[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018201938A1 - 资源映射方法、网络设备和终端设备 - Google Patents

资源映射方法、网络设备和终端设备 Download PDF

Info

Publication number
WO2018201938A1
WO2018201938A1 PCT/CN2018/084336 CN2018084336W WO2018201938A1 WO 2018201938 A1 WO2018201938 A1 WO 2018201938A1 CN 2018084336 W CN2018084336 W CN 2018084336W WO 2018201938 A1 WO2018201938 A1 WO 2018201938A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource mapping
mapping mode
resource
information
frequency domain
Prior art date
Application number
PCT/CN2018/084336
Other languages
English (en)
French (fr)
Inventor
薛丽霞
陈铮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18795023.3A priority Critical patent/EP3595383B1/en
Publication of WO2018201938A1 publication Critical patent/WO2018201938A1/zh
Priority to US16/601,208 priority patent/US11582783B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to communications technologies, and in particular, to a resource mapping method, a network device, and a terminal device.
  • the downlink transmission resources are divided into a control area and a data area.
  • the control area is used to transmit a control channel
  • the data area is used to transmit a data channel.
  • the downlink control information carried by the control channel is used to indicate that a resource block (RB) used by the data channel is in a frequency domain position of the data area, and the data channel is used to carry downlink data.
  • RB resource block
  • the control channel can be transmitted using one or more Control Channel Elements (CCEs).
  • CCEs Control Channel Elements
  • one CCE is composed of multiple Resource Element Groups (REGs). Therefore, when the base station transmits the control channel, it is necessary to perform CCE to REG resource mapping on the control channel in the control region of the downlink transmission resource. That is, each CCE used by the control channel is mapped to the downlink transmission resource with the REG being the basic unit of the CCE.
  • REG Resource Element Groups
  • the NR standard proposes that when there are idle resources in the control region, the data channel can multiplex idle resources for data transmission to improve resource utilization. Therefore, when the data channel uses the resources of the control region, how the base station allocates resources for the data channel and improves the use efficiency of the resources in the control region is an urgent problem to be solved.
  • the present application provides a resource mapping method, a network device, and a terminal device, which are used to solve the technical problem of how a base station allocates resources for a data channel when a resource channel uses resources in a control region.
  • the application provides a resource mapping method, where the method includes:
  • the network device generates control information, where the control information is used to indicate at least one of the following information: at least one bandwidth region where the at least one frequency domain resource unit is located, a granularity of the frequency domain resource unit, and the frequency domain resource a location of the unit in the bandwidth area;
  • the frequency domain resource unit is a scheduling unit of a frequency domain resource used when the network device and the terminal device perform data channel transmission, and the granularity of the resource unit corresponds to the network a resource unit granularity when the device and the terminal device perform a control channel transmission, where the working bandwidth of the terminal device includes a plurality of bandwidth regions that are equally spaced, and the at least one bandwidth region is one or more of the multiple bandwidth regions;
  • the network device sends the control information to the terminal device.
  • the resource mapping method provided by the first aspect is configured to divide the system bandwidth into a plurality of bandwidth regions at equal intervals, so that the network device uses the frequency domain resource unit as a scheduling unit of the frequency domain resource, and at least one bandwidth region of the multiple bandwidth regions.
  • At least one frequency domain resource unit is scheduled to be used as a frequency domain resource used by the network device and the terminal device for data channel transmission, and the scheduling information is indicated by the control information. Since the at least one frequency domain resource unit is in the time domain, it can be located on the control area of the downlink transmission resource and on the data area. Therefore, in this way, the data channel can multiplex the idle resources in the control area for data transmission, thereby improving resource utilization.
  • the method further includes:
  • the network device Determining, by the network device, a first resource mapping mode set, where the first resource mapping mode set includes: at least one resource mapping mode, the resource mapping mode includes a granularity of the frequency domain resource unit, and the frequency domain a frequency domain location of the resource unit in the bandwidth region;
  • the control information includes a first information field and/or a second information field, where the first information field is used to indicate the at least one bandwidth area where the at least one frequency domain resource unit is located, the second information The domain is used to indicate the resource mapping mode.
  • each of the at least one first resource mapping mode corresponds to one identifier
  • the second information domain is used to indicate the resource mapping mode, including:
  • the second information domain includes an identifier corresponding to the resource mapping mode.
  • the resource mapping mode is indicated by carrying the identifier in the second information domain, and the signaling overhead is reduced.
  • the method further includes:
  • the network device sends indication information to the terminal device, where the indication information is used to indicate the first resource mapping mode set from a plurality of candidate resource mapping mode sets.
  • the indication manner is flexible and diverse.
  • the plurality of candidate resource mapping mode sets includes the first resource mapping mode set and the second resource mapping mode set, the resource mapping mode in the first resource mapping mode set, and The resource mapping modes in the second resource mapping mode set are not completely the same.
  • the indication information is carried in higher layer signaling.
  • control information further includes a third information domain, and the indication information is carried in the third information domain.
  • the indication manner is flexible and diverse.
  • the first information field includes a bitmap, where the bitmap is used to indicate the at least one bandwidth region where the at least one frequency domain resource unit is located;
  • each bit in the bitmap corresponds to a bandwidth area.
  • the resource mapping method provided by the possible design reduces the signaling overhead by indicating the at least one bandwidth region where the at least one frequency domain resource unit is located by carrying the bitmap in the first information domain.
  • the granularity of the resource unit corresponds to the resource unit granularity when the network device and the terminal device perform control channel transmission, including:
  • the granularity of the resource unit is one resource element granularity in at least one resource unit granularity when the control channel is transmitted.
  • the method further includes:
  • the network device acquires a predefined size of the at least one bandwidth region.
  • the first resource mapping mode set is a specific resource mapping mode configured by the network device for one terminal device, and the number of bits of the second information domain is according to the first resource mapping mode set. The number of the first resource mapping patterns in the determination is determined.
  • the application provides a resource mapping method, where the method includes:
  • the control information is used to indicate at least one of the following information: at least one bandwidth region where the at least one frequency domain resource unit is located, a granularity of the frequency domain resource unit, and a location a location of the frequency domain resource unit in the bandwidth area;
  • the frequency domain resource unit is a scheduling unit of a frequency domain resource used when the terminal device performs a data channel transmission with the network device, and the granularity of the resource unit corresponds to a resource unit granularity when the network device and the terminal device perform control channel transmission, where the working bandwidth of the terminal device includes a plurality of bandwidth regions that are equally spaced, and the at least one bandwidth region is one of the multiple bandwidth regions. Or multiple;
  • the terminal device transmits the data channel on the at least one frequency domain resource unit according to control information.
  • the method further includes:
  • a first resource mapping mode set includes: at least one resource mapping mode, where the resource mapping mode includes a granularity of the frequency domain resource unit, and the frequency domain a frequency domain location of the resource unit in the bandwidth region;
  • the control information includes a first information domain and a second information domain, where the first information domain is used to indicate the at least one bandwidth zone where the at least one frequency domain resource unit is located, and the second information domain is used by the second information domain. Indicating the resource mapping mode.
  • each of the at least one first resource mapping mode corresponds to one identifier
  • the second information domain is used to indicate the resource mapping mode, including:
  • the second information domain includes an identifier corresponding to the resource mapping mode.
  • the method before the terminal device determines the first resource mapping mode set, the method further includes:
  • the terminal device receives the indication information sent by the network device, where the indication information is used to indicate the first resource mapping mode set from a plurality of candidate resource mapping mode sets.
  • the plurality of candidate resource mapping mode sets includes the first resource mapping mode set and the second resource mapping mode set, the resource mapping mode in the first resource mapping mode set, and The resource mapping modes in the second resource mapping mode set are not completely the same.
  • the indication information is carried in higher layer signaling.
  • control information further includes a third information domain, and the indication information is carried in the third information domain.
  • the first information field includes a bitmap, where the bitmap is used to indicate the at least one bandwidth region where the at least one frequency domain resource unit is located;
  • each bit in the bitmap corresponds to a bandwidth area.
  • the granularity of the resource unit corresponds to the resource unit granularity when the terminal device and the network device perform control channel transmission, including:
  • the granularity of the resource unit is one resource element granularity of at least one resource unit granularity when the control channel is transmitted.
  • the method further includes:
  • the terminal device acquires a predefined size of the at least one bandwidth region.
  • the first resource mapping mode set is a specific resource mapping mode configured by the network device for the terminal device, and the number of bits of the second information domain is according to the first resource mapping mode. The number of first resource mapping patterns in the set is determined.
  • the application provides a network device, where the network device includes:
  • a generating module configured to generate control information, where the control information is used to indicate at least one of: at least one bandwidth region where at least one frequency domain resource unit is located, a granularity of the frequency domain resource unit, and the a location of the frequency domain resource unit in the bandwidth area;
  • the frequency domain resource unit is a scheduling unit of a frequency domain resource used when the network device and the terminal device perform data channel transmission, and the granularity of the resource unit corresponds to a resource unit granularity when the network device and the terminal device perform control channel transmission, where the working bandwidth of the terminal device includes a plurality of bandwidth regions that are equally spaced, and the at least one bandwidth region is one of the multiple bandwidth regions or Multiple
  • a sending module configured to send the control information to the terminal device.
  • the network device further includes:
  • a determining module configured to determine a first resource mapping mode set, where the first resource mapping mode set includes: at least one resource mapping mode, where the resource mapping mode includes a granularity of the frequency domain resource unit, and the frequency a frequency domain location of the domain resource unit in the bandwidth region;
  • the control information includes a first information field and/or a second information field, where the first information field is used to indicate the at least one bandwidth area where the at least one frequency domain resource unit is located, the second information The domain is used to indicate the resource mapping mode.
  • each of the at least one first resource mapping mode corresponds to one identifier
  • the second information domain is used to indicate the resource mapping mode, including:
  • the second information domain includes an identifier corresponding to the resource mapping mode.
  • the sending module is further configured to: after the determining module determines the first resource mapping mode set, send indication information to the terminal device, where the indication information is used to select from multiple candidates The first resource mapping mode set is indicated in the resource mapping mode set.
  • the plurality of candidate resource mapping mode sets includes the first resource mapping mode set and the second resource mapping mode set, the resource mapping mode in the first resource mapping mode set, and The resource mapping modes in the second resource mapping mode set are not completely the same.
  • the indication information is carried in higher layer signaling.
  • control information further includes a third information domain, and the indication information is carried in the third information domain.
  • the first information field includes a bitmap, where the bitmap is used to indicate the at least one bandwidth region where the at least one frequency domain resource unit is located;
  • each bit in the bitmap corresponds to a bandwidth area.
  • the granularity of the resource unit corresponds to the resource unit granularity when the network device and the terminal device perform control channel transmission, including:
  • the granularity of the resource unit is one resource element granularity of at least one resource unit granularity when the control channel is transmitted.
  • the network device further includes:
  • a processing module configured to configure, by the high layer signaling, the size of the at least one bandwidth area for the terminal device
  • the first resource mapping mode set is a specific resource mapping mode configured by the network device for one terminal device, and the number of bits of the second information domain is according to the first resource mapping mode set. The number of the first resource mapping patterns in the determination is determined.
  • the application provides a terminal device, where the terminal device includes:
  • a receiving module configured to receive control information sent by the network device, where the control information is used to indicate at least one of the following information: at least one bandwidth region where the at least one frequency domain resource unit is located, and the frequency domain resource unit a granularity and a location of the frequency domain resource unit in the bandwidth area;
  • the frequency domain resource unit is a scheduling unit of a frequency domain resource used when the terminal device performs a data channel transmission with a network device, the resource unit
  • the granularity of the resource unit corresponds to a resource unit granularity when the network device and the terminal device perform control channel transmission, and the working bandwidth of the terminal device includes a plurality of bandwidth regions that are equally spaced, and the at least one bandwidth region is the multiple bandwidth regions. One or more of them;
  • a transmission module configured to transmit the data channel on the at least one frequency domain resource unit according to the control information.
  • the terminal device further includes:
  • a determining module configured to determine a first resource mapping mode set, where the first resource mapping mode set includes: at least one resource mapping mode, where the resource mapping mode includes a granularity of the frequency domain resource unit, and the frequency a frequency domain location of the domain resource unit in the bandwidth region;
  • the control information includes a first information domain and a second information domain, where the first information domain is used to indicate the at least one bandwidth zone where the at least one frequency domain resource unit is located, and the second information domain is used by the second information domain. Indicating the resource mapping mode.
  • each of the at least one first resource mapping mode corresponds to one identifier
  • the second information domain is used to indicate the resource mapping mode, including:
  • the second information domain includes an identifier corresponding to the resource mapping mode.
  • the receiving module is further configured to: before the determining module determines the first resource mapping mode set, receive indication information sent by the network device, where the indication information is used to The first resource mapping mode set is indicated in the selected resource mapping mode set.
  • the plurality of candidate resource mapping mode sets includes the first resource mapping mode set and the second resource mapping mode set, the resource mapping mode in the first resource mapping mode set, and The resource mapping modes in the second resource mapping mode set are not completely the same.
  • the indication information is carried in higher layer signaling.
  • control information further includes a third information domain, and the indication information is carried in the third information domain.
  • the first information field includes a bitmap, where the bitmap is used to indicate the at least one bandwidth region where the at least one frequency domain resource unit is located;
  • each bit in the bitmap corresponds to a bandwidth area.
  • the granularity of the resource unit corresponds to the resource unit granularity when the terminal device and the network device perform control channel transmission, including:
  • the granularity of the resource unit is one resource element granularity of at least one resource unit granularity when the control channel is transmitted.
  • the receiving module is further configured to receive high layer signaling sent by the network device, where the high layer signaling is used to configure a size of the at least one bandwidth region;
  • the terminal device further includes:
  • an obtaining module configured to acquire a size of the predefined at least one bandwidth area.
  • the first resource mapping mode set is a specific resource mapping mode configured by the network device for the terminal device, and the number of bits of the second information domain is according to the first resource mapping mode. The number of first resource mapping patterns in the set is determined.
  • the application provides a network device, including: a processor, a memory, a receiver, and a transmitter; the receiver and the transmitter are both coupled to the processor, and the processor controls the receiving Receiving action of the device, the processor controlling a sending action of the transmitter;
  • the memory is for storing computer executable program code, the program code comprising instructions; when the processor executes the instructions, the instructions cause the network device to perform the method of transmitting the control channel as provided by the first aspect and the possible designs of the first aspect .
  • the application provides a terminal device, including: a processor, a memory, a receiver, and a transmitter; the receiver and the transmitter are both coupled to the processor, and the processor controls the receiving Receiving action of the device, the processor controlling a sending action of the transmitter;
  • the memory is for storing computer executable program code, the program code comprising instructions; when the processor executes the instructions, the instructions cause the terminal device to perform the control channel transmission method provided by the second aspect and the possible design of the second aspect .
  • a seventh aspect of the present application provides a network device comprising at least one processing element (or chip) for performing the method of the above first aspect.
  • An eighth aspect of the present application provides a terminal device comprising at least one processing element (or chip) for performing the method of the above second aspect.
  • a ninth aspect of the present application provides a program for performing the method of the above first aspect when executed by a processor.
  • a tenth aspect of the present application provides a program for performing the method of the above second aspect when executed by a processor.
  • An eleventh aspect of the present application provides a program product, such as a computer readable storage medium, comprising the program of the ninth aspect.
  • a twelfth aspect of the present application provides a program product, such as a computer readable storage medium, comprising the program of the tenth aspect.
  • a thirteenth aspect of the present application provides a computer readable storage medium having stored therein instructions that, when run on a computer, cause the computer to perform the method of the first aspect described above.
  • a fourteenth aspect of the present application provides a computer readable storage medium having stored therein instructions that, when executed on a computer, cause the computer to perform the method of the second aspect described above.
  • the resource mapping method, the network device, and the terminal device provided by the present application divide the system bandwidth into a plurality of bandwidth regions at equal intervals, so that the network device uses the frequency domain resource unit as a scheduling unit of the frequency domain resource in multiple bandwidth regions.
  • At least one frequency domain resource unit is scheduled on the at least one bandwidth area, and is used as a frequency domain resource used by the network device and the terminal device for data channel transmission, and the scheduling information is indicated by the control information. Since the at least one frequency domain resource unit is in the time domain, it can be located on the control area of the downlink transmission resource and on the data area. Therefore, in this way, the data channel can multiplex the idle resources in the control area for data transmission, thereby improving resource utilization.
  • Figure 1 is a block diagram of a communication system according to the present application.
  • 2 is a schematic diagram of a downlink system bandwidth
  • 3 is a schematic diagram of a downlink transmission resource
  • Figure 4 is a schematic diagram of an REG
  • FIG. 5 is a signaling flowchart of a resource mapping method provided by the present application.
  • FIG. 6 is a schematic diagram of a working bandwidth of a terminal device according to the present application.
  • FIG. 7 is a schematic diagram of resource mapping provided by the present application.
  • FIG. 8 is a schematic diagram of another resource mapping provided by the present application.
  • FIG. 9 is still another schematic diagram of resource mapping provided by the present application.
  • FIG. 10 is still another schematic diagram of resource mapping provided by the present application.
  • FIG. 11 is still another schematic diagram of resource mapping provided by the present application.
  • FIG. 12 is still another schematic diagram of resource mapping provided by the present application.
  • FIG. 13 is still another schematic diagram of resource mapping provided by the present application.
  • FIG. 14 is a schematic diagram of a first resource mapping mode set provided by the present application.
  • FIG. 15 is a schematic diagram of another first resource mapping mode set provided by the present application.
  • 16 is a schematic diagram of still another first resource mapping mode set provided by the present application.
  • FIG. 17 is a schematic structural diagram of a network device provided by the present application.
  • FIG. 18 is a schematic structural diagram of another network device provided by the present application.
  • FIG. 19 is a schematic structural diagram of still another network device according to the present application.
  • 20 is a schematic structural diagram of a terminal device provided by the present application.
  • 21 is a schematic structural diagram of another terminal device provided by the present application.
  • FIG. 22 is a schematic structural diagram of still another terminal device provided by the present application.
  • FIG. 23 is a schematic structural diagram of still another network device according to the present application.
  • FIG. 25 is a structural block diagram of a terminal device provided by the application as a mobile phone.
  • plural means two or more.
  • “and/or” describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/” generally indicates that the contextual object is an "or" relationship.
  • first and second may be used in this application to describe the information fields, these information fields should not be limited to these terms. These terms are only used to distinguish information fields from each other.
  • the first information domain may also be referred to as a second information domain without departing from the scope of the embodiments of the present application.
  • the second information domain may also be referred to as a first information domain.
  • first and second may be used in this application to describe a set of resource mapping patterns, these sets of resource mapping patterns should not be limited to these terms. These terms are only used to distinguish between sets of resource mapping patterns.
  • the first resource mapping mode set may also be referred to as a second resource mapping mode set, and the second resource mapping mode set may also be referred to as a first resource mapping, without departing from the scope of the embodiments of the present application. Pattern collection.
  • the communication system may be an LTE communication system, and may be an NR communication system, or may be other communication systems in the future, which is not limited herein.
  • the communication system includes: a network device and a terminal device. The network device and the terminal device can communicate through one or more air interface technologies.
  • Network device may be a base station, or an access point, or may refer to a device in the access network that communicates with the wireless terminal over one or more sectors over the air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a Global System of Mobile communication (GSM) or a Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA), or may be a wideband code division multiple access (
  • the base station (NodeB, NB) in the Wideband Code Division Multiple Access (WCDMA) may also be an evolved base station (Evolutional Node B, eNB or eNodeB) in Long Term Evolution (LTE), or a relay station or an access point.
  • a base station in a future 5G network, such as gNB, etc. is not limited herein.
  • Terminal device may be a wireless terminal or a wired terminal, the wireless terminal may be a device that provides voice and/or other service data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem. .
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • it may be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with a wireless access network.
  • RAN Radio Access Network
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal.
  • the access terminal, the user terminal (User Terminal), the user agent (User Agent), and the user device (User Device or User Equipment) are not limited herein.
  • the downlink transmission resource is the downlink system bandwidth in the frequency domain. It consists of several Orthogonal Frequency Division Multiplexing (OFDM) symbols (for example, 7 or 14 OFDM symbols) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Each RB is composed of 12 consecutive subcarriers in the frequency domain and 6 or 7 OFDM symbols in the time domain.
