on a side of the planarization layer that faces away from the transistor.
- the first touch electrode or the second touch electrode is in the same layer and the same material as the anode.
- the OLED array substrate further includes an anode located on a side of the planarization layer that faces away from the transistor.
- the first touch electrode and the second touch electrode are in the same layer and the same material as the anode.
- the OLED array substrate further includes an anode located on a side of the planarization layer that faces away from the transistor.
- the bridge leads are in the same layer and the same material as the anode.
- the OLED array substrate further includes a pixel defining layer on a side of the planarization layer facing away from the transistor, the pixel defining layer including a first portion extending in a first direction and a second portion extending in a second direction And the first portion and the second portion enclose a plurality of openings.
- the touch sensor is located between the pixel defining layer and the planarization layer, and an orthographic projection of the first touch electrode on the substrate substrate overlaps with an orthographic projection of the first portion on the substrate.
- An orthographic projection of the second touch electrode on the substrate substrate overlaps with an orthographic projection of the second portion on the substrate substrate, and the first direction is perpendicular to the second direction.
- the OLED array substrate further includes a pixel defining layer on a side of the planarization layer facing away from the transistor, the pixel defining layer including a first portion extending in a first direction and a second extending in a second direction a portion, and the first portion and the second portion enclose a plurality of openings.
- the touch sensor is located between the pixel defining layer and the planarization layer, an orthographic projection of the bridge lead on the substrate substrate overlaps with an orthographic projection of the second portion on the substrate, and One direction is perpendicular to the second direction.
- a touch display device including any of the above OLED array substrates is provided.
- the touch display device further includes a flexible encapsulation layer encapsulating the OLED array substrate.
- a method of fabricating an OLED array substrate includes: forming a transistor on a substrate; forming a planarization layer covering the transistor on a substrate on which the transistor is formed And forming a first touch electrode and a second touch electrode insulated from each other on the base substrate on which the planarization layer is formed.
- the first touch electrode and the second touch electrode constitute a touch sensor.
- the forming the first touch electrode and the second touch electrode that are insulated from each other comprises: depositing a first conductive material layer on the base substrate on which the planarization layer is formed, and adopting a patterning process Forming an anode and a strip-shaped first touch electrode; forming a dielectric layer on the base substrate on which the first touch electrode is formed; depositing a second on the base substrate on which the dielectric layer is formed a conductive material layer is formed, and a second touch electrode disposed in a strip shape with the first touch electrode is formed by a patterning process.
- the forming the first touch electrode and the second touch electrode insulated from each other includes: depositing a first conductive material layer on the base substrate on which the planarization layer is formed, and forming by a patterning process a strip-shaped first touch electrode; a dielectric layer formed on the base substrate on which the first touch electrode is formed; and a second conductive material layer deposited on the base substrate on which the dielectric layer is formed And forming an anode and a second touch electrode disposed in a strip shape with the first touch electrode by a patterning process.
- the forming the first touch electrode and the second touch electrode that are insulated from each other comprises: depositing a first conductive material layer on the base substrate on which the planarization layer is formed, and adopting a patterning process a strip-shaped first touch electrode, a block electrode arranged in a matrix between the strip-shaped first touch electrodes, and an anode, wherein the first touch electrode extends in a first direction; a dielectric layer is formed on the base substrate of the first touch electrode, the bulk electrode and the anode, and a via hole is formed at a position corresponding to the bulk electrode of the dielectric layer; and the dielectric layer is formed Depositing a second conductive material layer on the base substrate, and forming a bridge lead by a patterning process, the lap wire electrically connecting the block electrode in the second direction through the via hole, wherein the first direction and the second direction The direction is vertical, and the lap lead and the bulk electrode constitute a second touch electrode.
- the forming the first touch electrode and the second touch electrode that are insulated from each other comprises: depositing a first conductive material layer on the base substrate on which the planarization layer is formed, and adopting a patterning process a strip-shaped first touch electrode and a block electrode arranged in a matrix between the strip-shaped first touch electrodes, wherein the first touch electrode extends in a first direction; a dielectric layer is formed on a base substrate of the touch electrode and the bulk electrode, and a via hole is formed at a position corresponding to the bulk electrode of the dielectric layer; and a lining is formed on the dielectric layer Depositing a second conductive material layer on the base substrate, and forming a bridge lead and an anode by a patterning process at one time, wherein the lap wire is electrically connected to the block electrode in the second direction through the via hole, wherein the first direction
- the second direction is perpendicular, and the overlapping lead and the bulk electrode constitute a second touch electrode.
- the method further includes: forming a pixel defining layer on the substrate formed with the touch sensor. An orthographic projection of the touch sensor on the substrate substrate overlaps with an orthographic projection of the pixel defining layer on the substrate.
- the present disclosure provides an OLED array substrate, a method of fabricating the same, and a touch display device.
- the OLED array substrate includes a base substrate, a transistor on the base substrate, and a planarization layer covering the transistor.
- the OLED array substrate further includes a touch sensor integrated in the OLED array substrate.
- the touch sensor is located on a side of the planarization layer facing away from the transistor, and includes a first touch electrode and a second touch electrode that are insulated from each other.
- the touch sensor is formed on the side of the planarization layer of the OLED array substrate facing away from the transistor, that is, the touch sensor is integrated on the OLED array substrate by the In-Cell process, thereby providing Touch AMOLED.
- the touch integration process is not affected by the thin film encapsulation process of the touch AMOLED, thereby improving the applicable range of the flexible AMOLED.
- FIG. 1 schematically illustrates a cross-sectional view of an OLED array substrate provided by an embodiment of the present disclosure
- FIG. 2 is a top plan view schematically showing an arrangement of the first touch electrode and the second touch electrode in FIG. 1;
- FIG. 3 is a top plan view schematically showing another arrangement of the first touch electrode and the second touch electrode in FIG. 1;
- 4a is a schematic view showing a side shape of the first touch electrode of FIG. 3;
- 4b is another schematic diagram of the side shape of the first touch electrode of FIG. 3;
- 4c is still another schematic view of the side shape of the first touch electrode of FIG. 3;
- FIG. 5 schematically illustrates a cross-sectional view of an OLED array substrate provided with a pixel defining layer provided by an embodiment of the present disclosure
- FIG. 6 is a schematic top view of a display area and a non-display area of a display device according to an embodiment of the present disclosure
- FIG. 7a is a schematic diagram showing a top view of a touch sensor in which the arrangement of the arrangement shown in FIG. 2 corresponds to a pixel defining layer position;
- FIG. 7b schematically illustrates, in a top view, a relationship between a projection position of the first touch electrode and the second touch electrode in FIG. 7a and a projected position of the pixel spacer;
- FIG. 8 is a schematic diagram showing another top view in which the touch sensor of the arrangement shown in FIG. 2 corresponds to the pixel defining layer position;
- FIG. 9a is a schematic diagram showing a top view of a touch sensor in which the arrangement of the arrangement shown in FIG. 3 corresponds to a pixel defining layer position;
- FIG. 9b schematically illustrates, in a top view, a relationship between a projection position of the first touch electrode and the second touch electrode in FIG. 9a and a projected position of the pixel spacer;
- FIG. 10 is a schematic diagram showing another top view in which the touch sensor of the arrangement shown in FIG. 3 corresponds to the position of the pixel defining layer;
- FIG. 11 is a schematic structural diagram of a touch display device according to an embodiment of the present disclosure.
- FIG. 12 is a flowchart of a method for fabricating an OLED array substrate according to an embodiment of the present disclosure.
- 01-OLED array substrate 101-substrate substrate; 102-display sub-pixel; 103-touch sub-pixel; 11-planarization layer; 20-touch sensor; 201-first touch electrode; 202-second touch Control electrode; 21-dielectric layer; 22-bridge lead; 110-anode; 120-functional layer of organic material; 121-cathode; 122-polarizer; 123-film encapsulation layer; 30-pixel defining layer; ; 3012 - second part; 302 - opening; A - display area; B - non-display area.
- An embodiment of the present disclosure provides an OLED array substrate 01, as shown in FIG. 1, comprising a substrate substrate 101, a transistor (for example, a thin film transistor TFT) on the substrate substrate 101, and a planarization layer 11 covering the transistor.
- a transistor for example, a thin film transistor TFT
- the OLED array substrate 01 further includes a touch sensor 20 integrated in the OLED array substrate 01 on the side of the planarization layer 11 facing away from the TFT.
- the touch sensor 20 includes a first touch electrode 201 and a second touch electrode 202 that are insulated from each other.
- the touch sensor 20 further includes a dielectric layer 21 disposed between the first touch electrode 201 and the second touch electrode 202.
- the dielectric layer 21 has an insulating effect.
- the material constituting the dielectric layer 21 may include, but is not limited to, silicon oxide (SiOx), silicon nitride (SiNx), aluminum oxide (AlOx), silicon oxynitride (SiOxNy), and an organic insulating material, or at least two materials described above.
- the composite material is composed.
- the first touch electrodes 201 and the second touch electrodes 202 may be strip-shaped, as shown in FIG. 2 , and intersect each other.
- the strip-shaped first touch electrodes 201 and the second touch electrodes 202 may be perpendicular to each other. That is, the first touch electrode 201 and the second touch electrode 202 in FIG. 2 are arranged in a matrix.
- each of the intersection regions of the first touch electrode 201 and the second touch electrode 202 defines a touch unit, wherein the first touch electrode 201 determines the touch sub-pixel.
- the ordinate, and the second touch electrode 202 determines the abscissa of the touch sub-pixel.
- the first touch electrode 201 is a strip electrode extending in the longitudinal direction
- the second touch electrode includes a block electrode 2021 arranged in a matrix between the strip electrodes, and in the lateral direction.
- the lap leads 22 of the adjacent block electrodes 2021 are electrically connected.
- the first touch electrode 201 is located in the same layer as the bulk electrode 2021
- the overlap lead 22 is located in a layer different from the first touch electrode 201 and the bulk electrode 2021.
- Touch sensor 20 also includes a dielectric layer.
- the first touch electrode 201 and the second touch electrode 202 are insulated from each other by a dielectric layer.
