[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018134975A1 - 熱交換器および冷凍サイクル装置並びに熱交換器の製造方法 - Google Patents

熱交換器および冷凍サイクル装置並びに熱交換器の製造方法 Download PDF

Info

Publication number
WO2018134975A1
WO2018134975A1 PCT/JP2017/001972 JP2017001972W WO2018134975A1 WO 2018134975 A1 WO2018134975 A1 WO 2018134975A1 JP 2017001972 W JP2017001972 W JP 2017001972W WO 2018134975 A1 WO2018134975 A1 WO 2018134975A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
heat transfer
transfer tube
heat exchanger
tube
Prior art date
Application number
PCT/JP2017/001972
Other languages
English (en)
French (fr)
Inventor
哲矢 山下
瑞朗 酒井
野花 長崎
訓弘 藤田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018562831A priority Critical patent/JP6765451B2/ja
Priority to PCT/JP2017/001972 priority patent/WO2018134975A1/ja
Priority to CN201790000542.6U priority patent/CN209263760U/zh
Publication of WO2018134975A1 publication Critical patent/WO2018134975A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/08Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of both metal tubes and sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Definitions

  • the present invention relates to a heat exchanger, a refrigeration cycle apparatus, and a heat exchanger manufacturing method in which a groove is formed in an inner peripheral wall of a heat transfer tube.
  • a groove formed at the time of manufacturing the heat transfer tube is formed on the inner peripheral wall of the heat transfer tube through which the working fluid flows.
  • This heat transfer tube is expanded using a tube expansion burette having a diameter larger than the inner diameter of the heat transfer tube in which a groove is formed in the inner peripheral wall in the manufacturing process of the heat source side heat exchanger.
  • a liquid film of working fluid that flows along the groove is formed in the heat transfer tube of the heat source side heat exchanger.
  • convection heat transfer is performed and evaporation from the liquid film surface is predominantly performed. Therefore, with respect to the protrusion, there is little convective heat transfer from the heat transfer tube to the liquid film of the working fluid, and the effect of improving the heat transfer efficiency of the newly formed protrusion is limited.
  • the working fluid that circulates in the heat transfer tube is laminar in the low mass velocity region. Even if the working fluid becomes laminar in this way, the liquid film of the working fluid that flows along the groove inside the heat transfer tube is limited, and convective heat transfer to the liquid film of the working fluid is difficult, and heat transfer efficiency is reduced. To do.
  • This invention is for solving the said subject, and it aims at providing the manufacturing method of the heat exchanger which can improve the heat transfer efficiency of a heat exchanger tube, the refrigerating cycle apparatus, and a heat exchanger.
  • a heat exchanger includes a heat transfer tube through which a working fluid flows, and a plurality of fins that are inserted through the heat transfer tube and arranged in parallel at intervals, and the heat transfer tube is disposed on an inner peripheral wall.
  • the refrigeration cycle apparatus according to the present invention includes the heat exchanger described above.
  • a method of manufacturing a heat exchanger according to the present invention is a method of manufacturing a heat exchanger comprising: a heat transfer tube through which a working fluid flows; and a plurality of fins that are inserted through the heat transfer tube and arranged in parallel at intervals.
  • a first groove is formed in the inner peripheral wall of the heat transfer tube to be thinner than the inner peripheral wall at the time of manufacturing the heat transfer tube, and the inner peripheral wall of the heat transfer tube is less than the inner peripheral wall.
  • the thickness of the tube is reduced, and the second groove having a shape different from that of the first groove is formed at the time of expansion of the heat transfer tube inserted through the plurality of fins.
  • the heat transfer tube is formed on the inner peripheral wall, and the first groove having a smaller wall thickness than the inner peripheral wall, and the inner peripheral wall It was formed, and the tube thickness was made thinner than the inner peripheral wall, and the second groove had a shape different from the first groove.
  • region where the tube thickness of a heat exchanger tube is thin increases, and the heat-transfer area which is easy to transfer heat with a thin tube thickness can be expanded.
  • corrugation formed in the inner peripheral wall of a heat exchanger tube becomes complicated, and the turbulent flow of the working fluid which distribute
  • FIG. 3 (a) is a figure which expand
  • FIG.3 (b) is a heat exchanger tube.
  • FIG.3 (c) is explanatory drawing which shows the cross section which orthogonally crosses the inner surface of a heat exchanger tube to the length direction of a heat exchanger tube.
  • FIG.4 (a) is a figure which expand
  • FIG.4 (b) is a heat exchanger tube. It is a perspective view which shows the outline
  • FIG.4 (c) is explanatory drawing which shows the cross section which orthogonally crosses the inner surface of a heat exchanger tube to the length direction of a heat exchanger tube.
  • FIG.5 (a) is a figure which expand
  • FIG.5 (b) is a heat exchanger tube.
  • FIG. 5C is an explanatory view showing a cross section of the inner surface of the heat transfer tube perpendicular to the length direction of the heat transfer tube.
  • FIG. 6 (a) is a figure which expand
  • FIG.6 (b) is a heat exchanger tube.
  • FIG. 6C is an explanatory view showing a cross section of the inner surface of the heat transfer tube perpendicular to the length direction of the heat transfer tube. It is a figure which shows collectively the cross-sectional shape of the 2nd groove
  • FIG.7 (e) is a figure which shows the cross-sectional shape of a 2nd groove
  • FIG.9 (a) is a figure which expand
  • FIG.9 (b) is FIG.
  • FIG. 10B is a diagram showing a tube expansion step S2 in which the tube expansion burette is inserted while being rotated with respect to the length direction of the heat transfer tube.
  • FIG. 11 (a1) is a side view which shows the tube expansion burette which has a convex part parallel to the length direction of a heat exchanger tube.
  • 11 (a2) is a front view of the expanded burette of FIG. 11 (a1) as viewed from the tip, and
  • FIG. 11 (b) is a side view showing the expanded burette having a spiral convex portion with respect to the length direction of the heat transfer tube.
  • FIG. 11 (c) is a side view showing a tube expansion burette having a convex portion whose length is shorter than the width of the cross section perpendicular to the groove length direction of the second groove in the length direction of the heat transfer tube;
  • FIG. 11D is a side view showing a tube expansion burette having a convex portion having a length shorter than the width of the cross section perpendicular to the groove length direction of the second groove in the length direction of the heat transfer tube.
  • Fig.12 (a) shows the case where the groove depth of a 1st groove
  • FIG. 12B is a diagram illustrating a case where the groove depth of the first groove is different from the groove depth of the second groove. It is a schematic block diagram which shows the air conditioning apparatus which concerns on Embodiment 2 of this invention.
  • FIG. 1 is a perspective view showing a heat exchanger 1 according to Embodiment 1 of the present invention.
  • FIG. 2 is an explanatory view showing a longitudinal section of the heat exchanger 1 according to Embodiment 1 of the present invention.
  • the heat exchanger 1 shown in FIG. 1 and FIG. 2 is used for the heat source side heat exchanger 103 with which the outdoor unit of the air conditioning apparatus 100 mentioned later is equipped, for example.
  • the heat exchanger 1 includes a plurality of heat transfer tubes 2 through which a working fluid flows, and a plurality of fins 3 through which the plurality of heat transfer tubes 2 are inserted and arranged in parallel at intervals. And.
  • the plurality of fins 3 are formed with through holes 4 having fin collars 4a around them.
  • the straight heat transfer tube 2 is inserted into the through hole 4 and the heat transfer tube 2 is expanded.
  • the plurality of fins 3 are fixed to the heat transfer tube 2 at intervals.
  • the heat exchanger 1 shown in FIGS. 1 and 2 is in this state.
  • FIG. 3 is a diagram collectively showing the internal configuration 1 of the heat transfer tube 2 according to Embodiment 1 of the present invention
  • FIG. 3A is a diagram showing the inner surface of the heat transfer tube 2 expanded.
  • (B) is a perspective view which shows the outline
  • FIG.3 is explanatory drawing which shows the cross section which orthogonally crosses the inner surface of the heat exchanger tube 2 to the length direction of a heat exchanger tube.
  • the inner peripheral wall 5 of the heat transfer tube 2 refers to an inner peripheral reference surface that the cylindrical heat transfer tube 2 inherently has as an inner diameter.
  • the plurality of first grooves 6 are formed in a spiral shape with respect to the length direction of the heat transfer tube 2.
  • the plurality of first grooves 6 are formed at an equal pitch.
  • the plurality of first grooves 6 are formed when the heat transfer tube 2 is manufactured.
  • the plurality of first grooves 6 are not necessarily limited to the spiral shape shown in FIG.
  • the plurality of first grooves 6 may be formed in a range of 0 ° ⁇ 1 ⁇ 90 ° with respect to an orthogonal plane orthogonal to the length direction of the heat transfer tube 2. Further, the plurality of first grooves 6 may be formed straight in the length direction of the heat transfer tube 2.
  • a plurality of second grooves 7 are formed on the inner peripheral wall 5, which are thinner than the inner peripheral wall 5 and have a shape different from that of the plurality of first grooves 6. .
  • the plurality of second grooves 7 are formed in inner surface portions different from the plurality of first grooves 6 so as to intersect the plurality of first grooves 6.
  • the plurality of second grooves 7 are formed in a straight line parallel to the length direction of the heat transfer tube 2.
  • the plurality of second grooves 7 are formed at an equal pitch.
  • the plurality of second grooves 7 are formed when the heat transfer tubes 2 inserted through the plurality of fins 3 are expanded.
  • the plurality of second grooves 7 have the same shape. Note that the groove depth of the first groove 6 and the groove depth of the second groove 7 are preferably matched.
  • the groove depth of the second groove 7 may be a depth different from the groove depth of the first groove 6.
  • FIG. 4 is a diagram collectively showing the internal configuration 2 of the heat transfer tube 2 according to Embodiment 1 of the present invention
  • FIG. 4A is a diagram showing the inner surface of the heat transfer tube 2 expanded.
  • (B) is a perspective view which shows the outline
  • FIG.4 is explanatory drawing which shows the cross section orthogonal to the length direction of a heat exchanger tube at the inner surface of a heat exchanger tube.
  • the internal configuration 2 of the heat transfer tube 2 features that are different from the internal configuration 1 of the heat transfer tube 2 will be described, and the same configuration will be omitted.
  • the plurality of second grooves 7a and 7b have different shapes.
  • the heat exchanger tube 2 may have a plurality of types of second grooves 7a and 7b by combining two or more shapes of the second grooves 7a and 7b.
  • FIG. 5 is a diagram collectively showing the internal configuration 3 of the heat transfer tube 2 according to Embodiment 1 of the present invention
  • FIG. 5A is a diagram showing the inner surface of the heat transfer tube 2 expanded
  • FIG. 5B is a perspective view showing an outline of the inner surface of the heat transfer tube 2
  • FIG. 5C is an explanatory view showing a cross section of the inner surface of the heat transfer tube 2 orthogonal to the length direction of the heat transfer tube 2.
  • the internal configuration 3 of the heat transfer tube 2 features that are different from the internal configurations 1 and 2 of the heat transfer tube 2 will be described, and the same configuration will be omitted.
  • the plurality of second grooves 7 c are formed in a spiral shape with respect to the length direction of the heat transfer tube 2.
  • the plurality of spiral second grooves 7 c intersect the plurality of spiral first grooves 6.
  • the plurality of spiral second grooves 7c may be formed in a range of 90 ° ⁇ 2 ⁇ 180 ° with respect to an orthogonal plane orthogonal to the length direction of the heat transfer tube 2. Accordingly, the plurality of second grooves 7 c can be formed so as to intersect perpendicularly with respect to the plurality of first grooves 6.
  • the heat transfer efficiency of the heat transfer tube 2 can be further improved by vigorously mixing the working fluid flowing through the first groove 6 and the second groove 7c in the heat transfer tube 2.
  • FIG. 6 is a diagram collectively showing the internal configuration 4 of the heat transfer tube 2 according to Embodiment 1 of the present invention
  • FIG. 6A is a diagram showing the inner surface of the heat transfer tube 2 in an exploded manner
  • FIG. 6B is a perspective view showing an outline of the inner surface of the heat transfer tube 2
  • FIG. 6C is an explanatory view showing a cross section of the inner surface of the heat transfer tube 2 perpendicular to the length direction of the heat transfer tube 2.
  • characteristic portions different from the internal configurations 1 to 3 of the heat transfer tube 2 will be described, and the same configuration will be omitted.
  • the plurality of second grooves 7 d are parallel to the plurality of first grooves 6. That is, the plurality of second grooves 7 d are formed in a spiral shape in parallel with the plurality of first grooves 6 formed in a spiral shape in the length direction of the heat transfer tube 2.
  • the plurality of second grooves 7d are formed in a range of 0 ° ⁇ 1 ⁇ 90 ° with respect to the orthogonal plane orthogonal to the length direction of the heat transfer tube 2, and the angle ⁇ 1 is equal to the angle ⁇ 1 of the plurality of first grooves 6.
  • the plurality of second grooves 7 d are formed at equal intervals in accordance with the intervals between the plurality of first grooves 6.
  • the plurality of second grooves may be formed in parallel to the plurality of linear first grooves 6 parallel to the length direction of the heat transfer tube 2.
  • the plurality of second grooves are formed in a straight line parallel to the length direction of the heat transfer tube 2.
  • FIG. 7 is a view collectively showing the cross-sectional shape of the second groove 7 according to Embodiment 1 of the present invention
  • FIG. 7A is a view showing the cross-sectional shape of the second groove 7 having a square cross section.
  • FIG. 7B is a diagram showing a sectional shape of the second groove 7 having a trapezoidal section
  • FIG. 7C is a diagram showing a sectional shape of the second groove 7 having a U-shaped section.
  • FIG. 7 (D) is a figure which shows the cross-sectional shape of the 2nd groove
  • FIG.7 (e) is a figure which shows the cross-sectional shape of the 2nd groove
  • the second groove 7 of the internal configuration 1 of the heat transfer tube 2 will be described as a representative. However, these shapes may be applied to the other second grooves 7a, 7b, 7c, and 7d.
  • the plurality of second grooves 7 may be formed in a cross-sectional square shape in a cross-sectional shape orthogonal to the length direction.
  • the groove opening width 8 and the groove bottom width 9 are equal in length.
  • the region where the tube thickness is thinner than the inner peripheral wall 5 in the heat transfer tube 2 can be increased.
  • corrugation formed in the inner peripheral wall 5 of the heat exchanger tube 2 can be complicated.
  • the plurality of second grooves 7 may be formed in a trapezoidal cross-sectional shape perpendicular to the length direction.
