WO2018135093A1 - Rotor - Google Patents
Rotor Download PDFInfo
- Publication number
- WO2018135093A1 WO2018135093A1 PCT/JP2017/039988 JP2017039988W WO2018135093A1 WO 2018135093 A1 WO2018135093 A1 WO 2018135093A1 JP 2017039988 W JP2017039988 W JP 2017039988W WO 2018135093 A1 WO2018135093 A1 WO 2018135093A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blade
- wing
- trailing edge
- rotor
- tip
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/32—Rotors
- B64C27/46—Blades
- B64C27/467—Aerodynamic features
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B3/00—Machines or engines of reaction type; Parts or details peculiar thereto
- F03B3/12—Blades; Blade-carrying rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/18—Rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/38—Blades
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Definitions
- the present invention relates to a rotor used in a wind hydraulic machine such as a wind power generator or a blower.
- Patent Document 1 In order to improve the efficiency of wind-powered machines such as wind power generators and blowers, various efforts have been made with respect to the blade structure of rotors for wind-powered machines (for example, Patent Document 1).
- the conventional rotor still has room for improving the efficiency of the wind hydraulic machine.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a rotor that can improve the efficiency of a wind hydraulic machine.
- the gist configuration of the present invention for achieving the above object is as follows.
- the rotor of the present invention is A hub supported by the main shaft; A wing connected to the hub; A rotor for a wind and hydraulic machine, The wing The wings of the main body, A wing tip trailing edge wing located on the wing tip trailing edge side with respect to the main body wing, Have Between the main body wing and the wing tip trailing edge wing, A blade length direction slit extending through the blade in the blade thickness direction, extending from the blade tip toward the blade root side of the blade and terminating before reaching the blade root; The blade penetrates the blade in the blade thickness direction, extends from the blade root side end of the blade length direction slit toward the trailing edge side of the blade and terminates before reaching the trailing edge, and has a slit width of approximately A chord slit which is zero, Is divided, The leading edge of the blade tip trailing edge blade portion is a virtual blade formed by smoothly extending a portion of the main body blade portion located on the leading edge side with respect to the blade tip trailing edge blade portion to the
- the blade length direction slit is preferably extended linearly with a substantially constant slit width. Thereby, the efficiency can be further improved.
- the leading edge of the blade tip trailing edge wing is located on the front side of the rotor from the airfoil center line of the virtual blade tip wing,
- the airfoil center line of the virtual blade tip wing part and the airfoil center line of the blade tip trailing edge wing part are each curved so as to be convex on the back side of the rotor, It is preferable that the angle ⁇ formed by the smaller chord line of the virtual wing tip wing portion and the chord line of the wing tip trailing edge wing portion is 0 ° or more. Thereby, the efficiency can be further improved.
- the airfoil center line of the virtual wing tip wing part and the airfoil center line of the wing tip trailing edge wing part each extend linearly, It is preferable that an angle ⁇ formed by the smaller chord line of the virtual wing tip wing portion and the chord line of the wing tip trailing edge wing portion is larger than 0 °. Thereby, the efficiency can be further improved.
- the leading edge of the blade tip trailing edge wing is located on the back side of the rotor from the airfoil center line of the virtual blade tip wing,
- the airfoil center line of the virtual blade tip wing part and the airfoil center line of the blade tip trailing edge wing part are each curved so as to be convex on the front side of the rotor, It is preferable that the angle ⁇ formed by the smaller chord line of the virtual wing tip wing portion and the chord line of the wing tip trailing edge wing portion is 0 ° or more. Thereby, the efficiency can be further improved.
- the angle ⁇ formed by the smaller chord line of the virtual wing tip wing part and the chord line of the wing tip trailing edge wing part is preferably less than 5 °. Thereby, the efficiency can be further improved.
- the blade length direction slit is located on the trailing edge side of the chord centerline connecting the chord line center points of the virtual blade tip wing portion. Thereby, the efficiency can be further improved.
- the wing has a plurality of wing tip trailing edge wings arranged at different positions in the chord direction of the wing. Thereby, the efficiency can be further improved.
- FIG. 8A is a side view showing a state where the rotor shown in FIG. 7 is viewed from the blade tip side
- FIG. 8B is a diagram for explaining the relationship between the airfoil centerlines shown in FIG. FIG.
- It is a side view which shows a mode that the rotor which concerns on 2nd Embodiment of this invention was seen from the blade tip side.
- It is a figure for demonstrating the analysis method of the rotor which concerns on a comparative example and an Example.
- the rotor of the present invention is used for a wind hydraulic machine, and particularly suitable for use in a horizontal axis type wind power generator or blower.
- the “wind-hydraulic machine” as used in the present invention refers to a machine that uses power obtained by wind power or hydraulic power, such as a wind power generator (wind turbine, etc.), a blower, a hydro power generator (water turbine, etc.), a pump, a helicopter, a drone, etc. Shall mean.
- the diameter of the rotor of the present invention may be any value, but is preferably 741 to 1111 mm, for example, when the rotor is used for a horizontal axis type wind power generator, and 600, for example, when the rotor is used for a blower. It is preferable that the thickness is ⁇ 900 mm.
- FIGS. 1 to 3 show an example of a rotor according to the first embodiment of the present invention.
- 4 to 5 show a first modification of the rotor according to the present embodiment.
- FIG. 6 shows a second modification of the rotor according to the present embodiment.
- 7 to 8 show a third modification of the rotor according to the present embodiment.
- the rotor 1 of the present embodiment is configured as a rotor for a horizontal axis type wind power generator, but is particularly suitable when configured as a rotor for a hydroelectric generator (such as a water turbine). It may be configured as a rotor for other wind hydraulic machines.
- the rotor 1 of the present embodiment includes a hub 10 supported by a main shaft (not shown), and a plurality (three in this example) of blades 20 connected to the hub 10. ing.
- a main shaft (not shown) extends from the rear surface of the hub 10 toward the rear, for example, substantially horizontally, when viewed in FIG.
- the center axis of the main shaft is the rotation center axis O of the rotor 1.
- the number of wings 20 is not limited to three and can be any number.
- each blade 20 of the rotor 1 has the same shape as each other in this example, some blades may have a shape different from other blades.
- the pitch angle (also referred to as “torsion angle”) of the blade 20 is not constant along the blade length direction of the blade 20, but the blade angle along the blade length direction. It gradually decreases from the root 21 toward the wing tip 22.
- the “pitch angle” is a virtual plane perpendicular to the rotation center axis O of the rotor 1 and a chord line of the blade 20 (a straight line connecting the leading edge 23 and the trailing edge 24 of the blade 20). The angle to make.
- the “blade length direction” refers to the center point 21 a (FIG.
- the “projection plane perpendicular to the rotation center axis O of the rotor 1” corresponds to a plane when the rotor 1 is viewed from one side of the rotation center axis O as shown in FIG.
- the blade 20 of this example has a substantially rectangular shape on a projection plane perpendicular to the rotation center axis O of the rotor 1 when the pitch angle of the blade 20 is set to 0 ° over the entire length of the blade 20. It is a rectangular wing.
- the chord length of the wing 20 in this example (the length of a straight line connecting the leading edge 23 and the trailing edge 24 of the wing 20) is constant over the entire length of the wing 20.
- the pitch angle of the blade 20 is set to 0 ° over the entire length of the blade 20
- the shape formed by the blade 20 on the projection plane perpendicular to the rotation center axis O of the rotor 1 may be arbitrary.
- the chord length of the wing 20 of the present embodiment may change at least partially along the wing length direction of the wing 20.
- the wing 20 includes a main wing portion 50 and a wing tip trailing edge wing portion 40 located on the wing tip trailing edge side (wing tip side and trailing edge side) with respect to the main body wing portion 50. is doing.
- a blade length direction slit 31 and a chord direction slit 32 are defined between the main body blade portion 50 and the blade tip trailing edge blade portion 40.
- the blade length direction slit 31 penetrates the blade 20 in the blade thickness direction, opens to the blade tip 22 of the blade 20, extends from the blade tip 22 toward the blade root 21, and reaches the blade root 21. It ends with.
- the chord direction slit 32 penetrates the wing 20 in the wing thickness direction, is connected to the end of the wing length direction slit 31 on the wing root 21 side, and extends from there to the trailing edge 24 side of the wing 20. The terminal ends before reaching the trailing edge 24.
- the blade tip trailing edge wing portion 40 is divided (separated) from the main body wing portion 50 by the blade length direction slit 31 and the chord direction slit 32.
- the wing tip trailing edge wing portion 40 is fixed to or integrated with the main body wing portion 50 on the trailing edge 24 side of the chord direction slit 32, thereby forming the main wing portion 50 and It is connected.
- the slit width of the chord direction slit 32 is substantially zero.
- the blade length direction slit 31 extends in parallel to the blade length direction of the blade 20 on a projection plane perpendicular to the rotation center axis O of the rotor 1. With this configuration, the efficiency of the wind power generator can be improved. However, on the projection plane, the blade length direction slit 31 may extend in a direction intersecting the blade length direction of the blade 20. In this example, the chord direction slit 32 extends in parallel to the chord direction of the blade 20 on the projection plane perpendicular to the rotation center axis O of the rotor 1. Here, the “chord direction” is a direction parallel to the chord line. With this configuration, the efficiency of the wind power generator can be improved. However, on the projection plane, the chord direction slit 32 may extend in a direction intersecting the chord direction of the wing 20.
- the blade edge trailing edge wing portion 40 has its front edge 43 side turned toward the front side of the rotor 1 (positive pressure side in this example) with respect to the main body blade portion 50.
- “the leading edge 43 of the blade tip trailing edge wing portion 40” is an edge of the blade tip trailing edge wing portion 40 on the leading edge 23 side of the blade 20.
- the trailing edge 44 of the blade tip trailing edge wing portion 40 is an edge of the blade tip trailing edge wing portion 40 on the side of the trailing edge 24 of the blade 20, and in this example, the trailing edge 24 of the blade 20. Part of it.
- the “virtual blade tip wing portion 53” is a portion 51 (hereinafter referred to as a blade tip leading edge wing portion 51) located on the front edge 23 side of the blade 20 with respect to the blade tip trailing edge wing portion 40 of the main body wing portion 50. Is also a portion that is smoothly extended to the trailing edge 24 of the blade 20 (the trailing edge 44 of the blade tip trailing edge blade portion 40).
- the blade tip leading edge blade portion 51 and the blade tip This is a combined portion of a virtual blade end trailing edge wing 52 that smoothly extends from the trailing edge 51 a of the leading edge wing 51 to the trailing edge 24 of the wing 20.
- the “rear edge 51 a of the wing tip leading edge wing part 51” is an edge on the trailing edge 24 side of the wing 20 in the wing tip leading edge wing part 51.
- the “airfoil center line” also referred to as “camber line” refers to the front side of the rotor 1 (rotor front side) and the back side of the rotor 1 in the airfoil (cross section of the blade in the blade thickness direction).
- the airfoil center line of the blade 20 is curved so as to be convex on the rotor back side.
- the airfoil center line CAL53 of the virtual blade tip wing part 53 and the airfoil centerline CAL40 of the blade tip trailing edge wing part 40 are curved so as to be convex on the rotor back side.
- the blade tip extends over the entire length in the blade length direction of the blade tip trailing edge wing portion 40 including the end of the blade tip trailing edge wing portion 40 on the blade root 21 side.
- the leading edge 43 of the end trailing edge wing 40 can be positioned on the front side of the rotor with respect to the airfoil center line CAL 53 of the virtual wing tip wing 53.
- the airfoil shape of the main body wing part 50 and the wing tip trailing edge wing part 40 is rounded at the respective leading and trailing edges, and the main wing part 50 and the wing tip trailing edge wing.
- the blade thickness of the portion 40 gradually decreases from the leading edge side toward the trailing edge side along each airfoil center line, but this configuration is not essential.
- the airfoil shape of the main body wing part 50 and the wing tip trailing edge wing part 40 may be square on at least one of the respective leading edges and trailing edges.
- the blade thicknesses of the main body blade 50 and the blade tip trailing edge blade 40 may be substantially constant along the respective airfoil centerlines.
- the effect obtained by the front edge 43 of the blade tip trailing edge wing portion 40 being located on the front side of the rotor from the airfoil center line CAL 53 of the virtual blade tip wing portion 53 will be described. If the blade 20 does not have the blade length direction slit 31 as in the case of a general blade, the rotor front surface and the rotor back surface are almost entirely extended in the blade length direction at the rear edge side portion of the blade 20. On the surface on the side, the flow of the air flow is easy to peel off, and the positive pressure and the negative pressure cannot be sufficiently generated. Therefore, sufficient lift cannot be obtained and the efficiency of the wind power generator cannot be improved.
- the blade 20 has a blade length direction slit 31 formed in the blade 20, and the leading edge 43 of the blade tip trailing edge blade portion 40 is a rotor than the blade centerline CAL 53 of the virtual blade tip blade portion 53. Since it is located on the front side, in the blade length direction slit 31, that is, between the leading edge 43 of the blade tip trailing edge wing 40 and the trailing edge 51a of the blade tip leading edge wing 51 of the main body blade 50, A gap that allows the wind to pass through is defined.
- FIG. 14 shows streamlines in the vicinity of the blade tip of the blade 20 obtained by analysis using the model of the rotor 1 according to one embodiment of the present invention. Details of the analysis will be described later. As can be seen from FIG.
- the wind incident from the rotor front side and the leading edge 23 side of the blade 20 passes through the blade length direction slit 31 to the rotor rear side and the trailing edge of the blade 20. It flows to the 24 side.
- separation of the flow is suppressed on the surface on the rotor front side and the surface on the rotor back side in the blade tip trailing edge wing portion 40, and a large positive pressure and negative pressure can be generated respectively.
- the blade length direction slit 31 is on the blade tip side, thereby suppressing separation on the blade tip side. Since the pressure difference can be increased, the lift and thus the efficiency can be greatly improved as compared with the case where the blade length direction slit 31 is on the blade root side.
- the efficiency of the wind power generator can be evaluated by the power coefficient of the wind power generator.
- the rotor 1 of the present embodiment has a power coefficient mainly at least one of when the peripheral speed ratio is relatively low and when it is relatively high, compared to a rotor whose blades do not have the blade length direction slit 31. Can be increased.
- the “circumferential speed ratio” is the ratio of the blade tip speed (speed in the rotational direction of the blade tip) to the wind speed.
- the “power coefficient” is the ratio of the net output of the wind power generator to the kinetic energy of the free air flow that passes through the rotor wind receiving area per unit time.
- the power coefficient C p can be expressed by the following equation (2).
- the blade length direction slit 31 extends linearly with a substantially constant slit width. More specifically, on the projection plane perpendicular to the rotation center axis O of the rotor 1, the slit width d of the blade length direction slit 31 is substantially constant over the entire length of the blade length direction slit 31, and the blade length direction slit 31 extends linearly. With this configuration, it is possible to effectively suppress separation on the surface of the blade tip trailing edge wing portion 40 over the entire length in the blade length direction of the blade tip trailing edge wing portion 40, thereby improving efficiency.
- the slit width d of the blade length direction slit 31 may change at least partially along the extending direction of the blade length direction slit 31.
- the blade length direction slit 31 may extend non-linearly.
- the slit width d of the blade length direction slit 31 on the projection plane perpendicular to the rotation center axis O of the rotor 1 is preferably 0 mm or more, more preferably 2 mm or more, and further preferably 5 mm or more. From the viewpoint of improving efficiency, the slit width d of the blade length direction slit 31 on the projection plane is preferably 10 mm or less. Similarly, the slit width d of the blade length direction slit 31 on the projection plane with respect to the chord length CHL at the blade tip 22 of the blade 20 (that is, the chord length at the blade tip 22 of the virtual blade tip blade portion 53).
- the ratio, that is, (d / CHL) ⁇ 100 (%) is preferably 0.0% or more, more preferably 1.9% or more, and further preferably 4.8% or more. Further, (d / CHL) ⁇ 100 (%) is preferably 9.5% or less.
- the first modification shown in FIGS. 4 and 5 is different from the examples shown in FIGS. 1 to 3 only in that the slit width d of the blade length direction slit 31 on the projection plane is 0 mm. As shown in FIG. 5, even when the slit width d of the blade length direction slit 31 on the projection plane is 0 mm, the leading edge 43 of the blade tip trailing edge blade portion 40 is the airfoil centerline CAL53 of the virtual blade tip blade portion 53.
- the blade length direction slit 31 that is, the leading edge 43 of the blade tip trailing edge blade portion 40 and the trailing edge 51 a of the blade tip leading edge blade portion 51 of the main body blade portion 50, In between, a gap through which the wind can pass is defined. Therefore, the peeling suppression effect mentioned above is acquired.
