[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018203455A1 - Liquid treatment system - Google Patents

Liquid treatment system Download PDF

Info

Publication number
WO2018203455A1
WO2018203455A1 PCT/JP2018/014048 JP2018014048W WO2018203455A1 WO 2018203455 A1 WO2018203455 A1 WO 2018203455A1 JP 2018014048 W JP2018014048 W JP 2018014048W WO 2018203455 A1 WO2018203455 A1 WO 2018203455A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic solution
porous carrier
negative electrode
positive electrode
liquid processing
Prior art date
Application number
PCT/JP2018/014048
Other languages
French (fr)
Japanese (ja)
Inventor
雄也 鈴木
邦彦 小野
直毅 吉川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018203455A1 publication Critical patent/WO2018203455A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a liquid processing system. More particularly, the present invention relates to a liquid treatment system using a microbial fuel cell that can purify wastewater and generate electrical energy.
  • a microbial fuel cell is a wastewater treatment apparatus that converts the chemical energy of an organic substance contained in domestic wastewater or factory wastewater into electrical energy and oxidizes and decomposes the organic substance.
  • the microbial fuel cell is characterized by little generation of sludge and low energy consumption.
  • the microbial fuel cell has a negative electrode supporting microorganisms, and a positive electrode in contact with a gas phase containing oxygen and an electrolytic solution. And while supplying the electrolyte solution containing an organic substance etc. to a negative electrode, the gas containing oxygen is supplied to a positive electrode.
  • the negative electrode and the positive electrode are connected to each other through a load circuit to form a closed circuit.
  • hydrogen ions and electrons are generated from the electrolytic solution by the catalytic action of microorganisms. And the produced
  • Patent Document 1 encloses an electrolytic solution in a sealed hollow cassette having a negative electrode immersed in an organic substrate to carry anaerobic microorganisms, an outer shell formed of an ion-permeable diaphragm and an inlet / outlet hole. And a positive electrode for insertion into an organic substrate. And in the said microbial fuel cell, electricity is taken out via the circuit which electrically connects a negative electrode and a positive electrode, supplying oxygen in a cassette via an inlet / outlet.
  • treated water treated by the negative electrode and the positive electrode is discharged to the outside as it is.
  • the treated water contains microorganisms and organic substances that have not been used by the microorganisms, the water quality may be insufficient.
  • the self-digestion of sludge by microorganisms becomes insufficient, and the reduction of sludge becomes difficult to proceed. Therefore, the amount of excess sludge may increase.
  • An object of the present invention is to provide a liquid treatment system that can reduce the content of microorganisms and organic substances in the discharged treated water and improve the quality of the treated water.
  • a liquid processing system includes an electrolytic solution tank that holds an electrolytic solution containing an organic substance and has an inlet and an outlet for the electrolyte.
  • the liquid processing system includes a negative electrode carrying microorganisms and a positive electrode electrically connected to the negative electrode, the negative electrode and the positive electrode being immersed in an electrolyte solution, and a liquid processing unit in which at least a part of the positive electrode is exposed to the gas phase.
  • a liquid processing system is provided in the inside of an electrolyte solution tank, and is provided with the porous support
  • the porous carrier is disposed downstream of the liquid processing unit and upstream of the outlet.
  • FIG. 1 is a schematic perspective view showing an example of a liquid processing system according to an embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line AA in FIG.
  • FIG. 3 is a schematic plan view showing an example of a liquid processing system according to an embodiment of the present invention.
  • FIG. 4 is an exploded perspective view showing a liquid processing unit in the liquid processing system.
  • FIG. 5 is a schematic cross-sectional view showing another example of the liquid processing system according to the embodiment of the present invention.
  • FIG. 6 is a schematic plan view showing another example of the liquid processing system according to the embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view showing another example of the liquid processing system according to the embodiment of the present invention.
  • FIG. 8 is a schematic plan view showing another example of the liquid processing system according to the embodiment of the present invention.
  • the liquid processing system 100 includes a liquid processing unit 1 that includes a positive electrode 10 and a negative electrode 20 that carries microorganisms and is electrically connected to the positive electrode 10. . Further, the liquid processing system 100 includes an electrolytic solution tank 70 that holds an electrolytic solution 60 containing an organic substance therein and is further disposed so that the liquid processing unit 1 is immersed in the electrolytic solution 60.
  • the liquid processing unit 1 includes an electrode assembly 40 including a positive electrode 10, a negative electrode 20, and an ion transfer layer 30.
  • the negative electrode 20 is disposed so as to contact one surface 30 a of the ion moving layer 30, and the positive electrode 10 is disposed so as to contact the surface 30 b opposite to the surface 30 a of the ion moving layer 30.
  • the gas diffusion layer 12 of the positive electrode 10 is in contact with the ion migration layer 30 and the water repellent layer 11 is exposed to the gas phase 2 side.
  • the electrode assembly 40 is laminated
  • the cassette base material 50 is a U-shaped frame member along the outer peripheral portion of the surface 10 a of the positive electrode 10, and the upper part is open. That is, the cassette base material 50 is a frame member in which the bottom surfaces of the two first columnar members 51 are connected by the second columnar member 52. As shown in FIG. 2, the side surface 53 of the cassette base material 50 is joined to the outer peripheral portion of the surface 10 a of the positive electrode 10.
  • the liquid processing unit 1 formed by laminating two sets of electrode assemblies 40 and the cassette base material 50 includes an electrolyte bath 70 so that a gas phase 2 communicating with the atmosphere is formed. Arranged inside.
  • An electrolytic solution 60 that is water to be treated is held inside the electrolytic solution tank 70, and the gas diffusion layer 12, the negative electrode 20, and the ion moving layer 30 of the positive electrode 10 are immersed in the electrolytic solution 60.
  • the positive electrode 10 includes a water-repellent layer 11 having water repellency. Therefore, the electrolytic solution 60 held inside the electrolytic solution tank 70 is separated from the inside of the cassette base material 50, and the internal space formed by the electrode assembly 40 and the cassette base material 50 is in the gas phase 2. .
  • the liquid processing system 100 is configured such that the gas phase 2 is opened to the outside air or air is supplied to the gas phase 2 from the outside by, for example, a pump. As shown in FIG. 2, the positive electrode 10 and the negative electrode 20 are electrically connected to an external circuit 80, respectively.
  • the positive electrode 10 As shown in FIG. 2, the positive electrode 10 according to the present embodiment includes a gas diffusion electrode including a water-repellent layer 11 and a gas diffusion layer 12 stacked to be in contact with the water-repellent layer 11.
  • a gas diffusion electrode including a water-repellent layer 11 and a gas diffusion layer 12 stacked to be in contact with the water-repellent layer 11.
  • the water repellent layer 11 in the positive electrode 10 is a layer having both water repellency and oxygen permeability.
  • the water repellent layer 11 is configured to allow oxygen to move from the gas phase 2 toward the liquid phase while favorably separating the gas phase 2 and the liquid phase in the electrochemical system in the liquid processing unit 1. That is, the water repellent layer 11 can suppress the movement of the electrolytic solution 60 to the gas phase 2 side while allowing oxygen in the gas phase 2 to permeate and move to the gas diffusion layer 12.
  • “separation” here means physical interruption
  • the water repellent layer 11 is in contact with the gas phase 2 containing oxygen, and diffuses oxygen in the gas phase 2.
  • the water repellent layer 11 supplies oxygen to the gas diffusion layer 12 substantially uniformly. Therefore, the water repellent layer 11 is preferably a porous body so that the oxygen can be diffused.
  • the water repellent layer 11 has water repellency, it can suppress that the pores of a porous body are obstruct
  • the electrolytic solution 60 hardly penetrates into the water repellent layer 11, oxygen can be efficiently circulated from the surface in contact with the gas phase 2 to the surface facing the gas diffusion layer 12 in the water repellent layer 11. It becomes.
  • the water repellent layer 11 is preferably formed in a sheet shape from a woven fabric or a non-woven fabric.
  • the material constituting the water repellent layer 11 is not particularly limited as long as it has water repellency and can diffuse oxygen in the gas phase 2.
  • Examples of the material constituting the water repellent layer 11 include polyethylene, polypropylene, polybutadiene, nylon, polytetrafluoroethylene (PTFE), ethyl cellulose, poly-4-methylpentene-1, butyl rubber, and polydimethylsiloxane (PDMS). At least one selected from the group can be used. Since these materials are easy to form a porous body and also have high water repellency, they can suppress clogging of pores and improve gas diffusibility.
  • the water repellent layer 11 preferably has a plurality of through holes in the stacking direction X of the water repellent layer 11 and the gas diffusion layer 12.
  • the water repellent layer 11 may be subjected to a water repellent treatment using a water repellent as necessary in order to enhance water repellency.
  • a water repellent such as polytetrafluoroethylene may be attached to the porous body constituting the water repellent layer 11 to improve water repellency.
  • the gas diffusion layer 12 in the positive electrode 10 preferably includes a porous conductive material and a catalyst supported on the conductive material.
  • the gas diffusion layer 12 may be composed of a porous and conductive catalyst.
  • the gas diffusion layer 12 is preferably a porous body having a large number of pores through which oxygen passes from the surface facing the water repellent layer 11 to the opposite surface.
  • the shape of the gas diffusion layer 12 is particularly preferably a three-dimensional mesh. Such a mesh shape makes it possible to impart high oxygen permeability and conductivity to the gas diffusion layer 12.
  • the water repellent layer 11 is preferably bonded to the gas diffusion layer 12 via an adhesive in order to efficiently supply oxygen to the gas diffusion layer 12.
  • the adhesive is preferably provided on at least a part between the water-repellent layer 11 and the gas diffusion layer 12 from the viewpoint of ensuring the adhesion between the water-repellent layer 11 and the gas diffusion layer 12.
  • the adhesive is used as the water repellent layer 11 and the gas diffusion layer. It is more preferable that it is provided on the entire surface between the two.
  • the adhesive preferably has oxygen permeability, and includes at least one selected from the group consisting of polymethyl methacrylate, methacrylic acid-styrene copolymer, styrene-butadiene rubber, butyl rubber, nitrile rubber, chloroprene rubber, and silicone. Resin can be used.
  • the gas diffusion layer 12 of the positive electrode 10 in the present embodiment will be described in more detail.
  • the gas diffusion layer 12 can be configured to include a porous conductive material and a catalyst supported on the conductive material.
  • the conductive material in the gas diffusion layer 12 can be composed of, for example, one or more materials selected from the group consisting of carbon-based substances, conductive polymers, semiconductors, and metals.
  • the carbon-based material means a material containing carbon as a constituent component.
  • Examples of carbon-based materials include, for example, carbon powder such as graphite, activated carbon, carbon black, Vulcan (registered trademark) XC-72R, acetylene black, furnace black, Denka black, graphite felt, carbon wool, carbon woven cloth, etc. Carbon fiber, carbon plate, carbon paper, carbon disk, carbon cloth, carbon foil, and carbon-based material obtained by compression molding carbon particles are included.
  • Examples of the carbon-based material also include fine-structured materials such as carbon nanotubes, carbon nanohorns, and carbon nanoclusters. Furthermore, as a conductive material in the gas diffusion layer 12, a metal material such as a mesh and a foam can also be used.
  • Conductive polymer is a general term for conductive polymer compounds.
  • the conductive polymer include aniline, aminophenol, diaminophenol, pyrrole, thiophene, paraphenylene, fluorene, furan, acetylene, or a polymer of two or more monomers having a structural unit as a constituent unit.
  • examples of the conductive polymer include polyaniline, polyaminophenol, polydiaminophenol, polypyrrole, polythiophene, polyparaphenylene, polyfluorene, polyfuran, and polyacetylene.
  • An example of the metal conductive material is a stainless mesh. In consideration of availability, cost, corrosion resistance, durability, and the like, the conductive material is preferably a carbon-based substance.
  • the shape of the conductive material is preferably a powder shape or a fiber shape. Further, the conductive material may be supported by a support.
  • the support means a member that itself has rigidity and can give a certain shape to the gas diffusion electrode.
  • the support may be an insulator or a conductor.
  • examples of the support include glass, plastic, synthetic rubber, ceramics, water-resistant or water-repellent treated paper, plant pieces such as wood pieces, bone pieces, animal pieces such as shells, and the like.
  • Examples of the porous structure support include porous ceramics, porous plastics, and sponges.
  • the support When the support is a conductor, examples of the support include carbon materials such as carbon paper, carbon fiber, and carbon rod, metals, conductive polymers, and the like.
  • the support When the support is a conductor, the support can also function as a current collector by disposing a conductive material carrying a carbon-based material on the surface of the support.
  • the catalyst in the gas diffusion layer 12 is a platinum-based catalyst, a carbon-based catalyst using iron or cobalt, a transition metal oxide-based catalyst such as partially oxidized tantalum carbonitride (TaCNO) and zirconium carbonitride (ZrCNO), tungsten
  • a carbide catalyst using activated molybdenum, activated carbon, or the like can be used.
  • the catalyst in the gas diffusion layer 12 is preferably a carbon-based material doped with metal atoms.
  • metal atoms Titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, hafnium, tantalum, tungsten, rhenium, osmium, iridium ,
  • an atom of at least one metal selected from the group consisting of platinum and gold Preferably an atom of at least one metal selected from the group consisting of platinum and gold.
  • the carbon-based material exhibits excellent performance as a catalyst for promoting the oxygen reduction reaction. What is necessary is just to set suitably the quantity of the metal atom which carbonaceous material contains so that carbonaceous material may have the outstanding catalyst performance.
  • the carbon-based material is further doped with one or more nonmetallic atoms selected from nitrogen, boron, sulfur, and phosphorus. What is necessary is just to set suitably the quantity of the nonmetallic atom doped by the carbonaceous material so that carbonaceous material may have the outstanding catalyst performance.
  • the carbon-based material is based on a carbon source material such as graphite and amorphous carbon, for example, and the carbon source material is doped with a metal atom and one or more non-metal atoms selected from nitrogen, boron, sulfur and phosphorus. Can be obtained.
  • a carbon source material such as graphite and amorphous carbon, for example, and the carbon source material is doped with a metal atom and one or more non-metal atoms selected from nitrogen, boron, sulfur and phosphorus. Can be obtained.
  • the combination of metal atoms and nonmetal atoms doped in the carbon-based material is appropriately selected.
  • the nonmetallic atom contains nitrogen and the metallic atom contains iron.
  • the carbon-based material can have particularly excellent catalytic activity.
  • the nonmetallic atom may be only nitrogen, and the metallic atom may be only iron.
  • the nonmetallic atom may contain nitrogen, and the metallic atom may contain at least one of cobalt and manganese. Also in this case, the carbon-based material can have a particularly excellent catalytic activity.
  • the nonmetallic atom may be only nitrogen. Further, the metal atom may be only cobalt, only manganese, or only cobalt and manganese.
  • the shape of the carbon-based material is not particularly limited.
  • the carbon-based material may have a particulate shape or may have a sheet shape.
  • the dimension of the carbon-based material having a sheet-like shape is not particularly limited.
  • the carbon-based material may have a minute dimension.
  • the carbon-based material having a sheet shape may be porous. It is preferable that the porous carbon-based material having a sheet shape has a shape such as a woven fabric shape or a nonwoven fabric shape. Such a carbon-based material can constitute the gas diffusion layer 12 even without a conductive material.
  • the carbon-based material configured as a catalyst in the gas diffusion layer 12 can be prepared as follows. First, for example, a mixture containing a nonmetallic compound containing at least one nonmetal selected from the group consisting of nitrogen, boron, sulfur, and phosphorus, a metal compound, and a carbon source material is prepared. And this mixture is heated at the temperature of 800 degreeC or more and 1000 degrees C or less for 45 second or more and less than 600 second. Thereby, the carbonaceous material comprised as a catalyst can be obtained.
  • the carbon source material for example, graphite or amorphous carbon can be used as described above.
  • the metal compound is not particularly limited as long as it is a compound containing a metal atom capable of coordinating with a nonmetal atom doped in the carbon source material.
  • Metal compounds include, for example, metal chlorides, nitrates, sulfates, bromides, iodides, fluorides, etc., inorganic metal salts, organic metal salts such as acetates, inorganic metal salt hydrates, and organic metal salts At least one selected from the group consisting of hydrates can be used.
  • the metal compound preferably contains iron (III) chloride.
  • the metal compound when graphite is doped with cobalt, the metal compound preferably contains cobalt chloride.
  • the metal compound when the carbon source material is doped with manganese, the metal compound preferably contains manganese acetate.
  • the amount of the metal compound used is preferably determined so that, for example, the ratio of the metal atom in the metal compound to the carbon source material is in the range of 5 to 30% by mass, and further this ratio is 5 to 20% by mass. More preferably, it is determined to be within the range.
  • the nonmetallic compound is preferably at least one nonmetallic compound selected from the group consisting of nitrogen, boron, sulfur and phosphorus.
  • Non-metallic compounds include, for example, pentaethylenehexamine, ethylenediamine, tetraethylenepentamine, triethylenetetramine, ethylenediamine, octylboronic acid, 1,2-bis (diethylphosphinoethane), triphenyl phosphite, benzyldisal
  • At least one compound selected from the group consisting of fido can be used.
  • the amount of the nonmetallic compound used is appropriately set according to the amount of the nonmetallic atom doped into the carbon source material.
  • the amount of the nonmetallic compound used is preferably determined so that the molar ratio of the metal atom in the metal compound to the nonmetallic atom in the nonmetallic compound is in the range of 1: 1 to 1: 2. More preferably, it is determined to be within the range of 1: 1.5 to 1: 1.8.
  • a mixture containing a nonmetallic compound, a metal compound, and a carbon source material when preparing a carbon-based material configured as a catalyst is obtained, for example, as follows. First, a carbon source material, a metal compound, and a nonmetal compound are mixed, and if necessary, a solvent such as ethanol is added to adjust the total amount. These are further dispersed by an ultrasonic dispersion method. Subsequently, after heating them at an appropriate temperature (for example, 60 ° C.), the mixture is dried to remove the solvent. Thereby, the mixture containing a nonmetallic compound, a metal compound, and a carbon source raw material is obtained.
  • the obtained mixture is heated, for example, under a reducing atmosphere or an inert gas atmosphere.
  • a non-metallic atom is doped to a carbon source raw material, and also a metallic atom is doped by the coordinate bond of a non-metallic atom and a metallic atom.
  • the heating temperature is preferably in the range of 800 ° C. to 1000 ° C.
  • the heating time is preferably in the range of 45 seconds to less than 600 seconds. Since the heating time is short, the carbon-based material is efficiently produced, and the catalytic activity of the carbon-based material is further increased.
  • the temperature rising rate of the mixture at the start of heating is preferably 50 ° C./s or more. Such rapid heating further improves the catalytic activity of the carbonaceous material.
  • the carbon-based material may be further acid cleaned.
  • the carbon-based material may be dispersed in pure water with a homogenizer for 30 minutes, and then the carbon-based material may be placed in 2M sulfuric acid and stirred at 80 ° C. for 3 hours. In this case, elution of the metal component from the carbon-based material can be suppressed.
  • the catalyst may be bound to the conductive material using a binder. That is, the catalyst may be supported on the surface of the conductive material and inside the pores using a binder. Thereby, it can suppress that a catalyst detaches
  • the binder for example, at least one selected from the group consisting of polytetrafluoroethylene, polyvinylidene fluoride (PVDF), and ethylene-propylene-diene copolymer (EPDM) is preferably used.
  • PVDF polyvinylidene fluoride
  • EPDM ethylene-propylene-diene copolymer
  • NAFION registered trademark
  • the negative electrode 20 in the present embodiment carries a microbe described later and further has a function of generating hydrogen ions and electrons from at least one of an organic substance and a nitrogen-containing compound in the electrolytic solution 60 by the catalytic action of the microbe. For this reason, the negative electrode 20 of the present embodiment is not particularly limited as long as it has such a function.
  • the negative electrode 20 of the present embodiment has a structure in which microorganisms are supported on a conductive sheet having conductivity.
  • the conductor sheet it is possible to use at least one selected from the group consisting of a porous conductor sheet, a woven conductor sheet, and a nonwoven conductor sheet.
  • the conductor sheet may be a laminate in which a plurality of sheets are laminated.
  • the conductor sheet of the negative electrode 20 has a space (void) continuous in the stacking direction X of the positive electrode 10, the ion moving layer 30 and the negative electrode 20, that is, in the thickness direction. It is preferable.
  • the conductor sheet may be a metal plate having a plurality of through holes in the thickness direction. Therefore, as a material constituting the conductor sheet of the negative electrode 20, for example, at least one selected from the group consisting of conductive metals such as aluminum, copper, stainless steel, nickel and titanium, carbon paper, and carbon felt is used. be able to.
  • a graphite sheet used in the positive electrode 10 may be used.
  • the negative electrode 20 preferably contains graphite, and the graphene layer in the graphite is preferably arranged along a plane in the direction YZ perpendicular to the stacking direction X of the positive electrode 10, the ion moving layer 30 and the negative electrode 20.