  • the groove opening width 8 and the groove bottom width 9 are different lengths. That is, in FIG. 7B, the groove bottom width 9 of the second groove 7 is longer than the groove opening width 8. In this case, the speed of the working fluid flowing through the groove bottom 10 of the second groove 7 is increased, and the heat transfer efficiency of the heat transfer tube 2 can be further improved.
  • the plurality of second grooves 7 may be formed in a trapezoidal cross-sectional shape perpendicular to the length direction.
  • the groove opening width 8 and the groove bottom width 9 are different lengths. That is, although not shown, the groove bottom width 9 of the second groove 7 may be formed to be shorter than the groove opening width 8. In this case, when the working fluid flowing in the heat transfer tube 2 flows into the second groove 7, the contact efficiency with the heat transfer surface of the heat transfer tube 2 can be improved, and the heat transfer efficiency of the heat transfer tube 2 can be further improved.
  • the plurality of second grooves 7 may be formed in a U-shaped cross section in a cross-sectional shape orthogonal to the length direction.
  • the groove bottom 10 is a curved surface. That is, the groove bottom width 9 of the second groove 7 is formed in a cross-sectional arc shape with a thinner groove thickness toward the center. In this case, an increase in pressure loss to the working fluid flowing through the second groove 7 is suppressed.
  • the plurality of second grooves 7 may be formed in a V-shaped cross section in a cross-sectional shape orthogonal to the length direction.
  • the groove bottom 10 has no width. In this case, when the working fluid flowing in the heat transfer tube 2 flows into the second groove 7, the contact efficiency with the heat transfer surface of the heat transfer tube 2 can be improved, and the heat transfer efficiency of the heat transfer tube 2 can be further improved.
  • channel 7 may be formed in the cross-sectional shape orthogonal to the length direction in cross-sectional W shape.
  • one mountain shape parallel to the groove length direction is formed at the groove bottom 10.
  • the plurality of second grooves 7 may be formed in the groove bottom 10 with two or more mountain shapes parallel to the groove length direction. In this case, the same effect as described above can be obtained.
  • FIG. 8 is a perspective view showing another example of the heat exchanger 1 according to Embodiment 1 of the present invention.
  • the different types of heat transfer tubes 2a and 2b in which different types of hatching in the region of the heat transfer tubes 2a and 2b shown in FIG. 8 form different types of first grooves 6 and second grooves 7 are shown.
  • two or more different types of heat transfer tubes 2 a and 2 b in which different types of first grooves 6 and second grooves 7 are formed in one heat exchanger 1 may be used.
  • the plurality of second grooves 7 a and 7 b of one heat transfer tube 2 may have different shapes.
  • heat transfer tubes 2a and 2b effective for individual working fluids having different properties can be arranged.
  • effective heat transfer tubes 2a and 2b can be arranged in accordance with changes in the state of the working fluid. Therefore, the heat transfer efficiency of the heat transfer tubes 2a and 2b can be further improved.
  • FIG. 9 is a diagram collectively showing the configuration of the heat transfer tube 2 during manufacture according to Embodiment 1 of the present invention
  • FIG. 9A is a diagram showing the inner surface of the heat transfer tube 2 in an exploded manner
  • 9 (b) is a perspective view showing an outline of the inner surface of the heat transfer tube 2
  • FIG. 9 (c) is an explanatory view showing a cross section of the inner surface of the heat transfer tube 2 perpendicular to the length direction of the heat transfer tube 2.
  • FIG. 9 is a diagram collectively showing the configuration of the heat transfer tube 2 during manufacture according to Embodiment 1 of the present invention
  • FIG. 9A is a diagram showing the inner surface of the heat transfer tube 2 in an exploded manner
  • 9 (b) is a perspective view showing an outline of the inner surface of the heat transfer tube 2
  • FIG. 9 (c) is an explanatory view showing a cross section of the inner surface of the heat transfer tube 2 perpendicular to the length direction of the heat transfer tube 2.
  • the heat transfer tube 2 has a plurality of first grooves 6 formed on the inner surface at the time of manufacture.
  • the plurality of first grooves 6 may be integrally formed when the heat transfer tube 2 is formed. That is, the plurality of first grooves 6 are simultaneously formed in the manufacturing process when the heat transfer tube 2 is manufactured.
  • FIG. 10 is a diagram collectively showing tube expansion steps S1 and S2 when the heat transfer tube 2 according to Embodiment 1 of the present invention is expanded.
  • FIG. 10 (a) shows the tube expansion burette 11a in the length direction of the heat transfer tube 2.
  • FIG. 10B is a diagram showing a tube expansion step S2 in which the tube expansion bullet 11b is inserted while rotating in the length direction of the heat transfer tube 2;
  • the tube expansion burette 11 a is made longer than the length of the heat transfer tube 2.
  • the heat transfer tube 2 is expanded by inserting it straight forward.
  • the step of expanding the heat transfer tube 2 by inserting the tube expansion bullet 11a straightly in the length direction of the heat transfer tube 2 and inserting the same is referred to as a tube expansion step S1.
  • the tube expansion burette 11a has a plurality of convex portions 12a parallel to the length direction of the heat transfer tube 2, as will be described later.
  • the plurality of second grooves 7 are inserted into the plurality of second grooves 7 straightly in the length direction of the heat transfer tube 2 by inserting the tube expansion burette 11 a having a plurality of convex portions 12 a parallel to the length direction of the heat transfer tube 2. It is formed on the locus of the convex portion 12a.
  • the plurality of second grooves 7 are formed in a straight line parallel to the length direction of the heat transfer tube 2. Further, in this case, when the first groove 6 and the second groove 7 are intersected and formed so that the groove depth of the first groove 6 and the groove depth of the second groove 7 coincide with each other, the plurality of second grooves 7 are formed.
  • the inner peripheral wall 5 portion of the heat transfer tube 2 protruding between the first grooves 6 can be formed to be scraped off, which is easy to manufacture.
  • the tube expansion burette 11 b is formed in the length of the heat transfer tube 2.
  • the heat transfer tube 2 is expanded by inserting while rotating with respect to the vertical direction.
  • the step of expanding the heat transfer tube 2 by inserting the tube expansion bullet 11b while rotating the heat transfer tube 2 in the longitudinal direction is referred to as a tube expansion step S2.
  • the tube expansion burette 11b has a plurality of convex portions 12b that are spiral with respect to the length direction of the heat transfer tube 2, as will be described later.
  • the plurality of second grooves 7c or the second grooves 7d in the tube expansion step S2 are changed from the length of the heat transfer tube 2 to the tube expansion burette 11b having the plurality of convex portions 12b spiral to the length direction of the heat transfer tube 2. It is inserted along the plurality of convex portions 12b that are spiral with respect to the vertical direction and is formed on the locus of the plurality of convex portions 12b. In this case, the plurality of second grooves 7 c or the second grooves 7 d are formed in a spiral shape with respect to the length direction of the heat transfer tube 2.
  • first groove 6 and the second groove 7c are crossed and formed so that the groove depth of the first groove 6 and the groove depth of the second groove 7c coincide with each other, a plurality of second grooves 7c are formed.
  • the inner peripheral wall 5 portion of the heat transfer tube 2 protruding between the first grooves 6 can be formed to be scraped off, which is easy to manufacture.
  • the expanded burette 11c has a plurality of convex portions 12c having a length shorter than the width of the cross section perpendicular to the groove length direction of the second groove 7 in the length direction of the heat transfer tube 2. good.
  • the tube expansion step S1 and the tube expansion step S2 can be selected using one type of tube expansion burette 11c. For this reason, it is not necessary to prepare a plurality of types of expanded burettes 11c, which is efficient.
  • FIG. 11 is a diagram collectively showing the shapes of the expanded burettes 11 a, 11 b, 11 c, and 11 d according to Embodiment 1 of the present invention, and FIG. 11 (a 1) is a protrusion that is parallel to the length direction of the heat transfer tube 2.
  • 11A is a side view showing the expanded burette 11a having 12a
  • FIG. 11A2 is a front view of the expanded burette 11a of FIG. 11A1, viewed from the tip
  • FIG. 11B is the length of the heat transfer tube 2.
  • FIG. 11 (c) is a cross section orthogonal to the groove length direction of the 2nd groove
  • FIG. 11B is a side view showing the expanded burette 11c having a convex portion 12c that is shorter than the width
  • FIG. 11D is a cross-sectional view perpendicular to the length direction of the second groove 7 in the length direction of the heat transfer tube 2; Expanded bure having a convex portion 12d having a length shorter than the width in a spiral shape Is a side view showing the door 11d.
  • the expanded burettes 11a, 11b, 11c, and 11d as shown in Fig. 11 are used when expanding the heat transfer tube 2 having the first groove 6.
  • the tube diameter of the heat transfer tube 2 is increased, and the heat transfer tube 2 is inserted into the through hole 4.
  • the fin 3 having the fin collar 4 a over the entire circumference is fixed to the outside of the heat transfer tube 2.
  • the expanded burette 11a as shown in FIG. 11 (a) has a plurality of convex portions 12a parallel to the length direction of the heat transfer tube 2 on the side surface.
  • the pipe expansion burette 11a is used in the pipe expansion process S1 described above, and at the time of pipe expansion, a plurality of linear second grooves 7 parallel to the length direction of the heat transfer pipe 2 are formed in the heat transfer pipe 2 by the trajectories of the plurality of convex portions 12a.
  • the expanded burette 11a may have different shapes of the plurality of second grooves 7a or second grooves 7b formed by changing the shapes of the plurality of convex portions 12a.
  • the expanded burette 11b as shown in FIG. 11 (b) has a plurality of convex portions 12b that are spiral with respect to the length direction of the heat transfer tube 2 on the side surface.
  • the pipe expansion burette 11b is used in the pipe expansion process S2 described above, and the pipes are expanded to the heat transfer pipe 2 at the time of pipe expansion by the plurality of second grooves 7c spirally with respect to the length direction of the heat transfer pipe 2 by the trajectories of the plurality of convex portions 12b.
  • Two grooves 7d are formed.
  • the tube expansion bullet 11b may vary the shape of the plurality of second grooves 7d to be formed by varying the shape of the plurality of convex portions 12b.
  • the expanded burette 11c as shown in FIG. 11C has a plurality of convex portions 12c whose length is shorter than the width of the cross section perpendicular to the groove length direction of the second groove 7 in the length direction of the heat transfer tube 2 on the side surface. have.
  • a plurality of linear second grooves 7, 7a, 7b are formed in the heat transfer tube 2 by the trajectories of the plurality of convex portions 12c during the pipe expansion.
  • the tube expansion burette 11c When used in the above-described tube expansion step S2, the tube expansion burette 11c forms a plurality of spiral second grooves 7c or second grooves 7d in the heat transfer tube 2 by the trajectories of the plurality of convex portions 12c during tube expansion.
  • the tube expansion bullet 11c may vary the shape of the plurality of second grooves 7 to be formed by varying the shape of the plurality of convex portions 12c.
  • the expanded burette 11d as shown in FIG. 11 (d) spirals a plurality of convex portions 12d having a length shorter than the width of the cross section perpendicular to the groove length direction of the second groove 7 in the length direction of the heat transfer tube 2. It has a shape. In this case, it can be used similarly to the expanded burette 11c as shown in FIG.
  • FIG. 12 is a diagram collectively showing the state of the working fluid in the heat transfer tube 2 according to Embodiment 1 of the present invention.
  • FIG. 12 (a) shows the groove depth of the first groove 6 and the groove of the second groove 7. It is a figure which shows the case where the depth is the same,
  • FIG.12 (b) is a figure which shows the case where the groove depth of the 1st groove
  • the working fluid that receives heat in the heat transfer tube 2 is in the state of an annular flow or an annular spray flow that has a high heat transfer coefficient.
  • a liquid film 13 that flows along the heat transfer surface that is the inner surface of the heat transfer tube 2 is formed.
  • convection heat transfer is performed, and evaporation from the liquid film surface is predominantly performed.
  • the gas 14 that has evaporated by receiving heat from the working fluid flows through the center of the heat transfer tube 2.
  • the groove depth of the first groove 6 and the groove depth of the second groove 7 are the same, the groove depth of the first groove 6 and the second groove 7 There are cases where the groove depth is different.
  • the plurality of first grooves 6 and the plurality of second grooves 7 are thinner than the inner peripheral wall 5 of the heat transfer tube 2. That is, a plurality of first grooves 6 and a plurality of second grooves 7 are formed in the heat transfer tube 2, and an area where the tube thickness is thinner than the inner peripheral wall 5 increases, and the liquid film 13 and the heat transfer tube 2 are in contact with each other. Increases area. For this reason, in the heat transfer tube 2, the heat transfer area where heat transfer is easy with a thin tube thickness that is easy to contact the liquid film 13 can be expanded. Therefore, the heat transfer efficiency of the heat transfer tube 2 can be further improved.
  • the plurality of first grooves 6 and the plurality of second grooves 7 form the inner surface of the heat transfer tube 2 in a complicated unevenness. Therefore, the unevenness formed on the inner peripheral wall 5 on the inner surface of the heat transfer tube 2 is complicated, and the turbulent flow of the working fluid flowing through the heat transfer tube 2 can be promoted. Therefore, the heat transfer efficiency of the heat transfer tube 2 can be further improved.
  • the working fluid is an HFO refrigerant, an HFC refrigerant, a natural refrigerant represented by R1234yf, R1234ze, CO 2 or the like, or a mixed refrigerant thereof.
  • coolant was simulated as an example. However, the same effect can be obtained even in a non-azeotropic refrigerant mixture.
  • the heat exchanger 1 includes the heat transfer tube 2 through which the working fluid flows.
  • the heat exchanger 1 includes a plurality of fins 3 through which heat transfer tubes 2 are inserted and arranged in parallel at intervals.
  • the heat transfer tube 2 has a first groove 6 that is formed in the inner peripheral wall 5 and has a thinner tube thickness than the inner peripheral wall 5.
  • the heat transfer tube 2 has second grooves 7, 7 a, 7 b, 7 c, and 7 d that are formed on the inner peripheral wall 5 and are thinner than the inner peripheral wall 5 and have shapes different from those of the first groove 6. Yes.
  • tube thickness is thinner than the inner peripheral wall 5 in the heat exchanger tube 2 increases, and the heat transfer area which is easy to transfer heat with thin pipe
  • corrugation formed in the inner peripheral wall 5 of the heat exchanger tube 2 becomes complicated, and the turbulent flow of the working fluid which distribute
