[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018139134A1 - 室温硬化性シラン含有樹脂組成物及び実装回路基板 - Google Patents

室温硬化性シラン含有樹脂組成物及び実装回路基板 Download PDF

Info

Publication number
WO2018139134A1
WO2018139134A1 PCT/JP2017/046082 JP2017046082W WO2018139134A1 WO 2018139134 A1 WO2018139134 A1 WO 2018139134A1 JP 2017046082 W JP2017046082 W JP 2017046082W WO 2018139134 A1 WO2018139134 A1 WO 2018139134A1
Authority
WO
WIPO (PCT)
Prior art keywords
silane
group
room temperature
resin composition
containing resin
Prior art date
Application number
PCT/JP2017/046082
Other languages
English (en)
French (fr)
Inventor
晃嗣 藤原
宗直 廣神
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to US16/476,366 priority Critical patent/US11274225B2/en
Priority to CN201780084653.4A priority patent/CN110234697B/zh
Priority to JP2018564172A priority patent/JP6863394B2/ja
Priority to EP17893988.0A priority patent/EP3575358B1/en
Publication of WO2018139134A1 publication Critical patent/WO2018139134A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D115/00Coating compositions based on rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/08Crosslinking by silane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0162Silicon containing polymer, e.g. silicone
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10128Display
    • H05K2201/10136Liquid Crystal display [LCD]