  • each of the grids on the resource grid of the RB shown in FIG. 2 is referred to as a Resource Element (RE), and each RE includes one subcarrier within one OFDM symbol.
  • RE Resource Element
  • FIG. 3 is a schematic diagram of a downlink transmission resource.
  • downlink transmission resources are divided into a control region and a data region in the time domain. That is, the control region and the data region are both the entire downlink system bandwidth in the frequency domain. Composition, but consists of different time domain symbols on the time domain. It should be noted that in all subsequent drawings, the time domain is represented by time, and the frequency domain is represented by frequency, and is not explained one by one.
  • the control area is used to transmit a control channel, and the data area is used to transmit a data channel.
  • the control information carried by the control channel can indicate the frequency domain location of the RB used by the data channel in the data region (ie, resource allocation information of the data channel), and the data channel is used to carry downlink data or uplink data.
  • the control channel may be a physical downlink control channel (PDCCH), and the control information carried by the control channel may be, for example, Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the data channel referred to here may be, for example, a Physical Downlink Shared Channel (PDSCH).
  • the NR standard proposes the concept of a control resource set. That is, one or more control resource sets are divided for each terminal device in the control region.
  • the network device may send a control channel to the terminal device on any control resource set corresponding to the terminal device.
  • FIG. 3 shows a downlink transmission resource in which two control resource sets are divided for the terminal device on the control region: control resource set1 and control resource set2. As shown in FIG. 3, the network device may send a control channel to the terminal device on the control resource set 1, or may send a control channel to the terminal device on the control resource set 2.
  • control channel can be understood as the transmission of control information on the control channel.
  • the network device transmits the control channel on the control resource set 1, it can also be understood that the control information is transmitted on the control resource set 1.
  • the control channel can be transmitted using one or more CCEs on the set of control resources.
  • the plurality of CCEs referred to herein may be, for example, two, four or eight CCEs.
  • One CCE is composed of multiple REGs.
  • one CCE is composed of 4 REGs or 6 REGs.
  • Figure 4 is a schematic diagram of an REG. As shown in FIG. 4, each REG is composed of 12 consecutive subcarriers in the frequency domain, and is composed of one Orthogonal Frequency Division Multiplexing (OFDM) symbol in the time domain, that is, 12 frequencies. Consecutive RE composition on the domain. That is to say, each REG occupies the same bandwidth in the frequency domain as the bandwidth occupied by one RB.
  • OFDM Orthogonal Frequency Division Multiplexing
  • NR supports the following CCE to REG resource mapping modes: continuous resource mapping (Localized), distributed resource mapping (Distributed), frequency domain priority resource mapping (Frequency-first), and time domain priority resource mapping. Way (first-first).
  • continuous resource mapping Localized
  • distributed resource mapping Distributed
  • frequency domain priority resource mapping Frequency-first
  • time domain priority resource mapping Way
  • the mapping order of the REGs belonging to the same CCE on the downlink transmission resource is the pre-frequency domain post-time domain.
  • the mapping order of the REGs belonging to the same CCE on the downlink transmission resource is the first-time domain frequency domain and the latter frequency domain.
  • the resource mapping manners of the CCEs to the REGs support REG bundling in the time domain and the frequency domain, and each REG bundling includes multiple REGs belonging to the same CCE.
  • all REGs of a REG bundling in the frequency domain are continuously mapped in the frequency domain of the downlink transmission resource, and all REGs of a REG bundling in the time domain are transmitting resources in the downlink.
  • the time domain is continuously mapped, and the size of the REG bundling in the frequency domain can be regarded as the frequency domain resource scheduling granularity of the control channel.
  • the network device uses different CCE to REG mapping modes on the control resource set, and when the control channel occupies different symbols in the time domain, the REG bundling size in the frequency domain may be different, and the control channel is different.
  • resource mapping is performed, there are free resources in the control area.
  • the data channel is allowed to multiplex the idle resources of the control region to improve resource utilization. That is, idle resources on the control region can be used to transport data channels.
  • the idle resource of the control area mentioned here also includes the idle resource on the control resource set.
  • the frequency domain resource scheduling granularity of the data channel is only related to the system bandwidth, so the frequency domain resource scheduling granularity of the data channel and the frequency domain REG bundling size of the control channel The size may be inconsistent, causing some idle resources in the control area to be unscheduled to the data channel, affecting resource usage efficiency.
  • the resource mapping method provided by the present application aims to solve the technical problem of how network devices allocate resources for data channels.
  • the technical solutions of the present application are described in detail below through some embodiments. The following embodiments may be combined with each other, and the same or similar concepts or processes may not be described in some embodiments.
  • FIG. 5 is a signaling flowchart of a resource mapping method provided by the present application.
  • the embodiment relates to the network device indicating, by the control information, at least one frequency domain resource unit scheduled for the terminal device, so that the terminal device can transmit the data channel on the at least one frequency domain resource unit.
  • the method may include:
  • the network device generates control information.
  • the control information is used to indicate at least one of the following information: at least one bandwidth region where the at least one frequency domain resource unit is located, a granularity of the frequency domain resource unit, and a location of the frequency domain resource unit in the bandwidth region, the frequency domain resource unit
  • the scheduling unit of the frequency domain resource used for the data channel transmission of the network device and the terminal device, the granularity of the resource unit corresponds to the resource unit granularity when the network device and the terminal device perform the control channel transmission, and the working bandwidth of the terminal device includes equal intervals.
  • the plurality of bandwidth regions, the at least one bandwidth region being one or more of the plurality of bandwidth regions.
  • the control information may be dynamic control information that is carried on the downlink control channel, such as the DCI carried on the PDCCH, or other dynamic information, which is not limited in this application.
  • the frequency domain resource unit may be a resource block group (RBG), where the RBG is a group of resource blocks that are consecutive in the frequency domain, and may also be other frequency domain resource units. limited.
  • RBG resource block group
  • the size P of the bandwidth area may be predefined by the system, or may be configured by high-level signaling, such as radio resource control (RRC) signaling, media access control (MAC) signaling, etc.
  • RRC radio resource control
  • MAC media access control
  • the unit of P may be a resource block.
  • P may be the maximum granularity of the frequency domain resource unit. Therefore, the system bandwidth can be divided into multiple bandwidth regions at equal intervals. When the system bandwidth value cannot be divisible by P, the remaining frequency domain resources can still be regarded as one bandwidth region.
  • FIG. 6 is a schematic diagram of a working bandwidth of a terminal device according to the present application.
  • the multiple bandwidth regions may not be based on the specific The working bandwidth of the terminal device is divided, but the working bandwidth of the terminal device may still include multiple bandwidth regions.
  • the starting position of the operating bandwidth of the terminal device is aligned with the starting position of a bandwidth region.
  • the granularity of the resource unit of the foregoing data channel is one resource element granularity of at least one resource unit granularity of the control channel. See the description below for details.
  • the resource area in which the control channel is located may be, for example, the control area described above. That is to say, the at least one frequency domain resource unit may be located on the control area of the downlink transmission resource and the data area in the time domain. In this way, the data channel can multiplex the idle resources in the control area for data transmission to improve resource utilization.
  • the above control information is only used to indicate unscheduled information.
  • the foregoing control information may be used to indicate at least one bandwidth area where the at least one frequency domain resource unit is located.
  • the foregoing control information may be used to indicate at least one bandwidth area where the at least one frequency domain resource unit is located, a granularity of the frequency domain resource unit, and a location of the frequency domain resource unit in the bandwidth area.
  • the network device indicates a part of the information in the foregoing information by using the foregoing control information, and the network device uses other indication information to indicate other information of the information.
  • the network device indicates the granularity of the frequency domain resource unit and the location of the frequency domain resource unit in the bandwidth area by using the foregoing control information, and indicates at least one bandwidth area where the at least one frequency domain resource unit is located by using other indication information.
  • the other indication information mentioned herein may be carried in any of the following signaling and sent to the terminal device, for example, physical layer signaling, Radio Resource Control (RRC) signaling, and media access control (Media). Access Control, MAC) signaling, etc.
  • RRC Radio Resource Control
  • Media media access control
  • the network device sends control information to the terminal device.
  • the terminal device may be one or more terminal devices. That is, the network device may send corresponding control information for each terminal device, for example, sending a control channel where the control information is located for each terminal device, or sending public or broadcast control information for multiple terminal devices, such as a group of terminals.
  • the device sends a common control channel where the control information is located (for example, Group-common PDCCH).
  • the terminal device receives the control information.
  • the terminal device transmits the data channel on the at least one frequency domain resource unit according to the control information.
  • the terminal device may according to at least one frequency domain resource unit. At least one bandwidth region, and a granularity of the frequency domain resource unit and a location of the frequency domain resource unit in the bandwidth region, determining a location of the at least one frequency domain resource unit in the frequency domain, and further in the at least one frequency domain resource unit
  • the data channel is transmitted on. For example, the terminal device sends an uplink data channel to the network device, or the network device sends a downlink data channel to the terminal device.
  • the terminal device may according to the control channel.
  • the indicated unpredefined information, and the predefined information obtain at least one bandwidth region in which at least one frequency domain resource unit is located, and a granularity of the frequency domain resource unit and a location of the frequency domain resource unit in the bandwidth region.
  • the terminal device may determine, according to the at least one bandwidth region where the at least one frequency domain resource unit is located, and the granularity of the frequency domain resource unit and the location of the frequency domain resource unit in the bandwidth region, the at least one frequency domain resource unit is in the frequency domain.
  • the location transmits a data channel on the at least one frequency domain resource unit. For example, the terminal device sends an uplink data channel to the network device, or the network device sends a downlink data channel to the terminal device.
  • the terminal device may obtain at least one frequency domain resource unit by using the control information and other indication information. At least one bandwidth region, and the granularity of the frequency domain resource unit and the location of the frequency domain resource unit in the bandwidth region. Further, the terminal device may determine, according to the at least one bandwidth region where the at least one frequency domain resource unit is located, and the granularity of the frequency domain resource unit and the location of the frequency domain resource unit in the bandwidth region, the at least one frequency domain resource unit is in the frequency domain. The location, in turn, transmits a data channel on the at least one frequency domain resource unit. For example, the terminal device sends an uplink data channel to the network device, or the network device sends a downlink data channel to the terminal device.
  • the resource mapping method provided by the present application divides the system bandwidth into a plurality of bandwidth regions at equal intervals, so that the network device schedules the frequency domain resource unit as the scheduling unit of the frequency domain resource in at least one bandwidth region of the multiple bandwidth regions.
  • the at least one frequency domain resource unit is used as a frequency domain resource used by the network device and the terminal device for data channel transmission, and indicates scheduling information by using control information. Since the at least one frequency domain resource unit is in the time domain, it can be located on the control area of the downlink transmission resource and on the data area. Therefore, in this way, the data channel can multiplex the idle resources in the control area for data transmission, thereby improving resource utilization.
  • the granularity of the frequency domain resource unit is used to represent the bandwidth occupied by the frequency domain resource unit in the bandwidth region.
  • the granularity of the frequency domain resource unit may correspond to a resource unit granularity of the control channel, where the resource unit granularity of the control channel may be a REG bundling size in the frequency domain, where the REG bundling in the frequency domain It refers to a group of consecutive REG resources in the frequency domain, and may also be a resource unit of other control channels, which is not limited by the embodiment of the present application.
  • the granularity of the frequency domain resource unit of the terminal device is one of the control resource unit granularities of at least one control resource unit granularity of the control channel.
  • the granularity of the frequency domain resource unit of the terminal device is the same as the granularity of the control frequency domain resource unit (for example, the REG bundling size on the frequency domain) of the control channel of the terminal device.
  • control channel uses two CCEs for transmission, where each CCE includes 6 REGs.
  • the two CCEs are CCE0 and CCE1, respectively.
  • the indexes of the six REGs included in CCE0 are: 0, 1, 2, 3, 4, and 5.
  • the indexes of the six REGs included in CCE1 are: 6, 7, 8, 9, 10, and 11, respectively.
  • FIG. 7 is a schematic diagram of resource mapping provided by the present application.
  • the resource mapping manner of the terminal device in the control channel is a continuous resource mapping mode (Localized) and a frequency domain priority resource mapping mode (Frequency-first), and the control channel occupies 1 OFDM symbol in the time domain.
  • the size of a REG bundling of the CCE in the frequency domain is 6, and the RBG size of the data channel of the terminal device is 6.
  • FIG. 8 is a schematic diagram of another resource mapping provided by the present application.
  • the resource mapping manner of the terminal device in the control channel is a distributed resource mapping mode (Distributed) and a frequency domain priority resource mapping mode (Frequency-first), and the control channel occupies 1 OFDM symbol in the time domain.
  • the size of a REGbundling of the CCE in the frequency domain is 2, and the RBG size of the data channel of the terminal device is 2.
  • FIG. 9 is still another schematic diagram of resource mapping provided by the present application.
  • the resource mapping manner of the terminal device in the control channel is a distributed resource mapping mode (Distributed) and a frequency domain priority resource mapping mode (Frequency-first), and the control channel occupies 1 OFDM symbol in the time domain.
  • the size of a REGbundling of the CCE in the frequency domain is 3, and the RBG size of the data channel of the terminal device is 3.
  • FIG. 10 is still another schematic diagram of resource mapping provided by the present application.
  • the resource mapping manner of the terminal device in the control channel is a continuous resource mapping mode (Localized) and a time domain priority resource mapping mode (Time-first), and the control channel occupies 3 OFDM symbols in the time domain.
  • the size of a REG bundling of the CCE in the frequency domain is 2, and the RBG size of the data channel of the terminal device is 3.
  • FIG. 11 is still another schematic diagram of resource mapping provided by the present application.
  • the resource mapping manner of the terminal device in the control channel is a continuous resource mapping mode (Localized) and a time domain priority resource mapping mode (Time-first), and the control channel occupies 2 OFDM symbols in the time domain.
  • the size of a REG bundling of the CCE in the frequency domain is 3
  • the RBG size of the data channel of the terminal device is 3.
  • FIG. 12 is still another schematic diagram of resource mapping provided by the present application.
  • the resource mapping manner of the terminal device in the control channel is a distributed resource mapping mode (Distributed) and a time domain priority resource mapping mode (Time-first), and when the control channel occupies 2 OFDM symbols in the time domain, If the size of a REG bundling of the CCE in the frequency domain is 1, the RBG size of the data channel of the terminal device is 1.
  • FIG. 13 is still another schematic diagram of resource mapping provided by the present application.
  • the resource mapping manner of the terminal device in the control channel is a distributed resource mapping mode (Distributed) and a time domain priority resource mapping mode (Time-first), and the control channel occupies 3 OFDM symbols in the time domain.
  • the size of a REG bundling of the CCE in the frequency domain is 1, and the RBG size of the data channel of the terminal device is 1.
  • the resource mapping granularity of the data channel in the frequency domain can be made consistent with the resource mapping granularity of the control channel in the frequency domain.
  • the granularity of the frequency domain resource unit may correspond to the resource unit granularity of the control channel, and the size of the bandwidth area may be pre-configured or configured by higher layer signaling, where the control information is used to indicate at least one bandwidth area and frequency domain where the at least one frequency domain resource unit is located.
  • the granularity of the resource unit and the location of the frequency domain resource unit in the bandwidth area are taken as an example, and the implementation manner in which the above network device indicates the information through the control information is introduced. It can include the following two situations:
  • the first resource mapping mode set may be predefined in the network device and the terminal device.
  • the first resource mapping mode set includes at least one resource mapping mode.
  • Each resource mapping mode includes a granularity of a frequency domain resource unit and a frequency domain location of the frequency domain resource unit in the bandwidth region. Therefore, the foregoing network device may acquire the foregoing first resource mapping mode set.
  • the network device may be configured from multiple bandwidth regions according to resource scheduling conditions of all control channels on the working bandwidth of the terminal device, including a control channel sent to the current terminal device and a control channel sent to other terminal devices. Select at least one bandwidth area that can be scheduled for the terminal device. Then, the network device can select the granularity of the frequency domain resource unit by using the size of the REG binding used by the control channel when performing resource mapping. Finally, the network device may select a resource mapping mode in the first resource mapping mode set according to the frequency domain location of the idle resource in each bandwidth area and the granularity of the frequency domain resource unit, so that the data channel may be the largest. The idle frequency domain resources in the multiplexed control area are used for data transmission, thereby improving resource utilization.
  • the foregoing control information may include a first information domain and a second information domain.
  • the first information field is used to indicate at least one bandwidth area where at least one frequency domain resource unit is located. This embodiment does not limit the manner in which the first information field indicates at least one bandwidth region in which at least one frequency domain resource unit is located.
  • the foregoing first information field may include a bitmap for indicating at least one bandwidth region where the at least one frequency domain resource unit is located. Each bit of the bitmap corresponds to a bandwidth region. That is to say, how many bandwidth areas are divided by the working bandwidth of the above terminal device, and how many bits are in the bitmap.
  • the bandwidth area corresponding to the bit is a bandwidth area where the frequency domain resource unit is located.
  • a certain bit in the bitmap is 0, it indicates that the bandwidth area corresponding to the bit is the bandwidth area where the frequency domain resource unit is located, and may be determined according to system settings.
  • the second information field is used to indicate a certain resource mapping mode in the first resource mapping mode set, to indicate, by using the indicated resource mapping mode, a granularity of the frequency domain resource unit indicated by the resource mapping mode, and the The frequency domain location of the frequency domain resource unit in the bandwidth region.
  • each of the at least one resource mapping mode included in the first resource mapping mode set corresponds to one identifier
  • the second information domain may be indicated by carrying an identifier corresponding to a certain resource mapping mode.
  • the resource mapping mode may be, for example, any identifier capable of uniquely identifying a resource mapping mode.
  • the identifier may be an index number of each resource mapping mode in the first resource mapping mode set, a name of each resource mapping mode, and the like.
  • FIG. 13 is a schematic diagram showing an index number of the first resource mapping mode set in each resource mapping mode as an identifier corresponding to each resource mapping mode.
  • first information domain and the second information domain may be combined into one information domain, that is, the first information domain and the second information domain may be two fields in one information domain.
  • the number of bits of the second information field may be determined according to the number of first resource mapping modes in the first resource mapping mode set.
  • the terminal device may first acquire the first resource mapping mode set to determine the at least one frequency domain indicated by the control information by combining the first resource mapping mode set and the control information.
  • the resource unit is located in the frequency domain, and further transmits a data channel on the at least one frequency domain resource unit.
  • FIG. 14 is a schematic diagram of a first resource mapping mode set provided by the present application.
  • the granularity of the frequency domain resource unit is 6 RBs, 3 RBs, 2 RBs, or 1 RB.
  • the maximum granularity of the frequency domain resource unit is 6 RBs.
  • each bandwidth area includes 6 RB resources.
  • the resource mapping mode included in the first resource mapping mode set may be as shown in FIG. 14.
  • the identifier corresponding to each resource mapping mode is an index of each resource mapping mode in the first resource mapping mode set. If the frequency domain resource unit is a resource block group RBG, the size of the RBG may be 1, 2, 3, 6.
  • Each row in Figure 14 represents a resource mapping mode in which the squares filled with lines are frequency domain resource elements.
  • the resource mapping mode of index number 0 as an example, in the resource mapping mode, the granularity of the frequency domain resource unit is 6 RBs, and the frequency domain location of the frequency domain resource unit in the bandwidth region is all RBs of the bandwidth region.
  • the resource mapping mode of index number 4 as an example, in the resource mapping mode, the granularity of the frequency domain resource unit is 2 REGs, and the frequency domain location of the frequency domain resource unit in the bandwidth region is the third of the bandwidth region.
  • RB and 4th RB is the resource mapping mode of index number
  • the frequency domain resource unit has a granularity of 1 RB in the resource mapping mode
  • the frequency bandwidth resource unit may include two frequency domain resource units, where one frequency domain The frequency domain location of the resource unit in the bandwidth region is the third RB of the bandwidth region, and the frequency domain location of the other frequency domain resource unit in the bandwidth region is the sixth RB of the bandwidth region.
  • the number of the first resource mapping modes in the first resource mapping mode set is 9, the number of bits of the second information domain is 4.
  • the size of the bandwidth area shown in FIG. 14 is only a schematic, and the application is not limited thereto.
  • the network device may schedule one or more frequency domain resource units and the like in one bandwidth area according to the granularity of the frequency domain resource unit, and the implementation manner and principle thereof are similar to the foregoing embodiment. I won't go into details here.
  • the resource mapping mode included in the first resource mapping mode set shown in the first case may be adapted to any CCE to REG resource of the control channel. Mapping method.
  • the first resource mapping mode set corresponds to a CCE to REG resource mapping manner of the control channel. That is to say, a plurality of alternative resource mapping mode sets can be predefined in the network device.
  • the CCE to REG resource mapping manner of the control channel corresponding to each candidate resource mapping mode set.
  • Each set of candidate resource mapping patterns includes at least one resource mapping mode.
  • the resource mapping patterns included in any two alternative resource mapping pattern sets may not be identical. That is to say, the same resource mapping mode can exist in any two alternative resource mapping pattern sets.
  • Each alternative resource mapping mode set is different.
  • the network device may be configured from multiple bandwidth regions according to resource scheduling conditions of all control channels on the working bandwidth of the terminal device, including a control channel sent to the current terminal device and a control channel sent to other terminal devices. Select at least one bandwidth area that can be scheduled for the terminal device. Then, the network device may select the first resource mapping mode set from the plurality of candidate resource mapping mode sets according to the CCE to REG resource mapping manner of the control channel. Finally, the network device can select the granularity of the frequency domain resource unit by using the size of the REG binding used by the control channel when performing resource mapping.