  • the microorganism supported on the negative electrode 20 is not particularly limited as long as it is a microorganism that decomposes an organic substance or a nitrogen-containing compound in the electrolytic solution 60 to generate hydrogen ions and electrons.
  • a microorganism that decomposes an organic substance or a nitrogen-containing compound in the electrolytic solution 60 to generate hydrogen ions and electrons for example, an aerobic microorganism that requires oxygen for growth or an anaerobic microorganism that does not require oxygen for growth can be used, but an anaerobic microorganism is preferably used.
  • Anaerobic microorganisms do not require air for oxidative decomposition of organic substances in the electrolyte solution 60. Therefore, the electric power required for sending air can be significantly reduced. Moreover, since the free energy which microbes acquire is small, it becomes possible to reduce the amount of sludge generation.
  • Examples of the aerobic microorganisms held in the negative electrode 20 include Escherichia bacterium, Escherichia bacterium, Pseudomonas bacterium, Bacillus bacterium, Bacillus bacterium.
  • maintained at the negative electrode 20 are the electric production bacteria which have an extracellular electron transmission mechanism, for example.
  • examples of the anaerobic microorganism include Geobacter genus bacteria, Shewanella genus bacteria, Aeromonas genus bacteria, Geothrix genus bacteria, and Saccharomyces genus bacteria.
  • Microorganisms may be held in the negative electrode 20 by superimposing and fixing a biofilm containing microorganisms on the negative electrode 20.
  • the biofilm generally refers to a three-dimensional structure including a microbial population and an extracellular polymeric substance (EPS) produced by the microbial population.
  • EPS extracellular polymeric substance
  • the microorganisms may be held on the negative electrode 20 without depending on the biofilm.
  • Microorganisms may be held not only on the surface of the negative electrode 20 but also inside.
  • the negative electrode 20 may be modified with, for example, an electron transfer mediator molecule.
  • the electrolytic solution 60 in the electrolytic solution tank 70 may contain electron transfer mediator molecules. Thereby, the electron transfer from microorganisms to the negative electrode 20 is accelerated
  • an electron transfer mediator molecule is not particularly limited.
  • the electron transfer mediator molecule for example, at least one selected from the group consisting of neutral red, anthraquinone-2,6-disulfonic acid (AQDS), thionine, potassium ferricyanide, and methylviologen can be used.
  • the liquid processing unit 1 of the present embodiment further includes an ion transfer layer 30 provided between the positive electrode 10 and the negative electrode 20 and having proton permeability. As shown in FIGS. 1 and 2, the negative electrode 20 is separated from the positive electrode 10 through an ion migration layer 30.
  • the ion moving layer 30 has a function of transmitting hydrogen ions generated in the negative electrode 20 and moving the hydrogen ions to the positive electrode 10 side.
  • an ion exchange membrane using an ion exchange resin can be used as the ion moving layer 30, for example.
  • an ion exchange membrane using an ion exchange resin for example, NAFION (registered trademark) manufactured by DuPont, and Flemion (registered trademark) and Selemion (registered trademark) manufactured by Asahi Glass Co., Ltd. can be used.
  • the ion moving layer 30 may be a sheet having a space (void) for hydrogen ions to move from the negative electrode 20 to the positive electrode 10. Therefore, the ion migration layer 30 preferably includes at least one selected from the group consisting of a porous sheet, a woven sheet, and a nonwoven sheet. Moreover, the ion migration layer 30 can use at least one chosen from the group which consists of a glass fiber membrane, a synthetic fiber membrane, and a plastic nonwoven fabric, and the laminated body formed by laminating these two or more may be used. Since such a porous sheet has a large number of pores inside, hydrogen ions can easily move. The pore diameter of the ion moving layer 30 is not particularly limited as long as hydrogen ions can move from the negative electrode 20 to the positive electrode 10.
  • the ion moving layer 30 has a function of transmitting hydrogen ions generated in the negative electrode 20 and moving them to the positive electrode 10 side. Therefore, for example, if the negative electrode 20 and the positive electrode 10 are close to each other without contact, hydrogen ions can move from the negative electrode 20 to the positive electrode 10. Therefore, in the liquid processing system 100 of the present embodiment, the ion moving layer 30 is not an essential component. However, since the provision of the ion moving layer 30 enables efficient movement of hydrogen ions from the negative electrode 20 to the positive electrode 10, it is preferable to provide the ion moving layer 30 from the viewpoint of improving the output. Note that a gap may be provided between the positive electrode 10 and the ion transfer layer 30, and a gap may also be provided between the negative electrode 20 and the ion transfer layer 30.
  • the liquid processing unit 1 includes an external circuit 80 that is electrically connected to the negative electrode 20 and the positive electrode 10 as shown in FIG. However, in the liquid processing unit 1, the negative electrode 20 and the positive electrode 10 may be directly electrically connected using a conductive member without using the external circuit 80. Further, in the liquid processing unit 1, the cassette base member 50 is entirely open at the top, but may be partially opened as long as air (oxygen) can be introduced into the cassette base member 50. You may do it.
  • the liquid treatment system 100 includes a substantially rectangular parallelepiped electrolyte tank 70 that holds an electrolyte containing an organic substance therein.
  • the electrolyte tank 70 is provided with an inlet 71 for supplying the electrolyte 60 to the electrolyte tank 70 and an outlet 72 for discharging the treated electrolyte 60 from the electrolyte tank 70.
  • the inlet 71 is provided on the upper part of the front wall 73 of the electrolytic solution tank 70, and the outlet 72 is provided on the upper part of the rear wall 74 of the electrolytic solution tank 70.
  • the electrolytic solution 60 is continuously supplied into the electrolytic solution tank 70 through the inlet 71. Moreover, as shown in FIG.1 and FIG.2, the liquid processing unit 1 is arrange
  • the liquid processing system 100 includes a porous carrier 90 that is provided inside the electrolytic solution tank 70 and filters insoluble matters in the electrolytic solution 60.
  • a porous carrier 90 By providing the porous carrier 90, it is possible to filter and remove microorganisms contained in the electrolytic solution 60 and fine organic substances that have not been used by the microorganisms. Therefore, it is possible to reduce the insoluble matter in the treated water discharged from the outlet 72 and improve the quality of the treated water.
  • the shape of the porous carrier 90 is not particularly limited as long as it is a shape capable of filtering microorganisms and solid organic substances contained in the electrolytic solution 60.
  • the shape of the porous carrier 90 may be flat as shown in FIGS. 1 to 3, or may be hemispherical as shown in FIGS.
  • the average pore diameter of the porous carrier 90 is not particularly limited as long as it can pass through the electrolytic solution 60 but is difficult for microorganisms and solid organic substances to pass through.
  • the average pore diameter of the porous carrier 90 is preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less, further preferably 50 ⁇ m or less, and particularly preferably 20 ⁇ m or less.
  • the average pore diameter of the porous carrier 90 is preferably 1 ⁇ m or less.
  • carrier is not specifically limited, For example, it can be 500 nm.
  • the porosity of the porous carrier 90 is not particularly limited, but can be set to, for example, 50 to 96% from the viewpoint of achieving both the strength of the porous carrier 90 and the high permeability of the electrolytic solution 60.
  • carrier 90 is not specifically limited, For example, it can measure by the mercury intrusion method.
  • the material constituting the porous carrier 90 is not particularly limited, and for example, at least one of resin, metal, and ceramics can be used.
  • the porous carrier 90 can be a woven fabric, a nonwoven fabric or a foam of these materials.
  • the porous carrier 90 may be a single layer or a multilayer formed by laminating a plurality of layers.
  • the material constituting the porous carrier 90 is preferably a resin.
  • the resin constituting the porous carrier 90 at least one of a thermosetting resin, a thermoplastic resin, and an elastomer can be used.
  • Thermoplastic resins include polyvinyl alcohol resin, acrylic resin, methacrylic resin, vinyl acetate resin, vinyl chloride resin, vinylidene chloride resin, styrene resin, ethylene vinyl acetate resin, acrylonitrile-butadiene-styrene resin, polyethylene, polypropylene, polyacetal Polyamide resins, polyesters and copolymers thereof can be used.
  • thermosetting resin epoxy resin, unsaturated polyester resin, phenol resin, urea resin, melamine resin, polyurethane resin, silicone resin, diallyl phthalate resin and copolymers thereof can be used.
  • elastomer examples include styrene elastomers, polyolefin elastomers, polyurethane elastomers, polyester elastomers, polyamide elastomers, polybutadiene elastomers, and copolymers thereof.
  • the porous carrier 90 is disposed on the downstream side of the liquid processing unit 1 and on the upstream side of the outlet 72. It is preferred that That is, the porous carrier 90 is preferably disposed between the liquid processing unit 1 and the outlet 72. By disposing the porous carrier 90 in this way, the electrolytic solution 60 processed by the liquid processing unit 1 passes through the pores of the porous carrier 90 and is then discharged through the outlet 72. Therefore, microorganisms and organic substances can be separated by the porous carrier 90 and the quality of the treated water can be improved.
  • the porous carrier 90 is formed in a flat plate shape, and is further arranged so that the main surface of the porous carrier 90 is in contact with the rear wall 74 of the electrolyte bath 70. It is preferable. Thereby, the porous carrier 90 is disposed between the liquid processing unit 1 and the outlet 72, and the entire opening 72 a that is the inlet of the outlet 72 can be covered with the porous carrier 90. Therefore, the porous carrier 90 can efficiently filter microorganisms and organic substances.
  • the porous carrier 90 is disposed so as to contact the rear wall 74 of the electrolyte bath 70. Further, in FIG. 2, the bottom surface of the porous carrier 90 is in contact with the bottom wall 77 of the electrolytic solution tank 70. In FIG. 3, the side surface of the porous carrier 90 is in contact with the left wall 75 and the right wall 76 of the electrolytic solution tank 70. However, the porous carrier 90 may be disposed on the rear wall 74 without contacting the left wall 75, the right wall 76, and the bottom wall 77 of the electrolytic solution tank 70.
  • the porous carrier 90 may be arranged so as not to contact the rear wall 74 of the electrolytic solution tank 70.
  • the porous carrier 90 may be formed in a flat plate shape, and may be further disposed between the negative electrode 20 and the outlet 72 of the liquid processing unit 1.
  • the bottom surface of the porous carrier 90 may be in contact with the bottom wall 77 of the electrolytic solution tank 70.
  • the side surface of the porous carrier 90 may be in contact with the left wall 75 and the right wall 76 of the electrolytic solution tank 70.
  • the porous carrier 90 may not be in contact with the rear wall 74, the left wall 75, and the right wall 76 of the electrolyte bath 70.
  • the uppermost portion of the porous carrier 90 is arranged to be higher than the water surface of the electrolytic solution 60.
  • the porous carrier 90 is arranged inside the electrolytic solution tank 70 so that the upper surface 91 is higher than the water surface 61 of the electrolytic solution 60 and the upper surface 91 is exposed from the electrolytic solution 60. It is preferred that Microorganisms and solid organic substances often float on the water surface 61 of the electrolytic solution 60.
  • the uppermost portion of the porous carrier 90 is arranged to be higher than the water surface of the electrolytic solution 60, microorganisms and organic substances floating on the water surface 61 of the electrolytic solution 60 are efficiently removed, It becomes possible to further improve the water quality of the electrolytic solution 60 discharged from the outflow port 72.
  • the difference D between the upper surface 91 of the porous carrier 90 and the water surface 61 of the electrolytic solution 60 is not particularly limited, and is appropriately set so that microorganisms and organic substances floating on the water surface 61 of the electrolytic solution 60 can be removed. It is possible.
  • the porous carrier 90 is installed so as to cover the entire inlet 72. Specifically, when the electrolytic solution 60 flows to the outlet 72, the porous carrier 90 covers the entire opening 72a that is the inlet of the outlet 72 so as to surely pass through the pores of the porous carrier 90. It is preferable that it is installed. Thereby, the porous carrier 90 can reliably filter microorganisms and organic substances.
  • the plate-like porous carrier 90 is disposed so as to contact the rear wall 74 of the electrolytic solution tank 70.
  • the hemispherical porous carrier 90 is disposed so as to contact the rear wall 74 of the electrolytic solution tank 70.
  • the porous carrier 90 since the porous carrier 90 has a large number of pores, it functions as a filter medium for filtering the solid content in the electrolytic solution 60.
  • the porous carrier 90 may carry a microorganism. By supporting the microorganism, the organic substance or the nitrogen-containing compound in the electrolytic solution 60 can be decomposed in the porous carrier 90. As a result, the organic substance or nitrogen-containing compound in the electrolytic solution 60 can be removed, and the quality of the treated water can be further improved.
  • the microorganisms supported on the porous carrier 90 are not particularly limited, and at least one of an aerobic microorganism and an anaerobic microorganism supported on the negative electrode 20 can be used. Further, the position of the porous carrier 90 where microorganisms are supported is not particularly limited, and may be supported on the inner surface of the pores of the porous carrier 90 or may be further supported on the outer surface of the porous carrier 90. .
  • the operation of the liquid processing system 100 of this embodiment will be described.
  • the electrode assembly 40 including the positive electrode 10, the negative electrode 20, and the ion transfer layer 30 is immersed in the electrolytic solution 60, the gas diffusion layer 12 and the negative electrode 20 of the positive electrode 10 are immersed in the electrolytic solution 60, and the water repellent layer 11. At least a part of is exposed to the gas phase 2.
  • the electrolyte 60 containing at least one of an organic substance and a nitrogen-containing compound is supplied to the negative electrode 20, and air is supplied to the positive electrode 10. At this time, the air is continuously supplied through an opening provided in the upper part of the cassette base material 50.
  • the positive electrode 10 oxygen diffuses into the gas diffusion layer 12 through the water repellent layer 11.
  • hydrogen ions and electrons are generated from at least one of the organic substance and the nitrogen-containing compound in the electrolytic solution 60 by the catalytic action of microorganisms.
  • the generated hydrogen ions pass through the ion moving layer 30 and move to the positive electrode 10 side, and reach the gas diffusion layer 12 in the positive electrode 10.
  • the generated electrons move to the external circuit 80 through the conductor sheet of the negative electrode 20, and further move from the external circuit 80 to the gas diffusion layer 12 of the positive electrode 10.
  • the hydrogen ions and electrons are combined with oxygen by the action of the catalyst in the gas diffusion layer 12 and consumed as water. At this time, the electric energy flowing in the closed circuit is recovered by the external circuit 80.
  • the liquid processing unit 1 can decompose at least one of the organic substance and the nitrogen-containing compound in the electrolytic solution 60 by the action of microorganisms in the negative electrode 20.
  • the electrolytic solution 60 is continuously supplied from the inlet 71 of the electrolytic solution tank 70. Then, at least one of the organic substance and the nitrogen-containing compound in the electrolytic solution 60 is decomposed by the microorganisms supported on the negative electrode 20 of the liquid processing unit 1. Thereafter, the electrolytic solution 60 passes through the pores of the porous carrier 90 arranged on the downstream side of the liquid processing unit 1 and on the upstream side of the outflow port 72, and then discharged by the outflow port 72. At this time, since solid microorganisms and organic substances contained in the electrolytic solution 60 are filtered and separated, the quality of the treated water discharged from the outlet 72 can be improved.
  • porous carrier 90 in the electrolytic solution tank 70, it is possible to suppress the outflow of highly active microorganisms together with the electrolytic solution 60. Since highly active microorganisms remain in the electrolytic solution 60 in the electrolytic solution tank 70, sludge is reduced by self-digestion of the microorganisms, and it is possible to reduce the amount of excess sludge that accumulates in the electrolytic solution tank 70. It becomes.
  • the liquid processing system 100 includes the electrolytic solution tank 70 that holds the electrolytic solution 60 containing an organic substance and includes the inlet 71 and the outlet 72 of the electrolytic solution 60. Furthermore, the liquid processing system 100 includes a negative electrode 20 supporting microorganisms, and a positive electrode 10 electrically connected to the negative electrode 20, and the negative electrode 20 and the positive electrode 10 are immersed in the electrolytic solution 60, and at least a part of the positive electrode 10 is formed. A liquid processing unit 1 exposed to the gas phase 2 is provided. The liquid processing system 100 includes a porous carrier 90 that is provided inside the electrolytic solution tank 70 and filters insoluble matters in the electrolytic solution 60.
  • the porous carrier 90 is disposed downstream of the liquid processing unit 1 and upstream of the outlet 72. Is done. Further, the electrolytic solution 60 preferably flows to the outlet 72 after passing through the porous carrier 90. Thereby, since the microorganisms and organic substance contained in the electrolyte solution 60 can be removed through the porous carrier 90, the quality of the treated water discharged from the outlet 72 can be further improved.
  • a silicone resin as an adhesive is applied to a polyolefin water repellent layer, and then a graphite foil as a gas diffusion layer is bonded to produce a laminated sheet composed of a water repellent layer / silicone adhesive / gas diffusion layer.
  • a graphite foil as a gas diffusion layer is bonded to produce a laminated sheet composed of a water repellent layer / silicone adhesive / gas diffusion layer.
  • Sekisui Chemical Co., Ltd. SELPORE registered trademark
  • the silicone resin one-component RTV rubber KE-3475-T manufactured by Shin-Etsu Chemical Co., Ltd. was used.
  • a graphite foil manufactured by Hitachi Chemical Co., Ltd. was used.
  • a gas diffusion electrode was produced by press-molding a catalyst layer formed by mixing an oxygen reduction catalyst and PTFE (manufactured by Aldrich) on the surface of the graphite foil opposite to the water repellent layer.
  • the oxygen reduction catalyst was press-molded so that the basis weight was 6 mg / cm 2 .
  • the oxygen reduction catalyst was prepared as follows. First, 3 g of carbon black, 0.1 M iron (III) chloride aqueous solution, and 0.15 M pentaethylenehexamine ethanol solution were placed in a container to prepare a mixed solution. As carbon black, Ketjen Black ECP600JD manufactured by Lion Specialty Chemicals Co., Ltd. was used. The amount of 0.1M iron (III) chloride aqueous solution used was adjusted so that the ratio of iron atoms to carbon black was 10% by mass. The total amount was adjusted to 9 mL by adding ethanol to the mixture. And this liquid mixture was ultrasonically disperse
  • this sample was packed into one end of a quartz tube, and then the inside of this quartz tube was replaced with argon.
  • the quartz tube was put into a furnace at 900 ° C. and pulled out in 45 seconds.
  • the quartz tube was inserted into the furnace over 3 seconds to adjust the rate of temperature rise of the sample at the start of heating to 300 ° C./s.
  • the sample was cooled by flowing argon gas through the quartz tube. Thereby, an oxygen reduction catalyst was obtained.
  • a positive electrode was produced by providing an air intake portion in the water repellent layer of the gas diffusion electrode obtained as described above.
  • the said positive electrode and the negative electrode which consists of carbon materials (graphite foil) were installed in the electrolyte tank provided with the inflow port and the outflow port.
  • the electrolytic solution was filled in the electrolytic solution tank so as to be in contact with the positive electrode, the negative electrode, and the nonwoven fabric.
  • the electrolytic solution contained 600 mg / L of an organic substance as total organic carbon (TOC), and soil microorganisms were inoculated as an anaerobic microorganism source for generating power.
  • the residence time of electrolyte solution was continuously supplied to the container as 24 hours.
  • the liquid processing system of this example was obtained by connecting a positive electrode and a negative electrode to a load circuit.
  • a porous carrier was installed on the downstream side of the positive electrode and the negative electrode and on the upstream side of the outlet of the electrolytic solution tank.
  • a foam made of polyvinyl alcohol and having a pore diameter of 80 ⁇ m was used as the porous carrier.
  • TOC concentration total organic carbon concentration in the electrolyte before and after the treatment with the liquid treatment system was measured.
  • the total organic carbon concentration before processing in the liquid processing system was 600 mg / L, and the total organic carbon concentration after processing was 43 mg / L. Therefore, the TOC removal rate of the liquid treatment system of the example was 93%.
  • the total organic carbon concentration before processing in the liquid processing system was 600 mg / L, and the total organic carbon concentration after processing was 69 mg / L. Therefore, the TOC removal rate of the liquid processing system of the comparative example was 89%.
  • the present embodiment has been described above, the present embodiment is not limited to these, and various modifications are possible within the scope of the gist of the present embodiment.
  • the positive electrode 10, the negative electrode 20, and the ion migration layer 30 are formed in a rectangular shape.
  • these shapes are not particularly limited, and can be arbitrarily changed depending on the size of the liquid processing system, desired purification performance, and the like. Further, the area of each layer can be arbitrarily changed as long as a desired function can be exhibited.
  • the liquid treatment system according to this embodiment can be widely applied to treatment of a liquid containing an organic substance, for example, waste water generated from factories of various industries, organic waste water such as sewage sludge, and the like. It can also be used to improve the water environment.
  • a liquid containing an organic substance for example, waste water generated from factories of various industries, organic waste water such as sewage sludge, and the like. It can also be used to improve the water environment.
  • the present invention it is possible to provide a liquid treatment system capable of reducing the content of microorganisms and organic substances in the discharged treated water and improving the quality of the treated water.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

