[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018201706A1 - 底板顺层长钻孔分段压裂高效抽放煤巷条带瓦斯及区域消突方法 - Google Patents

底板顺层长钻孔分段压裂高效抽放煤巷条带瓦斯及区域消突方法 Download PDF

Info

Publication number
WO2018201706A1
WO2018201706A1 PCT/CN2017/113125 CN2017113125W WO2018201706A1 WO 2018201706 A1 WO2018201706 A1 WO 2018201706A1 CN 2017113125 W CN2017113125 W CN 2017113125W WO 2018201706 A1 WO2018201706 A1 WO 2018201706A1
Authority
WO
WIPO (PCT)
Prior art keywords
roadway
fracturing
coal
coal seam
regional
Prior art date
Application number
PCT/CN2017/113125
Other languages
English (en)
French (fr)
Inventor
王恩元
邱黎明
李忠辉
欧建春
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2018201706A1 publication Critical patent/WO2018201706A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F7/00Methods or devices for drawing- off gases with or without subsequent use of the gas for any purpose
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/261Separate steps of (1) cementing, plugging or consolidating and (2) fracturing or attacking the formation

Definitions

  • the invention relates to a strip gas extraction and a regional detonation method, in particular to a step-by-step fracturing of a long layer of a bedding layer suitable for long-distance high-efficiency pressure relief, drainage and regional ablation of coal seams. Efficient pumping of coal strips and regional outburst methods.
  • Fracturing technology is a method of fracturing and structurally transforming coal and rock mass by using high pressure water (or CO 2 , etc.). Due to its high efficiency of cracking and pressure relief, it has been widely used in coalbed methane extraction and coal mines. Anti-burst work. Hydraulic fracturing can fracture the coal and rock mass, promote the development of cracks in the coal and rock mass, form a continuous fracture network, enhance the permeability of the coal seam, and reduce the difficulty of gas drainage. At the same time, after hydraulic fracturing breaks the coal rock mass, it can reduce the stress level of the coal and rock mass within the effective area of the fracturing and reduce the risk of coal-rock dynamic disaster.
  • the coal seam was directly fractured by layering or bedding, which was localized and strong, and the amount of roadway and borehole was large.
  • the roof was broken and the coal seam was unloaded.
  • the degree of pressure and permeation is low, the roof is difficult to maintain during mining, and roofing is prone to occur; the coal seam is loose, the direct fracture of the coal seam is poor, the fracturing range is small, the surrounding area is compacted, the stress concentration is high, and the surrounding area is gas permeable.
  • the object of the present invention is to provide a method for prematurely fracturing high-efficiency pumping of coal road strips and a regional outburst method for the problem of existing problems in the prior art.
  • it has fundamentally solved the problems of gas drainage and regional anti-burst measures in coal seams with prominent coal seams, large amount of engineering, long construction period, low efficiency, poor fracturing and drainage effect, and presence of safety. All hidden dangers and problems such as the continuous mining of coal mines.
  • the bottom layer of the bottom layer of the present invention is a step-by-step fracturing high-efficiency pumping gas strip and gas stripping method, including regional excavation and extraction, and along the single lane excavation
  • the roadway and the cut-out area of the empty roadway mining face are eliminated and the roadway and the cut-out area of the mining face and the double-tracking are eliminated.
  • the fracturing and anti-permeable area shall be drained by section or whole section, and the coal seam near the roadway of the coal seam shall be subjected to rapid regional elimination.
  • the standard of extraction is up to standard.
  • the mining is up to standard, along the boundary of the effective anti-burst measures on both sides of the roadway to be tapped, the hole is drilled parallel to the bottom layer, and the coal seam is drilled. It is required to carry out the inspection of the effect of the regional anti-burst measures and further gas drainage at a fixed point, and then carry out the rapid excavation of the coal seam roadway in accordance with the national “verification measures for prevention of coal and gas outburst” and the implementation of regional verification measures and local four-in-one comprehensive measures.
  • the position of the bottom hole of the bottom plate and the pressure parameters required for fracturing first select the hard rock layer horizon of the bottom plate, and then according to the distance between the rock stratum and the coal seam, the boundary between the effective anti-burst measures and the bottom hole of the bottom layer From the distance R, calculate the fracturing pressure to ensure the actual minimum fracture radius R1, which satisfies the requirement of R1 ⁇ R+1(m), that is, the boundary of the coal-fracture zone can be controlled to control the effective anti-burst measures on both sides of the roadway.
  • the regional excavation and extraction of the single-track excavation adopts the I-type bedding floor long-hole drilling step-by-step fracturing to efficiently pump the gas in the roadway strip to be excavated, and to carry out regional elimination.
  • the area of the roadway and the cut-eye of the working face along the empty roadway is dissected and extracted, and the L-shaped bedding floor long-hole drilling section is used for step-by-step fracturing to efficiently discharge the coal roadway to be excavated and the gas stripe of the cut-eye strip. Perform regional elimination.
  • the roadway and the cut-out area of the double-track excavation face are eliminated and extracted, and the L+I type bedding floor long hole section is used for stepwise fracturing to efficiently discharge the coal seam roadway and the cut-eye strip Gas, for regional elimination.
  • the invention has the advantages that: the invention adopts the step-by-step fracturing of the bottom layer of the bottom layer to efficiently extract the strip gas and the regional outburst of the coal roadway, and replaces the densely layered borehole drainage of the top and bottom rock roadway, and the top and bottom rock roadway crossing layer. Localized hydraulic measures and front of the working face A method of regional outburst such as long hole drilling and drainage.
  • the I-type bedding floor long borehole section progressively fracturing efficient extraction of coal road strip gas and regional outburst method; for the mining roadway along the goaf And the cut-out area of the cut-off and extraction, the L-shaped bedding floor long hole section can be used for step-by-step fracturing efficient extraction of coal road strip gas and regional outburst method; for double-track excavation mining face roadway And the area of the cut-off area of the outburst and extraction, L + I type of layered floor long hole section step by step fracturing efficient extraction of coal road strip gas and regional outburst method.
  • FIG. 1 is a schematic plan view of a staged fracturing and extraction plane of a bedding layer long borehole of a type I bottom plate according to the present invention
  • FIG. 2 is a schematic cross-sectional view of a stepwise fracturing and extraction section of a bedding layer long borehole of the I type bottom plate of the present invention