  • the network device selects a resource mapping mode in the first resource mapping mode set according to the frequency domain location of the idle resource in each bandwidth area, and the granularity of the frequency domain resource unit, so that the data channel can be maximized. Data transmission is performed by using idle frequency domain resources in the control area, thereby improving resource utilization.
  • the foregoing control information may include a first information domain, a second information domain, and a third information domain.
  • the first information field is used to indicate at least one bandwidth region where the at least one frequency domain resource unit is located
  • the second information domain is used to indicate a certain resource mapping mode in the first resource mapping mode set
  • the third information domain is used to
  • the first set of resource mapping patterns is indicated in a plurality of candidate resource mapping mode sets.
  • each of the resource mapping mode sets included in the multiple candidate resource mapping mode set corresponds to one identifier
  • the third information domain may indicate the resource mapping by carrying an identifier corresponding to a certain resource mapping mode set. Pattern collection.
  • the identifier mentioned above may be, for example, any identifier that can uniquely identify a set of resource mapping patterns. For example: index number, name, etc.
  • the terminal device may obtain the first resource mapping mode set from the plurality of candidate resource mapping mode sets according to the third control information, to combine the first resource mapping mode set and The first information field and the second information field of the control information determine the location of the at least one frequency domain resource unit indicated by the control information in the frequency domain, and further transmit the data channel on the at least one frequency domain resource unit.
  • the above control information still only has the first information domain and the second information domain.
  • the network device may send the indication information to the terminal device.
  • the over indication information is used to indicate a first set of resource mapping modes from a plurality of candidate resource mapping mode sets.
  • the terminal device can combine the indication information and the control information to determine the first resource mapping mode set from the plurality of candidate resource mapping mode sets, and then determine the first information domain and the second information domain based on the first information domain and the second information domain.
  • the at least one frequency domain resource unit is located in the frequency domain, and further transmits a data channel on the at least one frequency domain resource unit.
  • the foregoing indication information may be sent to the terminal device in the high layer signaling, for example, physical layer signaling, radio resource control (RRC) signaling, and media access control (MAC). Signaling, etc.
  • RRC radio resource control
  • MAC media access control
  • the foregoing indication information may be specifically carried in a MAC Control Element (Control Element, CE).
  • the terminal device may obtain the first resource mapping mode set from the plurality of candidate resource mapping mode sets according to the indication information, to combine the first resource mapping mode set. And determining, by the first information field and the second information field of the control information, the location of the at least one frequency domain resource unit indicated by the control information in the frequency domain, and further transmitting the data channel on the at least one frequency domain resource unit.
  • FIG. 15 is a schematic diagram of another first resource mapping mode set provided by the present application.
  • FIG. 16 is a schematic diagram of still another first resource mapping mode set provided by the present application. It is assumed that the plurality of candidate resource mapping mode sets include a first resource mode set and a second resource mode set.
  • the resource mapping manner of the CCE to REG corresponding to the control channel of the first resource mapping mode set is: a frequency domain priority resource mapping mode.
  • the resource mapping manner of the CCE to REG corresponding to the control channel of the second resource mapping mode set is: the time domain priority resource mapping mode.
  • the granularity of the frequency domain resource unit is 6 RBs, 3 RBs, 2 RBs, or 1 RB.
  • the maximum granularity of the frequency domain resource unit is 6 RBs. Assume that each bandwidth area includes 6 RBs.
  • the size of the REG bundling in the frequency domain may be 2, 3, and 6. Therefore, the first resource mapping mode set is The resource mapping mode included can be as shown in FIG.
  • the identifier corresponding to each resource mapping mode is an index of each resource mapping mode in the first resource mapping mode set.
  • the size of the REG bundling in the frequency domain may be 1, 2, or 3. Therefore, the resource mapping mode included in the second resource mapping mode set may be as shown in FIG. 16.
  • the identifier corresponding to each resource mapping mode is an index of each resource mapping mode in the first resource mapping mode set.
  • the size of the bandwidth area shown in FIG. 15 and FIG. 16 is only a schematic, and the application is not limited thereto.
  • the network device may schedule one or more frequency domain resource units and the like in one bandwidth area according to the granularity of the frequency domain resource unit, and the implementation manner and principle thereof are similar to the foregoing embodiment. I won't go into details here.
  • the resource mapping method provided by the present application divides the system bandwidth into a plurality of bandwidth regions at equal intervals, so that the network device schedules the frequency domain resource unit as the scheduling unit of the frequency domain resource in at least one bandwidth region of the multiple bandwidth regions.
  • the at least one frequency domain resource unit is used as a frequency domain resource used by the network device and the terminal device for data channel transmission, and indicates scheduling information by using control information. Since the at least one frequency domain resource unit is in the time domain, it can be located on the control area of the downlink transmission resource and on the data area. Therefore, in this way, the data channel can multiplex the idle resources in the control area for data transmission, thereby improving resource utilization.
  • FIG. 17 is a schematic structural diagram of a network device according to the present application. As shown in FIG. 17, the network device may include: a generating module 11 and a sending module 12. among them,
  • the generating module 11 is configured to generate control information, where the control information is used to indicate at least one of the following information: at least one bandwidth region where the at least one frequency domain resource unit is located, a granularity of the frequency domain resource unit, and a location a location of the frequency domain resource unit in the bandwidth area;
  • the frequency domain resource unit is a scheduling unit of a frequency domain resource used when the network device and the terminal device perform data channel transmission, and the granularity of the resource unit corresponds to a resource unit granularity when the network device and the terminal device perform control channel transmission, where the working bandwidth of the terminal device includes a plurality of bandwidth regions that are equally spaced, and the at least one bandwidth region is one of the multiple bandwidth regions. Or multiple;
  • the sending module 12 is configured to send the control information to the terminal device.
  • the granularity of the resource unit is corresponding to the resource unit granularity when the network device and the terminal device perform control channel transmission, and may include: the granularity of the resource unit is at least one resource unit granularity when the control channel is transmitted.
  • FIG. 18 is a schematic structural diagram of another network device provided by the present application. As shown in FIG. 18, based on the block diagram shown in FIG. 17, the network device may further include:
  • the processing module 13 is configured to configure, by the high layer signaling, the size of the at least one bandwidth area for the terminal device; or; for acquiring a size of the predefined at least one bandwidth area.
  • FIG. 19 is a schematic structural diagram of still another network device according to the present application. As shown in FIG. 19, on the basis of the block diagram shown in FIG. 17, the network device may further include:
  • a determining module 14 configured to determine a first resource mapping mode set, where the first resource mapping mode set includes: at least one resource mapping mode, the resource mapping mode includes a granularity of the frequency domain resource unit, and the a frequency domain location of the frequency domain resource unit in the bandwidth region;
  • the control information includes a first information field and/or a second information field, where the first information field is used to indicate the at least one bandwidth area where the at least one frequency domain resource unit is located, the second information The domain is used to indicate the resource mapping mode.
  • the first information field includes a bitmap, where the bitmap is used to indicate the at least one bandwidth region where the at least one frequency domain resource unit is located; wherein each bit in the bitmap corresponds to A bandwidth area.
  • each of the at least one first resource mapping mode corresponds to one identifier
  • the second information domain is used to indicate the resource mapping mode, including: the second information domain includes the The identifier corresponding to the resource mapping mode.
  • the first resource mapping mode set is a specific resource mapping mode configured by the network device for one terminal device, and the number of bits of the second information domain is determined according to the first resource in the first resource mapping mode set. The number of mapping modes is determined.
  • the sending module 12 is further configured to: after the determining module 14 determines the first resource mapping mode set, send indication information to the terminal device, where the indication information is used to map from multiple candidate resources.
  • the first resource mapping mode set is indicated in the mode set.
  • the indication information may be carried in, for example, high layer signaling.
  • the plurality of candidate resource mapping mode sets may include, for example, the first resource mapping mode set and the second resource mapping mode set, the resource mapping mode in the first resource mapping mode set, and the second resource mapping The resource mapping patterns in the pattern collection are not identical.
  • control information further includes a third information domain, where the indication information is carried in the third information domain.
  • the network device provided by the present application may perform the action on the network device side in the method embodiment shown in FIG. 5, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 20 is a schematic structural diagram of a terminal device provided by the present application. As shown in FIG. 20, the terminal device may include: a receiving module 21 and a transmitting module 22. among them,
  • the receiving module 21 is configured to receive control information sent by the network device, where the control information is used to indicate at least one of the following information: at least one bandwidth region where the at least one frequency domain resource unit is located, and the frequency domain resource unit a granularity and a location of the frequency domain resource unit in the bandwidth area;
  • the frequency domain resource unit is a scheduling unit of a frequency domain resource used when the terminal device performs a data channel transmission with the network device, the resource
  • the granularity of the unit corresponds to a resource unit granularity when the network device and the terminal device perform control channel transmission, and the working bandwidth of the terminal device includes a plurality of bandwidth regions that are equally spaced, and the at least one bandwidth region is the multiple bandwidths.
  • the transmitting module 22 is configured to transmit the data channel on the at least one frequency domain resource unit according to the control information.
  • the granularity of the resource unit is corresponding to the resource unit granularity when the network device and the terminal device perform control channel transmission, and may include: the granularity of the resource unit is at least one resource unit granularity when the control channel is transmitted.
  • the receiving module 21 is further configured to receive high layer signaling sent by the network device, where the high layer signaling is used to configure a size of the at least one bandwidth region.
  • FIG. 21 is a schematic structural diagram of another terminal device provided by the present application. As shown in FIG. 21, in another implementation of the present application, on the basis of the block diagram shown in FIG. 20, the terminal device may further include:
  • the obtaining module 23 is configured to obtain a size of the predefined at least one bandwidth area.
  • FIG. 22 is a schematic structural diagram of still another terminal device provided by the present application. As shown in FIG. 22, on the basis of the block diagram shown in FIG. 20, the terminal device may further include:
  • a determining module 24 configured to determine a first resource mapping mode set, where the first resource mapping mode set includes: at least one resource mapping mode, the resource mapping mode includes a granularity of the frequency domain resource unit, and the a frequency domain location of the frequency domain resource unit in the bandwidth region;
  • the control information includes a first information field and/or a second information field, where the first information field is used to indicate the at least one bandwidth area where the at least one frequency domain resource unit is located, the second information The domain is used to indicate the resource mapping mode.
  • the first information field includes a bitmap, where the bitmap is used to indicate the at least one bandwidth region where the at least one frequency domain resource unit is located; wherein each bit in the bitmap corresponds to A bandwidth area.
  • each of the at least one first resource mapping mode corresponds to one identifier
  • the second information domain is used to indicate the resource mapping mode, including: the second information domain includes the The identifier corresponding to the resource mapping mode.
  • the first resource mapping mode set is a specific resource mapping mode configured by the network device for one terminal device, and the number of bits of the second information domain is determined according to the first resource in the first resource mapping mode set. The number of mapping modes is determined.
  • the receiving module 21 is further configured to: before the determining module 24 determines the first resource mapping mode set, receive indication information sent by the network device, where the indication information is used to use multiple candidate resources.
  • the first resource mapping mode set is indicated in the mapping mode set.
  • the indication information may be carried in, for example, high layer signaling.
  • the plurality of candidate resource mapping mode sets may include, for example, the first resource mapping mode set and the second resource mapping mode set, the resource mapping mode in the first resource mapping mode set, and the second resource mapping The resource mapping patterns in the pattern collection are not identical.
  • control information further includes a third information domain, where the indication information is carried in the third information domain.
  • the terminal device provided by the present application can perform the action on the terminal device side in the method embodiment shown in FIG. 5, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • each module on a device may be integrated into one physical entity in whole or in part, or may be physically separated. And all the modules on one device can be implemented by software in the form of processing component calls; or all of them can be implemented in hardware form; some modules can be realized by processing component calling software, and some modules are realized by hardware.
  • the determining module may be a separately set processing element, or may be integrated in one of the above-mentioned devices, or may be stored in the memory of one of the devices in the form of program code, by one of the devices.
  • the processing component invokes and performs the functions of the above determining module.
  • the implementation of other modules is similar.
  • all or part of these modules on one device can be integrated or implemented independently.
  • the processing elements described herein can be an integrated circuit with signal processing capabilities. In the implementation process, each step of the foregoing method or each of the above modules on a device may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital) Singnal processor (DSP), or one or more Field Programmable Gate Array (FPGA).
  • ASICs Application Specific Integrated Circuits
  • DSP digital Singnal processor
  • FPGA Field Programmable Gate Array
  • the processing component may be a general purpose processor, such as a central processing unit (CPU) or other processor that can call the program code.
  • CPU central processing unit
  • these modules on a device can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 23 is a schematic structural diagram of still another network device according to the present application.
  • the network device may include a processor 31 (for example, a CPU), a memory 32, a receiver 33, and a transmitter 34.
  • the receiver 33 and the transmitter 34 are both coupled to the processor 31, and the processor 31 controls reception.
  • the receiving operation of the processor 33, the processor 31 controls the transmitting operation of the transmitter 34;
  • the memory 32 may include a high speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory, in which various instructions may be stored in the memory 32. , for performing various processing functions and implementing the method steps of the present application.
  • the network device involved in the present application may further include: a power source 35, a communication bus 36, and a communication port 37.
  • the receiver 33 and the transmitter 34 may be integrated in the transceiver of the terminal device or may be an independent transceiver antenna on the terminal device.
  • Communication bus 36 is used to implement a communication connection between components.
  • the communication port 37 is used to implement connection communication between the terminal device and other peripheral devices.
  • the memory 32 is used to store computer executable program code, and the program code includes instructions.
  • the processor 31 executes the instruction, the instruction causes the network device to perform the action on the network device side in the method embodiment shown in FIG. 5 above.
  • the steps S101, S102, and S104 are similar in principle and technical effects, and are not described herein again.
  • FIG. 24 is a schematic structural diagram of still another terminal device provided by the present application.
  • the terminal device may include a processor 41 (for example, a CPU), a memory 42, a receiver 43, and a transmitter 44.
  • the receiver 43 and the transmitter 44 are both coupled to the processor 41, and the processor 41 controls reception.
  • the receiving operation of the processor 43, the processor 41 controls the transmitting operation of the transmitter 44;
  • the memory 42 may include a high speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory, in which various instructions may be stored. , for performing various processing functions and implementing the method steps of the present application.
  • the terminal device involved in the present application may further include: a power source 45, a communication bus 46, and a communication port 47.
  • the receiver 43 and the transmitter 44 may be integrated in the transceiver of the terminal device or may be an independent transceiver antenna on the terminal device.
  • Communication bus 46 is used to implement a communication connection between components.
  • the communication port 47 is used to implement connection communication between the terminal device and other peripheral devices.
  • the memory 42 is used to store computer executable program code, and the program code includes instructions.
  • the processor 41 executes the instruction, the instruction causes the terminal device to perform the action on the terminal device side in the method embodiment shown in FIG. 5 above.
  • steps S103 and S104 have similar implementation principles and technical effects, and are not described herein again.
  • FIG. 25 is a structural block diagram of the terminal device provided by the application as a mobile phone.
  • the mobile phone may include: a radio frequency (RF) circuit 1110, a memory 1120, an input unit 1130, a display unit 1140, a sensor 1150, an audio circuit 1160, a wireless fidelity (WiFi) module 1170, and processing.
  • RF radio frequency
  • Device 1180 and power supply 1190 and other components.
  • the structure of the handset shown in FIG. 25 does not constitute a limitation to the handset, and may include more or less components than those illustrated, or some components may be combined, or different components may be arranged.
  • the RF circuit 1110 can be used for receiving and transmitting signals during the transmission or reception of information or during a call. For example, after receiving the downlink information of the base station, the processing is performed by the processor 1180. In addition, the uplink data is sent to the base station.
  • RF circuits include, but are not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a Low Noise Amplifier (LNA), a duplexer, and the like.
  • LNA Low Noise Amplifier
  • RF circuitry 1110 can also communicate with the network and other devices via wireless communication. The above wireless communication may use any communication standard or protocol, including but not limited to Global System of Mobile communication (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (Code Division). Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE), e-mail, Short Messaging Service (SMS), and the like.
  • GSM Global System of Mobile communication
  • GPRS General
  • the memory 1120 can be used to store software programs and modules, and the processor 1180 executes various functional applications and data processing of the mobile phone by running software programs and modules stored in the memory 1120.
  • the memory 1120 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • memory 1120 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 1130 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function controls of the handset.
  • the input unit 1130 may include a touch panel 1131 and other input devices 1132.
  • the touch panel 1131 also referred to as a touch screen, can collect touch operations on or near the user (such as the user using a finger, a stylus, or the like on the touch panel 1131 or near the touch panel 1131. Operation), and drive the corresponding connecting device according to a preset program.
  • the touch panel 1131 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 1180 is provided and can receive commands from the processor 1180 and execute them.
  • the touch panel 1131 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 1130 may also include other input devices 1132.
  • other input devices 1132 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 1140 can be used to display information input by the user or information provided to the user as well as various menus of the mobile phone.
  • the display unit 1140 may include a display panel 1141.
  • the display panel 1141 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the touch panel 1131 can be overlaid on the display panel 1141. When the touch panel 1131 detects a touch operation thereon or nearby, the touch panel 1131 transmits to the processor 1180 to determine the type of the touch event, and then the processor 1180 is The type of touch event provides a corresponding visual output on display panel 1141.
  • touch panel 1131 and the display panel 1141 are used as two independent components to implement the input and input functions of the mobile phone in FIG. 10, in some embodiments, the touch panel 1131 and the display panel 1141 may be integrated. Realize the input and output functions of the phone.
  • the handset may also include at least one type of sensor 1150, such as a light sensor, motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display panel 1141 according to the brightness of the ambient light, and the light sensor may close the display panel 1141 and/or when the mobile phone moves to the ear. Or backlight.
  • the acceleration sensor can detect the acceleration of each direction (usually three axes). When it is still, it can detect the magnitude and direction of gravity. It can be used to identify the gesture of the mobile phone (such as horizontal and vertical screen switching, related games).
  • the mobile phone can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, no longer repeat .
  • Audio circuitry 1160, speaker 1161, and microphone 1162 can provide an audio interface between the user and the handset.
  • the audio circuit 1160 can transmit the converted electrical data of the received audio data to the speaker 1161, and convert it into a sound signal output by the speaker 1161; on the other hand, the microphone 1162 converts the collected sound signal into an electrical signal, and the audio circuit 1160 After receiving, it is converted into audio data, and then processed by the audio data output processor 1180, transmitted to the other mobile phone via the RF circuit 1110, or outputted to the memory 1120 for further processing.
  • WiFi is a short-range wireless transmission technology.
  • the mobile phone can help users to send and receive emails, browse web pages and access streaming media through the WiFi module 1170, which provides users with wireless broadband Internet access.
  • FIG. 25 shows the WiFi module 1170, it can be understood that it does not belong to the essential configuration of the mobile phone, and may be omitted as needed within the scope of not changing the essence of the present application.
  • the processor 1180 is a control center for the handset, which connects various portions of the entire handset using various interfaces and lines, by executing or executing software programs and/or modules stored in the memory 1120, and invoking data stored in the memory 1120, The phone's various functions and processing data, so that the overall monitoring of the phone.
  • the processor 1180 may include one or more processing units; for example, the processor 1180 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
  • the modem processor primarily handles wireless communications. It will be appreciated that the above described modem processor may also not be integrated into the processor 1180.
  • the handset also includes a power supply 1190 (such as a battery) that powers the various components.
  • a power supply 1190 (such as a battery) that powers the various components.
  • the power supply can be logically coupled to the processor 1180 via a power management system to manage charging, discharging, and power management functions through the power management system.
  • the mobile phone can also include a camera 1200, which can be a front camera or a rear camera.
  • the mobile phone may further include a Bluetooth module, a GPS module, and the like, and details are not described herein again.
  • the processor 1180 included in the mobile phone may be used to perform the foregoing embodiment of the resource mapping method, and the implementation principle and technical effects are similar, and details are not described herein again.
  • a computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, computer instructions can be wired from a website site, computer, server or data center (eg Coax, fiber, digital subscriber line (DSL) or wireless (eg, infrared, wireless, microwave, etc.) is transmitted to another website, computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • Useful media can be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种资源映射方法、网络设备和终端设备,该方法包括:网络设备生成控制信息,控制信息用于指示以下信息中的至少一种:至少一个频域资源单元所在的至少一个带宽区域、频域资源单元的粒度和频域资源单元在带宽区域中的位置;频域资源单元为网络设备与终端设备进行数据信道传输时所使用的频域资源的调度单位,资源单元的粒度对应于网络设备与终端设备进行控制信道传输时的资源单元粒度,终端设备的工作带宽包括等间隔的多个带宽区域,至少一个带宽区域为多个带宽区域中的一个或多个;网络设备向终端设备发送控制信息。通过上述方法,使得数据信道可以复用控制区域内的空闲资源进行数据传输,提高了资源利用率。