- the blade length direction length l of the blade length direction slit 31 on the projection plane perpendicular to the rotation center axis O of the rotor 1 is (1 / 8) L or more is preferable, (2/8) L or more is more preferable, and (3/8) L or more is more preferable. Further, from the viewpoint of improving efficiency, the blade length direction length l of the blade length direction slit 31 on the projection plane is preferably (5/8) L or less, and more preferably (4/8) L or less.
- the “blade length L of the blade 20” means the center point of the chord line of the blade root 21 of the blade 20 on the projection plane perpendicular to the rotation center axis O of the rotor 1, as shown in FIG. 1.
- the length of the straight line connecting 21a and the center point 22a of the chord line of the blade tip 22 of the blade 20 is indicated.
- the airfoil center line CAL53 of the virtual blade tip wing portion 53 and the airfoil centerline CAL40 of the blade tip trailing edge wing portion 40 are curved so as to be convex on the rotor back side.
- the angle formed by the smaller of the chord line of the virtual wing tip wing 53 (or an extension thereof) and the chord line of the wing tip trailing edge wing 40 (or an extension thereof). ⁇ is preferably 0 ° or more.
- an angle ⁇ formed by a smaller one of the chord line (or an extension line thereof) of the virtual wing tip wing part 53 and the chord line (or an extension line thereof) of the wing tip trailing edge wing part 40. Is preferably less than 5 °, more preferably 3 ° or less.
- the angle ⁇ is 0 °
- the chord line of the wing tip trailing edge wing portion 40 is on the chord line of the virtual wing tip wing portion 53.
- the second modification shown in FIG. 6 differs from the examples of FIGS. 1 to 3 only in that the angle ⁇ is larger than 0 °. As shown in FIG.
- the leading edge 43 of the blade tip trailing edge blade 40 is located on the rotor front side with respect to the blade centerline CAL53 of the virtual blade tip blade 53.
- a gap through which wind can pass through the blade length direction slit 31, that is, between the leading edge 43 of the blade tip trailing edge blade portion 40 and the trailing edge 51 a of the blade tip leading edge blade portion 51 of the main body blade portion 50. Is partitioned. Therefore, the peeling suppression effect mentioned above is acquired.
- each blade tip trailing edge wing portion 40 is configured such that the leading edge 43 of the blade tip trailing edge wing portion 40 is located closer to the rotor front side than the airfoil center line CAL 53 of the virtual blade tip wing portion 53. The Thereby, since the wind passes through each blade length direction slit 31 corresponding to each blade tip trailing edge wing portion 40, separation on the surface of each blade tip trailing edge wing portion 40 can be effectively suppressed. Can be improved. 7 and FIG.
- the wing 20 has a plurality (specifically, two) wing tip trailing edge wing portions 40 arranged at different positions in the chord direction of the wing 20. This is different from the examples shown in FIGS.
- the blade tip trailing edge wing portion 40 closest to the leading edge 23 is between the blade length direction slit 31 and the blade chord with the main body blade portion 50.
- a direction slit 32 is defined.
- the other blade tip trailing edge wing portion 40 divides the blade length direction slit 31 between the blade tip trailing edge wing portion 40 adjacent to the leading edge side, and between the main blade portion 50 and the chord.
- a direction slit 32 is defined.
- each blade tip trailing edge wing portion 40 the trailing edge 44 of the blade tip trailing edge wing portion 40 closest to the trailing edge 24 forms a part of the trailing edge 24 of the blade 20.
- the airfoil center line CAL40 of each blade tip trailing edge wing portion 40 is curved so as to be convex on the rotor back side. It is preferable that the slit width d of each blade length direction slit 31 and the length l in the blade length direction are within the numerical ranges described above.
- the slit widths d of the blade length direction slits 31 and the lengths l of the blade length direction slits 31 in the blade length direction may be the same as or different from each other as illustrated in the figure. FIG.
- each blade tip trailing edge wing portion 40 shows only the airfoil center line CAL53 of the virtual blade tip wing portion 53 and the airfoil centerline CAL40 of each blade tip trailing edge wing portion 40 in the side view of FIG. 8A for convenience. It shows. It is preferable that the angle ⁇ of each blade tip trailing edge wing portion 40 is within the numerical range described above. The angles ⁇ of the blade tip trailing edge wing portions 40 may be different from each other as in the example of FIG. 8B or may be the same as each other. In the example of FIG. 8B, of the two blade tip trailing edge wing portions 40, the angle ⁇ of the blade tip trailing edge wing portion 40 on the leading edge 23 side is the blade tip trailing edge wing portion on the trailing edge 24 side. It is smaller than the angle ⁇ of 40.
- the blade length direction slit 31 is located on the relatively trailing edge side of the blade 20. Rather than the trailing edge side. Thereby, since the blade length direction slit 31 is disposed in a region on the trailing edge side where peeling is particularly likely to occur, peeling on the surface of the blade tip trailing edge wing portion 40 can be more effectively suppressed.
- the airfoil center line of the blade 20 extends linearly, and the airfoil center line CAL53 of the virtual blade tip wing portion 53 and the blade center of the blade tip trailing edge wing portion 40 are provided.
- the line CAL40 differs from the first embodiment only in that each line extends in a straight line.
- the rotor 1 of the present embodiment is configured as a rotor for a horizontal axis type wind power generator, but is particularly suitable when configured as a rotor for a hydroelectric generator (such as a water turbine). It may be configured as a rotor for other wind hydraulic machines. As shown in FIG.
- the angle ⁇ formed by the smaller chord line (or extension thereof) of the virtual wing tip wing portion 53 and the chord line (or extension thereof) of the wing tip trailing edge wing portion 40 is , Greater than 0 °. Accordingly, the leading edge 43 of the blade tip trailing edge blade portion 40 is positioned on the rotor front side (positive pressure side in this example) with respect to the airfoil center line CAL53 of the virtual blade tip blade portion 53. Also according to the second embodiment, when the wind passes through the blade length direction slit 31, separation on the surface of the blade tip trailing edge wing portion 40 can be effectively suppressed, and thus the efficiency can be improved.
- the chord line (or an extension thereof) of the virtual wing tip wing portion 64 and the chord line (or an extension thereof) of the wing tip trailing edge wing portion 40 are small. Is preferably less than 5 °, and more preferably 3 ° or less. Other configurations are the same as those described in the first embodiment.
- the slit width d of the blade length direction slit 31 and the length l in the blade length direction are within the numerical ranges described above in the first embodiment.
- the wing 20 may include a plurality of wing tip trailing edge wing portions 40.
- the rotor of each example mentioned above is comprised as a rotor for air blowers, the efficiency of an air blower can be improved. As a result, noise can be reduced.
- the rotor of the present invention is not limited to the examples described above.
- the “rotor front side” and the “rotor back side” may be reversed.
- This configuration is particularly suitable when the rotor of the present invention is configured as a blower, pump, helicopter, or drone rotor.
- the blade edge trailing edge blade portion 40 has a portion on the front edge 43 side of the main blade portion. 50, the front edge 43 of the blade tip trailing edge blade portion 40 is a blade of the virtual blade tip blade portion 53. It is located on the rotor back side (positive pressure side in this example) with respect to the mold center line CAL53.
- the airfoil centerline of the blade 20 is curved so as to be convex on the front side of the rotor, and the airfoil centerline CAL53 of the virtual blade tip wing portion 53 and the airfoil centerline CAL40 of the blade tip trailing edge wing portion 40 are used. Are curved so as to be convex on the front side of the rotor.
- the angle ⁇ formed by the smaller chord line (or extension thereof) of the virtual wing tip wing portion 53 and the chord line (or extension thereof) of the wing tip trailing edge wing portion 40 is 0 ° or more.
- Other configurations are the same as those described in the first embodiment.
- the blade tip trailing edge wing portion 40 has its front edge 43 side portion with respect to the main body blade portion 50.
- the leading edge 43 of the blade tip trailing edge wing portion 40 is an airfoil center line of the virtual blade tip wing portion 53. It is located on the rotor back side (positive pressure side in this example) from CAL53.
- the airfoil center line of the blade 20 extends linearly, and the airfoil center line CAL53 of the virtual blade tip wing portion 53 and the airfoil centerline CAL40 of the blade tip trailing edge wing portion 40 are straight lines, respectively. It extends into a shape.
- the angle ⁇ formed by the smaller chord line (or extension thereof) of the virtual wing tip wing portion 53 and the chord line (or extension thereof) of the wing tip trailing edge wing portion 40 is greater than 0 °.
- Other configurations are the same as those described in the second embodiment. In these cases, in the vicinity of the blade tip of the blade 20, the wind incident from the rotor back side and the leading edge 23 side of the blade 20 passes through the blade length direction slit 31 to the rotor front side and the trailing edge 24 side of the blade 20. And flow.
- FIG. 10 shows the model 60 used for the analysis.
- the rotor model of each comparative example and example assumed a three-blade rotor. However, to reduce the calculation time, the calculation area was divided into three around the axis, and a periodic boundary was formed on one of the divided surfaces. Conditions were given.
- the rotors of the comparative examples and the examples are different from each other only in the shape of the blades.
- the rotor radius R is 463 mm
- the blade length L is 349.25 mm
- the blade chord length CHL blade The distribution of the pitch angle of the blades in the blade length direction is the same as in the examples of FIGS. 1 to 3.
- the rotor blade of Comparative Example 1 was a normal rectangular blade having no blade length direction slit 31 and its airfoil center line was curved so as to be convex on the rotor back side.
- the rotor blades of Examples 1 to 10 all have the structure described with reference to FIGS.
- the wing shape center line CAL 53 of the virtual wing tip wing portion 53 and the wing shape center line CAL 40 of the wing tip trailing edge wing portion 40 are curved so as to be convex on the rotor back side.
- the leading edge 43 of the blade tip trailing edge blade portion 40 is located on the front side of the rotor from the airfoil center line CAL53 of the virtual blade tip blade portion 53.
- the leading edge side end of the blade length direction slit 31 (that is, the trailing edge 51a of the blade tip leading edge wing portion 51) is 38 in the chord length CHL from the trailing edge of the blade in the chord direction. % Distance (40 mm) apart.
- the rotor blades of the respective embodiments have the slit width d of the blade length direction slit 31 on the projection plane perpendicular to the rotation center axis O of the rotor 1, and the length in the blade length direction of the blade length direction slit 31 on the projection surface.
- the angle ⁇ between the chord line of the virtual wing tip wing portion 53 and the chord line of the wing tip trailing edge wing portion 40 is different only by three parameter values. Details are shown in Tables 1 to 3.
- the rotor of the present invention is used for a wind-hydraulic machine, and particularly suitable for use in a horizontal axis type wind power generator or blower.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Wind Motors (AREA)
- Hydraulic Turbines (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
This rotor 1 for pneumatic and hydraulic machinery has a main body blade part 50 and a blade-end trailing edge blade part 40. Between the main body blade part and the blade-end trailing edge blade part, a blade-length-directional slit 31 and a blade-chord-directional slit 32 are divided, and a leading edge 43 of the blade-end trailing edge blade part is positioned nearer to the front-surface side or rear-surface side of the rotor than is an airfoil center axis CAL53 of a virtual blade-end blade part 53.
Description
本発明は、風力発電機や送風機等の風水力機械に用いられるロータに関する。
The present invention relates to a rotor used in a wind hydraulic machine such as a wind power generator or a blower.
従来より、風力発電機や送風機等の風水力機械の効率を向上させるために、風水力機械用のロータの翼構造に関し、様々な取り組みが行われている(例えば、特許文献1)。
Conventionally, in order to improve the efficiency of wind-powered machines such as wind power generators and blowers, various efforts have been made with respect to the blade structure of rotors for wind-powered machines (for example, Patent Document 1).
しかしながら、従来のロータでは、依然として、風水力機械の効率向上の余地があった。
However, the conventional rotor still has room for improving the efficiency of the wind hydraulic machine.
本発明は、上記の課題を解決するためにされたものであり、風水力機械の効率を向上できる、ロータを提供することを目的とする。
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a rotor that can improve the efficiency of a wind hydraulic machine.
上記目的を達成するための本発明の要旨構成は、次の通りである。
The gist configuration of the present invention for achieving the above object is as follows.
本発明のロータは、
主軸に支持されるハブと、
該ハブに連結された翼と、
を備えた、風水力機械用のロータであって、
前記翼は、
本体翼部と、
前記本体翼部に対して翼端後縁側に位置する翼端後縁翼部と、
を有し、
前記本体翼部と前記翼端後縁翼部との間には、
該翼を翼厚方向に貫通するとともに、該翼の翼端から該翼の翼根側に向かって延在して該翼根に至る手前で終端する、翼長方向スリットと、
該翼を翼厚方向に貫通するとともに、前記翼長方向スリットの前記翼根側の端から該翼の後縁側に向かって延在して該後縁に至る手前で終端し、スリット幅がほぼ0である、翼弦方向スリットと、
が区画されており、
前記翼端後縁翼部の前縁は、前記本体翼部のうち前記翼端後縁翼部に対して前縁側に位置する部分を前記翼の後縁まで滑らかに延長させてなる、仮想翼端翼部の、翼型中心線よりも、ロータの正面側又は背面側に位置している。
本発明のロータによれば、風水力機械の効率を向上できる。 The rotor of the present invention is
A hub supported by the main shaft;
A wing connected to the hub;
A rotor for a wind and hydraulic machine,
The wing
The wings of the main body,
A wing tip trailing edge wing located on the wing tip trailing edge side with respect to the main body wing,
Have
Between the main body wing and the wing tip trailing edge wing,
A blade length direction slit extending through the blade in the blade thickness direction, extending from the blade tip toward the blade root side of the blade and terminating before reaching the blade root;
The blade penetrates the blade in the blade thickness direction, extends from the blade root side end of the blade length direction slit toward the trailing edge side of the blade and terminates before reaching the trailing edge, and has a slit width of approximately A chord slit which is zero,
Is divided,
The leading edge of the blade tip trailing edge blade portion is a virtual blade formed by smoothly extending a portion of the main body blade portion located on the leading edge side with respect to the blade tip trailing edge blade portion to the blade trailing edge. It is located on the front side or the back side of the rotor from the airfoil center line of the end wing part.
According to the rotor of the present invention, the efficiency of the wind hydraulic machine can be improved.
主軸に支持されるハブと、
該ハブに連結された翼と、
を備えた、風水力機械用のロータであって、
前記翼は、
本体翼部と、
前記本体翼部に対して翼端後縁側に位置する翼端後縁翼部と、
を有し、
前記本体翼部と前記翼端後縁翼部との間には、
該翼を翼厚方向に貫通するとともに、該翼の翼端から該翼の翼根側に向かって延在して該翼根に至る手前で終端する、翼長方向スリットと、
該翼を翼厚方向に貫通するとともに、前記翼長方向スリットの前記翼根側の端から該翼の後縁側に向かって延在して該後縁に至る手前で終端し、スリット幅がほぼ0である、翼弦方向スリットと、
が区画されており、
前記翼端後縁翼部の前縁は、前記本体翼部のうち前記翼端後縁翼部に対して前縁側に位置する部分を前記翼の後縁まで滑らかに延長させてなる、仮想翼端翼部の、翼型中心線よりも、ロータの正面側又は背面側に位置している。
本発明のロータによれば、風水力機械の効率を向上できる。 The rotor of the present invention is
A hub supported by the main shaft;
A wing connected to the hub;
A rotor for a wind and hydraulic machine,
The wing
The wings of the main body,
A wing tip trailing edge wing located on the wing tip trailing edge side with respect to the main body wing,
Have
Between the main body wing and the wing tip trailing edge wing,
A blade length direction slit extending through the blade in the blade thickness direction, extending from the blade tip toward the blade root side of the blade and terminating before reaching the blade root;
The blade penetrates the blade in the blade thickness direction, extends from the blade root side end of the blade length direction slit toward the trailing edge side of the blade and terminates before reaching the trailing edge, and has a slit width of approximately A chord slit which is zero,
Is divided,
The leading edge of the blade tip trailing edge blade portion is a virtual blade formed by smoothly extending a portion of the main body blade portion located on the leading edge side with respect to the blade tip trailing edge blade portion to the blade trailing edge. It is located on the front side or the back side of the rotor from the airfoil center line of the end wing part.
According to the rotor of the present invention, the efficiency of the wind hydraulic machine can be improved.
本発明のロータにおいて、
前記翼長方向スリットは、ほぼ一定のスリット幅をもって直線状に延在していると、好適である。
これにより、効率をさらに向上できる。 In the rotor of the present invention,
The blade length direction slit is preferably extended linearly with a substantially constant slit width.
Thereby, the efficiency can be further improved.
前記翼長方向スリットは、ほぼ一定のスリット幅をもって直線状に延在していると、好適である。
これにより、効率をさらに向上できる。 In the rotor of the present invention,
The blade length direction slit is preferably extended linearly with a substantially constant slit width.
Thereby, the efficiency can be further improved.