- the dielectric layer may be an insulating material filling a gap between the first touch electrode 201 and the second touch electrode 202, such as air, silicon oxide (SiOx), silicon nitride (SiNx), or aluminum oxide (AlOx). And silicon oxynitride (SiOxNy) and an organic insulating material, or a composite material composed of at least two materials described above. That is, in FIG. 3, the first touch electrode 201 and the second touch electrode 202 are arranged in a bridge manner.
- each of the first touch electrodes 201 and the second touch electrodes 201 defines a touch unit, wherein the first touch electrodes 201 correspond to the touch sub-pixels.
- the ordinate, and the bridge lead 22 corresponds to the abscissa of the touch sub-pixel.
- the present disclosure does not limit the shape of the strip-shaped first touch electrode 201 or the second touch electrode 202 facing away from the upper surface of the base substrate.
- the side of the first touch electrode 201 facing away from the upper surface of the base substrate in the longitudinal direction may have an inward depression (as shown in FIG. 4A) and an outward projection ( As shown in Figure 4B) or sawtooth (as shown in Figure 4C).
- the side of the second touch electrode 202 facing away from the upper surface of the base substrate in the lateral direction may have a shape that is inwardly recessed, outwardly convex or sawtooth.
- the side of the first touch electrode 201 facing away from the upper surface of the base substrate in the longitudinal direction may have a shape that is recessed inward, outwardly convex or sawtooth.
- the side of the bulk electrode 2021 facing away from the upper surface of the base substrate in the lateral direction may have a shape that is inwardly recessed, outwardly convex or sawtooth.
- the present disclosure does not limit the curvature of any of the above curves. Those skilled in the art can adjust the magnitude of the curvature as needed.
- the visibility of the touch sensor can be reduced on the one hand, thereby preventing the user from seeing the touch on the OLED display device.
- the sensor affects the display effect, and on the other hand, the arrangement of the touch sensor can be adapted to the existing available space in the OLED array substrate, thereby facilitating the integration of the touch sensor in the OLED array substrate.
- the OLED array substrate 01 has a plurality of sub-pixels arranged in a matrix, and a pixel circuit is disposed in each sub-pixel, and the pixel circuit is composed of a TFT and a capacitor.
- the pixel circuit can drive a light emitting device (eg, an OLED device) in each sub-pixel to emit light.
- the TFT may be any one of an amorphous silicon TFT, a low temperature polysilicon TFT, an oxide TFT, and an organic TFT.
- the types of all TFTs in the OLED array substrate may be the same, or the OLED array substrate may include at least two different types of TFTs.
- the above-described base substrate 101 is composed of a flexible material such as a flexible transparent resin material.
- the OLED array substrate 01 further includes a pixel defining layer 30 on the side of the planarization layer 11 facing away from the TFT.
- the pixel defining layer 30 includes a first portion 3011 extending in a longitudinal direction and a second portion 3012 extending in a lateral direction, the first portion 3011 and the second portion 3012 enclosing a plurality of openings 302 (as shown in Figure 7b).
- the touch sensor 20 is located between the pixel defining layer 30 and the planarization layer 11.
- An OLED device is disposed within each opening 302.
- the TFT on the base substrate 101 is used to drive the OLED device to emit light, wherein the source or the drain of the driving transistor is connected to the anode 110 of the OLED device.
- the OLED device further includes an organic material functional layer 120 on the anode 110.
- the organic material functional layer 120 may include a hole injection layer, a hole transport layer, an organic light emitting layer, an electron transport layer, an electron injection layer, and the like.
- a planarization layer 11 may be provided on the TFT to provide a flat surface for the anode 110 of the OLED device. In this way, the light emitted downward from the organic light-emitting layer can be specularly reflected to reduce leakage of light from the side of the substrate 101 and improve the utilization of light.
- the touch sensor 20 is formed on the side of the planarization layer 11 of the OLED array substrate 01 facing away from the transistor TFT, that is, the touch sensor 20 is integrated by the In-Cell process.
- the OLED array substrate 01 is provided to provide a touch AMOLED. In this way, when the touch AMOLED is a flexible display device, the touch integration process is not affected by the thin film encapsulation process of the touch AMOLED, thereby improving the applicable range of the flexible AMOLED.
- an embodiment of the present disclosure provides a display device.
- the display device includes a display area A and a non-display area B located around the display area A.
- the position of the touch sensor 20 is not limited in the embodiment of the present disclosure.
- the touch sensor 20 is disposed in the non-display area B.
- a plurality of display sub-pixels 102 arranged in a matrix are disposed in the display area A of the display device.
- the touch component of the display device includes a plurality of touch sub-pixels 103 arranged in a matrix, and each of the touch sub-pixels 103 is provided with one touch sensor 20 .
- the display sub-pixels 102 and the touch sub-pixels 103 have no overlapping regions.
- the display sub-pixel 102 and the touch sub-pixel 103 have a part of overlapping regions.
- the present disclosure does not limit the size of the overlapping area.
- the display sub-pixel 102 and the touch sub-pixel 103 may overlap by 1:1, that is, one touch sub-pixel 103 corresponds to one display sub-pixel 102.
- one touch sub-pixel 103 corresponds to a plurality of display sub-pixels 102. This disclosure does not limit this.
- the touch sensor 20 when the touch sensor 20 is disposed in the display area A, in order to avoid affecting the display effect, when the OLED array substrate further includes a pixel defining layer, the touch sensor may be disposed such that it is on the substrate.
- the orthographic projection overlaps with the position of the orthographic projection of the pixel defining layer on the base substrate such that the touch sensor disposed in the display area A does not obstruct the OLED device within the opening.
- the orthographic projection of the touch sensor on the substrate substrate can be within the orthographic projection of the pixel defining layer on the substrate substrate.
- the following is an example of a specific setting manner of the position of the touch sensor corresponding to the position of the pixel defining layer when the first touch electrode and the second touch electrode in the touch sensor adopt different arrangement modes.
- the first touch electrode 201 and the second touch electrode 202 of the touch sensor 20 are arranged in a matrix as shown in FIG. 2, that is, the first touch electrode 201 and the second touch electrode.
- the 202 layers are disposed alternately and insulated by the dielectric layer 21 between the first touch electrode 201 and the second touch electrode 202.
- the first touch electrode 201 may be in the same layer and the same material as the anode 110 of the OLED device. That is to say, at the same time as the anode 110 is fabricated, the fabrication of the first touch electrode 201 can be completed by one patterning process.
- the second touch electrode 202 can be fabricated by patterning another layer of conductive material.
- the pixel defining layer 30 includes a laterally extending first portion 3011 and a longitudinally extending second portion 3012, the first portion 3011 and the second portion 3012 enclosing the opening 302.
- the orthographic projection of the first touch electrode 201 on the substrate 101 may overlap with the orthographic projection of the second portion 3012 on the substrate 101, and the orthographic projection of the second touch electrode 202 on the substrate 101 may be The orthographic projections of the first portion 3011 on the base substrate 101 overlap.
- the projection positions of the first touch electrode 201 and the second touch electrode 202 can be interchanged.
- the term "patterning process” may refer to a photolithography process, a photolithography and etching process, printing, inkjet, and the like for forming a predetermined pattern.
- a photolithography process refers to a process of forming a pattern using a photoresist, a mask (MASK), an exposure machine, or the like, including a process of film formation, exposure, development, and the like.
- the corresponding patterning process can be selected in accordance with the structure formed in the present disclosure.
- the one-time patterning process refers to a process of forming different exposed regions by one mask exposure process, and then performing multiple etching, ashing, and the like removal processes on different exposed regions to finally obtain a desired pattern.
- the second touch electrode 202 may be in the same layer and the same material as the anode 110 of the OLED device. That is to say, while the anode 110 is being formed, the fabrication of the second touch electrode 202 can be completed by one patterning process.
- the first touch electrode 201 can be fabricated by patterning another layer of conductive material.
- the projection positions of the first touch electrode 201 and the second touch electrode 202 on the base substrate 101 are the same as those shown in FIG. 7 b , and Let me repeat.
- the first touch electrode 201 and the second touch electrode 202 of the touch sensor 20 are arranged in a bridge type as shown in FIG. 3, that is, the first touch electrode 201 and the block electrode.
- the 2021 is disposed in the same layer and insulated from each other, and the plurality of bulk electrodes 2021 located in the same row are electrically connected by the bridge wires 22.
- the first touch electrode 201 and the bulk electrode 2021 of the touch sensor 20 may both be the same material as the anode 110 of the OLED device.
- the first touch electrode 201 and the bulk electrode 2021 can be simultaneously formed by one patterning process while the anode 110 is being formed.
- the lap leads 22 can be fabricated by patterning another layer of conductive material.
- the first touch electrode 201 and the second touch electrode 202 in FIG. 9a adopt the bridging arrangement shown in FIG. 3.
- the pixel defining layer 30 includes a laterally extending first portion 3011 and a longitudinally extending second portion 3012, the first portion 3011 and the second portion 3012 enclosing the opening 302.
- the orthographic projection of the strip-shaped first touch electrode 201 on the base substrate 101 may overlap with the orthographic projection of the second portion 3012 on the base substrate 101.
- the block electrodes 2021 are located on both sides of the strip-shaped first touch electrodes 201.
- the orthographic projection of the bridge leads 22 on the base substrate 101 may overlap with the orthographic projection of the first portion 3011 on the base substrate 101.
- the orthographic projection of the bridge leads 22 on the base substrate 101 can be within the orthographic projection of the first portion 3011 on the substrate substrate 101.
- the bridge leads 22 are of the same material as the anode 110 of the OLED device.
- the lap conductor 22 can be fabricated by one patterning process while the anode 110 is being formed.
- the first touch electrode 201 and the bulk electrode 2021 can be fabricated by patterning another layer of conductive material.
- the conductive material includes, but is not limited to, metal molybdenum (Mo), aluminum metal (Al), metallic copper (Cu), metallic silver (Ag), metallic titanium (Ti), indium tin oxide (In-Sn). -O, ITO), indium zinc oxide (In-Zn-O, IZO), aluminum-doped zinc oxide (Al-Zn-O, AZO), graphene, carbon nanotubes, etc., or at least two materials Composite material.