Description

资源映射方法、网络设备和终端设备
本申请要求于2017年05月04日提交中国专利局、申请号为201710309848.6、申请名称为“资源映射方法、网络设备和终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其涉及一种资源映射方法、网络设备和终端设备。
背景技术
在第五代通信系统系统的新空口(New Radio,NR)标准中,下行传输资源被分为控制区域和数据区域。其中,控制区域用于传输控制信道,数据区域用于传输数据信道。控制信道承载的下行控制信息用于指示数据信道所使用的资源块(Resource Block,RB)在数据区域的频域位置,数据信道用于承载下行数据。
在NR标准中,控制信道可以使用一个或多个控制信道元素(Control Channel Elements,CCE)进行传输。其中,一个CCE由多个资源元素组(Resource Element Group,REG)组成。因此,基站发送控制信道时,需要在下行传输资源的控制区域内,对控制信道进行CCE到REG的资源映射。即,以REG为CCE的基本单位,把控制信道所使用的每个CCE映射到下行传输资源上。在使用这种方式进行资源映射时,下行传输资源的控制区域内未被控制信道占用的资源,即为控制区域内的空闲资源。
目前,NR标准中提出,当控制区域内存在空闲资源时,数据信道可以复用空闲资源进行数据传输,以提高资源利用率。因此,当数据信道使用控制区域的资源时,基站如何为数据信道进行资源分配,提高控制区域的资源的使用效率,是一个亟待解决的问题。
发明内容
本申请提供一种资源映射方法、网络设备和终端设备,用于解决在数据信道使用控制区域的资源时,基站如何为数据信道进行资源分配的技术问题。
第一方面,本申请提供一种资源映射方法,该方法包括:
网络设备生成控制信息,其中,所述控制信息用于指示以下信息中的至少一种:至少一个频域资源单元所在的至少一个带宽区域、所述频域资源单元的粒度和所述频域资源单元在所述带宽区域中的位置;所述频域资源单元为所述网络设备与终端设备进行数据信道传输时所使用的频域资源的调度单位,所述资源单元的粒度对应于所述网络设备与终端设备进行控制信道传输时的资源单元粒度,所述终端设备的工作带宽包括等间隔的多个带宽区域,所述至少一个带宽区域为所述多个带宽区域中的一个或多个;
所述网络设备向所述终端设备发送所述控制信息。
通过第一方面提供的资源映射方法,通过将系统带宽划分成等间隔的多个带宽区域, 使得网络设备以频域资源单元为频域资源的调度单位,在多个带宽区域的至少一个带宽区域上调度至少一个频域资源单元,作为网络设备与终端设备进行数据信道传输时所使用的频域资源,并通过控制信息来指示调度信息。由于该至少一个频域资源单元在时域上,可以位于下行传输资源的控制区域上和数据区域上。因此,通过这种方式,使得数据信道可以复用控制区域内的空闲资源进行数据传输,提高了资源利用率。
在一种可能的设计中,所述方法还包括:
所述网络设备确定第一资源映射模式集合,其中,所述第一资源映射模式集合包括:至少一个资源映射模式,所述资源映射模式包括所述频域资源单元的粒度,以及所述频域资源单元在所述带宽区域中的一种频域位置;
所述控制信息包括第一信息域和/或第二信息域,其中,所述第一信息域用于指示所述至少一个频域资源单元所在的所述至少一个带宽区域,所述第二信息域用于指示所述资源映射模式。
通过该可能的设计提供的资源映射方法,通过控制信息的不同的信息域来指示不同的信息,使得控制信息指示调度信息的方式灵活多样。
在一种可能的设计中,所述至少一个第一资源映射模式中的每个资源映射模式对应一个标识,所述第二信息域用于指示所述资源映射模式,包括:
所述第二信息域包括所述资源映射模式对应的标识。
通过该可能的设计提供的资源映射方法,通过在第二信息域携带标识的方式,来指示资源映射模式,降低了信令开销。
在一种可能的设计中,所述网络设备确定第一资源映射模式集合之后,所述方法还包括:
所述网络设备向所述终端设备发送指示信息,所述指示信息用于从多个备选资源映射模式集合中指示所述第一资源映射模式集合。
通过该可能的设计提供的资源映射方法,使得指示方式灵活多样。
在一种可能的设计中,所述多个备选资源映射模式集合包括所述第一资源映射模式集合和第二资源映射模式集合,所述第一资源映射模式集合中的资源映射模式,和所述第二资源映射模式集合中的资源映射模式不完全相同。
在一种可能的设计中,所述指示信息携带在高层信令中。
在一种可能的设计中,所述控制信息还包括第三信息域,所述指示信息携带在所述第三信息域中。
通过该可能的设计提供的资源映射方法,使得指示方式灵活多样。
在一种可能的设计中,所述第一信息域包括位图,所述位图用于指示所述至少一个频域资源单元所在的所述至少一个带宽区域;
其中,所述位图中的每个比特对应一个带宽区域。
通过该可能的设计提供的资源映射方法,通过在第一信息域携带位图的方式,来指示至少一个频域资源单元所在的所述至少一个带宽区域,降低了信令开销。
在一种可能的设计中,所述资源单元的粒度对应于所述网络设备与终端设备进行控制信道传输时的资源单元粒度,包括:
所述资源单元的粒度为所述控制信道传输时的至少一个资源单元粒度中的一个资源 单元粒度。
在一种可能的设计中,所述方法还包括:
所述网络设备通过高层信令为所述终端设备配置所述至少一个带宽区域的大小;或者
所述网络设备获取预定义的所述至少一个带宽区域的大小。
在一种可能的设计中,所述第一资源映射模式集合为所述网络设备为一个终端设备配置的特定资源映射模式,所述第二信息域的比特数根据所述第一资源映射模式集合中第一资源映射模式的数目确定。
第二方面,本申请提供一种资源映射方法,该方法包括:
终端设备接收网络设备发送的控制信息,其中,所述控制信息用于指示以下信息中的至少一种:至少一个频域资源单元所在的至少一个带宽区域、所述频域资源单元的粒度和所述频域资源单元在所述带宽区域中的位置;所述频域资源单元为所述终端设备与网络设备进行数据信道传输时所使用的频域资源的调度单位,所述资源单元的粒度对应于所述网络设备与终端设备进行控制信道传输时的资源单元粒度,所述终端设备的工作带宽包括等间隔的多个带宽区域,所述至少一个带宽区域为所述多个带宽区域中的一个或多个;
所述终端设备根据控制信息,在所述至少一个频域资源单元上传输所述数据信道。
在一种可能的设计中,所述方法还包括:
所述终端设备确定第一资源映射模式集合,其中,所述第一资源映射模式集合包括:至少一个资源映射模式,所述资源映射模式包括所述频域资源单元的粒度,以及所述频域资源单元在所述带宽区域中的一种频域位置;
所述控制信息包括第一信息域和第二信息域,其中,所述第一信息域用于指示所述至少一个频域资源单元所在的所述至少一个带宽区域,所述第二信息域用于指示所述资源映射模式。
在一种可能的设计中,所述至少一个第一资源映射模式中的每个资源映射模式对应一个标识,所述第二信息域用于指示所述资源映射模式,包括:
所述第二信息域包括所述资源映射模式对应的标识。
在一种可能的设计中,所述终端设备确定第一资源映射模式集合之前,所述方法还包括:
所述终端设备接收所述网络设备发送的指示信息,所述指示信息用于从多个备选资源映射模式集合中指示所述第一资源映射模式集合。
在一种可能的设计中,所述多个备选资源映射模式集合包括所述第一资源映射模式集合和第二资源映射模式集合,所述第一资源映射模式集合中的资源映射模式,和所述第二资源映射模式集合中的资源映射模式不完全相同。
在一种可能的设计中,所述指示信息携带在高层信令中。
在一种可能的设计中,所述控制信息还包括第三信息域,所述指示信息携带在所述第三信息域中。
在一种可能的设计中,所述第一信息域包括位图,所述位图用于指示所述至少一个频域资源单元所在的所述至少一个带宽区域;
其中,所述位图中的每个比特对应一个带宽区域。
在一种可能的设计中,所述资源单元的粒度对应于所述终端设备与网络设备进行控制 信道传输时的资源单元粒度,包括:
所述资源单元的粒度为所述控制信道传输时的至少一个资源单元粒度中的一个资源单元粒度。
在一种可能的设计中,所述方法还包括:
所述终端设备接收所述网络设备发送的高层信令,所述高层信令用于配置所述至少一个带宽区域的大小;或者
所述终端设备获取预定义的所述至少一个带宽区域的大小。
在一种可能的设计中,所述第一资源映射模式集合为所述网络设备为所述终端设备配置的特定资源映射模式,所述第二信息域的比特数根据所述第一资源映射模式集合中第一资源映射模式的数目确定。
上述第二方面和第二方面的各可能的设计所提供的资源映射方法,其有益效果可以参见上述第一方面和第一方面的各可能的设计所带来的有益效果,在此不再赘述。
第三方面,本申请提供一种网络设备,所述网络设备包括:
生成模块,用于生成控制信息,其中,所述控制信息用于指示以下信息中的至少一种:至少一个频域资源单元所在的至少一个带宽区域、所述频域资源单元的粒度和所述频域资源单元在所述带宽区域中的位置;所述频域资源单元为所述网络设备与终端设备进行数据信道传输时所使用的频域资源的调度单位,所述资源单元的粒度对应于所述网络设备与终端设备进行控制信道传输时的资源单元粒度,所述终端设备的工作带宽包括等间隔的多个带宽区域,所述至少一个带宽区域为所述多个带宽区域中的一个或多个;
发送模块,用于向所述终端设备发送所述控制信息。
在一种可能的设计中,所述网络设备还包括:
确定模块,用于确定第一资源映射模式集合,其中,所述第一资源映射模式集合包括:至少一个资源映射模式,所述资源映射模式包括所述频域资源单元的粒度,以及所述频域资源单元在所述带宽区域中的一种频域位置;
所述控制信息包括第一信息域和/或第二信息域,其中,所述第一信息域用于指示所述至少一个频域资源单元所在的所述至少一个带宽区域,所述第二信息域用于指示所述资源映射模式。
在一种可能的设计中,所述至少一个第一资源映射模式中的每个资源映射模式对应一个标识,所述第二信息域用于指示所述资源映射模式,包括:
所述第二信息域包括所述资源映射模式对应的标识。
在一种可能的设计中,所述发送模块,还用于在所述确定模块确定第一资源映射模式集合之后,向所述终端设备发送指示信息,所述指示信息用于从多个备选资源映射模式集合中指示所述第一资源映射模式集合。
在一种可能的设计中,所述多个备选资源映射模式集合包括所述第一资源映射模式集合和第二资源映射模式集合,所述第一资源映射模式集合中的资源映射模式,和所述第二资源映射模式集合中的资源映射模式不完全相同。
在一种可能的设计中,所述指示信息携带在高层信令中。
在一种可能的设计中,所述控制信息还包括第三信息域,所述指示信息携带在所述第三信息域中。
在一种可能的设计中,所述第一信息域包括位图,所述位图用于指示所述至少一个频域资源单元所在的所述至少一个带宽区域;
其中,所述位图中的每个比特对应一个带宽区域。
在一种可能的设计中,所述资源单元的粒度对应于所述网络设备与终端设备进行控制信道传输时的资源单元粒度,包括:
所述资源单元的粒度为所述控制信道传输时的至少一个资源单元粒度中的一个资源单元粒度。
在一种可能的设计中,所述网络设备,还包括:
处理模块,用于通过高层信令为所述终端设备配置所述至少一个带宽区域的大小;
或者;用于获取预定义的所述至少一个带宽区域的大小。
在一种可能的设计中,所述第一资源映射模式集合为所述网络设备为一个终端设备配置的特定资源映射模式,所述第二信息域的比特数根据所述第一资源映射模式集合中第一资源映射模式的数目确定。
上述第三方面和第三方面的各可能的设计所提供的网络设备,其有益效果可以参见上述第一方面和第一方面的各可能的设计所带来的有益效果,在此不再赘述。
第四方面,本申请提供一种终端设备,所述终端设备包括:
接收模块,用于接收网络设备发送的控制信息,其中,所述控制信息用于指示以下信息中的至少一种:至少一个频域资源单元所在的至少一个带宽区域、所述频域资源单元的粒度和所述频域资源单元在所述带宽区域中的位置;所述频域资源单元为所述终端设备与网络设备进行数据信道传输时所使用的频域资源的调度单位,所述资源单元的粒度对应于所述网络设备与终端设备进行控制信道传输时的资源单元粒度,所述终端设备的工作带宽包括等间隔的多个带宽区域,所述至少一个带宽区域为所述多个带宽区域中的一个或多个;
传输模块,用于根据控制信息,在所述至少一个频域资源单元上传输所述数据信道。
在一种可能的设计中,所述终端设备还包括:
确定模块,用于确定第一资源映射模式集合,其中,所述第一资源映射模式集合包括:至少一个资源映射模式,所述资源映射模式包括所述频域资源单元的粒度,以及所述频域资源单元在所述带宽区域中的一种频域位置;
所述控制信息包括第一信息域和第二信息域,其中,所述第一信息域用于指示所述至少一个频域资源单元所在的所述至少一个带宽区域,所述第二信息域用于指示所述资源映射模式。
在一种可能的设计中,所述至少一个第一资源映射模式中的每个资源映射模式对应一个标识,所述第二信息域用于指示所述资源映射模式,包括:
所述第二信息域包括所述资源映射模式对应的标识。
在一种可能的设计中,所述接收模块,还用于在所述确定模块确定第一资源映射模式集合之前,接收所述网络设备发送的指示信息,所述指示信息用于从多个备选资源映射模式集合中指示所述第一资源映射模式集合。
在一种可能的设计中,所述多个备选资源映射模式集合包括所述第一资源映射模式集合和第二资源映射模式集合,所述第一资源映射模式集合中的资源映射模式,和所述第二资源映射模式集合中的资源映射模式不完全相同。
在一种可能的设计中,所述指示信息携带在高层信令中。
在一种可能的设计中,所述控制信息还包括第三信息域,所述指示信息携带在所述第三信息域中。
在一种可能的设计中,所述第一信息域包括位图,所述位图用于指示所述至少一个频域资源单元所在的所述至少一个带宽区域;
其中,所述位图中的每个比特对应一个带宽区域。
在一种可能的设计中,所述资源单元的粒度对应于所述终端设备与网络设备进行控制信道传输时的资源单元粒度,包括:
所述资源单元的粒度为所述控制信道传输时的至少一个资源单元粒度中的一个资源单元粒度。
在一种可能的设计中,所述接收模块,还用于接收所述网络设备发送的高层信令,所述高层信令用于配置所述至少一个带宽区域的大小;
或者,所述终端设备还包括:
获取模块,用于获取预定义的所述至少一个带宽区域的大小。
在一种可能的设计中,所述第一资源映射模式集合为所述网络设备为所述终端设备配置的特定资源映射模式,所述第二信息域的比特数根据所述第一资源映射模式集合中第一资源映射模式的数目确定。
上述第四方面和第四方面的各可能的设计所提供的终端设备,其有益效果可以参见上述第二方面和第二方面的各可能的设计所带来的有益效果,在此不再赘述。
第五方面,本申请提供一种网络设备,包括:处理器、存储器、接收器、发送器;所述接收器和所述发送器均耦合至所述处理器,所述处理器控制所述接收器的接收动作,所述处理器控制所述发送器的发送动作;
其中,存储器用于存储计算机可执行程序代码,程序代码包括指令;当处理器执行指令时,指令使网络设备执行如第一方面和第一方面的各可能的设计所提供的控制信道的发送方法。
上述第五方面所提供的网络设备,其有益效果可以参见上述第一方面和第一方面的各可能的设计所带来的有益效果,在此不再赘述。
第六方面,本申请提供一种终端设备,包括:处理器、存储器、接收器、发送器;所述接收器和所述发送器均耦合至所述处理器,所述处理器控制所述接收器的接收动作,所述处理器控制所述发送器的发送动作;
其中,存储器用于存储计算机可执行程序代码,程序代码包括指令;当处理器执行指令时,指令使终端设备执行如第二方面和第二方面的各可能的设计所提供的控制信道的发送方法。
上述第六方面所提供的终端设备,其有益效果可以参见上述第二方面和第二方面的各可能的设计所带来的有益效果,在此不再赘述。
本申请第七方面提供一种网络设备,包括用于执行以上第一方面的方法的至少一个处理元件(或芯片)。
本申请第八方面提供一种终端设备,包括用于执行以上第二方面的方法的至少一个处理元件(或芯片)。
本申请第九方面提供一种程序,该程序在被处理器执行时用于执行以上第一方面的方法。
本申请第十方面提供一种程序,该程序在被处理器执行时用于执行以上第二方面的方法。
本申请第十一方面提供一种程序产品,例如计算机可读存储介质,包括第九方面的程序。
本申请第十二方面提供一种程序产品,例如计算机可读存储介质,包括第十方面的程序。
本申请第十三方面提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面的方法。
本申请第十四方面提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面的方法。
本申请提供的资源映射方法、网络设备和终端设备,通过将系统带宽划分成等间隔的多个带宽区域,使得网络设备以频域资源单元为频域资源的调度单位,在多个带宽区域的至少一个带宽区域上调度至少一个频域资源单元,作为网络设备与终端设备进行数据信道传输时所使用的频域资源,并通过控制信息来指示调度信息。由于该至少一个频域资源单元在时域上,可以位于下行传输资源的控制区域上和数据区域上。因此,通过这种方式,使得数据信道可以复用控制区域内的空闲资源进行数据传输,提高了资源利用率。
附图说明
图1为本申请涉及的通信系统的框架图;
图2为一种下行系统带宽的示意图;
图3为一种下行传输资源的示意图;
图4为一种REG的示意图;
图5为本申请提供的一种资源映射方法的信令流程图;
图6为本申请提供的一种终端设备工作带宽的示意图;
图7为本申请提供的一种资源映射示意图;
图8为本申请提供的另一种资源映射示意图;
图9为本申请提供的又一种资源映射示意图;
图10为本申请提供的又一种资源映射示意图;
图11为本申请提供的又一种资源映射示意图;
图12为本申请提供的又一种资源映射示意图;
图13为本申请提供的又一种资源映射示意图;
图14为本申请提供的一种第一资源映射模式集合的示意图;
图15为本申请提供的另一种第一资源映射模式集合的示意图;
图16为本申请提供的又一种第一资源映射模式集合的示意图;
图17为本申请提供的一种网络设备的结构示意图;
图18为本申请提供的另一种网络设备的结构示意图;
图19为本申请提供的又一种网络设备的结构示意图;
图20为本申请提供的一种终端设备的结构示意图;
图21为本申请提供的另一种终端设备的结构示意图;
图22为本申请提供的又一种终端设备的结构示意图;
图23为本申请提供的又一种网络设备的结构示意图;
图24为本申请提供的又一种终端设备的结构示意图;
图25为申请提供的终端设备为手机时的结构框图。
具体实施方式
本申请中,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
应当理解,尽管在本申请中可能采用术语第一、第二来描述信息域,但这些信息域不应限于这些术语。这些术语仅用来将信息域彼此区分开。例如,在不脱离本申请实施例范围的情况下,第一信息域也可以被称为第二信息域,类似地,第二信息域也可以被称为第一信息域。
应当理解,尽管在本申请中可能采用术语第一、第二来描述资源映射模式集合,但这些资源映射模式集合不应限于这些术语。这些术语仅用来将资源映射模式集合彼此区分开。例如,在不脱离本申请实施例范围的情况下,第一资源映射模式集合也可以被称为第二资源映射模式集合,类似地,第二资源映射模式集合也可以被称为第一资源映射模式集合。
图1为本申请涉及的通信系统的框架图。本申请提供的控制信道的发送方法适用于如图1所示的通信系统,该通信系统可以是LTE通信系统,可以是NR通信系统,也可以是未来其他通信系统,在此不作限制。如图1所示,该通信系统包括:网络设备和终端设备。其中,网络设备和终端设备可以通过一种或多种空口技术进行通信。
网络设备:可以是基站,或者接入点,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是全球移动通讯(Global System of Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站,例如gNB等,在此并不限定。
终端设备:可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol, SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
以5G通信系统为例,5G通信系统的NR标准中,下行传输资源在频域上为下行系统带宽
Figure PCTCN2018084336-appb-000001
,在时域上由若干个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号(例如:7个或14个OFDM符号)组成。
图2为一种下行系统带宽的示意图。如图2所示,
Figure PCTCN2018084336-appb-000002
的基本单位为资源块(Resource Block,RB)。其中,每个RB在频域上由12个连续的子载波组成,在时域上由6或7个OFDM符号组成。继续参照图2,在图2所示的RB的资源网格上的每个网格称为一个资源元素(Resource Element,RE),每个RE包含一个OFDM符号内的一个子载波。