Definitions

  • the present invention relates to a room temperature curable silane-containing resin composition that provides a coating film, and is suitable for use as a coating agent composition, particularly for coating agents for electrical and electronic components and substrates, sealing agents for liquid crystal display elements, and the like.
  • the present invention relates to a room temperature curable silane-containing resin composition.
  • the present invention relates to a room temperature curable silane-containing resin composition that provides a cured film having a corrosion prevention performance against corrosive gas, and a mounted circuit board having a cured film of the composition.
  • Room temperature curable (RTV) silicone rubber composition that crosslinks with moisture is easy to handle and has excellent weather resistance and electrical properties, so it can be used as a sealing agent for building materials and adhesives in the electrical and electronic fields. Used in various fields. In particular, in the electrical / electronic field, dealcohol-free RTV silicone rubber compositions tend to be used because of their suitability for adhesion and coating on the adherend (resin system) used. The same applies to coatings for liquid crystal peripherals and power supply circuit boards, for which demand has been rapidly increasing in recent years, and dealcohol-free RTV silicone rubber compositions are used.
  • silicone rubber-based coating agents satisfy the main objectives of electrical and electronic circuit insulation and moisture-proof performance, but they have a corrosion prevention function for metals such as silver and copper used in electronic components. Almost no. Since these organopolysiloxane compositions have high gas permeability, they easily permeate sulfurous corrosive gases, specifically low molecular weight gases such as hydrogen sulfide and sulfur dioxide, to form metal sulfides. End up. When these metal sulfides are formed, the electrical connection is interrupted, and the characteristics as an electric / electronic product are lost.
  • Patent Document 1 discloses a silicone rubber for sealing or sealing electrical and electronic parts, in which 0.5 to 90% by mass of a metal powder that is easily sulfurized by a sulfur-containing gas is added to an organopolysiloxane composition.
  • a composition has been proposed, and it has been shown that the addition of a metal powder that is easily sulfided by a sulfur-containing gas is useful for preventing sulfidation of electrical and electronic parts.
  • there is no description as a coating application for electric / electronic parts and only an addition-curable silicone rubber composition is substantially described.
  • the metal powder when metal powder is added to the coating agent, the metal powder easily settles, which makes the handling of the coating agent troublesome.
  • Patent Document 2 discloses that an organopolysiloxane composition contains 0.1 to 20% by mass of metal powder, preferably copper powder and / or brass powder, which is sulfurized by sulfur and / or sulfur gas. A room temperature curable organopolysiloxane composition with less than mass% added is disclosed. These metals are highly reactive with sulfur and / or sulfur gas, and by adding a trace amount to the room temperature curable organopolysiloxane composition, it is possible to develop antisulfurization properties.
  • Patent Document 3 discloses an addition-curable silicone primer composition that prevents corrosion of metal electrodes on a substrate (excelling in sulfidation resistance) and an optical semiconductor device using the same.
  • the base organopolysiloxane component has a short main skeleton, and the aryl group content in the siloxane side chain is high, so that the raw material cost increases.
  • the present invention has been made in view of the above circumstances, and provides a coating film, particularly a room temperature curable silane-containing resin composition that provides a coating film having gas permeability resistance, and a mounted circuit board having the cured film of the composition.
  • the purpose is to do.
  • R 1 is each independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms
  • R 2 is each independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms.
  • f is a number of 0 or more
  • e and g are numbers greater than 0, and
  • m is an integer of 1 to 3.
  • Silane-modified polybutadiene compound represented by: 100 parts by mass
  • Hydrolyzable organosilane compound having an average of two or more hydrolyzable groups bonded to silicon atoms and / or a partial hydrolysis condensate thereof: 0.5 to 20 parts by mass
  • Curing catalyst The room temperature curable silane-containing resin composition containing 0.1 to 10 parts by mass has been found to satisfy the above requirements, and has led to the present invention.
  • this invention provides the room temperature curable silane containing resin composition and mounting circuit board which are shown below.
  • R 1 is each independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms
  • R 2 is each independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms.
  • f is a number of 0 or more
  • e and g are numbers greater than 0, and
  • m is an integer of 1 to 3.
  • Silane-modified polybutadiene compound represented by: 100 parts by mass
  • B Hydrolyzable organosilane compound having an average of two or more hydrolyzable groups bonded to silicon atoms and / or a partial hydrolysis condensate thereof: 0.5 to 20 parts by mass
  • C Curing catalyst: A room temperature-curable silane-containing resin composition containing 0.1 to 10 parts by mass.
  • the room temperature curable silane-containing resin composition of the present invention is suitable for use as a coating agent composition, in particular, as a coating agent for electric / electronic parts and their substrates, a sealing agent for liquid crystal display elements, and the like.
  • a gas-resistant coating film (cured product) can be obtained, it is useful as a coating agent having a corrosion prevention performance against corrosive gas.
  • the room temperature curable silane-containing resin composition of the present invention comprises (A) a silane-modified polybutadiene compound represented by the following general formula (1) (that is, a hydrolyzable silylethylene as a side chain substituent of a polymerizable vinyl monomer) A polybutadiene compound containing a group) as a main agent (base polymer).
  • R 1 is each independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms
  • R 2 is each independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms.
  • F is a number of 0 or more, preferably an integer of 0 to 10, more preferably an integer of 0 to 5, and e is an integer greater than 0, preferably an integer of 1 to 40, more preferably 2 to An integer of 20, g is a number greater than 0, preferably an integer of 1 to 40, more preferably an integer of 2 to 20, and m is an integer of 1 to 3, preferably 2 or 3.
  • the order of each repeating unit is arbitrary.
  • the unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms represented by R 1 includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group.
  • Alkyl groups such as isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, dodecyl group; cyclopentyl group, cyclohexyl group, etc.
  • a cycloalkyl group such as a vinyl group, an allyl group, a propenyl group, a butenyl group, a pentenyl group, and a hexenyl group; an aryl group such as a phenyl group, a tolyl group, a xylyl group, and an ⁇ -, ⁇ -naphthyl group; a benzyl group Aralkyl groups such as 2-phenylethyl group and 3-phenylpropyl group; and some or all of hydrogen atoms of these groups are F, groups substituted by halogen atoms such as l and Br, cyano groups, etc., for example, 3-chloropropyl group, 3,3,3-trifluoropropyl group, 2-cyanoethyl group, and ether-bonded oxygen atoms as substituents
  • the alkyl group include a methoxymethyl group, a methoxyethy
  • an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms is preferable, an alkyl group such as a methyl group or an ethyl group is more preferable, and a methyl group is particularly preferable.
  • the unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms represented by R 2 includes a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group.
  • Alkyl groups such as isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, dodecyl group; cyclopentyl group, cyclohexyl group, etc.
  • Cycloalkyl groups vinyl groups, allyl groups, propenyl groups, isopropenyl groups, butenyl groups, pentenyl groups, hexenyl groups and other alkenyl groups; phenyl groups, tolyl groups, xylyl groups, ⁇ -, ⁇ -naphthyl groups and the like Groups; aralkyl groups such as benzyl group, 2-phenylethyl group, 3-phenylpropyl group; and some of hydrogen atoms of these groups Are all groups substituted by halogen atoms such as F, Cl, Br, cyano groups, etc., for example, 3-chloropropyl groups, 3,3,3-trifluoropropyl groups, 2-cyanoethyl groups, etc.
  • an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms is preferable, an alkyl group such as a methyl group or an ethyl group is more preferable, and an ethyl group is particularly preferable.
  • the number average molecular weight of the silane-modified polybutadiene compound is preferably 1,000 or more, and more preferably 2,000 or more. If it is less than 1,000, the room temperature curable silane-containing resin composition may not exhibit sufficient adhesion.
  • the upper limit of the number average molecular weight is not particularly limited, but is usually 1,000,000 or less, preferably 100,000 or less, more preferably about 10,000 or less.
  • the molecular weight (or degree of polymerization) is usually expressed as the number average molecular weight (or number average degree of polymerization) in terms of polystyrene in gel permeation chromatography (GPC) analysis using toluene, tetrahydrofuran (THF), chloroform or the like as a developing solvent. Can be obtained (the same applies hereinafter).
  • the silane-modified polybutadiene compound preferably satisfies the condition of the following formula (i). 0.05 ⁇ g / (e + f + g) ⁇ 1.0 (i)
  • the unit containing a hydrolyzable silyl group is contained in an amount of 5 mol% or more per the total of all repeating units in the main chain.
  • the room temperature curable silane-containing resin composition may not exhibit sufficient adhesion.
  • g / (e + f + g) is more preferably 0.1 to 0.95, and particularly preferably 0.25 to 0.95.
  • the silane-modified polybutadiene compound preferably satisfies the condition of the following formula (ii). 0.3 ⁇ g / (f + g) ⁇ 1.0 (ii)
  • the hydrolyzable silyl group-containing unit should contain 30 mol% or more with respect to the total of the hydrolyzable silyl group-containing unit and the terminal vinyl group-containing unit in the main chain. It is preferable to contain 50 mol% or more. When it is less than 30 mol%, the room temperature curable silane-containing resin composition may not exhibit sufficient adhesiveness. More preferably, g / (f + g) is 0.5 to 1.0.
  • the silane-modified polybutadiene compound preferably has (f + g) / (e + f + g) of 0.05 to 0.95, particularly 0.1 to 0.95, and particularly 0.25 to 0.95.
  • the silane-modified polybutadiene compound has the following general formula (2): (Wherein e, f and g are the same as above) A polybutadiene compound containing a repeating unit having a 1,2-vinyl structure (terminal vinyl group) and a repeating unit having a 2,3-vinylene structure (internal vinylene group or internal ethenylene group), Formula (3) (Wherein R 1 , R 2 and m are the same as above).
  • a platinum compound containing an organosilicon compound such as organohydrogensilane having a hydrolyzable group (—OR 1 ) bonded to a silicon atom and a hydrogen atom (SiH group) bonded to the silicon atom in the molecule. It can be obtained by hydrosilylation in the presence of a catalyst and a promoter.
  • e, f and g are the same as above, and (f + g) / (e + f + g) is also 0.05 to 0.95, particularly 0.1 to 0.95, In particular, it is preferably 0.25 to 0.95.
  • the number average molecular weight of the polybutadiene compound represented by the general formula (2) is preferably 100 to 10,000, and more preferably 500 to 8,000.
  • the polybutadiene compound represented by the general formula (2) includes a repeating unit having a 1,2-vinyl structure and a repeating unit having a 2,3-vinyl structure (trans 1,4 structure) as isomers.
  • a repeating unit having a 1,2-vinyl structure is contained in an amount of 5 mol% or more, preferably 10 mol% or more, more preferably 25 mol% or more in all repeating units.
  • the 1,2-vinyl structure is less than 5 mol%, the silane modification rate is lowered, and when it is blended with a room temperature curable silane-containing resin composition, there may be a case where a sufficient adhesive improvement effect cannot be exhibited.
  • the upper limit of the content ratio of the repeating unit having a 1,2-vinyl structure is not particularly limited, but is usually 98 mol% or less, preferably about 95 mol% or less.
  • the total of the repeating unit having a 1,2-vinyl structure and the repeating unit having a 2,3-vinyl structure is 100 mol%.
  • Examples of the polybutadiene compound represented by the above general formula (2) include NISSO-PB B-1000, NISSO-PB B-2000, NISSO-PB B-3000 (manufactured by Nippon Soda Co., Ltd.), Ricon 130, Ricon 131, Ricon134, Ricon142, Ricon150, Ricon152, Ricon153, Ricon154, Ricon156, Ricon157 (above, manufactured by CRAY VALLEY), LBR-302, LBR-307, LBR-305, LBR-300, LBR-352, LBR-361, and more Kuraray Co., Ltd.) is now on the market.
  • organosilicon compound represented by the general formula (3) examples include hydrogen alkoxysilanes such as trimethoxysilane, methyldimethoxysilane, dimethylmethoxysilane, triethoxysilane, methyldiethoxysilane, and dimethylethoxysilane.
  • the reaction ratio of the polybutadiene compound represented by the general formula (2) and the organosilicon compound represented by the general formula (3) is generally based on 100 parts by mass of the polybutadiene compound represented by the general formula (2).
  • the organosilicon compound represented by the formula (3) is preferably 10 to 400 parts by mass, and the vinyl in the repeating unit having a 1,2-vinyl structure of the polybutadiene compound represented by the general formula (2)
  • the SiH group in the organosilicon compound represented by the general formula (3) is reacted with the group in a range of 0.3 to 1.0 mol / mol, particularly 0.5 to 1.0 mol / mol. It is preferable.
  • the platinum compound-containing catalyst used in the present invention is not particularly limited. Specifically, chloroplatinic acid, an alcohol solution of chloroplatinic acid, platinum-1,3-divinyl-1,1,3,3-tetramethyl Toluene or xylene solution of disiloxane complex, tetrakistriphenylphosphine platinum, dichlorobistriphenylphosphine platinum, dichlorobisacetonitrile platinum, dichlorobisbenzonitrile platinum, dichlorocyclooctadiene platinum, platinum-carbon, platinum-alumina, platinum-silica, etc. And a supported catalyst.
  • a zero-valent platinum complex is preferably used, and more preferably a toluene or xylene solution of a platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex.
  • the amount of the platinum compound-containing catalyst used is not particularly limited, but from the viewpoint of reactivity and productivity, the platinum atom contained is 1 ⁇ 10 ⁇ 7 with respect to 1 mol of the organosilicon compound represented by the general formula (3).
  • the range of ⁇ 1 ⁇ 10 ⁇ 2 mol is preferable, and the range of 1 ⁇ 10 ⁇ 7 to 1 ⁇ 10 ⁇ 3 mol is more preferable.
  • Examples of the cocatalyst used in the present invention include ammonium salts of inorganic acids, acid amide compounds, and carboxylic acids.
  • inorganic acid ammonium salts include, for example, ammonium chloride, ammonium sulfate, ammonium amidosulfate, ammonium nitrate, monoammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium diphosphite, ammonium carbonate, hydrogen carbonate
  • ammonium, ammonium sulfide, ammonium borate, ammonium borofluoride and the like can be mentioned, and ammonium salts of inorganic acids having a pKa of 2 or more are preferable, and ammonium carbonate and ammonium hydrogen carbonate are particularly preferable.
  • acid amide compounds include, for example, formamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, acrylamide, malonamide, succinamide, maleamide, fumaramide, benzamide, phthalamide, palmitic acid amide, stearic acid amide Is mentioned.
  • carboxylic acids include, for example, formic acid, acetic acid, propionic acid, butyric acid, methoxyacetic acid, pentanoic acid, caproic acid, heptanoic acid, octanoic acid, lactic acid, glycolic acid and the like, and particularly formic acid, acetic acid, and lactic acid are preferred. Of these, acetic acid is preferred.