- Mo metal molybdenum
- Al aluminum metal
- Cu metallic copper
- Cu metallic silver
- Ti metallic titanium
- In-Sn indium tin oxide
- ITO indium zinc oxide
- In-Zn-O, IZO indium zinc oxide
- Al-Zn-O, AZO aluminum-doped zinc oxide
- graphene carbon nanotubes, etc., or at least two materials Composite material.
- the orthographic projection of the touch sensor 20 on the substrate 101 overlaps with the orthographic projection of the pixel defining layer 30 on the substrate 101, and the touch sensor 20 is located at the pixel defining layer 30 and the planarization layer. 11 between.
- the OLED device including the anode 110 and the organic material functional layer 120 as shown in FIG. 5 is fabricated in the opening 302 of the pixel defining layer 30, the preparation of the touch sensor 20 has been completed. In this way, the fabrication of the touch sensor 20 does not affect the fabrication of the organic light emitting layer of the OLED device.
- the embodiment of the present disclosure further provides a touch display device comprising any one of the OLED array substrates as described above.
- the touch display device has the same beneficial effects as the OLED array substrate provided in the foregoing embodiment, and details are not described herein again.
- the touch display device may further include an organic material functional layer 120 located in the opening 302 , a cathode 121 on the pixel defining layer 30 , a polarizer 122 on the cathode 121 , and the polarizer 122 .
- the upper film encapsulation layer or package cover 123 may further include an organic material functional layer 120 located in the opening 302 , a cathode 121 on the pixel defining layer 30 , a polarizer 122 on the cathode 121 , and the polarizer 122 .
- an embodiment of the present disclosure provides a method of fabricating an OLED array substrate.
- step S101 a TFT is formed on the base substrate.
- step S102 a planarization layer covering the TFT is formed on the substrate on which the TFT is formed.
- step S103 first insulating electrodes and second touch electrodes insulated from each other are formed on the base substrate on which the planarization layer is formed.
- the first touch electrode and the second touch electrode constitute a touch sensor.
- the manufacturing method of the OLED array substrate described above has the same advantageous effects as the OLED array substrate provided in the foregoing embodiments, and details are not described herein again.
- the method for fabricating the OLED array substrate may further include forming a touch after the step S103.
- a pixel defining layer 30 is formed on the substrate substrate of the sensor. In this way, after the touch sensor is fabricated, the functional layer of the organic material of the OLED device is fabricated in the opening.
- the touch sensor when the touch sensor is disposed in the display area of the display device, in order to avoid affecting the display effect, optionally, as shown in FIG. 7a to FIG. 10, the touch sensor can be positively on the base substrate.
- the projection overlaps with the orthographic projection of the pixel defining layer on the substrate substrate.
- Step S103 will be described in detail below in detail.
- the first touch electrodes 201 and the second touch electrodes 202 are arranged in a matrix as shown in FIG. 2, that is, the first touch electrodes 201 and the second touch electrodes 202 are arranged in different layers. And insulating through the dielectric layer 21 between the first touch electrode 201 and the second touch electrode 202.
- step S103 may include, first, depositing a first conductive material layer on the base substrate 101 on which the planarization layer 11 is formed, and forming the anode 110 and the strip as shown in FIG. 7a by one patterning process.
- the first touch electrode 201 is shaped.
- the conductive materials constituting the above-mentioned conductive material layer are the same as those described above, and are not described herein again.
- a photolithography process may be employed, including coating photoresist, exposure, development, and etching to obtain a pattern of the anode 110 and the strip-shaped first touch electrode 201.
- the first conductive material layer is mainly composed of nano silver, graphene, carbon nanotubes, etc.
- liquid conductive solution such as nano silver paste, graphene solution or carbon nanotube solution can be used by inkjet printing, screen printing and the like.
- a pattern of the anode 110 and the strip-shaped first touch electrode 201 is prepared and then subjected to ultraviolet curing and/or thermal curing.
- step S103 further includes forming a dielectric layer 21 on the base substrate 101 on which the first touch electrodes 201 are formed.
- the materials constituting the dielectric layer 21 are the same as those described above, and are not described herein again. Specifically, when the material constituting the dielectric layer 21 includes at least one of silicon oxide (SiOx), silicon nitride (SiNx), aluminum oxide (AlOx), and silicon oxynitride (SiOxNy), coating including coating may be employed. A photolithography process of photoresist, exposure, development, and etching forms a pattern of the dielectric layer 21. When the material constituting the dielectric layer 21 includes an organic insulating material, a pattern of the dielectric layer 21 may be prepared using an organic insulating material solution using inkjet printing, screen printing, or the like, followed by ultraviolet curing and/or thermal curing.
- the step 103 further includes depositing a second conductive material layer on the base substrate 101 on which the dielectric layer 21 is formed, and forming a second touch that is disposed in a strip shape with the first touch electrode 201 by a patterning process.
- Control electrode 202 is
- the materials constituting the first conductive material layer and the second conductive material layer may be the same or different, and the disclosure does not limit this.
- step S103 may include first depositing a first conductive material layer on the base substrate 101 on which the planarization layer 11 is formed, and forming a stripe first as shown in FIG. 8 by a patterning process. Touch electrode 201.
- step S103 includes forming a dielectric layer 21 by a patterning process on the base substrate 101 on which the first touch electrodes 201 are formed.
- step S103 further includes depositing a second conductive material layer on the base substrate 101 on which the dielectric layer 21 is formed, and forming the anode 110 by one patterning process and intersecting with the first touch electrode 201 and stripping The second touch electrode 202.
- the first touch electrode 201 and the second touch electrode 202 are arranged in a bridge type as shown in FIG. 3, that is, the first touch electrode 201 and the bulk electrode 2021 are disposed in the same layer.
- the plurality of bulk electrodes 2021 which are insulated from each other and are located in the same row are electrically connected by the bridge wires 22.
- the step S103 may include, first, depositing a first conductive material layer on the base substrate 101 on which the planarization layer 11 is formed, and forming a strip shape as shown in FIG. 9a by one patterning process.
- step S103 further includes forming a dielectric layer 21 on the substrate substrate on which the first touch electrode 201 and the bulk electrode 2021 are formed, and corresponding to the bulk electrode 2021 in the dielectric layer 21, as shown in FIG. 9a.
- the location forms a via.
- step S103 further includes depositing a second conductive material layer on the base substrate 101 on which the dielectric layer 21 is formed, and forming the bridge leads 22 by a patterning process.
- the lap wire 22 is electrically connected to the bulk electrode 2021 in the lateral direction through the via hole, and the lap electrode 22 and the bulk electrode 2021 constitute the second touch electrode.
- step S103 may include, first, depositing a first conductive material layer on the base substrate on which the planarization layer 11 is formed, and forming a strip shape as shown in FIG. 10 by one patterning process
- the first touch electrode 201 and the block electrode 2021 are arranged in a matrix between the strip-shaped first touch electrodes 201.
- the first touch electrode 201 extends in the longitudinal direction.
- step S103 includes, as shown in FIG. 10, a dielectric layer 21 is formed on the base substrate 101 on which the first touch electrode 201 and the bulk electrode 2021 are formed, and the dielectric layer 21 corresponds to the bulk electrode 202.
- the location forms a via.
- step S103 further includes depositing a second conductive material layer on the base substrate on which the dielectric layer 21 is formed, and forming the bridge lead 22 and the anode 110 by a patterning process at one time.
- the lap wire 22 is electrically connected to the bulk electrode 2021 in the lateral direction through the via hole, and the lap wire 22 and the bulk electrode 2021 constitute the second touch electrode.
- the substrate substrate 101 on which the pixel defining layer 30 is formed may be sequentially formed in the opening 302.
- the organic material functional layer 120, the cathode 121 of the OLED device, the polarizer 122, the thin film encapsulation layer or the package cover 123 as shown in FIG. 11 complete the preparation of the touch display device.
- the touch display device may further include a gap control layer on a side of the pixel defining layer 30 facing away from the base substrate 101, and the gap control layer functions as a support so that the display side surface of the touch display device is flush .