  • the first groove 6 is formed when the heat transfer tube 2 is manufactured.
  • the second grooves 7, 7 a, 7 b, 7 c, 7 d are formed when the heat transfer tube 2 inserted through the plurality of fins 3 is expanded.
  • the first groove 6 and the second grooves 7, 7 a, 7 b, 7 c, and 7 d different from the first groove 6 exchange heat with the inner peripheral wall 5 of the heat transfer tube 2.
  • the heat transfer tube manufacturing process and the heat transfer pipe expanding process which are two manufacturing processes essential to the vessel 1, can be formed.
  • the manufacturing process for forming only the groove is not required, and the heat exchanger 1 in which the first groove 6 and the second grooves 7, 7a, 7b, 7c, and 7d are formed can be easily manufactured, and the manufacturing efficiency can be improved. Is good.
  • the groove depth of the first groove 6 and the groove depths of the second grooves 7, 7a, 7b, and 7c coincide with each other.
  • the plurality of second grooves 7, 7 a, 7 b, 7 c are formed in the first groove 6.
  • the inner peripheral wall 5 portion of the heat transfer tube 2 protruding in between can be formed to be scraped off, which is easy to manufacture.
  • the second grooves 7, 7 a, 7 b, 7 c are formed so as to intersect the first groove 6.
  • tube thickness is thinner than the inner peripheral wall 5 in the heat exchanger tube 2 can be increased.
  • corrugation formed in the inner peripheral wall 5 of the heat exchanger tube 2 can be complicated.
  • the working fluid that flows through the first groove 6 and the second grooves 7, 7 a, 7 b, and 7 c in the heat transfer tube 2. Are mixed with each other, and the heat transfer efficiency of the heat transfer tube 2 can be further improved.
  • the second groove 7 d is formed in parallel to the first groove 6. According to this structure, the area
  • a plurality of second grooves 7, 7c, 7d are formed.
  • the plurality of second grooves 7, 7c, 7d have the same shape. According to this configuration, the second grooves 7, 7c, 7d can be easily and efficiently formed. Further, the second grooves 7, 7c and 7d effective for individual working fluids having different properties can be selected. Alternatively, the effective second grooves 7, 7c, 7d can be selected according to the change in the state of the working fluid. Therefore, the heat transfer efficiency of the heat transfer tube 2 can be further improved.
  • a plurality of second grooves 7a and 7b are formed.
  • the plurality of second grooves 7a and 7b have different shapes. According to this configuration, the unevenness formed on the inner peripheral wall 5 of the heat transfer tube 2 can be made more complicated. Further, the second grooves 7a and 7b effective for individual working fluids having different properties can be arranged. Alternatively, effective second grooves 7a and 7b can be arranged in accordance with a change in the state of the working fluid. Therefore, the heat transfer efficiency of the heat transfer tube 2 can be further improved.
  • the second grooves 7, 7 a, 7 b are formed in a straight line parallel to the length direction of the heat transfer tube 2. According to this configuration, the second grooves 7, 7a, 7b can be easily and efficiently formed. Further, the second grooves 7, 7a, 7b are linear in parallel to the length direction of the heat transfer tube 2, and extend in the working fluid flow direction. As a result, the increase in pressure loss is suppressed without hindering the flow of the working fluid.
  • the second grooves 7, 7 a, 7 b are formed by straightly inserting the expanded burette 11 a having the convex portion 12 a parallel to the length direction of the heat transfer tube 2 in the length direction of the heat transfer tube 2.
  • the second grooves 7, 7a, 7b can be easily and efficiently formed.
  • the second grooves 7 c and 7 d are formed in a spiral shape with respect to the length direction of the heat transfer tube 2. According to this configuration, the unevenness formed on the inner peripheral wall 5 of the heat transfer tube 2 can be made more complicated. Further, for example, the spiral second grooves 7 c and 7 d can be formed in the spiral first groove 6 in the orthogonal direction. In this case, the working fluid flowing through the first groove 6 and the second grooves 7c and 7d in the heat transfer tube 2 is vigorously mixed, and the heat transfer efficiency of the heat transfer tube 2 can be further improved.
  • the second grooves 7 c and 7 d are formed so that the expanded burette 11 b having the spiral convex portion 12 b with respect to the length direction of the heat transfer tube 2 is spiral with respect to the length direction of the heat transfer tube 2. It is formed by being inserted while being rotated along the convex portion 12b. According to this configuration, the unevenness formed on the inner peripheral wall 5 of the heat transfer tube 2 can be made more complicated.
  • the second groove 7 is a convex portion 12c having a length shorter than the width of the cross section perpendicular to the groove length direction of the second grooves 7, 7a, 7b in the length direction of the heat transfer tube 2.
  • An expanded burette 11 c having a straight line is formed by straight insertion in the length direction of the heat transfer tube 2.
  • the second grooves 7 c and 7 d are formed by inserting a tube expansion burette 11 c having a convex portion 12 c having a short length in the length direction of the heat transfer tube 2 while rotating it in the length direction of the heat transfer tube 2. Yes.
  • the second grooves 7, 7 a, 7 b, 7 c, and 7 d are linear grooves parallel to the length direction of the heat transfer tube 2 or the length of the heat transfer tube 2 using one type of expanded burette 11 c. It can be formed in one of two types of grooves called spiral grooves with respect to the vertical direction. For this reason, it is not necessary to prepare a plurality of types of expanded burettes 11c, which is efficient.
  • the protrusions 12a, 12b, 12c, and 12d have cross sections orthogonal to the insertion direction of the tube expansion bullets 11a, 11b, 11c, and 11d in the second grooves 7, 7a, 7b, 7c, and 7d. Equal to the cross section perpendicular to the groove length direction. According to this configuration, the shapes of the second grooves 7, 7a, 7b, 7c, 7d can be changed according to the shapes of the convex portions 12a, 12b, 12c, 12d.
  • the second groove 7 has a length equal to the groove opening width 8 and the groove bottom width 9. According to this structure, the area
  • the second groove 7 has a length in which the groove opening width 8 and the groove bottom width 9 are different.
  • tube thickness is thinner than the inner peripheral wall 5 in the heat exchanger tube 2 can be increased.
  • corrugation formed in the inner peripheral wall 5 of the heat exchanger tube 2 can be complicated.
  • the groove bottom width 9 of the second groove 7 can be formed to be longer than the groove opening width 8. In this case, the speed of the working fluid flowing through the groove bottom 10 is increased, and the heat transfer efficiency of the heat transfer tube 2 can be further improved.
  • the groove bottom width 9 of the second groove 7 can be formed to be shorter than the groove opening width 8. In this case, when the working fluid flowing in the heat transfer tube 2 flows into the second groove 7, the contact efficiency with the heat transfer surface of the heat transfer tube 2 can be improved, and the heat transfer efficiency of the heat transfer tube 2 can be further improved.
  • the groove bottom part 10 is a curved surface.
  • tube thickness is thinner than the inner peripheral wall 5 in the heat exchanger tube 2 can be increased.
  • corrugation formed in the inner peripheral wall 5 of the heat exchanger tube 2 can be complicated.
  • the groove bottom width 9 of the second groove 7 can be formed in a circular arc shape with a thinner groove thickness toward the center. In this case, an increase in pressure loss to the working fluid flowing through the second groove 7 is suppressed.
  • the groove bottom part 10 does not have a width
  • the second groove 7 is formed in the groove bottom portion 10 in a mountain shape parallel to the groove length direction.
  • tube thickness is thinner than the inner peripheral wall 5 in the heat exchanger tube 2 can be increased.
  • corrugation formed in the inner peripheral wall 5 of the heat exchanger tube 2 can be complicated. Further, when the working fluid flowing in the heat transfer tube 2 flows into the second groove 7, the contact efficiency with the heat transfer surface of the heat transfer tube 2 can be improved, and the heat transfer efficiency of the heat transfer tube 2 can be further improved.
  • the working fluid is an HFO refrigerant, an HFC refrigerant, a natural refrigerant, or a mixed refrigerant thereof. According to this configuration, the working fluid has good heat transfer efficiency from the heat transfer tube 2.
  • the method of manufacturing the heat exchanger 1 includes a heat transfer tube 2 through which a working fluid flows, and a plurality of fins 3 that are inserted through the heat transfer tube 2 and arranged in parallel at intervals.
  • the provided heat exchanger 1 is manufactured.
  • a first groove 6 is formed in the inner peripheral wall 5 of the heat transfer tube 2 to make the tube thickness thinner than the inner peripheral wall 5 when the heat transfer tube 2 is manufactured.
  • the second grooves 7, 7 a, 7 b, 7 c, and 7 d that are thinner than the inner peripheral wall 5 in the inner peripheral wall 5 of the heat transfer tube 2 are inserted into the plurality of fins 3. It is formed when the heat pipe 2 is expanded.
  • the second grooves 7, 7 a, 7 b formed when the heat transfer tube 2 is expanded have the expanded burette 11 a having the convex portions 12 a parallel to the length direction of the heat transfer tube 2 of the heat transfer tube 2. It is formed by inserting straight in the length direction. According to this configuration, the second grooves 7, 7a, 7b can be easily and efficiently formed.
  • the second grooves 7 c and 7 d formed when the heat transfer tube 2 is expanded include the expanded burette 11 b having the spiral convex portion 12 b with respect to the length direction of the heat transfer tube 2. It is formed by being inserted while rotating along the spiral convex portion 12b with respect to the length direction. According to this configuration, the unevenness formed on the inner peripheral wall 5 of the heat transfer tube 2 can be made more complicated.
  • the second groove 7 formed when the heat transfer tube 2 is expanded has a cross-sectional width orthogonal to the length direction of the second grooves 7, 7 a and 7 b in the length direction of the heat transfer tube 2. Further, the expanded pipe burette 11 c having the convex portion 12 c having a shorter length is inserted straight in the length direction of the heat transfer tube 2.
  • the second grooves 7 c and 7 d formed when the heat transfer tube 2 is expanded are formed so that the expanded burette 11 c having the convex portion 12 c having a short length in the length direction of the heat transfer tube 2 is in the length direction of the heat transfer tube 2. It is formed by inserting while rotating.
  • the second grooves 7, 7 a, 7 b, 7 c, and 7 d are linear grooves parallel to the length direction of the heat transfer tube 2 or the length of the heat transfer tube 2 using one type of expanded burette 11 c. It can be formed in one of two types of grooves called spiral grooves with respect to the vertical direction. For this reason, it is not necessary to prepare a plurality of types of expanded burettes 11c, which is efficient.
  • FIG. 13 is a schematic configuration diagram showing an air-conditioning apparatus 100 according to Embodiment 2 of the present invention.
  • the refrigerant flow during the cooling operation is indicated by a solid arrow
  • the refrigerant flow during the heating operation is indicated by a dotted arrow.
  • the air conditioner 100 includes a compressor 101, a four-way valve 102, a heat source side heat exchanger 103 using the heat exchanger 1 of the first embodiment, a throttle device 104, a load side And a heat exchanger 105.
  • the air conditioner 100 includes a heat source side fan 106 that blows air to the heat source side heat exchanger 103 and a load side fan 107 that blows air to the load side heat exchanger 105.
  • the air conditioning apparatus 100 includes pipes 108 and 109 that connect an indoor unit and an outdoor unit.
  • the air conditioner 100 includes control devices 110 and 111 that control various movable parts of the air conditioner 100.
  • the compressor 101 In the air conditioner 100, the compressor 101, the four-way valve 102, the heat source side heat exchanger 103, the expansion device 104, and the load side heat exchanger 105 are connected by a refrigerant pipe to form a refrigerant circulation circuit.
  • a compressor 101, a four-way valve 102, a throttle device 104, a heat source side fan 106, a load side fan 107, various sensors, and the like are connected to the control devices 110 and 111 via communication lines.
  • the heat source side heat exchanger 103 acts as a condenser during the cooling operation, and acts as an evaporator during the heating operation.
  • the load side heat exchanger 105 acts as an evaporator during the cooling operation, and acts as a condenser during the heating operation.
  • the high-pressure and high-temperature gas refrigerant discharged from the compressor 101 flows into the heat source side heat exchanger 103 via the four-way valve 102.
  • the refrigerant that has flowed into the heat source side heat exchanger 103 is condensed by heat exchange with the outside air supplied by the heat source side fan 106 to become a high-pressure liquid refrigerant and flows out of the heat source side heat exchanger 103.
  • the high-pressure liquid refrigerant flowing out of the heat source side heat exchanger 103 flows into the expansion device 104 and becomes a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant flowing out of the expansion device 104 flows into the load-side heat exchanger 105 and evaporates by heat exchange with the indoor air supplied by the load-side fan 107, thereby causing a low-pressure gas state. And flows out of the load-side heat exchanger 105.
  • the low-pressure gaseous refrigerant flowing out from the load-side heat exchanger 105 is sucked into the compressor 101 via the four-way valve 102.
  • the high-pressure and high-temperature gas refrigerant discharged from the compressor 101 flows into the load-side heat exchanger 105 through the four-way valve 102.
  • the refrigerant that has flowed into the load-side heat exchanger 105 is condensed by heat exchange with room air supplied by the load-side fan 107, becomes a high-pressure liquid refrigerant, and flows out of the load-side heat exchanger 105.
  • the high-pressure liquid refrigerant flowing out of the load-side heat exchanger 105 flows into the expansion device 104 and becomes a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant flowing out of the expansion device 104 flows into the heat source side heat exchanger 103 and evaporates by heat exchange with the outside air supplied by the heat source side fan 106, thereby being in a low pressure gas state. It becomes a refrigerant and flows out of the heat source side heat exchanger 103.
  • the low-pressure gaseous refrigerant flowing out of the heat source side heat exchanger 103 is sucked into the compressor 101 via the four-way valve 102.
  • the air conditioner 100 includes the heat exchanger 1 of the first embodiment described above as the heat source side heat exchanger 103. According to this structure, the air conditioning apparatus 100 can further improve the heat transfer efficiency of the heat transfer tube 2 by including the heat exchanger 1 of the first embodiment.
  • the air conditioner 100 is exemplified as the refrigeration cycle apparatus.
  • the present invention is not limited to this.
  • the refrigeration cycle apparatus of the present invention only needs to use the heat exchanger 1 of Embodiment 1 as a condenser or an evaporator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