  • FIG. 3 is a schematic diagram of step-by-step fracturing and extraction of a long hole-drilled section of an L-shaped bottom plate of the present invention
  • FIG. 4 is a schematic diagram of the stepwise fracturing and extraction of the L+I type bottom plate along the long hole section of the present invention.
  • the method for the high-efficiency pumping of coal roadway strips and the regional outburst method for the step-by-step fracturing of the bottom layer of the bottom layer of the present invention includes the regional outburst and extraction of the single lane excavation, and the roadway of the mining face along the empty roadway and The area of the cut-off area is eliminated and the roadway and the area of the cut-off area of the mining face and the double-track excavation are eliminated and pumped.
  • the steps are as follows:
  • the bottom layer of the bottom layer is drilled 5 from the inside to the outside, step by step, the stepwise, stepwise fracturing uses a movable, reusable double capsule splitting sealer 7, first from the bottom of the hole Start segmentation and sealing, and fracturing the bottom layer of the bottom hole between the double capsules provided in the segment, and then moving the double-capsule splitting device 7 back, and then performing segmentation, sealing and pressing again.
  • the standard of extraction is up to standard.
  • the mining is up to standard, along the boundary of the effective anti-burst measures on both sides of the roadway to be digging, parallel to the bottom hole of the bottom layer 5, the coal seam drilling 6 shall be constructed.
  • the anti-burst regulations require fixed-point regional anti-burst measures and further gas drainage.
  • the fixed-point requirements are generally 30-50 m, and then regional verification measures and local four-in-one comprehensive measures are implemented in accordance with the national “Control of Coal and Gas Outburst Regulations”. Under the circumstances, the coal seam roadway is rapidly excavated.
  • the regional excavation and extraction of the single-track excavation adopts the I-type bedding floor long-hole drilling step-by-step fracturing to efficiently pump 4 strips of gas in the coal seam roadway to be excavated.
  • the area of the roadway and the cut-eye area of the mining roadway along the empty roadway is dissected and extracted, and the L-shaped bedding floor long hole section is used for step-by-step fracturing to efficiently pump the coal roadway to be excavated 4 and the gas stripe strip gas. , to carry out regional elimination.
  • the roadway and the cut-out area of the double-track excavation face are eliminated and extracted, and the L+I type bedding floor long hole section is used for stepwise fracturing to efficiently discharge the coal roadway to be excavated 4 and the cut-eye strip With gas, carry out regional elimination.
  • the length of the coal seam borehole used as the area verification and pumping should exceed the length of the roadway to be excavated and the area to be eliminated, and the effective drainage range of the pumping hole exceeds the boundary control range of the area to be eliminated;
  • the I-type bottom layer borehole 5 is drilled in the hard floor slab 2 near the coal seam 1 with a prominent danger.
  • the fracturing water pipe 9 equipped with the movable and reusable double-capsule splitting sealer 7 is placed In the bottom layer of the bottom hole 5, the double capsule splitting sealer 7 is extended to the bottom of the bottom hole of the bottom hole 5 of the bottom plate.
  • the first position of the bottom hole of the bottom hole of the bottom hole is fractured, the high pressure water pump is turned off, the pressure relief of the capsule is contracted, and the double capsule splitting sealer 7 is moved to the next direction through the fracturing water pipe 9 to the next predetermined position.
  • the coal seams of other dip angles must ensure that the boundary of the fracturing zone can control the upper protection zone L2 and the lower side protection of the roadway.
  • the range L1 is at least 15 m each; the cycle is repeated several times, and the fracturing is performed step by step. Calculate the fracturing pressure according to the distance between the rock stratum and the coal seam and the maximum distance R from the boundary between the two sides of the effective anti-burst measures to ensure the actual minimum fracturing radius R1, satisfying R1 ⁇ R+1 (unit: m) That is, the requirement to meet the boundary of the coal fracture zone can control the range of effective anti-burst measures on both sides of the roadway.
  • the bottom layer of the fracturing hole is used to efficiently pump the fracturing and anti-dipping area by section or whole section; according to the amount of pumping, the standard is judged by the pumping quantity; if it is not up to standard, the pumping is continued.
  • the mining standard is reached, in the coal seam 1, along the boundary of the effective anti-burst measures on both sides of the roadway to be excavated, the long coal mines are drilled 6 to carry out the regional anti-burst measures and further gas drainage; Rapid tunneling of coal seam roadways is carried out under the conditions of local four-in-one measures.
  • the area of the roadway and the cut-eye of the working face along the empty roadway is used for the outburst and extraction, that is, the L-shaped bedding floor long hole section is stepwise-staged to efficiently extract the coal roadway and the cut-eye strip.
  • the L-shaped bottom layer of the bottom hole is used to carry out the high-efficiency pumping of the fracturing and anti-diffusion area by segment or whole section; according to the pumping quantity, the extraction is up to standard evaluation; if the standard is not reached, the pumping is continued;
  • an L-shaped coal seam borehole 6 is constructed along the upper protection zone L2 and the lower protection zone L1 boundary of the coal seam roadway 4 to be tested, and the effect of the regional anti-burst measures is further tested and further Gas drainage;
  • the roadway of the mining face and the area of the cut-off of the double-tracking tunnel are eliminated and extracted, using L+I type bedding
  • the long hole section of the bottom plate is step-by-step fracturing to efficiently extract coal roadway and cut strip gas, and carry out regional elimination:
  • two rigs are used to drill the I-type bottom layer bedding hole 5 and the L-type bottom layer bedding hole 5 into the hard bottom plate of the coal seam roadway 4 to be drilled, and the two bottom plates are drilled in layers.
  • the hole bottom spacing of the hole 5 is not more than 15 m; then the I-type and L-shaped bedding bottom hole 5 is stepwisely stepped from the bottom of the hole, and the gas is pumped after the fracturing, which is the same as in the first embodiment. Partially omitted;
  • the I- and L-type bottom layers of the bottom hole are respectively used to carry out the high-efficiency pumping of the fracturing and anti-dipping area by segment or whole section; according to the amount of pumping, the standard is judged by the pumping quantity; Continue to pump; after the mining standard is reached, in the coal seam 1, along the boundary of the effective anti-burst measures on both sides of the roadway to be excavated, the I-type and L-type coal seams are respectively drilled 6 to test the effect of the regional anti-burst measures. Further gas drainage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