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
提供一种有机发光二极管(OLED)阵列基板(01)及其制作方法、触控显示装置。OLED阵列基板(01)包括衬底基板(101)、设置在衬底基板(101)上的薄膜晶体管(TFT),以及覆盖薄膜晶体管的平坦化层(11)。OLED阵列基板(01)还包括集成在OLED阵列基板(01)中的触控传感器(20),触控传感器(20)位于平坦化层(11)背离薄膜晶体管的一侧,并且包括相互绝缘的第一触控电极(201)和第二触控电极(202)。
Description
相关申请的交叉引用
本申请要求享有2017年5月12日提交的中国专利申请No.201710342458.9的优先权,其全部公开内容通过引用并入本文。
本公开涉及显示技术领域,尤其涉及一种OLED阵列基板及其制作方法、触控显示装置。
AMOLED(Active Matrix Organic Light Emitting Diode Display,,有源矩阵驱动有机发光二极管显示装置)由于具有低制造成本、高响应速度、省电、对便携式设备的直流驱动的适配、工作温度范围大等等优点而可望成为取代LCD(Liquid Crystal Display,液晶显示器)的下一代新型显示器。特别地,柔性AMOLED因其具有轻薄、可弯曲或折叠、能任意改变形状等优点,正越来越受到市场重视。
典型的AMOLED通常需要封装盖板,以达到阻隔水氧的作用。上述封装盖板可以为玻璃盖板。在此情况下,当在AMOLED中集成触控结构时,可以采用外嵌式(On Cell)工艺将触控结构设置于玻璃盖板的外表面。然而,柔性AMOLED通常采用薄膜封装(Thin Film Encapsulation,TFE)工艺,由于薄膜封装工艺采用的封装薄膜层质地柔软,因此无法通过上述On Cell工艺集成触控结构,从而降低了柔性AMOLED的适用范围。
发明内容
本公开的实施例提供一种OLED阵列基板及其制作方法、触控显示装置,其能够至少部分地缓解或消除以上提到的问题中的一个或多个。
根据本公开的一方面,提供一种OLED阵列基板,包括:衬底基板;位于所述衬底基板上的晶体管;覆盖所述晶体管的平坦化层;以及集成在所述OLED阵列基板中的触控传感器,所述触控传感器位于 所述平坦化层背离所述晶体管一侧,并且包括相互绝缘的第一触控电极和第二触控电极。
根据一些实施例,第一触控电极和第二触控电极位于不同层中,所述触控传感器还包括位于第一触控电极与第二触控电极之间的介电层,并且第一触控电极和第二触控电极通过介电层相互绝缘。
根据一些实施例,第一触控电极为沿第一方向延伸的条状电极,第二触控电极为沿第二方向延伸的条状电极,并且第一方向与第二方向垂直。
根据一些实施例,所述触控传感器还包括介电层,并且第一触控电极和第二触控电极通过介电层相互绝缘,第一触控电极为沿第一方向延伸的条状电极,第二触控电极包括在条状电极之间矩阵排布的块状电极,以及在第二方向上电连接相邻的块状电极的搭接引线,第一方向与第二方向垂直,并且第一触控电极与块状电极位于同一层中,搭接引线位于与第一触控电极和块状电极不同的层中。
根据一些实施例,第一触控电极的背离衬底基板的上表面的沿所述第一方向的边具有向内凹陷、向外凸起或锯齿的形状,和/或,第二触控电极的背离衬底基板的上表面的沿所述第二方向的边具有向内凹陷、向外凸起或锯齿的形状。
根据一些实施例,第一触控电极的背离衬底基板的上表面的沿所述第一方向的边具有向内凹陷、向外凸起或锯齿的形状,和/或,块状电极的背离衬底基板的上表面的沿所述第二方向的边具有向内凹陷、向外凸起或锯齿的形状。
根据一些实施例,OLED阵列基板还包括位于所述平坦化层背离所述晶体管一侧的像素界定层。所述触控传感器位于所述像素界定层与所述平坦化层之间,并且所述触控传感器在所述衬底基板上的正投影与所述像素界定层在所述衬底基板上的正投影重叠。
根据一些实施例,OLED阵列基板还包括位于所述平坦化层背离所述晶体管一侧的阳极。第一触控电极或第二触控电极与阳极同层且同材料。
根据一些实施例,OLED阵列基板还包括位于所述平坦化层背离所述晶体管一侧的阳极。所述第一触控电极和所述第二触控电极与所述阳极同层且同材料。
根据一些实施例,OLED阵列基板还包括位于所述平坦化层背离所述晶体管一侧的阳极。所述搭桥引线与所述阳极同层且同材料。
根据一些实施例,OLED阵列基板还包括位于所述平坦化层背离所述晶体管一侧的像素界定层,所述像素界定层包括第一方向延伸的第一部分和沿第二方向延伸的第二部分,并且所述第一部分和所述第二部分围设多个开口。所述触控传感器位于所述像素界定层与所述平坦化层之间,所述第一触控电极在衬底基板上的正投影与所述第一部分在衬底基板上的正投影重叠,所述第二触控电极在衬底基板上的正投影与所述第二部分在衬底基板上的正投影重叠,并且第一方向与第二方向垂直。
根据一些实施例,OLED阵列基板还包括位于所述平坦化层背离所述晶体管一侧的像素界定层,所述像素界定层包括沿第一方向延伸的第一部分和沿第二方向延伸的第二部分,并且所述第一部分和所述第二部分围设多个开口。所述触控传感器位于所述像素界定层与所述平坦化层之间,所述搭桥引线在衬底基板上的正投影与所述第二部分在衬底基板上的正投影重叠,并且第一方向与第二方向垂直。
根据本公开的另一方面,提供一种触控显示装置,包括上述任一种OLED阵列基板。
根据一些实施例,上述触控显示装置还包括封装所述OLED阵列基板的柔性封装层。
根据本公开的又一方面,提供一种OLED阵列基板的制作方法,包括:在衬底基板上,形成晶体管;在形成有所述晶体管的衬底基板上,形成覆盖所述晶体管的平坦化层;在形成有所述平坦化层的衬底基板上,形成相互绝缘的第一触控电极和第二触控电极。所述第一触控电极与所述第二触控电极构成触控传感器。
根据一些实施例,所述形成相互绝缘的第一触控电极和第二触控电极包括:在形成有所述平坦化层的衬底基板上,沉积第一导电材料层,并通过一次构图工艺形成阳极以及条状的第一触控电极;在形成有所述第一触控电极的衬底基板上,形成介电层;在形成有所述介电层的衬底基板上,沉积第二导电材料层,并通过构图工艺形成与所述第一触控电极交叉设置且为条状的第二触控电极。
根据一些实施例,所述形成相互绝缘的第一触控电极和第二触控 电极包括:在形成有所述平坦化层的衬底基板上,沉积第一导电材料层,并通过构图工艺形成条状的第一触控电极;在形成有所述第一触控电极的衬底基板上,形成介电层;在形成有所述介电层的衬底基板上,沉积第二导电材料层,并通过一次构图工艺形成阳极以及与所述第一触控电极交叉设置且为条状的第二触控电极。
根据一些实施例,所述形成相互绝缘的第一触控电极和第二触控电极包括:在形成有所述平坦化层的衬底基板上,沉积第一导电材料层,并通过一次构图工艺形成条状的第一触控电极、在条状的第一触控电极之间矩阵排布的块状电极以及阳极,其中,所述第一触控电极沿第一方向延伸;在形成有所述第一触控电极、块状电极以及阳极的衬底基板上,形成介电层,并在所述介电层对应所述块状电极的位置形成过孔;在形成有所述介电层的衬底基板上,沉积第二导电材料层,并通过构图工艺形成搭桥引线,所述搭接引线通过所述过孔沿第二方向电连接所述块状电极,其中第一方向与第二方向垂直,并且所述搭接引线和块状电极构成第二触控电极。
根据一些实施例,所述形成相互绝缘的第一触控电极和第二触控电极包括:在形成有所述平坦化层的衬底基板上,沉积第一导电材料层,并通过一次构图工艺形成条状的第一触控电极以及在条状的第一触控电极之间矩阵排布的块状电极,其中,所述第一触控电极沿第一方向延伸;在形成有所述第一触控电极和所述块状电极的衬底基板上,形成介电层,并在所述介电层对应所述块状电极的位置形成过孔;在形成有所述介电层的衬底基板上,沉积第二导电材料层,并一次通过构图工艺形成搭桥引线以及阳极,其中,所述搭接引线通过所述过孔沿第二方向电连接所述块状电极,其中第一方向与第二方向垂直,并且所述搭接引线和块状电极构成第二触控电极。
根据一些实施例,在所述形成相互绝缘的第一触控电极和第二触控电极之后,所述方法还包括:在形成有所述触控传感器的衬底基板上,形成像素界定层。所述触控传感器在所述衬底基板上的正投影与所述像素界定层在所述衬底基板上的正投影重叠。
本公开提供一种OLED阵列基板及其制作方法、触控显示装置。该OLED阵列基板包括衬底基板、位于衬底基板上的晶体管,以及覆盖晶体管的平坦化层。OLED阵列基板还包括集成在OLED阵列基板 中的触控传感器。触控传感器位于平坦化层背离晶体管一侧,并且包括相互绝缘的第一触控电极和第二触控电极。在本公开实施例提供的OLED阵列基板中,将触控传感器制作于OLED阵列基板的平坦化层背离晶体管的一侧,即通过In-Cell工艺将触控传感器集成于OLED阵列基板上,从而提供触控AMOLED。以此方式,当该触控AMOLED为柔性显示装置时,上述触控集成工艺也不会受到该触控AMOLED的薄膜封装工艺的影响,从而提高了柔性AMOLED的适用范围。
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示意性地图示本公开实施例提供的一种OLED阵列基板的截面视图;
图2示意性地图示图1中第一触控电极与第二触控电极的一种排布方式的顶视图;
图3示意性地图示图1中第一触控电极与第二触控电极的另一种排布方式的顶视图;
图4a为图3中第一触控电极的侧面形状的一种示意图;
图4b为图3中第一触控电极的侧面形状的另一种示意图;
图4c为图3中第一触控电极的侧面形状的又一种示意图;
图5示意性地图示本公开实施例提供的设置有像素界定层的OLED阵列基板的截面视图;
图6示意性地图示本公开实施例提供的显示装置的显示区域与非显示区域的顶视图;
图7a示意性地图示其中采用图2所示排布方式的触控传感器与像素界定层位置相对应的顶视图;
图7b在顶视图中示意性地图示图7a中第一触控电极与第二触控电极的投影位置分别与像素隔垫物的投影位置的关系;
图8示意性地图示其中采用图2所示排布方式的触控传感器与像素界定层位置相对应的另一顶视图;
图9a示意性地图示其中采用图3所示排布方式的触控传感器与像素界定层位置相对应的顶视图;
图9b在顶视图中示意性地图示图9a中第一触控电极与第二触控电极的投影位置分别与像素隔垫物的投影位置的关系;
图10示意性地图示其中采用图3所示排布方式的触控传感器与像素界定层位置相对应的另一顶视图;
图11为本公开实施例提供的一种触控显示装置的结构示意图;以及
图12为本公开实施例提供的一种OLED阵列基板制作方法流程图。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在附图中,采用以下附图标记:
01-OLED阵列基板;101-衬底基板;102-显示亚像素;103-触控亚像素;11-平坦化层;20-触控传感器;201-第一触控电极;202-第二触控电极;21-介电层;22-搭桥引线;110-阳极;120-有机材料功能层;121-阴极;122-偏光片;123-薄膜封装层;30-像素界定层;3011-第一部分;3012-第二部分;302-开口;A-显示区域;B-非显示区域。
本公开实施例提供一种OLED阵列基板01,如图1所示,包括衬底基板101、位于衬底基板101上的晶体管(例如,薄膜晶体管TFT)以及覆盖该晶体管的平坦化层11。