A liquid treatment system 100 comprising an electrolytic solution vessel 70 that holds an electrolytic solution 60 containing an organic substance and has an inflow opening 71 and an outflow opening 72 for the electrolytic solution. The liquid treatment system furthermore comprises a liquid treatment unit 1 provided with a negative electrode 20 that supports microorganisms and a positive electrode 10 that is electrically connected to the negative electrode, the negative electrode and positive electrode being immersed in the electrolytic solution, and at least portion of the positive electrode being exposed to a gas phase 2. The liquid treatment system also comprises a porous carrier 90 for filtering insoluble matter in the electrolytic solution, the porous carrier being provided within the electrolytic solution vessel. When the electrolytic solution flows from the inflow opening to the outflow opening, the porous carrier is disposed downstream from the liquid treatment unit and upstream from the outflow opening.

Description

液体処理システムLiquid processing system
 本発明は、液体処理システムに関する。詳細には本発明は、廃水を浄化し、かつ、電気エネルギーを生成することが可能な微生物燃料電池を用いた液体処理システムに関する。 The present invention relates to a liquid processing system. More particularly, the present invention relates to a liquid treatment system using a microbial fuel cell that can purify wastewater and generate electrical energy.
 近年、持続可能なエネルギーとして、バイオマスを利用して発電をする微生物燃料電池が注目されている。微生物燃料電池は、生活廃水や工場廃水に含まれる有機性物質の化学エネルギーを電気エネルギーに変換しつつ、その有機性物質を酸化分解して処理する廃水処理装置である。そして、微生物燃料電池は、汚泥の発生が少なく、さらにエネルギー消費が少ない特徴を有する。 In recent years, microbial fuel cells that generate electricity using biomass have attracted attention as sustainable energy. A microbial fuel cell is a wastewater treatment apparatus that converts the chemical energy of an organic substance contained in domestic wastewater or factory wastewater into electrical energy and oxidizes and decomposes the organic substance. The microbial fuel cell is characterized by little generation of sludge and low energy consumption.
 微生物燃料電池は、微生物を担持する負極と、酸素を含む気相及び電解液に接触する正極とを有する。そして、有機性物質などを含有する電解液を負極に供給するとともに、酸素を含んだ気体を正極に供給する。負極及び正極は、負荷回路を介して相互に接続することにより閉回路を形成する。負極では、微生物の触媒作用により電解液から水素イオン及び電子が生成する。そして、生成した水素イオンは正極へ移動し、電子は負荷回路を介して正極へ移動する。負極から移動した水素イオン及び電子は正極において酸素と結合し、水となって消費される。その際に、閉回路に流れる電気エネルギーを回収する。 The microbial fuel cell has a negative electrode supporting microorganisms, and a positive electrode in contact with a gas phase containing oxygen and an electrolytic solution. And while supplying the electrolyte solution containing an organic substance etc. to a negative electrode, the gas containing oxygen is supplied to a positive electrode. The negative electrode and the positive electrode are connected to each other through a load circuit to form a closed circuit. In the negative electrode, hydrogen ions and electrons are generated from the electrolytic solution by the catalytic action of microorganisms. And the produced | generated hydrogen ion moves to a positive electrode, and an electron moves to a positive electrode through a load circuit. Hydrogen ions and electrons transferred from the negative electrode are combined with oxygen at the positive electrode and consumed as water. At that time, the electric energy flowing in the closed circuit is recovered.
 例えば、特許文献1では、有機性基質に浸漬して嫌気性微生物を担持させる負電極と、イオン透過性隔膜で形成された外殻と入出孔とを有する密閉型中空カセット内に電解液と共に封入して有機性基質中に差し込む正電極と、を備える微生物燃料電池を開示している。そして、当該微生物燃料電池では、入出孔経由でカセット内に酸素を供給しつつ負電極及び正電極を電気的に接続する回路経由で電気を取り出している。 For example, Patent Document 1 encloses an electrolytic solution in a sealed hollow cassette having a negative electrode immersed in an organic substrate to carry anaerobic microorganisms, an outer shell formed of an ion-permeable diaphragm and an inlet / outlet hole. And a positive electrode for insertion into an organic substrate. And in the said microbial fuel cell, electricity is taken out via the circuit which electrically connects a negative electrode and a positive electrode, supplying oxygen in a cassette via an inlet / outlet.
特許第5164511号公報Japanese Patent No. 5164511
 特許文献1の微生物燃料電池では、負電極及び正電極により処理された処理水がそのまま外部に排出されている。しかしながら、処理水は、微生物や、微生物により利用されなかった有機性物質を含んでいるため、水質が不十分な場合がある。また、微生物燃料電池から微生物が流出することに伴い、微生物による汚泥の自己消化が不十分となり、汚泥の低減が進行し難くなる。そのため、余剰汚泥量が増加する可能性があった。 In the microbial fuel cell of Patent Document 1, treated water treated by the negative electrode and the positive electrode is discharged to the outside as it is. However, since the treated water contains microorganisms and organic substances that have not been used by the microorganisms, the water quality may be insufficient. Further, as microorganisms flow out from the microbial fuel cell, the self-digestion of sludge by microorganisms becomes insufficient, and the reduction of sludge becomes difficult to proceed. Therefore, the amount of excess sludge may increase.
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的は、排出される処理水中の微生物や有機性物質の含有量を低減し、処理水の水質を高めることが可能な液体処理システムを提供することにある。 The present invention has been made in view of such problems of the conventional technology. An object of the present invention is to provide a liquid treatment system that can reduce the content of microorganisms and organic substances in the discharged treated water and improve the quality of the treated water.
 上記課題を解決するために、本発明の態様に係る液体処理システムは、有機性物質を含む電解液を保持し、電解液の流入口及び流出口を有する電解液槽を備える。液体処理システムは、微生物を担持する負極と、負極と電気的に接続された正極とを備え、負極及び正極が電解液に浸漬し、正極の少なくとも一部が気相に露出する液体処理ユニットを備える。そして、液体処理システムは、電解液槽の内部に設けられ、電解液中の不溶物を濾過するための多孔質担体を備える。液体処理システムにおいて、電解液が流入口から流出口へと流れる際、多孔質担体は、液体処理ユニットよりも下流側であり、かつ、流出口よりも上流側に配置される。 In order to solve the above problems, a liquid processing system according to an aspect of the present invention includes an electrolytic solution tank that holds an electrolytic solution containing an organic substance and has an inlet and an outlet for the electrolyte. The liquid processing system includes a negative electrode carrying microorganisms and a positive electrode electrically connected to the negative electrode, the negative electrode and the positive electrode being immersed in an electrolyte solution, and a liquid processing unit in which at least a part of the positive electrode is exposed to the gas phase. Prepare. And a liquid processing system is provided in the inside of an electrolyte solution tank, and is provided with the porous support | carrier for filtering the insoluble matter in electrolyte solution. In the liquid processing system, when the electrolytic solution flows from the inlet to the outlet, the porous carrier is disposed downstream of the liquid processing unit and upstream of the outlet.
図1は、本発明の実施形態に係る液体処理システムの一例を示す概略斜視図である。FIG. 1 is a schematic perspective view showing an example of a liquid processing system according to an embodiment of the present invention. 図2は、図1中のA-A線に沿った断面図である。FIG. 2 is a sectional view taken along line AA in FIG. 図3は、本発明の実施形態に係る液体処理システムの一例を示す概略平面図である。FIG. 3 is a schematic plan view showing an example of a liquid processing system according to an embodiment of the present invention. 図4は、液体処理システムにおける液体処理ユニットを示す分解斜視図である。FIG. 4 is an exploded perspective view showing a liquid processing unit in the liquid processing system. 図5は、本発明の実施形態に係る液体処理システムの他の例を示す概略断面図である。FIG. 5 is a schematic cross-sectional view showing another example of the liquid processing system according to the embodiment of the present invention. 図6は、本発明の実施形態に係る液体処理システムの他の例を示す概略平面図である。FIG. 6 is a schematic plan view showing another example of the liquid processing system according to the embodiment of the present invention. 図7は、本発明の実施形態に係る液体処理システムの他の例を示す概略断面図である。FIG. 7 is a schematic cross-sectional view showing another example of the liquid processing system according to the embodiment of the present invention. 図8は、本発明の実施形態に係る液体処理システムの他の例を示す概略平面図である。FIG. 8 is a schematic plan view showing another example of the liquid processing system according to the embodiment of the present invention.
 以下、本実施形態に係る液体処理システムについて詳細に説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, the liquid processing system according to the present embodiment will be described in detail. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.
 本実施形態に係る液体処理システム100は、図1に示すように、正極10と、微生物を担持し、さらに正極10と電気的に接続された負極20とを有する液体処理ユニット1を備えている。また、液体処理システム100は、有機性物質を含む電解液60を内部に保持し、さらに液体処理ユニット1が電解液60に浸漬するように配置される電解液槽70を備えている。 As shown in FIG. 1, the liquid processing system 100 according to this embodiment includes a liquid processing unit 1 that includes a positive electrode 10 and a negative electrode 20 that carries microorganisms and is electrically connected to the positive electrode 10. . Further, the liquid processing system 100 includes an electrolytic solution tank 70 that holds an electrolytic solution 60 containing an organic substance therein and is further disposed so that the liquid processing unit 1 is immersed in the electrolytic solution 60.
[液体処理ユニット]
 液体処理ユニット1は、図1~図3に示すように、正極10、負極20及びイオン移動層30からなる電極接合体40を備えている。液体処理ユニット1では、イオン移動層30の一方の面30aに負極20が接触するように配置されており、イオン移動層30の面30aと反対側の面30bに正極10が接触するように配置されている。そして、正極10のガス拡散層12がイオン移動層30と接触し、撥水層11が気相2側に露出している。
[Liquid processing unit]
As shown in FIGS. 1 to 3, the liquid processing unit 1 includes an electrode assembly 40 including a positive electrode 10, a negative electrode 20, and an ion transfer layer 30. In the liquid processing unit 1, the negative electrode 20 is disposed so as to contact one surface 30 a of the ion moving layer 30, and the positive electrode 10 is disposed so as to contact the surface 30 b opposite to the surface 30 a of the ion moving layer 30. Has been. The gas diffusion layer 12 of the positive electrode 10 is in contact with the ion migration layer 30 and the water repellent layer 11 is exposed to the gas phase 2 side.
 そして、図4に示すように、電極接合体40は、カセット基材50に積層されている。カセット基材50は、正極10における面10aの外周部に沿うU字状の枠部材であり、上部が開口している。つまり、カセット基材50は、2本の第一柱状部材51の底面を第二柱状部材52で連結した枠部材である。そして、図2に示すように、カセット基材50の側面53は、正極10の面10aの外周部と接合されている。 And as shown in FIG. 4, the electrode assembly 40 is laminated | stacked on the cassette base material 50. As shown in FIG. The cassette base material 50 is a U-shaped frame member along the outer peripheral portion of the surface 10 a of the positive electrode 10, and the upper part is open. That is, the cassette base material 50 is a frame member in which the bottom surfaces of the two first columnar members 51 are connected by the second columnar member 52. As shown in FIG. 2, the side surface 53 of the cassette base material 50 is joined to the outer peripheral portion of the surface 10 a of the positive electrode 10.
 図2に示すように、二組の電極接合体40とカセット基材50とを積層してなる液体処理ユニット1は、大気と連通した気相2が形成されるように、電解液槽70の内部に配置される。電解液槽70の内部には被処理水である電解液60が保持されており、正極10のガス拡散層12、負極20及びイオン移動層30は電解液60に浸漬されている。 As shown in FIG. 2, the liquid processing unit 1 formed by laminating two sets of electrode assemblies 40 and the cassette base material 50 includes an electrolyte bath 70 so that a gas phase 2 communicating with the atmosphere is formed. Arranged inside. An electrolytic solution 60 that is water to be treated is held inside the electrolytic solution tank 70, and the gas diffusion layer 12, the negative electrode 20, and the ion moving layer 30 of the positive electrode 10 are immersed in the electrolytic solution 60.
 後述するように、正極10は撥水性を有する撥水層11を備えている。そのため、電解液槽70の内部に保持された電解液60とカセット基材50の内部とは隔てられ、電極接合体40及びカセット基材50により形成された内部空間は気相2となっている。そして、液体処理システム100では、この気相2が外気に開放されるか、あるいはこの気相2へ例えばポンプによって外部から空気が供給されるように構成されている。また、図2に示すように、正極10及び負極20は、それぞれ外部回路80と電気的に接続されている。 As will be described later, the positive electrode 10 includes a water-repellent layer 11 having water repellency. Therefore, the electrolytic solution 60 held inside the electrolytic solution tank 70 is separated from the inside of the cassette base material 50, and the internal space formed by the electrode assembly 40 and the cassette base material 50 is in the gas phase 2. . The liquid processing system 100 is configured such that the gas phase 2 is opened to the outside air or air is supplied to the gas phase 2 from the outside by, for example, a pump. As shown in FIG. 2, the positive electrode 10 and the negative electrode 20 are electrically connected to an external circuit 80, respectively.
 (正極)
 本実施形態に係る正極10は、図2に示すように、撥水層11と、撥水層11に接触するように重ねられているガス拡散層12とを備えるガス拡散電極からなる。このような薄板状のガス拡散電極を用いることにより、気相2中の酸素を正極10中の触媒に容易に供給することが可能になる。
(Positive electrode)
As shown in FIG. 2, the positive electrode 10 according to the present embodiment includes a gas diffusion electrode including a water-repellent layer 11 and a gas diffusion layer 12 stacked to be in contact with the water-repellent layer 11. By using such a thin plate-like gas diffusion electrode, oxygen in the gas phase 2 can be easily supplied to the catalyst in the positive electrode 10.
  <撥水層>
 正極10における撥水層11は、撥水性と酸素透過性とを併せ持つ層である。撥水層11は、液体処理ユニット1における電気化学系中の気相2と液相とを良好に分離しながら、気相2から液相へ向かう酸素の移動を許容するように構成される。つまり、撥水層11は、気相2中の酸素を透過し、ガス拡散層12へ移動させつつも、電解液60が気相2側に移動することを抑制できる。なお、ここでいう「分離」とは、物理的に遮断することをいう。
<Water repellent layer>
The water repellent layer 11 in the positive electrode 10 is a layer having both water repellency and oxygen permeability. The water repellent layer 11 is configured to allow oxygen to move from the gas phase 2 toward the liquid phase while favorably separating the gas phase 2 and the liquid phase in the electrochemical system in the liquid processing unit 1. That is, the water repellent layer 11 can suppress the movement of the electrolytic solution 60 to the gas phase 2 side while allowing oxygen in the gas phase 2 to permeate and move to the gas diffusion layer 12. In addition, "separation" here means physical interruption | blocking.
 撥水層11は、酸素を含む気相2と接触しており、気相2中の酸素を拡散している。そして、撥水層11は、図2に示す構成では、ガス拡散層12に対し酸素を略均一に供給している。そのため、撥水層11は、当該酸素を拡散できるように多孔質体であることが好ましい。なお、撥水層11は撥水性を有するため、結露等により多孔質体の細孔が閉塞し、酸素の拡散性が低下することを抑制できる。また、撥水層11の内部に電解液60が染み込み難いため、撥水層11における気相2と接触する面からガス拡散層12と対向する面にかけて、酸素を効率的に流通させることが可能となる。 The water repellent layer 11 is in contact with the gas phase 2 containing oxygen, and diffuses oxygen in the gas phase 2. In the configuration shown in FIG. 2, the water repellent layer 11 supplies oxygen to the gas diffusion layer 12 substantially uniformly. Therefore, the water repellent layer 11 is preferably a porous body so that the oxygen can be diffused. In addition, since the water repellent layer 11 has water repellency, it can suppress that the pores of a porous body are obstruct | occluded by dew condensation etc. and oxygen diffusibility falls. In addition, since the electrolytic solution 60 hardly penetrates into the water repellent layer 11, oxygen can be efficiently circulated from the surface in contact with the gas phase 2 to the surface facing the gas diffusion layer 12 in the water repellent layer 11. It becomes.
 撥水層11は、織布又は不織布によりシート状に形成されていることが好ましい。また、撥水層11を構成する材料は、撥水性を有し、気相2中の酸素を拡散できれば特に限定されない。撥水層11を構成する材料としては、例えば、ポリエチレン、ポリプロピレン、ポリブタジエン、ナイロン、ポリテトラフルオロエチレン(PTFE)、エチルセルロース、ポリ-4-メチルペンテン-1、ブチルゴム及びポリジメチルシロキサン(PDMS)からなる群より選ばれる少なくとも一つを使用することができる。これらの材料は多孔質体を形成しやすく、さらに撥水性も高いため、細孔の閉塞を抑制してガス拡散性を向上させることができる。なお、撥水層11は、撥水層11及びガス拡散層12の積層方向Xに複数の貫通孔を有することが好ましい。 The water repellent layer 11 is preferably formed in a sheet shape from a woven fabric or a non-woven fabric. The material constituting the water repellent layer 11 is not particularly limited as long as it has water repellency and can diffuse oxygen in the gas phase 2. Examples of the material constituting the water repellent layer 11 include polyethylene, polypropylene, polybutadiene, nylon, polytetrafluoroethylene (PTFE), ethyl cellulose, poly-4-methylpentene-1, butyl rubber, and polydimethylsiloxane (PDMS). At least one selected from the group can be used. Since these materials are easy to form a porous body and also have high water repellency, they can suppress clogging of pores and improve gas diffusibility. The water repellent layer 11 preferably has a plurality of through holes in the stacking direction X of the water repellent layer 11 and the gas diffusion layer 12.