公开了一种底板顺层长钻孔分段逐级压裂高效抽放煤巷条带瓦斯及区域消突方法,适用煤巷掘进区域消突、回采区域消突等工程。通过在已有巷道(3)中向有突出危险煤层(1)的坚硬底板岩层(2)内沿待掘煤层巷道(4)方向钻进底板顺层钻孔(5),进行分段逐级压裂,利用压裂孔进行逐段或整段抽放,对煤巷条带进行区域消突;根据抽放量进行抽采达标评判,达标后,沿煤层巷道两侧有效防突措施范围边界施工煤层钻孔(6),进行区域防突措施效果检验和进一步抽放,然后在执行区域验证措施及局部四位一体措施规定的情况下进行煤层巷道掘进。具有以孔代巷、钻孔工程量少、压裂范围大,压裂区周边煤体应力集中程度低,卸压增透效果好、抽采达标时间短、对煤层参数适应性强、适用范围广等优点。

Description

底板顺层长钻孔分段压裂高效抽放煤巷条带瓦斯及区域消突方法 技术领域
本发明涉及一种条带瓦斯抽采及区域消突方法,尤其是一种适用于煤层远距离高效卸压增透、抽放及区域消突的底板顺层长钻孔分段逐级压裂高效抽放煤巷条带瓦斯及区域消突方法。
背景技术
高应力与高瓦斯严重威胁着煤矿井下安全,在煤巷掘进前对其实施瓦斯抽采和区域消突措施是预防煤与瓦斯突出、安全掘进巷道的必要工作。突出煤层多为松软低透气性煤层,瓦斯难以抽放。目前,掘进煤巷条带瓦斯预抽主要采用顶(或底)板岩巷密集穿层钻孔预抽、顶(或底)板岩巷局部穿层水力措施(冲孔、割缝、压裂等)卸压增透预抽、煤层顺层密集长钻孔预抽等措施。巷道及钻孔工程量特别大,效率低,占用工期时间长,严重影响采掘接续和高效生产,并且投入巨大,效益差。
压裂技术是利用高压水(或CO2等)对煤岩体进行压裂及结构改造的方法,由于其高效的致裂及卸压增透作用,目前已经广泛应用于煤层气抽采及煤矿防突工作。水力压裂等能压裂煤岩体,促进煤岩体内部裂隙发育,形成贯通的裂隙网络,增强煤层的透气性,降低瓦斯抽采的难度。同时,水力压裂破碎煤岩体之后,能降低压裂有效区域范围内煤岩体的应力水平,降低煤岩动力灾害的危险性。
以往的压裂增透工程中,主要采用穿层或顺层钻孔直接对煤层进行压裂,局部区域性强,巷道及钻孔工程量大;煤层或顶板压裂时,顶板破碎,煤层卸压、增透程度低,采掘时顶板难以维护,易出现冒顶;突出煤层松软,煤层直接压裂裂隙效果差,压裂范围很小,周边属于压密区域,应力集中程度高,周边区域透气性更低,瓦斯更难以抽放;另外,目前的压裂增透更注重单孔的压裂效果,对压裂区域及周围应力增高区域分布重视不够,在压裂区域周围进行采掘时更易发生煤与瓦斯突出、冲击地压等煤岩动力灾害,我国已经多次发生这样的灾害。
地面钻井分段压裂抽采,不论是煤层压裂或岩层压裂,其方法和参数均不考虑防突措施和采掘的要求及对突出等动力灾害的影响。
如何实现煤层瓦斯高效安全抽采、区域消突和煤巷快速掘进,降低消突时间与经济成本,是目前煤矿瓦斯治理、防突及采掘工作急需解决的问题。
发明内容
技术问题:本发明的目的是针对现有技术中存在的问题,提供一种底板顺层长钻孔分段逐级压裂高效抽放煤巷条带瓦斯及区域消突方法,通过在有突出危险的煤层底板坚硬岩层内钻孔底板顺层岩石长钻孔,由里往外逐段进行压裂,裂缝由岩层穿向煤层,使巷道附近煤层达到压裂、卸压、增透及高效抽采与消突,从根本上解决突出煤层煤巷条带瓦斯抽放及区域防突措施环节多、工程量大、工期时间长、效率低、压裂及抽采效果差、存在安 全隐患及煤矿采掘接续紧张等问题。
技术方案:为实现上述目的,本发明的底板顺层长钻孔分段逐级压裂高效抽放煤巷条带瓦斯及区域消突方法,包括单巷掘进的区域消突和抽采、沿空留巷回采工作面巷道及切眼的区域消突与抽采和双巷掘进的回采工作面巷道及切眼的区域消突与抽采,其步骤如下:
a.在巷道中向有突出危险的煤层附近坚硬的底板岩层内沿待掘煤层巷道方向钻进底板顺层钻孔。
b.对底板顺层钻孔由里往外进行分段、逐级压裂,所述分段、逐级压裂利用可移动、可重复使用的双胶囊分割封孔器,先从孔底开始进行分段分割封孔,对该段设置的双胶囊之间的底板顺层钻孔进行压裂,然后,将双胶囊分割封孔器后移,再次进行分段分割封孔和压裂,如此循环多次,由里往外分段封孔和逐级压裂,逐级压裂的裂缝由底板岩层穿向煤层,使得待掘煤层巷道附近的煤层充分卸压和增透。
c.利用压裂后的底板顺层钻孔对压裂增透区域进行逐段或整段瓦斯抽放,对待掘煤层巷道附近的煤层进行快速区域消突。
d.根据瓦斯抽放量进行抽采达标评判,抽采达标后,沿待掘煤层巷道两侧的有效防突措施范围边界,平行于底板顺层钻孔,施工煤层钻孔,按照防突规定要求定点进行区域防突措施效果检验和进一步瓦斯抽放,然后按照国家《防治煤与瓦斯突出规定》要求执行区域验证措施及局部四位一体综合措施的情况下进行煤层巷道快速掘进。