  • an organosilicon represented by Compound 1 mol relative to 1 ⁇ 10 -5 ⁇ 1 ⁇ 10 - 1 mol is preferable, and a range of 1 ⁇ 10 ⁇ 4 to 5 ⁇ 10 ⁇ 1 mol is particularly preferable.
  • Solvents used include hydrocarbon solvents such as pentane, hexane, cyclohexane, heptane, isooctane, benzene, toluene and xylene, ether solvents such as diethyl ether, tetrahydrofuran and dioxane, and ester solvents such as ethyl acetate and butyl acetate.
  • aprotic polar solvents such as N, N-dimethylformamide, chlorinated hydrocarbon solvents such as dichloromethane and chloroform, and the like. These solvents may be used alone or in combination of two or more.
  • the reaction temperature is not particularly limited, and the reaction can be performed at room temperature (23 ° C. ⁇ 10 ° C.) or under heating.
  • the reaction is preferably carried out under heating, preferably 35 to 200 ° C, more preferably 40 to 110 ° C, and particularly preferably 40 to 90 ° C.
  • the reaction time is not particularly limited, but is preferably 1 to 60 hours, more preferably 1 to 30 hours, and particularly preferably 1 to 20 hours.
  • the component (B) is at least one selected from the group consisting of hydrolyzable organosilane compounds having an average of two or more hydrolyzable groups bonded to silicon atoms and / or partial hydrolysis condensates thereof. It is a compound and acts as a crosslinking agent (curing agent) for the room temperature curable silane-containing resin composition of the present invention.
  • component (B) examples include organotris such as methyltris (dimethylketoxime) silane, methyltris (methylethylketoxime) silane, ethyltris (methylethylketoxime) silane, methyltris (methylisobutylketoxime) silane, and vinyltris (methylethylketoxime) silane.
  • organotris such as methyltris (dimethylketoxime) silane, methyltris (methylethylketoxime) silane, ethyltris (methylethylketoxime) silane, methyltris (methylisobutylketoxime) silane, and vinyltris (methylethylketoxime) silane.
  • ketoxime silanes such as silane; methyltrimethoxysilane, vinyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, vinyltriethoxysilane, n-propyltrimethoxysilane, n-hexyltrimethoxysilane, n -Organotrialkoxysilanes such as decyltrimethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, vinyldimethoxymethylsilane Alkoxy silanes such as methyl triisopropenoxy silane, vinyl triisopropenoxy silane, phenyl triisopropenoxy silane, etc.
  • Silane various silanes such as acyloxysilane such as acetoxysilane such as methyltriacetoxysilane, ethyltriacetoxysilane, vinyltriacetoxysilane, and one or more partially hydrolyzed condensates thereof.
  • acyloxysilane such as acetoxysilane such as methyltriacetoxysilane, ethyltriacetoxysilane, vinyltriacetoxysilane, and one or more partially hydrolyzed condensates thereof.
  • acetoxysilane such as methyltriacetoxysilane, ethyltriacetoxysilane, vinyltriacetoxysilane, and one or more partially hydrolyzed condensates thereof.
  • alkoxysilane and alkenoxysilane are preferable, and alkoxysilane is particularly preferable.
  • the component (B) is preferably 0.5 to 20 parts by mass, more preferably 0.8 to 10 parts by mass, and particularly preferably 1 to 5 parts by mass with respect to 100 parts by mass of the component (A). If it is less than 0.5 part by mass, it is difficult to obtain a cured product having the desired rubber elasticity. If it exceeds 20 parts by mass, it is disadvantageous in terms of cost, and workability such as a delay in tack free time may be reduced.
  • the (C) component curing catalyst may be the same or different, and may be used alone or as a mixture of two or more.
  • Specific examples of the component (C) include titanium such as tetraisopropoxytitanium, tetra-n-butoxytitanium, tetrakis (2-ethylhexoxy) titanium, diisopropoxybis (acetylacetonato) titanium, and titanium isopropoxyoctylene glycol.
  • Acid ester or titanium chelate compound such as aluminum isopropylate, aluminum sec-butyrate, aluminum ethylate, ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), alkyl acetoacetate aluminum diisopropylate or aluminum
  • Aluminum alcoholate such as aluminum isopropylate, aluminum sec-butyrate, aluminum ethylate, ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), alkyl acetoacetate aluminum diisopropylate or aluminum
  • organometallic catalysts such as lead octylate and other acidic or basic catalysts are exemplified.
  • Bases such as strongly basic organosilicon compounds containing guanidyl groups such as tetramethylguanidylpropyltrimethoxysilane, tetramethylguanidylpropylmethyldimethoxysilane, tetramethylguanidylpropyltris (trimethylsiloxy) silane
  • strongly basic organosilicon compound include compounds represented by the following general formula (4).
  • Y represents an organic group having 1 to 15 carbon atoms including a hetero atom, and examples thereof include a guanidyl group of the following general formula (5).
  • a hand with a wavy line indicates a bond with N.
  • R 3 to R 6 in the general formula (5) each represent a hydrogen atom or a linear, branched or cyclic alkyl group, alkenyl group or aryl group having 1 to 10 carbon atoms, such as methyl group, ethyl group And alkyl groups such as propyl group; cyclic alkyl groups such as cyclohexyl group; alkenyl groups such as vinyl group and allyl group; aryl groups such as phenyl group and tolyl group.
  • a methyl group, an ethyl group, and a phenyl group are preferable, and especially a methyl group is preferable.
  • R 3 to R 6 may be the same or different.
  • R represents a hydrolyzable group such as an alkoxy group, an isopropenoxy group, or a ketoxime group.
  • SiR 3 include trimethoxysilyl group, methyldimethoxysilyl group, vinyldimethoxysilyl group, phenyldimethoxysilyl group, triethoxysilyl group and other alkoxy group-containing silyl groups; triisopropenoxysilyl group, methyldiisopropenoxy Isopropenoxy group-containing silyl groups such as silyl group, ethyldiisopropenoxysilyl group, vinyldiisopropenoxysilyl group, phenyldiisopropenoxysilyl group; tris (dimethylketoxime) silyl group, tris (diethylketoxime) silyl And ketoxime group-containing silyl groups such as tris (ethylmethylketoxime) silyl group.
  • Z represents a C3-C10 linear, branched or cyclic alkylene group, alkenylene group, arylene, or the like, which may contain a hetero atom, or a combination thereof.
  • methylene group, ethylene group, propylene group, tetramethylene group, hexamethylene group, octamethylene group, decamethylene group, 2-methylpropylene group and other alkylene groups; phenylene group and other arylene groups, and these alkylene groups and arylene groups are examples of the alkylene group include a bonded group, a ketone, an ester, and an amide, and are preferably a methylene group, an ethylene group, a propylene group, a propylene group via an amide bond, and the like, and particularly preferably a propylene group. is there.
  • Specific examples of the compound represented by the general formula (4) include compounds represented by the following formulas (6) to (8). (In the above formulas, Me represents a methyl group.) Among these, the compound of formula (8) is particularly preferable.
  • titanium chelate compounds are preferable, and diisopropoxybis (acetylacetonate) titanium is particularly preferable.
  • the component (C) is 0.1 to 10 parts by mass, preferably 0.1 to 8 parts by mass, particularly preferably 0.2 to 5 parts by mass with respect to 100 parts by mass of the component (A). If the amount is less than 0.1 parts by mass, sufficient crosslinkability cannot be obtained. If it exceeds 10 parts by mass, there are disadvantages such as a disadvantage in price and a decrease in the curing rate.
  • the room temperature curable silane-containing resin composition of the present invention may contain the following fillers and additives as long as the properties as a coating material are not impaired.
  • Examples of the filler include pulverized silica, fumed silica, calcium carbonate, zinc carbonate, aluminum hydroxide, aluminum hydroxide oxide, alumina, magnesium oxide, and wet silica.
  • additives examples include polyether as a wetter and thixotropy improver, plasticizer non-reactive dimethyl silicone oil, and the like.
  • colorants such as pigments and dyes, fluorescent whitening agents, fungicides, antibacterial agents, non-reactive phenyl silicone oils as bleed oil, fluorosilicone oils, silicone-incompatible organic liquids, etc.
  • Solvents such as surface modifiers, toluene, xylene, solvent volatile oil, cyclohexane, methylcyclohexane, low boiling point isoparaffin for viscosity adjustment may be added.
  • solvent volatile oil such as surface modifiers, toluene, xylene, solvent volatile oil, cyclohexane, methylcyclohexane, low boiling point isoparaffin for viscosity adjustment
  • it is effective to use a compound having a kinematic viscosity at 25 ° C. of about 0.1 to 50 mm 2 / s.
  • the room temperature curable silane-containing resin composition of the present invention can be obtained by uniformly mixing predetermined amounts of the above components (A) to (C) and, if necessary, the above other components in a dry atmosphere. .
  • the obtained room temperature curable silane-containing resin composition is cured by leaving it at room temperature (23 ° C. ⁇ 10 ° C.).
  • the molding method and curing conditions are known according to the type of the composition. The method and conditions can be adopted, and for example, it can be cured by allowing it to stand in the atmosphere for several hours to several days (for example, 6 hours to 4 days) at 23 ° C./50% RH. .
  • the room temperature curable silane-containing resin composition of the present invention has a water vapor transmission rate of 10 to 50 g / m in the thickness direction (vertical direction) of the coating when cured to a thin cured product having a thickness of 200 to 500 ⁇ m. 2 ⁇ day, particularly 10 to 40 g / m 2 ⁇ day is preferable.
  • the water vapor transmission rate is determined by, for example, a water vapor transmission rate measuring device such as L80-5000 manufactured by SYSTECH Instruments, which is obtained by curing the cured product after standing for 4 days in the atmosphere under the condition of 23 ° C./50% RH. Can be measured at room temperature (23 ° C.).
  • the room temperature curable silane-containing resin composition of the present invention is suitable for use as a coating agent composition, particularly as a coating agent for electric / electronic components and substrates thereof, a sealing agent for liquid crystal display elements, and the like.
  • the room temperature curable silane-containing resin composition provides a gas permeation-resistant cured product, so that the invasion of corrosive gases such as hydrogen sulfide gas, sulfur dioxide gas, and nitrogen dioxide gas is suppressed, and the corrosion prevention performance for the substrate It is useful as a coating agent having Specifically, the mounting circuit board which forms the cured film which consists of hardened
  • the coating method can be performed by operations such as brushing, dip coating, or spray coating so as to obtain a predetermined thickness.
  • the applied composition (uncured coating film) is allowed to cure, for example, by standing in the atmosphere for several hours to several days (for example, about 6 hours to 4 days) at 23 ° C./50% RH. Thereby, a cured product (cured coating film) is obtained.
  • the thickness of the resulting coating film (cured material film of the room temperature curable silane-containing resin composition) is not particularly limited, but is preferably about 50 to 1,000 ⁇ m, particularly about 50 to 800 ⁇ m.
  • molecular weight shows the number average molecular weight of polystyrene conversion in GPC analysis which used THF (tetrahydrofuran) as a developing solvent.
  • a viscosity shows the measured value in 25 degreeC with a rotational viscometer.
  • trimethoxysilane was added dropwise at an internal temperature of 75 to 85 ° C. over 2 hours, and then stirred at 80 ° C. for 1 hour. After completion of the stirring, vacuum concentration was performed to obtain a brown transparent liquid having a number average molecular weight of 4,100.
  • trimethoxysilane 195 g (1.6 mol) of trimethoxysilane was added dropwise at an internal temperature of 75 to 85 ° C. over 2 hours, and then stirred at 80 ° C. for 1 hour. After completion of the stirring, vacuum concentration was performed to obtain a brown transparent liquid having a number average molecular weight of 3,300.
  • Example 1 100 parts by weight of the silane-modified polybutadiene compound 1 of Synthesis Example 1 as the component (A), 3 parts by weight of methyltrimethoxysilane as the component (B), and diisopropoxybis (acetylacetonate) titanium 0 as the component (C) .5 parts by mass was added and mixed at room temperature (23 ° C., the same applies hereinafter) for 10 minutes to obtain Composition 1.
  • Example 2 100 parts by weight of the silane-modified polybutadiene compound 1 of Synthesis Example 1 as the component (A), 1.5 parts by weight of 1,6-bis (trimethoxysilyl) hexane as the component (B), and diisopropylene as the component (C) 0.5 parts by mass of propoxybis (acetylacetonato) titanium was added and mixed at room temperature for 10 minutes to obtain composition 2.
  • Example 3 100 parts by weight of the silane-modified polybutadiene compound 2 of Synthesis Example 2 as the component (A), 3 parts by weight of methyltrimethoxysilane as the component (B), and diisopropoxybis (acetylacetonate) titanium 0 as the component (C) .5 parts by mass was added and mixed at room temperature for 10 minutes to obtain Composition 3.
  • Example 4 100 parts by weight of the silane-modified polybutadiene compound 2 of Synthesis Example 2 as the component (A), 1.5 parts by weight of 1,6-bis (trimethoxysilyl) hexane as the component (B), and diisopropylene as the component (C) 0.5 parts by mass of propoxybis (acetylacetonato) titanium was added and mixed at room temperature for 10 minutes to obtain composition 4.
  • Example 5 100 parts by mass of the silane-modified polybutadiene compound 1 of Synthesis Example 1 as the component (A), 3 parts by mass of vinyltriisopropenoxysilane as the component (B), and a compound represented by the following formula (9) as the component (C) 1.0 part by mass was added and mixed at room temperature for 10 minutes to obtain Composition 5.
  • Me represents a methyl group.
  • Comparative Example 1 100 parts by mass of the silane-modified polybutadiene compound 1 of Synthesis Example 1 as component (A) and 3 parts by mass of methyltrimethoxysilane as component (B) were added and mixed at room temperature for 10 minutes to obtain composition 6.
  • composition 7 instead of the silane-modified polybutadiene compound as component (A), 100 parts by mass of polydimethylsiloxane having a viscosity of 900 mPa ⁇ s blocked at both ends of the molecular chain with trimethoxysilyl groups, and methyltrimethoxysilane 3 as component (B) 0.5 parts by mass of diisopropoxybis (acetylacetonato) titanium as component (C) was added and mixed at room temperature for 10 minutes to obtain composition 7.
  • component (A) 100 parts by mass of polydimethylsiloxane having a viscosity of 900 mPa ⁇ s blocked at both ends of the molecular chain with trimethoxysilyl groups, and methyltrimethoxysilane 3 as component (B) 0.5 parts by mass of diisopropoxybis (acetylacetonato) titanium as component (C) was added and mixed at room temperature for 10 minutes to obtain composition 7.
  • test specimens were prepared as follows, and the water vapor permeability was evaluated as an index of the corrosive gas permeability.
  • the results are shown in Tables 1 and 2.
  • Test specimen preparation method Compositions 1 to 7 were applied so that the thickness was 350 to 400 ⁇ m, and allowed to stand in the atmosphere for 4 days under the conditions of 23 ° C./50% RH and cured to a thickness of 350 to 400 ⁇ m.
  • a 400 ⁇ m thin cured film (test body) was prepared.
  • the composition 6 did not harden
  • ⁇ Evaluation method As an index of the permeability of corrosive gas, the water vapor transmission rate was measured at room temperature (23 ° C.) with a water vapor transmission measuring device: L80-5000 manufactured by SYSTECH Instruments. Was recorded.
  • compositions 1 to 5 By examining the compositions 1 to 5, it was confirmed that the use of the silane-modified polybutadiene compounds 1 and 2 lowers the water vapor transmission rate. On the other hand, as in the examination of the composition 7, it was confirmed that when polydimethylsiloxane was used instead of the silane-modified polybutadiene compound, the water vapor transmission rate was about 4 times larger than the values of the compositions 1 to 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