 撥水層11は撥水性を高めるために、必要に応じて撥水剤を用いて撥水処理を施してもよい。具体的には、撥水層11を構成する多孔質体にポリテトラフルオロエチレン等の撥水剤を付着させ、撥水性を向上させてもよい。 The water repellent layer 11 may be subjected to a water repellent treatment using a water repellent as necessary in order to enhance water repellency. Specifically, a water repellent such as polytetrafluoroethylene may be attached to the porous body constituting the water repellent layer 11 to improve water repellency.
  <ガス拡散層>
 正極10におけるガス拡散層12は、多孔質な導電性材料と、この導電性材料に担持されている触媒とを備えることが好ましい。なお、ガス拡散層12が、多孔質かつ導電性を有する触媒から構成されてもよい。正極10にこのようなガス拡散層12を備えることで、後述する局部電池反応により生成した電子を触媒と外部回路80との間で導通させることが可能となる。つまり、後述するように、ガス拡散層12には触媒が担持されており、さらに触媒は酸素還元触媒である。そして、電子が外部回路80からガス拡散層12を通じて触媒に移動することにより、触媒によって、酸素、水素イオン及び電子による酸素還元反応を進行させることが可能となる。
<Gas diffusion layer>
The gas diffusion layer 12 in the positive electrode 10 preferably includes a porous conductive material and a catalyst supported on the conductive material. The gas diffusion layer 12 may be composed of a porous and conductive catalyst. By providing the positive electrode 10 with such a gas diffusion layer 12, electrons generated by a local battery reaction described later can be conducted between the catalyst and the external circuit 80. That is, as will be described later, the gas diffusion layer 12 carries a catalyst, and the catalyst is an oxygen reduction catalyst. Then, the electrons move from the external circuit 80 to the catalyst through the gas diffusion layer 12, whereby the oxygen reduction reaction by oxygen, hydrogen ions, and electrons can be advanced by the catalyst.
 正極10では、安定的な性能を確保するために、酸素が撥水層11及びガス拡散層12を効率よく透過し、触媒に供給されることが好ましい。そのため、ガス拡散層12は、撥水層11と対向する面から反対側の面にかけて、酸素が透過する細孔を多数有する多孔質体であることが好ましい。また、ガス拡散層12の形状は、三次元のメッシュ状であることが特に好ましい。このようなメッシュ状であることにより、ガス拡散層12に対し、高い酸素透過性及び導電性を付与することが可能となる。 In the positive electrode 10, in order to ensure stable performance, it is preferable that oxygen permeate the water-repellent layer 11 and the gas diffusion layer 12 efficiently and be supplied to the catalyst. Therefore, the gas diffusion layer 12 is preferably a porous body having a large number of pores through which oxygen passes from the surface facing the water repellent layer 11 to the opposite surface. The shape of the gas diffusion layer 12 is particularly preferably a three-dimensional mesh. Such a mesh shape makes it possible to impart high oxygen permeability and conductivity to the gas diffusion layer 12.
 正極10において、ガス拡散層12に効率的に酸素を供給するために、撥水層11は、接着剤を介してガス拡散層12と接合していることが好ましい。これにより、ガス拡散層12に対し、拡散した酸素が直接供給され、酸素還元反応を効率的に行うことができる。接着剤は、撥水層11とガス拡散層12との間の接着性を確保する観点から、撥水層11とガス拡散層12との間の少なくとも一部に設けられていることが好ましい。ただ、撥水層11とガス拡散層12との間の接着性を高め、長期間に亘り安定的に酸素をガス拡散層12に供給する観点から、接着剤は撥水層11とガス拡散層12との間の全面に設けられていることがより好ましい。 In the positive electrode 10, the water repellent layer 11 is preferably bonded to the gas diffusion layer 12 via an adhesive in order to efficiently supply oxygen to the gas diffusion layer 12. Thereby, the diffused oxygen is directly supplied to the gas diffusion layer 12, and the oxygen reduction reaction can be performed efficiently. The adhesive is preferably provided on at least a part between the water-repellent layer 11 and the gas diffusion layer 12 from the viewpoint of ensuring the adhesion between the water-repellent layer 11 and the gas diffusion layer 12. However, from the viewpoint of improving the adhesion between the water repellent layer 11 and the gas diffusion layer 12 and supplying oxygen to the gas diffusion layer 12 stably over a long period of time, the adhesive is used as the water repellent layer 11 and the gas diffusion layer. It is more preferable that it is provided on the entire surface between the two.
 接着剤としては酸素透過性を有するものが好ましく、ポリメチルメタクリレート、メタクリル酸-スチレン共重合体、スチレン-ブタジエンゴム、ブチルゴム、ニトリルゴム、クロロプレンゴム及びシリコーンからなる群より選ばれる少なくとも一つを含む樹脂を用いることができる。 The adhesive preferably has oxygen permeability, and includes at least one selected from the group consisting of polymethyl methacrylate, methacrylic acid-styrene copolymer, styrene-butadiene rubber, butyl rubber, nitrile rubber, chloroprene rubber, and silicone. Resin can be used.
 ここで、本実施形態における正極10のガス拡散層12について、さらに詳しく説明する。上述のように、ガス拡散層12は、多孔質な導電性材料と、当該導電性材料に担持されている触媒とを備えるような構成とすることができる。 Here, the gas diffusion layer 12 of the positive electrode 10 in the present embodiment will be described in more detail. As described above, the gas diffusion layer 12 can be configured to include a porous conductive material and a catalyst supported on the conductive material.
 ガス拡散層12における導電性材料は、例えば炭素系物質、導電性ポリマー、半導体及び金属からなる群より選ばれる一種以上の材料から構成することができる。ここで、炭素系物質とは、炭素を構成成分とする物質をいう。炭素系物質の例としては、例えば、グラファイト、活性炭、カーボンブラック、バルカン(登録商標)XC-72R、アセチレンブラック、ファーネスブラック、デンカブラックなどのカーボンパウダー、グラファイトフェルト、カーボンウール、カーボン織布などのカーボンファイバー、カーボンプレート、カーボンペーパー、カーボンディスク、カーボンクロス、カーボンホイル、炭素粒子を圧縮成形した炭素系材料が挙げられる。また、炭素系物質の例として、カーボンナノチューブ、カーボンナノホーン、カーボンナノクラスターのような微細構造物質も挙げられる。さらに、ガス拡散層12における導電性材料としては、メッシュ及び発泡体等の金属材料も用いることができる。 The conductive material in the gas diffusion layer 12 can be composed of, for example, one or more materials selected from the group consisting of carbon-based substances, conductive polymers, semiconductors, and metals. Here, the carbon-based material means a material containing carbon as a constituent component. Examples of carbon-based materials include, for example, carbon powder such as graphite, activated carbon, carbon black, Vulcan (registered trademark) XC-72R, acetylene black, furnace black, Denka black, graphite felt, carbon wool, carbon woven cloth, etc. Carbon fiber, carbon plate, carbon paper, carbon disk, carbon cloth, carbon foil, and carbon-based material obtained by compression molding carbon particles are included. Examples of the carbon-based material also include fine-structured materials such as carbon nanotubes, carbon nanohorns, and carbon nanoclusters. Furthermore, as a conductive material in the gas diffusion layer 12, a metal material such as a mesh and a foam can also be used.
 導電性ポリマーとは、導電性を有する高分子化合物の総称である。導電性ポリマーとしては、例えば、アニリン、アミノフェノール、ジアミノフェノール、ピロール、チオフェン、パラフェニレン、フルオレン、フラン、アセチレン若しくはそれらの誘導体を構成単位とする単一モノマー又は2種以上のモノマーの重合体が挙げられる。具体的には、導電性ポリマーとして、例えば、ポリアニリン、ポリアミノフェノール、ポリジアミノフェノール、ポリピロール、ポリチオフェン、ポリパラフェニレン、ポリフルオレン、ポリフラン、ポリアセチレン等が挙げられる。金属製の導電性材料としては、例えば、ステンレスメッシュが挙げられる。入手の容易性、コスト、耐食性、耐久性等を考慮した場合、導電性材料は炭素系物質であることが好ましい。 Conductive polymer is a general term for conductive polymer compounds. Examples of the conductive polymer include aniline, aminophenol, diaminophenol, pyrrole, thiophene, paraphenylene, fluorene, furan, acetylene, or a polymer of two or more monomers having a structural unit as a constituent unit. Can be mentioned. Specifically, examples of the conductive polymer include polyaniline, polyaminophenol, polydiaminophenol, polypyrrole, polythiophene, polyparaphenylene, polyfluorene, polyfuran, and polyacetylene. An example of the metal conductive material is a stainless mesh. In consideration of availability, cost, corrosion resistance, durability, and the like, the conductive material is preferably a carbon-based substance.
 また、導電性材料の形状は、粉末形状又は繊維形状であることが好ましい。また、導電性材料は、支持体に支持されていてもよい。支持体とは、それ自身が剛性を有し、ガス拡散電極に一定の形状を付与することのできる部材をいう。支持体は絶縁体であっても導電体であってもよい。支持体が絶縁体である場合、支持体としては、例えばガラス、プラスチック、合成ゴム、セラミックス、耐水又は撥水処理した紙、木片などの植物片、骨片、貝殻などの動物片等が挙げられる。多孔質構造の支持体としては、例えば多孔質セラミック、多孔質プラスチック、スポンジ等が挙げられる。支持体が導電体である場合、支持体としては、例えばカーボンペーパー、カーボンファイバー、炭素棒などの炭素系物質、金属、導電性ポリマー等が挙げられる。支持体が導電体の場合には、炭素系材料を担持した導電性材料が支持体の表面上に配置されることで、支持体が集電体としても機能し得る。 The shape of the conductive material is preferably a powder shape or a fiber shape. Further, the conductive material may be supported by a support. The support means a member that itself has rigidity and can give a certain shape to the gas diffusion electrode. The support may be an insulator or a conductor. When the support is an insulator, examples of the support include glass, plastic, synthetic rubber, ceramics, water-resistant or water-repellent treated paper, plant pieces such as wood pieces, bone pieces, animal pieces such as shells, and the like. . Examples of the porous structure support include porous ceramics, porous plastics, and sponges. When the support is a conductor, examples of the support include carbon materials such as carbon paper, carbon fiber, and carbon rod, metals, conductive polymers, and the like. When the support is a conductor, the support can also function as a current collector by disposing a conductive material carrying a carbon-based material on the surface of the support.
 ガス拡散層12における触媒は、白金系触媒、鉄又はコバルトを用いた炭素系触媒、部分酸化したタンタル炭窒化物(TaCNO)及びジルコニウム炭窒化物(ZrCNO)等の遷移金属酸化物系触媒、タングステン又はモリブデンを用いた炭化物系触媒、活性炭等を用いることができる。 The catalyst in the gas diffusion layer 12 is a platinum-based catalyst, a carbon-based catalyst using iron or cobalt, a transition metal oxide-based catalyst such as partially oxidized tantalum carbonitride (TaCNO) and zirconium carbonitride (ZrCNO), tungsten Alternatively, a carbide catalyst using activated molybdenum, activated carbon, or the like can be used.
 ガス拡散層12における触媒は、金属原子がドープされている炭素系材料であることが好ましい。金属原子としては特に限定されないが、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金及び金からなる群より選ばれる少なくとも一種の金属の原子であることが好ましい。この場合、炭素系材料が、特に酸素還元反応を促進させるための触媒として優れた性能を発揮する。炭素系材料が含有する金属原子の量は、炭素系材料が優れた触媒性能を有するように適宜設定すればよい。 The catalyst in the gas diffusion layer 12 is preferably a carbon-based material doped with metal atoms. Although it does not specifically limit as a metal atom, Titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, hafnium, tantalum, tungsten, rhenium, osmium, iridium , Preferably an atom of at least one metal selected from the group consisting of platinum and gold. In this case, the carbon-based material exhibits excellent performance as a catalyst for promoting the oxygen reduction reaction. What is necessary is just to set suitably the quantity of the metal atom which carbonaceous material contains so that carbonaceous material may have the outstanding catalyst performance.
 炭素系材料には、更に窒素、ホウ素、硫黄及びリンから選択される一種以上の非金属原子がドープされていることが好ましい。炭素系材料にドープされている非金属原子の量も、炭素系材料が優れた触媒性能を有するように適宜設定すればよい。 It is preferable that the carbon-based material is further doped with one or more nonmetallic atoms selected from nitrogen, boron, sulfur, and phosphorus. What is necessary is just to set suitably the quantity of the nonmetallic atom doped by the carbonaceous material so that carbonaceous material may have the outstanding catalyst performance.
 炭素系材料は、例えばグラファイト及び無定形炭素等の炭素源原料をベースとし、この炭素源原料に金属原子と、窒素、ホウ素、硫黄及びリンから選択される一種以上の非金属原子とをドープすることで得られる。 The carbon-based material is based on a carbon source material such as graphite and amorphous carbon, for example, and the carbon source material is doped with a metal atom and one or more non-metal atoms selected from nitrogen, boron, sulfur and phosphorus. Can be obtained.
 炭素系材料にドープされている金属原子と非金属原子との組み合わせは、適宜選択される。特に、非金属原子が窒素を含み、金属原子が鉄を含むことが好ましい。この場合、炭素系材料が特に優れた触媒活性を有することができる。なお、非金属原子が窒素のみであってもよく、金属原子が鉄のみであってもよい。 The combination of metal atoms and nonmetal atoms doped in the carbon-based material is appropriately selected. In particular, it is preferable that the nonmetallic atom contains nitrogen and the metallic atom contains iron. In this case, the carbon-based material can have particularly excellent catalytic activity. Note that the nonmetallic atom may be only nitrogen, and the metallic atom may be only iron.
 非金属原子が窒素を含み、金属原子がコバルトとマンガンとのうち少なくとも一方を含んでもよい。この場合も、炭素系材料が特に優れた触媒活性を有することができる。なお、非金属原子が窒素のみであってもよい。また、金属原子がコバルトのみ、マンガンのみ、あるいはコバルト及びマンガンのみであってもよい。 The nonmetallic atom may contain nitrogen, and the metallic atom may contain at least one of cobalt and manganese. Also in this case, the carbon-based material can have a particularly excellent catalytic activity. The nonmetallic atom may be only nitrogen. Further, the metal atom may be only cobalt, only manganese, or only cobalt and manganese.
 炭素系材料の形状は特に制限されない。例えば、炭素系材料は、粒子状の形状を有してもよく、またシート状の形状を有してもよい。シート状の形状を有する炭素系材料の寸法は特に制限されず、例えばこの炭素系材料が微小な寸法であってもよい。シート状の形状を有する炭素系材料は、多孔質であってもよい。シート状の形状を有し、かつ、多孔質な炭素系材料は、例えば織布状、不織布状等の形状を有することが好ましい。このような炭素系材料は、導電性材料が無くても、ガス拡散層12を構成することができる。 The shape of the carbon-based material is not particularly limited. For example, the carbon-based material may have a particulate shape or may have a sheet shape. The dimension of the carbon-based material having a sheet-like shape is not particularly limited. For example, the carbon-based material may have a minute dimension. The carbon-based material having a sheet shape may be porous. It is preferable that the porous carbon-based material having a sheet shape has a shape such as a woven fabric shape or a nonwoven fabric shape. Such a carbon-based material can constitute the gas diffusion layer 12 even without a conductive material.
 ガス拡散層12における触媒として構成される炭素系材料は、次のように調製することができる。まず、例えば窒素、ホウ素、硫黄及びリンからなる群より選ばれる少なくとも一種の非金属を含む非金属化合物と、金属化合物と、炭素源原料とを含有する混合物を準備する。そして、この混合物を、800℃以上1000℃以下の温度で、45秒以上600秒未満加熱する。これにより、触媒として構成される炭素系材料を得ることができる。 The carbon-based material configured as a catalyst in the gas diffusion layer 12 can be prepared as follows. First, for example, a mixture containing a nonmetallic compound containing at least one nonmetal selected from the group consisting of nitrogen, boron, sulfur, and phosphorus, a metal compound, and a carbon source material is prepared. And this mixture is heated at the temperature of 800 degreeC or more and 1000 degrees C or less for 45 second or more and less than 600 second. Thereby, the carbonaceous material comprised as a catalyst can be obtained.
 ここで、炭素源原料としては、上述の通り、例えばグラファイト又は無定形炭素を使用することができる。さらに、金属化合物としては、炭素源原料にドープされる非金属原子と配位結合し得る金属原子を含む化合物であれば、特に制限されない。金属化合物は、例えば金属の塩化物、硝酸塩、硫酸塩、臭化物、ヨウ化物、フッ化物などのような無機金属塩、酢酸塩などの有機金属塩、無機金属塩の水和物、及び有機金属塩の水和物からなる群より選ばれる少なくとも一種を使用することができる。例えばグラファイトに鉄がドープされる場合には、金属化合物は塩化鉄(III)を含有することが好ましい。また、グラファイトにコバルトがドープされる場合には、金属化合物は塩化コバルトを含有することが好ましい。また、炭素源原料にマンガンがドープされる場合には、金属化合物は酢酸マンガンを含有することが好ましい。金属化合物の使用量は、例えば炭素源原料に対する金属化合物中の金属原子の割合が5~30質量%の範囲内となるように決定されることが好ましく、更にこの割合が5~20質量%の範囲内となるように決定されることがより好ましい。 Here, as the carbon source material, for example, graphite or amorphous carbon can be used as described above. Further, the metal compound is not particularly limited as long as it is a compound containing a metal atom capable of coordinating with a nonmetal atom doped in the carbon source material. Metal compounds include, for example, metal chlorides, nitrates, sulfates, bromides, iodides, fluorides, etc., inorganic metal salts, organic metal salts such as acetates, inorganic metal salt hydrates, and organic metal salts At least one selected from the group consisting of hydrates can be used. For example, when graphite is doped with iron, the metal compound preferably contains iron (III) chloride. Moreover, when graphite is doped with cobalt, the metal compound preferably contains cobalt chloride. When the carbon source material is doped with manganese, the metal compound preferably contains manganese acetate. The amount of the metal compound used is preferably determined so that, for example, the ratio of the metal atom in the metal compound to the carbon source material is in the range of 5 to 30% by mass, and further this ratio is 5 to 20% by mass. More preferably, it is determined to be within the range.
 非金属化合物は、上記の通り、窒素、ホウ素、硫黄及びリンからなる群より選ばれる少なくとも一種の非金属の化合物であることが好ましい。非金属化合物としては、例えば、ペンタエチレンヘキサミン、エチレンジアミン、テトラエチレンペンタミン、トリエチレンテトラミン、エチレンジアミン、オクチルボロン酸、1,2-ビス(ジエチルホスフィノエタン)、亜リン酸トリフェニル、ベンジルジサルフィドからなる群より選ばれる少なくとも一種の化合物を使用することができる。非金属化合物の使用量は、炭素源原料への非金属原子のドープ量に応じて適宜設定される。非金属化合物の使用量は、金属化合物中の金属原子と、非金属化合物中の非金属原子とのモル比が、1:1~1:2の範囲内となるように決定されることが好ましく、1:1.5~1:1.8の範囲内となるように決定されることがより好ましい。 As described above, the nonmetallic compound is preferably at least one nonmetallic compound selected from the group consisting of nitrogen, boron, sulfur and phosphorus. Non-metallic compounds include, for example, pentaethylenehexamine, ethylenediamine, tetraethylenepentamine, triethylenetetramine, ethylenediamine, octylboronic acid, 1,2-bis (diethylphosphinoethane), triphenyl phosphite, benzyldisal At least one compound selected from the group consisting of fido can be used. The amount of the nonmetallic compound used is appropriately set according to the amount of the nonmetallic atom doped into the carbon source material. The amount of the nonmetallic compound used is preferably determined so that the molar ratio of the metal atom in the metal compound to the nonmetallic atom in the nonmetallic compound is in the range of 1: 1 to 1: 2. More preferably, it is determined to be within the range of 1: 1.5 to 1: 1.8.