所述的底板顺层钻孔的位置及压裂所需的压力参数,先选择底板坚硬岩层层位,再根据岩层与煤层距离、有效防突措施范围两侧边界距底板顺层钻孔的最大距离R,计算压裂压力,确保实际最小压裂半径R1,满足R1≥R+1(m),即满足煤层压裂区域边界能控制巷道两侧有效防突措施范围的要求。
所述的底板顺层钻孔内相邻两次压裂中心的间距L应满足L/2=R1,以确保压穿前段压裂区,实现逐级压裂的要求。
所述的单巷掘进的区域消突和抽采,采用I型顺层底板长钻孔分段逐级压裂高效抽放待掘煤层巷道条带瓦斯,进行区域消突。
所述沿空留巷回采工作面巷道及切眼的区域消突与抽采,采用L型顺层底板长钻孔分段逐级压裂高效抽放待掘煤层巷道及切眼条带瓦斯,进行区域消突。
所述双巷掘进的回采工作面巷道及切眼的区域消突与抽采,采用L+I型顺层底板长钻孔分段逐级压裂高效抽放待掘煤层巷道及切眼条带瓦斯,进行区域消突。
有益效果:本发明通过底板顺层长钻孔分段逐级压裂高效抽放煤巷条带瓦斯及区域消突,替代顶底板岩巷密集穿层钻孔抽放、顶底板岩巷穿层局域化水力措施及工作面前方密 集长钻孔抽放等区域消突方法。具有不增加巷道工程量,大幅度降低钻孔工程量,煤层裂隙多,压裂范围大,压裂范围控制性好,压裂区周边煤体应力集中程度低,卸压增透效果好、抽采达标时间短、对煤层参数适应性强、适用范围广等优点。对于单巷掘进的区域消突和抽采,采用I型顺层底板长钻孔分段逐级压裂高效抽放煤巷条带瓦斯及区域消突方法;对于沿空留巷回采工作面巷道及切眼的区域消突与抽采,可采用L型顺层底板长钻孔分段逐级压裂高效抽放煤巷条带瓦斯及区域消突方法;对于双巷掘进的回采工作面巷道及切眼的区域消突与抽采,可采用L+I型顺层底板长钻孔分段逐级压裂高效抽放煤巷条带瓦斯及区域消突方法。实现了突出煤层高效安全抽采、快速区域消突和煤巷快速掘进,降低了消突时间与经济成本,从根本上解决了突出煤层消突难、区域消突工程量大、占用时间长及采掘接续紧张、效益差、增大安全隐患等难题。尤其适用于突出煤层高效瓦斯抽采、煤巷掘进区域消突、回采区域消突。其方法简单,效果好,在本技术领域内具有广泛的实用性。
附图说明
图1是本发明的I型底板顺层长钻孔分段逐级压裂与抽采平面示意图;
图2是本发明的I型底板顺层长钻孔分段逐级压裂与抽采剖面示意图;
图3是本发明的L型底板顺层长钻孔分段逐级压裂与抽采示意图;
图4是本发明的L+I型底板顺层长钻孔分段逐级压裂与抽采示意图。
图中:1-煤层;2-底板岩层;3-巷道;4-待掘煤层巷道;5-底板顺层钻孔;6-煤层钻孔;7-双胶囊分割封孔器;8-封孔器注水管;9-压裂水管;10-压裂区域边界;11-沿空留巷;L1-下侧保护范围;L2-上侧保护范围;R-有效防突措施范围两侧边界距底板顺层钻孔的最大距离;L-相邻两次压裂中心的间距;R1-实际最小压裂半径。
具体实施方式
本发明的底板顺层长钻孔分段逐级压裂高效抽放煤巷条带瓦斯及区域消突方法,包括单巷掘进的区域消突和抽采、沿空留巷回采工作面巷道及切眼的区域消突与抽采和双巷掘进的回采工作面巷道及切眼的区域消突与抽,其步骤如下:
a.在巷道3中向有突出危险的煤层1附近坚硬的底板岩层2内沿待掘煤层巷道4方向钻进底板顺层钻孔5。
b.对底板顺层钻孔5由里往外进行分段、逐级压裂,所述分段、逐级压裂利用可移动、可重复使用的双胶囊分割封孔器7,先从孔底开始进行分段分割封孔,对该段设置的双胶囊之间的底板顺层钻孔5进行压裂,然后,将双胶囊分割封孔器7后移,再次进行分段分割封孔和压裂,如此循环多次,由里往外分段封孔和逐级压裂,逐级压裂的裂缝由底板岩层2穿向煤层1,使得待掘煤层巷道4附近的煤层充分卸压和增透;所述的底板顺层钻孔5的位置及压裂所需的压力参数,先选择底板坚硬岩层层位,再根据岩层与煤层距离、有效防突措施范围两侧边界距底板顺层钻孔5的最大距离R,计算压裂压力,确保实际最 小压裂半径R1,满足R1≥R+1,单位:m,即满足煤层压裂区域边界能控制巷道两侧有效防突措施范围的要求。所述的底板顺层钻孔5相邻两次压裂中心的间距L应满足L/2=R1,以确保压穿前段压裂区,实现逐级压裂的要求。
c.利用压裂后的底板顺层钻孔5对压裂增透区域进行逐段或整段瓦斯抽放,对待掘煤层巷道4附近的煤层进行快速区域消突。
d.根据瓦斯抽放量进行抽采达标评判,抽采达标后,沿待掘煤层巷道4两侧的有效防突措施范围边界,平行于底板顺层钻孔5,施工煤层钻孔6,按照防突规定要求定点进行区域防突措施效果检验和进一步瓦斯抽放,定点要求一般为30~50m,然后按照国家《防治煤与瓦斯突出规定》要求执行区域验证措施及局部四位一体综合措施的情况下进行煤层巷道快速掘进。
所述的单巷掘进的区域消突和抽采,采用I型顺层底板长钻孔分段逐级压裂高效抽放待掘煤层巷道4条带瓦斯,进行区域消突。
所述沿空留巷回采工作面巷道及切眼的区域消突与抽采,采用L型顺层底板长钻孔分段逐级压裂高效抽放待掘煤层巷道4及切眼条带瓦斯,进行区域消突。
