WO2018123796A1 - Method for producing single-walled carbon nanotube-containing composition - Google Patents
Method for producing single-walled carbon nanotube-containing composition Download PDFInfo
- Publication number
- WO2018123796A1 WO2018123796A1 PCT/JP2017/045896 JP2017045896W WO2018123796A1 WO 2018123796 A1 WO2018123796 A1 WO 2018123796A1 JP 2017045896 W JP2017045896 W JP 2017045896W WO 2018123796 A1 WO2018123796 A1 WO 2018123796A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon
- compound
- carbon nanotube
- containing composition
- carrier gas
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 97
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 32
- 239000002109 single walled nanotube Substances 0.000 title abstract description 46
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 173
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 119
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 119
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 68
- 150000001722 carbon compounds Chemical class 0.000 claims abstract description 66
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 61
- 239000012159 carrier gas Substances 0.000 claims abstract description 60
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 36
- 238000006243 chemical reaction Methods 0.000 claims abstract description 36
- 239000001257 hydrogen Substances 0.000 claims abstract description 27
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 27
- 150000002506 iron compounds Chemical class 0.000 claims abstract description 25
- 150000003464 sulfur compounds Chemical class 0.000 claims abstract description 25
- 239000011261 inert gas Substances 0.000 claims abstract description 20
- 125000004434 sulfur atom Chemical group 0.000 claims abstract description 19
- 150000001491 aromatic compounds Chemical class 0.000 claims abstract description 13
- 230000003197 catalytic effect Effects 0.000 claims description 34
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims description 26
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 claims description 22
- 150000001721 carbon Chemical group 0.000 claims description 21
- 229930192474 thiophene Natural products 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 4
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethanethiol Chemical compound CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 claims description 4
- 239000001307 helium Substances 0.000 claims description 4
- 229910052734 helium Inorganic materials 0.000 claims description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 4
- SUVIGLJNEAMWEG-UHFFFAOYSA-N propane-1-thiol Chemical compound CCCS SUVIGLJNEAMWEG-UHFFFAOYSA-N 0.000 claims description 4
- WQAQPCDUOCURKW-UHFFFAOYSA-N butanethiol Chemical compound CCCCS WQAQPCDUOCURKW-UHFFFAOYSA-N 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims 1
- 239000003054 catalyst Substances 0.000 abstract description 14
- 125000004432 carbon atom Chemical group C* 0.000 abstract description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 42
- 229910052742 iron Inorganic materials 0.000 description 23
- 239000002245 particle Substances 0.000 description 21
- 230000015572 biosynthetic process Effects 0.000 description 16
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- 238000003786 synthesis reaction Methods 0.000 description 15
- 238000000354 decomposition reaction Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 229910001873 dinitrogen Inorganic materials 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 6
- 229910003481 amorphous carbon Inorganic materials 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000007086 side reaction Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- 238000001069 Raman spectroscopy Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000002079 double walled nanotube Substances 0.000 description 3
- 229910021389 graphene Inorganic materials 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000002048 multi walled nanotube Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- FYGHSUNMUKGBRK-UHFFFAOYSA-N 1,2,3-trimethylbenzene Chemical compound CC1=CC=CC(C)=C1C FYGHSUNMUKGBRK-UHFFFAOYSA-N 0.000 description 2
- KVNYFPKFSJIPBJ-UHFFFAOYSA-N 1,2-diethylbenzene Chemical compound CCC1=CC=CC=C1CC KVNYFPKFSJIPBJ-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 238000001237 Raman spectrum Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000000976 ink Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 150000007824 aliphatic compounds Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- -1 anisyl group Chemical group 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000001628 carbon nanotube synthesis method Methods 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 229910021392 nanocarbon Inorganic materials 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B1/00—Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/159—Carbon nanotubes single-walled
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/162—Preparation characterised by catalysts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/04—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
Definitions
- the present invention relates to a method for producing a single-walled carbon nanotube-containing composition.