图3为一种下行传输资源的示意图。如图3所示,在本申请中,下行传输资源在时域上被分为控制区域和数据区域。也就是说,控制区域和数据区域在频域(frequency domain)上均由整个下行系统带宽
Figure PCTCN2018084336-appb-000003
组成,但在时域(time domain)上由不同的时域符号组成。需要说明的是,后续所有附图中,时域均用time表示,频域均用frequency表示,不再一一解释。
其中,控制区域用于传输控制信道,数据区域用于传输数据信道。控制信道承载的控制信息能够指示数据信道所使用的RB在数据区域的频域位置(即数据信道的资源分配信息),数据信道用于承载下行数据或上行数据。其中,这里所说的控制信道例如可以为物理下行控制信道(Physical Downlink Control Channel,PDCCH),控制信道承载的控制信息例如可以为下行控制信息(Downlink Control Information,DCI)。这里所说的数据信道例如可以为物理下行共享信道(Physical Downlink Shared Channel,PDSCH)。
为了提高终端设备盲检控制信道的效率,NR标准提出了控制资源集合(control resource set)的概念。即,在控制区域为每个终端设备划分一个或多个控制资源集合。网络设备可以在终端设备对应的任一控制资源集合上,向终端设备发送控制信道。图3示出的是在控制区域上为终端设备划分了2个控制资源集合:控制资源集合1(control resource set1)和控制资源集合2(control resource set2)的下行传输资源。如图3所示,网络设备可以在控制资源集合1上,向终端设备发送控制信道,也可以在控制资源集合2上,向终端设备发送控制信道。
需要明确的是,发送控制信道可理解为在该控制信道上发送控制信息,当网络设备在控制资源集合1上发送控制信道时,也可理解为在控制资源集合1上发送控制信息。
另外,在NR标准中,控制信道在控制资源集合上,可以使用一个或多个CCE进行传输。这里所说的多个CCE例如可以为2个、4个或8个CCE。其中,一个CCE由多个REG组成,例如,一个CCE由4个REG或者6个REG组成。图4为一种REG的示意图。如图4所示,每个REG在频域上由12个连续的子载波组成,在时域上由一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号组成,即由12个频域上连续的RE组成。也就是说,每个REG在频域占用的带宽与一个RB占用的带宽相同。
网络设备在向终端设备发送控制信道时,需要在该终端设备对应的控制资源集合上,对控制信道进行CCE到REG的资源映射。目前,NR支持如下几种CCE到REG的资源映射方式:连续式资源映射方式(Localized)、分布式资源映射方式(Distributed)、频域优先资源映射方式(Frequency-first)、时域优先资源映射方式(Time-first)。在使用Localized进行CCE到REG的资源映射时,属于同一个CCE的REG在下行传输资源的频域上是连续映射的。在使用Distributed进行CCE到REG的资源映射时,属于同一个CCE的REG在下行传输资源的频域上是离散映射的。在使用Frequency-first进行CCE到REG的资源映射时,属于同一个CCE的REG在下行传输资源上的映射顺序是先频域后时域。在使用Time-first进行CCE到REG的资源映射时,属于同一个CCE的REG在下行传输资源上的映射顺序是先时域频域后频域。另外,上述几种CCE到REG的资源映射方式在时域上和频域上均支持REG绑定(REG bundling),每个REG bundling包括属于同一CCE的多个REG。在对控制信道进行CCE到REG的资源映射时,频域上的一个REG bundling的所有REG在下行传输资源的频域上是连续映射的,时域上的一个REG bundling的所有REG在下行传输资源的时域上是连续映射的,其中频域上的REG bundling大小(size)可看作控制信道的频域资源调度粒度。
网络设备在控制资源集合上,采用不同的上述CCE到REG的映射方式,以及,控制信道在时域上所占的符号不同时,频域上的REG bundling大小就可能不一样,而在控制信道进行资源映射时,控制区域中会存在空闲的资源。
目前,在NR标准中,允许数据信道复用控制区域的空闲资源,以提高资源利用率。即,控制区域上的空闲资源可以用于传输数据信道。其中,这里所说的控制区域的空闲资源也包括控制资源集合上的空闲资源。当数据信道使用这些空闲的资源时,在现有的LTE技术中,数据信道的频域资源调度粒度仅仅与系统带宽相关,因此数据信道的频域资源调度粒度与控制信道的频域REG bundling size大小有可能不一致,从而造成控制区域中有些空闲的资源不能调度给数据信道,影响资源使用效率。
本申请提供的资源映射方法,旨在解决网络设备如何为数据信道进行资源分配的技术问题。下面通过一些实施例对本申请的技术方案进行详细说明。下面这几个实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图5为本申请提供的一种资源映射方法的信令流程图。本实施例涉及的是网络设备通过控制信息指示为终端设备调度的至少一个频域资源单元,以使得终端设备可以在该至少一个频域资源单元上传输数据信道。如图5所示,该方法可以包括:
S101、网络设备生成控制信息。
其中,控制信息用于指示以下信息中的至少一种:至少一个频域资源单元所在的至少一个带宽区域、频域资源单元的粒度和频域资源单元在带宽区域中的位置,频域资源单元为网络设备与终端设备进行数据信道传输时所使用的频域资源的调度单位,资源单元的粒度对应于网络设备与终端设备进行控制信道传输时的资源单元粒度,终端设备的工作带宽包括等间隔的多个带宽区域,至少一个带宽区域为多个带宽区域中的一个或多个。
其中,控制信息可以为承载于下行控制信道上的动态控制信息,比如承载于PDCCH上的DCI,也可以是其它动态信息,本申请对此不做限定。
其中,频域资源单元可以为资源块组(Resource Block Group,RBG),其中RBG是 一组在频域上连续的资源块,也可以是其它频域资源单元,本申请实施例对此不做限定。
其中,带宽区域的大小P可以是系统预先定义的,也可以通过高层信令配置,例如无线资源控制(Radio Resource Control,RRC)信令、媒体接入控制(Media Access Control,MAC)信令等,P的单位可以为资源块,作为一种可实施的方式,P可以为频域资源单元的最大粒度。因此,系统带宽可以等间隔地划分成多个带宽区域,当系统带宽值不能被P整除时,剩下的频域资源仍可视为一个带宽区域。
图6为本申请提供的一种终端设备工作带宽的示意图。如图6所示,针对一个特定终端设备,由于该终端设备的工作带宽可以是系统带宽的一部分,并且终端设备在系统带宽的接入位置具有灵活性,上述多个带宽区域可能不是根据该特定终端设备的工作带宽进行划分的,但该终端设备的工作带宽仍然可包括多个带宽区域。可选的,终端设备工作带宽的起始位置与一个带宽区域的起始位置对齐。
可选的,上述数据信道的资源单元的粒度为控制信道的至少一个资源单元粒度中的一个资源单元粒度。详见后续描述。
由于数据信道所调度的资源单元的粒度与控制信道的粒度相同,当上述数据信道传输时复用控制信道所在的资源区域时,不会出现由于调度粒度不同产生的资源浪费现象。这里所说的控制信道所在的资源区域例如可以为前述介绍的控制区域。也就是说,上述至少一个频域资源单元在时域上,可以位于下行传输资源的控制区域上和数据区域上。通过这种方式,使得数据信道可以复用控制区域内的空闲资源进行数据传输,以提高资源利用率。
在上述信息存在一个或多个预定义的信息时,上述控制信息仅用于指示非预定的信息。例如:在频域资源单元的粒度和频域资源单元在带宽区域中的位置为预定义的信息时,上述控制信息可以用于指示至少一个频域资源单元所在的至少一个带宽区域。在上述信息不存在预定义的信息时,上述控制信息可以用于指示至少一个频域资源单元所在的至少一个带宽区域、频域资源单元的粒度和频域资源单元在带宽区域中的位置。
或者,网络设备通过上述控制信息指示上述信息中的一部分信息,网络设备采用其他指示信息来指示上述信息的其他信息。例如:,网络设备通过上述控制信息指示频域资源单元的粒度和频域资源单元在带宽区域中的位置,通过其他指示信息指示至少一个频域资源单元所在的至少一个带宽区域。其中,这里所说的其他指示信息例如可以携带在下述任一信令中发送给终端设备,例如:物理层信令、无线资源控制(Radio Resource Control,RRC)信令、媒体接入控制(Media Access Control,MAC)信令等。
S102、网络设备向终端设备发送控制信息。
应理解,该终端设备可以为一个或多个终端设备。也即,网络设备可以为每个终端设备发送对应的控制信息,比如为每个终端设备发送控制信息所在的控制信道,也可以为多个终端设备发送公共或广播控制信息,比如为一组终端设备发送控制信息所在的公共控制信道(例如:Group-common PDCCH)。
S103、终端设备接收该控制信息。
S104、终端设备根据控制信息,在至少一个频域资源单元上传输数据信道。
例如,在控制信息指示至少一个频域资源单元所在的至少一个带宽区域,以及,频域资源单元的粒度和频域资源单元在带宽区域中的位置时,终端设备可以根据至少一个频域资源单元所在的至少一个带宽区域,以及,频域资源单元的粒度和频域资源单元在带宽区 域中的位置,确定该至少一个频域资源单元在频域的位置,进而在该至少一个频域资源单元上传输数据信道。例如:终端设备向网络设备发送上行数据信道,或者,网络设备向终端设备发送下行数据信道。
例如:在“至少一个频域资源单元所在的至少一个带宽区域,以及,频域资源单元的粒度和频域资源单元在带宽区域中的位置”存在预定义的信息时,终端设备可以根据控制信道所指示的未预定义的信息,以及,预定义的信息,得到至少一个频域资源单元所在的至少一个带宽区域,以及,频域资源单元的粒度和频域资源单元在带宽区域中的位置。进而,终端设备可以根据至少一个频域资源单元所在的至少一个带宽区域,以及,频域资源单元的粒度和频域资源单元在带宽区域中的位置,确定该至少一个频域资源单元在频域的位置,进而在该至少一个频域资源单元上传输数据信道。例如:终端设备向网络设备发送上行数据信道,或者,网络设备向终端设备发送下行数据信道。
例如:在网络设备通过上述控制信息指示上述信息中的一部分信息,采用其他指示信息来指示上述信息的其他信息时,终端设备可以通过控制信息和其他指示信息,得到至少一个频域资源单元所在的至少一个带宽区域,以及,频域资源单元的粒度和频域资源单元在带宽区域中的位置。进而,终端设备可以根据至少一个频域资源单元所在的至少一个带宽区域,以及,频域资源单元的粒度和频域资源单元在带宽区域中的位置,确定该至少一个频域资源单元在频域的位置,进而在该至少一个频域资源单元上传输数据信道。例如:终端设备向网络设备发送上行数据信道,或者,网络设备向终端设备发送下行数据信道。
本申请提供的资源映射方法,通过将系统带宽划分成等间隔的多个带宽区域,使得网络设备以频域资源单元为频域资源的调度单位,在多个带宽区域的至少一个带宽区域上调度至少一个频域资源单元,作为网络设备与终端设备进行数据信道传输时所使用的频域资源,并通过控制信息来指示调度信息。由于该至少一个频域资源单元在时域上,可以位于下行传输资源的控制区域上和数据区域上。因此,通过这种方式,使得数据信道可以复用控制区域内的空闲资源进行数据传输,提高了资源利用率。
如上述实施例所说,上述频域资源单元的粒度用于表征频域资源单元在带宽区域占用的带宽。作为一种可实施的方式,上述频域资源单元的粒度可以对应于控制信道的资源单元粒度,其中,控制信道的资源单元粒度可以为频域上的REG bundling大小,其中频域上的REG bundling指的是在频域上一组连续的REG资源,也可以是其它控制信道的资源单元,本申请的实施例对此不做限定。
对于频域资源单元的粒度与控制信道的资源单元粒度的对应方式,可以包括下述两种情况:
第一种情况:控制区域中存在具有不同控制资源单元粒度的多个控制信道,终端设备的频域资源单元的粒度为所述控制信道的至少一个控制资源单元粒度中的一个控制资源单元粒度。
第二种情况:终端设备的频域资源单元的粒度与该终端设备的控制信道的控制频域资源单元(例如频域上REG bundling大小)粒度相同。
以第二情况为例,可由如下可能的实施方式:
以控制信道使用2个CCE进行传输为例,其中,每个CCE包括6个REG。该2个 CCE分别为CCE0和CCE1。CCE0包括的6个REG的索引分别为:0、1、2、3、4、5。CCE1包括的6个REG的索引分别为:6、7、8、9、10、11。
图7为本申请提供的一种资源映射示意图。如图7所示,该终端设备在控制信道的资源映射方式为连续式资源映射方式(Localized)和频域优先资源映射方式(Frequency-first),控制信道在时域上占用1个OFDM符号,CCE在频域上的一个REG bundling的大小(size)为6,则该终端设备数据信道的RBG大小为6。
图8为本申请提供的另一种资源映射示意图。如图8所示,该终端设备在控制信道的资源映射方式为分布式资源映射方式(Distributed)和频域优先资源映射方式(Frequency-first),控制信道在时域上占用1个OFDM符号,CCE在频域上的一个REGbundling的大小(size)为2,则该终端设备数据信道的RBG大小为2。
图9为本申请提供的又一种资源映射示意图。如图9所示,该终端设备在控制信道的资源映射方式为分布式资源映射方式(Distributed)和频域优先资源映射方式(Frequency-first),控制信道在时域上占用1个OFDM符号,CCE在频域上的一个REGbundling的大小(size)为3,则该终端设备数据信道的RBG大小为3。
图10为本申请提供的又一种资源映射示意图。如图10所示,该终端设备在控制信道的资源映射方式为连续式资源映射方式(Localized)和时域优先资源映射方式(Time-first),控制信道在时域上占用3个OFDM符号,CCE在频域上的一个REG bundling的大小(size)为2,则该终端设备数据信道的RBG大小为3。
图11为本申请提供的又一种资源映射示意图。如图11所示,该终端设备在控制信道的资源映射方式为连续式资源映射方式(Localized)和时域优先资源映射方式(Time-first),控制信道在时域上占用2个OFDM符号,CCE在频域上的一个REG bundling的大小(size)为3时,则该终端设备数据信道的RBG大小为3。
图12为本申请提供的又一种资源映射示意图。如图12所示,该终端设备在控制信道的资源映射方式为分布式资源映射方式(Distributed)和时域优先资源映射方式(Time-first),控制信道在时域上占用2个OFDM符号时,CCE在频域上的一个REG bundling的大小(size)为1,则该终端设备数据信道的RBG大小为1。
图13为本申请提供的又一种资源映射示意图。如图13所示,该终端设备在控制信道的资源映射方式为分布式资源映射方式(Distributed)和时域优先资源映射方式(Time-first),控制信道在时域上占用3个OFDM符号,CCE在频域上的一个REG bundling的大小(size)为1,则该终端设备数据信道的RBG大小为1。
通过这种方式,可以使数据信道在频域上的资源映射粒度与控制信道在频域上的资源映射粒度保持一致。
频域资源单元的粒度可以对应于控制信道的资源单元粒度,带宽区域的大小可以预配置或高层信令配置,上述控制信息用于指示至少一个频域资源单元所在的至少一个带宽区域、频域资源单元的粒度和频域资源单元在带宽区域中的位置为例,介绍上述网络设备通过控制信息指示这些信息的实现方式。可以包括下述两种情况:
第一种情况:在本实施例中,网络设备和终端设备中可以预定义有第一资源映射模式集合。其中,该第一资源映射模式集合包括至少一个资源映射模式。每个资源映射模式包括频域资源单元的粒度,以及该频域资源单元在带宽区域中的一种频域位置。因此,上述 网络设备可以获取上述第一资源映射模式集合。
因此,上述网络设备可以根据在终端设备的工作带宽上的所有控制信道的资源调度情况(包括发送给当前终端设备的控制信道,以及发送给其他终端设备的控制信道),从多个带宽区域中选择至少一个能够为终端设备调度的带宽区域。然后,网络设备可以将控制信道在进行资源映射时所使用的REG绑定的大小,选择频域资源单元的粒度。最后,网络设备可以根据每个带宽区域上的空闲资源所在的频域位置,以及,频域资源单元的粒度,在上述第一资源映射模式集合中选择一个资源映射模式,以使得数据信道可以最大化的复用控制区域内的空闲频域资源进行数据传输,提高了资源利用率。
则在上述场景下,上述控制信息可以包括第一信息域和第二信息域。
其中,第一信息域用于指示至少一个频域资源单元所在的至少一个带宽区域。本实施例不限定上述第一信息域指示至少一个频域资源单元所在的至少一个带宽区域的方式。在本申请的一种实现方式中,上述第一信息域可以包括用于指示至少一个频域资源单元所在的至少一个带宽区域的位图。该位图的每个比特对应一个带宽区域。也就是说,上述终端设备的工作带宽划分了多少个带宽区域,位图就有多少比特。可选的,当位图中的某一比特为1时,说明该比特对应的带宽区域为频域资源单元所在的带宽区域。或者,当位图中的某一比特为0时,说明该比特对应的带宽区域为频域资源单元所在的带宽区域,具体可以根据系统设定确定。
其中,第二信息域用于指示第一资源映射模式集合中的某一资源映射模式,以通过所指示的资源映射模式,来指示该资源映射模式所指的频域资源单元的粒度,以及该频域资源单元在带宽区域中的频域位置。可选的,上述第一资源映射模式集合包括的至少一个资源映射模式中的每个资源映射模式对应一个标识,上述第二信息域可以通过携带某一资源映射模式对应的标识的方式,来指示该资源映射模式。上述所说的标识例如可以为任一能够唯一标识一个资源映射模式的标识。例如:该标识可以为每个资源映射模式在第一资源映射模式集合的索引号,还可以为每个资源映射模式的名称等。上述图13示出的是以每个资源映射模式在第一资源映射模式集合的索引号,作为每个资源映射模式对应的标识的示意图。
需要说明的是,第一信息域和第二信息域可以合并成一个信息域,即第一信息域和第二信息域可以是一个信息域中的两个字段。
需要说明的是,第二信息域的比特数根据可根据第一资源映射模式集合中第一资源映射模式的数目确定。
相应地,终端设备在接收到网络设备发送的控制信息后,也可以先获取第一资源映射模式集合,以结合第一资源映射模式集合和控制信息,确定控制信息所指示的该至少一个频域资源单元在频域的位置,进而在该至少一个频域资源单元上传输数据信道。
图14为本申请提供的一种第一资源映射模式集合的示意图。示例性的,以频域资源单元的粒度为6个RB、3个RB、2个RB或1个RB为例,此时,上述频域资源单元的最大粒度为6个RB。假定每个带宽区域包括6个RB资源。则在场景下,第一资源映射模式集合所包括的资源映射模式可以如图14所示。其中,每个资源映射模式对应的标识为每个资源映射模式在第一资源映射模式集合的索引。如果频域资源单元为资源块组RBG,则RBG的大小可以为1,2,3,6。
图14中每一行表示一个资源映射模式,其中,被线条填充的方格为频域资源单元。以索引号0的资源映射模式为例,说明在该资源映射模式中,频域资源单元的粒度为6个RB,该频域资源单元在带宽区域中的频域位置为该带宽区域的所有RB。以索引号4的资源映射模式为例,说明在该资源映射模式中,频域资源单元的粒度为2个REG,该频域资源单元在带宽区域中的频域位置为该带宽区域的第3个RB和第4个RB。以索引号8的资源映射模式为例,说明在该资源映射模式中,频域资源单元的粒度为1个RB,在该宽带宽区域中可以包括2个频域资源单元,其中,一个频域资源单元在带宽区域中的频域位置为该带宽区域的第3个RB,另一个频域资源单元在带宽区域中的频域位置为该带宽区域的第6个RB。且由于第一资源映射模式集合中第一资源映射模式的数目为9,则第二信息域的比特数为4。
需要说明的是,上述图14所示的带宽区域的大小仅为一种示意,本申请并不以此为限。可选的,当带宽区域的较大时,网络设备可以根据频域资源单元的粒度,在一个带宽区域中调度一个或多个频域资源单元等,其实现方式和原理与上述实施例类似,对此不再赘述。
第二种情况:与上述第一种情况不同的是,第一种情况中所示出的第一资源映射模式集合所包括的资源映射模式,可以适配控制信道的任一CCE到REG的资源映射方式。而在本实施例中,第一资源映射模式集合对应控制信道的一种CCE到REG的资源映射方式。也就是说,网络设备中可以预定义有多个备选资源映射模式集合。其中,每个备选资源映射模式集合对应的控制信道的一种CCE到REG的资源映射方式。每个备选资源映射模式集合包括至少一个资源映射模式。任意两个备选资源映射模式集合所包括的资源映射模式可以不完全相同。也就是说,任意两个备选资源映射模式集合中可以存在相同的资源映射模式。每个备选资源映射模式集合不同。