所述双巷掘进的回采工作面巷道及切眼的区域消突与抽采,采用L+I型顺层底板长钻孔分段逐级压裂高效抽放待掘煤层巷道4及切眼条带瓦斯,进行区域消突。
其中,通过底板压裂,易生裂隙,裂隙由岩层穿向煤层,易在煤层内扩展,煤层内纵向裂隙多,压裂区周边煤层应力集中程度低,顶板比较完整;底板顺层长钻孔的位置与煤层的距离及与待掘巷道的中心的平面距离应确保待掘巷道及其上下帮防突措施应控制范围内均为压裂增透区域。
其中,逐段压裂时,确保沿巷道方向两个相邻压裂区域边界能相互压茬,不留盲区;
其中,作为区域验证及抽采用的煤层钻孔的长度应超过待掘巷道及待消突区域的长度,抽放孔的有效抽放范围超过待消突区域的边界控制范围;
其中,如果瓦斯抽采评判不达标,则继续进行抽采。
下面结合附图的实施例对本发明作进一步的描述:
实施例1、
如图1和图2所示:单巷掘进的区域消突和抽采,采用I型顺层底板长钻孔分段逐级压裂高效抽放煤巷条带瓦斯,进行区域消突:
在已有巷道3中向有突出危险的煤层1附近坚硬的底板岩层2内沿待掘煤层巷道4方向钻进I型底板顺层钻孔5。
钻孔完成后,将装有可移动、可重复使用的双胶囊分割封孔器7的压裂水管9安放到 底板顺层钻孔5中,将双胶囊分割封孔器7伸向底板顺层钻孔5的孔底。
打开水力压裂系统的高压水泵,调节注水压力,通过封孔器注水管8向胶囊内注水,进行分割封孔,并通过压裂水管9向封孔器之间的孔内注高压水,水量及水压达到岩层致裂临界值时,底板岩层高速致裂,裂隙向煤层1内扩展,在煤层1内形成众多以纵向为主的裂隙网,垂直于巷道轴线方向煤层压裂边界超过待掘煤层巷道4防突措施边界要求。
待底板顺层钻孔5孔底第一个位置压裂结束,关闭高压水泵,让胶囊卸压收缩,通过压裂水管9将双胶囊分割封孔器7向孔口方向后移至下一个预定位置,再次进行水力压裂,确保两个相邻的压裂区域边界10能够压穿,相互压茬,不留盲区;在垂直预掘煤层巷道4轴线方向上,对于倾斜、急倾斜煤层的巷道,要确保压裂区域边界能控制巷道上侧保护范围L2至少20m,下侧保护范围L1至少为10m,其他倾角类型的煤层要确保压裂区域边界能控制巷道上侧保护范围L2和下侧保护范围L1各至少15m;循环多次,逐段进行压裂。根据岩层与煤层距离、有效防突措施范围两侧边界距底板顺层钻孔5的最大距离R,计算压裂压力,确保实际最小压裂半径R1,满足R1≥R+1(单位:m),即满足煤层压裂区域边界能控制巷道两侧有效防突措施范围的要求。所述的底板顺层钻孔5相邻两次压裂中心的间距L应满足L/2=R1,以确保压穿前段压裂区,实现逐级压裂的要求。
逐段压裂结束后,利用底板顺层钻孔5对压裂增透区域进行逐段或整段高效抽放;根据抽放量进行抽采达标评判;不达标,继续抽放。抽采达标后,在煤层1中,沿待掘煤层巷道4两侧有效防突措施范围边界各施工煤层长钻孔6,进行区域防突措施效果检验和进一步瓦斯抽放;在执行区域验证措施及局部四位一体措施规定的情况下进行煤层巷道快速掘进。
实施例2、
如图3所示,利用沿空留巷回采工作面巷道及切眼的区域消突与抽采,即L型顺层底板长钻孔分段逐级压裂高效抽放煤巷及切眼条带瓦斯,进行区域消突:
先从巷道3钻进I型的顺层底板长钻孔5,再完成切眼对应位置处L型顺层底板钻孔5,孔底距沿空留巷11不大于15m;然后从孔底开始对L型顺层底板钻孔进行分段逐级压裂,压裂后进行瓦斯抽放,与实施例1相同部分略;
逐段压裂结束后,利用L型的底板顺层钻孔5对压裂增透区域进行逐段或整段高效抽放;根据抽放量进行抽采达标评判;不达标,继续抽放;抽采达标后,在煤层1中,沿待掘煤层巷道4的上侧保护范围L2、下侧保护范围L1边界各施工1个L型的煤层钻孔6,进行区域防突措施效果检验和进一步瓦斯抽放;
在执行区域验证措施及局部四位一体措施规定的情况下进行煤层巷道快速掘进,完成顺槽和切眼巷道的快速掘进,形成回采工作面。
实施例3、
如图4所示:双巷掘进的回采工作面巷道及切眼的区域消突与抽采,采用L+I型顺层 底板长钻孔分段逐级压裂高效抽放煤巷及切眼条带瓦斯,进行区域消突:
在已有巷道3中,用两台钻机向待掘煤层巷道4的坚硬底板中分别钻进I型的底板顺层钻孔5和L型的底板顺层钻孔5,两个底板顺层钻孔5的孔底间距不大于15m;然后分别从孔底开始对I型和L型的顺层底板钻孔5进行分段逐级压裂,压裂后进行瓦斯抽放,与实施例1相同部分略;
逐段压裂结束后,分别利用I型和L型的底板顺层钻孔5对压裂增透区域进行逐段或整段高效抽放;根据抽放量进行抽采达标评判;不达标,继续抽放;抽采达标后,在煤层1中,沿待掘煤层巷道4两侧有效防突措施范围边界分别各施工I型和L型的煤层钻孔6,进行区域防突措施效果检验和进一步瓦斯抽放。
在执行区域验证措施及局部四位一体措施规定的情况下进行煤层巷道快速掘进,完成两条顺槽和切眼巷道的快速掘进,形成回采工作面。