- the structure of the carbon nanotube is a hollow tube (tube) in which a carbon hexagonal mesh surface called graphene is wound around a cylinder having a diameter of nanometer order.
- Carbon nanotubes are classified into single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes depending on the number of graphene layers constituting the cylindrical structure. Also, depending on how the graphene is wound, carbon nanotubes can have interesting electrical and mechanical properties such as being metallic and semiconducting. By controlling the diameter, the number of layers, and the length of the carbon nanotube, it is expected to improve the performance and expand the applicability.
- single-walled carbon nanotubes have ballistic conduction that allows the electric charge to move without receiving any scattering, whereas multi-walled carbon nanotubes cause current to flow through multiple layers, causing diffusion of charge between the layers. It is conduction.
- Single-walled carbon nanotubes have properties superior to double-walled carbon nanotubes and multi-walled carbon nanotubes, such as thermal conductivity exceeding that of diamond and tough mechanical properties, while having flexibility that is extremely difficult to break. Therefore, single-walled carbon nanotubes are next-generation nanocarbon materials that are expected to be applied in the future for applications such as conductive inks, semiconductor devices, antistatic agents, and capacitor conductive members. is there.
- the semiconductor single-walled carbon nanotube has a band gap in inverse proportion to the diameter, it can be separated from the metal single-walled carbon nanotube using a chemical method.
- the semiconductor single-walled carbon nanotubes thus separated are expected to be applied to an excellent semiconductor device that can be bent transparently by taking advantage of its flexibility.
- the semiconductor property becomes higher as the diameter becomes thinner, the single-walled carbon nanotube with a smaller diameter is expected to be a higher performance semiconductor material.
- the crystallinity of carbon nanotubes is important for application to devices and the like.
- the electrical conduction of carbon nanotubes is due to the movement of carriers on the surface of the carbon nanotubes, but this is scattered by structural defects and impurities, resulting in an increase in electrical resistance. Therefore, carbon nanotubes with high crystallinity are required for application to devices.
- the CVD method (Chemical vapor deposition method), which is a highly efficient method for synthesizing single-walled carbon nanotubes, is roughly classified into two types from the viewpoint of the catalyst used.
- the gas-phase flow method is excellent as a method that can continuously supply raw materials and continuously obtain single-walled carbon nanotubes.
- Patent Document 1 discloses a method for producing single-walled carbon nanotubes using toluene as a carbon source and supplying hydrogen gas, ferrocene and thiophene at 1 to 50 m / s.
- methods for producing single-walled carbon nanotubes using a plurality of carbon compounds such as aromatic compounds and aliphatic compounds as raw materials are known (Patent Documents 2 to 4).
- the manufacturing method which improved the supply amount of the carbon source using the single carbon source is known (patent document 5).
- the carbon nanotube synthesis methods described in Patent Documents 1 to 5 have a low yield of single-walled carbon nanotubes, and have not been put to practical use.
- the production methods disclosed in Patent Documents 2 to 4 have problems that the concentration of carbon source in the gas phase to be supplied is low and the yield of single-walled carbon nanotubes is low.
- the yield of carbon nanotubes is low, and this is also difficult to say as an efficient production method.
- only hydrogen gas is often used as the carrier gas, and there are problems in terms of safety and cost.
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing a carbon nanotube-containing composition capable of obtaining highly crystalline single-walled carbon nanotubes with high efficiency.
- a method for producing a carbon nanotube-containing composition wherein a catalytic carbon source solution containing a carbon compound, an iron compound, and a sulfur compound is introduced into a reaction tube in a mixed carrier gas of hydrogen and an inert gas, and the mixed carrier gas in a standard state
- the carbon atom molar concentration in the carbon compound is 0.16 mmol / L or more and 0.53 mmol / L or less, and the ratio of the number of sulfur atoms in the sulfur compound to the number of iron atoms in the iron compound is 0.7 to 2.4.