(A)下式(1)(式中、R1は独立に炭素数1~12の非置換又は置換の一価炭化水素基、R2は独立に炭素数1~12の非置換又は置換の一価炭化水素基、fは0以上の数、e、gは0より大きい数、mは1~3の整数である。ただし、各繰り返し単位の順序は任意である。) で表されるシラン変性ポリブタジエン化合物:100質量部、 (B)ケイ素原子に結合した加水分解性基を1分子中に平均2個以上有する加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物:0.5~20質量部、 (C)硬化触媒:0.1~10質量部 を含有する室温硬化性シラン含有樹脂組成物は、コーティング剤組成物としての用途、特に電気・電子部品及びその基板のコーティング剤、液晶表示素子用シール剤等として好適であり、特に、耐ガス透過性のコーティング被膜(硬化物)が得られることから、腐食性ガスに対する腐食防止性能を有するコーティング剤として有用である。

Description

室温硬化性シラン含有樹脂組成物及び実装回路基板
 本発明は、コーティング被膜を与える室温硬化性シラン含有樹脂組成物に関するものであり、コーティング剤組成物としての用途、特に電気・電子部品及びその基板のコーティング剤、液晶表示素子用シール剤等に好適な室温硬化性シラン含有樹脂組成物に関するものである。特に、腐食性ガスに対する腐食防止性能を有する硬化被膜を与える室温硬化性シラン含有樹脂組成物、及び該組成物の硬化被膜を有する実装回路基板に関するものである。
 湿気により架橋する室温硬化性(RTV)シリコーンゴム組成物は、その取り扱いが容易な上、耐候性や電気特性に優れているため、建材用のシーリング剤、電気・電子分野での接着剤など様々な分野で使用されている。特に電気・電子分野では、使用される被着体(樹脂系)に対する接着・コーティング適性から、脱アルコールタイプのRTVシリコーンゴム組成物が使用される傾向にある。また、近年急速に需要が伸びてきている液晶周辺や電源回路基板のコーティング剤としても同様であり、脱アルコールタイプのRTVシリコーンゴム組成物が使用されている。しかし、シリコーンゴム系コーティング剤はその主目的である、電気・電子回路の絶縁、防湿と言った性能は満足しているが、電子部品で使用される銀や銅などの金属に対する腐食防止機能は殆どない。これらのオルガノポリシロキサン組成物は気体透過性が高いため、硫黄性腐食ガス、具体的には硫化水素や二酸化硫黄のような分子量の小さいガスを容易に透過させてしまい、金属硫化物を形成してしまう。これらの金属硫化物が形成されると、電気的な接続が遮断されてしまい、電気・電子製品としての特性を失うこととなる。
 過去には、オルガノポリシロキサン組成物に腐食性ガス、特に硫黄含有ガスによる硫化防止性を付与させたものとして以下が例示されている。
 特許第4114037号公報(特許文献1)には、オルガノポリシロキサン組成物中に硫黄含有ガスによって硫化されやすい金属粉を0.5~90質量%添加した電気・電子部品封止又はシール用シリコーンゴム組成物が提案されており、硫黄含有ガスによって硫化されやすい金属粉を添加することが電気・電子部品の硫化防止に対して有用であることが示されている。しかし、電気・電子部品のコーティング用途としての記載はなく、また、実質的に付加硬化性シリコーンゴム組成物しか記載されていない。また、コーティング剤に金属粉を添加すると、金属粉が容易に沈降してしまうため、コーティング剤の取り扱いが面倒となる。
 特許第4186071号公報(特許文献2)には、オルガノポリシロキサン組成物に、硫黄及び/又は硫黄ガスによって硫化される金属粉、好ましくは銅粉及び/又は真鍮粉を0.1質量%以上20質量%未満添加した室温硬化性オルガノポリシロキサン組成物が開示されている。これらの金属は硫黄及び/又は硫黄ガスとの反応性が高く、室温硬化性オルガノポリシロキサン組成物に微量添加することで、硫化防止性を発現させることが可能である。
 しかし、これは自動車部品のシール材や電気・電子部品用途の接着剤等に使用されるような、無機系充填剤が配合された室温硬化性オルガノポリシロキサン組成物には好適であるが、コーティング用途のような低粘度の材料では金属粉が沈降するため適さない。また金属粉により材料が着色されるため、透明性が要求されるコーティング材料とすることが難しい。また、この金属粉は、特に硫黄含有ガスをトラップすることで硫化防止性を発揮させているが、金属粉が硫黄含有ガスをトラップし尽くすとその機能を失う。更に、特に硫黄含有ガスに限定されるものであって、例えば窒素酸化物のガスに対するバリア性は乏しい。
 特開2014-157849号公報(特許文献3)には、基板上の金属電極の腐食を防止した(硫化防止性に優れる)付加硬化型シリコーンプライマー組成物及びそれを用いた光半導体装置が開示されているが、ベースとなるオルガノポリシロキサン成分が、その主骨格が短く、またシロキサン側鎖のアリール基含有率が高いため、原料コストが高くなる。また電気・電子部品のコーティング用途としての記載はなく、また、実質的に付加硬化性シリコーンゴム組成物しか記載されていない。
特許第4114037号公報 特許第4186071号公報 特開2014-157849号公報
 本発明は、上記事情に鑑みなされたもので、コーティング被膜、特に耐ガス透過性を有するコーティング被膜を与える室温硬化性シラン含有樹脂組成物、及び該組成物の硬化被膜を有する実装回路基板を提供することを目的とする。
 本発明者らは、上記目的を達成するため鋭意検討を行った結果、
(A)下記一般式(1)
Figure JPOXMLDOC01-appb-C000002
(式中、R1はそれぞれ独立に炭素数1~12の非置換又は置換の一価炭化水素基であり、R2はそれぞれ独立に炭素数1~12の非置換又は置換の一価炭化水素基であり、fは0以上の数であり、e、gは0より大きい数であり、mは1~3の整数である。ただし、各繰り返し単位の順序は任意である。)
で表されるシラン変性ポリブタジエン化合物:100質量部、
(B)ケイ素原子に結合した加水分解性基を1分子中に平均2個以上有する加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物:0.5~20質量部、
(C)硬化触媒:0.1~10質量部
を含有する室温硬化性シラン含有樹脂組成物が、上記要求を満足するものであることを見出し、本発明をなすに至った。
 従って、本発明は、下記に示す室温硬化性シラン含有樹脂組成物及び実装回路基板を提供する。
〔1〕
 (A)下記一般式(1)
Figure JPOXMLDOC01-appb-C000003
(式中、R1はそれぞれ独立に炭素数1~12の非置換又は置換の一価炭化水素基であり、R2はそれぞれ独立に炭素数1~12の非置換又は置換の一価炭化水素基であり、fは0以上の数であり、e、gは0より大きい数であり、mは1~3の整数である。ただし、各繰り返し単位の順序は任意である。)
で表されるシラン変性ポリブタジエン化合物:100質量部、
(B)ケイ素原子に結合した加水分解性基を1分子中に平均2個以上有する加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物:0.5~20質量部、
(C)硬化触媒:0.1~10質量部
を含有する室温硬化性シラン含有樹脂組成物。
〔2〕
 シラン変性ポリブタジエン化合物の数平均分子量が1,000以上である〔1〕に記載の室温硬化性シラン含有樹脂組成物。
〔3〕
 シラン変性ポリブタジエン化合物が、一般式(1)におけるe、f、gにおいて、下式(i)及び(ii)の条件を満たすものである〔1〕又は〔2〕に記載の室温硬化性シラン含有樹脂組成物。
  0.05≦g/(e+f+g)<1.0  ・・・(i)
  0.3≦g/(f+g)≦1.0  ・・・(ii)
〔4〕
 厚み200~500μmで水蒸気透過率が10~50g/m2・dayである硬化物を与えるものである〔1〕~〔3〕のいずれかに記載の室温硬化性シラン含有樹脂組成物。
〔5〕
 電気・電子部品コーティング用である〔1〕~〔4〕のいずれかに記載の室温硬化性シラン含有樹脂組成物。
〔6〕
 電気・電子部品を搭載した回路基板上に、〔1〕~〔5〕のいずれかに記載の室温硬化性シラン含有樹脂組成物の硬化物からなる硬化被膜を形成させてなる実装回路基板。
 本発明の室温硬化性シラン含有樹脂組成物は、コーティング剤組成物としての用途、特に電気・電子部品及びその基板のコーティング剤、液晶表示素子用シール剤等として好適である。特に、耐ガス透過性のコーティング被膜(硬化物)が得られることから、腐食性ガスに対する腐食防止性能を有するコーティング剤として有用である。
 以下、本発明について詳しく説明する。
[(A)成分]
 本発明の室温硬化性シラン含有樹脂組成物は、(A)下記一般式(1)で表されるシラン変性ポリブタジエン化合物(即ち、重合性ビニル単量体の側鎖置換基として加水分解性シリルエチレン基を含有するポリブタジエン化合物)を主剤(ベースポリマー)として含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000004
(式中、R1はそれぞれ独立に炭素数1~12の非置換又は置換の一価炭化水素基であり、R2はそれぞれ独立に炭素数1~12の非置換又は置換の一価炭化水素基であり、fは0以上の数、好ましくは0~10の整数、より好ましくは0~5の整数であり、eは0より大きい数、好ましくは1~40の整数、より好ましくは2~20の整数であり、gは0より大きい数、好ましくは1~40の整数、より好ましくは2~20の整数であり、mは1~3の整数、好ましくは2又は3である。ただし、各繰り返し単位の順序は任意である。)
 ここで、前記一般式(1)において、R1で表される炭素数1~12の非置換又は置換の一価炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、ドデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基;フェニル基、トリル基、キシリル基、α-,β-ナフチル基等のアリール基;ベンジル基、2-フェニルエチル基、3-フェニルプロピル基等のアラルキル基;また、これらの基の水素原子の一部又は全部が、F、Cl、Br等のハロゲン原子やシアノ基等で置換された基、例えば、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、2-シアノエチル基や、置換基としてエーテル結合酸素原子を含むアルキル基、例えば、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基等を例示することができる。これらの中でも、炭素数1~10のアルキル基、又は炭素数6~10のアリール基が好ましく、メチル基、エチル基等のアルキル基がより好ましく、メチル基が特に好ましい。
 次に、前記一般式(1)において、R2で表される炭素数1~12の非置換又は置換の一価炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、ドデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基;フェニル基、トリル基、キシリル基、α-,β-ナフチル基等のアリール基;ベンジル基、2-フェニルエチル基、3-フェニルプロピル基等のアラルキル基;また、これらの基の水素原子の一部又は全部が、F、Cl、Br等のハロゲン原子やシアノ基等で置換された基、例えば、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、2-シアノエチル基等を例示することができる。これらの中でも、炭素数1~10のアルキル基、又は炭素数6~10のアリール基が好ましく、メチル基、エチル基等のアルキル基がより好ましく、エチル基が特に好ましい。
 また、上記シラン変性ポリブタジエン化合物の数平均分子量は1,000以上であることが好ましく、2,000以上であることがより好ましい。1,000未満の場合は、室温硬化性シラン含有樹脂組成物が十分な接着性を発揮しない場合がある。数平均分子量の上限には特に制限はないが、通常、1,000,000以下、好ましくは100,000以下、より好ましくは10,000以下程度であればよい。なお、分子量(又は重合度)は、通常、トルエン、テトラヒドロフラン(THF)、クロロホルム等を展開溶媒として、ゲルパーミエーションクロマトグラフィ(GPC)分析におけるポリスチレン換算の数平均分子量(又は数平均重合度)等として求めることができる(以下同じ)。