在此基础上,该OLED阵列基板01还包括集成在OLED阵列基板01中的、位于平坦化层11背离TFT一侧的触控传感器20。该触控传感器20包括相互绝缘的第一触控电极201和第二触控电极202。
需要说明的是,上述相互绝缘的第一触控电极201和第二触控电极202是指,例如,如图1所示,第一触控电极201与第二触控电极202异层设置。触控传感器20还包括设置在该第一触控电极201与第二触控电极202之间的介电层21。该介电层21具有绝缘的作用。构成 该介电层21的材料可以包括,但不限于氧化硅(SiOx)、氮化硅(SiNx)、氧化铝(AlOx)、氮氧化硅(SiOxNy)以及有机绝缘材料,或者上述至少两种材料构成的复合材料。
当第一触控电极201和第二触控电极202异层设置时,第一触控电极201与第二触控电极202可以均为条状,如图2所示,且相互交叉。为了便于布线,可选地,条状的第一触控电极201与第二触控电极202可以相互垂直。也就是说,图2中的第一触控电极201与第二触控电极202采用矩阵式排布。
在如图2所示的矩阵式排布中,第一触控电极201和第二触控电极202的每一个交叉区域确定一个触控单元,其中第一触控电极201确定触控亚像素的纵坐标,并且第二触控电极202确定触控亚像素的横坐标。通过适当地调节第一触控电极201的尺寸、第一触控电极201之间的间距、第二触控电极202的尺寸以及第二触控电极202之间的间距,可以根据需要设置OLED显示装置的触控精度。
替换地,如图3所示,第一触控电极201为沿纵向方向延伸的条状电极,第二触控电极包括在条状电极之间矩阵排布的块状电极2021,以及在横向方向上电连接相邻的块状电极2021的搭接引线22。第一触控电极201与块状电极2021位于同一层中,并且搭接引线22位于与第一触控电极201和块状电极2021不同的层中。触控传感器20还包括介电层。第一触控电极201和第二触控电极202通过介电层相互绝缘。例如,介电层可以是填充第一触控电极201与第二触控电极202之间的间隙的绝缘材料,例如空气、氧化硅(SiOx)、氮化硅(SiNx)、氧化铝(AlOx)、氮氧化硅(SiOxNy)以及有机绝缘材料,或者上述至少两种材料构成的复合材料等。也就是说,在图3中,第一触控电极201与第二触控电极202采用架桥式排布。
在如图3所示的架桥式排布中,第一触控电极201和第二触控电极201的每一个交叉区域限定一个触控单元,其中第一触控电极201对应触控亚像素的纵坐标,并且搭桥引线22对应触控亚像素的横坐标。通过适当地调节第一触控电极201的尺寸、第一触控电极201之间的间距、第二触控电极202的尺寸以及第二触控电极202之间的间距,可以根据需要设置OLED显示装置的触控精度。
本公开对上述条状的第一触控电极201或第二触控电极202的背 离衬底基板的上表面的形状不做限定。例如,在如图2所示的布置中,第一触控电极201的背离衬底基板的上表面的沿纵向方向的边可以具有向内凹陷(如图4A所示)、向外凸起(如图4B所示)或锯齿(如图4C所示)的形状。类似地,第二触控电极202的背离衬底基板的上表面的沿横向方向的边可以具有向内凹陷、向外凸起或锯齿的形状。
替换地,在如图3所示的布置中,第一触控电极201的背离衬底基板的上表面的沿纵向方向的边可以具有向内凹陷、向外凸起或锯齿的形状。类似地,块状电极2021的背离衬底基板的上表面的沿横向方向的边可以具有向内凹陷、向外凸起或锯齿的形状。本公开对上述任意一个曲线的曲率不做限定。本领域技术人员可以根据需要对曲率的大小进行调节。
通过改变第一触控电极和/或第二触控电极的背离衬底基板的上表面的形状,一方面可以降低触控传感器的可视性,从而避免用户看到OLED显示装置上的触控传感器,进而影响显示效果,另一方面还可以使得触控传感器的布置能够适配于OLED阵列基板中的现有可用空间,从而促进触控传感器在OLED阵列基板中的集成。
在此基础上,该OLED阵列基板01具有多个呈矩阵排列的亚像素,每个亚像素内设置有像素电路,并且该像素电路由TFT以及电容构成。该像素电路可以驱动每个亚像素中的发光器件(例如OLED器件)发光。
需要说明的是,TFT可以为非晶硅TFT、低温多晶硅TFT、氧化物TFT、有机物TFT中的任意一种。而且,OLED阵列基板中的所有TFT的类型可以相同,或者OLED阵列基板可以包括至少两种不同类型的TFT。
此外,当上述OLED阵列基板01用于制备柔性AMOLED显示器时,上述衬底基板101由柔性材料(例如柔性透明树脂材料)构成。
进一步地,如图5所示,该OLED阵列基板01还包括位于平坦化层11背离TFT一侧的像素界定层30。该像素界定层30包括沿纵向方向延伸的第一部分3011和沿横向方向延伸的第二部分3012,第一部分3011和第二部分3012围设多个开口302(如图7b所示)。触控传感器20位于像素界定层30与平坦化层11之间。在各个开口302内设置有OLED器件。如图5所示,位于衬底基板101上的TFT用于驱动OLED 器件发光,其中该驱动晶体管的源极或漏极与该OLED器件的阳极110相连接。
如图5所示,OLED器件还包括位于阳极110上的有机材料功能层120。该有机材料功能层120可以包括空穴注入层、空穴传输层、有机发光层、电子传输层、电子注入层等。为了提高有机发光层所发射的光的利用率,可以在TFT上提供平坦化层11,以便为OLED器件的阳极110提供平坦的表面。以此方式,可以对有机发光层向下发出的光进行镜面反射,以减少光从衬底基板101一侧的泄漏,提高光的利用率。
在本公开实施例提供的上述OLED阵列基板01中,将触控传感器20制作于OLED阵列基板01的平坦化层11背离晶体管TFT的一侧,即通过In-Cell工艺将触控传感器20集成于OLED阵列基板01上,从而提供触控AMOLED。以此方式,当该触控AMOLED为柔性显示装置时,上述触控集成工艺也不会受到该触控AMOLED的薄膜封装工艺的影响,从而提高了柔性AMOLED的适用范围。
相应地,本公开实施例提供了一种显示装置,如图6所示,显示装置包括显示区域A以及位于该显示区域A周边的非显示区域B。本公开实施例对触控传感器20的位置不做限定。例如,如图6所示,触控传感器20设置于非显示区域B。
在该显示装置的显示区域A内设置有多个呈矩阵排列的显示亚像素102。该显示装置的触控部件包括多个呈矩阵排列的触控亚像素103,每个触控亚像素103内设置有一个上述触控传感器20。在此情况下,当将各个触控传感器20设置于非显示区域B中时,显示亚像素102与触控亚像素103无交叠区域。
然而,随着触控技术的不断发展,用户在显示区域A内进行触控操作的频率越来越高,因此将触控传感器20设置于显示区域A中成为今后触控显示装置的发展趋势。在此情况下,上述显示亚像素102与触控亚像素103具有一部分交叠区域。本公开对交叠区域的大小不做限定。例如,显示亚像素102与触控亚像素103可以以1∶1进行交叠,即一个触控亚像素103对应一个显示亚像素102。或者,一个触控亚像素103对应多个显示亚像素102。本公开对此不做限定。
基于此,当上述触控传感器20设置于显示区域A时,为了避免对 显示效果造成影响,当OLED阵列基板还包括像素界定层时,可以将触控传感器设置成使得其在衬底基板上的正投影与像素界定层在衬底基板上的正投影的位置重叠,以使得设置于显示区域A中的触控传感器不会对开口内的OLED器件造成遮挡。例如,触控传感器在衬底基板上的正投影可以在像素界定层在衬底基板上的正投影内。
以下举例说明当触控传感器中的第一触控电极和第二触控电极采用不同的排布方式时,触控传感器的位置与像素界定层的位置相对应的具体设置方式。
在示例性实施例中,触控传感器20的第一触控电极201和第二触控电极202采用如图2所示的矩阵式排布,即第一触控电极201和第二触控电极202异层交叉设置,且通过位于第一触控电极201和第二触控电极202之间的介电层21进行绝缘。
在这样的情况下,如图7a所示,第一触控电极201可以与OLED器件的阳极110同层且同材料。也就是说,在制作阳极110的同时,可通过一次构图工艺完成第一触控电极201的制作。相应地,第二触控电极202可以通过对另一层导电材料进行构图工艺来制作。
在这样的情况下,如图7b所示,像素界定层30包括横向延伸的第一部分3011以及纵向延伸的第二部分3012,第一部分3011和第二部分3012围设开口302。第一触控电极201在衬底基板101上的正投影可以与第二部分3012在衬底基板101上的正投影重叠,并且第二触控电极202在衬底基板101上的正投影可以与第一部分3011在衬底基板101上的正投影重叠。当然,第一触控电极201与第二触控电极202的投影位置可以互换。
需要说明的是,如本文所使用的,术语“构图工艺”可指光刻工艺、光刻和刻蚀工艺、打印、喷墨等其他用于形成预定图形的工艺。如本文所使用的,光刻工艺是指包括成膜、曝光、显影等工艺过程的利用光刻胶、掩模板(MASK)、曝光机等形成图形的工艺。可根据本公开中所形成的结构选择相应的构图工艺。特别地,一次构图工艺是指通过一次掩模曝光工艺形成不同的曝光区域,然后对不同的曝光区域进行多次刻蚀、灰化等去除工艺而最终得到预期图案的工艺。
在另一示例实施例中,如图8所示,第二触控电极202可以与OLED器件的阳极110同层且同材料。也就是说,在制作阳极110的同时, 可通过一次构图工艺完成第二触控电极202的制作。相应地,第一触控电极201可以通过对另一层导电材料进行构图工艺来制作。
需要说明的是,对于图8所示的方案而言,第一触控电极201和第二触控电极202在衬底基板101上的投影位置与图7b所示的方案同理,此处不再赘述。
在又一示例实施例中,触控传感器20的第一触控电极201和第二触控电极202采用如图3所示的架桥式排布,即第一触控电极201和块状电极2021同层设置且相互绝缘,并且位于同一行的多个块状电极2021通过搭桥引线22电连接。
在这样的情况下,如图9a所示,触控传感器20的第一触控电极201和块状电极2021可以均与OLED器件的阳极110同层同材料。在此情况下,在制作阳极110的同时,可以通过一次构图工艺同时制作第一触控电极201和块状电极2021。此外,搭接引线22可以对另一层导电材料进行构图工艺来制作。
基于此,图9a中的第一触控电极201和第二触控电极202采用图3所示的架桥式排布。在这样的情况下,如图9b所示,像素界定层30包括横向延伸的第一部分3011以及纵向延伸的第二部分3012,第一部分3011和第二部分3012围设开口302。条状的第一触控电极201在衬底基板101上的正投影可以与第二部分3012在衬底基板101上的正投影重叠。块状电极2021位于条状的第一触控电极201两侧。搭桥引线22在衬底基板101上的正投影可以与第一部分3011在衬底基板101上的正投影重叠。例如,搭桥引线22在衬底基板101上的正投影可以在第一部分3011在衬底基板101上的正投影内。
在另外的示例实施例中,如图10所示,搭桥引线22与OLED器件的阳极110同层同材料。在此情况下,在制作阳极110的同时,可以通过一次构图工艺制作搭接引线22。此外,第一触控电极201和块状电极2021可以通过对另一层导电材料进行构图工艺来制作。
需要说明的是,对于图8所示的方案而言,第一触控电极201和块状电极2021在衬底基板10上的投影位置与图9b所示的方案同理,此处不再赘述。