本発明のロータにおいて、
前記翼端後縁翼部の前縁は、前記仮想翼端翼部の翼型中心線よりも、ロータの正面側に位置しており、
前記仮想翼端翼部の翼型中心線と前記翼端後縁翼部の翼型中心線とは、それぞれロータの背面側で凸となるように湾曲しており、
前記仮想翼端翼部の翼弦線と前記翼端後縁翼部の翼弦線との小さいほうのなす角度θは、0°以上であると、好適である。
これにより、効率をさらに向上できる。 In the rotor of the present invention,
The leading edge of the blade tip trailing edge wing is located on the front side of the rotor from the airfoil center line of the virtual blade tip wing,
The airfoil center line of the virtual blade tip wing part and the airfoil center line of the blade tip trailing edge wing part are each curved so as to be convex on the back side of the rotor,
It is preferable that the angle θ formed by the smaller chord line of the virtual wing tip wing portion and the chord line of the wing tip trailing edge wing portion is 0 ° or more.
Thereby, the efficiency can be further improved.
前記翼端後縁翼部の前縁は、前記仮想翼端翼部の翼型中心線よりも、ロータの正面側に位置しており、
前記仮想翼端翼部の翼型中心線と前記翼端後縁翼部の翼型中心線とは、それぞれロータの背面側で凸となるように湾曲しており、
前記仮想翼端翼部の翼弦線と前記翼端後縁翼部の翼弦線との小さいほうのなす角度θは、0°以上であると、好適である。
これにより、効率をさらに向上できる。 In the rotor of the present invention,
The leading edge of the blade tip trailing edge wing is located on the front side of the rotor from the airfoil center line of the virtual blade tip wing,
The airfoil center line of the virtual blade tip wing part and the airfoil center line of the blade tip trailing edge wing part are each curved so as to be convex on the back side of the rotor,
It is preferable that the angle θ formed by the smaller chord line of the virtual wing tip wing portion and the chord line of the wing tip trailing edge wing portion is 0 ° or more.
Thereby, the efficiency can be further improved.
本発明のロータにおいて、
前記仮想翼端翼部の翼型中心線と前記翼端後縁翼部の翼型中心線とは、それぞれ直線状に延在しており、
前記仮想翼端翼部の翼弦線と前記翼端後縁翼部の翼弦線との小さいほうのなす角度θは、0°よりも大きいと、好適である。
これにより、効率をさらに向上できる。 In the rotor of the present invention,
The airfoil center line of the virtual wing tip wing part and the airfoil center line of the wing tip trailing edge wing part each extend linearly,
It is preferable that an angle θ formed by the smaller chord line of the virtual wing tip wing portion and the chord line of the wing tip trailing edge wing portion is larger than 0 °.
Thereby, the efficiency can be further improved.
前記仮想翼端翼部の翼型中心線と前記翼端後縁翼部の翼型中心線とは、それぞれ直線状に延在しており、
前記仮想翼端翼部の翼弦線と前記翼端後縁翼部の翼弦線との小さいほうのなす角度θは、0°よりも大きいと、好適である。
これにより、効率をさらに向上できる。 In the rotor of the present invention,
The airfoil center line of the virtual wing tip wing part and the airfoil center line of the wing tip trailing edge wing part each extend linearly,
It is preferable that an angle θ formed by the smaller chord line of the virtual wing tip wing portion and the chord line of the wing tip trailing edge wing portion is larger than 0 °.
Thereby, the efficiency can be further improved.
本発明のロータにおいて、
前記翼端後縁翼部の前縁は、前記仮想翼端翼部の翼型中心線よりも、ロータの背面側に位置しており、
前記仮想翼端翼部の翼型中心線と前記翼端後縁翼部の翼型中心線とは、それぞれロータの正面側で凸となるように湾曲しており、
前記仮想翼端翼部の翼弦線と前記翼端後縁翼部の翼弦線との小さいほうのなす角度θは、0°以上であると、好適である。
これにより、効率をさらに向上できる。 In the rotor of the present invention,
The leading edge of the blade tip trailing edge wing is located on the back side of the rotor from the airfoil center line of the virtual blade tip wing,
The airfoil center line of the virtual blade tip wing part and the airfoil center line of the blade tip trailing edge wing part are each curved so as to be convex on the front side of the rotor,
It is preferable that the angle θ formed by the smaller chord line of the virtual wing tip wing portion and the chord line of the wing tip trailing edge wing portion is 0 ° or more.
Thereby, the efficiency can be further improved.
前記翼端後縁翼部の前縁は、前記仮想翼端翼部の翼型中心線よりも、ロータの背面側に位置しており、
前記仮想翼端翼部の翼型中心線と前記翼端後縁翼部の翼型中心線とは、それぞれロータの正面側で凸となるように湾曲しており、
前記仮想翼端翼部の翼弦線と前記翼端後縁翼部の翼弦線との小さいほうのなす角度θは、0°以上であると、好適である。
これにより、効率をさらに向上できる。 In the rotor of the present invention,
The leading edge of the blade tip trailing edge wing is located on the back side of the rotor from the airfoil center line of the virtual blade tip wing,
The airfoil center line of the virtual blade tip wing part and the airfoil center line of the blade tip trailing edge wing part are each curved so as to be convex on the front side of the rotor,
It is preferable that the angle θ formed by the smaller chord line of the virtual wing tip wing portion and the chord line of the wing tip trailing edge wing portion is 0 ° or more.
Thereby, the efficiency can be further improved.
本発明のロータにおいて、
前記仮想翼端翼部の翼弦線と前記翼端後縁翼部の翼弦線との小さいほうのなす角度θは、5°未満であると、好適である。
これにより、効率をさらに向上できる。 In the rotor of the present invention,
The angle θ formed by the smaller chord line of the virtual wing tip wing part and the chord line of the wing tip trailing edge wing part is preferably less than 5 °.
Thereby, the efficiency can be further improved.
前記仮想翼端翼部の翼弦線と前記翼端後縁翼部の翼弦線との小さいほうのなす角度θは、5°未満であると、好適である。
これにより、効率をさらに向上できる。 In the rotor of the present invention,
The angle θ formed by the smaller chord line of the virtual wing tip wing part and the chord line of the wing tip trailing edge wing part is preferably less than 5 °.
Thereby, the efficiency can be further improved.
本発明のロータにおいて、
前記翼長方向スリットは、前記仮想翼端翼部の翼弦線の中心点どうしを結んだ翼弦中心線よりも、後縁側に位置していると、好適である。
これにより、効率をさらに向上できる。 In the rotor of the present invention,
It is preferable that the blade length direction slit is located on the trailing edge side of the chord centerline connecting the chord line center points of the virtual blade tip wing portion.
Thereby, the efficiency can be further improved.
前記翼長方向スリットは、前記仮想翼端翼部の翼弦線の中心点どうしを結んだ翼弦中心線よりも、後縁側に位置していると、好適である。
これにより、効率をさらに向上できる。 In the rotor of the present invention,
It is preferable that the blade length direction slit is located on the trailing edge side of the chord centerline connecting the chord line center points of the virtual blade tip wing portion.
Thereby, the efficiency can be further improved.
本発明のロータにおいて、
前記翼は、該翼の翼弦方向において互いに異なる位置に配置された複数の前記翼端後縁翼部を有していると、好適である。
これにより、効率をさらに向上できる。 In the rotor of the present invention,
It is preferable that the wing has a plurality of wing tip trailing edge wings arranged at different positions in the chord direction of the wing.
Thereby, the efficiency can be further improved.
前記翼は、該翼の翼弦方向において互いに異なる位置に配置された複数の前記翼端後縁翼部を有していると、好適である。
これにより、効率をさらに向上できる。 In the rotor of the present invention,
It is preferable that the wing has a plurality of wing tip trailing edge wings arranged at different positions in the chord direction of the wing.
Thereby, the efficiency can be further improved.
本発明によれば、風水力機械の効率を向上できる、ロータを提供することができる。
According to the present invention, it is possible to provide a rotor that can improve the efficiency of a wind hydraulic machine.
以下、本発明の実施形態について、図面を参照して詳細に例示説明する。
本発明のロータは、風水力機械に用いられるものであり、特に水平軸型の風力発電機又は送風機に用いられると好適なものである。本発明でいう「風水力機械」とは、風力発電機(風車等)、送風機、水力発電機(水車等)、ポンプ、ヘリコプター、ドローン等の、風力又は水力により得られる動力を利用する機械を意味するものとする。
本発明のロータの直径は、任意の値でよいが、ロータが水平軸型の風力発電機に用いられる場合は例えば741~1111mmであると好適であり、ロータが送風機に用いられる場合は例えば600~900mmであると好適である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The rotor of the present invention is used for a wind hydraulic machine, and particularly suitable for use in a horizontal axis type wind power generator or blower. The “wind-hydraulic machine” as used in the present invention refers to a machine that uses power obtained by wind power or hydraulic power, such as a wind power generator (wind turbine, etc.), a blower, a hydro power generator (water turbine, etc.), a pump, a helicopter, a drone, etc. Shall mean.
The diameter of the rotor of the present invention may be any value, but is preferably 741 to 1111 mm, for example, when the rotor is used for a horizontal axis type wind power generator, and 600, for example, when the rotor is used for a blower. It is preferable that the thickness is ˜900 mm.
本発明のロータは、風水力機械に用いられるものであり、特に水平軸型の風力発電機又は送風機に用いられると好適なものである。本発明でいう「風水力機械」とは、風力発電機(風車等)、送風機、水力発電機(水車等)、ポンプ、ヘリコプター、ドローン等の、風力又は水力により得られる動力を利用する機械を意味するものとする。
本発明のロータの直径は、任意の値でよいが、ロータが水平軸型の風力発電機に用いられる場合は例えば741~1111mmであると好適であり、ロータが送風機に用いられる場合は例えば600~900mmであると好適である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The rotor of the present invention is used for a wind hydraulic machine, and particularly suitable for use in a horizontal axis type wind power generator or blower. The “wind-hydraulic machine” as used in the present invention refers to a machine that uses power obtained by wind power or hydraulic power, such as a wind power generator (wind turbine, etc.), a blower, a hydro power generator (water turbine, etc.), a pump, a helicopter, a drone, etc. Shall mean.
The diameter of the rotor of the present invention may be any value, but is preferably 741 to 1111 mm, for example, when the rotor is used for a horizontal axis type wind power generator, and 600, for example, when the rotor is used for a blower. It is preferable that the thickness is ˜900 mm.
〔第1実施形態〕
本発明の第1実施形態を、図1~図8を参照して説明する。図1~図3は、本発明の第1実施形態に係るロータの一例を示している。図4~図5は、本実施形態に係るロータの第1変形例を示している。図6は、本実施形態に係るロータの第2変形例を示している。
用いることができる。図7~図8は、本実施形態に係るロータの第3変形例を示している。
本実施形態のロータ1は、水平軸型の風力発電機用のロータとして構成されているが、水力発電機(水車等)用のロータとして構成されても特に好適であり、また、送風機等の他の風水力機械用のロータとして構成されてもよい。 [First Embodiment]
A first embodiment of the present invention will be described with reference to FIGS. 1 to 3 show an example of a rotor according to the first embodiment of the present invention. 4 to 5 show a first modification of the rotor according to the present embodiment. FIG. 6 shows a second modification of the rotor according to the present embodiment.
Can be used. 7 to 8 show a third modification of the rotor according to the present embodiment.
Therotor 1 of the present embodiment is configured as a rotor for a horizontal axis type wind power generator, but is particularly suitable when configured as a rotor for a hydroelectric generator (such as a water turbine). It may be configured as a rotor for other wind hydraulic machines.
本発明の第1実施形態を、図1~図8を参照して説明する。図1~図3は、本発明の第1実施形態に係るロータの一例を示している。図4~図5は、本実施形態に係るロータの第1変形例を示している。図6は、本実施形態に係るロータの第2変形例を示している。
用いることができる。図7~図8は、本実施形態に係るロータの第3変形例を示している。
本実施形態のロータ1は、水平軸型の風力発電機用のロータとして構成されているが、水力発電機(水車等)用のロータとして構成されても特に好適であり、また、送風機等の他の風水力機械用のロータとして構成されてもよい。 [First Embodiment]
A first embodiment of the present invention will be described with reference to FIGS. 1 to 3 show an example of a rotor according to the first embodiment of the present invention. 4 to 5 show a first modification of the rotor according to the present embodiment. FIG. 6 shows a second modification of the rotor according to the present embodiment.
Can be used. 7 to 8 show a third modification of the rotor according to the present embodiment.
The
図1~図3において、本実施形態のロータ1は、主軸(図示せず)に支持されるハブ10と、ハブ10に連結された複数(本例では3つ)の翼20とを、備えている。図示されない主軸は、図1で見たときに、ハブ10の背面から後方へ向かって、例えばほぼ水平に、延在する。主軸の中心軸線が、ロータ1の回転中心軸線Oとなる。
なお、翼20の数は、3つに限られず、任意の数とすることができる。
また、ロータ1の各翼20は、本例では互いに同一形状を有しているが、一部の翼が他の翼とは異なる形状を有していてもよい。 1 to 3, therotor 1 of the present embodiment includes a hub 10 supported by a main shaft (not shown), and a plurality (three in this example) of blades 20 connected to the hub 10. ing. A main shaft (not shown) extends from the rear surface of the hub 10 toward the rear, for example, substantially horizontally, when viewed in FIG. The center axis of the main shaft is the rotation center axis O of the rotor 1.
The number ofwings 20 is not limited to three and can be any number.
Moreover, although eachblade 20 of the rotor 1 has the same shape as each other in this example, some blades may have a shape different from other blades.
なお、翼20の数は、3つに限られず、任意の数とすることができる。
また、ロータ1の各翼20は、本例では互いに同一形状を有しているが、一部の翼が他の翼とは異なる形状を有していてもよい。 1 to 3, the
The number of
Moreover, although each
図2及び図3に示すように、本例では、翼20のピッチ角(「ねじり角」とも呼ばれる。)が、翼20の翼長方向に沿って一定ではなく、翼長方向に沿って翼根21から翼端22に向かうにつれて徐々に減少している。
ここで、「ピッチ角」とは、ロータ1の回転中心軸線Oに対して垂直な仮想平面と、翼20の翼弦線(翼20の前縁23と後縁24とを結ぶ直線)との、なす角度である。
また、「翼長方向」とは、ロータ1の回転中心軸線Oに対して垂直な投影面において、翼20の翼根21の翼弦線の中心点21a(図1)と翼20の翼端22の翼弦線の中心点22a(図1)とを結ぶ直線に平行な方向を指す。
また、「ロータ1の回転中心軸線Oに対して垂直な投影面」は、図1のようにロータ1を回転中心軸線Oの一方側から観たときの平面に相当する。
翼20のピッチ角の翼長方向での分布を、本例のようにすることによって、風力発電機の効率を向上できる。ただし、翼20のピッチ角の翼長方向での分布は、任意でよい。 As shown in FIGS. 2 and 3, in this example, the pitch angle (also referred to as “torsion angle”) of theblade 20 is not constant along the blade length direction of the blade 20, but the blade angle along the blade length direction. It gradually decreases from the root 21 toward the wing tip 22.
Here, the “pitch angle” is a virtual plane perpendicular to the rotation center axis O of therotor 1 and a chord line of the blade 20 (a straight line connecting the leading edge 23 and the trailing edge 24 of the blade 20). The angle to make.
Further, the “blade length direction” refers to thecenter point 21 a (FIG. 1) of the chord line of the blade root 21 of the blade 20 and the blade tip of the blade 20 on the projection plane perpendicular to the rotation center axis O of the rotor 1. A direction parallel to a straight line connecting the center point 22a of the chord line 22 (FIG. 1).
The “projection plane perpendicular to the rotation center axis O of therotor 1” corresponds to a plane when the rotor 1 is viewed from one side of the rotation center axis O as shown in FIG.
By making the distribution of the pitch angle of theblade 20 in the blade length direction as in this example, the efficiency of the wind power generator can be improved. However, the distribution of the pitch angle of the blade 20 in the blade length direction may be arbitrary.