Claims (6)

  1. 一种底板顺层长钻孔分段逐级压裂高效抽放煤巷条带瓦斯及区域消突方法,其特征在于:包括单巷掘进的区域消突和抽采、沿空留巷回采工作面巷道及切眼的区域消突与抽采和双巷掘进的回采工作面巷道及切眼的区域消突与抽采,其步骤如下:
    a.在巷道(3)中向有突出危险的煤层(1)附近坚硬的底板岩层(2)内沿待掘煤层巷道(4)方向钻进底板顺层钻孔(5);
    b.对底板顺层钻孔(5)由里往外进行分段、逐级压裂,所述分段、逐级压裂利用可移动、可重复使用的双胶囊分割封孔器(7),先从孔底开始进行分段分割封孔,对该段设置的双胶囊之间的底板顺层钻孔(5)进行压裂,然后,将双胶囊分割封孔器(7)后移,再次进行分段分割封孔和压裂,如此循环多次,由里往外分段封孔和逐级压裂,逐级压裂的裂缝由底板岩层(2)穿向煤层(1),使得待掘煤层巷道(4)附近的煤层充分卸压和增透;
    c.利用压裂后的底板顺层钻孔(5)对压裂增透区域进行逐段或整段瓦斯抽放,对待掘煤层巷道(4)附近的煤层进行快速区域消突;
    d.根据瓦斯抽放量进行抽采达标评判,抽采达标后,沿待掘煤层巷道(4)两侧的有效防突措施范围边界,平行于底板顺层钻孔(5),施工煤层钻孔(6),按照防突规定要求定点进行区域防突措施效果检验和进一步瓦斯抽放,然后按照国家《防治煤与瓦斯突出规定》要求执行区域验证措施及局部四位一体综合措施的情况下进行煤层巷道快速掘进。
  2. 根据权利要求1所述的底板顺层长钻孔分段逐级压裂高效抽放煤巷条带瓦斯及区域消突方法,其特征在于:所述的底板顺层钻孔(5)的位置及压裂所需的压力参数,先选择底板坚硬岩层层位,再根据岩层与煤层距离、有效防突措施范围两侧边界距底板顺层钻孔(5)的最大距离R,计算压裂压力,确保实际最小压裂半径R1,满足R1≥R+1(m),即满足煤层压裂区域边界能控制巷道两侧有效防突措施范围的要求。
  3. 根据权利要求1所述的底板顺层长钻孔分段逐级压裂高效抽放煤巷条带瓦斯及区域消突方法,其特征在于:所述的底板顺层钻孔(5)内相邻两次压裂中心的间距L应满足L/2=R1,以确保压穿前段压裂区,实现逐级压裂的要求。
  4. 根据权利要求1所述的底板顺层长钻孔分段逐级压裂高效抽放煤巷条带瓦斯及区域消突方法,其特征在于:所述的单巷掘进的区域消突和抽采,采用I型顺层底板长钻孔分段逐级压裂高效抽放待掘煤层巷道(4)条带瓦斯,进行区域消突。
  5. 根据权利要求1所述的底板顺层长钻孔分段逐级压裂高效抽放煤巷条带瓦斯及区域消突方法,其特征在于:所述沿空留巷回采工作面巷道及切眼的区域消突与抽采,采用 L型顺层底板长钻孔分段逐级压裂高效抽放待掘煤层巷道(4)及切眼条带瓦斯,进行区域消突。
  6. 根据权利要求1所述的底板顺层长钻孔分段逐级压裂高效抽放煤巷条带瓦斯及区域消突方法,其特征在于:所述双巷掘进的回采工作面巷道及切眼的区域消突与抽采,采用L+I型顺层底板长钻孔分段逐级压裂高效抽放待掘煤层巷道(4)及切眼条带瓦斯,进行区域消突。
PCT/CN2017/113125 2017-05-02 2017-11-27 底板顺层长钻孔分段压裂高效抽放煤巷条带瓦斯及区域消突方法 WO2018201706A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710301740.2 2017-05-02
CN201710301740.2A CN106907175B (zh) 2017-05-02 2017-05-02 底板顺层长钻孔分段压裂高效抽放煤巷条带瓦斯及区域消突方法