 上記シラン変性ポリブタジエン化合物は、下式(i)の条件を満たすことが好ましい。
  0.05≦g/(e+f+g)<1.0  ・・・(i)
 上式の通り、加水分解性シリル基を含有する単位を主鎖中の全繰り返し単位の合計当たり5モル%以上含有していることが好ましい。更には、10モル%以上含有していることが好ましく、特に25モル%以上含有していることが好ましい。5モル%未満の場合は、室温硬化性シラン含有樹脂組成物が十分な接着性を発揮しない場合がある。g/(e+f+g)は0.1~0.95であることがより好ましく、0.25~0.95であることが特に好ましい。
 更に、上記シラン変性ポリブタジエン化合物は、下式(ii)の条件を満たすことが好ましい。
  0.3≦g/(f+g)≦1.0  ・・・(ii)
 上式の通り、加水分解性シリル基を含有する単位が主鎖中の加水分解性シリル基を含有する単位と末端ビニル基を含有する単位の合計に対して30モル%以上含有していることが好ましく、特に50モル%以上含有していることが好ましい。30モル%未満の場合は、室温硬化性シラン含有樹脂組成物が十分な接着性を発揮しない場合がある。g/(f+g)は0.5~1.0であることがより好ましい。
 また、上記シラン変性ポリブタジエン化合物は、(f+g)/(e+f+g)が0.05~0.95、特に0.1~0.95、とりわけ0.25~0.95であることが好ましい。
 前記シラン変性ポリブタジエン化合物は、下記一般式(2)
Figure JPOXMLDOC01-appb-C000005
(式中、e、f及びgは、上記と同様である。)
で表される1,2-ビニル構造(末端ビニル基)を有する繰り返し単位と、2,3-ビニレン構造(内部ビニレン基又は内部エテニレン基)を有する繰り返し単位とを含有するポリブタジエン化合物と、下記一般式(3)
Figure JPOXMLDOC01-appb-C000006
(式中、R1、R2及びmは、上記と同様である。)
で表されるケイ素原子に結合した加水分解性基(-OR1)とケイ素原子に結合した水素原子(SiH基)とを分子中に有するオルガノハイドロジェンシラン等の有機ケイ素化合物を、白金化合物含有触媒と助触媒の存在下でヒドロシリル化することにより得られる。
 上記一般式(2)において、e、f及びgは上記と同じであり、また(f+g)/(e+f+g)も上記と同様に0.05~0.95、特に0.1~0.95、とりわけ0.25~0.95であることが好ましい。
 また、上記一般式(2)で表されるポリブタジエン化合物の数平均分子量は100~10,000であることが好ましく、500~8,000であることがより好ましい。
 上記一般式(2)で表されるポリブタジエン化合物は、1,2-ビニル構造を有する繰り返し単位と2,3-ビニル構造(トランス1,4構造)を有する繰り返し単位を異性体として含む。1,2-ビニル構造を有する繰り返し単位を全繰り返し単位中に5モル%以上、好ましくは10モル%以上、更に好ましくは25モル%以上含有する。1,2-ビニル構造が5モル%未満の場合、シラン変性率が低下して室温硬化性シラン含有樹脂組成物に配合した際に、十分な接着性向上効果を発現できない場合がある。また、1,2-ビニル構造を有する繰り返し単位の含有比率の上限については特に制限はないが、通常、98モル%以下、好ましくは95モル%以下程度であればよい。なお、1,2-ビニル構造を有する繰り返し単位と2,3-ビニル構造を有する繰り返し単位との合計は100モル%である。
 上記一般式(2)で表されるポリブタジエン化合物としては、NISSO-PB B-1000、NISSO-PB B-2000、NISSO-PB B-3000(以上、日本曹達(株)製)、Ricon130、Ricon131、Ricon134、Ricon142、Ricon150、Ricon152、Ricon153、Ricon154、Ricon156、Ricon157(以上、CRAY VALLEY社製)、LBR-302、LBR-307、LBR-305、LBR-300、LBR-352、LBR-361(以上、(株)クラレ製)が上市されている。
 上記一般式(3)で表される有機ケイ素化合物としては、トリメトキシシラン、メチルジメトキシシラン、ジメチルメトキシシラン、トリエトキシシラン、メチルジエトキシシラン、ジメチルエトキシシラン等のハイドロジェンアルコキシシランなどが挙げられる。
 上記一般式(2)で表されるポリブタジエン化合物と上記一般式(3)で表される有機ケイ素化合物との反応割合は、一般式(2)で表されるポリブタジエン化合物100質量部に対して一般式(3)で表される有機ケイ素化合物が10~400質量部であることが好ましく、また、一般式(2)で表されるポリブタジエン化合物の1,2-ビニル構造を有する繰り返し単位中のビニル基に対して、一般式(3)で表される有機ケイ素化合物中のSiH基が0.3~1.0モル/モル、特に0.5~1.0モル/モルとなる範囲で反応させることが好ましい。
 本発明で用いられる白金化合物含有触媒としては特に制限はないが、具体的には塩化白金酸、塩化白金酸のアルコール溶液、白金-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体のトルエン又はキシレン溶液、テトラキストリフェニルホスフィン白金、ジクロロビストリフェニルホスフィン白金、ジクロロビスアセトニトリル白金、ジクロロビスベンゾニトリル白金、ジクロロシクロオクタジエン白金、白金-炭素、白金-アルミナ、白金-シリカなどの担持触媒等が例示される。選択性の面から、好ましくは0価の白金錯体が用いられ、更に好ましくは白金-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体のトルエン又はキシレン溶液が挙げられる。
 白金化合物含有触媒の使用量は特に限定されないが、反応性、生産性の点から、一般式(3)で表される有機ケイ素化合物1モルに対し、含有される白金原子が1×10-7~1×10-2モルが好ましく、更に1×10-7~1×10-3モルの範囲が好ましい。
 本発明で用いられる助触媒としては、無機酸のアンモニウム塩、酸アミド化合物、カルボン酸が挙げられる。
 無機酸のアンモニウム塩の例として、例えば、塩化アンモニウム、硫酸アンモニウム、アミド硫酸アンモニウム、硝酸アンモニウム、リン酸二水素一アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、ジ亜リン酸アンモニウム、炭酸アンモニウム、炭酸水素アンモニウム、硫化アンモニウム、ホウ酸アンモニウム、ホウフッ化アンモニウム等が挙げられ、pKaが2以上の無機酸のアンモニウム塩が好ましく、特に炭酸アンモニウム、炭酸水素アンモニウムが好ましい。
 酸アミド化合物の例としては、例えば、ホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、プロピオンアミド、アクリルアミド、マロンアミド、スクシンアミド、マレアミド、フマルアミド、ベンズアミド、フタルアミド、パルミチン酸アミド、ステアリン酸アミドが挙げられる。
 カルボン酸の例としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、メトキシ酢酸、ペンタン酸、カプロン酸、ヘプタン酸、オクタン酸、乳酸、グリコール酸などが挙げられ、特にギ酸、酢酸、乳酸が好ましく、中でも酢酸が好ましい。
 助触媒の使用量としては特に制限はないが、反応性、選択性、コストの観点から一般式(3)で表される有機ケイ素化合物1モルに対して1×10-5~1×10-1モルが好ましく、特に1×10-4~5×10-1モルの範囲が好ましい。
 なお、上記反応は無溶媒でも進行するが、溶媒を用いることもできる。用いられる溶媒としては、ペンタン、ヘキサン、シクロヘキサン、ヘプタン、イソオクタン、ベンゼン、トルエン、キシレン等の炭化水素系溶媒、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、酢酸エチル、酢酸ブチル等のエステル系溶媒、N,N-ジメチルホルムアミド等の非プロトン性極性溶媒、ジクロロメタン、クロロホルム等の塩素化炭化水素系溶媒等が例示される。これらの溶媒は1種を単独で使用してもよく、あるいは2種以上を混合して使用してもよい。
 本発明に係わる製造方法において、反応温度は特に限定されず、室温(23℃±10℃)下又は加熱下で行うことができる。適度な反応速度を得るためには加熱下で反応させることが好ましく、35~200℃、更に40~110℃が好ましく、特に40~90℃が好ましい。また、反応時間も特に限定されないが、1~60時間、更に1~30時間、特に1~20時間が好ましい。
[(B)成分]
 (B)成分は、ケイ素原子に結合した加水分解性基を1分子中に平均2個以上有する加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物からなる群から選ばれる少なくとも1種の化合物であり、本発明の室温硬化性シラン含有樹脂組成物の架橋剤(硬化剤)として作用するものである。(B)成分としては、例えば、メチルトリス(ジメチルケトオキシム)シラン、メチルトリス(メチルエチルケトオキシム)シラン、エチルトリス(メチルエチルケトオキシム)シラン、メチルトリス(メチルイソブチルケトオキシム)シラン、ビニルトリス(メチルエチルケトオキシム)シラン等のオルガノトリス(ケトオキシム)シランなどのケトオキシムシラン;メチルトリメトキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリエトキシシラン、n-プロピルトリメトキシシラン、n-ヘキシルトリメトキシシラン、n-デシルトリメトキシシラン等のオルガノトリアルコキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ビニルジメトキシメチルシラン等のジオルガノジアルコキシシラン、1,6-ビス(トリメトキシシリル)ヘキサンなどのアルコキシシラン;メチルトリイソプロペノキシシラン、ビニルトリイソプロペノキシシラン、フェニルトリイソプロペノキシシラン等のアルケノキシシラン;メチルトリアセトキシシラン、エチルトリアセトキシシラン、ビニルトリアセトキシシラン等のアセトキシシランなどのアシロキシシランなどの各種シラン、及びこれらの1種又は2種以上の部分加水分解縮合物等が挙げられる。(B)成分としては、アルコキシシラン及びアルケノキシシランが好ましく、特にアルコキシシランが好ましい。
 (B)成分は、(A)成分100質量部に対して、0.5~20質量部が好ましく、0.8~10質量部がより好ましく、1~5質量部が特に好ましい。0.5質量部未満では、目的とするゴム弾性を有する硬化物が得られ難い。20質量部を超えるとコスト的に不利となり、またタックフリータイムの遅延等の作業性が低下する可能性がある。
[(C)成分]
 (C)成分の硬化触媒は、同一であっても異種のものであってもよく、また、1種を単独で使用しても2種以上の混合物として使用してもよい。(C)成分の具体例としては、テトライソプロポキシチタン、テトラ-n-ブトキシチタン、テトラキス(2-エチルヘキソキシ)チタン、ジイソプロポキシビス(アセチルアセトナート)チタン、チタニウムイソプロポキシオクチレングリコール等のチタン酸エステル又はチタンキレート化合物;アルミニウムイソプロピレート、アルミニウムsec-ブチレート、アルミニウムエチレート、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、アルキルアセトアセテートアルミニウムジイソプロピレート等のアルミニウムアルコレート又はアルミニウムキレート化合物;オクチル酸鉛やその他の酸性触媒もしくは塩基性触媒等の従来公知の有機金属系触媒が例示される。
 また、テトラメチルグアニジルプロピルトリメトキシシラン、テトラメチルグアニジルプロピルメチルジメトキシシラン、テトラメチルグアニジルプロピルトリス(トリメチルシロキシ)シラン等のグアニジル基を含有する強塩基性有機ケイ素化合物等の塩基性非金属系触媒も例示される。