在以上示例实施例中,导电材料包括但不限于金属钼(Mo)、金属铝(Al)、金属铜(Cu)、金属银(Ag)、金属钛(Ti)、氧化铟 锡(In-Sn-O,ITO)、氧化铟锌(In-Zn-O,IZO)、铝掺杂氧化锌(Al-Zn-O,AZO)、石墨烯、碳纳米管等,或者为上述至少两种材料构成的复合材料。
在以上示例实施例中,触控传感器20在衬底基板101上的正投影与像素界定层30在衬底基板101上的正投影重叠,并且触控传感器20位于像素界定层30与平坦化层11之间。在此情况下,在像素界定层30的开口302内制作如图5所示的包括阳极110和有机材料功能层120的OLED器件时,已经完成了触控传感器20的制备。以此方式,触控传感器20的制作不会对OLED器件的有机发光层的制作造成影响。
本公开实施例还提供一种触控显示装置,包括如上述所述的任意一种OLED阵列基板。该触控显示装置具有与前述实施例提供的OLED阵列基板相同的有益效果,此处不再赘述。
特别地,如图11所示,触控显示装置还可以包括位于开口302内的有机材料功能层120、位于像素界定层30上的阴极121、位于阴极121上的偏光片122以及位于偏光片122上的薄膜封装层或封装盖板123。
在另外的方面中,本公开实施例提供一种OLED阵列基板的制作方法。
如图12所示,在步骤S101中,在衬底基板上,形成TFT。
在步骤S102中,在形成有TFT的衬底基板上,形成覆盖TFT的平坦化层。
需要说明的是,为了使得TFT的源极或漏极能够与OLED器件的阳极相连接,需要在平坦化层11中设置过孔,使得阳极能够通过过孔与TFT的源极或漏极相连接。
在步骤S103中,在形成有平坦化层的衬底基板上,形成相互绝缘的第一触控电极和第二触控电极。第一触控电极与第二触控电极构成触控传感器。
上述OLED阵列基板的制作方法具有与前述实施例提供的OLED阵列基板相同的有益效果,此处不再赘述。
在此基础上,为了避免触控传感器的制备过程对OLED器件的有机发光层的制备造成影响,可选地,上述步骤S103之后,该OLED阵列基板的制作方法还可以包括,在形成有触控传感器的衬底基板上, 形成像素界定层30。以此方式,当触控传感器制作完成后,在开口内制作OLED器件的有机材料功能层。
基于此,当触控传感器设置于显示装置的显示区域中时,为了避免对显示效果造成影响,可选地,如图7a至图10所示,可以使触控传感器在衬底基板上的正投影与像素界定层在衬底基板上的正投影重叠。
以下对步骤S103进行详细的举例说明。
在一个示例实施例中,第一触控电极201和第二触控电极202采用如图2所示的矩阵式排布,即第一触控电极201和第二触控电极202异层交叉设置,且通过位于第一触控电极201和第二触控电极202之间的介电层21进行绝缘。在这样的情况下,步骤S103可以包括,首先,在形成有平坦化层11的衬底基板101上,沉积第一导电材料层,并通过一次构图工艺形成如图7a所示的阳极110以及条状的第一触控电极201。
需要说明的是,构成上述导电材料层的导电材料同上所述,此处不再赘述。当上述第一导电材料层主要由金属材料构成时,可以采用光刻工艺,包括涂覆光刻胶、曝光、显影、刻蚀,以得到阳极110以及条状的第一触控电极201的图案。当上述第一导电材料层主要由纳米银、石墨烯、碳纳米管等构成时,可以使用喷墨打印、丝网印刷等技术采用纳米银浆、石墨烯溶液、碳纳米管溶液等液态导电溶液制备阳极110以及条状的第一触控电极201的图案,然后进行紫外固化和/或热学固化。
接着,步骤S103还包括,在形成有第一触控电极201的衬底基板101上,形成介电层21。
需要说明的是,构成该介电层21的材料同上所述,此处不再赘述。具体的,当构成该介电层21的材料包括氧化硅(SiOx)、氮化硅(SiNx)、氧化铝(AlOx)、氮氧化硅(SiOxNy)中的至少一种时,可以采用包括涂覆光刻胶、曝光、显影、刻蚀的光刻工艺来形成介电层21的图案。当构成介电层21的材料包括有机绝缘材料时,可以使用喷墨打印、丝网印刷等技术采用有机绝缘材料溶液制备介电层21的图案,然后进行紫外固化和/或热学固化。
接着,步骤103还包括,在形成有介电层21的衬底基板101上, 沉积第二导电材料层,并通过构图工艺形成与第一触控电极201交叉设置且为条状的第二触控电极202。
需要说明的是,构成第一导电材料层与第二导电材料层的材料可以相同,也可以不同,本公开对此不做限定。
在替换的实施例中,步骤S103可以包括首先,在形成有平坦化层11的衬底基板101上,沉积第一导电材料层,并通过构图工艺形成如图8所示的条状的第一触控电极201。
接着,步骤S103包括,在形成有第一触控电极201的衬底基板101上,通过构图工艺形成介电层21。
接着,步骤S103还包括,在形成有介电层21的衬底基板101上,沉积第二导电材料层,并通过一次构图工艺形成阳极110以及与第一触控电极201交叉设置且为条状的第二触控电极202。
在另一示例实施例中,第一触控电极201和第二触控电极202采用如图3所示的架桥式排布,即第一触控电极201和块状电极2021同层设置且相互绝缘,且位于同一行的多个块状电极2021通过搭桥引线22电连接。在这样的情况下,步骤S103可以包括,首先,在形成有平坦化层11的衬底基板101上,沉积第一导电材料层,并通过一次构图工艺形成如图9a所示的条状的第一触控电极201、在条状的第一触控电极201之间矩阵排布的块状电极2021以及阳极110,其中第一触控电极201沿纵向方向延伸。
接着,步骤S103还包括,如图9a所示,在形成有第一触控电极201和块状电极2021的衬底基板上,形成介电层21,并在介电层21对应块状电极2021的位置形成过孔。
接着,步骤S103还包括,在形成有介电层21的衬底基板101上,沉积第二导电材料层,并通过构图工艺形成搭桥引线22。如图3所示,该搭接引线22通过过孔沿横向方向电连接块状电极2021,并搭接引线22和块状电极2021构成第二触控电极。
在替换的示例实施例中,步骤S103可以包括,首先,在形成有平坦化层11的衬底基板上,沉积第一导电材料层,并通过一次构图工艺形成如图10所示的条状的第一触控电极201以及在条状的第一触控电极201之间矩阵排布的块状电极2021。第一触控电极201沿纵向方向延伸。
接着,步骤S103包括,如图10所示,在形成有第一触控电极201和块状电极2021的衬底基板101上,形成介电层21,并在介电层21对应块状电极202的位置形成过孔。
接着,步骤S103还包括,在形成有介电层21的衬底基板上,沉积第二导电材料层,并一次通过构图工艺形成搭桥引线22以及阳极110。如图3所示,搭接引线22通过过孔沿横向方向电连接块状电极2021,并且搭接引线22和块状电极2021构成第二触控电极。
在此基础上,通过上述方案分别完成如图7a至图10中所示的任意一种OLED阵列基板后,可以在形成有像素界定层30的衬底基板101上,依次制作位于开口302内的如图11所示的有机材料功能层120、OLED器件的阴极121、偏光片122、薄膜封装层或封装盖板123,从而完成触控显示装置的制备。
特别地,上述触控显示装置还可以包括位于像素界定层30背离衬底基板101一侧的间隙控制层,所述间隙控制层起到支撑作用,以使得触控显示装置的显示侧表面平齐。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。
Claims (20)
- 一种OLED阵列基板,包括:衬底基板;位于所述衬底基板上的平坦化层;以及集成在所述OLED阵列基板中的触控传感器,所述触控传感器位于所述平坦化层背离所述衬底基板一侧,并且包括相互绝缘的第一触控电极和第二触控电极。
- 根据权利要求1所述的OLED阵列基板,其中,第一触控电极和第二触控电极位于不同层中,所述触控传感器还包括位于第一触控电极与第二触控电极之间的介电层,并且第一触控电极和第二触控电极通过介电层相互绝缘。
- 根据权利要求2所述的OLED阵列基板,其中,第一触控电极为沿第一方向延伸的条状电极,第二触控电极为沿第二方向延伸的条状电极,并且第一方向与第二方向垂直。
- 根据权利要求1所述的OLED阵列基板,其中,所述触控传感器还包括介电层,并且第一触控电极和第二触控电极通过介电层相互绝缘,第一触控电极为沿第一方向延伸的条状电极,第二触控电极包括在条状电极之间矩阵排布的块状电极,以及在第二方向上电连接相邻的块状电极的搭接引线,第一方向与第二方向垂直,并且第一触控电极与块状电极位于同一层中,搭接引线位于与第一触控电极和块状电极不同的层中。
- 根据权利要求3所述的OLED阵列基板,其中,第一触控电极的背离衬底基板的上表面的沿所述第一方向的边具有向内凹陷、向外凸起或锯齿的形状,和/或,第二触控电极的背离衬底基板的上表面的沿所述第二方向的边具有向内凹陷、向外凸起或锯齿的形状。
- 根据权利要求4所述的OLED阵列基板,其中,第一触控电极的背离衬底基板的上表面的沿所述第一方向的边具有向内凹陷、向外凸起或锯齿的形状,和/或,块状电极的背离衬底基板的上表面的沿所述第二方向的边具有向内凹陷、向外凸起或锯齿的形状。
- 根据权利要求1所述的OLED阵列基板,还包括位于所述平坦化层背离所述晶体管一侧的像素界定层,其中,所述触控传感器位于所述像素界定层与所述平坦化层之间,并且所述触控传感器在所述衬底基板上的正投影与所述像素界定层在所述衬底基板上的正投影重叠。
- 根据权利要求2或3所述的OLED阵列基板,还包括位于所述平坦化层背离所述晶体管一侧的阳极,其中,所述第一触控电极或所述第二触控电极与所述阳极同层且同材料。
- 根据权利要求4所述的OLED阵列基板,还包括位于所述平坦化层背离所述晶体管一侧的阳极,其中,所述第一触控电极和所述第二触控电极与所述阳极同层且同材料。
- 根据权利要求4所述的OLED阵列基板,还包括位于所述平坦化层背离所述晶体管一侧的阳极,其中,所述搭桥引线与所述阳极同层且同材料。
- 根据权利要求8所述的OLED阵列基板,还包括位于所述平坦化层背离所述晶体管一侧的像素界定层,所述像素界定层包括沿第一方向延伸的第一部分和沿第二方向延伸的第二部分,所述第一部分和所述第二部分围设多个开口,其中,所述触控传感器位于所述像素界定层与所述平坦化层之间,所述第一触控电极在衬底基板上的正投影与所述第一部分在衬底基板上的正投影重叠,所述第二触控电极在衬底基板上的正投影与所述第二部分在衬底基板上的正投影重叠,并且第一方向与第二方向垂直。
- 根据权利要求9所述的OLED阵列基板,还包括位于所述平坦化层背离所述晶体管一侧的像素界定层,所述像素界定层包括沿第一方向延伸的第一部分和沿第二方向延伸的第二部分,所述第一部分和所述第二部分围设多个开口,其中,所述触控传感器位于所述像素界定层与所述平坦化层之间,所述搭桥引线在衬底基板上的正投影与所述第二部分在衬底基板上的正投影重叠,并且第一方向与第二方向垂直。
- 一种触控显示装置,包括如权利要求1-12任一项所述的OLED阵列基板。
- 根据权利要求13所述的触控显示装置,还包括封装所述OLED阵列基板的柔性封装层。
- 一种OLED阵列基板的制作方法,包括:在衬底基板上,形成晶体管;在形成有所述晶体管的衬底基板上,形成覆盖所述晶体管的平坦化层;在形成有所述平坦化层的衬底基板上,形成相互绝缘的第一触控电极和第二触控电极,其中,所述第一触控电极与所述第二触控电极构成触控传感器。