ここで、「ピッチ角」とは、ロータ1の回転中心軸線Oに対して垂直な仮想平面と、翼20の翼弦線(翼20の前縁23と後縁24とを結ぶ直線)との、なす角度である。
また、「翼長方向」とは、ロータ1の回転中心軸線Oに対して垂直な投影面において、翼20の翼根21の翼弦線の中心点21a(図1)と翼20の翼端22の翼弦線の中心点22a(図1)とを結ぶ直線に平行な方向を指す。
また、「ロータ1の回転中心軸線Oに対して垂直な投影面」は、図1のようにロータ1を回転中心軸線Oの一方側から観たときの平面に相当する。
翼20のピッチ角の翼長方向での分布を、本例のようにすることによって、風力発電機の効率を向上できる。ただし、翼20のピッチ角の翼長方向での分布は、任意でよい。 As shown in FIGS. 2 and 3, in this example, the pitch angle (also referred to as “torsion angle”) of the
Here, the “pitch angle” is a virtual plane perpendicular to the rotation center axis O of the
Further, the “blade length direction” refers to the
The “projection plane perpendicular to the rotation center axis O of the
By making the distribution of the pitch angle of the
本例の翼20は、仮に翼20のピッチ角を翼20の全長にわたって0°にしたときに、ロータ1の回転中心軸線Oに対して垂直な投影面において略長方形状をなすような、略矩形翼である。本例における翼20の翼弦長(翼20の前縁23と後縁24とを結ぶ直線の長さ)は、翼20の全長にわたって一定である。
ただし、仮に翼20のピッチ角を翼20の全長にわたって0°にしたときに、ロータ1の回転中心軸線Oに対して垂直な投影面において翼20がなす形状は、任意でよい。また、本実施形態の翼20の翼弦長は、翼20の翼長方向に沿って、少なくとも一部分で変化してもよい。 Theblade 20 of this example has a substantially rectangular shape on a projection plane perpendicular to the rotation center axis O of the rotor 1 when the pitch angle of the blade 20 is set to 0 ° over the entire length of the blade 20. It is a rectangular wing. The chord length of the wing 20 in this example (the length of a straight line connecting the leading edge 23 and the trailing edge 24 of the wing 20) is constant over the entire length of the wing 20.
However, if the pitch angle of theblade 20 is set to 0 ° over the entire length of the blade 20, the shape formed by the blade 20 on the projection plane perpendicular to the rotation center axis O of the rotor 1 may be arbitrary. In addition, the chord length of the wing 20 of the present embodiment may change at least partially along the wing length direction of the wing 20.
ただし、仮に翼20のピッチ角を翼20の全長にわたって0°にしたときに、ロータ1の回転中心軸線Oに対して垂直な投影面において翼20がなす形状は、任意でよい。また、本実施形態の翼20の翼弦長は、翼20の翼長方向に沿って、少なくとも一部分で変化してもよい。 The
However, if the pitch angle of the
図1に示すように、翼20は、本体翼部50と、本体翼部50に対して翼端後縁側(翼端側かつ後縁側)に位置する翼端後縁翼部40と、を有している。本体翼部50と翼端後縁翼部40との間には、翼長方向スリット31と翼弦方向スリット32とが区画されている。翼長方向スリット31は、翼20を翼厚方向に貫通するとともに、翼20の翼端22に開口し、翼端22から翼根21側に向かって延在して、翼根21に至る手前で終端している。翼弦方向スリット32は、翼20を翼厚方向に貫通するとともに、翼長方向スリット31の翼根21側の端に連結し、そこから翼20の後縁24側に向かって延在して、後縁24に至る手前で終端している。いいかえれば、翼端後縁翼部40は、翼長方向スリット31と翼弦方向スリット32とによって、本体翼部50から分割(分離)されている。
本例において、翼端後縁翼部40は、翼弦方向スリット32よりも後縁24側で、本体翼部50と固定されるか又は一体的に構成されることにより、本体翼部50と連結されている。
ロータ1の回転中心軸線Oに対して垂直な投影面において、翼弦方向スリット32のスリット幅は、ほぼ0である。 As shown in FIG. 1, thewing 20 includes a main wing portion 50 and a wing tip trailing edge wing portion 40 located on the wing tip trailing edge side (wing tip side and trailing edge side) with respect to the main body wing portion 50. is doing. A blade length direction slit 31 and a chord direction slit 32 are defined between the main body blade portion 50 and the blade tip trailing edge blade portion 40. The blade length direction slit 31 penetrates the blade 20 in the blade thickness direction, opens to the blade tip 22 of the blade 20, extends from the blade tip 22 toward the blade root 21, and reaches the blade root 21. It ends with. The chord direction slit 32 penetrates the wing 20 in the wing thickness direction, is connected to the end of the wing length direction slit 31 on the wing root 21 side, and extends from there to the trailing edge 24 side of the wing 20. The terminal ends before reaching the trailing edge 24. In other words, the blade tip trailing edge wing portion 40 is divided (separated) from the main body wing portion 50 by the blade length direction slit 31 and the chord direction slit 32.
In this example, the wing tip trailingedge wing portion 40 is fixed to or integrated with the main body wing portion 50 on the trailing edge 24 side of the chord direction slit 32, thereby forming the main wing portion 50 and It is connected.
In the projection plane perpendicular to the rotation center axis O of therotor 1, the slit width of the chord direction slit 32 is substantially zero.
本例において、翼端後縁翼部40は、翼弦方向スリット32よりも後縁24側で、本体翼部50と固定されるか又は一体的に構成されることにより、本体翼部50と連結されている。
ロータ1の回転中心軸線Oに対して垂直な投影面において、翼弦方向スリット32のスリット幅は、ほぼ0である。 As shown in FIG. 1, the
In this example, the wing tip trailing
In the projection plane perpendicular to the rotation center axis O of the
本例では、ロータ1の回転中心軸線Oに対して垂直な投影面において、翼長方向スリット31が、翼20の翼長方向に平行に延在している。この構成により、風力発電機の効率を向上できる。ただし、該投影面において、翼長方向スリット31は、翼20の翼長方向に対して交差する方向に延在してもよい。
また、本例では、ロータ1の回転中心軸線Oに対して垂直な投影面において、翼弦方向スリット32が、翼20の翼弦方向に平行に延在している。ここで、「翼弦方向」とは、翼弦線に平行な方向である。この構成により、風力発電機の効率を向上できる。ただし、該投影面において、翼弦方向スリット32は、翼20の翼弦方向に対して交差する方向に延在してもよい。 In this example, the blade length direction slit 31 extends in parallel to the blade length direction of theblade 20 on a projection plane perpendicular to the rotation center axis O of the rotor 1. With this configuration, the efficiency of the wind power generator can be improved. However, on the projection plane, the blade length direction slit 31 may extend in a direction intersecting the blade length direction of the blade 20.
In this example, the chord direction slit 32 extends in parallel to the chord direction of theblade 20 on the projection plane perpendicular to the rotation center axis O of the rotor 1. Here, the “chord direction” is a direction parallel to the chord line. With this configuration, the efficiency of the wind power generator can be improved. However, on the projection plane, the chord direction slit 32 may extend in a direction intersecting the chord direction of the wing 20.
また、本例では、ロータ1の回転中心軸線Oに対して垂直な投影面において、翼弦方向スリット32が、翼20の翼弦方向に平行に延在している。ここで、「翼弦方向」とは、翼弦線に平行な方向である。この構成により、風力発電機の効率を向上できる。ただし、該投影面において、翼弦方向スリット32は、翼20の翼弦方向に対して交差する方向に延在してもよい。 In this example, the blade length direction slit 31 extends in parallel to the blade length direction of the
In this example, the chord direction slit 32 extends in parallel to the chord direction of the
図2及び図3に示すように、翼端後縁翼部40は、その前縁43側の部分が本体翼部50に対してロータ1の正面側(本例では正圧側)に向かってめくれたような、形状を有している。より具体的に、翼端後縁翼部40の前縁43は、仮想翼端翼部53の翼型中心線CAL53よりも、ロータの正面側(本例では正圧側)に位置している。
ここで、「翼端後縁翼部40の前縁43」は、翼端後縁翼部40における、翼20の前縁23側の端縁である。なお、「翼端後縁翼部40の後縁44」は、翼端後縁翼部40における、翼20の後縁24側の端縁であり、本例では、翼20の後縁24の一部を構成する。
また、「仮想翼端翼部53」は、本体翼部50のうち翼端後縁翼部40に対して翼20の前縁23側に位置する部分51(以下、翼端前縁翼部51ともいう。)を、翼20の後縁24(翼端後縁翼部40の後縁44)まで滑らかに延長させてなる部分であり、いいかえれば、翼端前縁翼部51と、翼端前縁翼部51の後縁51aから翼20の後縁24まで滑らかに延在する仮想翼端後縁翼部52とを、併せた部分である。「翼端前縁翼部51の後縁51a」は、翼端前縁翼部51における翼20の後縁24側の端縁である。
また、「翼型中心線」(「キャンバーライン」とも呼ばれる。)とは、翼型(翼の翼厚方向の断面)において、ロータ1の正面側(ロータ正面側)の表面とロータ1の背面側(ロータ背面側)の表面とから等距離にある点どうしを結んだ線である。
図3に示すように、本実施形態において、翼20の翼型中心線は、ロータ背面側で凸となるように湾曲している。また、仮想翼端翼部53の翼型中心線CAL53と翼端後縁翼部40の翼型中心線CAL40とは、それぞれロータ背面側で凸となるように湾曲している。
翼弦方向スリット32があることで、本例のように、翼端後縁翼部40における翼根21側の端部を含む、翼端後縁翼部40の翼長方向の全長にわたって、翼端後縁翼部40の前縁43を、仮想翼端翼部53の翼型中心線CAL53よりもロータの正面側に位置させることができるようにされている。
なお、図の例では、本体翼部50及び翼端後縁翼部40の翼型が、それぞれの前縁及び後縁で丸まった形状であり、また、本体翼部50及び翼端後縁翼部40の翼厚が、それぞれの翼型中心線に沿って前縁側から後縁側に向かって徐々に薄くなっているが、この構成は必須ではない。例えば、本体翼部50及び翼端後縁翼部40の翼型は、それぞれの前縁及び後縁の少なくともいずれか一方で角張っていても構わない。また、本体翼部50及び翼端後縁翼部40の翼厚は、それぞれの翼型中心線に沿ってほぼ一定でもよい。 As shown in FIGS. 2 and 3, the blade edge trailingedge wing portion 40 has its front edge 43 side turned toward the front side of the rotor 1 (positive pressure side in this example) with respect to the main body blade portion 50. Has a shape. More specifically, the leading edge 43 of the blade tip trailing edge blade portion 40 is located on the front side of the rotor (positive pressure side in this example) with respect to the airfoil center line CAL 53 of the virtual blade tip blade portion 53.
Here, “theleading edge 43 of the blade tip trailing edge wing portion 40” is an edge of the blade tip trailing edge wing portion 40 on the leading edge 23 side of the blade 20. Note that “the trailing edge 44 of the blade tip trailing edge wing portion 40” is an edge of the blade tip trailing edge wing portion 40 on the side of the trailing edge 24 of the blade 20, and in this example, the trailing edge 24 of the blade 20. Part of it.
Further, the “virtual bladetip wing portion 53” is a portion 51 (hereinafter referred to as a blade tip leading edge wing portion 51) located on the front edge 23 side of the blade 20 with respect to the blade tip trailing edge wing portion 40 of the main body wing portion 50. Is also a portion that is smoothly extended to the trailing edge 24 of the blade 20 (the trailing edge 44 of the blade tip trailing edge blade portion 40). In other words, the blade tip leading edge blade portion 51 and the blade tip This is a combined portion of a virtual blade end trailing edge wing 52 that smoothly extends from the trailing edge 51 a of the leading edge wing 51 to the trailing edge 24 of the wing 20. The “rear edge 51 a of the wing tip leading edge wing part 51” is an edge on the trailing edge 24 side of the wing 20 in the wing tip leading edge wing part 51.
Further, the “airfoil center line” (also referred to as “camber line”) refers to the front side of the rotor 1 (rotor front side) and the back side of therotor 1 in the airfoil (cross section of the blade in the blade thickness direction). This is a line connecting points that are equidistant from the surface of the side (the back side of the rotor).
As shown in FIG. 3, in the present embodiment, the airfoil center line of theblade 20 is curved so as to be convex on the rotor back side. Further, the airfoil center line CAL53 of the virtual blade tip wing part 53 and the airfoil centerline CAL40 of the blade tip trailing edge wing part 40 are curved so as to be convex on the rotor back side.
By having the chord direction slit 32, as in the present example, the blade tip extends over the entire length in the blade length direction of the blade tip trailingedge wing portion 40 including the end of the blade tip trailing edge wing portion 40 on the blade root 21 side. The leading edge 43 of the end trailing edge wing 40 can be positioned on the front side of the rotor with respect to the airfoil center line CAL 53 of the virtual wing tip wing 53.
In the example shown in the figure, the airfoil shape of the mainbody wing part 50 and the wing tip trailing edge wing part 40 is rounded at the respective leading and trailing edges, and the main wing part 50 and the wing tip trailing edge wing. The blade thickness of the portion 40 gradually decreases from the leading edge side toward the trailing edge side along each airfoil center line, but this configuration is not essential. For example, the airfoil shape of the main body wing part 50 and the wing tip trailing edge wing part 40 may be square on at least one of the respective leading edges and trailing edges. Further, the blade thicknesses of the main body blade 50 and the blade tip trailing edge blade 40 may be substantially constant along the respective airfoil centerlines.
ここで、「翼端後縁翼部40の前縁43」は、翼端後縁翼部40における、翼20の前縁23側の端縁である。なお、「翼端後縁翼部40の後縁44」は、翼端後縁翼部40における、翼20の後縁24側の端縁であり、本例では、翼20の後縁24の一部を構成する。
また、「仮想翼端翼部53」は、本体翼部50のうち翼端後縁翼部40に対して翼20の前縁23側に位置する部分51(以下、翼端前縁翼部51ともいう。)を、翼20の後縁24(翼端後縁翼部40の後縁44)まで滑らかに延長させてなる部分であり、いいかえれば、翼端前縁翼部51と、翼端前縁翼部51の後縁51aから翼20の後縁24まで滑らかに延在する仮想翼端後縁翼部52とを、併せた部分である。「翼端前縁翼部51の後縁51a」は、翼端前縁翼部51における翼20の後縁24側の端縁である。
また、「翼型中心線」(「キャンバーライン」とも呼ばれる。)とは、翼型(翼の翼厚方向の断面)において、ロータ1の正面側(ロータ正面側)の表面とロータ1の背面側(ロータ背面側)の表面とから等距離にある点どうしを結んだ線である。
図3に示すように、本実施形態において、翼20の翼型中心線は、ロータ背面側で凸となるように湾曲している。また、仮想翼端翼部53の翼型中心線CAL53と翼端後縁翼部40の翼型中心線CAL40とは、それぞれロータ背面側で凸となるように湾曲している。
翼弦方向スリット32があることで、本例のように、翼端後縁翼部40における翼根21側の端部を含む、翼端後縁翼部40の翼長方向の全長にわたって、翼端後縁翼部40の前縁43を、仮想翼端翼部53の翼型中心線CAL53よりもロータの正面側に位置させることができるようにされている。
なお、図の例では、本体翼部50及び翼端後縁翼部40の翼型が、それぞれの前縁及び後縁で丸まった形状であり、また、本体翼部50及び翼端後縁翼部40の翼厚が、それぞれの翼型中心線に沿って前縁側から後縁側に向かって徐々に薄くなっているが、この構成は必須ではない。例えば、本体翼部50及び翼端後縁翼部40の翼型は、それぞれの前縁及び後縁の少なくともいずれか一方で角張っていても構わない。また、本体翼部50及び翼端後縁翼部40の翼厚は、それぞれの翼型中心線に沿ってほぼ一定でもよい。 As shown in FIGS. 2 and 3, the blade edge trailing
Here, “the
Further, the “virtual blade
Further, the “airfoil center line” (also referred to as “camber line”) refers to the front side of the rotor 1 (rotor front side) and the back side of the
As shown in FIG. 3, in the present embodiment, the airfoil center line of the
By having the chord direction slit 32, as in the present example, the blade tip extends over the entire length in the blade length direction of the blade tip trailing
In the example shown in the figure, the airfoil shape of the main
以下、翼端後縁翼部40の前縁43が仮想翼端翼部53の翼型中心線CAL53よりもロータの正面側に位置していることによる効果について、説明する。
仮に、翼20が、一般的な翼のように翼長方向スリット31を有していない場合、翼20の後縁側の部分では、翼長方向のほぼ全長にわたって、ロータ正面側の表面とロータ背面側の表面において、気流の流れが剥離しやすく、正圧及び負圧をそれぞれ十分に生じさせることができない。そのため、十分な揚力が得られず、風力発電機の効率を良好にできない。
これに対し、本実施形態では、翼20に翼長方向スリット31が形成されており、翼端後縁翼部40の前縁43が仮想翼端翼部53の翼型中心線CAL53よりもロータ正面側に位置しているので、翼長方向スリット31に、すなわち翼端後縁翼部40の前縁43と本体翼部50の翼端前縁翼部51の後縁51aとの間に、風が通れるような隙間が区画される。図14は、本発明の一実施例に係るロータ1のモデルを用いた解析により得られた、翼20の翼端付近の流線を示している。解析の詳細については後述する。図14から判るように、翼20の翼端付近において、翼20のロータ正面側かつ前縁23側から入射した風は、翼長方向スリット31を通って、翼20のロータ背面側かつ後縁24側へと流れる。これにより、翼端後縁翼部40におけるロータ正面側の表面とロータ背面側の表面において、流れの剥離が抑制され、大きな正圧及び負圧をそれぞれ生じさせることができる。すなわち、翼20の翼端付近における前縁側(翼端前縁翼部51)と後縁側(翼端後縁翼部40)との両方で、ロータ正面側の表面とロータ背面側の表面において、大きな正圧及び負圧をそれぞれ生じさせることができる。よって、揚力を向上でき、風力発電機の効率を向上できる。
なお、仮に、翼長方向スリット31に風が通れるような隙間が区画されていても、翼端後縁翼部40の前縁43が仮想翼端翼部53の翼型中心線CAL53上にあったり、それよりもロータ背面側に位置している場合には、風が翼長方向スリット31を通過しにくくなり、剥離をさほど効果的に抑制できない。
なお、揚力の発生には、翼20の翼端近傍に生じる圧力差が最も寄与するため、本実施形態において翼長方向スリット31が翼端側にあることで、翼端側において剥離を抑制し圧力差を増大できるので、仮に翼長方向スリット31が翼根側にある場合に比べて、揚力ひいては効率を大きく向上できる。 Hereinafter, the effect obtained by thefront edge 43 of the blade tip trailing edge wing portion 40 being located on the front side of the rotor from the airfoil center line CAL 53 of the virtual blade tip wing portion 53 will be described.