 強塩基性有機ケイ素化合物として、具体的には、下記一般式(4)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 上記一般式(4)において、Yは、ヘテロ原子を含む炭素数1~15の有機基を示し、例えば、下記一般式(5)のグアニジル基が挙げられる。なお、一般式(5)において、波線が付された手はNとの結合手を示す。
Figure JPOXMLDOC01-appb-C000008
 一般式(5)中のR3~R6は、それぞれ水素原子又は炭素数1~10の直鎖状、分岐状もしくは環状のアルキル基、アルケニル基、アリール基を示し、例えば、メチル基、エチル基、プロピル基などのアルキル基;シクロヘキシル基などの環状アルキル基;ビニル基、アリル基などのアルケニル基;フェニル基、トリル基などのアリール基などが挙げられる。これらの中では、メチル基、エチル基、フェニル基が好ましく、特にメチル基が好ましい。またR3~R6は同じものであっても、異なっていてもよい。
 上記一般式(4)において、Rは、アルコキシ基、イソプロペノキシ基、ケトオキシム基等の加水分解性基を示す。SiR3として、例えば、トリメトキシシリル基、メチルジメトキシシリル基、ビニルジメトキシシリル基、フェニルジメトキシシリル基、トリエトキシシリル基等のアルコキシ基含有シリル基;トリイソプロペノキシシリル基、メチルジイソプロペノキシシリル基、エチルジイソプロペノキシシリル基、ビニルジイソプロペノキシシリル基、フェニルジイソプロペノキシシリル基等のイソプロペノキシ基含有シリル基;トリス(ジメチルケトオキシム)シリル基、トリス(ジエチルケトオキシム)シリル基、トリス(エチルメチルケトオキシム)シリル基等のケトオキシム基含有シリル基が挙げられる。
 上記一般式(4)において、Zは、ヘテロ原子を含んでもよい炭素数3~10の直鎖状、分岐状もしくは環状のアルキレン基、アルケニレン基、アリーレン等又はこれらが組み合わされた基を示す。例えば、メチレン基、エチレン基、プロピレン基、テトラメチレン基、ヘキサメチレン基、オクタメチレン基、デカメチレン基、2-メチルプロピレン基等のアルキレン基;フェニレン基等のアリーレン基、これらアルキレン基とアリーレン基が結合した基、ケトン、エステル、アミド等が介在した上記アルキレン基などが挙げられるが、好ましくはメチレン基、エチレン基、プロピレン基、アミド結合を介したプロピレン基等であり、特に好ましくはプロピレン基である。
 一般式(4)で表される化合物の具体例として、下記式(6)~(8)の化合物を示す。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
(上記各式において、Meはメチル基を示す。)
 これらの中では、特に式(8)の化合物が好ましい。
 これら(C)成分の中では、チタンキレート化合物が好ましく、ジイソプロポキシビス(アセチルアセトナート)チタンが特に好ましい。
 (C)成分は、(A)成分100質量部に対して0.1~10質量部、好ましくは0.1~8質量部、特に好ましくは0.2~5質量部である。0.1質量部未満では、十分な架橋性が得られない。10質量部を超えると、価格的に不利になる場合や硬化速度が低下するなどの欠点がある。
[その他の成分]
 また、本発明の室温硬化性シラン含有樹脂組成物には、上記成分以外に、コーティング材料としての性状を損なわない範囲で、以下充填剤や添加剤などを配合しても差し支えない。
 充填剤としては、粉砕シリカ、煙霧状シリカ、炭酸カルシウム、炭酸亜鉛、水酸化アルミニウム、水酸化酸化アルミニウム、アルミナ、酸化マグネシウム、湿式シリカなどが挙げられる。
 添加剤としては、例えば、ウェッターやチキソトロピー向上剤としてのポリエーテル、可塑剤非反応性ジメチルシリコーンオイルなどが挙げられる。
 必要に応じて、顔料、染料等の着色剤、蛍光増白剤、防かび剤、抗菌剤、ブリードオイルとしての非反応性フェニルシリコーンオイル、フルオロシリコーンオイル、シリコーンと非相溶の有機液体等の表面改質剤、粘度調節を目的としたトルエン、キシレン、溶剤揮発油、シクロヘキサン、メチルシクロヘキサン、低沸点イソパラフィン等の溶剤を添加してもよい。粘度調節を目的とした化合物を添加する場合、25℃の動粘度が0.1~50mm2/s程度のものを使用することが効果的である。
 本発明の室温硬化性シラン含有樹脂組成物は、上記(A)~(C)成分、更には必要により上記その他の成分の所定量を、乾燥雰囲気中において均一に混合することにより得ることができる。
 また、得られた室温硬化性シラン含有樹脂組成物は、室温(23℃±10℃)で放置することにより硬化するが、その成形方法、硬化条件などは、組成物の種類に応じた公知の方法、条件を採用することができ、例えば、23℃/50%RHの条件下で大気中に数時間~数日間(例えば、6時間~4日間)程度静置することにより硬化させることができる。
 本発明の室温硬化性シラン含有樹脂組成物は、厚み200~500μmの薄膜状の硬化物に硬化させた場合の、該被膜の厚み方向(垂直方向)の水蒸気透過率が、10~50g/m2・day、特に10~40g/m2・dayであることが好ましい。なお、水蒸気透過率は、例えば、23℃/50%RHの条件下で大気中に静置して4日間硬化させた硬化物を、SYSTECH Instruments社製L80-5000等の水蒸気透過率測定装置などにより室温(23℃)で測定することができる。
 本発明の室温硬化性シラン含有樹脂組成物は、コーティング剤組成物としての用途、特に電気・電子部品及びその基板のコーティング剤、液晶表示素子用シール剤等として好適であり、また、本発明の室温硬化性シラン含有樹脂組成物は、耐ガス透過性の硬化物が得られることから、硫化水素ガスや二酸化硫黄ガス、二酸化窒素ガス等の腐食性ガスの侵入を抑制し、基板に対する腐食防止性能を有するコーティング剤として有用である。具体的には、電気・電子部品を搭載した回路基板上に、上記室温硬化性シラン含有樹脂組成物の硬化物からなる硬化被膜を形成させてなる実装回路基板を例示することができる。
 本発明の室温硬化性シラン含有樹脂組成物をコーティング剤として用いる場合、そのコーティング方法としては、所定の厚みとなるように、刷毛やディップ塗布、あるいはスプレー塗布などの操作により行うことができる。塗布された組成物(未硬化のコーティング被膜)は、例えば、23℃/50%RHの条件下で大気中に数時間~数日間(例えば、6時間~4日間程度)静置して硬化させることにより硬化物(硬化したコーティング被膜)が得られる。
 また、得られるコーティング被膜(室温硬化性シラン含有樹脂組成物の硬化物膜)の厚さは特に制限されないが、50~1,000μm、特に50~800μm程度であることが好ましい。
 以下、合成例、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記例において、分子量はTHF(テトラヒドロフラン)を展開溶媒としたGPC分析におけるポリスチレン換算の数平均分子量を示す。また、粘度は回転粘度計による25℃での測定値を示す。
[合成例1](シラン変性ポリブタジエン化合物1の合成)
 撹拌機、還流冷却器、滴下ロート及び温度計を備えた1Lセパラブルフラスコに、Ricon130(CRAY VALLEY社製、数平均分子量2,500、上記式(2)における(f+g)/(e+f+g)=0.28)100g、トルエン200g、白金-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体のトルエン溶液(白金原子として0.52×10-4モル)、及び酢酸0.31g(0.52×10-2モル)を納めた。この中に、トリメトキシシラン63g(0.52モル)を内温75~85℃で2時間かけて滴下した後、80℃で1時間撹拌した。
 撹拌終了後、減圧濃縮を行い、数平均分子量4,100の褐色透明液体を得た。生成物の分子量及び1H-NMRスペクトルから求めた平均構造は、上記一般式(1)においてe=33、f=0、g=13、R1=メチル基、m=3で表されるシラン変性ポリブタジエン化合物であった。
[合成例2](シラン変性ポリブタジエン化合物2の合成)
 撹拌機、還流冷却器、滴下ロート及び温度計を備えた1Lセパラブルフラスコに、NISSO-PB B-1000(日本曹達(株)製、数平均分子量1,100、上記式(2)における(f+g)/(e+f+g)=0.9)100g、トルエン200g、白金-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体のトルエン溶液(白金原子として1.6×10-4モル)、及び酢酸1.0g(1.6×10-2モル)を納めた。この中に、トリメトキシシラン195g(1.6モル)を内温75~85℃で2時間かけて滴下した後、80℃で1時間撹拌した。
 撹拌終了後、減圧濃縮を行い、数平均分子量3,300の褐色透明液体を得た。生成物の分子量及び1H-NMRスペクトルから求めた平均構造は、上記一般式(1)においてe=2、f=0、g=18、R1=メチル基、m=3で表されるシラン変性ポリブタジエン化合物であった。
[実施例1]
 (A)成分として合成例1のシラン変性ポリブタジエン化合物1を100質量部と、(B)成分としてメチルトリメトキシシラン3質量部と、(C)成分としてジイソプロポキシビス(アセチルアセトナート)チタン0.5質量部を添加し、室温(23℃、以下同じ)で10分混合して組成物1を得た。
[実施例2]
 (A)成分として合成例1のシラン変性ポリブタジエン化合物1を100質量部と、(B)成分として1,6-ビス(トリメトキシシリル)ヘキサン1.5質量部と、(C)成分としてジイソプロポキシビス(アセチルアセトナート)チタン0.5質量部を添加し、室温で10分混合して組成物2を得た。
[実施例3]
 (A)成分として合成例2のシラン変性ポリブタジエン化合物2を100質量部と、(B)成分としてメチルトリメトキシシラン3質量部と、(C)成分としてジイソプロポキシビス(アセチルアセトナート)チタン0.5質量部を添加し、室温で10分混合して組成物3を得た。
[実施例4]
 (A)成分として合成例2のシラン変性ポリブタジエン化合物2を100質量部と、(B)成分として1,6-ビス(トリメトキシシリル)ヘキサン1.5質量部と、(C)成分としてジイソプロポキシビス(アセチルアセトナート)チタン0.5質量部を添加し、室温で10分混合して組成物4を得た。
[実施例5]
 (A)成分として合成例1のシラン変性ポリブタジエン化合物1を100質量部と、(B)成分としてビニルトリイソプロペノキシシラン3質量部と、(C)成分として下記式(9)で示される化合物1.0質量部を添加し、室温で10分混合して組成物5を得た。
Figure JPOXMLDOC01-appb-C000012
(上記式において、Meはメチル基を示す。)
[比較例1]
 (A)成分として合成例1のシラン変性ポリブタジエン化合物1を100質量部と、(B)成分としてメチルトリメトキシシラン3質量部を添加し、室温で10分混合して組成物6を得た。
[比較例2]
 (A)成分のシラン変性ポリブタジエン化合物の代わりに、分子鎖両末端がトリメトキシシリル基で封鎖された粘度900mPa・sのポリジメチルシロキサンを100質量部と、(B)成分としてメチルトリメトキシシラン3質量部と、(C)成分としてジイソプロポキシビス(アセチルアセトナート)チタン0.5質量部を添加し、室温で10分混合して組成物7を得た。
 上記で調製した組成物1~7を用いて、以下の通り試験体を作製し、腐食性ガスの透過率の指標として水蒸気透過率の評価を行った。結果を表1、2に示す。
・試験体作製方法
 組成物1~7を、厚みが350~400μmになるように塗布し、23℃/50%RHの条件下で大気中に4日間静置して硬化させ、厚みが350~400μmの薄膜状の硬化被膜(試験体)を作製した。なお、組成物6は硬化しなかったため、水蒸気透過率の測定は行わなかった。
・評価方法
 腐食性ガスの透過率の指標として、水蒸気透過率測定装置:SYSTECH Instruments社製L80-5000にて、室温(23℃)における水蒸気透過率を測定し、測定開始から1時間後の数値を記録した。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 組成物1~5の検討により、シラン変性ポリブタジエン化合物1及び2を使用することで、水蒸気透過率が低くなることを確認した。
 一方、組成物7の検討のように、シラン変性ポリブタジエン化合物の代わりにポリジメチルシロキサンを使用すると水蒸気透過率は組成物1~5の値より約4倍大きくなることを確認した。