- 根据权利要求15所述的OLED阵列基板的制作方法,其中,所述形成相互绝缘的第一触控电极和第二触控电极包括:在形成有所述平坦化层的衬底基板上,沉积第一导电材料层,并通过一次构图工艺形成阳极以及条状的第一触控电极;在形成有所述第一触控电极的衬底基板上,形成介电层;在形成有所述介电层的衬底基板上,沉积第二导电材料层,并通过构图工艺形成与所述第一触控电极交叉设置且为条状的第二触控电极。
- 根据权利要求15所述的OLED阵列基板的制作方法,其中,所述形成相互绝缘的第一触控电极和第二触控电极包括:在形成有所述平坦化层的衬底基板上,沉积第一导电材料层,并通过构图工艺形成条状的第一触控电极;在形成有所述第一触控电极的衬底基板上,形成介电层;在形成有所述介电层的衬底基板上,沉积第二导电材料层,并通过一次构图工艺形成阳极以及与所述第一触控电极交叉设置且为条状的第二触控电极。
- 根据权利要求15所述的OLED阵列基板的制作方法,其中,所述形成相互绝缘的第一触控电极和第二触控电极包括:在形成有所述平坦化层的衬底基板上,沉积第一导电材料层,并通过一次构图工艺形成条状的第一触控电极、在条状的第一触控电极之间矩阵排布的块状电极以及阳极,其中,所述第一触控电极沿第一方向延伸;在形成有所述第一触控电极、块状电极以及阳极的衬底基板上,形成介电层,并在所述介电层对应所述块状电极的位置形成过孔;在形成有所述介电层的衬底基板上,沉积第二导电材料层,并通过构图工艺形成搭桥引线,所述搭接引线通过所述过孔沿第二方向电连接所述块状电极,其中第一方向与第二方向垂直,并且所述搭接引线和块状电极构成第二触控电极。
- 根据权利要求15所述的OLED阵列基板的制作方法,其中,所述形成相互绝缘的第一触控电极和第二触控电极包括:在形成有所述平坦化层的衬底基板上,沉积第一导电材料层,并通过一次构图工艺形成条状的第一触控电极以及在条状的第一触控电极之间矩阵排布的块状电极,其中,所述第一触控电极沿第一方向延伸;在形成有所述第一触控电极和所述块状电极的衬底基板上,形成介电层,并在所述介电层对应所述块状电极的位置形成过孔;在形成有所述介电层的衬底基板上,沉积第二导电材料层,并一次通过构图工艺形成搭桥引线以及阳极,其中,所述搭接引线通过所述过孔沿第二方向电连接所述块状电极,其中第一方向与第二方向垂直,并且所述搭接引线和块状电极构成第二触控电极。
- 根据权利要求15-19任一项所述的OLED阵列基板的制作方法,其中,在所述形成相互绝缘的第一触控电极和第二触控电极之后,所述方法还包括:在形成有所述触控传感器的衬底基板上,形成像素界定层,其中,所述触控传感器在所述衬底基板上的正投影与所述像素界定层在所述衬底基板上的正投影重叠。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/069,793 US11563061B2 (en) | 2017-05-12 | 2018-01-05 | OLED array substrate, manufacturing method thereof and touch display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710342458.9 | 2017-05-12 | ||
CN201710342458.9A CN107092399B (zh) | 2017-05-12 | 2017-05-12 | 一种oled阵列基板及其制作方法、触控显示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018205661A1 true WO2018205661A1 (zh) | 2018-11-15 |
Family
ID=59638641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/071530 WO2018205661A1 (zh) | 2017-05-12 | 2018-01-05 | 一种oled阵列基板及其制作方法、触控显示装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11563061B2 (zh) |
CN (1) | CN107092399B (zh) |
WO (1) | WO2018205661A1 (zh) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107092399B (zh) * | 2017-05-12 | 2019-09-13 | 京东方科技集团股份有限公司 | 一种oled阵列基板及其制作方法、触控显示装置 |
CN107579104B (zh) * | 2017-08-31 | 2020-05-05 | 京东方科技集团股份有限公司 | 一种具有指纹识别的柔性显示面板及制造方法 |
CN108364988A (zh) * | 2018-02-27 | 2018-08-03 | 京东方科技集团股份有限公司 | 触控显示基板及其制作方法、显示装置 |
CN108376686B (zh) * | 2018-02-27 | 2021-02-09 | 京东方科技集团股份有限公司 | 阵列基板及其制造方法、显示装置 |
CN108962969B (zh) * | 2018-08-30 | 2023-11-28 | 武汉华星光电技术有限公司 | 显示面板及电子装置 |
CN109346507B (zh) * | 2018-11-09 | 2021-01-22 | 京东方科技集团股份有限公司 | Oled触控显示基板、制作方法、驱动方法及显示装置 |
CN109739395B (zh) * | 2019-01-02 | 2022-11-01 | 京东方科技集团股份有限公司 | 触控显示面板及其制造方法、触控显示装置 |
CN109947303B (zh) * | 2019-01-29 | 2023-03-21 | 广州国显科技有限公司 | 显示面板及其制备方法、显示装置 |
CN111627886B (zh) * | 2019-02-27 | 2022-03-11 | 昆山工研院新型平板显示技术中心有限公司 | 显示面板、显示装置及显示面板的制造方法 |
CN110007810B (zh) * | 2019-03-21 | 2023-03-21 | 武汉华星光电半导体显示技术有限公司 | 一种触摸屏、显示模组及电子装置 |
US11068114B2 (en) | 2019-05-27 | 2021-07-20 | Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Display panel, manufacturing method thereof, and display device |
CN110085651B (zh) * | 2019-05-27 | 2021-09-03 | 武汉华星光电半导体显示技术有限公司 | 显示面板及其制备方法、显示装置 |
CN110246877B (zh) * | 2019-06-10 | 2021-08-06 | 武汉华星光电半导体显示技术有限公司 | 柔性触控显示屏及其显示装置 |
CN110658949B (zh) * | 2019-08-29 | 2021-08-24 | 武汉华星光电半导体显示技术有限公司 | 一种触控显示面板及其制备方法和触控显示装置 |
KR20210052729A (ko) | 2019-10-30 | 2021-05-11 | 삼성디스플레이 주식회사 | 디스플레이 장치 및 그 제조방법 |
CN111584561B (zh) * | 2020-05-08 | 2023-03-24 | 武汉华星光电半导体显示技术有限公司 | 一种触控屏及电子装置 |
CN111987242A (zh) * | 2020-08-05 | 2020-11-24 | Tcl华星光电技术有限公司 | Oled面板的制作方法及显示装置 |
CN112882606B (zh) * | 2021-03-04 | 2022-12-27 | 业成科技(成都)有限公司 | 触控面板 |
KR20230020045A (ko) * | 2021-08-02 | 2023-02-10 | 삼성디스플레이 주식회사 | 터치 감지부 및 이를 포함하는 표시 장치 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103984442A (zh) * | 2014-05-27 | 2014-08-13 | 上海和辉光电有限公司 | 内嵌式有源矩阵有机发光二极管触控面板 |
US20150041778A1 (en) * | 2013-08-08 | 2015-02-12 | Innolux Corporation | Array substrate and display panel using the same |
CN105446554A (zh) * | 2014-05-27 | 2016-03-30 | 上海和辉光电有限公司 | 有机电激发光装置 |
CN106033765A (zh) * | 2015-03-17 | 2016-10-19 | 上海和辉光电有限公司 | 有机发光二极管触控显示面板 |
CN106158909A (zh) * | 2015-04-28 | 2016-11-23 | 上海和辉光电有限公司 | 一种显示器件结构及其制备方法 |
CN106654067A (zh) * | 2017-01-11 | 2017-05-10 | 京东方科技集团股份有限公司 | 触控基板及其制备方法、显示装置 |
CN107092399A (zh) * | 2017-05-12 | 2017-08-25 | 京东方科技集团股份有限公司 | 一种oled阵列基板及其制作方法、触控显示装置 |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101357586B1 (ko) * | 2012-01-18 | 2014-02-05 | 엘지이노텍 주식회사 | 터치 패널 |
CN103576959A (zh) * | 2012-08-01 | 2014-02-12 | 宸鸿科技(厦门)有限公司 | 触控面板模组及其制造方法 |
KR101932126B1 (ko) * | 2012-09-24 | 2018-12-24 | 엘지디스플레이 주식회사 | 터치 타입 유기발광다이오드 표시장치 |
US9336723B2 (en) | 2013-02-13 | 2016-05-10 | Apple Inc. | In-cell touch for LED |
CN103186306A (zh) * | 2013-03-26 | 2013-07-03 | 北京京东方光电科技有限公司 | 电容式触摸屏及显示装置 |
CN103325341B (zh) | 2013-06-26 | 2015-07-01 | 京东方科技集团股份有限公司 | 一种amoled像素电路及其驱动方法、显示装置 |