If theblade 20 does not have the blade length direction slit 31 as in the case of a general blade, the rotor front surface and the rotor back surface are almost entirely extended in the blade length direction at the rear edge side portion of the blade 20. On the surface on the side, the flow of the air flow is easy to peel off, and the positive pressure and the negative pressure cannot be sufficiently generated. Therefore, sufficient lift cannot be obtained and the efficiency of the wind power generator cannot be improved.
On the other hand, in the present embodiment, theblade 20 has a blade length direction slit 31 formed in the blade 20, and the leading edge 43 of the blade tip trailing edge blade portion 40 is a rotor than the blade centerline CAL 53 of the virtual blade tip blade portion 53. Since it is located on the front side, in the blade length direction slit 31, that is, between the leading edge 43 of the blade tip trailing edge wing 40 and the trailing edge 51a of the blade tip leading edge wing 51 of the main body blade 50, A gap that allows the wind to pass through is defined. FIG. 14 shows streamlines in the vicinity of the blade tip of the blade 20 obtained by analysis using the model of the rotor 1 according to one embodiment of the present invention. Details of the analysis will be described later. As can be seen from FIG. 14, in the vicinity of the blade tip of the blade 20, the wind incident from the rotor front side and the leading edge 23 side of the blade 20 passes through the blade length direction slit 31 to the rotor rear side and the trailing edge of the blade 20. It flows to the 24 side. As a result, separation of the flow is suppressed on the surface on the rotor front side and the surface on the rotor back side in the blade tip trailing edge wing portion 40, and a large positive pressure and negative pressure can be generated respectively. That is, on the surface on the rotor front side and the surface on the rotor back side on both the leading edge side (blade tip leading edge wing portion 51) and the trailing edge side (blade tip trailing edge wing portion 40) in the vicinity of the blade tip of the blade 20, A large positive pressure and negative pressure can be generated respectively. Therefore, the lift can be improved and the efficiency of the wind power generator can be improved.
Even if there is a gap that allows the wind to pass through the blade length direction slit 31, the leadingedge 43 of the blade tip trailing edge blade portion 40 is on the airfoil center line CAL 53 of the virtual blade tip blade portion 53. If it is located on the back side of the rotor than that, it becomes difficult for the wind to pass through the blade length direction slit 31, and peeling cannot be effectively suppressed.
In addition, since the pressure difference generated in the vicinity of the blade tip of theblade 20 contributes most to the generation of lift, in the present embodiment, the blade length direction slit 31 is on the blade tip side, thereby suppressing separation on the blade tip side. Since the pressure difference can be increased, the lift and thus the efficiency can be greatly improved as compared with the case where the blade length direction slit 31 is on the blade root side.
仮に、翼20が、一般的な翼のように翼長方向スリット31を有していない場合、翼20の後縁側の部分では、翼長方向のほぼ全長にわたって、ロータ正面側の表面とロータ背面側の表面において、気流の流れが剥離しやすく、正圧及び負圧をそれぞれ十分に生じさせることができない。そのため、十分な揚力が得られず、風力発電機の効率を良好にできない。
これに対し、本実施形態では、翼20に翼長方向スリット31が形成されており、翼端後縁翼部40の前縁43が仮想翼端翼部53の翼型中心線CAL53よりもロータ正面側に位置しているので、翼長方向スリット31に、すなわち翼端後縁翼部40の前縁43と本体翼部50の翼端前縁翼部51の後縁51aとの間に、風が通れるような隙間が区画される。図14は、本発明の一実施例に係るロータ1のモデルを用いた解析により得られた、翼20の翼端付近の流線を示している。解析の詳細については後述する。図14から判るように、翼20の翼端付近において、翼20のロータ正面側かつ前縁23側から入射した風は、翼長方向スリット31を通って、翼20のロータ背面側かつ後縁24側へと流れる。これにより、翼端後縁翼部40におけるロータ正面側の表面とロータ背面側の表面において、流れの剥離が抑制され、大きな正圧及び負圧をそれぞれ生じさせることができる。すなわち、翼20の翼端付近における前縁側(翼端前縁翼部51)と後縁側(翼端後縁翼部40)との両方で、ロータ正面側の表面とロータ背面側の表面において、大きな正圧及び負圧をそれぞれ生じさせることができる。よって、揚力を向上でき、風力発電機の効率を向上できる。
なお、仮に、翼長方向スリット31に風が通れるような隙間が区画されていても、翼端後縁翼部40の前縁43が仮想翼端翼部53の翼型中心線CAL53上にあったり、それよりもロータ背面側に位置している場合には、風が翼長方向スリット31を通過しにくくなり、剥離をさほど効果的に抑制できない。
なお、揚力の発生には、翼20の翼端近傍に生じる圧力差が最も寄与するため、本実施形態において翼長方向スリット31が翼端側にあることで、翼端側において剥離を抑制し圧力差を増大できるので、仮に翼長方向スリット31が翼根側にある場合に比べて、揚力ひいては効率を大きく向上できる。 Hereinafter, the effect obtained by the
If the
On the other hand, in the present embodiment, the
Even if there is a gap that allows the wind to pass through the blade length direction slit 31, the leading
In addition, since the pressure difference generated in the vicinity of the blade tip of the
なお、風力発電機の効率は、風力発電機のパワー係数によって評価することができる。本実施形態のロータ1は、翼が翼長方向スリット31を有しないようなロータに比べて、主に周速比が比較的低い時と比較的高い時との少なくともいずれか一方で、パワー係数を増大できるものである。
ここで、「周速比」は、風速に対する翼端速度(翼の翼端の回転方向の速度)の比である。風速をU(m/s)、ロータの回転速度をω(rpm)、ロータの半径をR(mm)とすると、周速比λは、つぎの式(1)で表すことができる。
また、「パワー係数」は、ロータ受風面積を単位時間に通過する自由空気流の運動エネルギーに対する風力発電機の正味出力の比である。空気の密度をρ(kg/m3)、回転トルクをT(Nm)とすると、パワー係数Cpは、つぎの式(2)で表すことができる。
The efficiency of the wind power generator can be evaluated by the power coefficient of the wind power generator. The rotor 1 of the present embodiment has a power coefficient mainly at least one of when the peripheral speed ratio is relatively low and when it is relatively high, compared to a rotor whose blades do not have the blade length direction slit 31. Can be increased.
Here, the “circumferential speed ratio” is the ratio of the blade tip speed (speed in the rotational direction of the blade tip) to the wind speed. When the wind speed is U (m / s), the rotational speed of the rotor is ω (rpm), and the radius of the rotor is R (mm), the peripheral speed ratio λ can be expressed by the following equation (1).
The “power coefficient” is the ratio of the net output of the wind power generator to the kinetic energy of the free air flow that passes through the rotor wind receiving area per unit time. When the density of air is ρ (kg / m 3 ) and the rotational torque is T (Nm), the power coefficient C p can be expressed by the following equation (2).
ここで、「周速比」は、風速に対する翼端速度(翼の翼端の回転方向の速度)の比である。風速をU(m/s)、ロータの回転速度をω(rpm)、ロータの半径をR(mm)とすると、周速比λは、つぎの式(1)で表すことができる。
Here, the “circumferential speed ratio” is the ratio of the blade tip speed (speed in the rotational direction of the blade tip) to the wind speed. When the wind speed is U (m / s), the rotational speed of the rotor is ω (rpm), and the radius of the rotor is R (mm), the peripheral speed ratio λ can be expressed by the following equation (1).
図1に示すように、本実施形態において、翼長方向スリット31は、ほぼ一定のスリット幅をもって直線状に延在している。より具体的に、ロータ1の回転中心軸線Oに対して垂直な投影面において、翼長方向スリット31のスリット幅dは翼長方向スリット31の全長にわたってほぼ一定であり、また、翼長方向スリット31は直線状に延在している。この構成により、翼端後縁翼部40の翼長方向の全長にわたって、翼端後縁翼部40の表面での剥離を効果的に抑制でき、ひいては効率を向上できる。
ただし、当該投影面において、翼長方向スリット31のスリット幅dは、翼長方向スリット31の延在方向に沿って、少なくとも一部分で変化してもよい。また、当該投影面において、翼長方向スリット31は、非直線状に延在してもよい。 As shown in FIG. 1, in the present embodiment, the blade length direction slit 31 extends linearly with a substantially constant slit width. More specifically, on the projection plane perpendicular to the rotation center axis O of therotor 1, the slit width d of the blade length direction slit 31 is substantially constant over the entire length of the blade length direction slit 31, and the blade length direction slit 31 extends linearly. With this configuration, it is possible to effectively suppress separation on the surface of the blade tip trailing edge wing portion 40 over the entire length in the blade length direction of the blade tip trailing edge wing portion 40, thereby improving efficiency.
However, on the projection plane, the slit width d of the blade length direction slit 31 may change at least partially along the extending direction of the blade length direction slit 31. In the projection plane, the blade length direction slit 31 may extend non-linearly.
ただし、当該投影面において、翼長方向スリット31のスリット幅dは、翼長方向スリット31の延在方向に沿って、少なくとも一部分で変化してもよい。また、当該投影面において、翼長方向スリット31は、非直線状に延在してもよい。 As shown in FIG. 1, in the present embodiment, the blade length direction slit 31 extends linearly with a substantially constant slit width. More specifically, on the projection plane perpendicular to the rotation center axis O of the
However, on the projection plane, the slit width d of the blade length direction slit 31 may change at least partially along the extending direction of the blade length direction slit 31. In the projection plane, the blade length direction slit 31 may extend non-linearly.
効率向上の観点から、ロータ1の回転中心軸線Oに対して垂直な投影面における、翼長方向スリット31のスリット幅dは、0mm以上が好ましく、2mm以上がより好ましく、5mm以上がさらに好ましい。また、効率向上の観点から、該投影面における翼長方向スリット31のスリット幅dは、10mm以下が好ましい。
同様に、翼20の翼端22での翼弦長CHL(すなわち、仮想翼端翼部53の翼端22での翼弦長)に対する、当該投影面における翼長方向スリット31のスリット幅dの割合、すなわち(d/CHL)×100(%)は、0.0%以上が好ましく、1.9%以上がより好ましく、4.8%以上がさらに好ましい。また、(d/CHL)×100(%)は、9.5%以下が好ましい。
図4及び図5に示す第1変形例は、該投影面における翼長方向スリット31のスリット幅dが0mmである点のみで、図1~図3に示す例とは異なる。図5に示すように、該投影面における翼長方向スリット31のスリット幅dが0mmの場合でも、翼端後縁翼部40の前縁43が仮想翼端翼部53の翼型中心線CAL53よりもロータ正面側に位置していることで、翼長方向スリット31に、すなわち翼端後縁翼部40の前縁43と本体翼部50の翼端前縁翼部51の後縁51aとの間に、風が通れるような隙間が区画される。よって、上述した剥離抑制効果が得られる。 From the viewpoint of improving efficiency, the slit width d of the blade length direction slit 31 on the projection plane perpendicular to the rotation center axis O of therotor 1 is preferably 0 mm or more, more preferably 2 mm or more, and further preferably 5 mm or more. From the viewpoint of improving efficiency, the slit width d of the blade length direction slit 31 on the projection plane is preferably 10 mm or less.
Similarly, the slit width d of the blade length direction slit 31 on the projection plane with respect to the chord length CHL at theblade tip 22 of the blade 20 (that is, the chord length at the blade tip 22 of the virtual blade tip blade portion 53). The ratio, that is, (d / CHL) × 100 (%) is preferably 0.0% or more, more preferably 1.9% or more, and further preferably 4.8% or more. Further, (d / CHL) × 100 (%) is preferably 9.5% or less.
The first modification shown in FIGS. 4 and 5 is different from the examples shown in FIGS. 1 to 3 only in that the slit width d of the blade length direction slit 31 on the projection plane is 0 mm. As shown in FIG. 5, even when the slit width d of the blade length direction slit 31 on the projection plane is 0 mm, the leadingedge 43 of the blade tip trailing edge blade portion 40 is the airfoil centerline CAL53 of the virtual blade tip blade portion 53. Since the blade is located on the front side of the rotor, the blade length direction slit 31, that is, the leading edge 43 of the blade tip trailing edge blade portion 40 and the trailing edge 51 a of the blade tip leading edge blade portion 51 of the main body blade portion 50, In between, a gap through which the wind can pass is defined. Therefore, the peeling suppression effect mentioned above is acquired.
同様に、翼20の翼端22での翼弦長CHL(すなわち、仮想翼端翼部53の翼端22での翼弦長)に対する、当該投影面における翼長方向スリット31のスリット幅dの割合、すなわち(d/CHL)×100(%)は、0.0%以上が好ましく、1.9%以上がより好ましく、4.8%以上がさらに好ましい。また、(d/CHL)×100(%)は、9.5%以下が好ましい。
図4及び図5に示す第1変形例は、該投影面における翼長方向スリット31のスリット幅dが0mmである点のみで、図1~図3に示す例とは異なる。図5に示すように、該投影面における翼長方向スリット31のスリット幅dが0mmの場合でも、翼端後縁翼部40の前縁43が仮想翼端翼部53の翼型中心線CAL53よりもロータ正面側に位置していることで、翼長方向スリット31に、すなわち翼端後縁翼部40の前縁43と本体翼部50の翼端前縁翼部51の後縁51aとの間に、風が通れるような隙間が区画される。よって、上述した剥離抑制効果が得られる。 From the viewpoint of improving efficiency, the slit width d of the blade length direction slit 31 on the projection plane perpendicular to the rotation center axis O of the
Similarly, the slit width d of the blade length direction slit 31 on the projection plane with respect to the chord length CHL at the
The first modification shown in FIGS. 4 and 5 is different from the examples shown in FIGS. 1 to 3 only in that the slit width d of the blade length direction slit 31 on the projection plane is 0 mm. As shown in FIG. 5, even when the slit width d of the blade length direction slit 31 on the projection plane is 0 mm, the leading
翼20の翼長をLとしたとき、効率向上の観点から、ロータ1の回転中心軸線Oに対して垂直な投影面における、翼長方向スリット31の翼長方向の長さlは、(1/8)L以上が好ましく、(2/8)L以上がより好ましく、(3/8)L以上がさらに好ましい。また、効率向上の観点から、当該投影面における翼長方向スリット31の翼長方向の長さlは、(5/8)L以下が好ましく、(4/8)L以下がさらに好ましい。
ここで、「翼20の翼長L」とは、図1に示すように、ロータ1の回転中心軸線Oに対して垂直な投影面において、翼20の翼根21の翼弦線の中心点21aと翼20の翼端22の翼弦線の中心点22aとを結ぶ直線の長さを指す。なお、ハブ10の半径rと翼20の翼長Lとの和が、ロータ1の半径Rである(R=r+L)。 When the blade length of theblade 20 is L, from the viewpoint of improving efficiency, the blade length direction length l of the blade length direction slit 31 on the projection plane perpendicular to the rotation center axis O of the rotor 1 is (1 / 8) L or more is preferable, (2/8) L or more is more preferable, and (3/8) L or more is more preferable. Further, from the viewpoint of improving efficiency, the blade length direction length l of the blade length direction slit 31 on the projection plane is preferably (5/8) L or less, and more preferably (4/8) L or less.