因此,上述网络设备可以根据在终端设备的工作带宽上的所有控制信道的资源调度情况(包括发送给当前终端设备的控制信道,以及发送给其他终端设备的控制信道),从多个带宽区域中选择至少一个能够为终端设备调度的带宽区域。然后,网络设备可以根据控制信道的CCE到REG的资源映射方式,从多个备选资源映射模式集合中选择出第一资源映射模式集合。最后,网络设备可以将控制信道在进行资源映射时所使用的REG绑定的大小,选择频域资源单元的粒度。网络设备根据每个带宽区域上的空闲资源所在的频域位置,以及,频域资源单元的粒度,在上述第一资源映射模式集合中选择一个资源映射模式,以使得数据信道可以最大化的复用控制区域内的空闲频域资源进行数据传输,提高了资源利用率。
则在上述场景下,当上述终端设备也预定义有多个备选资源映射模式集合时,上述控制信息可以包括第一信息域、第二信息域和第三信息域。其中,第一信息域用于指示至少一个频域资源单元所在的至少一个带宽区域,第二信息域用于指示第一资源映射模式集合中的某一资源映射模式,第三信息域用于从多个备选资源映射模式集合中指示所述第一资源映射模式集合。可选的,上述多个备选资源映射模式集合包括的每个资源映射模式集合对应一个标识,上述第三信息域可以通过携带某一资源映射模式集合对应的标识的方式,来指示该资源映射模式集合。上述所说的标识例如可以为任一能够唯一标识一个资源映射模式集合的标识。例如:索引号、名称等。
相应地,终端设备在接收到网络设备发送的控制信息后,可以根据第三控制信息,从多个备选资源映射模式集合中获取第一资源映射模式集合,以结合第一资源映射模式集合和控制信息的第一信息域和第二信息域,确定控制信息所指示的该至少一个频域资源单元在频域的位置,进而在该至少一个频域资源单元上传输数据信道。
或者,上述控制信息仍然只有上述第一信息域和上述第二信息域。上述网络设备在获取第一资源映射模式集合之后,可以向终端设备发送指示信息。该过指示信息用于从多个备选资源映射模式集合中指示第一资源映射模式集合。这样,终端设备可以将指示信息,以及,控制信息结合在一起使用,以从多个备选资源映射模式集合中确定第一资源映射模式集合,然后基于第一信息域和第二信息域,确定该至少一个频域资源单元在频域的位置,进而在该至少一个频域资源单元上传输数据信道。可选的,上述指示信息可以携带在高层信令中发送给终端设备,例如:物理层信令、无线资源控制(Radio Resource Control,RRC)信令、媒体接入控制(Media Access Control,MAC)信令等。当上述指示信息携带在MAC信令中时,上述指示信息具体可以携带在MAC控制元素(Control Element,CE)中。
相应地,终端设备在接收到网络设备发送的指示信息和控制信息后,可以根据指示信息,从多个备选资源映射模式集合中获取第一资源映射模式集合,以结合第一资源映射模式集合和控制信息的第一信息域和第二信息域,确定控制信息所指示的该至少一个频域资源单元在频域的位置,进而在该至少一个频域资源单元上传输数据信道。
图15为本申请提供的另一种第一资源映射模式集合的示意图。图16为本申请提供的又一种第一资源映射模式集合的示意图。假定上述多个备选资源映射模式集合包括第一资源模式集合和第二资源模式集合。其中,第一资源映射模式集合对应控制信道的CCE到REG的资源映射方式为:频域优先资源映射模式。第二资源映射模式集合对应控制信道的CCE到REG的资源映射方式为:时域优先资源映射模式。
继续以频域资源单元的粒度为6个RB、3个RB、2个RB或1个RB为例,此时,上述频域资源单元的最大粒度为6个RB。假定每个带宽区域包括6个RB。
如前述实施例所说,在采用频域优先资源映射模式,对控制信道进行资源映射时,在频域上的REG bundling的大小可能为2、3、6,因此,第一资源映射模式集合所包括的资源映射模式可以如图15所示。其中,每个资源映射模式对应的标识为每个资源映射模式在第一资源映射模式集合的索引。
如前述实施例所说,在采用时域优先资源映射模式,对控制信道进行资源映射时,在频域上的REG bundling的大小可能为1、2、3。因此,第二资源映射模式集合所包括的资源映射模式可以如图16所示。其中,每个资源映射模式对应的标识为每个资源映射模式在第一资源映射模式集合的索引。
需要说明的是,上述图15和图16所示的带宽区域的大小仅为一种示意,本申请并不以此为限。可选的,当带宽区域的较大时,网络设备可以根据频域资源单元的粒度,在一个带宽区域中调度一个或多个频域资源单元等,其实现方式和原理与上述实施例类似,对此不再赘述。
本申请提供的资源映射方法,通过将系统带宽划分成等间隔的多个带宽区域,使得网络设备以频域资源单元为频域资源的调度单位,在多个带宽区域的至少一个带宽区域上调度至少一个频域资源单元,作为网络设备与终端设备进行数据信道传输时所使用的频域资 源,并通过控制信息来指示调度信息。由于该至少一个频域资源单元在时域上,可以位于下行传输资源的控制区域上和数据区域上。因此,通过这种方式,使得数据信道可以复用控制区域内的空闲资源进行数据传输,提高了资源利用率。
图17为本申请提供的一种网络设备的结构示意图。如图17所示,该网络设备可以包括:生成模块11、发送模块12。其中,
生成模块11,用于生成控制信息,其中,所述控制信息用于指示以下信息中的至少一种:至少一个频域资源单元所在的至少一个带宽区域、所述频域资源单元的粒度和所述频域资源单元在所述带宽区域中的位置;所述频域资源单元为所述网络设备与终端设备进行数据信道传输时所使用的频域资源的调度单位,所述资源单元的粒度对应于所述网络设备与终端设备进行控制信道传输时的资源单元粒度,所述终端设备的工作带宽包括等间隔的多个带宽区域,所述至少一个带宽区域为所述多个带宽区域中的一个或多个;
发送模块12,用于向所述终端设备发送所述控制信息。
可选的,上述资源单元的粒度对应于所述网络设备与终端设备进行控制信道传输时的资源单元粒度,可以包括:所述资源单元的粒度为所述控制信道传输时的至少一个资源单元粒度中的一个资源单元粒度。
图18为本申请提供的另一种网络设备的结构示意图。如图18所示,在上述图17所示的框图的基础上,该网络设备还可以包括:
处理模块13,用于通过高层信令为所述终端设备配置所述至少一个带宽区域的大小;或者;用于获取预定义的所述至少一个带宽区域的大小。
图19为本申请提供的又一种网络设备的结构示意图。如图19所示,在上述图17所示的框图的基础上,该网络设备还可以包括:
确定模块14,用于确定第一资源映射模式集合,其中,所述第一资源映射模式集合包括:至少一个资源映射模式,所述资源映射模式包括所述频域资源单元的粒度,以及所述频域资源单元在所述带宽区域中的一种频域位置;
所述控制信息包括第一信息域和/或第二信息域,其中,所述第一信息域用于指示所述至少一个频域资源单元所在的所述至少一个带宽区域,所述第二信息域用于指示所述资源映射模式。示例性的,所述第一信息域包括位图,所述位图用于指示所述至少一个频域资源单元所在的所述至少一个带宽区域;其中,所述位图中的每个比特对应一个带宽区域。示例性的,所述至少一个第一资源映射模式中的每个资源映射模式对应一个标识,所述第二信息域用于指示所述资源映射模式,包括:所述第二信息域包括所述资源映射模式对应的标识。可选的,所述第一资源映射模式集合为所述网络设备为一个终端设备配置的特定资源映射模式,所述第二信息域的比特数根据所述第一资源映射模式集合中第一资源映射模式的数目确定。
可选的,所述发送模块12,还用于在所述确定模块14确定第一资源映射模式集合之后,向所述终端设备发送指示信息,所述指示信息用于从多个备选资源映射模式集合中指示所述第一资源映射模式集合。其中,所述指示信息例如可以携带在高层信令中。所述多个备选资源映射模式集合例如可以包括所述第一资源映射模式集合和第二资源映射模式集合,所述第一资源映射模式集合中的资源映射模式,和所述第二资源映射模式集合中的资源映射模式不完全相同。
可选的,所述控制信息还包括第三信息域,所述指示信息携带在所述第三信息域中。
本申请提供的网络设备,可以执行上述图5所示的方法实施例中网络设备侧的动作,其实现原理和技术效果类似,在此不再赘述。
图20为本申请提供的一种终端设备的结构示意图。如图20所示,该终端设备可以包括:接收模块21、传输模块22。其中,
接收模块21,用于接收网络设备发送的控制信息,其中,所述控制信息用于指示以下信息中的至少一种:至少一个频域资源单元所在的至少一个带宽区域、所述频域资源单元的粒度和所述频域资源单元在所述带宽区域中的位置;所述频域资源单元为所述终端设备与网络设备进行数据信道传输时所使用的频域资源的调度单位,所述资源单元的粒度对应于所述网络设备与终端设备进行控制信道传输时的资源单元粒度,所述终端设备的工作带宽包括等间隔的多个带宽区域,所述至少一个带宽区域为所述多个带宽区域中的一个或多个;
传输模块22,用于根据控制信息,在所述至少一个频域资源单元上传输所述数据信道。
可选的,上述资源单元的粒度对应于所述网络设备与终端设备进行控制信道传输时的资源单元粒度,可以包括:所述资源单元的粒度为所述控制信道传输时的至少一个资源单元粒度中的一个资源单元粒度。
可选的,在本申请的另一实现中,上述接收模块21,还用于接收网络设备发送的高层信令,高层信令用于配置至少一个带宽区域的大小。
图21为本申请提供的另一种终端设备的结构示意图。如图21所示,在本申请的另一实现中,在上述图20所示的框图的基础上,该终端设备还可以包括:
获取模块23,用于获取预定义的至少一个带宽区域的大小。
图22为本申请提供的又一种终端设备的结构示意图。如图22所示,在上述图20所示的框图的基础上,该终端设备还可以包括:
确定模块24,用于确定第一资源映射模式集合,其中,所述第一资源映射模式集合包括:至少一个资源映射模式,所述资源映射模式包括所述频域资源单元的粒度,以及所述频域资源单元在所述带宽区域中的一种频域位置;
所述控制信息包括第一信息域和/或第二信息域,其中,所述第一信息域用于指示所述至少一个频域资源单元所在的所述至少一个带宽区域,所述第二信息域用于指示所述资源映射模式。示例性的,所述第一信息域包括位图,所述位图用于指示所述至少一个频域资源单元所在的所述至少一个带宽区域;其中,所述位图中的每个比特对应一个带宽区域。示例性的,所述至少一个第一资源映射模式中的每个资源映射模式对应一个标识,所述第二信息域用于指示所述资源映射模式,包括:所述第二信息域包括所述资源映射模式对应的标识。可选的,所述第一资源映射模式集合为所述网络设备为一个终端设备配置的特定资源映射模式,所述第二信息域的比特数根据所述第一资源映射模式集合中第一资源映射模式的数目确定。
可选的,所述接收模块21,还用于在所述确定模块24确定第一资源映射模式集合之前,接收所述网络设备发送的指示信息,所述指示信息用于从多个备选资源映射模式集合中指示所述第一资源映射模式集合。其中,所述指示信息例如可以携带在高层信令中。所述多个备选资源映射模式集合例如可以包括所述第一资源映射模式集合和第二资源映射 模式集合,所述第一资源映射模式集合中的资源映射模式,和所述第二资源映射模式集合中的资源映射模式不完全相同。
可选的,所述控制信息还包括第三信息域,所述指示信息携带在所述第三信息域中。
本申请提供的终端设备,可以执行上述图5所示的方法实施例中终端设备侧的动作,其实现原理和技术效果类似,在此不再赘述。
需要说明的是,应理解以上发送模块实际实现时可以为发送器,接收模块实际实现时可以为接收器,传输模块实际实现时可以为收发器。而确定模块、生成模块的划分仅仅是一种逻辑功能的划分,实际实现时一个设备上的各个模块可以全部或部分集成到一个物理实体上,也可以物理上分开。且一个设备上的这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述设备的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述某一设备的存储器中,由该设备的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外一个设备上的这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或一个设备上的以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,简称CPU)或其它可以调用程序代码的处理器。再如,一个设备上的这些模块可以集成在一起,以片上系统(system-on-a-chip,简称SOC)的形式实现。
图23为本申请提供的又一种网络设备的结构示意图。如图23所示,该网络设备可以包括:处理器31(例如CPU)、存储器32、接收器33、发送器34;接收器33和发送器34均耦合至处理器31,处理器31控制接收器33的接收动作、处理器31控制发送器34的发送动作;存储器32可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储器,存储器32中可以存储各种指令,以用于完成各种处理功能以及实现本申请的方法步骤。可选的,本申请涉及的网络设备还可以包括:电源35、通信总线36以及通信端口37。接收器33和发送器34可以集成在终端设备的收发信机中,也可以为终端设备上独立的收发天线。通信总线36用于实现元件之间的通信连接。上述通信端口37用于实现终端设备与其他外设之间进行连接通信。
在本申请中,上述存储器32用于存储计算机可执行程序代码,程序代码包括指令;当处理器31执行指令时,指令使网络设备执行上述图5所示的方法实施例中网络设备侧的动作,例如:步骤S101、S102、S104,其实现原理和技术效果类似,在此不再赘述。
图24为本申请提供的又一种终端设备的结构示意图。如图24所示,该终端设备可以包括:处理器41(例如CPU)、存储器42、接收器43、发送器44;接收器43和发送器44均耦合至处理器41,处理器41控制接收器43的接收动作、处理器41控制发送器44的发送动作; 存储器42可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储器,存储器42中可以存储各种指令,以用于完成各种处理功能以及实现本申请的方法步骤。可选的,本申请涉及的终端设备还可以包括:电源45、通信总线46以及通信端口47。接收器43和发送器44可以集成在终端设备的收发信机中,也可以为终端设备上独立的收发天线。通信总线46用于实现元件之间的通信连接。上述通信端口47用于实现终端设备与其他外设之间进行连接通信。
在本申请中,上述存储器42用于存储计算机可执行程序代码,程序代码包括指令;当处理器41执行指令时,指令使终端设备执行上述图5所示的方法实施例中终端设备侧的动作,例如:步骤S103、S104,其实现原理和技术效果类似,在此不再赘述。
正如上述实施例,本申请涉及的终端设备可以是手机、平板电脑等无线终端,因此,以终端设备为手机为例:图25为申请提供的终端设备为手机时的结构框图。参考图25,该手机可以包括:射频(Radio Frequency,RF)电路1110、存储器1120、输入单元1130、显示单元1140、传感器1150、音频电路1160、无线保真(wireless fidelity,WiFi)模块1170、处理器1180、以及电源1190等部件。本领域技术人员可以理解,图25中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图25对手机的各个构成部件进行具体的介绍:
RF电路1110可用于收发信息或通话过程中,信号的接收和发送,例如,将基站的下行信息接收后,给处理器1180处理;另外,将上行的数据发送给基站。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路1110还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(Global System of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE))、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器1120可用于存储软件程序以及模块,处理器1180通过运行存储在存储器1120的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器1120可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1120可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元1130可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元1130可包括触控面板1131以及其他输入设备1132。触控面板1131,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1131上或在触控面板1131附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板1131可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测 触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1180,并能接收处理器1180发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1131。除了触控面板1131,输入单元1130还可以包括其他输入设备1132。具体地,其他输入设备1132可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元1140可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元1140可包括显示面板1141,可选的,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1141。进一步的,触控面板1131可覆盖于显示面板1141之上,当触控面板1131检测到在其上或附近的触摸操作后,传送给处理器1180以确定触摸事件的类型,随后处理器1180根据触摸事件的类型在显示面板1141上提供相应的视觉输出。虽然在图10中,触控面板1131与显示面板1141是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板1131与显示面板1141集成而实现手机的输入和输出功能。
手机还可包括至少一种传感器1150,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板1141的亮度,光传感器可在手机移动到耳边时,关闭显示面板1141和/或背光。作为运动传感器的一种,加速度传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路1160、扬声器1161以及传声器1162可提供用户与手机之间的音频接口。音频电路1160可将接收到的音频数据转换后的电信号,传输到扬声器1161,由扬声器1161转换为声音信号输出;另一方面,传声器1162将收集的声音信号转换为电信号,由音频电路1160接收后转换为音频数据,再将音频数据输出处理器1180处理后,经RF电路1110以发送给比如另一手机,或者将音频数据输出至存储器1120以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块1170可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图25示出了WiFi模块1170,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变本申请的本质的范围内而省略。
处理器1180是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器1120内的软件程序和/或模块,以及调用存储在存储器1120内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器1180可包括一个或多个处理单元;例如,处理器1180可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1180中。
手机还包括给各个部件供电的电源1190(比如电池),可选的,电源可以通过电源管 理系统与处理器1180逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
手机还可以包括摄像头1200,该摄像头可以为前置摄像头,也可以为后置摄像头。尽管未示出,手机还可以包括蓝牙模块、GPS模块等,在此不再赘述。
在本申请中,该手机所包括的处理器1180可以用于执行上述资源映射方法的实施例,其实现原理和技术效果类似,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (44)