 触媒として構成される炭素系材料を調製する際の、非金属化合物と金属化合物と炭素源原料とを含有する混合物は、例えば次のようにして得られる。まず炭素源原料と金属化合物と非金属化合物とを混合し、更に必要に応じてエタノール等の溶媒を加えて全量を調整する。これらを更に超音波分散法により分散させる。続いて、これらを適宜の温度(例えば60℃)で加熱した後に、混合物を乾燥して溶媒を除去する。これにより、非金属化合物と金属化合物と炭素源原料とを含有する混合物が得られる。 A mixture containing a nonmetallic compound, a metal compound, and a carbon source material when preparing a carbon-based material configured as a catalyst is obtained, for example, as follows. First, a carbon source material, a metal compound, and a nonmetal compound are mixed, and if necessary, a solvent such as ethanol is added to adjust the total amount. These are further dispersed by an ultrasonic dispersion method. Subsequently, after heating them at an appropriate temperature (for example, 60 ° C.), the mixture is dried to remove the solvent. Thereby, the mixture containing a nonmetallic compound, a metal compound, and a carbon source raw material is obtained.
 次に、得られた混合物を、例えば還元性雰囲気下又は不活性ガス雰囲気下で加熱する。これにより、炭素源原料に非金属原子がドープされ、さらに非金属原子と金属原子とが配位結合することで金属原子もドープされる。加熱温度は800℃以上1000℃以下の範囲内であることが好ましく、加熱時間は45秒以上600秒未満の範囲内であることが好ましい。加熱時間が短時間であるため、炭素系材料が効率よく製造され、しかも炭素系材料の触媒活性が更に高くなる。なお、加熱処理における、加熱開始時の混合物の昇温速度は、50℃/s以上であることが好ましい。このような急速加熱は、炭素系材料の触媒活性を更に向上する。 Next, the obtained mixture is heated, for example, under a reducing atmosphere or an inert gas atmosphere. Thereby, a non-metallic atom is doped to a carbon source raw material, and also a metallic atom is doped by the coordinate bond of a non-metallic atom and a metallic atom. The heating temperature is preferably in the range of 800 ° C. to 1000 ° C., and the heating time is preferably in the range of 45 seconds to less than 600 seconds. Since the heating time is short, the carbon-based material is efficiently produced, and the catalytic activity of the carbon-based material is further increased. In the heat treatment, the temperature rising rate of the mixture at the start of heating is preferably 50 ° C./s or more. Such rapid heating further improves the catalytic activity of the carbonaceous material.
 また、炭素系材料を、更に酸洗浄してもよい。例えば炭素系材料を、純水中、ホモジナイザーで30分間分散させ、その後この炭素系材料を2M硫酸中に入れて、80℃で3時間攪拌してもよい。この場合、炭素系材料からの金属成分の溶出が抑えられる。 In addition, the carbon-based material may be further acid cleaned. For example, the carbon-based material may be dispersed in pure water with a homogenizer for 30 minutes, and then the carbon-based material may be placed in 2M sulfuric acid and stirred at 80 ° C. for 3 hours. In this case, elution of the metal component from the carbon-based material can be suppressed.
 このような製造方法により、不活性金属化合物及び金属結晶の含有量が著しく低く、かつ、導電性の高い炭素系材料が得られる。 By such a production method, a carbon-based material having a significantly low content of inert metal compound and metal crystal and high conductivity can be obtained.
 ガス拡散層12において、触媒は結着剤を用いて導電性材料に結着していてもよい。つまり、触媒は結着剤を用いて導電性材料の表面及び細孔内部に担持されていてもよい。これにより、触媒が導電性材料から脱離し、酸素還元特性が低下することを抑制できる。結着剤としては、例えばポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)、及びエチレン-プロピレン-ジエン共重合体(EPDM)からなる群より選ばれる少なくとも一つを用いることが好ましい。また、結着剤としては、NAFION(登録商標)を用いることも好ましい。 In the gas diffusion layer 12, the catalyst may be bound to the conductive material using a binder. That is, the catalyst may be supported on the surface of the conductive material and inside the pores using a binder. Thereby, it can suppress that a catalyst detaches | leaves from an electroconductive material and an oxygen reduction characteristic falls. As the binder, for example, at least one selected from the group consisting of polytetrafluoroethylene, polyvinylidene fluoride (PVDF), and ethylene-propylene-diene copolymer (EPDM) is preferably used. Moreover, it is also preferable to use NAFION (registered trademark) as a binder.
 (負極)
 本実施形態における負極20は、後述する微生物を担持し、さらに微生物の触媒作用により、電解液60中の有機性物質及び窒素含有化合物の少なくとも一方から水素イオン及び電子を生成する機能を有する。そのため、本実施形態の負極20は、このような機能を生じさせる構成ならば特に限定されない。
(Negative electrode)
The negative electrode 20 in the present embodiment carries a microbe described later and further has a function of generating hydrogen ions and electrons from at least one of an organic substance and a nitrogen-containing compound in the electrolytic solution 60 by the catalytic action of the microbe. For this reason, the negative electrode 20 of the present embodiment is not particularly limited as long as it has such a function.
 本実施形態の負極20は、導電性を有する導電体シートに微生物を担持した構造を有する。導電体シートとしては、多孔質の導電体シート、織布状の導電体シート及び不織布状の導電体シートからなる群より選ばれる少なくとも一つを使用することができる。また、導電体シートは複数のシートを積層した積層体でもよい。負極20の導電体シートとして、このような複数の細孔を有するシートを用いることにより、後述する局部電池反応で生成した水素イオンがイオン移動層30の方向へ移動しやすくなり、酸素還元反応の速度を高めることが可能となる。また、イオン透過性を向上させる観点から、負極20の導電体シートは、正極10、イオン移動層30及び負極20の積層方向X、つまり厚さ方向に連続した空間(空隙)を有していることが好ましい。 The negative electrode 20 of the present embodiment has a structure in which microorganisms are supported on a conductive sheet having conductivity. As the conductor sheet, it is possible to use at least one selected from the group consisting of a porous conductor sheet, a woven conductor sheet, and a nonwoven conductor sheet. The conductor sheet may be a laminate in which a plurality of sheets are laminated. By using such a sheet having a plurality of pores as the conductor sheet of the negative electrode 20, hydrogen ions generated in the local battery reaction described later easily move toward the ion moving layer 30, and the oxygen reduction reaction The speed can be increased. Further, from the viewpoint of improving ion permeability, the conductor sheet of the negative electrode 20 has a space (void) continuous in the stacking direction X of the positive electrode 10, the ion moving layer 30 and the negative electrode 20, that is, in the thickness direction. It is preferable.
 当該導電体シートは、厚さ方向に複数の貫通孔を有する金属板であってもよい。そのため、負極20の導電体シートを構成する材料としては、例えば、アルミニウム、銅、ステンレス鋼、ニッケル及びチタンなどの導電性金属、並びにカーボンペーパー、カーボンフェルトからなる群より選ばれる少なくとも一つを用いることができる。 The conductor sheet may be a metal plate having a plurality of through holes in the thickness direction. Therefore, as a material constituting the conductor sheet of the negative electrode 20, for example, at least one selected from the group consisting of conductive metals such as aluminum, copper, stainless steel, nickel and titanium, carbon paper, and carbon felt is used. be able to.
 負極20の導電体シートとして、正極10で使用する黒鉛シートを用いてもよい。また、負極20は黒鉛を含有し、さらに黒鉛におけるグラフェン層は、正極10、イオン移動層30及び負極20の積層方向Xに垂直な方向YZの面に沿って配列していることが好ましい。グラフェン層がこのように配列していることにより、積層方向Xの導電性よりも、積層方向Xに垂直な方向YZの導電性が向上する。そのため、負極20の局部電池反応により生成した電子を外部回路80へ導通させやすくなり、電池反応の効率をより向上させることが可能となる。 As the conductor sheet of the negative electrode 20, a graphite sheet used in the positive electrode 10 may be used. In addition, the negative electrode 20 preferably contains graphite, and the graphene layer in the graphite is preferably arranged along a plane in the direction YZ perpendicular to the stacking direction X of the positive electrode 10, the ion moving layer 30 and the negative electrode 20. By arranging the graphene layers in this way, the conductivity in the direction YZ perpendicular to the stacking direction X is improved as compared with the conductivity in the stacking direction X. Therefore, the electrons generated by the local battery reaction of the negative electrode 20 can be easily conducted to the external circuit 80, and the efficiency of the battery reaction can be further improved.
 負極20に担持される微生物としては、電解液60中の有機性物質又は窒素含有化合物を分解して、水素イオン及び電子を生成する微生物であれば特に限定されない。このような微生物としては、例えば、増殖に酸素を必要とする好気性微生物、又は増殖に酸素を必要としない嫌気性微生物を使用することができるが、嫌気性微生物を使用することが好ましい。嫌気性微生物は、電解液60中の有機性物質を酸化分解するための空気を必要としない。そのため、空気を送り込むために必要な電力を大幅に低減することができる。また、微生物が獲得する自由エネルギーが小さいので、汚泥発生量を減少させることが可能となる。 The microorganism supported on the negative electrode 20 is not particularly limited as long as it is a microorganism that decomposes an organic substance or a nitrogen-containing compound in the electrolytic solution 60 to generate hydrogen ions and electrons. As such microorganisms, for example, an aerobic microorganism that requires oxygen for growth or an anaerobic microorganism that does not require oxygen for growth can be used, but an anaerobic microorganism is preferably used. Anaerobic microorganisms do not require air for oxidative decomposition of organic substances in the electrolyte solution 60. Therefore, the electric power required for sending air can be significantly reduced. Moreover, since the free energy which microbes acquire is small, it becomes possible to reduce the amount of sludge generation.
 負極20に保持される好気性微生物は、例えばEscherichia属細菌である大腸菌、Pseudomonas属細菌である緑濃菌、Bacillus属細菌である枯草菌が挙げられる。また、負極20に保持される嫌気性微生物は、例えば細胞外電子伝達機構を有する電気生産細菌であることが好ましい。具体的には、嫌気性微生物として、例えばGeobacter属細菌、Shewanella属細菌、Aeromonas属細菌、Geothrix属細菌、Saccharomyces属細菌が挙げられる。 Examples of the aerobic microorganisms held in the negative electrode 20 include Escherichia bacterium, Escherichia bacterium, Pseudomonas bacterium, Bacillus bacterium, Bacillus bacterium. Moreover, it is preferable that the anaerobic microorganisms hold | maintained at the negative electrode 20 are the electric production bacteria which have an extracellular electron transmission mechanism, for example. Specifically, examples of the anaerobic microorganism include Geobacter genus bacteria, Shewanella genus bacteria, Aeromonas genus bacteria, Geothrix genus bacteria, and Saccharomyces genus bacteria.
 負極20に、微生物を含むバイオフィルムが重ねられて固定されることで、負極20に微生物が保持されていてもよい。なお、バイオフィルムとは、一般に、微生物集団と、微生物集団が生産する菌体外重合体物質(extracellular polymeric substance、EPS)とを含む三次元構造体のことをいう。ただ、微生物は、バイオフィルムによらずに負極20に保持されていてもよい。また、微生物は、負極20の表面だけでなく、内部に保持されていてもよい。 Microorganisms may be held in the negative electrode 20 by superimposing and fixing a biofilm containing microorganisms on the negative electrode 20. The biofilm generally refers to a three-dimensional structure including a microbial population and an extracellular polymeric substance (EPS) produced by the microbial population. However, the microorganisms may be held on the negative electrode 20 without depending on the biofilm. Microorganisms may be held not only on the surface of the negative electrode 20 but also inside.
 本実施形態に係る負極20には、例えば、電子伝達メディエーター分子が修飾されていてもよい。あるいは、電解液槽70内の電解液60は、電子伝達メディエーター分子を含んでいてもよい。これにより、微生物から負極20への電子移動を促進し、より効率的な液体処理を実現できる。 The negative electrode 20 according to this embodiment may be modified with, for example, an electron transfer mediator molecule. Alternatively, the electrolytic solution 60 in the electrolytic solution tank 70 may contain electron transfer mediator molecules. Thereby, the electron transfer from microorganisms to the negative electrode 20 is accelerated | stimulated, and more efficient liquid processing is realizable.
 具体的には、微生物による代謝機構では、細胞内又は最終電子受容体との間で電子の授受が行われる。電解液60中にメディエーター分子を導入すると、メディエーター分子が代謝の最終電子受容体として作用し、かつ、受け取った電子を負極20へと受け渡す。この結果、電解液60における有機性物質などの酸化分解速度を高めることが可能になる。このような電子伝達メディエーター分子は、特に限定されない。電子伝達メディエーター分子としては、例えばニュートラルレッド、アントラキノン-2,6-ジスルホン酸(AQDS)、チオニン、フェリシアン化カリウム、及びメチルビオローゲンからなる群より選ばれる少なくとも一つを用いることができる。 Specifically, in the metabolic mechanism by microorganisms, electrons are transferred between cells or with the final electron acceptor. When a mediator molecule is introduced into the electrolytic solution 60, the mediator molecule acts as a final electron acceptor of metabolism, and delivers received electrons to the negative electrode 20. As a result, it is possible to increase the rate of oxidative decomposition of the organic substance or the like in the electrolytic solution 60. Such an electron transfer mediator molecule is not particularly limited. As the electron transfer mediator molecule, for example, at least one selected from the group consisting of neutral red, anthraquinone-2,6-disulfonic acid (AQDS), thionine, potassium ferricyanide, and methylviologen can be used.
 (イオン移動層)
 本実施形態の液体処理ユニット1は、正極10と負極20との間に設けられ、プロトン透過性を有するイオン移動層30をさらに備える。そして、図1及び図2に示すように、負極20は、イオン移動層30を介して正極10と隔てられている。イオン移動層30は、負極20で生成した水素イオンを透過し、正極10側へ移動させる機能を有している。
(Ion moving layer)
The liquid processing unit 1 of the present embodiment further includes an ion transfer layer 30 provided between the positive electrode 10 and the negative electrode 20 and having proton permeability. As shown in FIGS. 1 and 2, the negative electrode 20 is separated from the positive electrode 10 through an ion migration layer 30. The ion moving layer 30 has a function of transmitting hydrogen ions generated in the negative electrode 20 and moving the hydrogen ions to the positive electrode 10 side.
 イオン移動層30としては、例えばイオン交換樹脂を用いたイオン交換膜を使用することができる。イオン交換樹脂としては、例えばデュポン株式会社製のNAFION(登録商標)、並びに旭硝子株式会社製のフレミオン(登録商標)及びセレミオン(登録商標)を用いることができる。 As the ion moving layer 30, for example, an ion exchange membrane using an ion exchange resin can be used. As the ion exchange resin, for example, NAFION (registered trademark) manufactured by DuPont, and Flemion (registered trademark) and Selemion (registered trademark) manufactured by Asahi Glass Co., Ltd. can be used.
 また、イオン移動層30として、水素イオンが透過することが可能な細孔を有する多孔質膜を使用してもよい。つまり、イオン移動層30は、負極20から正極10へ水素イオンが移動するための空間(空隙)を有するシートであってもよい。そのため、イオン移動層30は、多孔質のシート、織布状のシート及び不織布状のシートからなる群より選ばれる少なくとも一つを備えることが好ましい。また、イオン移動層30は、ガラス繊維膜、合成繊維膜、及びプラスチック不織布からなる群より選ばれる少なくとも一つを用いることができ、これらを複数積層してなる積層体でもよい。このような多孔質のシートは、内部に多数の細孔を有しているため、水素イオンが容易に移動することが可能となる。なお、イオン移動層30の細孔径は、負極20から正極10に水素イオンが移動できれば特に限定されない。 Alternatively, a porous membrane having pores through which hydrogen ions can permeate may be used as the ion moving layer 30. That is, the ion moving layer 30 may be a sheet having a space (void) for hydrogen ions to move from the negative electrode 20 to the positive electrode 10. Therefore, the ion migration layer 30 preferably includes at least one selected from the group consisting of a porous sheet, a woven sheet, and a nonwoven sheet. Moreover, the ion migration layer 30 can use at least one chosen from the group which consists of a glass fiber membrane, a synthetic fiber membrane, and a plastic nonwoven fabric, and the laminated body formed by laminating these two or more may be used. Since such a porous sheet has a large number of pores inside, hydrogen ions can easily move. The pore diameter of the ion moving layer 30 is not particularly limited as long as hydrogen ions can move from the negative electrode 20 to the positive electrode 10.
 なお、上述のように、イオン移動層30は、負極20で生成した水素イオンを透過し、正極10側へ移動させる機能を有する。そのため、例えば、負極20と正極10とが接触しない状態で近接していれば、水素イオンが負極20から正極10へ移動することができる。そのため、本実施形態の液体処理システム100において、イオン移動層30は必須の構成要素ではない。ただ、イオン移動層30を設けることにより、負極20から正極10へ水素イオンを効率的に移動させることが可能となるため、出力向上の観点からイオン移動層30を設けることが好ましい。なお、正極10とイオン移動層30との間に間隔が設けられていてもよく、また負極20とイオン移動層30との間も間隔が設けられていてもよい。 Note that, as described above, the ion moving layer 30 has a function of transmitting hydrogen ions generated in the negative electrode 20 and moving them to the positive electrode 10 side. Therefore, for example, if the negative electrode 20 and the positive electrode 10 are close to each other without contact, hydrogen ions can move from the negative electrode 20 to the positive electrode 10. Therefore, in the liquid processing system 100 of the present embodiment, the ion moving layer 30 is not an essential component. However, since the provision of the ion moving layer 30 enables efficient movement of hydrogen ions from the negative electrode 20 to the positive electrode 10, it is preferable to provide the ion moving layer 30 from the viewpoint of improving the output. Note that a gap may be provided between the positive electrode 10 and the ion transfer layer 30, and a gap may also be provided between the negative electrode 20 and the ion transfer layer 30.