Here, the “blade length L of theblade 20” means the center point of the chord line of the blade root 21 of the blade 20 on the projection plane perpendicular to the rotation center axis O of the rotor 1, as shown in FIG. 1. The length of the straight line connecting 21a and the center point 22a of the chord line of the blade tip 22 of the blade 20 is indicated. The sum of the radius r of the hub 10 and the blade length L of the blade 20 is the radius R of the rotor 1 (R = r + L).
ここで、「翼20の翼長L」とは、図1に示すように、ロータ1の回転中心軸線Oに対して垂直な投影面において、翼20の翼根21の翼弦線の中心点21aと翼20の翼端22の翼弦線の中心点22aとを結ぶ直線の長さを指す。なお、ハブ10の半径rと翼20の翼長Lとの和が、ロータ1の半径Rである(R=r+L)。 When the blade length of the
Here, the “blade length L of the
本実施形態のように、仮想翼端翼部53の翼型中心線CAL53と翼端後縁翼部40の翼型中心線CAL40とが、それぞれロータ背面側で凸となるように湾曲している場合、効率向上の観点からは、仮想翼端翼部53の翼弦線(又はその延長線)と翼端後縁翼部40の翼弦線(又はその延長線)との小さいほうのなす角度θは、0°以上が好ましい。また、効率向上の観点から、仮想翼端翼部53の翼弦線(又はその延長線)と翼端後縁翼部40の翼弦線(又はその延長線)との小さいほうのなす角度θは、5°未満が好ましく、3°以下がさらに好ましい。
図1~3の例では、角度θが0°であり、翼端後縁翼部40の翼弦線が仮想翼端翼部53の翼弦線上にある。一方、図6に示す第2変形例は、角度θが0°よりも大きい点のみで、図1~図3の例とは異なる。図3に示すように、角度θが0°の場合でも、翼端後縁翼部40の前縁43が仮想翼端翼部53の翼型中心線CAL53よりもロータ正面側に位置していることで、翼長方向スリット31に、すなわち翼端後縁翼部40の前縁43と本体翼部50の翼端前縁翼部51の後縁51aとの間に、風が通れるような隙間が区画される。よって、上述した剥離抑制効果が得られる。 As in the present embodiment, the airfoil center line CAL53 of the virtual bladetip wing portion 53 and the airfoil centerline CAL40 of the blade tip trailing edge wing portion 40 are curved so as to be convex on the rotor back side. In this case, from the viewpoint of improving efficiency, the angle formed by the smaller of the chord line of the virtual wing tip wing 53 (or an extension thereof) and the chord line of the wing tip trailing edge wing 40 (or an extension thereof). θ is preferably 0 ° or more. Further, from the viewpoint of improving efficiency, an angle θ formed by a smaller one of the chord line (or an extension line thereof) of the virtual wing tip wing part 53 and the chord line (or an extension line thereof) of the wing tip trailing edge wing part 40. Is preferably less than 5 °, more preferably 3 ° or less.
In the example of FIGS. 1 to 3, the angle θ is 0 °, and the chord line of the wing tip trailingedge wing portion 40 is on the chord line of the virtual wing tip wing portion 53. On the other hand, the second modification shown in FIG. 6 differs from the examples of FIGS. 1 to 3 only in that the angle θ is larger than 0 °. As shown in FIG. 3, even when the angle θ is 0 °, the leading edge 43 of the blade tip trailing edge blade 40 is located on the rotor front side with respect to the blade centerline CAL53 of the virtual blade tip blade 53. Thus, a gap through which wind can pass through the blade length direction slit 31, that is, between the leading edge 43 of the blade tip trailing edge blade portion 40 and the trailing edge 51 a of the blade tip leading edge blade portion 51 of the main body blade portion 50. Is partitioned. Therefore, the peeling suppression effect mentioned above is acquired.
図1~3の例では、角度θが0°であり、翼端後縁翼部40の翼弦線が仮想翼端翼部53の翼弦線上にある。一方、図6に示す第2変形例は、角度θが0°よりも大きい点のみで、図1~図3の例とは異なる。図3に示すように、角度θが0°の場合でも、翼端後縁翼部40の前縁43が仮想翼端翼部53の翼型中心線CAL53よりもロータ正面側に位置していることで、翼長方向スリット31に、すなわち翼端後縁翼部40の前縁43と本体翼部50の翼端前縁翼部51の後縁51aとの間に、風が通れるような隙間が区画される。よって、上述した剥離抑制効果が得られる。 As in the present embodiment, the airfoil center line CAL53 of the virtual blade
In the example of FIGS. 1 to 3, the angle θ is 0 °, and the chord line of the wing tip trailing
図1~図3の例では、翼20が翼端後縁翼部40を1つのみ有しているが、図7及び図8に示す第3変形例のように、翼20は、翼端後縁翼部40を複数有してもよい。この場合、各翼端後縁翼部40は、それぞれ、翼端後縁翼部40の前縁43が仮想翼端翼部53の翼型中心線CAL53よりもロータ正面側に位置するようにされる。これにより、各翼端後縁翼部40にそれぞれ対応する各翼長方向スリット31に風が通ることで、各翼端後縁翼部40の表面での剥離を効果的に抑制できるので、効率を向上できる。
図7及び図8の第3変形例は、翼20が、翼20の翼弦方向において互いに異なる位置に配置された複数(具体的には2つ)の翼端後縁翼部40を有している点のみで、図1~図3に示す例とは異なる。第3変形例において、複数の翼端後縁翼部40のうち、最も前縁23側の翼端後縁翼部40は、本体翼部50との間で、翼長方向スリット31及び翼弦方向スリット32を区画している。それ以外の翼端後縁翼部40は、前縁側に隣接する翼端後縁翼部40との間で翼長方向スリット31を区画しているとともに、本体翼部50との間で翼弦方向スリット32を区画している。複数の翼端後縁翼部40のうち、最も後縁24側の翼端後縁翼部40は、その後縁44が、翼20の後縁24の一部を構成している。各翼端後縁翼部40の翼型中心線CAL40は、それぞれロータ背面側で凸となるように湾曲している。
各翼長方向スリット31の上記スリット幅d、上記翼長方向の長さlは、それぞれ上述した数値範囲内であると好適である。各翼長方向スリット31の上記スリット幅dどうし、各翼長方向スリット31の上記翼長方向の長さlどうしは、図の例のように互いに同じでもよいし、異なっていてもよい。
図8(b)は、便宜のため、図8(a)の側面図における仮想翼端翼部53の翼型中心線CAL53と各翼端後縁翼部40の翼型中心線CAL40のみを抜き出して示している。各翼端後縁翼部40の上記角度θは、それぞれ上述した数値範囲内であると好適である。各翼端後縁翼部40の上記角度θどうしは、図8(b)の例のように互いに異なっていてもよいし、互いに同じでもよい。図8(b)の例では、2つの翼端後縁翼部40のうち、前縁23側の翼端後縁翼部40の角度θのほうが、後縁24側の翼端後縁翼部40の角度θよりも、小さい。 In the example of FIGS. 1 to 3, thewing 20 has only one wing tip trailing edge wing portion 40. However, as in the third modification shown in FIGS. A plurality of trailing edge wing portions 40 may be provided. In this case, each blade tip trailing edge wing portion 40 is configured such that the leading edge 43 of the blade tip trailing edge wing portion 40 is located closer to the rotor front side than the airfoil center line CAL 53 of the virtual blade tip wing portion 53. The Thereby, since the wind passes through each blade length direction slit 31 corresponding to each blade tip trailing edge wing portion 40, separation on the surface of each blade tip trailing edge wing portion 40 can be effectively suppressed. Can be improved.
7 and FIG. 8, thewing 20 has a plurality (specifically, two) wing tip trailing edge wing portions 40 arranged at different positions in the chord direction of the wing 20. This is different from the examples shown in FIGS. In the third modification, among the plurality of blade tip trailing edge wing portions 40, the blade tip trailing edge wing portion 40 closest to the leading edge 23 is between the blade length direction slit 31 and the blade chord with the main body blade portion 50. A direction slit 32 is defined. The other blade tip trailing edge wing portion 40 divides the blade length direction slit 31 between the blade tip trailing edge wing portion 40 adjacent to the leading edge side, and between the main blade portion 50 and the chord. A direction slit 32 is defined. Among the plurality of blade tip trailing edge wing portions 40, the trailing edge 44 of the blade tip trailing edge wing portion 40 closest to the trailing edge 24 forms a part of the trailing edge 24 of the blade 20. The airfoil center line CAL40 of each blade tip trailing edge wing portion 40 is curved so as to be convex on the rotor back side.
It is preferable that the slit width d of each blade length direction slit 31 and the length l in the blade length direction are within the numerical ranges described above. The slit widths d of the blade length direction slits 31 and the lengths l of the blade length direction slits 31 in the blade length direction may be the same as or different from each other as illustrated in the figure.
FIG. 8B shows only the airfoil center line CAL53 of the virtual bladetip wing portion 53 and the airfoil centerline CAL40 of each blade tip trailing edge wing portion 40 in the side view of FIG. 8A for convenience. It shows. It is preferable that the angle θ of each blade tip trailing edge wing portion 40 is within the numerical range described above. The angles θ of the blade tip trailing edge wing portions 40 may be different from each other as in the example of FIG. 8B or may be the same as each other. In the example of FIG. 8B, of the two blade tip trailing edge wing portions 40, the angle θ of the blade tip trailing edge wing portion 40 on the leading edge 23 side is the blade tip trailing edge wing portion on the trailing edge 24 side. It is smaller than the angle θ of 40.
図7及び図8の第3変形例は、翼20が、翼20の翼弦方向において互いに異なる位置に配置された複数(具体的には2つ)の翼端後縁翼部40を有している点のみで、図1~図3に示す例とは異なる。第3変形例において、複数の翼端後縁翼部40のうち、最も前縁23側の翼端後縁翼部40は、本体翼部50との間で、翼長方向スリット31及び翼弦方向スリット32を区画している。それ以外の翼端後縁翼部40は、前縁側に隣接する翼端後縁翼部40との間で翼長方向スリット31を区画しているとともに、本体翼部50との間で翼弦方向スリット32を区画している。複数の翼端後縁翼部40のうち、最も後縁24側の翼端後縁翼部40は、その後縁44が、翼20の後縁24の一部を構成している。各翼端後縁翼部40の翼型中心線CAL40は、それぞれロータ背面側で凸となるように湾曲している。
各翼長方向スリット31の上記スリット幅d、上記翼長方向の長さlは、それぞれ上述した数値範囲内であると好適である。各翼長方向スリット31の上記スリット幅dどうし、各翼長方向スリット31の上記翼長方向の長さlどうしは、図の例のように互いに同じでもよいし、異なっていてもよい。
図8(b)は、便宜のため、図8(a)の側面図における仮想翼端翼部53の翼型中心線CAL53と各翼端後縁翼部40の翼型中心線CAL40のみを抜き出して示している。各翼端後縁翼部40の上記角度θは、それぞれ上述した数値範囲内であると好適である。各翼端後縁翼部40の上記角度θどうしは、図8(b)の例のように互いに異なっていてもよいし、互いに同じでもよい。図8(b)の例では、2つの翼端後縁翼部40のうち、前縁23側の翼端後縁翼部40の角度θのほうが、後縁24側の翼端後縁翼部40の角度θよりも、小さい。 In the example of FIGS. 1 to 3, the
7 and FIG. 8, the
It is preferable that the slit width d of each blade length direction slit 31 and the length l in the blade length direction are within the numerical ranges described above. The slit widths d of the blade length direction slits 31 and the lengths l of the blade length direction slits 31 in the blade length direction may be the same as or different from each other as illustrated in the figure.
FIG. 8B shows only the airfoil center line CAL53 of the virtual blade
上述した各例では、翼長方向スリット31が、翼20における比較的後縁側に位置しており、いいかえれば、仮想翼端翼部53の翼弦線の中心点どうしを結んだ翼弦中心線よりも、後縁側に位置している。これにより、翼長方向スリット31が、特に剥離が生じやすい後縁側の領域に配置されるので、より効果的に、翼端後縁翼部40の表面での剥離を抑制できる。
In each of the above-described examples, the blade length direction slit 31 is located on the relatively trailing edge side of the blade 20. Rather than the trailing edge side. Thereby, since the blade length direction slit 31 is disposed in a region on the trailing edge side where peeling is particularly likely to occur, peeling on the surface of the blade tip trailing edge wing portion 40 can be more effectively suppressed.
〔第2実施形態〕
本発明の第2実施形態を、図9を参照して説明する。第2実施形態のロータ1は、翼20の翼型中心線が直線状に延在し、また、仮想翼端翼部53の翼型中心線CAL53と翼端後縁翼部40の翼型中心線CAL40とが、それぞれ直線状に延在している点のみで、第1実施形態とは異なる。
本実施形態のロータ1は、水平軸型の風力発電機用のロータとして構成されているが、水力発電機(水車等)用のロータとして構成されても特に好適であり、また、送風機等の他の風水力機械用のロータとして構成されてもよい。
図9に示すように、仮想翼端翼部53の翼弦線(又はその延長線)と翼端後縁翼部40の翼弦線(又はその延長線)との小さいほうのなす角度θは、0°よりも大きい。これにより、翼端後縁翼部40の前縁43が仮想翼端翼部53の翼型中心線CAL53よりもロータ正面側(本例では正圧側)に位置するようにされている。第2実施形態によっても、翼長方向スリット31に風が通ることで、翼端後縁翼部40の表面での剥離を効果的に抑制でき、ひいては、効率を向上できる。
第2実施形態において、効率向上の観点からは、仮想翼端翼部64の翼弦線(又はその延長線)と翼端後縁翼部40の翼弦線(又はその延長線)との小さいほうのなす角度θは、5°未満が好ましく、3°以下がさらに好ましい。
その他の構成については、第1実施形態で述べたことと同様である。
例えば、第2実施形態において、翼長方向スリット31の上記スリット幅d、上記翼長方向の長さlは、それぞれ第1実施形態において上述した数値範囲内であると好適である。また、第2実施形態においても、図7及び図8に示す例のように、翼20は、翼端後縁翼部40を複数有してもよい。 [Second Embodiment]
A second embodiment of the present invention will be described with reference to FIG. In therotor 1 of the second embodiment, the airfoil center line of the blade 20 extends linearly, and the airfoil center line CAL53 of the virtual blade tip wing portion 53 and the blade center of the blade tip trailing edge wing portion 40 are provided. The line CAL40 differs from the first embodiment only in that each line extends in a straight line.
Therotor 1 of the present embodiment is configured as a rotor for a horizontal axis type wind power generator, but is particularly suitable when configured as a rotor for a hydroelectric generator (such as a water turbine). It may be configured as a rotor for other wind hydraulic machines.
As shown in FIG. 9, the angle θ formed by the smaller chord line (or extension thereof) of the virtual wingtip wing portion 53 and the chord line (or extension thereof) of the wing tip trailing edge wing portion 40 is , Greater than 0 °. Accordingly, the leading edge 43 of the blade tip trailing edge blade portion 40 is positioned on the rotor front side (positive pressure side in this example) with respect to the airfoil center line CAL53 of the virtual blade tip blade portion 53. Also according to the second embodiment, when the wind passes through the blade length direction slit 31, separation on the surface of the blade tip trailing edge wing portion 40 can be effectively suppressed, and thus the efficiency can be improved.
In the second embodiment, from the viewpoint of improving efficiency, the chord line (or an extension thereof) of the virtual wing tip wing portion 64 and the chord line (or an extension thereof) of the wing tip trailingedge wing portion 40 are small. Is preferably less than 5 °, and more preferably 3 ° or less.
Other configurations are the same as those described in the first embodiment.
For example, in the second embodiment, it is preferable that the slit width d of the blade length direction slit 31 and the length l in the blade length direction are within the numerical ranges described above in the first embodiment. Also in the second embodiment, as in the example shown in FIGS. 7 and 8, thewing 20 may include a plurality of wing tip trailing edge wing portions 40.