  1. 一种资源映射方法,其特征在于,所述方法包括:
    网络设备生成控制信息,其中,所述控制信息用于指示以下信息中的至少一种:至少一个频域资源单元所在的至少一个带宽区域、所述频域资源单元的粒度和所述频域资源单元在所述带宽区域中的位置;所述频域资源单元为所述网络设备与终端设备进行数据信道传输时所使用的频域资源的调度单位,所述资源单元的粒度对应于所述网络设备与终端设备进行控制信道传输时的资源单元粒度,所述终端设备的工作带宽包括等间隔的多个带宽区域,所述至少一个带宽区域为所述多个带宽区域中的一个或多个;
    所述网络设备向所述终端设备发送所述控制信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述网络设备确定第一资源映射模式集合,其中,所述第一资源映射模式集合包括:至少一个资源映射模式,所述资源映射模式包括所述频域资源单元的粒度,以及所述频域资源单元在所述带宽区域中的一种频域位置;
    所述控制信息包括第一信息域和/或第二信息域,其中,所述第一信息域用于指示所述至少一个频域资源单元所在的所述至少一个带宽区域,所述第二信息域用于指示所述资源映射模式。
  3. 根据权利要求2所述的方法,其特征在于,所述至少一个第一资源映射模式中的每个资源映射模式对应一个标识,所述第二信息域用于指示所述资源映射模式,包括:
    所述第二信息域包括所述资源映射模式对应的标识。
  4. 根据权利要求2或3所述的方法,其特征在于,所述网络设备确定第一资源映射模式集合之后,所述方法还包括:
    所述网络设备向所述终端设备发送指示信息,所述指示信息用于从多个备选资源映射模式集合中指示所述第一资源映射模式集合。
  5. 根据权利要求4所述的方法,其特征在于,所述多个备选资源映射模式集合包括所述第一资源映射模式集合和第二资源映射模式集合,所述第一资源映射模式集合中的资源映射模式,和所述第二资源映射模式集合中的资源映射模式不完全相同。
  6. 根据权利要求4或5所述的方法,其特征在于,所述指示信息携带在高层信令中。
  7. 根据权利要求4或5所述的方法,其特征在于,所述控制信息还包括第三信息域,所述指示信息携带在所述第三信息域中。
  8. 根据权利要求2-7任一项所述的方法,其特征在于,所述第一信息域包括位图,所述位图用于指示所述至少一个频域资源单元所在的所述至少一个带宽区域;
    其中,所述位图中的每个比特对应一个带宽区域。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述资源单元的粒度对应于所述网络设备与终端设备进行控制信道传输时的资源单元粒度,包括:
    所述资源单元的粒度为所述控制信道传输时的至少一个资源单元粒度中的一个资源单元粒度。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备通过高层信令为所述终端设备配置所述至少一个带宽区域的大小;或者
    所述网络设备获取预定义的所述至少一个带宽区域的大小。
  11. 根据权利要求2-10任一项所述的方法,其特征在于,所述第一资源映射模式集合为所述网络设备为一个终端设备配置的特定资源映射模式,所述第二信息域的比特数根据所述第一资源映射模式集合中第一资源映射模式的数目确定。
  12. 一种资源映射方法,其特征在于,所述方法包括:
    终端设备接收网络设备发送的控制信息,其中,所述控制信息用于指示以下信息中的至少一种:至少一个频域资源单元所在的至少一个带宽区域、所述频域资源单元的粒度和所述频域资源单元在所述带宽区域中的位置;所述频域资源单元为所述终端设备与网络设备进行数据信道传输时所使用的频域资源的调度单位,所述资源单元的粒度对应于所述网络设备与终端设备进行控制信道传输时的资源单元粒度,所述终端设备的工作带宽包括等间隔的多个带宽区域,所述至少一个带宽区域为所述多个带宽区域中的一个或多个;
    所述终端设备根据控制信息,在所述至少一个频域资源单元上传输所述数据信道。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定第一资源映射模式集合,其中,所述第一资源映射模式集合包括:至少一个资源映射模式,所述资源映射模式包括所述频域资源单元的粒度,以及所述频域资源单元在所述带宽区域中的一种频域位置;
    所述控制信息包括第一信息域和第二信息域,其中,所述第一信息域用于指示所述至少一个频域资源单元所在的所述至少一个带宽区域,所述第二信息域用于指示所述资源映射模式。
  14. 根据权利要求13所述的方法,其特征在于,所述至少一个第一资源映射模式中的每个资源映射模式对应一个标识,所述第二信息域用于指示所述资源映射模式,包括:
    所述第二信息域包括所述资源映射模式对应的标识。
  15. 根据权利要求13或14所述的方法,其特征在于,所述终端设备确定第一资源映射模式集合之前,所述方法还包括:
    所述终端设备接收所述网络设备发送的指示信息,所述指示信息用于从多个备选资源映射模式集合中指示所述第一资源映射模式集合。
  16. 根据权利要求15所述的方法,其特征在于,所述多个备选资源映射模式集合包括所述第一资源映射模式集合和第二资源映射模式集合,所述第一资源映射模式集合中的资源映射模式,和所述第二资源映射模式集合中的资源映射模式不完全相同。
  17. 根据权利要求15或16所述的方法,其特征在于,所述指示信息携带在高层信令中。
  18. 根据权利要求15或16所述的方法,其特征在于,所述控制信息还包括第三信息域,所述指示信息携带在所述第三信息域中。
  19. 根据权利要求13-18任一项所述的方法,其特征在于,所述第一信息域包括位图,所述位图用于指示所述至少一个频域资源单元所在的所述至少一个带宽区域;
    其中,所述位图中的每个比特对应一个带宽区域。
  20. 根据权利要求12-19任一项所述的方法,其特征在于,所述资源单元的粒度对应于所述终端设备与网络设备进行控制信道传输时的资源单元粒度,包括:
    所述资源单元的粒度为所述控制信道传输时的至少一个资源单元粒度中的一个资源 单元粒度。
  21. 根据权利要求12-20任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的高层信令,所述高层信令用于配置所述至少一个带宽区域的大小;或者
    所述终端设备获取预定义的所述至少一个带宽区域的大小。
  22. 根据权利要求13-21任一项所述的方法,其特征在于,所述第一资源映射模式集合为所述网络设备为所述终端设备配置的特定资源映射模式,所述第二信息域的比特数根据所述第一资源映射模式集合中第一资源映射模式的数目确定。
  23. 一种网络设备,其特征在于,所述网络设备包括:
    生成模块,用于生成控制信息,其中,所述控制信息用于指示以下信息中的至少一种:至少一个频域资源单元所在的至少一个带宽区域、所述频域资源单元的粒度和所述频域资源单元在所述带宽区域中的位置;所述频域资源单元为所述网络设备与终端设备进行数据信道传输时所使用的频域资源的调度单位,所述资源单元的粒度对应于所述网络设备与终端设备进行控制信道传输时的资源单元粒度,所述终端设备的工作带宽包括等间隔的多个带宽区域,所述至少一个带宽区域为所述多个带宽区域中的一个或多个;
    发送模块,用于向所述终端设备发送所述控制信息。
  24. 根据权利要求23所述的网络设备,其特征在于,所述网络设备还包括:
    确定模块,用于确定第一资源映射模式集合,其中,所述第一资源映射模式集合包括:至少一个资源映射模式,所述资源映射模式包括所述频域资源单元的粒度,以及所述频域资源单元在所述带宽区域中的一种频域位置;
    所述控制信息包括第一信息域和/或第二信息域,其中,所述第一信息域用于指示所述至少一个频域资源单元所在的所述至少一个带宽区域,所述第二信息域用于指示所述资源映射模式。
  25. 根据权利要求24所述的网络设备,其特征在于,所述至少一个第一资源映射模式中的每个资源映射模式对应一个标识,所述第二信息域用于指示所述资源映射模式,包括:
    所述第二信息域包括所述资源映射模式对应的标识。
  26. 根据权利要求23或24所述的网络设备,其特征在于,所述发送模块,还用于在所述确定模块确定第一资源映射模式集合之后,向所述终端设备发送指示信息,所述指示信息用于从多个备选资源映射模式集合中指示所述第一资源映射模式集合。
  27. 根据权利要求26所述的网络设备,其特征在于,所述多个备选资源映射模式集合包括所述第一资源映射模式集合和第二资源映射模式集合,所述第一资源映射模式集合中的资源映射模式,和所述第二资源映射模式集合中的资源映射模式不完全相同。
  28. 根据权利要求26或27所述的网络设备,其特征在于,所述指示信息携带在高层信令中。
  29. 根据权利要求26或27所述的网络设备,其特征在于,所述控制信息还包括第三信息域,所述指示信息携带在所述第三信息域中。
  30. 根据权利要求24-29任一项所述的网络设备,其特征在于,所述第一信息域包括位图,所述位图用于指示所述至少一个频域资源单元所在的所述至少一个带宽区域;
    其中,所述位图中的每个比特对应一个带宽区域。
  31. 根据权利要求23-30任一项所述的网络设备,其特征在于,所述资源单元的粒度对应于所述网络设备与终端设备进行控制信道传输时的资源单元粒度,包括:
    所述资源单元的粒度为所述控制信道传输时的至少一个资源单元粒度中的一个资源单元粒度。
  32. 根据权利要求23-31任一项所述的网络设备,其特征在于,所述网络设备,还包括:
    处理模块,用于通过高层信令为所述终端设备配置所述至少一个带宽区域的大小;
    或者;用于获取预定义的所述至少一个带宽区域的大小。
  33. 根据权利要求24-32任一项所述的网络设备,其特征在于,所述第一资源映射模式集合为所述网络设备为一个终端设备配置的特定资源映射模式,所述第二信息域的比特数根据所述第一资源映射模式集合中第一资源映射模式的数目确定。
  34. 一种终端设备,其特征在于,所述终端设备包括:
    接收模块,用于接收网络设备发送的控制信息,其中,所述控制信息用于指示以下信息中的至少一种:至少一个频域资源单元所在的至少一个带宽区域、所述频域资源单元的粒度和所述频域资源单元在所述带宽区域中的位置;所述频域资源单元为所述终端设备与网络设备进行数据信道传输时所使用的频域资源的调度单位,所述资源单元的粒度对应于所述网络设备与终端设备进行控制信道传输时的资源单元粒度,所述终端设备的工作带宽包括等间隔的多个带宽区域,所述至少一个带宽区域为所述多个带宽区域中的一个或多个;
    传输模块,用于根据控制信息,在所述至少一个频域资源单元上传输所述数据信道。
  35. 根据权利要求34所述的终端设备,其特征在于,所述终端设备还包括:
    确定模块,用于确定第一资源映射模式集合,其中,所述第一资源映射模式集合包括:至少一个资源映射模式,所述资源映射模式包括所述频域资源单元的粒度,以及所述频域资源单元在所述带宽区域中的一种频域位置;
    所述控制信息包括第一信息域和第二信息域,其中,所述第一信息域用于指示所述至少一个频域资源单元所在的所述至少一个带宽区域,所述第二信息域用于指示所述资源映射模式。
  36. 根据权利要求35所述的终端设备,其特征在于,所述至少一个第一资源映射模式中的每个资源映射模式对应一个标识,所述第二信息域用于指示所述资源映射模式,包括:
    所述第二信息域包括所述资源映射模式对应的标识。
  37. 根据权利要求35或36所述的终端设备,其特征在于,所述接收模块,还用于在所述确定模块确定第一资源映射模式集合之前,接收所述网络设备发送的指示信息,所述指示信息用于从多个备选资源映射模式集合中指示所述第一资源映射模式集合。
  38. 根据权利要求37所述的终端设备,其特征在于,所述多个备选资源映射模式集合包括所述第一资源映射模式集合和第二资源映射模式集合,所述第一资源映射模式集合中的资源映射模式,和所述第二资源映射模式集合中的资源映射模式不完全相同。
  39. 根据权利要求37或38所述的终端设备,其特征在于,所述指示信息携带在高层信令中。
  40. 根据权利要求37或38所述的终端设备,其特征在于,所述控制信息还包括第三信息域,所述指示信息携带在所述第三信息域中。
  41. 根据权利要求35-40任一项所述的终端设备,其特征在于,所述第一信息域包括位图,所述位图用于指示所述至少一个频域资源单元所在的所述至少一个带宽区域;
    其中,所述位图中的每个比特对应一个带宽区域。
  42. 根据权利要求34-41任一项所述的终端设备,其特征在于,所述资源单元的粒度对应于所述终端设备与网络设备进行控制信道传输时的资源单元粒度,包括:
    所述资源单元的粒度为所述控制信道传输时的至少一个资源单元粒度中的一个资源单元粒度。
  43. 根据权利要求34-42任一项所述的终端设备,其特征在于,所述接收模块,还用于接收所述网络设备发送的高层信令,所述高层信令用于配置所述至少一个带宽区域的大小;
    或者,所述终端设备还包括:
    获取模块,用于获取预定义的所述至少一个带宽区域的大小。
  44. 根据权利要求35-43任一项所述的终端设备,其特征在于,所述第一资源映射模式集合为所述网络设备为所述终端设备配置的特定资源映射模式,所述第二信息域的比特数根据所述第一资源映射模式集合中第一资源映射模式的数目确定。
PCT/CN2018/084336 2017-05-04 2018-04-25 资源映射方法、网络设备和终端设备 WO2018201938A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18795023.3A EP3595383B1 (en) 2017-05-04 2018-04-25 Resource mapping method, network device and terminal device
US16/601,208 US11582783B2 (en) 2017-05-04 2019-10-14 Resource mapping method, network device, and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710309848.6 2017-05-04
CN201710309848.6A CN108811109B (zh) 2017-05-04 2017-05-04 资源映射方法、网络设备和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/601,208 Continuation US11582783B2 (en) 2017-05-04 2019-10-14 Resource mapping method, network device, and terminal device