Claims (6)

  1.  (A)下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1はそれぞれ独立に炭素数1~12の非置換又は置換の一価炭化水素基であり、R2はそれぞれ独立に炭素数1~12の非置換又は置換の一価炭化水素基であり、fは0以上の数であり、e、gは0より大きい数であり、mは1~3の整数である。ただし、各繰り返し単位の順序は任意である。)
    で表されるシラン変性ポリブタジエン化合物:100質量部、
    (B)ケイ素原子に結合した加水分解性基を1分子中に平均2個以上有する加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物:0.5~20質量部、
    (C)硬化触媒:0.1~10質量部
    を含有する室温硬化性シラン含有樹脂組成物。
  2.  シラン変性ポリブタジエン化合物の数平均分子量が1,000以上である請求項1に記載の室温硬化性シラン含有樹脂組成物。
  3.  シラン変性ポリブタジエン化合物が、一般式(1)におけるe、f、gにおいて、下式(i)及び(ii)の条件を満たすものである請求項1又は2に記載の室温硬化性シラン含有樹脂組成物。
      0.05≦g/(e+f+g)<1.0  ・・・(i)
      0.3≦g/(f+g)≦1.0  ・・・(ii)
  4.  厚み200~500μmで水蒸気透過率が10~50g/m2・dayである硬化物を与えるものである請求項1~3のいずれか1項記載の室温硬化性シラン含有樹脂組成物。
  5.  電気・電子部品コーティング用である請求項1~4のいずれか1項記載の室温硬化性シラン含有樹脂組成物。
  6.  電気・電子部品を搭載した回路基板上に、請求項1~5のいずれか1項記載の室温硬化性シラン含有樹脂組成物の硬化物からなる硬化被膜を形成させてなる実装回路基板。
PCT/JP2017/046082 2017-01-30 2017-12-22 室温硬化性シラン含有樹脂組成物及び実装回路基板 WO2018139134A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/476,366 US11274225B2 (en) 2017-01-30 2017-12-22 Room temperature-vulcanizing silane-containing resin composition and mounting circuit substrate
CN201780084653.4A CN110234697B (zh) 2017-01-30 2017-12-22 室温固化性含硅烷的树脂组合物及安装电路基板
JP2018564172A JP6863394B2 (ja) 2017-01-30 2017-12-22 室温硬化性シラン含有樹脂組成物、腐食防止用コーティング剤及び実装回路基板並びに電気・電子部品の腐食性ガスに対する腐食防止方法
EP17893988.0A EP3575358B1 (en) 2017-01-30 2017-12-22 Room temperature-vulcanizing silane-containing resin composition and mounting circuit substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017014254 2017-01-30
JP2017-014254 2017-01-30

Publications (1)

Publication Number Publication Date
WO2018139134A1 true WO2018139134A1 (ja) 2018-08-02

Family

ID=62979670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046082 WO2018139134A1 (ja) 2017-01-30 2017-12-22 室温硬化性シラン含有樹脂組成物及び実装回路基板

Country Status (6)

Country Link
US (1) US11274225B2 (ja)
EP (1) EP3575358B1 (ja)
JP (1) JP6863394B2 (ja)
CN (1) CN110234697B (ja)
TW (1) TWI753985B (ja)
WO (1) WO2018139134A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166292A1 (ja) * 2019-02-15 2020-08-20 信越化学工業株式会社 ゴム組成物
WO2023199747A1 (ja) * 2022-04-11 2023-10-19 信越化学工業株式会社 シラン変性共重合体、その製造方法およびそれを含む組成物