本発明の第2実施形態を、図9を参照して説明する。第2実施形態のロータ1は、翼20の翼型中心線が直線状に延在し、また、仮想翼端翼部53の翼型中心線CAL53と翼端後縁翼部40の翼型中心線CAL40とが、それぞれ直線状に延在している点のみで、第1実施形態とは異なる。
本実施形態のロータ1は、水平軸型の風力発電機用のロータとして構成されているが、水力発電機(水車等)用のロータとして構成されても特に好適であり、また、送風機等の他の風水力機械用のロータとして構成されてもよい。
図9に示すように、仮想翼端翼部53の翼弦線(又はその延長線)と翼端後縁翼部40の翼弦線(又はその延長線)との小さいほうのなす角度θは、0°よりも大きい。これにより、翼端後縁翼部40の前縁43が仮想翼端翼部53の翼型中心線CAL53よりもロータ正面側(本例では正圧側)に位置するようにされている。第2実施形態によっても、翼長方向スリット31に風が通ることで、翼端後縁翼部40の表面での剥離を効果的に抑制でき、ひいては、効率を向上できる。
第2実施形態において、効率向上の観点からは、仮想翼端翼部64の翼弦線(又はその延長線)と翼端後縁翼部40の翼弦線(又はその延長線)との小さいほうのなす角度θは、5°未満が好ましく、3°以下がさらに好ましい。
その他の構成については、第1実施形態で述べたことと同様である。
例えば、第2実施形態において、翼長方向スリット31の上記スリット幅d、上記翼長方向の長さlは、それぞれ第1実施形態において上述した数値範囲内であると好適である。また、第2実施形態においても、図7及び図8に示す例のように、翼20は、翼端後縁翼部40を複数有してもよい。 [Second Embodiment]
A second embodiment of the present invention will be described with reference to FIG. In the
The
As shown in FIG. 9, the angle θ formed by the smaller chord line (or extension thereof) of the virtual wing
In the second embodiment, from the viewpoint of improving efficiency, the chord line (or an extension thereof) of the virtual wing tip wing portion 64 and the chord line (or an extension thereof) of the wing tip trailing
Other configurations are the same as those described in the first embodiment.
For example, in the second embodiment, it is preferable that the slit width d of the blade length direction slit 31 and the length l in the blade length direction are within the numerical ranges described above in the first embodiment. Also in the second embodiment, as in the example shown in FIGS. 7 and 8, the
なお、上述した各例のロータが、送風機用のロータとして構成された場合は、送風機の効率を向上できる。ひいては、騒音の低下も可能となる。
In addition, when the rotor of each example mentioned above is comprised as a rotor for air blowers, the efficiency of an air blower can be improved. As a result, noise can be reduced.
本発明のロータは、上述した各例のものに限られない。
例えば、第1実施形態や第2実施形態において、「ロータ正面側」と「ロータ背面側」とを逆にした構成にしてもよい。この構成は、本発明のロータが、送風機、ポンプ、ヘリコプター、又はドローン用のロータとして構成された場合に、特に好適なものである。
より具体的に、第1実施形態において「ロータ正面側」と「ロータ背面側」とを逆にした場合には、翼端後縁翼部40は、その前縁43側の部分が本体翼部50に対してロータ背面側(本例では正圧側)に向かってめくれたような、形状を有しており、翼端後縁翼部40の前縁43は、仮想翼端翼部53の翼型中心線CAL53よりも、ロータ背面側(本例では正圧側)に位置する。そして、翼20の翼型中心線はロータ正面側で凸となるように湾曲し、また、仮想翼端翼部53の翼型中心線CAL53と翼端後縁翼部40の翼型中心線CAL40とは、それぞれロータ正面側で凸となるように湾曲する。仮想翼端翼部53の翼弦線(又はその延長線)と翼端後縁翼部40の翼弦線(又はその延長線)との小さいほうのなす角度θは、0°以上である。その他の構成については、第1実施形態で述べたことと同様である。
また、第2実施形態において「ロータ正面側」と「ロータ背面側」とを逆にした場合には、翼端後縁翼部40は、その前縁43側の部分が本体翼部50に対してロータ背面側(本例では正圧側)に向かってめくれたような、形状を有しており、翼端後縁翼部40の前縁43は、仮想翼端翼部53の翼型中心線CAL53よりも、ロータ背面側(本例では正圧側)に位置する。そして、翼20の翼型中心線は直線状に延在し、また、仮想翼端翼部53の翼型中心線CAL53と翼端後縁翼部40の翼型中心線CAL40とは、それぞれ直線状に延在する。仮想翼端翼部53の翼弦線(又はその延長線)と翼端後縁翼部40の翼弦線(又はその延長線)との小さいほうのなす角度θは、0°よりも大きい。その他の構成については、第2実施形態で述べたことと同様である。
これらの場合、翼20の翼端付近において、翼20のロータ背面側かつ前縁23側から入射した風は、翼長方向スリット31を通って、翼20のロータ正面側かつ後縁24側へと流れる。これにより、翼端後縁翼部40におけるロータ背面側の表面とロータ正面側の表面において、流れの剥離が抑制され、大きな正圧及び負圧をそれぞれ生じさせることができる。すなわち、翼20の翼端付近における前縁側(翼端前縁翼部51)と後縁側(翼端後縁翼部40)との両方で、ロータ背面側の表面とロータ正面側の表面において、大きな正圧及び負圧をそれぞれ生じさせることができる。よって、揚力を向上でき、風水力機械の効率を向上できる。
ただし、これらの構成は、本発明のロータが、風力発電機(風車等)又は水力発電機(水車等)用のロータとして構成された場合に用いられてもよい。 The rotor of the present invention is not limited to the examples described above.
For example, in the first and second embodiments, the “rotor front side” and the “rotor back side” may be reversed. This configuration is particularly suitable when the rotor of the present invention is configured as a blower, pump, helicopter, or drone rotor.
More specifically, when the “rotor front side” and the “rotor back side” are reversed in the first embodiment, the blade edge trailingedge blade portion 40 has a portion on the front edge 43 side of the main blade portion. 50, the front edge 43 of the blade tip trailing edge blade portion 40 is a blade of the virtual blade tip blade portion 53. It is located on the rotor back side (positive pressure side in this example) with respect to the mold center line CAL53. The airfoil centerline of the blade 20 is curved so as to be convex on the front side of the rotor, and the airfoil centerline CAL53 of the virtual blade tip wing portion 53 and the airfoil centerline CAL40 of the blade tip trailing edge wing portion 40 are used. Are curved so as to be convex on the front side of the rotor. The angle θ formed by the smaller chord line (or extension thereof) of the virtual wing tip wing portion 53 and the chord line (or extension thereof) of the wing tip trailing edge wing portion 40 is 0 ° or more. Other configurations are the same as those described in the first embodiment.
Further, when the “rotor front side” and the “rotor rear side” are reversed in the second embodiment, the blade tip trailingedge wing portion 40 has its front edge 43 side portion with respect to the main body blade portion 50. And the leading edge 43 of the blade tip trailing edge wing portion 40 is an airfoil center line of the virtual blade tip wing portion 53. It is located on the rotor back side (positive pressure side in this example) from CAL53. The airfoil center line of the blade 20 extends linearly, and the airfoil center line CAL53 of the virtual blade tip wing portion 53 and the airfoil centerline CAL40 of the blade tip trailing edge wing portion 40 are straight lines, respectively. It extends into a shape. The angle θ formed by the smaller chord line (or extension thereof) of the virtual wing tip wing portion 53 and the chord line (or extension thereof) of the wing tip trailing edge wing portion 40 is greater than 0 °. Other configurations are the same as those described in the second embodiment.
In these cases, in the vicinity of the blade tip of theblade 20, the wind incident from the rotor back side and the leading edge 23 side of the blade 20 passes through the blade length direction slit 31 to the rotor front side and the trailing edge 24 side of the blade 20. And flow. As a result, separation of the flow is suppressed on the surface on the rotor back surface side and the surface on the rotor front side in the blade tip trailing edge wing portion 40, and a large positive pressure and negative pressure can be generated respectively. That is, on both the front edge side (blade edge leading edge wing part 51) and the trailing edge side (blade edge trailing edge wing part 40) in the vicinity of the blade tip of the blade 20, A large positive pressure and negative pressure can be generated respectively. Therefore, the lift can be improved and the efficiency of the wind hydraulic machine can be improved.
However, these configurations may be used when the rotor of the present invention is configured as a rotor for a wind power generator (wind turbine or the like) or a hydroelectric generator (water turbine or the like).
例えば、第1実施形態や第2実施形態において、「ロータ正面側」と「ロータ背面側」とを逆にした構成にしてもよい。この構成は、本発明のロータが、送風機、ポンプ、ヘリコプター、又はドローン用のロータとして構成された場合に、特に好適なものである。
より具体的に、第1実施形態において「ロータ正面側」と「ロータ背面側」とを逆にした場合には、翼端後縁翼部40は、その前縁43側の部分が本体翼部50に対してロータ背面側(本例では正圧側)に向かってめくれたような、形状を有しており、翼端後縁翼部40の前縁43は、仮想翼端翼部53の翼型中心線CAL53よりも、ロータ背面側(本例では正圧側)に位置する。そして、翼20の翼型中心線はロータ正面側で凸となるように湾曲し、また、仮想翼端翼部53の翼型中心線CAL53と翼端後縁翼部40の翼型中心線CAL40とは、それぞれロータ正面側で凸となるように湾曲する。仮想翼端翼部53の翼弦線(又はその延長線)と翼端後縁翼部40の翼弦線(又はその延長線)との小さいほうのなす角度θは、0°以上である。その他の構成については、第1実施形態で述べたことと同様である。
また、第2実施形態において「ロータ正面側」と「ロータ背面側」とを逆にした場合には、翼端後縁翼部40は、その前縁43側の部分が本体翼部50に対してロータ背面側(本例では正圧側)に向かってめくれたような、形状を有しており、翼端後縁翼部40の前縁43は、仮想翼端翼部53の翼型中心線CAL53よりも、ロータ背面側(本例では正圧側)に位置する。そして、翼20の翼型中心線は直線状に延在し、また、仮想翼端翼部53の翼型中心線CAL53と翼端後縁翼部40の翼型中心線CAL40とは、それぞれ直線状に延在する。仮想翼端翼部53の翼弦線(又はその延長線)と翼端後縁翼部40の翼弦線(又はその延長線)との小さいほうのなす角度θは、0°よりも大きい。その他の構成については、第2実施形態で述べたことと同様である。
これらの場合、翼20の翼端付近において、翼20のロータ背面側かつ前縁23側から入射した風は、翼長方向スリット31を通って、翼20のロータ正面側かつ後縁24側へと流れる。これにより、翼端後縁翼部40におけるロータ背面側の表面とロータ正面側の表面において、流れの剥離が抑制され、大きな正圧及び負圧をそれぞれ生じさせることができる。すなわち、翼20の翼端付近における前縁側(翼端前縁翼部51)と後縁側(翼端後縁翼部40)との両方で、ロータ背面側の表面とロータ正面側の表面において、大きな正圧及び負圧をそれぞれ生じさせることができる。よって、揚力を向上でき、風水力機械の効率を向上できる。
ただし、これらの構成は、本発明のロータが、風力発電機(風車等)又は水力発電機(水車等)用のロータとして構成された場合に用いられてもよい。 The rotor of the present invention is not limited to the examples described above.
For example, in the first and second embodiments, the “rotor front side” and the “rotor back side” may be reversed. This configuration is particularly suitable when the rotor of the present invention is configured as a blower, pump, helicopter, or drone rotor.
More specifically, when the “rotor front side” and the “rotor back side” are reversed in the first embodiment, the blade edge trailing
Further, when the “rotor front side” and the “rotor rear side” are reversed in the second embodiment, the blade tip trailing
In these cases, in the vicinity of the blade tip of the
However, these configurations may be used when the rotor of the present invention is configured as a rotor for a wind power generator (wind turbine or the like) or a hydroelectric generator (water turbine or the like).
本発明の比較例1及び実施例1~10のロータの性能を、解析により評価したので、説明する。この解析では、各比較例及び実施例のロータを、それぞれ風力発電機に用いた場合を想定して、周速比λ=0.926、2.778、4.630、6.482のそれぞれにおけるパワー係数Cpを求めた。周速比λ、パワー係数Cpの算出には、上述の式(1)、(2)をそれぞれ用いた。そして、周速比λの値ごとに、各実施例のパワー係数Cpを、比較例1のパワー係数Cpを100%としたときのパーセンテージで表した。その結果を、「パワー係数比率(%)」として、表1~表3、図11~図13に示す。図11~図13は、それぞれ表1~表3に対応する。
The performance of the rotors of Comparative Example 1 and Examples 1 to 10 of the present invention was evaluated by analysis and will be described. In this analysis, assuming that the rotors of the comparative examples and the examples are respectively used for wind power generators, the circumferential speed ratios λ = 0.926, 2.778, 4.630, and 6.482, respectively. The power coefficient Cp was determined. Tip speed ratio lambda, the calculation of the power coefficient C p, the above equation (1), was used as the (2). Then, for each value of tip speed ratio lambda, the power coefficient C p of the examples, expressed as a percentage when the 100% power factor C p of Comparative Example 1. The results are shown in Tables 1 to 3 and FIGS. 11 to 13 as “power coefficient ratio (%)”. 11 to 13 correspond to Tables 1 to 3, respectively.
なお、解析には、アンシス社製の数値流体計算ソフトウェアANSYS-CFXを用いた。ロータのモデルには、一定の風速U = 4m/s及び回転速度ωを与えることによって、定常解析を行った。乱流モデルはSST k -ωを使用した。図10は、解析に用いたモデル60を示している。各比較例及び実施例のロータのモデルは、3枚翼のロータを想定したが、計算時間短縮のために計算領域を軸周りに3分割したもので構成し、その1つの分割面に周期境界条件を与えた。なお、図14は、この解析においてλ=0.926としたときに得られた、実施例のロータの翼の翼端付近の流線を示すものである。
For analysis, numerical fluid calculation software ANSYS-CFX manufactured by Ansys Corporation was used. The rotor model was subjected to steady analysis by giving a constant wind speed U = 4 m / s and a rotational speed ω. SST 乱 k -ω was used as the turbulent model. FIG. 10 shows the model 60 used for the analysis. The rotor model of each comparative example and example assumed a three-blade rotor. However, to reduce the calculation time, the calculation area was divided into three around the axis, and a periodic boundary was formed on one of the divided surfaces. Conditions were given. FIG. 14 shows streamlines in the vicinity of the blade tip of the rotor blade of the example obtained when λ = 0.926 in this analysis.
各比較例及び実施例のロータは、互いに翼の形状のみを異ならせたものとし、いずれも、ロータの半径Rを463mm、翼の翼長Lを349.25mm、翼の翼弦長CHL(翼の全長にわたって一定)を104.8mmとし、また、翼のピッチ角の翼長方向での分布は図1~図3の例と同じとした。
比較例1のロータの翼は、翼長方向スリット31のない通常の矩形翼とし、その翼型中心線は、ロータ背面側で凸となるように湾曲するものとした。
実施例1~10のロータの翼は、いずれも、図1~図6を参照して説明した構造、すなわち、翼長方向スリット31を1つ(ひいては翼端後縁翼部40を1つ)有し、仮想翼端翼部53の翼型中心線CAL53と翼端後縁翼部40の翼型中心線CAL40とがそれぞれロータ背面側で凸となるように湾曲しているものとした。各実施例のロータの翼は、いずれも、翼端後縁翼部40の前縁43が、仮想翼端翼部53の翼型中心線CAL53よりも、ロータの正面側に位置しているものであった。各実施例のロータの翼は、翼長方向スリット31の前縁側の端(すなわち翼端前縁翼部51の後縁51a)が、翼の後縁から翼弦方向に翼弦長CHLの38%の長さ(40mm)だけ離れた位置に配置されていた。各実施例のロータの翼は、ロータ1の回転中心軸線Oに対して垂直な投影面における、翼長方向スリット31のスリット幅d、該投影面における翼長方向スリット31の翼長方向の長さl、仮想翼端翼部53の翼弦線と翼端後縁翼部40の翼弦線との小さいほうのなす角度θの、3つのパラメータの値のみで異なるものとした。その詳細を表1~表3に示す。 The rotors of the comparative examples and the examples are different from each other only in the shape of the blades. In each case, the rotor radius R is 463 mm, the blade length L is 349.25 mm, and the blade chord length CHL (blade The distribution of the pitch angle of the blades in the blade length direction is the same as in the examples of FIGS. 1 to 3.
The rotor blade of Comparative Example 1 was a normal rectangular blade having no blade length direction slit 31 and its airfoil center line was curved so as to be convex on the rotor back side.
The rotor blades of Examples 1 to 10 all have the structure described with reference to FIGS. 1 to 6, that is, one blade length direction slit 31 (and one blade tip trailing edge blade portion 40). The wing shapecenter line CAL 53 of the virtual wing tip wing portion 53 and the wing shape center line CAL 40 of the wing tip trailing edge wing portion 40 are curved so as to be convex on the rotor back side. In each of the rotor blades of the embodiments, the leading edge 43 of the blade tip trailing edge blade portion 40 is located on the front side of the rotor from the airfoil center line CAL53 of the virtual blade tip blade portion 53. Met. In the rotor blades of the respective embodiments, the leading edge side end of the blade length direction slit 31 (that is, the trailing edge 51a of the blade tip leading edge wing portion 51) is 38 in the chord length CHL from the trailing edge of the blade in the chord direction. % Distance (40 mm) apart. The rotor blades of the respective embodiments have the slit width d of the blade length direction slit 31 on the projection plane perpendicular to the rotation center axis O of the rotor 1, and the length in the blade length direction of the blade length direction slit 31 on the projection surface. The angle θ between the chord line of the virtual wing tip wing portion 53 and the chord line of the wing tip trailing edge wing portion 40 is different only by three parameter values. Details are shown in Tables 1 to 3.