 液体処理ユニット1では、図2に示すように、負極20及び正極10に電気的に接続する外部回路80を備えている。ただ、液体処理ユニット1では、外部回路80を介さず、導電部材を用いて、負極20及び正極10が電気的に直接接続されていてもよい。また、液体処理ユニット1において、カセット基材50は、上部の全体が開口しているが、内部に空気(酸素)を導入することが可能ならば部分的に開口していてもよく、また閉口していてもよい。 The liquid processing unit 1 includes an external circuit 80 that is electrically connected to the negative electrode 20 and the positive electrode 10 as shown in FIG. However, in the liquid processing unit 1, the negative electrode 20 and the positive electrode 10 may be directly electrically connected using a conductive member without using the external circuit 80. Further, in the liquid processing unit 1, the cassette base member 50 is entirely open at the top, but may be partially opened as long as air (oxygen) can be introduced into the cassette base member 50. You may do it.
[電解液槽]
 液体処理システム100は、有機性物質を含む電解液を内部に保持する、略直方体状の電解液槽70を備える。電解液槽70には、電解液60を電解液槽70に供給するための流入口71と、処理後の電解液60を電解液槽70から排出するための流出口72とが設けられている。流入口71は電解液槽70の前壁73の上部に設けられ、流出口72は電解液槽70の後壁74の上部に設けられている。
[Electrolyte tank]
The liquid treatment system 100 includes a substantially rectangular parallelepiped electrolyte tank 70 that holds an electrolyte containing an organic substance therein. The electrolyte tank 70 is provided with an inlet 71 for supplying the electrolyte 60 to the electrolyte tank 70 and an outlet 72 for discharging the treated electrolyte 60 from the electrolyte tank 70. . The inlet 71 is provided on the upper part of the front wall 73 of the electrolytic solution tank 70, and the outlet 72 is provided on the upper part of the rear wall 74 of the electrolytic solution tank 70.
 電解液60は、流入口71を通じて電解液槽70の内部に連続的に供給される。また、図1及び図2に示すように、液体処理ユニット1は、電解液60に浸漬するように電解液槽70の内部に配置されている。そのため、電解液槽70の流入口71から供給された電解液60は、液体処理ユニット1に接触しながら流れ、その後、流出口72から排出される。 The electrolytic solution 60 is continuously supplied into the electrolytic solution tank 70 through the inlet 71. Moreover, as shown in FIG.1 and FIG.2, the liquid processing unit 1 is arrange | positioned inside the electrolyte solution tank 70 so that it may be immersed in the electrolyte solution 60. FIG. Therefore, the electrolytic solution 60 supplied from the inlet 71 of the electrolytic solution tank 70 flows while contacting the liquid processing unit 1, and is then discharged from the outlet 72.
[多孔質担体]
 液体処理システム100は、電解液槽70の内部に設けられ、電解液60中の不溶物を濾過するための多孔質担体90を備えている。多孔質担体90を設けることにより、電解液60に含まれている微生物や、微生物により利用されなかった微細な有機性物質を濾過して除去することができる。そのため、流出口72から排出される処理水中の不溶分を低減し、処理水の水質を向上させることが可能となる。
[Porous carrier]
The liquid processing system 100 includes a porous carrier 90 that is provided inside the electrolytic solution tank 70 and filters insoluble matters in the electrolytic solution 60. By providing the porous carrier 90, it is possible to filter and remove microorganisms contained in the electrolytic solution 60 and fine organic substances that have not been used by the microorganisms. Therefore, it is possible to reduce the insoluble matter in the treated water discharged from the outlet 72 and improve the quality of the treated water.
 多孔質担体90の形状は特に限定されず、電解液60に含まれている微生物や固体状の有機性物質を濾過することが可能な形状であればよい。多孔質担体90の形状は図1~図3に示すように平板状であってもよく、また図7及び図8に示すように半球状であってもよい。 The shape of the porous carrier 90 is not particularly limited as long as it is a shape capable of filtering microorganisms and solid organic substances contained in the electrolytic solution 60. The shape of the porous carrier 90 may be flat as shown in FIGS. 1 to 3, or may be hemispherical as shown in FIGS.
 多孔質担体90は、複数の細孔を有し、当該細孔により電解液60を濾過することが可能なものを用いることが好ましい。また、多孔質担体90の平均細孔径は、電解液60は通過できるが、微生物や固体状の有機性物質は通過することが困難な大きさであれば特に限定されない。多孔質担体90の平均細孔径は500μm以下であることが好ましく、100μm以下であることがより好ましく、50μm以下であることがさらに好ましく、20μm以下であることが特に好ましい。また、多孔質担体90により電解液60に含まれている微生物を効率的に除去するためには、多孔質担体90の平均細孔径は1μm以下であることが好ましい。多孔質担体の平均細孔径の下限は特に限定されないが、例えば500nmとすることができる。 It is preferable to use a porous carrier 90 having a plurality of pores and capable of filtering the electrolytic solution 60 through the pores. The average pore diameter of the porous carrier 90 is not particularly limited as long as it can pass through the electrolytic solution 60 but is difficult for microorganisms and solid organic substances to pass through. The average pore diameter of the porous carrier 90 is preferably 500 μm or less, more preferably 100 μm or less, further preferably 50 μm or less, and particularly preferably 20 μm or less. In order to efficiently remove the microorganisms contained in the electrolytic solution 60 by the porous carrier 90, the average pore diameter of the porous carrier 90 is preferably 1 μm or less. Although the minimum of the average pore diameter of a porous support | carrier is not specifically limited, For example, it can be 500 nm.
 多孔質担体90の空隙率は特に限定されないが、多孔質担体90の強度と電解液60の高透過性を両立する観点から、例えば50~96%とすることができる。なお、多孔質担体90の平均細孔径及び空隙率の測定方法は特に限定されないが、例えば水銀圧入法により測定することができる。 The porosity of the porous carrier 90 is not particularly limited, but can be set to, for example, 50 to 96% from the viewpoint of achieving both the strength of the porous carrier 90 and the high permeability of the electrolytic solution 60. In addition, although the measuring method of the average pore diameter and porosity of the porous support | carrier 90 is not specifically limited, For example, it can measure by the mercury intrusion method.
 多孔質担体90を構成する材料は特に限定されず、例えば樹脂、金属及びセラミックスの少なくとも一つを用いることができる。また、多孔質担体90はこれらの材料の織布、不織布又は発泡体とすることができる。多孔質担体90は、単層であってもよく、複数の層を積層してなる複層であってもよい。 The material constituting the porous carrier 90 is not particularly limited, and for example, at least one of resin, metal, and ceramics can be used. The porous carrier 90 can be a woven fabric, a nonwoven fabric or a foam of these materials. The porous carrier 90 may be a single layer or a multilayer formed by laminating a plurality of layers.
 多孔質担体90を構成する材料は樹脂であることが好ましい。多孔質担体90を構成する樹脂としては、熱硬化性樹脂、熱可塑性樹脂及びエラストマーの少なくとも一つを用いることができる。 The material constituting the porous carrier 90 is preferably a resin. As the resin constituting the porous carrier 90, at least one of a thermosetting resin, a thermoplastic resin, and an elastomer can be used.
 熱可塑性樹脂としては、ポリビニルアルコール樹脂、アクリル樹脂、メタクリル樹脂、酢酸ビニル樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、スチレン樹脂、エチレン酢酸ビニル樹脂、アクリロ二トリル-ブタジエン-スチレン樹脂、ポリエチレン、ポリプロピレン、ポリアセタール、ポリアミド樹脂、ポリエステル及びそれらの共重合体などが使用できる。熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、ポリウレタン樹脂、シリコーン樹脂、ジアリルフタレート樹脂及びそれらの共重合体などが使用できる。エラストマーとしては、スチレン系エラストマー、ポリオレフィン系エラストマー、ポリウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、ポリブタジエン系エラストマー及びそれらの共重合体などが使用できる。 Thermoplastic resins include polyvinyl alcohol resin, acrylic resin, methacrylic resin, vinyl acetate resin, vinyl chloride resin, vinylidene chloride resin, styrene resin, ethylene vinyl acetate resin, acrylonitrile-butadiene-styrene resin, polyethylene, polypropylene, polyacetal Polyamide resins, polyesters and copolymers thereof can be used. As the thermosetting resin, epoxy resin, unsaturated polyester resin, phenol resin, urea resin, melamine resin, polyurethane resin, silicone resin, diallyl phthalate resin and copolymers thereof can be used. Examples of the elastomer that can be used include styrene elastomers, polyolefin elastomers, polyurethane elastomers, polyester elastomers, polyamide elastomers, polybutadiene elastomers, and copolymers thereof.
 液体処理システム100において、電解液60が流入口71から流出口72へと流れる際、多孔質担体90は、液体処理ユニット1よりも下流側であり、かつ、流出口72よりも上流側に配置されることが好ましい。つまり、多孔質担体90は、液体処理ユニット1と流出口72との間に配置されることが好ましい。多孔質担体90がこのように配置されることにより、液体処理ユニット1により処理された電解液60が多孔質担体90の細孔を通過した後、流出口72により排出される。そのため、多孔質担体90により微生物や有機性物質を分離し、処理水の水質を向上させることが可能となる。 In the liquid processing system 100, when the electrolytic solution 60 flows from the inlet 71 to the outlet 72, the porous carrier 90 is disposed on the downstream side of the liquid processing unit 1 and on the upstream side of the outlet 72. It is preferred that That is, the porous carrier 90 is preferably disposed between the liquid processing unit 1 and the outlet 72. By disposing the porous carrier 90 in this way, the electrolytic solution 60 processed by the liquid processing unit 1 passes through the pores of the porous carrier 90 and is then discharged through the outlet 72. Therefore, microorganisms and organic substances can be separated by the porous carrier 90 and the quality of the treated water can be improved.
 具体的には、図1~図3に示すように、多孔質担体90は平板状に形成され、さらに多孔質担体90の主面が電解液槽70の後壁74に接触するように配置されていることが好ましい。これにより、多孔質担体90は、液体処理ユニット1と流出口72との間に配置され、さらに多孔質担体90により流出口72の入口である開口部72a全体を覆うことができる。そのため、多孔質担体90により、微生物や有機性物質を効率的に濾過することが可能となる。 Specifically, as shown in FIGS. 1 to 3, the porous carrier 90 is formed in a flat plate shape, and is further arranged so that the main surface of the porous carrier 90 is in contact with the rear wall 74 of the electrolyte bath 70. It is preferable. Thereby, the porous carrier 90 is disposed between the liquid processing unit 1 and the outlet 72, and the entire opening 72 a that is the inlet of the outlet 72 can be covered with the porous carrier 90. Therefore, the porous carrier 90 can efficiently filter microorganisms and organic substances.
 なお、図1~図3では、多孔質担体90が電解液槽70の後壁74に接触するように配置されている。さらに図2では、多孔質担体90の底面は、電解液槽70の底壁77に接触している。また図3では、多孔質担体90の側面は、電解液槽70の左壁75及び右壁76に接触している。ただ、多孔質担体90は、電解液槽70の左壁75、右壁76、底壁77に接触せずに、後壁74に配置されていてもよい。 In FIGS. 1 to 3, the porous carrier 90 is disposed so as to contact the rear wall 74 of the electrolyte bath 70. Further, in FIG. 2, the bottom surface of the porous carrier 90 is in contact with the bottom wall 77 of the electrolytic solution tank 70. In FIG. 3, the side surface of the porous carrier 90 is in contact with the left wall 75 and the right wall 76 of the electrolytic solution tank 70. However, the porous carrier 90 may be disposed on the rear wall 74 without contacting the left wall 75, the right wall 76, and the bottom wall 77 of the electrolytic solution tank 70.
 液体処理システム100において、多孔質担体90は、電解液槽70の後壁74に接触しないように配置されていてもよい。具体的には、図5及び図6に示すように、多孔質担体90が平板状に形成され、さらに液体処理ユニット1の負極20と流出口72との間に配置されていてもよい。この際、図5に示すように、多孔質担体90の底面は、電解液槽70の底壁77に接触していてもよい。また、図6に示すように、多孔質担体90の側面は、電解液槽70の左壁75及び右壁76に接触していてもよい。ただ、多孔質担体90は、電解液槽70の後壁74、左壁75、右壁76に接触しなくてもよい。 In the liquid processing system 100, the porous carrier 90 may be arranged so as not to contact the rear wall 74 of the electrolytic solution tank 70. Specifically, as shown in FIGS. 5 and 6, the porous carrier 90 may be formed in a flat plate shape, and may be further disposed between the negative electrode 20 and the outlet 72 of the liquid processing unit 1. At this time, as shown in FIG. 5, the bottom surface of the porous carrier 90 may be in contact with the bottom wall 77 of the electrolytic solution tank 70. Further, as shown in FIG. 6, the side surface of the porous carrier 90 may be in contact with the left wall 75 and the right wall 76 of the electrolytic solution tank 70. However, the porous carrier 90 may not be in contact with the rear wall 74, the left wall 75, and the right wall 76 of the electrolyte bath 70.
 液体処理システム100において、多孔質担体90の最上部が電解液60の水面よりも高くなるように配置されることが好ましい。具体的には、図2に示すように、多孔質担体90の上面91が電解液60の水面61よりも高く、上面91が電解液60から露出するように、電解液槽70の内部に配置されることが好ましい。微生物や固体状の有機性物質は、電解液60の水面61に浮遊していることが多い。そのため、多孔質担体90の最上部が電解液60の水面よりも高くなるように配置されることにより、電解液60の水面61に浮遊している微生物や有機性物質を効率的に除去し、流出口72から排出される電解液60の水質をより向上させることが可能となる。なお、多孔質担体90の上面91と電解液60の水面61との差Dは特に限定されず、電解液60の水面61に浮遊している微生物や有機性物質を除去できるように適宜設定することが可能である。 In the liquid processing system 100, it is preferable that the uppermost portion of the porous carrier 90 is arranged to be higher than the water surface of the electrolytic solution 60. Specifically, as shown in FIG. 2, the porous carrier 90 is arranged inside the electrolytic solution tank 70 so that the upper surface 91 is higher than the water surface 61 of the electrolytic solution 60 and the upper surface 91 is exposed from the electrolytic solution 60. It is preferred that Microorganisms and solid organic substances often float on the water surface 61 of the electrolytic solution 60. Therefore, by arranging the uppermost portion of the porous carrier 90 to be higher than the water surface of the electrolytic solution 60, microorganisms and organic substances floating on the water surface 61 of the electrolytic solution 60 are efficiently removed, It becomes possible to further improve the water quality of the electrolytic solution 60 discharged from the outflow port 72. The difference D between the upper surface 91 of the porous carrier 90 and the water surface 61 of the electrolytic solution 60 is not particularly limited, and is appropriately set so that microorganisms and organic substances floating on the water surface 61 of the electrolytic solution 60 can be removed. It is possible.
 液体処理システム100において、多孔質担体90が流出口72の入口全体を覆うように設置されていることが好ましい。具体的には、電解液60が流出口72へと流れる際、多孔質担体90の細孔を確実に通過するように、多孔質担体90が流出口72の入口である開口部72a全体を覆うように設置されていることが好ましい。これにより、多孔質担体90により、微生物や有機性物質を確実に濾過することが可能となる。 In the liquid processing system 100, it is preferable that the porous carrier 90 is installed so as to cover the entire inlet 72. Specifically, when the electrolytic solution 60 flows to the outlet 72, the porous carrier 90 covers the entire opening 72a that is the inlet of the outlet 72 so as to surely pass through the pores of the porous carrier 90. It is preferable that it is installed. Thereby, the porous carrier 90 can reliably filter microorganisms and organic substances.
 例えば、図1~図3に示すように、平板状の多孔質担体90が電解液槽70の後壁74に接触するように配置されていることが好ましい。また、図7及び図8に示すように、半球状の多孔質担体90が電解液槽70の後壁74に接触するように配置されていることが好ましい。これにより、流出口72の開口部72a全体が多孔質担体90,90Aにより覆われるため、微生物や有機性物質を確実に濾過し、水質を高めることが可能となる。 For example, as shown in FIGS. 1 to 3, it is preferable that the plate-like porous carrier 90 is disposed so as to contact the rear wall 74 of the electrolytic solution tank 70. Further, as shown in FIGS. 7 and 8, it is preferable that the hemispherical porous carrier 90 is disposed so as to contact the rear wall 74 of the electrolytic solution tank 70. Thereby, since the whole opening part 72a of the outflow port 72 is covered with the porous support | carrier 90,90A, it becomes possible to filter microorganisms and an organic substance reliably, and to improve water quality.
 上述のように、多孔質担体90は多数の細孔を備えているため、電解液60中の固形分を濾過する濾材として機能する。また、多孔質担体90は、微生物を担持してもよい。微生物を担持することにより、多孔質担体90において、電解液60中の有機性物質又は窒素含有化合物を分解することができる。その結果、電解液60中の有機性物質又は窒素含有化合物を除去し、処理水の水質をさらに高めることが可能となる。多孔質担体90に担持する微生物は特に限定されず、負極20に担持される好気性微生物及び嫌気性微生物の少なくとも一方を用いることができる。また、多孔質担体90において、微生物を担持する位置も特に限定されず、多孔質担体90の細孔の内表面に担持してもよく、さらに多孔質担体90の外表面に担持してもよい。 As described above, since the porous carrier 90 has a large number of pores, it functions as a filter medium for filtering the solid content in the electrolytic solution 60. The porous carrier 90 may carry a microorganism. By supporting the microorganism, the organic substance or the nitrogen-containing compound in the electrolytic solution 60 can be decomposed in the porous carrier 90. As a result, the organic substance or nitrogen-containing compound in the electrolytic solution 60 can be removed, and the quality of the treated water can be further improved. The microorganisms supported on the porous carrier 90 are not particularly limited, and at least one of an aerobic microorganism and an anaerobic microorganism supported on the negative electrode 20 can be used. Further, the position of the porous carrier 90 where microorganisms are supported is not particularly limited, and may be supported on the inner surface of the pores of the porous carrier 90 or may be further supported on the outer surface of the porous carrier 90. .
 次に、本実施形態の液体処理システム100の作用について説明する。上述の正極10、負極20及びイオン移動層30からなる電極接合体40が電解液60に浸漬された場合、正極10のガス拡散層12及び負極20が電解液60に浸漬され、撥水層11の少なくとも一部が気相2に露出している。 Next, the operation of the liquid processing system 100 of this embodiment will be described. When the electrode assembly 40 including the positive electrode 10, the negative electrode 20, and the ion transfer layer 30 is immersed in the electrolytic solution 60, the gas diffusion layer 12 and the negative electrode 20 of the positive electrode 10 are immersed in the electrolytic solution 60, and the water repellent layer 11. At least a part of is exposed to the gas phase 2.