- the method for producing a carbon nanotube-containing composition wherein the hydrogen concentration in the mixed carrier gas is 50% by volume to 90% by volume in a standard state, and the carbon compound contains an aromatic compound.
- single-walled carbon nanotubes with high crystallinity can be obtained with high efficiency.
- FIG. 1 is a schematic view of an apparatus for synthesizing a single-walled carbon nanotube-containing composition used in Examples of the present invention.
- the present invention is a method for producing a carbon nanotube-containing composition in which a catalytic carbon source solution containing a carbon compound, an iron compound, and a sulfur compound is introduced into a reaction tube in a mixed carrier gas of hydrogen and an inert gas, and the standard state
- the carbon atom molar concentration in the carbon compound is 0.16 mmol / L or more and 0.53 mmol / L or less, and the ratio of the number of sulfur atoms in the sulfur compound to the number of iron atoms in the iron compound is 0. 7 to 2.4
- a method for producing a carbon nanotube-containing composition in which the hydrogen concentration in the mixed carrier gas is 50% by volume to 90% by volume in a standard state, and the carbon compound contains an aromatic compound.
- a carbon compound containing an aromatic compound is used as a carbon source.
- the time when the carbon compound starts to be supplied to the reaction tube is set as the start of synthesis.
- the reaction tube is heated to a high temperature by a heating furnace, and the supplied carbon compound is decomposed at a high temperature to become a carbon nanotube-containing composition.
- Any carbon compound may be used as long as it can serve as a carbon source, but an aromatic compound that is liquid at room temperature and relatively difficult to decompose at high temperature is preferable.
- aromatic compound for example, benzene, toluene, xylene, cumene, ethylbenzene, diethylbenzene, trimethylbenzene, naphthalene and the like can be used.
- benzene, toluene, ethylbenzene, and xylene are particularly preferable, and benzene is most preferable.
- an aromatic compound containing a hetero atom can be used as the raw material hydrocarbon, an aromatic hydrocarbon compound containing no hetero atom is more preferable.
- the iron compound is decomposed in a reaction tube to become iron particles, thereby acting as a catalyst for producing a carbon nanotube-containing composition.
- a preferable shape of the iron particles is spherical or elliptical nanoparticles. Because of the characteristics of the nanoparticles, the phase transition temperature and the like fluctuate, so that the carbon nanotube-containing composition can be synthesized at a high temperature during the growth of the carbon nanotubes while changing the shape in a specific shape or fluidly.
- the carbon nanotube-containing composition grows starting from iron particles derived from the iron compound. At this time, the carbon nanotube-containing composition grows by the precipitation of carbon atoms dissolved in the iron particles.
- the amount of carbon atoms dissolved in the iron particles and the degree of the precipitation depend on the diameter and layer of the obtained carbon nanotubes. Affects number and length. Since the carbon nanotube-containing composition is thus grown from the iron particles, the size of the iron particles is preferably several nanometers to several tens of nanometers, and most preferably several nanometers to ten nanometers.
- ferrocene or a ferrocene derivative as the iron compound because the carbon nanotube-containing composition can be continuously produced with high purity.
- thermally decomposing an organometallic compound such as ferrocene or a ferrocene derivative in a heating furnace iron particles as a catalyst can be efficiently generated.
- Ferrocene or a ferrocene derivative is preferred because the decomposition rate of the skeleton around the iron atom of the molecule having a ferrocene skeleton and the rate of formation of iron particles accompanying the decomposition are within the carrier gas mixing ratio and the preferred temperature range set in the present invention. This is considered to be reasonably preferable.
- ferrocene having a substituent such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, an acetyl group, a carboxyl group, a hydroxyl group, an amino group, and an epoxy group
- ferrocene having a phenyl group, anisyl group, phenol group, or a heterocyclic compound containing a hetero atom as a substituent can also be used.