比較例1のロータの翼は、翼長方向スリット31のない通常の矩形翼とし、その翼型中心線は、ロータ背面側で凸となるように湾曲するものとした。
実施例1~10のロータの翼は、いずれも、図1~図6を参照して説明した構造、すなわち、翼長方向スリット31を1つ(ひいては翼端後縁翼部40を1つ)有し、仮想翼端翼部53の翼型中心線CAL53と翼端後縁翼部40の翼型中心線CAL40とがそれぞれロータ背面側で凸となるように湾曲しているものとした。各実施例のロータの翼は、いずれも、翼端後縁翼部40の前縁43が、仮想翼端翼部53の翼型中心線CAL53よりも、ロータの正面側に位置しているものであった。各実施例のロータの翼は、翼長方向スリット31の前縁側の端(すなわち翼端前縁翼部51の後縁51a)が、翼の後縁から翼弦方向に翼弦長CHLの38%の長さ(40mm)だけ離れた位置に配置されていた。各実施例のロータの翼は、ロータ1の回転中心軸線Oに対して垂直な投影面における、翼長方向スリット31のスリット幅d、該投影面における翼長方向スリット31の翼長方向の長さl、仮想翼端翼部53の翼弦線と翼端後縁翼部40の翼弦線との小さいほうのなす角度θの、3つのパラメータの値のみで異なるものとした。その詳細を表1~表3に示す。 The rotors of the comparative examples and the examples are different from each other only in the shape of the blades. In each case, the rotor radius R is 463 mm, the blade length L is 349.25 mm, and the blade chord length CHL (blade The distribution of the pitch angle of the blades in the blade length direction is the same as in the examples of FIGS. 1 to 3.
The rotor blade of Comparative Example 1 was a normal rectangular blade having no blade length direction slit 31 and its airfoil center line was curved so as to be convex on the rotor back side.
The rotor blades of Examples 1 to 10 all have the structure described with reference to FIGS. 1 to 6, that is, one blade length direction slit 31 (and one blade tip trailing edge blade portion 40). The wing shape
表1及び図11は、比較例1、実施例1~4の解析結果を示している。実施例1~4は、いずれもl=(2/8)L、θ=0°とし、dをそれぞれ0~8mmの範囲で異ならせた。
表2及び図12は、比較例1、実施例5、3、6~8の解析結果を示している。実施例5、3、6~8は、いずれもd=5mm、θ=0°とし、lを(1/8)L~(5/8)Lの範囲で異ならせた。
表3及び図13は、比較例1、実施例3、9、10の解析結果を示している。実施例3、9、10は、いずれもd=5mm、l=(2/8)Lとし、θを0°~10°の範囲で異ならせた。 Table 1 and FIG. 11 show the analysis results of Comparative Example 1 and Examples 1 to 4. In each of Examples 1 to 4, l = (2/8) L and θ = 0 °, and d was varied in the range of 0 to 8 mm.
Table 2 and FIG. 12 show the analysis results of Comparative Example 1, Examples 5, 3, and 6-8. In Examples 5, 3, and 6 to 8, d = 5 mm and θ = 0 °, and l was varied in the range of (1/8) L to (5/8) L.
Table 3 and FIG. 13 show the analysis results of Comparative Example 1, Examples 3, 9, and 10. In Examples 3, 9, and 10, d = 5 mm and l = (2/8) L, and θ was varied in the range of 0 ° to 10 °.
表2及び図12は、比較例1、実施例5、3、6~8の解析結果を示している。実施例5、3、6~8は、いずれもd=5mm、θ=0°とし、lを(1/8)L~(5/8)Lの範囲で異ならせた。
表3及び図13は、比較例1、実施例3、9、10の解析結果を示している。実施例3、9、10は、いずれもd=5mm、l=(2/8)Lとし、θを0°~10°の範囲で異ならせた。 Table 1 and FIG. 11 show the analysis results of Comparative Example 1 and Examples 1 to 4. In each of Examples 1 to 4, l = (2/8) L and θ = 0 °, and d was varied in the range of 0 to 8 mm.
Table 2 and FIG. 12 show the analysis results of Comparative Example 1, Examples 5, 3, and 6-8. In Examples 5, 3, and 6 to 8, d = 5 mm and θ = 0 °, and l was varied in the range of (1/8) L to (5/8) L.
Table 3 and FIG. 13 show the analysis results of Comparative Example 1, Examples 3, 9, and 10. In Examples 3, 9, and 10, d = 5 mm and l = (2/8) L, and θ was varied in the range of 0 ° to 10 °.
表1~表3、図11~図13から判るように、実施例1~10のロータは、比較例1のロータに比べて、主に周速比が比較的低い時(λ=0.926)と比較的高い時(λ=6.482)との少なくともいずれか一方で、パワー係数Cpひいては効率を増大できた。よって、本発明のロータは、従来のロータに比べて、性能が全体的に向上することを確認できた。
As can be seen from Tables 1 to 3 and FIGS. 11 to 13, the rotors of Examples 1 to 10 mainly have a relatively low peripheral speed ratio compared to the rotor of Comparative Example 1 (λ = 0.926). ) And at a relatively high time (λ = 6.482), the power coefficient C p and thus the efficiency could be increased. Therefore, it was confirmed that the performance of the rotor of the present invention was improved as a whole as compared with the conventional rotor.
本発明のロータは、風水力機械に用いられるものであり、特に水平軸型の風力発電機又は送風機に用いられると好適なものである。
The rotor of the present invention is used for a wind-hydraulic machine, and particularly suitable for use in a horizontal axis type wind power generator or blower.
1 ロータ
10 ハブ
20 翼
21 翼根
22 翼端
23 前縁
24 後縁
31 翼長方向スリット
32 翼弦方向スリット
40 翼端後縁翼部
43 翼端後縁翼部の前縁
44 翼端後縁翼部の後縁
50 本体翼部
51 本体翼部の翼端前縁翼部
51a 翼端前縁翼部の後縁
52 本体翼部の仮想翼端後縁翼部
53 仮想翼端翼部
60 解析モデル
CAL40、CAL53 翼型中心線
L 翼長
O ロータの回転中心軸線
r ハブの半径
R ロータの半径
RD 回転方向 DESCRIPTION OFSYMBOLS 1 Rotor 10 Hub 20 Blade 21 Blade root 22 Blade tip 23 Lead edge 24 Trailing edge 31 Blade length direction slit 32 Blade chord direction slit 40 Blade tip trailing edge blade 43 Blade tip trailing edge Blade leading edge 44 Blade tip trailing edge Rear edge 50 of the wing body Main wing section 51 Front wing wing section 51a of the main wing section Trailing edge 52 of the wing edge front edge wing section Virtual wing end trailing wing section 53 of the main wing section Virtual wing tip wing section 60 Analysis Model CAL40, CAL53 Airfoil center line L Blade length O Rotor rotation center axis r Hub radius R Rotor radius RD Rotation direction
10 ハブ
20 翼
21 翼根
22 翼端
23 前縁
24 後縁
31 翼長方向スリット
32 翼弦方向スリット
40 翼端後縁翼部
43 翼端後縁翼部の前縁
44 翼端後縁翼部の後縁
50 本体翼部
51 本体翼部の翼端前縁翼部
51a 翼端前縁翼部の後縁
52 本体翼部の仮想翼端後縁翼部
53 仮想翼端翼部
60 解析モデル
CAL40、CAL53 翼型中心線
L 翼長
O ロータの回転中心軸線
r ハブの半径
R ロータの半径
RD 回転方向 DESCRIPTION OF
Claims (8)
- 主軸に支持されるハブと、
該ハブに連結された翼と、
を備えた、風水力機械用のロータであって、
前記翼は、
本体翼部と、
前記本体翼部に対して翼端後縁側に位置する翼端後縁翼部と、
を有し、
前記本体翼部と前記翼端後縁翼部との間には、
該翼を翼厚方向に貫通するとともに、該翼の翼端から該翼の翼根側に向かって延在して該翼根に至る手前で終端する、翼長方向スリットと、
該翼を翼厚方向に貫通するとともに、前記翼長方向スリットの前記翼根側の端から該翼の後縁側に向かって延在して該後縁に至る手前で終端し、スリット幅がほぼ0である、翼弦方向スリットと、
が区画されており、
前記翼端後縁翼部の前縁は、前記本体翼部のうち前記翼端後縁翼部に対して前縁側に位置する部分を前記翼の後縁まで滑らかに延長させてなる、仮想翼端翼部の、翼型中心線よりも、ロータの正面側又は背面側に位置している、ロータ。 A hub supported by the main shaft;
A wing connected to the hub;
A rotor for a wind and hydraulic machine,
The wing
The wings of the main body,
A wing tip trailing edge wing located on the wing tip trailing edge side with respect to the main body wing,
Have
Between the main body wing and the wing tip trailing edge wing,
A blade length direction slit extending through the blade in the blade thickness direction, extending from the blade tip toward the blade root side of the blade and terminating before reaching the blade root;
The blade penetrates the blade in the blade thickness direction, extends from the blade root side end of the blade length direction slit toward the trailing edge side of the blade and terminates before reaching the trailing edge, and has a slit width of approximately A chord slit which is zero,
Is divided,
The leading edge of the blade tip trailing edge blade portion is a virtual blade formed by smoothly extending a portion of the main body blade portion located on the leading edge side with respect to the blade tip trailing edge blade portion to the blade trailing edge. The rotor which is located in the front side or back side of a rotor rather than an airfoil center line of an end wing part. - 前記翼長方向スリットは、ほぼ一定のスリット幅をもって直線状に延在している、請求項1に記載のロータ。 The rotor according to claim 1, wherein the blade length direction slit extends linearly with a substantially constant slit width.
- 前記翼端後縁翼部の前縁は、前記仮想翼端翼部の翼型中心線よりも、ロータの正面側に位置しており、
前記仮想翼端翼部の翼型中心線と前記翼端後縁翼部の翼型中心線とは、それぞれロータの背面側で凸となるように湾曲しており、
前記仮想翼端翼部の翼弦線と前記翼端後縁翼部の翼弦線との小さいほうのなす角度θは、0°以上である、請求項1又は2に記載のロータ。 The leading edge of the blade tip trailing edge wing is located on the front side of the rotor from the airfoil center line of the virtual blade tip wing,
The airfoil center line of the virtual blade tip wing part and the airfoil center line of the blade tip trailing edge wing part are each curved so as to be convex on the back side of the rotor,
3. The rotor according to claim 1, wherein an angle θ formed by a smaller chord line of the virtual wing tip wing portion and a chord line of the wing tip trailing edge wing portion is 0 ° or more. - 前記仮想翼端翼部の翼型中心線と前記翼端後縁翼部の翼型中心線とは、それぞれ直線状に延在しており、
前記仮想翼端翼部の翼弦線と前記翼端後縁翼部の翼弦線との小さいほうのなす角度θは、0°よりも大きい、請求項1又は2に記載のロータ。 The airfoil center line of the virtual wing tip wing part and the airfoil center line of the wing tip trailing edge wing part each extend linearly,
The rotor according to claim 1 or 2, wherein an angle θ formed by a smaller chord line of the virtual wing tip wing part and a chord line of the wing tip trailing edge wing part is larger than 0 °. - 前記翼端後縁翼部の前縁は、前記仮想翼端翼部の翼型中心線よりも、ロータの背面側に位置しており、
前記仮想翼端翼部の翼型中心線と前記翼端後縁翼部の翼型中心線とは、それぞれロータの正面側で凸となるように湾曲しており、
前記仮想翼端翼部の翼弦線と前記翼端後縁翼部の翼弦線との小さいほうのなす角度θは、0°以上である、請求項1又は2に記載のロータ。 The leading edge of the blade tip trailing edge wing is located on the back side of the rotor from the airfoil center line of the virtual blade tip wing,
The airfoil center line of the virtual blade tip wing part and the airfoil center line of the blade tip trailing edge wing part are each curved so as to be convex on the front side of the rotor,
3. The rotor according to claim 1, wherein an angle θ formed by a smaller chord line of the virtual wing tip wing portion and a chord line of the wing tip trailing edge wing portion is 0 ° or more. - 前記仮想翼端翼部の翼弦線と前記翼端後縁翼部の翼弦線との小さいほうのなす角度θは、5°未満である、請求項3~5のいずれか一項に記載のロータ。 The angle θ formed by the smaller chord line of the imaginary wing tip wing part and the chord line of the wing tip trailing edge wing part is less than 5 °, according to any one of claims 3 to 5. Rotor.
- 前記翼長方向スリットは、前記仮想翼端翼部の翼弦線の中心点どうしを結んだ翼弦中心線よりも、後縁側に位置している、請求項1~6のいずれか一項に記載のロータ。 The blade length direction slit is located on a trailing edge side with respect to a chord center line connecting the chord line center points of the virtual blade tip wing portion, according to any one of claims 1 to 6. The described rotor.
- 前記翼は、該翼の翼弦方向において互いに異なる位置に配置された複数の前記翼端後縁翼部を有している、請求項1~7のいずれか一項に記載のロータ。
The rotor according to any one of claims 1 to 7, wherein the wing has a plurality of wing tip trailing edge wings arranged at positions different from each other in a chord direction of the wing.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017006707A JP6709741B2 (en) | 2017-01-18 | 2017-01-18 | Rotor |
JP2017-006707 | 2017-01-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018135093A1 true WO2018135093A1 (en) | 2018-07-26 |
Family
ID=62908327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/039988 WO2018135093A1 (en) | 2017-01-18 | 2017-11-06 | Rotor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6709741B2 (en) |
WO (1) | WO2018135093A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6544702B1 (en) * | 2018-08-15 | 2019-07-17 | 明久 松園 | Wing angle autonomous amplitude control type wind turbine |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000009097A (en) * | 1998-06-25 | 2000-01-11 | Daikin Ind Ltd | Impeller for blower |
JP2001073995A (en) * | 1999-09-03 | 2001-03-21 | Daikin Ind Ltd | Impeller for blower |
JP2003336572A (en) * | 2002-02-22 | 2003-11-28 | Mitsubishi Heavy Ind Ltd | Wind mill having nacell structure |
-
2017
- 2017-01-18 JP JP2017006707A patent/JP6709741B2/en active Active
- 2017-11-06 WO PCT/JP2017/039988 patent/WO2018135093A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000009097A (en) * | 1998-06-25 | 2000-01-11 | Daikin Ind Ltd | Impeller for blower |
JP2001073995A (en) * | 1999-09-03 | 2001-03-21 | Daikin Ind Ltd | Impeller for blower |
JP2003336572A (en) * | 2002-02-22 | 2003-11-28 | Mitsubishi Heavy Ind Ltd | Wind mill having nacell structure |
Also Published As
Publication number | Publication date |
---|---|
JP6709741B2 (en) | 2020-06-17 |
JP2018115607A (en) | 2018-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6101240B2 (en) | Rear edge side panel | |
US8529211B2 (en) | Wind turbine rotor blade and airfoil section | |
WO2016103572A1 (en) | Rotor | |
EP3037656B1 (en) | Rotor blade with vortex generators | |
JP6167051B2 (en) | Wind turbine blade, wind turbine rotor and wind power generator | |
EP3006731B1 (en) | Rotor | |
JP6153989B2 (en) | Vortex generator, wind turbine blade and wind power generator | |
JP2019517408A (en) | propeller | |
JP5425192B2 (en) | Propeller fan | |
JP5593976B2 (en) | Propeller fan | |
US11300096B2 (en) | Method for determining arrangement position of vortex generator on wind turbine blade, method for producing wind turbine blade assembly, and wind turbine blade assembly | |
JP2004084522A (en) | Blade and wind power generator with it | |
BRPI0901706A2 (en) | wind turbine blades with twisted tips | |
JP5433554B2 (en) | Wind turbine blade, wind power generator equipped with the wind turbine blade, and wind turbine blade design method | |
WO2018135093A1 (en) | Rotor | |
JP2009191744A (en) | Vertical shaft wind turbine | |
CN116157597A (en) | Wind turbine | |
JP5479300B2 (en) | Wind turbine blade, wind power generator equipped with the wind turbine blade, and wind turbine blade design method | |
EP3098436B1 (en) | Noise reducing flap with opening | |
JP5433553B2 (en) | Wind turbine blade, wind power generator equipped with the wind turbine blade, and wind turbine blade design method | |
TWI627350B (en) | Rotor | |
JP5805913B1 (en) | Wind turbine blade and wind power generator equipped with the same | |
WO2022202488A1 (en) | Wind turbine and wind power generation apparatus | |
JP2021188513A (en) | Rotor | |
JP2022518550A (en) | Rotor blades for wind turbines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17892399 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17892399 Country of ref document: EP Kind code of ref document: A1 |