熱交換器は、作動流体が流通する伝熱管と、伝熱管が挿通されて間隔を空けて平行に並べられた複数のフィンと、を備え、伝熱管は、内周壁に形成され、内周壁よりも管肉厚を薄くした第1溝と、内周壁に形成され、内周壁よりも管肉厚を薄くし、第1溝とは異なった形状の第2溝と、を有した。

Description

熱交換器および冷凍サイクル装置並びに熱交換器の製造方法
 本発明は、伝熱管の内周壁に溝が形成された熱交換器および冷凍サイクル装置並びに熱交換器の製造方法に関する。
 空気調和装置に用いられる熱源側熱交換器では、作動流体が流通する伝熱管の内周壁に、伝熱管の製造時に形成された溝が形成されている。この伝熱管は、熱源側熱交換器の製造過程にて、内周壁に溝が形成された伝熱管の内径よりも大きな径を持つ拡管ビュレットを用いて拡管を行う。これにより、伝熱管に間隔を空けて並べられた複数のフィンは、拡管された伝熱管に固定されている。
 従来、内周壁に螺旋溝によって2つの螺旋溝に挟まれた凸部を有する伝熱管に、拡管ビュレットを挿入し、伝熱管の外径を伝熱管の長さ方向にわたって拡管させる熱交換器の製造方法が知られている(たとえば、特許文献1参照)。
 特許文献1の技術では、拡管ビュレットの外周面に挿入方向に真っ直ぐ延伸したV字状溝を形成しておく。そして、拡管ビュレットを伝熱管内で前進させたときに、伝熱管の凸部の一部がV字状溝によって凸部よりも径方向内方に突き出た突起に形成される。
 これにより、伝熱管の伝熱性能(熱伝達効率)が向上できるとされている。
特開2009-058186号公報
 特許文献1の技術では、熱源側熱交換器の伝熱管内にて溝に沿って流通する作動流体の液膜が形成される。このとき、作動流体の液膜では、対流熱伝達して液膜表面からの蒸発が支配的に行われる。そのため、突起については、伝熱管から作動流体の液膜への対流熱伝達が少なく、新たに形成された突起の熱伝達効率の向上効果が限定的となる。
 また、伝熱管内を流通する作動流体は、低質量速度域では層流となる。このように作動流体が層流になっても、伝熱管内部にて溝に沿って流通する作動流体の液膜が限られ、作動流体の液膜に対流熱伝達し難く、熱伝達効率が低下する。
 本発明は、上記課題を解決するためのものであり、伝熱管の熱伝達効率がより向上できる熱交換器および冷凍サイクル装置並びに熱交換器の製造方法を提供することを目的とする。
 本発明に係る熱交換器は、作動流体が流通する伝熱管と、前記伝熱管が挿通されて間隔を空けて平行に並べられた複数のフィンと、を備え、前記伝熱管は、内周壁に形成され、前記内周壁よりも管肉厚を薄くした第1溝と、前記内周壁に形成され、前記内周壁よりも管肉厚を薄くし、前記第1溝とは異なった形状の第2溝と、を有したものである。
 本発明に係る冷凍サイクル装置は、上記の熱交換器を備えたものである。
 本発明に係る熱交換器の製造方法は、作動流体が流通する伝熱管と、前記伝熱管が挿通されて間隔を空けて平行に並べられた複数のフィンと、を備えた熱交換器の製造方法であって、前記伝熱管の内周壁にて前記内周壁よりも管肉厚を薄くする第1溝が前記伝熱管の製造時に形成され、前記伝熱管の前記内周壁にて前記内周壁よりも管肉厚を薄くし、前記第1溝とは異なった形状の第2溝が複数の前記フィンに挿通された前記伝熱管の拡管時に形成されるものである。
 本発明に係る熱交換器および冷凍サイクル装置並びに熱交換器の製造方法によれば、伝熱管は、内周壁に形成され、内周壁よりも管肉厚を薄くした第1溝と、内周壁に形成され、内周壁よりも管肉厚を薄くし、第1溝とは異なった形状の第2溝と、を有した。これにより、伝熱管の管肉厚の薄い領域が増大し、薄い管肉厚で伝熱し易い伝熱面積が拡大できる。また、伝熱管の内周壁に形成される凹凸が複雑化し、伝熱管を流通する作動流体の乱流が促進できる。したがって、伝熱管の熱伝達効率がより向上できる。
本発明の実施の形態1に係る熱交換器を示す斜視図である。 本発明の実施の形態1に係る熱交換器の縦断面を示す説明図である。 本発明の実施の形態1に係る伝熱管の内部構成1をまとめて示す図であり、図3(a)が伝熱管の内面を展開して示す図であり、図3(b)が伝熱管の内面の概要を示す斜視図であり、図3(c)が伝熱管の内面を伝熱管の長さ方向に直交する断面を示す説明図である。 本発明の実施の形態1に係る伝熱管の内部構成2をまとめて示す図であり、図4(a)が伝熱管の内面を展開して示す図であり、図4(b)が伝熱管の内面の概要を示す斜視図であり、図4(c)が伝熱管の内面を伝熱管の長さ方向に直交する断面を示す説明図である。 本発明の実施の形態1に係る伝熱管の内部構成3をまとめて示す図であり、図5(a)が伝熱管の内面を展開して示す図であり、図5(b)が伝熱管の内面の概要を示す斜視図であり、図5(c)が伝熱管の内面を伝熱管の長さ方向に直交する断面を示す説明図である。 本発明の実施の形態1に係る伝熱管の内部構成4をまとめて示す図であり、図6(a)が伝熱管の内面を展開して示す図であり、図6(b)が伝熱管の内面の概要を示す斜視図であり、図6(c)が伝熱管の内面を伝熱管の長さ方向に直交する断面を示す説明図である。 本発明の実施の形態1に係る第2溝の断面形状をまとめて示す図であり、図7(a)が断面四角状の第2溝の断面形状を示す図であり、図7(b)が断面台形状の第2溝の断面形状を示す図であり、図7(c)が断面U字状の第2溝の断面形状を示す図であり、図7(d)が断面V字状の第2溝の断面形状を示す図であり、図7(e)が断面W字状の第2溝の断面形状を示す図である。 本発明の実施の形態1に係る熱交換器の他の例を示す斜視図である。 本発明の実施の形態1に係る製造時の伝熱管の構成をまとめて示す図であり、図9(a)が伝熱管の内面を展開して示す図であり、図9(b)が伝熱管の内面の概要を示す斜視図であり、図9(c)が伝熱管の内面を伝熱管の長さ方向に直交する断面を示す説明図である。 本発明の実施の形態1に係る伝熱管の拡管時の拡管工程をまとめて示す図であり、図10(a)が拡管ビュレットを伝熱管の長さ方向に真っ直ぐ挿入する拡管工程S1を示す図であり、図10(b)が拡管ビュレットを伝熱管の長さ方向に対して回転させながら挿入する拡管工程S2を示す図である。 本発明の実施の形態1に係る拡管ビュレットの形状をまとめて示す図であり、図11(a1)が伝熱管の長さ方向に平行な凸部を有する拡管ビュレットを示す側面図であり、図11(a2)が図11(a1)の拡管ビュレットを先端から見た正面図であり、図11(b)が伝熱管の長さ方向に対して螺旋状の凸部を有する拡管ビュレットを示す側面図であり、図11(c)が伝熱管の長さ方向に第2溝の溝長さ方向に直交する断面の幅よりも長さの短い凸部を有する拡管ビュレットを示す側面図であり、図11(d)が伝熱管の長さ方向に第2溝の溝長さ方向に直交する断面の幅よりも長さの短い凸部を螺旋状に有する拡管ビュレットを示す側面図である。 本発明の実施の形態1に係る伝熱管内の作動流体の状態をまとめて示す図であり、図12(a)が第1溝の溝深さと第2溝の溝深さが同じ場合を示す図であり、図12(b)が第1溝の溝深さと第2溝の溝深さが異なる場合を示す図である。 本発明の実施の形態2に係る空気調和装置を示す概略構成図である。
 以下、図面に基づいて本発明の実施の形態について説明する。
 なお、各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。
 さらに、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
実施の形態1.
[熱交換器]
 図1は、本発明の実施の形態1に係る熱交換器1を示す斜視図である。図2は、本発明の実施の形態1に係る熱交換器1の縦断面を示す説明図である。
 図1、図2に示す熱交換器1は、たとえば、後述する空気調和装置100の室外機に備える熱源側熱交換器103に用いられる。
 図1、図2に示すように、熱交換器1は、作動流体が流通する複数の伝熱管2と、複数の伝熱管2が挿通されて間隔を空けて平行に並べられた複数のフィン3と、を備えている。
 複数のフィン3には、フィンカラー4aを周囲に有する貫通孔4が形成されている。真っ直ぐな伝熱管2が貫通孔4に挿入され、伝熱管2が拡管される。これにより、複数のフィン3は、伝熱管2に間隔を空けて固定されている。図1、図2に示す熱交換器1は、この状態である。
[伝熱管の内部構成1]
 図3は、本発明の実施の形態1に係る伝熱管2の内部構成1をまとめて示す図であり、図3(a)が伝熱管2の内面を展開して示す図であり、図3(b)が伝熱管2の内面の概要を示す斜視図であり、図3(c)が伝熱管2の内面を伝熱管の長さ方向に直交する断面を示す説明図である。
 図3に示す伝熱管2の内面には、内周壁5に形成されて内周壁5よりも管肉厚を薄くした複数の第1溝6を有している。
 なお、伝熱管2の内面とは、文言通り伝熱管2の内側の凹凸を含む面全体をいうものである。また、伝熱管2の内周壁5とは、円筒状の伝熱管2が本来的に内径として有する内周の基準面をいうものである。
 複数の第1溝6は、伝熱管2の長さ方向に対して螺旋状に形成されている。複数の第1溝6は、等ピッチで形成されている。複数の第1溝6は、伝熱管2の製造時に形成されている。
 なお、複数の第1溝6は、必ずしも図3に示す螺旋状に限定するものではない。複数の第1溝6は、伝熱管2の長さ方向に直交する直交面に対して0°<θ1<90°の範囲で形成されると良い。また、複数の第1溝6は、伝熱管2の長さ方向に真っ直ぐ形成されても良い。
 伝熱管2の内面には、内周壁5に形成されて内周壁5よりも管肉厚を薄くして複数の第1溝6とは異なった形状の複数の第2溝7を有している。
 複数の第2溝7は、複数の第1溝6と異なる内面部分に、複数の第1溝6に交差するように形成されている。複数の第2溝7は、伝熱管2の長さ方向に平行な直線状に形成されている。複数の第2溝7は、等ピッチで形成されている。複数の第2溝7は、複数のフィン3に挿通された伝熱管2の拡管時に形成されている。複数の第2溝7は、互いに同一形状である。
 なお、第1溝6の溝深さと第2溝7の溝深さとは、一致していると良い。また、第2溝7の溝深さは、第1溝6の溝深さと異なる深さでも良い。
[伝熱管の内部構成2]
 図4は、本発明の実施の形態1に係る伝熱管2の内部構成2をまとめて示す図であり、図4(a)が伝熱管2の内面を展開して示す図であり、図4(b)が伝熱管2の内面の概要を示す斜視図であり、図4(c)が伝熱管の内面を伝熱管の長さ方向に直交する断面を示す説明図である。