CN104346010B (zh) * | 2013-08-08 | 2017-08-08 | 群创光电股份有限公司 | 阵列基板及应用其的显示面板 |
CN203689474U (zh) | 2013-12-09 | 2014-07-02 | 昆山工研院新型平板显示技术中心有限公司 | 一种有源矩阵有机发光显示屏的触控结构 |
CN104166475A (zh) | 2014-06-27 | 2014-11-26 | 京东方科技集团股份有限公司 | 一种柔性触摸基板及触摸显示器件 |
KR102337889B1 (ko) * | 2015-02-16 | 2021-12-10 | 삼성디스플레이 주식회사 | 표시 장치 |
CN104795425A (zh) | 2015-03-30 | 2015-07-22 | 京东方科技集团股份有限公司 | 有机发光二极管触控显示屏及其制作方法 |
CN104793804B (zh) * | 2015-05-12 | 2017-12-15 | 京东方科技集团股份有限公司 | 触控基板、显示设备及其制造方法和驱动方法 |
CN104966790B (zh) | 2015-05-14 | 2018-03-09 | 信利(惠州)智能显示有限公司 | 集成触控amoled显示器件及其制备方法 |
TWI630521B (zh) * | 2016-08-12 | 2018-07-21 | 鴻海精密工業股份有限公司 | 內嵌式觸控顯示裝置 |
CN110326037B (zh) * | 2017-02-23 | 2021-08-03 | 夏普株式会社 | 驱动电路、矩阵基板以及显示装置 |
CN107170780A (zh) * | 2017-05-17 | 2017-09-15 | 京东方科技集团股份有限公司 | Oled显示面板及其制作方法、oled显示装置 |
CN107168581A (zh) * | 2017-05-22 | 2017-09-15 | 京东方科技集团股份有限公司 | Oled触控组件及具有该组件的oled显示装置 |
CN107291295A (zh) * | 2017-06-28 | 2017-10-24 | 武汉华星光电半导体显示技术有限公司 | 一种内嵌式触控oled显示装置 |
CN107153488B (zh) * | 2017-07-18 | 2020-07-14 | 京东方科技集团股份有限公司 | 一种单层触控显示面板及装置 |
CN110741332A (zh) * | 2017-09-26 | 2020-01-31 | 深圳市柔宇科技有限公司 | 柔性触摸屏及柔性显示装置 |
CN107678588B (zh) * | 2017-09-27 | 2021-01-26 | 京东方科技集团股份有限公司 | 触控屏和触控显示装置 |
CN108493217B (zh) * | 2018-03-22 | 2021-08-27 | 京东方科技集团股份有限公司 | 一种显示面板及显示装置 |
CN108415611B (zh) * | 2018-04-17 | 2021-01-08 | 京东方科技集团股份有限公司 | 一种基板、显示面板及触摸电极的控制方法 |
US20200194505A1 (en) * | 2018-12-12 | 2020-06-18 | Wuhan China Star Optoelectronics Technology Co., Ltd. | Organic light emitting diode display |
US20200350268A1 (en) * | 2019-04-30 | 2020-11-05 | Winbond Electronics Corp. | Wire bonding structure and method of manufacturing the same |
CN110471569B (zh) * | 2019-08-16 | 2023-11-28 | 京东方科技集团股份有限公司 | 基板及其制备方法、显示装置 |
CN110515495B (zh) * | 2019-08-30 | 2023-06-27 | 上海中航光电子有限公司 | 触控显示面板、触控显示装置及触控检测方法 |
CN110673763B (zh) * | 2019-09-30 | 2024-01-23 | 京东方科技集团股份有限公司 | 触控面板及触控信号的定位方法 |
EP3859775A1 (en) * | 2020-02-03 | 2021-08-04 | Infineon Technologies AG | Semiconductor arrangement and method for producing the same |
-
2017
- 2017-05-12 CN CN201710342458.9A patent/CN107092399B/zh active Active
-
2018
- 2018-01-05 WO PCT/CN2018/071530 patent/WO2018205661A1/zh active Application Filing
- 2018-01-05 US US16/069,793 patent/US11563061B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150041778A1 (en) * | 2013-08-08 | 2015-02-12 | Innolux Corporation | Array substrate and display panel using the same |
CN103984442A (zh) * | 2014-05-27 | 2014-08-13 | 上海和辉光电有限公司 | 内嵌式有源矩阵有机发光二极管触控面板 |
CN105446554A (zh) * | 2014-05-27 | 2016-03-30 | 上海和辉光电有限公司 | 有机电激发光装置 |
CN106033765A (zh) * | 2015-03-17 | 2016-10-19 | 上海和辉光电有限公司 | 有机发光二极管触控显示面板 |
CN106158909A (zh) * | 2015-04-28 | 2016-11-23 | 上海和辉光电有限公司 | 一种显示器件结构及其制备方法 |
CN106654067A (zh) * | 2017-01-11 | 2017-05-10 | 京东方科技集团股份有限公司 | 触控基板及其制备方法、显示装置 |
CN107092399A (zh) * | 2017-05-12 | 2017-08-25 | 京东方科技集团股份有限公司 | 一种oled阵列基板及其制作方法、触控显示装置 |
Also Published As
Publication number | Publication date |
---|---|
CN107092399A (zh) | 2017-08-25 |
US11563061B2 (en) | 2023-01-24 |
CN107092399B (zh) | 2019-09-13 |
US20210327965A1 (en) | 2021-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018205661A1 (zh) | 一种oled阵列基板及其制作方法、触控显示装置 | |
WO2018205651A1 (zh) | Oled触控显示面板及其制作方法、触控显示装置 | |
WO2020047978A1 (zh) | 显示面板及其制作方法 | |
CN104681629B (zh) | 薄膜晶体管、阵列基板及其各自的制备方法、显示装置 | |
KR101574390B1 (ko) | 유기 발광 다이오드, 터치 디스플레이 장치 및 그의 제조 방법 | |
US20150144902A1 (en) | Organic Light Emitting Diode Display Device | |
WO2017080339A1 (zh) | 阵列基板及其制备方法、显示装置 | |
US11340745B2 (en) | Touch structure and method for manufacturing the same, touch substrate and touch display device | |
KR101456402B1 (ko) | 유기 발광 다이오드 디스플레이 패널 및 그 제조방법 | |
US20240172525A1 (en) | Display substrate and preparation method therefor | |
JP2011258912A (ja) | 有機発光表示装置およびその製造方法 | |
WO2018192217A1 (zh) | 薄膜晶体管及其制备方法、阵列基板及其制备方法、显示面板 | |
WO2015043088A1 (zh) | 触控式有机发光二极管显示装置及其制作方法 | |
KR102331171B1 (ko) | 표시장치 및 그 제조방법 | |
WO2015043269A1 (zh) | Oled像素结构和oled显示装置 | |
JP2021502579A (ja) | 表示パネル及びその製造方法、並びに表示モジュール | |
US20200350388A1 (en) | Display panel, display screen, and display terminal | |
CN110212111B (zh) | 显示基板及制作方法、显示面板、显示装置 | |
US20140091291A1 (en) | Array substrate and manufacturing method thereof, oled display device | |
WO2018205587A1 (zh) | 显示基板及其制作方法、显示装置 | |
WO2020224063A1 (zh) | 显示面板及其制作方法以及显示装置 | |
US20190157355A1 (en) | Touch screen panel and manufacturing method thereof | |
KR102033615B1 (ko) | 유기전계발광표시장치 및 그 제조방법 | |
KR101689886B1 (ko) | 산화물 반도체를 이용한 박막트랜지스터 기판의 제조방법 | |
KR20120043404A (ko) | 표시장치 및 이의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18798080 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14.07.2020) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18798080 Country of ref document: EP Kind code of ref document: A1 |