 液体処理システム100の動作時には、負極20に、有機性物質及び窒素含有化合物の少なくとも一方を含有する電解液60を供給し、正極10に空気を供給する。この際、空気は、カセット基材50の上部に設けられた開口部を通じて連続的に供給される。 During the operation of the liquid processing system 100, the electrolyte 60 containing at least one of an organic substance and a nitrogen-containing compound is supplied to the negative electrode 20, and air is supplied to the positive electrode 10. At this time, the air is continuously supplied through an opening provided in the upper part of the cassette base material 50.
 そして、正極10では、撥水層11を透過してガス拡散層12に酸素が拡散する。負極20では、微生物の触媒作用により、電解液60中の有機性物質及び窒素含有化合物の少なくとも一方から水素イオン及び電子を生成する。生成した水素イオンは、イオン移動層30を透過して正極10側へ移動し、正極10中のガス拡散層12に到達する。また、生成した電子は負極20の導電体シートを通じて外部回路80へ移動し、さらに外部回路80から正極10のガス拡散層12に移動する。そして、水素イオン及び電子は、ガス拡散層12中の触媒の作用により酸素と結合し、水となって消費される。このとき、外部回路80によって、閉回路に流れる電気エネルギーを回収する。このように、液体処理ユニット1は、負極20における微生物の作用により、電解液60中の有機性物質及び窒素含有化合物の少なくとも一方を分解することができる。 In the positive electrode 10, oxygen diffuses into the gas diffusion layer 12 through the water repellent layer 11. In the negative electrode 20, hydrogen ions and electrons are generated from at least one of the organic substance and the nitrogen-containing compound in the electrolytic solution 60 by the catalytic action of microorganisms. The generated hydrogen ions pass through the ion moving layer 30 and move to the positive electrode 10 side, and reach the gas diffusion layer 12 in the positive electrode 10. Further, the generated electrons move to the external circuit 80 through the conductor sheet of the negative electrode 20, and further move from the external circuit 80 to the gas diffusion layer 12 of the positive electrode 10. The hydrogen ions and electrons are combined with oxygen by the action of the catalyst in the gas diffusion layer 12 and consumed as water. At this time, the electric energy flowing in the closed circuit is recovered by the external circuit 80. Thus, the liquid processing unit 1 can decompose at least one of the organic substance and the nitrogen-containing compound in the electrolytic solution 60 by the action of microorganisms in the negative electrode 20.
 ここで、液体処理システム100では、電解液槽70の流入口71から電解液60が連続的に供給される。そして、電解液60中の有機性物質及び窒素含有化合物の少なくとも一方は、液体処理ユニット1の負極20に担持された微生物により分解される。その後、液体処理ユニット1よりも下流側であり、かつ、流出口72よりも上流側に配置された多孔質担体90の細孔を電解液60が通過した後、流出口72により排出される。この際、電解液60に含まれている固形の微生物や有機性物質を濾過して分離するため、流出口72により排出される処理水の水質を向上させることが可能となる。 Here, in the liquid processing system 100, the electrolytic solution 60 is continuously supplied from the inlet 71 of the electrolytic solution tank 70. Then, at least one of the organic substance and the nitrogen-containing compound in the electrolytic solution 60 is decomposed by the microorganisms supported on the negative electrode 20 of the liquid processing unit 1. Thereafter, the electrolytic solution 60 passes through the pores of the porous carrier 90 arranged on the downstream side of the liquid processing unit 1 and on the upstream side of the outflow port 72, and then discharged by the outflow port 72. At this time, since solid microorganisms and organic substances contained in the electrolytic solution 60 are filtered and separated, the quality of the treated water discharged from the outlet 72 can be improved.
 また、電解液槽70に多孔質担体90を設けることにより、高活性な微生物が電解液60と共に流出することを抑制できる。そして、高活性な微生物が電解液槽70中の電解液60に残存することから、微生物の自己消化により汚泥が減少し、電解液槽70の内部に堆積する余剰汚泥量を少なくすることが可能となる。 Further, by providing the porous carrier 90 in the electrolytic solution tank 70, it is possible to suppress the outflow of highly active microorganisms together with the electrolytic solution 60. Since highly active microorganisms remain in the electrolytic solution 60 in the electrolytic solution tank 70, sludge is reduced by self-digestion of the microorganisms, and it is possible to reduce the amount of excess sludge that accumulates in the electrolytic solution tank 70. It becomes.
 さらに、多孔質担体90に微生物が担持されている場合には、液体処理ユニット1により処理しきれなかった有機性物質を、多孔質担体90に担持された微生物により分解することができる。その結果、流出口72により排出される処理水の水質をより向上させることが可能となる。 Furthermore, when microorganisms are supported on the porous carrier 90, organic substances that could not be processed by the liquid processing unit 1 can be decomposed by the microorganisms supported on the porous carrier 90. As a result, the quality of the treated water discharged from the outlet 72 can be further improved.
 このように、本実施形態の液体処理システム100は、有機性物質を含む電解液60を保持し、電解液60の流入口71及び流出口72を有する電解液槽70を備える。さらに液体処理システム100は、微生物を担持する負極20と、負極20と電気的に接続された正極10とを備え、負極20及び正極10が電解液60に浸漬し、正極10の少なくとも一部が気相2に露出する液体処理ユニット1を備える。また、液体処理システム100は、電解液槽70の内部に設けられ、電解液60中の不溶物を濾過するための多孔質担体90を備える。液体処理システム100では、電解液60が流入口71から流出口72へと流れる際、多孔質担体90は、液体処理ユニット1よりも下流側であり、かつ、流出口72よりも上流側に配置される。また、電解液60は、多孔質担体90を通過した後に流出口72に流れることが好ましい。これにより、多孔質担体90を通じて、電解液60に含まれる微生物及び有機性物質を除去できることから、流出口72により排出される処理水の水質をより向上させることが可能となる。 As described above, the liquid processing system 100 according to the present embodiment includes the electrolytic solution tank 70 that holds the electrolytic solution 60 containing an organic substance and includes the inlet 71 and the outlet 72 of the electrolytic solution 60. Furthermore, the liquid processing system 100 includes a negative electrode 20 supporting microorganisms, and a positive electrode 10 electrically connected to the negative electrode 20, and the negative electrode 20 and the positive electrode 10 are immersed in the electrolytic solution 60, and at least a part of the positive electrode 10 is formed. A liquid processing unit 1 exposed to the gas phase 2 is provided. The liquid processing system 100 includes a porous carrier 90 that is provided inside the electrolytic solution tank 70 and filters insoluble matters in the electrolytic solution 60. In the liquid processing system 100, when the electrolytic solution 60 flows from the inlet 71 to the outlet 72, the porous carrier 90 is disposed downstream of the liquid processing unit 1 and upstream of the outlet 72. Is done. Further, the electrolytic solution 60 preferably flows to the outlet 72 after passing through the porous carrier 90. Thereby, since the microorganisms and organic substance contained in the electrolyte solution 60 can be removed through the porous carrier 90, the quality of the treated water discharged from the outlet 72 can be further improved.
 以下、本実施形態を実施例及び比較例によりさらに詳細に説明するが、本実施形態はこれら実施例に限定されるものではない。 Hereinafter, the present embodiment will be described in more detail with reference to examples and comparative examples, but the present embodiment is not limited to these examples.
[実施例]
 まず、ポリオレフィン製撥水層に、接着剤であるシリコーン樹脂を塗布した後、ガス拡散層であるグラファイトホイルを接合することにより、撥水層/シリコーン接着剤/ガス拡散層からなる積層シートを作製した。なお、撥水層は、積水化学工業株式会社製セルポア(登録商標)を使用した。シリコーン樹脂は、信越化学工業株式会社製の一液型RTVゴムKE-3475-Tを使用した。グラファイトホイルは、日立化成工業株式会社製のものを使用した。
[Example]
First, a silicone resin as an adhesive is applied to a polyolefin water repellent layer, and then a graphite foil as a gas diffusion layer is bonded to produce a laminated sheet composed of a water repellent layer / silicone adhesive / gas diffusion layer. did. In addition, Sekisui Chemical Co., Ltd. SELPORE (registered trademark) was used for the water repellent layer. As the silicone resin, one-component RTV rubber KE-3475-T manufactured by Shin-Etsu Chemical Co., Ltd. was used. A graphite foil manufactured by Hitachi Chemical Co., Ltd. was used.
 次に、グラファイトホイルにおける撥水層とは反対側の面に、酸素還元触媒とPTFE(Aldrich社製)とを混合してなる触媒層をプレス成形することにより、ガス拡散電極を作製した。なお、酸素還元触媒は、目付け量が6mg/cmとなるようにプレス成形した。 Next, a gas diffusion electrode was produced by press-molding a catalyst layer formed by mixing an oxygen reduction catalyst and PTFE (manufactured by Aldrich) on the surface of the graphite foil opposite to the water repellent layer. The oxygen reduction catalyst was press-molded so that the basis weight was 6 mg / cm 2 .
 なお、酸素還元触媒は、次のように調製した。まず、容器内に、3gのカーボンブラック、0.1Mの塩化鉄(III)水溶液、及び0.15Mのペンタエチレンヘキサミンのエタノール溶液を入れることで、混合液を調製した。なお、カーボンブラックとしては、ライオン・スペシャリティ・ケミカルズ株式会社製ケッチェンブラックECP600JDを使用した。0.1M塩化鉄(III)水溶液の使用量は、カーボンブラックに対する鉄原子の割合が10質量%になるように調整した。この混合液に更にエタノールを加えることで、全量を9mLに調整した。そして、この混合液を超音波分散してから乾燥機で60℃の温度で乾燥させた。これにより、カーボンブラック、塩化鉄(III)、及びペンタエチレンヘキサミンを含有するサンプルを得た。 The oxygen reduction catalyst was prepared as follows. First, 3 g of carbon black, 0.1 M iron (III) chloride aqueous solution, and 0.15 M pentaethylenehexamine ethanol solution were placed in a container to prepare a mixed solution. As carbon black, Ketjen Black ECP600JD manufactured by Lion Specialty Chemicals Co., Ltd. was used. The amount of 0.1M iron (III) chloride aqueous solution used was adjusted so that the ratio of iron atoms to carbon black was 10% by mass. The total amount was adjusted to 9 mL by adding ethanol to the mixture. And this liquid mixture was ultrasonically disperse | distributed, and it was dried at the temperature of 60 degreeC with the dryer. As a result, a sample containing carbon black, iron (III) chloride, and pentaethylenehexamine was obtained.
 そして、このサンプルを、石英管の一端部内に詰め入れ、続いてこの石英管内をアルゴンで置換した。この石英管を900℃の炉に入れてから45秒で引き抜いた。石英管を炉に挿入する際には、石英管を炉に3秒間かけて挿入することで、加熱開始時のサンプルの昇温速度を300℃/sに調整した。続いて、石英管内にアルゴンガスを流通させることでサンプルを冷却させた。これにより酸素還元触媒を得た。 Then, this sample was packed into one end of a quartz tube, and then the inside of this quartz tube was replaced with argon. The quartz tube was put into a furnace at 900 ° C. and pulled out in 45 seconds. When the quartz tube was inserted into the furnace, the quartz tube was inserted into the furnace over 3 seconds to adjust the rate of temperature rise of the sample at the start of heating to 300 ° C./s. Subsequently, the sample was cooled by flowing argon gas through the quartz tube. Thereby, an oxygen reduction catalyst was obtained.
 次に、上述のようにして得られたガス拡散電極の撥水層に空気取り入れ部を設けることにより、正極を作製した。そして、当該正極と、炭素材料(グラファイトホイル)からなる負極とを、流入口及び流出口を備えた電解液槽内に設置した。さらに、正極と負極との間にポリオレフィン製不織布を設置した後、正極、負極及び不織布に接するように電解液を電解液槽内に満たした。電解液は、全有機体炭素(TOC)として600mg/Lの有機性物質を含んでおり、さらに発電を行う嫌気性微生物源として土壌微生物を植種した。そして、電解液の滞留時間を24時間として連続的に容器に供給した。さらに、正極と負極を負荷回路に接続することにより、本例の液体処理システムを得た Next, a positive electrode was produced by providing an air intake portion in the water repellent layer of the gas diffusion electrode obtained as described above. And the said positive electrode and the negative electrode which consists of carbon materials (graphite foil) were installed in the electrolyte tank provided with the inflow port and the outflow port. Furthermore, after installing the polyolefin nonwoven fabric between the positive electrode and the negative electrode, the electrolytic solution was filled in the electrolytic solution tank so as to be in contact with the positive electrode, the negative electrode, and the nonwoven fabric. The electrolytic solution contained 600 mg / L of an organic substance as total organic carbon (TOC), and soil microorganisms were inoculated as an anaerobic microorganism source for generating power. And the residence time of electrolyte solution was continuously supplied to the container as 24 hours. Furthermore, the liquid processing system of this example was obtained by connecting a positive electrode and a negative electrode to a load circuit.
 ここで本例では、図1~3に示すように、正極及び負極よりも下流側であり、かつ、電解液槽の流出口よりも上流側に、多孔質担体を設置した。多孔質担体としては、ポリビニルアルコールからなり、細孔径が80μmである発泡体を使用した。 Here, in this example, as shown in FIGS. 1 to 3, a porous carrier was installed on the downstream side of the positive electrode and the negative electrode and on the upstream side of the outlet of the electrolytic solution tank. As the porous carrier, a foam made of polyvinyl alcohol and having a pore diameter of 80 μm was used.
[比較例]
 多孔質担体を設置しなかったこと以外は実施例と同様にして、本例の液体処理システムを得た。
[Comparative example]
A liquid treatment system of this example was obtained in the same manner as in Example except that no porous carrier was installed.
[評価]
 液体処理システムにて処理する前後における電解液中の全有機体炭素濃度(TOC濃度)を測定した。なお、全有機体炭素濃度は、全有機体炭素計を用いて測定した。そして、全有機体炭素の除去率(TOC除去率)を数式1より求めた。
Figure JPOXMLDOC01-appb-M000001
(T:TOC除去率、T1:処理前のTOC濃度、T2:処理後のTOC濃度)
[Evaluation]
The total organic carbon concentration (TOC concentration) in the electrolyte before and after the treatment with the liquid treatment system was measured. The total organic carbon concentration was measured using a total organic carbon meter. And the removal rate (TOC removal rate) of all the organic carbon was calculated | required from Numerical formula 1.
Figure JPOXMLDOC01-appb-M000001
(T: TOC removal rate, T1: TOC concentration before treatment, T2: TOC concentration after treatment)
 実施例では、液体処理システムにて処理する前の全有機体炭素濃度は600mg/Lであり、処理した後の全有機体炭素濃度は43mg/Lであった。そのため、実施例の液体処理システムのTOC除去率は93%であった。これに対し、比較例では、液体処理システムにて処理する前の全有機体炭素濃度は600mg/Lであり、処理した後の全有機体炭素濃度は69mg/Lであった。そのため、比較例の液体処理システムのTOC除去率は89%であった。 In the examples, the total organic carbon concentration before processing in the liquid processing system was 600 mg / L, and the total organic carbon concentration after processing was 43 mg / L. Therefore, the TOC removal rate of the liquid treatment system of the example was 93%. On the other hand, in the comparative example, the total organic carbon concentration before processing in the liquid processing system was 600 mg / L, and the total organic carbon concentration after processing was 69 mg / L. Therefore, the TOC removal rate of the liquid processing system of the comparative example was 89%.
 上記結果より、液体処理ユニットよりも下流側であり、かつ、電解液槽の流出口よりも上流側に多孔質担体を配置することにより、処理水中に存在する有機性物質の除去率を高め、処理水の水質を向上できることが分かる。 From the above results, by disposing a porous carrier downstream from the liquid treatment unit and upstream from the outlet of the electrolytic solution tank, the removal rate of organic substances present in the treated water is increased, It turns out that the quality of treated water can be improved.
 以上、本実施形態を説明したが、本実施形態はこれらに限定されるものではなく、本実施形態の要旨の範囲内で種々の変形が可能である。具体的には、図面において、正極10、負極20及びイオン移動層30は、矩形状に形成されている。しかし、これらの形状は特に限定されず、液体処理システムの大きさ、及び所望の浄化性能等により任意に変更することができる。また、各層の面積も所望の機能が発揮できるならば、それぞれ任意に変更することができる。 Although the present embodiment has been described above, the present embodiment is not limited to these, and various modifications are possible within the scope of the gist of the present embodiment. Specifically, in the drawing, the positive electrode 10, the negative electrode 20, and the ion migration layer 30 are formed in a rectangular shape. However, these shapes are not particularly limited, and can be arbitrarily changed depending on the size of the liquid processing system, desired purification performance, and the like. Further, the area of each layer can be arbitrarily changed as long as a desired function can be exhibited.
 そして、本実施形態に係る液体処理システムは、有機性物質を含む液体、例えば各種産業の工場などから発生する排水、下水汚泥などの有機性廃水などの処理に広く適用できる。また、水域の環境改善などにも利用できる。 The liquid treatment system according to this embodiment can be widely applied to treatment of a liquid containing an organic substance, for example, waste water generated from factories of various industries, organic waste water such as sewage sludge, and the like. It can also be used to improve the water environment.
 特願2017-090991号(出願日:2017年5月1日)の全内容は、ここに援用される。 The entire contents of Japanese Patent Application No. 2017-090991 (filing date: May 1, 2017) are incorporated herein by reference.
 本発明によれば、排出される処理水中の微生物や有機性物質の含有量を低減し、処理水の水質を高めることが可能な液体処理システムを提供することができる。 According to the present invention, it is possible to provide a liquid treatment system capable of reducing the content of microorganisms and organic substances in the discharged treated water and improving the quality of the treated water.
 1 液体処理ユニット
 2 気相
 10 正極
 20 負極
 60 電解液
 70 電解液槽
 71 流入口
 72 流出口
 90,90A 多孔質担体
 100 液体処理システム
DESCRIPTION OF SYMBOLS 1 Liquid processing unit 2 Gas phase 10 Positive electrode 20 Negative electrode 60 Electrolyte 70 Electrolyte tank 71 Inlet 72 Outlet 90,90A Porous support 100 Liquid processing system