 ここで、伝熱管2の内部構成2では、伝熱管2の内部構成1とは異なる特徴部分について説明し、同様な構成を省略する。
 図4に示すように、複数の第2溝7a、7bは、互いに異なる形状である。このように、伝熱管2は、第2溝7a、7bの形状を2つ以上組合せて複数の種類の第2溝7a、7bを有しても良い。
[伝熱管の内部構成3]
 図5は、本発明の実施の形態1に係る伝熱管2の内部構成3をまとめて示す図であり、図5(a)が伝熱管2の内面を展開して示す図であり、図5(b)が伝熱管2の内面の概要を示す斜視図であり、図5(c)が伝熱管2の内面を伝熱管2の長さ方向に直交する断面を示す説明図である。
 ここで、伝熱管2の内部構成3では、伝熱管2の内部構成1、2とは異なる特徴部分について説明し、同様な構成を省略する。
 図5に示すように、複数の第2溝7cは、伝熱管2の長さ方向に対して螺旋状に形成されている。螺旋状の複数の第2溝7cは、螺旋状の複数の第1溝6に対して交差している。螺旋状の複数の第2溝7cは、伝熱管2の長さ方向に直交する直交面に対して90°<θ2<180°の範囲で形成されると良い。これにより、複数の第2溝7cは、複数の第1溝6に対して直交して交差するようにも形成できる。
 このような第2溝7cを有すると、伝熱管2内の第1溝6と第2溝7cとを流れる作動流体が激しく混ざり合うことにより、伝熱管2の熱伝達効率がより向上できる。
[伝熱管の内部構成4]
 図6は、本発明の実施の形態1に係る伝熱管2の内部構成4をまとめて示す図であり、図6(a)が伝熱管2の内面を展開して示す図であり、図6(b)が伝熱管2の内面の概要を示す斜視図であり、図6(c)が伝熱管2の内面を伝熱管2の長さ方向に直交する断面を示す説明図である。
 ここで、伝熱管2の内部構成4では、伝熱管2の内部構成1~3とは異なる特徴部分について説明し、同様な構成を省略する。
 図6に示すように、複数の第2溝7dは、複数の第1溝6に対して並行している。すなわち、複数の第2溝7dは、伝熱管2の長さ方向に対して螺旋状に形成された複数の第1溝6に対して並行に螺旋状に形成されている。複数の第2溝7dは、伝熱管2の長さ方向に直交する直交面に対して0°<θ1<90°の範囲で形成され、その角度θ1が複数の第1溝6の角度θ1と一致している。複数の第2溝7dは、複数の第1溝6間の間隔に合わせて等しい間隔で形成されている。
 なお、図示しないが、複数の第2溝は、伝熱管2の長さ方向に平行な直線状の複数の第1溝6に対して並行に形成されても良い。この場合には、複数の第2溝は、伝熱管2の長さ方向に平行な直線状に形成される。
[第2溝の断面形状]
 図7は、本発明の実施の形態1に係る第2溝7の断面形状をまとめて示す図であり、図7(a)が断面四角状の第2溝7の断面形状を示す図であり、図7(b)が断面台形状の第2溝7の断面形状を示す図であり、図7(c)が断面U字状の第2溝7の断面形状を示す図であり、図7(d)が断面V字状の第2溝7の断面形状を示す図であり、図7(e)が断面W字状の第2溝7の断面形状を示す図である。
 なお、ここでは、伝熱管2の内部構成1の第2溝7を代表して説明する。しかし、他の第2溝7a、7b、7c、7dにこれらの形状を適用しても良い。
 図7(a)に示すように、複数の第2溝7は、長さ方向に直交する断面形状を断面四角状に形成されても良い。第2溝7における断面四角状では、溝開口部幅8と溝底部幅9とが等しい長さである。この場合には、伝熱管2内において内周壁5よりも管肉厚の薄い領域が増大できる。また、伝熱管2の内周壁5に形成される凹凸が複雑化できる。
 図7(b)に示すように、複数の第2溝7は、長さ方向に直交する断面形状を断面台形状に形成されても良い。第2溝7における断面台形状では、溝開口部幅8と溝底部幅9とが異なる長さである。すなわち、図7(b)では、第2溝7の溝底部幅9が溝開口部幅8よりも長い長さに形成している。この場合には、第2溝7の溝底部10を流れる作動流体の速度が上昇し、伝熱管2の熱伝達効率がより向上できる。
 また、図7(b)とは逆に、複数の第2溝7は、長さ方向に直交する断面形状を断面台形状に形成されても良い。第2溝7における断面台形状では、溝開口部幅8と溝底部幅9とが異なる長さである。すなわち、図示しないが、第2溝7の溝底部幅9が溝開口部幅8よりも短い長さに形成しても良い。この場合には、伝熱管2内を流れる作動流体が第2溝7に流入する際に伝熱管2の伝熱面への接触効率が向上でき、伝熱管2の熱伝達効率がより向上できる。
 図7(c)に示すように、複数の第2溝7は、長さ方向に直交する断面形状を断面U字状に形成されても良い。第2溝7における断面U字状では、溝底部10が曲面である。すなわち、第2溝7の溝底部幅9が中心程溝肉厚の薄い断面円弧状に形成される。この場合には、第2溝7を流れる作動流体への圧力損失の上昇が抑えられる。
 図7(d)に示すように、複数の第2溝7は、長さ方向に直交する断面形状を断面V字状に形成されても良い。第2溝7における断面V字状では、溝底部10が幅を有しない。この場合には、伝熱管2内を流れる作動流体が第2溝7に流入する際に伝熱管2の伝熱面への接触効率が向上でき、伝熱管2の熱伝達効率がより向上できる。
 図7(e)に示すように、複数の第2溝7は、長さ方向に直交する断面形状を断面W字状に形成されても良い。第2溝7における断面W字状では、溝底部10に溝長さ方向に平行な山形状を1つ形成されている。この場合には、伝熱管2内を流れる作動流体が第2溝7に流入する際に伝熱管2の伝熱面への接触効率が向上でき、伝熱管2の熱伝達効率がより向上できる。
 なお、複数の第2溝7は、溝底部10に溝長さ方向に平行な山形状を2つ以上形成されても良い。この場合にも、上記と同様な効果が得られる。
[熱交換器の他の例]
 図8は、本発明の実施の形態1に係る熱交換器1の他の例を示す斜視図である。図8に示す伝熱管2a、2bの領域における異なるハッチングが異なる種類の第1溝6と第2溝7とを形成した異なる種類の伝熱管2a、2bを表している。
 図8に示すように、1つの熱交換器1に異なる種類の第1溝6と第2溝7とを形成した異なる2つ以上の種類の伝熱管2a、2bを用いてもよい。また、図4に示す伝熱管2の内部構成2のように、1つの伝熱管2の複数の第2溝7a、7bをも異なる形状としても良い。
 この場合には、性質の異なる個々の作動流体に対して有効な伝熱管2a、2bが配列できる。あるいは、作動流体の状態変化に応じて有効な伝熱管2a、2bが配列できる。よって、伝熱管2a、2bの熱伝達効率がより向上できる。
[製造時の伝熱管の構成]
 図9は、本発明の実施の形態1に係る製造時の伝熱管2の構成をまとめて示す図であり、図9(a)が伝熱管2の内面を展開して示す図であり、図9(b)が伝熱管2の内面の概要を示す斜視図であり、図9(c)が伝熱管2の内面を伝熱管2の長さ方向に直交する断面を示す説明図である。
 図9に示すように、伝熱管2は、製造時に、内面に複数の第1溝6が形成される。複数の第1溝6は、伝熱管2の成形時に一体成形されると良い。すなわち、複数の第1溝6は、伝熱管2の製造時の製造工程にて同時に形成される。
[伝熱管の拡管時の説明]
 図10は、本発明の実施の形態1に係る伝熱管2の拡管時の拡管工程S1、S2をまとめて示す図であり、図10(a)が拡管ビュレット11aを伝熱管2の長さ方向に真っ直ぐ挿入する拡管工程S1を示す図であり、図10(b)が拡管ビュレット11bを伝熱管2の長さ方向に対して回転させながら挿入する拡管工程S2を示す図である。
 図10(a)に示すように、複数の伝熱管2に対して間隔を空けて並んだ複数のフィン3を拡管させた伝熱管2に固定するために、拡管ビュレット11aを伝熱管2の長さ方向に真っ直ぐ前進させて挿入し、伝熱管2を拡管していく。この拡管ビュレット11aを伝熱管2の長さ方向に真っ直ぐ前進させて挿入し、伝熱管2を拡管していく工程を拡管工程S1という。
 拡管工程S1では、後述するように拡管ビュレット11aが伝熱管2の長さ方向に平行な複数の凸部12aを有している。このため、拡管工程S1により、複数の第2溝7は、伝熱管2の長さ方向に平行な複数の凸部12aを有する拡管ビュレット11aを伝熱管2の長さ方向に真っ直ぐ挿入して複数の凸部12aの軌跡上に形成されることになる。この場合には、複数の第2溝7は、伝熱管2の長さ方向に平行な直線状に形成される。またこの場合において、第1溝6と第2溝7とを交差させつつ第1溝6の溝深さと第2溝7の溝深さとが一致するように形成すると、複数の第2溝7が第1溝6間に突出した伝熱管2の内周壁5部分を削り落とすように形成でき、製造容易である。
 図10(b)に示すように、複数の伝熱管2に対して間隔を空けて並んだ複数のフィン3を拡管させた伝熱管2に固定するために、拡管ビュレット11bを伝熱管2の長さ方向に対して回転させながら挿入し、伝熱管2を拡管していく。この拡管ビュレット11bを伝熱管2の長さ方向に対して回転させながら前進させて挿入し、伝熱管2を拡管していく工程を拡管工程S2という。
 拡管工程S2では、後述するように拡管ビュレット11bが伝熱管2の長さ方向に対して螺旋状の複数の凸部12bを有している。このため、拡管工程S2により、複数の第2溝7cまたは第2溝7dは、伝熱管2の長さ方向に対して螺旋状の複数の凸部12bを有する拡管ビュレット11bを伝熱管2の長さ方向に対して螺旋状の複数の凸部12bに沿って回転させながら挿入して複数の凸部12bの軌跡上に形成されることになる。この場合には、複数の第2溝7cまたは第2溝7dは、伝熱管2の長さ方向に対して螺旋状に形成される。またこの場合において、第1溝6と第2溝7cとを交差させつつ第1溝6の溝深さと第2溝7cの溝深さとが一致するように形成すると、複数の第2溝7cが第1溝6間に突出した伝熱管2の内周壁5部分を削り落とすように形成でき、製造容易である。
 ここで、後述するように拡管ビュレット11cが伝熱管2の長さ方向に第2溝7の溝長さ方向に直交する断面の幅よりも長さの短い複数の凸部12cを有しても良い。この場合には、1種類の拡管ビュレット11cを用いて、拡管工程S1と拡管工程S2とが選択できる。このため、拡管ビュレット11cを複数種類用意する必要が無く、効率的である。
[拡管ビュレットの形状]