- the purity of an iron compound is preferable.
- the sulfur compound acts as a promoter for promoting the synthesis of the carbon nanotube-containing composition.
- Sulfur compounds can interact with iron particles as a catalyst to promote and control the growth of the carbon nanotube-containing composition. The reason why the sulfur compound is necessary in the growth mechanism of the carbon nanotube-containing composition is not clear, but sulfur atoms are unevenly mixed in the iron particle catalyst, so that the sulfur atoms are localized in or on the iron particles, It is presumed that the diameter and directionality of the carbon nanotubes grown on the iron particle catalyst are determined.
- the ratio of the iron compound and the sulfur compound introduced into the reaction tube is such that the ratio of the number of sulfur atoms in the sulfur compound to the number of iron atoms in the iron compound is 0.7 to 2.4, more preferably 0. .7 to 1.8, most preferably 1.0 to 1.8.
- the ratio of the iron compound and the sulfur compound so as to achieve this atomic ratio, the amount of carbon in which sulfur atoms can be dissolved in the iron particles can be controlled, and a carbon nanotube-containing composition having a thin average diameter can be obtained.
- Usable sulfur compounds include sulfur-containing compounds such as thiophene, ethanethiol, propanethiol, butanethiol, thiophenol, and more preferably thiophene.
- a mixed carrier gas of hydrogen and inert gas is used. Nitrogen gas, helium, argon or the like is used as the inert gas.
- hydrogen is thought to activate iron particle surfaces by reducing iron.
- the amount of hydrogen in the mixed carrier gas is too large, the amount of hydrogen adsorbed on the surface of the iron particles is too large and the catalytic capacity of the iron particles is reduced. There is a risk of doing. Therefore, it is preferable to dilute hydrogen with an inert gas to such an extent that the reaction is not hindered while securing the amount of hydrogen necessary for activation.
- the reaction can be controlled by adjusting the hydrogen concentration in the mixed carrier gas.
- nitrogen gas is used as the inert gas, it is preferable because it is inexpensive and can reduce manufacturing costs.
- nitrogen gas, helium, argon, and the like have different thermal conductivities, it is preferable to select the type of inert gas and the hydrogen concentration according to the production conditions of the carbon nanotube-containing composition.
- the hydrogen concentration in the mixed carrier gas is preferably 50% by volume or more and 90% by volume or less in the standard state.
- the standard state means 0 ° C. and 1 atm. This range is preferable particularly when nitrogen gas is used as the inert gas. More preferably, they are 60 volume% or more and 90 volume% or less, Most preferably, they are 60 volume% or more and 80 volume% or less.
- the hydrogen concentration in the mixed carrier gas is preferably 55% by volume or more and 90% by volume or less in the standard state.
- helium is used as the inert gas, since the thermal conductivity is as high as hydrogen, the hydrogen concentration in the mixed carrier gas only needs to be higher than the concentration contributing to the reaction, and is preferably 50% by volume or higher.
- the carbon compound, iron compound and sulfur compound are preferably mixed and introduced into the reaction tube as a catalytic carbon source solution.
- a catalytic carbon source solution can be supplied to the reaction tube by spraying or the like.
- the spraying method include a method in which a catalytic carbon source solution is supplied to a two-fluid nozzle together with a carrier gas and sprayed.
- a catalytic carbon source solution can be obtained by dissolving it in the carbon compound in the liquid state even if the iron compound or sulfur compound is solid.
- the carbon compound When the carbon compound is solid at normal temperature and normal pressure, the carbon compound may be heated and melted and mixed with the iron compound and sulfur compound.
- a mechanism for mixing so that the ratio of the carbon compound, iron compound and sulfur compound is kept constant in the synthesizer. It is good to synthesize after providing the inside.