Claims (4)

  1.  有機性物質を含む電解液を保持し、前記電解液の流入口及び流出口を有する電解液槽と、
     微生物を担持する負極と、前記負極と電気的に接続された正極とを備え、前記負極及び前記正極が前記電解液に浸漬し、前記正極の少なくとも一部が気相に露出する液体処理ユニットと、
     前記電解液槽の内部に設けられ、前記電解液中の不溶物を濾過するための多孔質担体と、
     を備え、
     前記電解液が前記流入口から前記流出口へと流れる際、前記多孔質担体は、前記液体処理ユニットよりも下流側であり、かつ、前記流出口よりも上流側に配置される、液体処理システム。
    An electrolyte bath holding an electrolyte containing an organic substance and having an inlet and an outlet for the electrolyte, and
    A liquid processing unit comprising a negative electrode supporting microorganisms and a positive electrode electrically connected to the negative electrode, wherein the negative electrode and the positive electrode are immersed in the electrolytic solution, and at least a part of the positive electrode is exposed to a gas phase; ,
    A porous carrier provided inside the electrolytic solution tank for filtering insoluble matters in the electrolytic solution;
    With
    When the electrolytic solution flows from the inflow port to the outflow port, the porous carrier is disposed downstream of the liquid processing unit and upstream of the outflow port. .
  2.  前記電解液は、前記多孔質担体を通過した後に前記流出口に流れる、請求項1に記載の液体処理システム。 The liquid processing system according to claim 1, wherein the electrolytic solution flows to the outlet after passing through the porous carrier.
  3.  前記多孔質担体の最上部が前記電解液の水面よりも高くなるように配置される、請求項1又は2に記載の液体処理システム。 The liquid processing system according to claim 1 or 2, wherein an uppermost part of the porous carrier is disposed so as to be higher than a water surface of the electrolytic solution.
  4.  前記多孔質担体が前記流出口の入口全体を覆うように設置されている、請求項1乃至3のいずれか一項に記載の液体処理システム。 The liquid processing system according to any one of claims 1 to 3, wherein the porous carrier is installed so as to cover the entire inlet of the outlet.
PCT/JP2018/014048 2017-05-01 2018-04-02 Liquid treatment system WO2018203455A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-090991 2017-05-01
JP2017090991 2017-05-01

Publications (1)

Publication Number Publication Date
WO2018203455A1 true WO2018203455A1 (en) 2018-11-08

Family

ID=64017027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014048 WO2018203455A1 (en) 2017-05-01 2018-04-02 Liquid treatment system

Country Status (1)

Country Link
WO (1) WO2018203455A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232565Y2 (en) * 1980-02-29 1987-08-20
JPH03101892A (en) * 1989-09-13 1991-04-26 Kamioka Kogyo Kk Method and device for water treatment
JPH0655191A (en) * 1992-08-04 1994-03-01 Toshiba Corp Method for promoting activity of anaerobic microbe
JPH10128373A (en) * 1996-10-28 1998-05-19 Hitoshi Daidou Biological treatment method
CN102723517A (en) * 2012-06-21 2012-10-10 大连理工大学 Microbial fuel cell with separation membrane and biological negative pole, and sewage treatment method
WO2016063455A1 (en) * 2014-10-20 2016-04-28 パナソニック株式会社 Electrode, fuel cell and water treatment device
US20160326031A1 (en) * 2014-01-06 2016-11-10 King Abdullah University Of Science And Technology Anaerobic electrochemical membrane bioreactor and process for wastewater treatment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232565Y2 (en) * 1980-02-29 1987-08-20
JPH03101892A (en) * 1989-09-13 1991-04-26 Kamioka Kogyo Kk Method and device for water treatment
JPH0655191A (en) * 1992-08-04 1994-03-01 Toshiba Corp Method for promoting activity of anaerobic microbe
JPH10128373A (en) * 1996-10-28 1998-05-19 Hitoshi Daidou Biological treatment method
CN102723517A (en) * 2012-06-21 2012-10-10 大连理工大学 Microbial fuel cell with separation membrane and biological negative pole, and sewage treatment method
US20160326031A1 (en) * 2014-01-06 2016-11-10 King Abdullah University Of Science And Technology Anaerobic electrochemical membrane bioreactor and process for wastewater treatment
WO2016063455A1 (en) * 2014-10-20 2016-04-28 パナソニック株式会社 Electrode, fuel cell and water treatment device

Similar Documents

Publication Publication Date Title
JP6368036B2 (en) Electrode structure and microbial fuel cell
JP6438115B2 (en) Microbial fuel cell system
JP6364529B2 (en) Electrode manufacturing method and electrode
WO2017119419A1 (en) Gas diffusion electrode for microbial fuel cells and microbial fuel cell in which same is used
JP6902706B2 (en) Purification unit and purification device
JP6643642B2 (en) Purification unit and purification device
JP6438051B2 (en) Microbial fuel cell system
WO2018020807A1 (en) Microbial fuel cell
JP2020099851A (en) Liquid treatment system
JP2019076833A (en) Liquid treatment system
WO2018203455A1 (en) Liquid treatment system
JP2017148776A (en) Water treatment equipment
WO2017175260A1 (en) Electrode, fuel cell and water treatment device
WO2017199475A1 (en) Liquid processing unit and liquid processing device
CN109716569A (en) Microbiological fuel cell and liquid waste treating apparatus
WO2017195406A1 (en) Microbial fuel cell and liquid treatment unit using same
WO2017145646A1 (en) Microbial fuel cell
JP2017228411A (en) Electrode composite and fuel cell
JP2020087804A (en) Microbial fuel cell and liquid processing unit
WO2019078002A1 (en) Liquid processing system
WO2019064889A1 (en) Liquid treatment system
JP2020082006A (en) Liquid treatment system
JP2020099854A (en) Liquid treatment system
JP2020099850A (en) Liquid treatment system
JP2020099853A (en) Liquid treatment system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794319

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019516370

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18794319

Country of ref document: EP

Kind code of ref document: A1