 図11は、本発明の実施の形態1に係る拡管ビュレット11a、11b、11c、11dの形状をまとめて示す図であり、図11(a1)が伝熱管2の長さ方向に平行な凸部12aを有する拡管ビュレット11aを示す側面図であり、図11(a2)が図11(a1)の拡管ビュレット11aを先端から見た正面図であり、図11(b)が伝熱管2の長さ方向に対して螺旋状の凸部12bを有する拡管ビュレット11bを示す側面図であり、図11(c)が伝熱管2の長さ方向に第2溝7の溝長さ方向に直交する断面の幅よりも長さの短い凸部12cを有する拡管ビュレット11cを示す側面図であり、図11(d)が伝熱管2の長さ方向に第2溝7の溝長さ方向に直交する断面の幅よりも長さの短い凸部12dを螺旋状に有する拡管ビュレット11dを示す側面図である。
 図11に示すような拡管ビュレット11a、11b、11c、11dは、第1溝6を有する伝熱管2を拡管する際に用いる。伝熱管2の内径よりも大きい外形の拡管ビュレット11a、11b、11c、11dが伝熱管2内へ挿入されることにより、伝熱管2の管径を広げ、伝熱管2が貫通孔4に挿通された伝熱管2の外側にフィンカラー4aを一周にわたって有するフィン3を固定する。
 図11(a)に示すような拡管ビュレット11aは、側面に伝熱管2の長さ方向に平行な複数の凸部12aを有している。拡管ビュレット11aは、上述の拡管工程S1に用いられ、拡管時に伝熱管2に、複数の凸部12aの軌跡により伝熱管2の長さ方向に平行な直線状の複数の第2溝7を形成する。
 なお、拡管ビュレット11aは、複数の凸部12aの形状を異ならせることにより、形成する複数の第2溝7aまたは第2溝7bの形状を異ならせても良い。
 図11(b)に示すような拡管ビュレット11bは、側面に伝熱管2の長さ方向に対して螺旋状の複数の凸部12bを有している。拡管ビュレット11bは、上述の拡管工程S2に用いられ、拡管時に伝熱管2に、複数の凸部12bの軌跡により伝熱管2の長さ方向に対して螺旋状の複数の第2溝7cまたは第2溝7dを形成する。
 なお、拡管ビュレット11bは、複数の凸部12bの形状を異ならせることにより、形成する複数の第2溝7dの形状を異ならせても良い。
 図11(c)に示すような拡管ビュレット11cは、側面に伝熱管2の長さ方向に第2溝7の溝長さ方向に直交する断面の幅よりも長さの短い複数の凸部12cを有している。拡管ビュレット11cは、上述の拡管工程S1に用いられると、拡管時に伝熱管2に、複数の凸部12cの軌跡により直線状の複数の第2溝7、7a、7bを形成する。拡管ビュレット11cは、上述の拡管工程S2に用いられると、拡管時に伝熱管2に、複数の凸部12cの軌跡により複数の螺旋状の第2溝7cまたは第2溝7dを形成する。
 なお、拡管ビュレット11cは、複数の凸部12cの形状を異ならせることにより、形成する複数の第2溝7の形状を異ならせても良い。
 図11(d)に示すような拡管ビュレット11dは、伝熱管2の長さ方向に第2溝7の溝長さ方向に直交する断面の幅よりも長さの短い複数の凸部12dを螺旋状に有している。この場合には、図11(c)に示すような拡管ビュレット11cと同様に用いることができる。
[伝熱管内の作動流体の説明]
 図12は、本発明の実施の形態1に係る伝熱管2内の作動流体の状態をまとめて示す図であり、図12(a)が第1溝6の溝深さと第2溝7の溝深さが同じ場合を示す図であり、図12(b)が第1溝6の溝深さと第2溝7の溝深さが異なる場合を示す図である。
 一般に、伝熱管2内で熱を受ける作動流体は、熱伝達率が高いとされる環状流または環状噴霧流の状態となっている。伝熱管2内では、伝熱管2の内面である伝熱面に沿って流れる液膜13が形成される。液膜13では、対流熱伝達して液膜表面からの蒸発が支配的に行われる。作動流体のうち熱を受けて蒸発した気体14は、伝熱管2内の中央部を流れる。
 図12(a)、図12(b)に示すように、第1溝6の溝深さと第2溝7の溝深さが同じ場合と、第1溝6の溝深さと第2溝7の溝深さが異なる場合とが存在する。しかし、いずれの伝熱管2においても複数の第1溝6と複数の第2溝7とは、伝熱管2の内周壁5より管肉厚を薄くする。つまり、伝熱管2に、複数の第1溝6と複数の第2溝7とが形成されて管肉厚が内周壁5よりも薄い領域が増大し、液膜13と伝熱管2との接触面積が増加する。このため、伝熱管2では、液膜13に接触し易い薄い管肉厚で伝熱し易い伝熱面積が拡大できる。したがって、伝熱管2の熱伝達効率がより向上できる。
 また、図3~図6に示すように、複数の第1溝6と複数の第2溝7とは、伝熱管2の内面を複雑な凹凸に形成している。よって、伝熱管2の内面での内周壁5に形成される凹凸が複雑化し、伝熱管2を流通する作動流体の乱流が促進できる。したがって、伝熱管2の熱伝達効率がより向上できる。
 実施の形態1では、作動流体は、HFO冷媒、HFC冷媒、たとえばR1234yf、R1234ze、COなどに代表される自然冷媒、または、それらの混合冷媒が用いられる。
 なお、図12では、伝熱管2内の作動流体の二相流体について、単一冷媒あるいは共沸混合冷媒を例として模擬的に表した。しかし、非共沸混合冷媒においても同様の効果が得られる。
[実施の形態1の効果]
 実施の形態1によれば、熱交換器1は、作動流体が流通する伝熱管2を備えている。熱交換器1は、伝熱管2が挿通されて間隔を空けて平行に並べられた複数のフィン3を備えている。伝熱管2は、内周壁5に形成されて内周壁5よりも管肉厚を薄くした第1溝6を有している。伝熱管2は、内周壁5に形成されて内周壁5よりも管肉厚を薄くして第1溝6とは異なった形状の第2溝7、7a、7b、7c、7dを有している。
 この構成によれば、伝熱管2内において内周壁5よりも管肉厚の薄い領域が増大し、薄い管肉厚で伝熱し易い伝熱面積が拡大できる。また、伝熱管2の内周壁5に形成される凹凸が複雑化し、伝熱管2を流通する作動流体の乱流が促進できる。したがって、伝熱管2の熱伝達効率がより向上できる。
 実施の形態1によれば、第1溝6は、伝熱管2の製造時に形成されている。第2溝7、7a、7b、7c、7dは、複数のフィン3に挿通された伝熱管2の拡管時に形成されている。
 この構成によれば、第1溝6と第1溝6とは異なる第2溝7、7a、7b、7c、7dとの2種類以上の複数の溝が伝熱管2の内周壁5に熱交換器1に必須の2つの製造工程である伝熱管製造工程と伝熱管拡管工程とに分けて形成できる。このため、溝のみを形成するための製造工程が必要なく、第1溝6および第2溝7、7a、7b、7c、7dの形成された熱交換器1の製造が容易であり、製造効率が良い。
 実施の形態1によれば、第1溝6の溝深さと第2溝7、7a、7b、7cの溝深さとは、一致している。
 この構成によれば、特に第1溝6と第2溝7、7a、7b、7cとが交差するように形成する場合に、複数の第2溝7、7a、7b、7cが第1溝6間に突出した伝熱管2の内周壁5部分を削り落とすように形成でき、製造容易である。
 実施の形態1によれば、第2溝7、7a、7b、7cは、第1溝6に対して交差して形成されている。
 この構成によれば、伝熱管2内において内周壁5よりも管肉厚の薄い領域が増大できる。また、伝熱管2の内周壁5に形成される凹凸が複雑化できる。
 また、第2溝7、7a、7b、7cが第1溝6に対して交差するので、伝熱管2内にて第1溝6と第2溝7、7a、7b、7cとを流れる作動流体が互いに混ざり合い、伝熱管2の熱伝達効率がより向上できる。
 実施の形態1によれば、第2溝7dは、第1溝6に対して並行に形成されている。
 この構成によれば、伝熱管2内において内周壁5よりも管肉厚の薄い領域が増大できる。また、伝熱管2の内周壁5に形成される凹凸が複雑化できる。
 実施の形態1によれば、第2溝7、7c、7dは、複数形成されている。複数の第2溝7、7c、7dは、互いに同一形状である。
 この構成によれば、第2溝7、7c、7dが簡易に効率良く形成できる。
 また、性質の異なる個々の作動流体に対して有効な第2溝7、7c、7dが選定できる。あるいは、作動流体の状態変化に応じて有効な第2溝7、7c、7dが選定できる。よって、伝熱管2の熱伝達効率がより向上できる。
 実施の形態1によれば、第2溝7a、7bは、複数形成されている。複数の第2溝7a、7bは、互いに異なる形状である。
 この構成によれば、伝熱管2の内周壁5に形成される凹凸がより複雑化できる。
 また、性質の異なる個々の作動流体に対して有効な第2溝7a、7bが配列できる。あるいは、作動流体の状態変化に応じて有効な第2溝7a、7bが配列できる。よって、伝熱管2の熱伝達効率がより向上できる。
 実施の形態1によれば、第2溝7、7a、7bは、伝熱管2の長さ方向に平行な直線状に形成されている。
 この構成によれば、第2溝7、7a、7bが簡易に効率良く形成できる。
 また、第2溝7、7a、7bが伝熱管2の長さ方向に平行な直線状であり、作動流体の流れ方向に延伸する。これにより、作動流体の流れが阻害されることなく圧力損失の上昇が抑えられる。
 実施の形態1によれば、第2溝7、7a、7bは、伝熱管2の長さ方向に平行な凸部12aを有する拡管ビュレット11aを伝熱管2の長さ方向に真っ直ぐ挿入して形成されている。
 この構成によれば、第2溝7、7a、7bが簡易に効率良く形成できる。
 実施の形態1によれば、第2溝7c、7dは、伝熱管2の長さ方向に対して螺旋状に形成されている。
 この構成によれば、伝熱管2の内周壁5に形成される凹凸がより複雑化できる。
 また、たとえば、螺旋状の第2溝7c、7dが螺旋状の第1溝6に直交方向に形成できる。この場合には、伝熱管2内の第1溝6と第2溝7c、7dとを流れる作動流体が激しく混ざり合い、伝熱管2の熱伝達効率がより向上できる。
 実施の形態1によれば、第2溝7c、7dは、伝熱管2の長さ方向に対して螺旋状の凸部12bを有する拡管ビュレット11bを伝熱管2の長さ方向に対して螺旋状の凸部12bに沿って回転させながら挿入して形成されている。
 この構成によれば、伝熱管2の内周壁5に形成される凹凸がより複雑化できる。
 実施の形態1によれば、第2溝7は、伝熱管2の長さ方向に第2溝7、7a、7bの溝長さ方向に直交する断面の幅よりも長さの短い凸部12cを有する拡管ビュレット11cを伝熱管2の長さ方向に真っ直ぐ挿入して形成されている。または、第2溝7c、7dは、伝熱管2の長さ方向に長さの短い凸部12cを有する拡管ビュレット11cを伝熱管2の長さ方向に対して回転させながら挿入して形成されている。