Publications (1)

Publication Number Publication Date
WO2018201938A1 true WO2018201938A1 (zh) 2018-11-08

Family

ID=64016871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084336 WO2018201938A1 (zh) 2017-05-04 2018-04-25 资源映射方法、网络设备和终端设备

Country Status (4)

Country Link
US (1) US11582783B2 (zh)
EP (1) EP3595383B1 (zh)
CN (1) CN108811109B (zh)
WO (1) WO2018201938A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149191B (zh) * 2017-04-28 2020-12-25 华为技术有限公司 一种参数配置方法和装置
CN111918393B (zh) * 2019-05-09 2022-05-06 华为技术有限公司 下行数据信道的传输方法、通信装置和计算机存储介质
CN114902771B (zh) * 2020-02-17 2024-10-01 Oppo广东移动通信有限公司 通信方法及通信装置、用户设备及网络器件
CN114071750B (zh) * 2020-08-07 2024-09-06 华为技术有限公司 频域资源的确定方法、设备及存储介质
CN116235450A (zh) * 2020-10-15 2023-06-06 华为技术有限公司 一种上行控制信息的发送方法、接收方法及通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103298117A (zh) * 2012-02-29 2013-09-11 电信科学技术研究院 一种时频资源的指示及确认方法和装置
CN105979597A (zh) * 2016-06-27 2016-09-28 宇龙计算机通信科技(深圳)有限公司 通信资源的分配方法、分配装置、基站和终端
US20160338052A1 (en) * 2015-05-13 2016-11-17 Samsung Electronics Co., Ltd. Method and apparatus for feedback in mobile communication system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080095133A1 (en) * 2006-10-23 2008-04-24 Shu Kodo Method for reducing inter-cell interference in communications system
US8249635B2 (en) * 2007-06-18 2012-08-21 Mitsubishi Electric Corporation Communication method, wireless communication system, transmitter, and receiver
DK2919545T3 (en) * 2011-02-11 2016-12-05 Interdigital Patent Holdings Inc Device and method for an improved control channel (E-PDCCH).
US9681401B2 (en) * 2011-03-17 2017-06-13 Google Technology Holdings LLC Enhanced power headroom reporting in wireless communication networks
JP5884152B2 (ja) * 2011-07-29 2016-03-15 シャープ株式会社 基地局、端末、通信システムおよび通信方法
US9503239B2 (en) * 2011-08-11 2016-11-22 Telefonaktiebolaget Lm Ericsson (Publ) Radio network node, user equipment and methods therein
CN106658732B (zh) * 2011-08-15 2020-04-14 华为技术有限公司 控制信道资源的分配方法及装置
JP6122855B2 (ja) * 2011-09-30 2017-04-26 インターデイジタル パテント ホールディングス インコーポレイテッド 縮小されたチャネル帯域幅を使用するデバイス通信
JP6143153B2 (ja) * 2012-08-01 2017-06-07 シャープ株式会社 基地局、端末、通信方法および集積回路
US9871636B2 (en) * 2013-01-18 2018-01-16 Qualcomm Incorporated Enhanced control channel element (ECCE) based physical downlink shared channel (PDSCH) resource allocation for long-term evolution (LTE)
CN105099634B (zh) * 2014-05-09 2019-05-07 中兴通讯股份有限公司 动态资源的分配方法及装置、基站、终端
US10079665B2 (en) * 2015-01-29 2018-09-18 Samsung Electronics Co., Ltd. System and method for link adaptation for low cost user equipments
WO2017022425A1 (ja) * 2015-07-31 2017-02-09 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN105338641B (zh) * 2015-10-21 2019-02-19 上海华为技术有限公司 一种信息发送、接收方法及相关装置
WO2017150942A1 (ko) * 2016-03-03 2017-09-08 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
US10652876B2 (en) * 2016-03-16 2020-05-12 Lg Electronics Inc. Method for transmitting and receiving control information in wireless communication system, and apparatus therefor
US10708942B2 (en) * 2017-02-09 2020-07-07 Qualcomm Incorporated Control resources reuse for data transmission in wireless communication
KR102547263B1 (ko) * 2018-01-12 2023-06-22 삼성전자주식회사 무선 통신 시스템에서 데이터채널 및 제어채널을 송수신하는 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103298117A (zh) * 2012-02-29 2013-09-11 电信科学技术研究院 一种时频资源的指示及确认方法和装置
US20160338052A1 (en) * 2015-05-13 2016-11-17 Samsung Electronics Co., Ltd. Method and apparatus for feedback in mobile communication system
CN105979597A (zh) * 2016-06-27 2016-09-28 宇龙计算机通信科技(深圳)有限公司 通信资源的分配方法、分配装置、基站和终端

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation(Release 8", 3GPP TS 36.211 V8.3.0., 31 May 2008 (2008-05-31), XP055612804 *
"Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures(Release 13", 3GPP TS 36.213 V13.1.1., 31 March 2016 (2016-03-31), XP055613411 *
See also references of EP3595383A4

Also Published As

Publication number Publication date
CN108811109A (zh) 2018-11-13
EP3595383A1 (en) 2020-01-15
EP3595383A4 (en) 2020-03-18
EP3595383B1 (en) 2023-03-01
US20200045728A1 (en) 2020-02-06
CN108811109B (zh) 2021-06-04
US11582783B2 (en) 2023-02-14

Similar Documents

Publication Publication Date Title
JP7195404B2 (ja) Pdcch監視方法、端末及びネットワーク機器
WO2020029798A1 (zh) 一种控制信息的传输方法及设备
CN113473611B (zh) 资源调度方法、装置及ue
US11343056B2 (en) Data transmission method, sending device, and receiving device
US11582783B2 (en) Resource mapping method, network device, and terminal device
US20210168834A1 (en) Determining method, terminal, and network device
JP2022501950A (ja) Csiレポートの報告方法、端末機器及びネットワーク機器
US11044706B2 (en) Control channel transmission method and related apparatuses
WO2018082693A1 (zh) Csi上报方法、装置以及设备
US10382243B2 (en) OFDM subframe transmission method and device using determined transport block sizes
CN110139390B (zh) 资源调度指示方法、终端及网络设备
CN109075927B (zh) 下行数据传输方法和装置
WO2015081880A1 (zh) 集群业务属性处理的方法、装置和系统
WO2018171708A1 (zh) 数据传输方法和终端设备
US20230037061A1 (en) Resource determining method and device
CN111278124B (zh) 资源配置方法、资源确定方法、网络侧设备和终端
CN113271676B (zh) Pusch和sr处理方法及设备
CN113543345B (zh) 资源确定方法、指示方法及设备
WO2018228409A1 (zh) 控制信息的传输方法、终端设备和网络设备
CN115399011A (zh) 一种通信方法、终端设备和网络设备
CN108811108B (zh) 控制信道的发送方法、终端设备和网络设备
JP2021523654A (ja) Pdsch時間領域リソース割り当て方法、端末及びコンピュータ読み取り可能な記憶媒体
WO2020029797A1 (zh) 确定方法、终端及网络设备
WO2018228605A1 (zh) 数据传输方法、发送设备和接收设备
CN118489288A (zh) 处理方法、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18795023

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018795023

Country of ref document: EP

Effective date: 20191009

NENP Non-entry into the national phase

Ref country code: DE