Publications (1)

Publication Number Publication Date
WO2018201706A1 true WO2018201706A1 (zh) 2018-11-08

Family

ID=59210648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113125 WO2018201706A1 (zh) 2017-05-02 2017-11-27 底板顺层长钻孔分段压裂高效抽放煤巷条带瓦斯及区域消突方法

Country Status (2)

Country Link
CN (1) CN106907175B (zh)
WO (1) WO2018201706A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112326919A (zh) * 2020-09-18 2021-02-05 安徽理工大学 一种煤与瓦斯突出模拟试验装置及试验方法
CN112487542A (zh) * 2020-12-17 2021-03-12 中煤能源研究院有限责任公司 一种防突措施钻孔图的自动绘制方法、系统、装置和可读存储介质

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106907175B (zh) * 2017-05-02 2019-06-04 中国矿业大学 底板顺层长钻孔分段压裂高效抽放煤巷条带瓦斯及区域消突方法
CN108590653B (zh) * 2018-03-02 2019-09-03 煤炭科学技术研究院有限公司 煤与瓦斯突出卸压消能与介质属性改造协同防控方法
CN108952796B (zh) * 2018-07-25 2019-11-05 中煤科工集团重庆研究院有限公司 一种基于梳状底板穿层钻孔压裂增透的模块化抽采方法
CN111350535B (zh) * 2018-12-05 2021-08-13 重庆大学 一种基于压裂治理矿井瓦斯最优化方法
CN110145233B (zh) * 2019-04-03 2021-06-22 山东唐口煤业有限公司 一种冲击地压煤层“钻-割-压-抽-注”多灾害协同防治方法
CN112360543B (zh) * 2020-08-24 2024-03-19 中国石油大学(华东) 一种煤层注水消突方法
CN112196610B (zh) * 2020-09-23 2022-06-07 贵州大学 一种用于倾斜煤层瓦斯消突的水钻开采结构及其开采方法
CN112127941B (zh) * 2020-09-27 2023-04-07 山西鑫桥科技有限公司 一种解决煤层瓦斯突出的方法
CN112343647B (zh) * 2020-10-22 2022-08-02 煤炭科学技术研究院有限公司 一种邻空巷道自卸压消突快速掘进瓦斯防治方法
CN112377242B (zh) * 2020-11-16 2022-05-13 中煤科工集团重庆研究院有限公司 一种松软煤层重复水力压裂驱替瓦斯同步抽采方法
CN112627794B (zh) * 2020-12-14 2022-05-20 重庆大学 一种酸化消突效果评判方法
CN112832850B (zh) * 2021-03-26 2022-08-19 河南理工大学 一种以孔代巷半永久瓦斯抽采通道的立体式构造方法
CN112879079B (zh) * 2021-04-09 2023-03-21 平顶山天安煤业股份有限公司 一种突出煤层底抽巷全生命周期利用方法
CN113236360A (zh) * 2021-06-29 2021-08-10 中煤科工开采研究院有限公司 开拓巷道群冲击地压防治方法
CN113622912B (zh) * 2021-07-30 2024-03-12 平顶山市安泰华矿用安全设备制造有限公司 一种煤层开采消突工艺
CN114046149A (zh) * 2021-11-01 2022-02-15 北京天地华泰矿业管理股份有限公司 一种穿层孔定向长钻孔水力掏煤消突方法
CN114215530B (zh) * 2021-11-29 2024-04-19 中国矿业大学 一种坚硬顶板定向水压致裂沿空巷道快速掘巷方法
CN114704281B (zh) * 2022-03-31 2024-09-27 国家能源集团国源电力有限公司 基于定向钻孔超前高压注水的巨厚煤层精准解危增产方法
CN115387775B (zh) * 2022-08-01 2023-07-18 太原理工大学 基于树状长钻孔的邻近煤层开采瓦斯协同抽采消突方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3934649A (en) * 1974-07-25 1976-01-27 The United States Of America As Represented By The United States Energy Research And Development Administration Method for removal of methane from coalbeds
CN101403314A (zh) * 2008-11-18 2009-04-08 河南理工大学 煤矿井下钻孔水力压裂增透抽采瓦斯工艺
CN101575983A (zh) * 2009-02-27 2009-11-11 河南省煤层气开发利用有限公司 煤矿井下定向压裂增透消突方法及压裂增透消突装置
CN102155254A (zh) * 2011-02-28 2011-08-17 中国矿业大学 一种低透气性煤层脉冲压裂增透抽采瓦斯方法
CN102182499A (zh) * 2011-04-21 2011-09-14 中国矿业大学 一种基于水力致裂煤层减尘消突的方法及设备
CN102704905A (zh) * 2012-06-11 2012-10-03 煤炭科学研究总院沈阳研究院 分段水力压裂煤层卸压装置及卸压方法
CN103899348A (zh) * 2014-04-23 2014-07-02 重庆市能源投资集团科技有限责任公司 一种采煤工作面瓦斯快速抽采方法
CN106907175A (zh) * 2017-05-02 2017-06-30 中国矿业大学 底板顺层长钻孔分段压裂高效抽放煤巷条带瓦斯及区域消突方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6497457B1 (en) * 2001-05-31 2002-12-24 Larry G. Stolarczyk Drilling, image, and coal-bed methane production ahead of mining
CN102031950B (zh) * 2010-12-06 2012-02-15 煤炭科学研究总院西安研究院 煤层顶板梳状瓦斯抽采钻孔的成孔工艺方法
CN102086774A (zh) * 2011-01-17 2011-06-08 中联煤层气国家工程研究中心有限责任公司 一种煤层瓦斯气的抽放方法
CN102852546B (zh) * 2011-06-30 2015-04-29 河南煤业化工集团研究院有限责任公司 未采区单一松软突出煤层预抽煤巷条带瓦斯的方法
CN102561989A (zh) * 2012-02-21 2012-07-11 重庆市能源投资集团科技有限责任公司 一种煤矿井下水力压裂封孔方法
CN202900151U (zh) * 2012-10-24 2013-04-24 中国矿业大学 一种水力致裂封隔器
CN103899349B (zh) * 2014-04-23 2015-12-09 重庆市能源投资集团科技有限责任公司 一种煤层瓦斯预抽采方法及抽采孔径向钻进导向装置
CN104405358B (zh) * 2014-10-13 2017-06-06 太原理工大学 一种高压气体压裂煤层的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3934649A (en) * 1974-07-25 1976-01-27 The United States Of America As Represented By The United States Energy Research And Development Administration Method for removal of methane from coalbeds
CN101403314A (zh) * 2008-11-18 2009-04-08 河南理工大学 煤矿井下钻孔水力压裂增透抽采瓦斯工艺
CN101575983A (zh) * 2009-02-27 2009-11-11 河南省煤层气开发利用有限公司 煤矿井下定向压裂增透消突方法及压裂增透消突装置
CN102155254A (zh) * 2011-02-28 2011-08-17 中国矿业大学 一种低透气性煤层脉冲压裂增透抽采瓦斯方法
CN102182499A (zh) * 2011-04-21 2011-09-14 中国矿业大学 一种基于水力致裂煤层减尘消突的方法及设备
CN102704905A (zh) * 2012-06-11 2012-10-03 煤炭科学研究总院沈阳研究院 分段水力压裂煤层卸压装置及卸压方法
CN103899348A (zh) * 2014-04-23 2014-07-02 重庆市能源投资集团科技有限责任公司 一种采煤工作面瓦斯快速抽采方法
CN106907175A (zh) * 2017-05-02 2017-06-30 中国矿业大学 底板顺层长钻孔分段压裂高效抽放煤巷条带瓦斯及区域消突方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112326919A (zh) * 2020-09-18 2021-02-05 安徽理工大学 一种煤与瓦斯突出模拟试验装置及试验方法
CN112487542A (zh) * 2020-12-17 2021-03-12 中煤能源研究院有限责任公司 一种防突措施钻孔图的自动绘制方法、系统、装置和可读存储介质
CN112487542B (zh) * 2020-12-17 2024-03-01 中煤能源研究院有限责任公司 一种防突措施钻孔图的自动绘制方法、系统、装置和可读存储介质