 この構成によれば、第2溝7、7a、7b、7c、7dは、1種類の拡管ビュレット11cを用いて、伝熱管2の長さ方向に平行な直線状の溝あるいは伝熱管2の長さ方向に対して螺旋状の溝という2種類の溝のいずれかに形成できる。このため、拡管ビュレット11cを複数種類用意する必要が無く、効率的である。
 実施の形態1によれば、凸部12a、12b、12c、12dは、拡管ビュレット11a、11b、11c、11dの挿入方向に直交する断面が、第2溝7、7a、7b、7c、7dの溝長さ方向に直交する断面と等しい。
 この構成によれば、第2溝7、7a、7b、7c、7dの形状は、凸部12a、12b、12c、12dの形状に応じて変更できる。
 実施の形態1によれば、第2溝7は、溝開口部幅8と溝底部幅9とが等しい長さである。
 この構成によれば、伝熱管2内において内周壁5よりも管肉厚の薄い領域が増大できる。また、伝熱管2の内周壁5に形成される凹凸が複雑化できる。
 実施の形態1によれば、第2溝7は、溝開口部幅8と溝底部幅9とが異なる長さである。
 この構成によれば、伝熱管2内において内周壁5よりも管肉厚の薄い領域が増大できる。また、伝熱管2の内周壁5に形成される凹凸が複雑化できる。
 また、たとえば、第2溝7の溝底部幅9が溝開口部幅8よりも長い長さに形成できる。この場合には、溝底部10を流れる作動流体の速度が上昇し、伝熱管2の熱伝達効率がより向上できる。
 また、たとえば、第2溝7の溝底部幅9が溝開口部幅8よりも短い長さに形成できる。この場合には、伝熱管2内を流れる作動流体が第2溝7に流入する際に伝熱管2の伝熱面への接触効率が向上でき、伝熱管2の熱伝達効率がより向上できる。
 実施の形態1によれば、第2溝7は、溝底部10が曲面である。
 この構成によれば、伝熱管2内において内周壁5よりも管肉厚の薄い領域が増大できる。また、伝熱管2の内周壁5に形成される凹凸が複雑化できる。
 また、たとえば、第2溝7の溝底部幅9が中心程溝肉厚の薄い断面円弧状に形成できる。この場合には、第2溝7を流れる作動流体への圧力損失の上昇が抑えられる。
 実施の形態1によれば、第2溝7は、溝底部10が幅を有せず、溝長さ方向に直交する断面がV字状である。
 この構成によれば、伝熱管2内において内周壁5よりも管肉厚の薄い領域が増大できる。また、伝熱管2の内周壁5に形成される凹凸が複雑化できる。
 また、伝熱管2内を流れる作動流体が第2溝7に流入する際に伝熱管2の伝熱面への接触効率が向上でき、伝熱管2の熱伝達効率がより向上できる。
 実施の形態1によれば、第2溝7は、溝底部10に溝長さ方向に平行な山形状に形成されている。
 この構成によれば、伝熱管2内において内周壁5よりも管肉厚の薄い領域が増大できる。また、伝熱管2の内周壁5に形成される凹凸が複雑化できる。
 また、伝熱管2内を流れる作動流体が第2溝7に流入する際に伝熱管2の伝熱面への接触効率が向上でき、伝熱管2の熱伝達効率がより向上できる。
 実施の形態1によれば、作動流体は、HFO冷媒、HFC冷媒、自然冷媒またはそれらの混合冷媒である。
 この構成によれば、作動流体は、伝熱管2からの熱伝達効率が良い。
 実施の形態1によれば、熱交換器1の製造方法は、作動流体が流通する伝熱管2と、伝熱管2が挿通されて間隔を空けて平行に並べられた複数のフィン3と、を備えた熱交換器1を製造する。伝熱管2の内周壁5にて内周壁5よりも管肉厚を薄くする第1溝6が伝熱管2の製造時に形成される。伝熱管2の内周壁5にて第1溝6とは異なって内周壁5よりも管肉厚を薄くする第2溝7、7a、7b、7c、7dが複数のフィン3に挿通された伝熱管2の拡管時に形成される。
 この構成によれば、第1溝6と第1溝6とは異なる第2溝7、7a、7b、7c、7dとの2種類以上の複数の溝が伝熱管2の内周壁5に熱交換器1の2つの必須の製造工程に分けて形成できる。このため、溝のみを形成するための製造工程が必要なく、第1溝6および第2溝7、7a、7b、7c、7dの形成された熱交換器1の製造が容易であり、製造効率が良い。
 実施の形態1によれば、伝熱管2の拡管時に形成される第2溝7、7a、7bは、伝熱管2の長さ方向に平行な凸部12aを有する拡管ビュレット11aを伝熱管2の長さ方向に真っ直ぐ挿入して形成される。
 この構成によれば、第2溝7、7a、7bが簡易に効率良く形成できる。
 実施の形態1によれば、伝熱管2の拡管時に形成される第2溝7c、7dは、伝熱管2の長さ方向に対して螺旋状の凸部12bを有する拡管ビュレット11bを伝熱管2の長さ方向に対して螺旋状の凸部12bに沿って回転させながら挿入して形成されている。
 この構成によれば、伝熱管2の内周壁5に形成される凹凸がより複雑化できる。
 実施の形態1によれば、伝熱管2の拡管時に形成される第2溝7は、伝熱管2の長さ方向に第2溝7、7a、7bの溝長さ方向に直交する断面の幅よりも長さの短い凸部12cを有する拡管ビュレット11cを伝熱管2の長さ方向に真っ直ぐ挿入して形成されている。または、伝熱管2の拡管時に形成される第2溝7c、7dは、伝熱管2の長さ方向に長さの短い凸部12cを有する拡管ビュレット11cを伝熱管2の長さ方向に対して回転させながら挿入して形成されている。
 この構成によれば、第2溝7、7a、7b、7c、7dは、1種類の拡管ビュレット11cを用いて、伝熱管2の長さ方向に平行な直線状の溝あるいは伝熱管2の長さ方向に対して螺旋状の溝という2種類の溝のいずれかに形成できる。このため、拡管ビュレット11cを複数種類用意する必要が無く、効率的である。
実施の形態2.
[空気調和装置の構成]
 図13は、本発明の実施の形態2に係る空気調和装置100を示す概略構成図である。なお、図13では、冷房運転時の冷媒の流れが実線の矢印で示され、暖房運転時の冷媒の流れが点線の矢印で示される。
 図13に示すように、空気調和装置100は、圧縮機101と、四方弁102と、実施の形態1の熱交換器1を用いた熱源側熱交換器103と、絞り装置104と、負荷側熱交換器105と、を備えている。空気調和装置100は、熱源側熱交換器103に送風する熱源側ファン106と、負荷側熱交換器105に送風する負荷側ファン107と、を備えている。空気調和装置100は、室内機と室外機を接続する配管108、109を備えている。空気調和装置100は、空気調和装置100の各種可動部品を制御する制御装置110、111を備えている。
 空気調和装置100には、圧縮機101と四方弁102と熱源側熱交換器103と絞り装置104と負荷側熱交換器105とが冷媒配管で接続されて、冷媒循環回路が形成される。
 制御装置110、111には、たとえば、圧縮機101、四方弁102、絞り装置104、熱源側ファン106、負荷側ファン107、各種センサなどが通信線を介して接続されている。
 制御装置110、111によって、四方弁102の流路が切り替えられることにより、冷房運転と暖房運転とが切り替えられる。熱源側熱交換器103は、冷房運転時に凝縮器として作用し、暖房運転時に蒸発器として作用する。負荷側熱交換器105は、冷房運転時に蒸発器として作用し、暖房運転時に凝縮器として作用する。
[冷房運転時の冷媒の流れ]
 圧縮機101から吐出される高圧高温のガス状態の冷媒は、四方弁102を介して熱源側熱交換器103に流入する。熱源側熱交換器103に流入した冷媒は、熱源側ファン106によって供給される外気との熱交換によって凝縮することにより、高圧の液状態の冷媒となり、熱源側熱交換器103から流出する。熱源側熱交換器103から流出した高圧の液状態の冷媒は、絞り装置104に流入し、低圧の気液二相状態の冷媒となる。絞り装置104から流出する低圧の気液二相状態の冷媒は、負荷側熱交換器105に流入し、負荷側ファン107によって供給される室内空気との熱交換によって蒸発することで低圧のガス状態の冷媒となり、負荷側熱交換器105から流出する。負荷側熱交換器105から流出する低圧のガス状態の冷媒は、四方弁102を介して圧縮機101に吸入される。
[暖房運転時の冷媒の流れ]
 圧縮機101から吐出される高圧高温のガス状態の冷媒は、四方弁102を介して負荷側熱交換器105に流入する。負荷側熱交換器105に流入した冷媒は、負荷側ファン107によって供給される室内空気との熱交換によって凝縮することで高圧の液状態の冷媒となり、負荷側熱交換器105から流出する。負荷側熱交換器105から流出した高圧の液状態の冷媒は、絞り装置104に流入し、低圧の気液二相状態の冷媒となる。絞り装置104から流出する低圧の気液二相状態の冷媒は、熱源側熱交換器103に流入し、熱源側ファン106によって供給される外気との熱交換によって蒸発することで低圧のガス状態の冷媒となり、熱源側熱交換器103から流出する。熱源側熱交換器103から流出する低圧のガス状態の冷媒は、四方弁102を介して圧縮機101に吸入される。
[実施の形態2の効果]
 実施の形態2によれば、空気調和装置100は、上記した実施の形態1の熱交換器1を熱源側熱交換器103として備えている。
 この構成によれば、空気調和装置100は、上記した実施の形態1の熱交換器1を備えることにより、伝熱管2の熱伝達効率がより向上できる。
 なお、実施の形態2では、冷凍サイクル装置として、空気調和装置100を例に挙げた。しかし、本発明はこれに限られない。本発明の冷凍サイクル装置は、実施の形態1の熱交換器1を凝縮器または蒸発器に用いるものであれば良い。また、実施の形態1の熱交換器1は、熱源側熱交換器だけでなく、負荷側熱交換器に用いても良い。
 1 熱交換器、2 伝熱管、2a 伝熱管、2b 伝熱管、3 フィン、4 貫通孔、4a フィンカラー、5 内周壁、6 第1溝、7 第2溝、7a 第2溝、7b 第2溝、7c 第2溝、7d 第2溝、8 溝開口部幅、9 溝底部幅、10 溝底部、11a 拡管ビュレット、11b 拡管ビュレット、11c 拡管ビュレット、11d 拡管ビュレット、12a 凸部、12b 凸部、12c 凸部、12d 凸部、13 液膜、14 気体、100 空気調和装置、101 圧縮機、102 四方弁、103 熱源側熱交換器、104 絞り装置、105 負荷側熱交換器、106 熱源側ファン、107 負荷側ファン、108 配管、109 配管、110 制御装置、111 制御装置。