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825308A (ja) * 1981-07-23 1983-02-15 ヘミツシエ・ウエルケ・ヒユ−ルス・アクチエンゲゼルシヤフト 反応性シリル基を有する1,3−ジエンのホモポリマ−又はコポリマ−の製法
JPS58173106A (ja) * 1982-04-05 1983-10-12 Showa Denko Kk 新規なシラン付加エチレン系重合体
JPS5925828A (ja) * 1982-08-05 1984-02-09 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPS59186602A (ja) * 1983-04-06 1984-10-23 Mitsubishi Chem Ind Ltd 気体分離膜
JPH0959317A (ja) * 1995-08-28 1997-03-04 Shin Etsu Chem Co Ltd 加水分解性ケイ素含有ポリオレフィンの製造方法
JPH09263607A (ja) * 1996-03-28 1997-10-07 Daicel Chem Ind Ltd ポリエン、その製造方法及びそれを含有する硬化性組成物
JP2001262040A (ja) * 2000-03-15 2001-09-26 Kanegafuchi Chem Ind Co Ltd プライマー組成物および接着方法
JP2001262066A (ja) * 2000-03-15 2001-09-26 Kanegafuchi Chem Ind Co Ltd プライマー組成物および接着方法
JP2002080783A (ja) * 2000-09-11 2002-03-19 Kanegafuchi Chem Ind Co Ltd プライマー組成物および接着方法
JP2002293991A (ja) * 2001-03-29 2002-10-09 Fluorchem Inc 室温硬化性混成シリコーン
JP2003064104A (ja) * 2001-08-23 2003-03-05 Tokai Rubber Ind Ltd 硬化性ゴム組成物およびそれを用いた電子写真用部材
JP4114037B2 (ja) 2001-09-25 2008-07-09 信越化学工業株式会社 電気・電子部品の硫化防止又は遅延用シリコーンゴム封止・シール材及び硫化防止又は遅延方法
JP4186071B2 (ja) 2004-03-25 2008-11-26 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物、自動車用部品
JP2014157849A (ja) 2013-01-18 2014-08-28 Shin Etsu Chem Co Ltd プライマー組成物及びそれを用いた光半導体装置
JP2016191040A (ja) * 2016-03-10 2016-11-10 信越化学工業株式会社 有機ケイ素化合物、並びにそれを用いたゴム用配合剤およびゴム組成物
JP2017008301A (ja) * 2016-05-23 2017-01-12 信越化学工業株式会社 有機ケイ素化合物、並びにそれを用いたゴム用配合剤およびゴム組成物
JP2017193603A (ja) * 2016-04-18 2017-10-26 信越化学工業株式会社 室温硬化性樹脂組成物、室温硬化性オルガノポリシロキサン組成物及び物品

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5277194A (en) * 1975-12-23 1977-06-29 Shin Etsu Chem Co Ltd Preparation of polybutadiene derivatives
JPS62220524A (ja) * 1986-03-21 1987-09-28 Showa Electric Wire & Cable Co Ltd 耐熱性伸縮フイルム
EP1013710A1 (en) * 1998-12-25 2000-06-28 Nippon Mitsubishi Oil Corporation Rubber composition
US9082438B2 (en) * 2008-12-02 2015-07-14 Panasonic Corporation Three-dimensional structure for wiring formation
CN102757728A (zh) * 2011-04-25 2012-10-31 陶氏环球技术有限公司 湿气固化防污涂料组合物
US9828448B2 (en) * 2011-10-06 2017-11-28 Nippon Soda Co., Ltd. Silylated polybutadiene
JP6061820B2 (ja) * 2013-08-29 2017-01-18 富士フイルム株式会社 機能性フィルムおよび機能性フィルムの製造方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825308A (ja) * 1981-07-23 1983-02-15 ヘミツシエ・ウエルケ・ヒユ−ルス・アクチエンゲゼルシヤフト 反応性シリル基を有する1,3−ジエンのホモポリマ−又はコポリマ−の製法
JPS58173106A (ja) * 1982-04-05 1983-10-12 Showa Denko Kk 新規なシラン付加エチレン系重合体
JPS5925828A (ja) * 1982-08-05 1984-02-09 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPS59186602A (ja) * 1983-04-06 1984-10-23 Mitsubishi Chem Ind Ltd 気体分離膜
JPH0959317A (ja) * 1995-08-28 1997-03-04 Shin Etsu Chem Co Ltd 加水分解性ケイ素含有ポリオレフィンの製造方法
JPH09263607A (ja) * 1996-03-28 1997-10-07 Daicel Chem Ind Ltd ポリエン、その製造方法及びそれを含有する硬化性組成物
JP2001262040A (ja) * 2000-03-15 2001-09-26 Kanegafuchi Chem Ind Co Ltd プライマー組成物および接着方法
JP2001262066A (ja) * 2000-03-15 2001-09-26 Kanegafuchi Chem Ind Co Ltd プライマー組成物および接着方法
JP2002080783A (ja) * 2000-09-11 2002-03-19 Kanegafuchi Chem Ind Co Ltd プライマー組成物および接着方法
JP2002293991A (ja) * 2001-03-29 2002-10-09 Fluorchem Inc 室温硬化性混成シリコーン
JP2003064104A (ja) * 2001-08-23 2003-03-05 Tokai Rubber Ind Ltd 硬化性ゴム組成物およびそれを用いた電子写真用部材
JP4114037B2 (ja) 2001-09-25 2008-07-09 信越化学工業株式会社 電気・電子部品の硫化防止又は遅延用シリコーンゴム封止・シール材及び硫化防止又は遅延方法
JP4186071B2 (ja) 2004-03-25 2008-11-26 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物、自動車用部品
JP2014157849A (ja) 2013-01-18 2014-08-28 Shin Etsu Chem Co Ltd プライマー組成物及びそれを用いた光半導体装置
JP2016191040A (ja) * 2016-03-10 2016-11-10 信越化学工業株式会社 有機ケイ素化合物、並びにそれを用いたゴム用配合剤およびゴム組成物
JP2017193603A (ja) * 2016-04-18 2017-10-26 信越化学工業株式会社 室温硬化性樹脂組成物、室温硬化性オルガノポリシロキサン組成物及び物品
JP2017008301A (ja) * 2016-05-23 2017-01-12 信越化学工業株式会社 有機ケイ素化合物、並びにそれを用いたゴム用配合剤およびゴム組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3575358A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166292A1 (ja) * 2019-02-15 2020-08-20 信越化学工業株式会社 ゴム組成物
JP2020132715A (ja) * 2019-02-15 2020-08-31 信越化学工業株式会社 ゴム組成物
WO2023199747A1 (ja) * 2022-04-11 2023-10-19 信越化学工業株式会社 シラン変性共重合体、その製造方法およびそれを含む組成物

Also Published As

Publication number Publication date
TW201833148A (zh) 2018-09-16
TWI753985B (zh) 2022-02-01
JP6863394B2 (ja) 2021-04-21
US20200040208A1 (en) 2020-02-06
JPWO2018139134A1 (ja) 2019-11-07
EP3575358A1 (en) 2019-12-04
US11274225B2 (en) 2022-03-15
CN110234697A (zh) 2019-09-13
CN110234697B (zh) 2022-11-18
EP3575358B1 (en) 2023-03-22
EP3575358A4 (en) 2020-08-12

Similar Documents

Publication Publication Date Title
US9644124B2 (en) Silicon-containing compound having alkoxysilyl-ethylene group at its terminal, room temperature-curable organopolysiloxane composition, and molded product obtained by curing the composition
JP3714861B2 (ja) 室温硬化性オルガノポリシロキサン組成物
JP6497390B2 (ja) 室温硬化性オルガノポリシロキサン組成物及び該室温硬化性オルガノポリシロキサン組成物の硬化物である成形物
JP6187681B2 (ja) 新規ビス(アルコキシシリル−ビニレン)基含有ケイ素化合物及びその製造方法
JP2006265529A (ja) 室温硬化性オルガノポリシロキサン組成物
KR20030003026A (ko) 실온 경화성 오르가노폴리실록산 조성물
JP6760223B2 (ja) 室温硬化性オルガノポリシロキサン組成物、およびこれを含有するシール剤、コーティング剤、接着剤、成形物
JP6863394B2 (ja) 室温硬化性シラン含有樹脂組成物、腐食防止用コーティング剤及び実装回路基板並びに電気・電子部品の腐食性ガスに対する腐食防止方法
JP7006794B2 (ja) 室温硬化性ポリブタジエン樹脂組成物、その製造方法及び実装回路基板
CN111836858B (zh) 可室温固化的有机聚硅氧烷组合物和电装置/电子装置
JP2006131824A (ja) 室温硬化性オルガノポリシロキサン組成物
KR20180028030A (ko) 실란 변성 공중합체, 그의 제조 방법 및 밀착 향상제
JP4149030B2 (ja) 室温硬化性ポリオルガノシロキサン組成物
EP2998287B1 (en) Aluminium chelate compound, and room-temperature-curable resin composition including same
JP6418115B2 (ja) 金属基材の硫化防止方法、硫化防止性評価方法、及び実装回路基板
CN108884116B (zh) 新颖的有机硅化合物及其制造方法
CN118119670A (zh) 室温固化性有机聚硅氧烷组合物、粘合剂、密封剂和涂层剂
JP2012193257A (ja) 2液混合型室温硬化性オルガノポリシロキサン組成物
WO2020226076A1 (ja) 室温硬化性オルガノポリシロキサン組成物、シリコーンゴム及び物品
KR102702853B1 (ko) 오가노폴리실록산 조성물, 및 유기 규소 화합물 및 그 제조 방법
JP6816681B2 (ja) 硬化触媒、湿気硬化型室温硬化性オルガノポリシロキサン組成物及び成形体
WO2023234084A1 (ja) 二成分型室温硬化性オルガノポリシロキサン組成物及び該組成物を含有する各種物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893988

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564172

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017893988

Country of ref document: EP

Effective date: 20190830