Also Published As

Publication number Publication date
CN106907175B (zh) 2019-06-04
CN106907175A (zh) 2017-06-30

Similar Documents

Publication Publication Date Title
WO2018201706A1 (zh) 底板顺层长钻孔分段压裂高效抽放煤巷条带瓦斯及区域消突方法
Huang et al. Cavability control by hydraulic fracturing for top coal caving in hard thick coal seams
JP6868747B2 (ja) 天盤層裂か水と炭層ガスとを一緒に放出する方法
CN109209472B (zh) 一种冲孔、爆破、注水相互耦合的煤层卸压防突方法
CN108661641A (zh) 一种基于切顶卸压预防顺槽采空区长距离悬顶的方法
CN103498680B (zh) 提高综放工作面初采期间顶煤回收率的方法
CN104863629A (zh) 一种利用复合钻孔抽覆岩下离层瓦斯及排水注浆的方法
CN107120137B (zh) 一种煤巷掘进沿煤层底板深孔预裂爆破抽采方法
CN113982582B (zh) 一种煤矿井下采煤工作面水力压裂处理端头三角区悬顶的方法
CN112593936B (zh) 一种深部矿井多灾害区域超前综合防治方法
CN109139092B (zh) 一种治理深埋煤层冲击与瓦斯灾害的一孔多用施工方法
CN113404535A (zh) 一种煤矿井上下水力压裂防治冲击地压的方法
CN107313777A (zh) 综采工作面主回撤通道水力压裂卸压方法及装置
CN102383728A (zh) 煤矿冲击地压缺陷分割控制方法
CN108894813A (zh) 井下钻井、地面压裂和井下抽采相结合的瓦斯消突方法
CN107816365A (zh) 一种煤层钻爆抽注一体化防突方法
WO2020006870A1 (zh) 一种切槽-回填法构建防渗屏障的瓦斯抽采钻孔封孔方法
CN104074538A (zh) 一种初采工作面高抽巷瓦斯抽采方法
CN115749713A (zh) 岩层变频脉冲缝网压裂方法与装备
CN109869152B (zh) 煤与瓦斯突出煤层预留巷道开采方法
CN110067592A (zh) 基于坚硬顶板地面压裂的顶板瓦斯协同控制方法
CN112377241B (zh) 顶板抽采巷穿层钻孔预裂爆破结合多分支定向孔抽采方法
CN105804786A (zh) 一种松软煤层底板穿层钻孔压冲增透方法
CN115199269A (zh) 一种孤岛突出煤层强弱耦合结构多灾害一体化防控方法
CN110985123A (zh) 一种高压水力预裂解危冲击矿压顺槽巷道钻孔布置方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908581

Country of ref document: EP

Kind code of ref document: A1