Claims (23)

  1.  作動流体が流通する伝熱管と、
     前記伝熱管が挿通されて間隔を空けて平行に並べられた複数のフィンと、
    を備え、
     前記伝熱管は、内周壁に形成され、前記内周壁よりも管肉厚を薄くした第1溝と、前記内周壁に形成され、前記内周壁よりも管肉厚を薄くし、前記第1溝とは異なった形状の第2溝と、を有した熱交換器。
  2.  前記第1溝は、前記伝熱管の製造時に形成され、
     前記第2溝は、前記複数のフィンに挿通された前記伝熱管の拡管時に形成された請求項1に記載の熱交換器。
  3.  前記第1溝の溝深さと前記第2溝の溝深さとは、一致した請求項1または2に記載の熱交換器。
  4.  前記第2溝は、前記第1溝に対して交差して形成された請求項1~3のいずれか1項に記載の熱交換器。
  5.  前記第2溝は、前記第1溝に対して並行に形成された請求項1~3のいずれか1項に記載の熱交換器。
  6.  前記第2溝は、複数形成され、
     複数の前記第2溝は、互いに同一形状である請求項1~5のいずれか1項に記載の熱交換器。
  7.  前記第2溝は、複数形成され、
     複数の前記第2溝は、互いに異なる形状である請求項1~5のいずれか1項に記載の熱交換器。
  8.  前記第2溝は、前記伝熱管の長さ方向に平行な直線状に形成された請求項1~7のいずれか1項に記載の熱交換器。
  9.  前記第2溝は、前記伝熱管の長さ方向に平行な凸部を有する拡管ビュレットを前記伝熱管の長さ方向に真っ直ぐ挿入して形成された請求項8に記載の熱交換器。
  10.  前記第2溝は、前記伝熱管の長さ方向に対して螺旋状に形成された請求項1~7のいずれか1項に記載の熱交換器。
  11.  前記第2溝は、前記伝熱管の長さ方向に対して螺旋状の凸部を有する拡管ビュレットを前記伝熱管の長さ方向に対して前記螺旋状の凸部に沿って回転させながら挿入して形成された請求項10に記載の熱交換器。
  12.  前記第2溝は、前記伝熱管の長さ方向に前記第2溝の溝長さ方向に直交する断面の幅よりも長さの短い凸部を有する拡管ビュレットを、前記伝熱管の長さ方向に真っ直ぐ挿入して形成された、または、前記伝熱管の長さ方向に対して回転させながら挿入して形成された請求項8または10に記載の熱交換器。
  13.  前記第2溝は、溝開口部幅と溝底部幅とが等しい長さである請求項1~12のいずれか1項に記載の熱交換器。
  14.  前記第2溝は、溝開口部幅と溝底部幅とが異なる長さである請求項1~12のいずれか1項に記載の熱交換器。
  15.  前記第2溝は、溝底部が曲面である請求項1~12のいずれか1項に記載の熱交換器。
  16.  前記第2溝は、溝底部が幅を有せず、溝長さ方向に直交する断面がV字状である請求項1~12のいずれか1項に記載の熱交換器。
  17.  前記第2溝は、溝底部に溝長さ方向に平行な山形状に形成された請求項1~12のいずれか1項に記載の熱交換器。
  18.  前記作動流体は、HFO冷媒、HFC冷媒、自然冷媒またはそれらの混合冷媒である請求項1~17のいずれか1項に記載の熱交換器。
  19.  請求項1~18のいずれか1項に記載の熱交換器を備えた冷凍サイクル装置。
  20.  作動流体が流通する伝熱管と、
     前記伝熱管が挿通されて間隔を空けて平行に並べられた複数のフィンと、
    を備えた熱交換器の製造方法であって、
     前記伝熱管の内周壁にて前記内周壁よりも管肉厚を薄くする第1溝が前記伝熱管の製造時に形成され、
     前記伝熱管の前記内周壁にて前記内周壁よりも管肉厚を薄くし、前記第1溝とは異なった形状の第2溝が複数の前記フィンに挿通された前記伝熱管の拡管時に形成される熱交換器の製造方法。
  21.  前記第2溝は、前記伝熱管の長さ方向に平行な凸部を有する拡管ビュレットを前記伝熱管の長さ方向に真っ直ぐ挿入して形成される請求項20に記載の熱交換器の製造方法。
  22.  前記第2溝は、前記伝熱管の長さ方向に対して螺旋状の凸部を有する拡管ビュレットを前記伝熱管の長さ方向に対して前記螺旋状の凸部に沿って回転させながら挿入して形成される請求項20に記載の熱交換器の製造方法。
  23.  前記第2溝は、前記伝熱管の長さ方向に前記第2溝の溝長さ方向に直交する断面の幅よりも長さの短い凸部を有する拡管ビュレットを、前記伝熱管の長さ方向に真っ直ぐ挿入して形成された、または、前記伝熱管の長さ方向に対して回転させながら挿入して形成された請求項20に記載の熱交換器の製造方法。
PCT/JP2017/001972 2017-01-20 2017-01-20 熱交換器および冷凍サイクル装置並びに熱交換器の製造方法 WO2018134975A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018562831A JP6765451B2 (ja) 2017-01-20 2017-01-20 熱交換器の製造方法
PCT/JP2017/001972 WO2018134975A1 (ja) 2017-01-20 2017-01-20 熱交換器および冷凍サイクル装置並びに熱交換器の製造方法
CN201790000542.6U CN209263760U (zh) 2017-01-20 2017-01-20 热交换器以及制冷循环装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/001972 WO2018134975A1 (ja) 2017-01-20 2017-01-20 熱交換器および冷凍サイクル装置並びに熱交換器の製造方法

Publications (1)

Publication Number Publication Date
WO2018134975A1 true WO2018134975A1 (ja) 2018-07-26

Family

ID=62908629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001972 WO2018134975A1 (ja) 2017-01-20 2017-01-20 熱交換器および冷凍サイクル装置並びに熱交換器の製造方法

Country Status (3)

Country Link
JP (1) JP6765451B2 (ja)
CN (1) CN209263760U (ja)
WO (1) WO2018134975A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3643995A1 (en) * 2018-10-22 2020-04-29 Whirlpool Corporation Ice maker downspout

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130352A (en) * 1979-03-30 1980-10-09 Mitsubishi Electric Corp Production of heat exchange pipe
JPS6152948A (ja) * 1984-08-23 1986-03-15 Mitsubishi Heavy Ind Ltd 内面溝付管の製造方法
JPS63115612A (ja) * 1986-11-04 1988-05-20 Kobe Steel Ltd 内面溝付管の製造方法
JPH02137631A (ja) * 1988-11-15 1990-05-25 Hitachi Cable Ltd 管内面溝付凝縮用伝熱管の拡管方法
JPH0875384A (ja) * 1994-07-01 1996-03-19 Hitachi Ltd 非共沸混合冷媒用伝熱管とその伝熱管を用いた熱交換器及び組立方法及びその熱交換器を用いた冷凍・空調機
JPH09138087A (ja) * 1995-11-15 1997-05-27 Mitsubishi Heavy Ind Ltd 伝熱管
JP2002005588A (ja) * 2000-06-22 2002-01-09 Sumitomo Light Metal Ind Ltd 内面溝付伝熱管及びその製造方法
CN104654881A (zh) * 2014-12-30 2015-05-27 浙江耐乐铜业有限公司 一种轻量化高效传热铜管

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130352A (en) * 1979-03-30 1980-10-09 Mitsubishi Electric Corp Production of heat exchange pipe
JPS6152948A (ja) * 1984-08-23 1986-03-15 Mitsubishi Heavy Ind Ltd 内面溝付管の製造方法
JPS63115612A (ja) * 1986-11-04 1988-05-20 Kobe Steel Ltd 内面溝付管の製造方法
JPH02137631A (ja) * 1988-11-15 1990-05-25 Hitachi Cable Ltd 管内面溝付凝縮用伝熱管の拡管方法
JPH0875384A (ja) * 1994-07-01 1996-03-19 Hitachi Ltd 非共沸混合冷媒用伝熱管とその伝熱管を用いた熱交換器及び組立方法及びその熱交換器を用いた冷凍・空調機
JPH09138087A (ja) * 1995-11-15 1997-05-27 Mitsubishi Heavy Ind Ltd 伝熱管
JP2002005588A (ja) * 2000-06-22 2002-01-09 Sumitomo Light Metal Ind Ltd 内面溝付伝熱管及びその製造方法
CN104654881A (zh) * 2014-12-30 2015-05-27 浙江耐乐铜业有限公司 一种轻量化高效传热铜管

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3643995A1 (en) * 2018-10-22 2020-04-29 Whirlpool Corporation Ice maker downspout
US10907874B2 (en) 2018-10-22 2021-02-02 Whirlpool Corporation Ice maker downspout

Also Published As

Publication number Publication date
JP6765451B2 (ja) 2020-10-07
JPWO2018134975A1 (ja) 2019-04-11
CN209263760U (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
JP4845943B2 (ja) フィンチューブ型熱交換器および冷凍サイクル空調装置
JP4679542B2 (ja) フィンチューブ熱交換器、およびそれを用いた熱交換器ユニット並びに空気調和機
JP6202451B2 (ja) 熱交換器及び空気調和機
US20110094258A1 (en) Heat exchanger and air conditioner provided with heat exchanger
JP2009281693A (ja) 熱交換器、その製造方法及びこの熱交換器を用いた空調冷凍装置
JP4987685B2 (ja) 二重管式熱交換器およびその製造方法並びにそれを備えたヒートポンプシステム
JP2003262485A (ja) フィンチューブ型熱交換器、その製造方法及び冷凍空調装置
JP2009222366A (ja) 冷媒分配器
JP2006162238A (ja) 二重管
WO2014192771A1 (ja) 熱交換器の製造方法及び冷凍サイクル装置
JP5545160B2 (ja) 熱交換器
JP2010078289A (ja) 熱交換器及びこの熱交換器を備えた空気調和機
JP3356151B2 (ja) フィンチューブ型熱交換器およびそれを用いた冷凍空調装置
US11913729B2 (en) Heat exchanger
KR20040082571A (ko) 핀-튜브 일체형 열교환기
US10739040B2 (en) Air condtioner
JP2006322703A (ja) 室内機
WO2018134975A1 (ja) 熱交換器および冷凍サイクル装置並びに熱交換器の製造方法
WO2017068723A1 (ja) 熱交換器及び冷凍サイクル装置
JP6656368B2 (ja) フィンチューブ型熱交換器、および、このフィンチューブ型熱交換器を備えたヒートポンプ装置
EP2796822B1 (en) Air conditioner
JP5591285B2 (ja) 熱交換器および空気調和機
JPWO2019207799A1 (ja) 空気調和機および熱交換器
JP2010243076A (ja) 冷媒熱交換器
US11874034B2 (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892968

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018562831

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892968

Country of ref document: EP

Kind code of ref document: A1