- the carbon compound is solid, it is preferably supplied after being melted or sublimated. Carbon compounds, iron compounds, and sulfur compounds have different decomposition temperatures and decomposition rates. Therefore, if the heating method of the reaction tube is different, the decomposition temperature and decomposition rate change, so the ratio can be finely adjusted. It may be preferable.
- the molar concentration of carbon atoms in the carbon compound is 0.16 mmol / L or more and 0.53 mmol / L based on the mixed carrier gas in the standard state (0 ° C., 1 atm).
- the carbon compound concentration in the carrier gas is controlled to be L or less.
- the carbon compound concentration is too high, decomposition of the carbon compound proceeds excessively, and amorphous carbon called amorphous carbon tends to be generated.
- Amorphous carbon adheres to the surface and inside of single-walled carbon nanotubes as impurities, which causes the purity of single-walled carbon nanotubes to decrease.
- the iron particles that serve as a catalyst are coated with amorphous carbon, which hinders the growth of single-walled carbon nanotubes, which causes a decrease in yield. If the carbon atom molar concentration based on the mixed carrier gas is larger than the predetermined concentration, double-walled carbon nanotubes grow as described in Patent Document 3, and the selectivity of single-walled carbon nanotube growth may be reduced. Are known. On the other hand, when the concentration of the carbon compound in the carrier gas is too low, the carbon atom that becomes the growth source of the carbon nanotubes becomes insufficient, resulting in a decrease in yield.
- the carbon atom molar concentration in the carbon compound is 0.16 mmol / L or more and 0.53 mmol / L or less based on the mixed carrier gas in the standard state. More preferably, it is 0.20 mmol / L or more and 0.50 mmol / L or less, and most preferably 0.25 mmol / L or more and 0.50 mmol / L or less.
- the carbon compound preferably contains an aromatic compound.
- the yield of the carbon nanotube-containing composition increases as the synthesis temperature increases.
- chain-type saturated hydrocarbons or chain-type unsaturated hydrocarbons are used as the carbon compound, they react even at relatively low temperatures. Therefore, when the synthesis temperature is raised, excessive decomposition occurs and side reactions are likely to occur. There are drawbacks.
- an aromatic compound is used as the carbon compound, by-products can be suppressed in the reaction at a high temperature, which is preferable in terms of improving the yield of the carbon nanotube-containing composition.
- side reactions may occur due to the complicated reaction, and the yield of the resulting carbon nanotube-containing composition may be reduced.
- the use of only one carbon compound as the carbon source is preferable in that the synthesis temperature can be increased while suppressing side reactions, and this is suitable for mass production.
- the aromatic compound may be a compound having a substituent such as a methyl group, an ethyl group or an ethylene group.
- a substituent such as a methyl group, an ethyl group or an ethylene group.
- preferred aromatic compounds include benzene, toluene, ethylbenzene, xylene and the like, and more preferred is benzene.
- the linear velocity of the mixed carrier gas is preferably 500 cm / min or more and 1500 cm / min or less.
- the linear velocity of the mixed carrier gas affects the heat conduction during the synthesis and the decomposition behavior of the carbon compound resulting therefrom.
- the synthesis temperature is relatively high, the carbon compound may be excessively decomposed. Therefore, it is preferable to adjust the linear velocity of the mixed carrier gas so as to shorten the reaction time.
- the synthesis temperature is relatively low, in order to promote the decomposition of the carbon compound, it is preferable to adjust the linear velocity of the mixed carrier gas so as to increase the reaction time to adjust the decomposition of the carbon compound.
- the linear velocity is increased when the thermal conductivity of the mixed carrier gas increases due to the composition of the mixed carrier gas, and the linear velocity is decreased when the thermal conductivity decreases.
- the linear velocity is too high, the reaction time is short and the yield of the carbon nanotube-containing composition is low.
- the linear velocity of the mixed carrier gas is 500 cm / min or more and 1500 cm / min or less.
- the lower limit of the linear velocity is more preferably 600 cm / min or more, and most preferably 700 cm / min or more.
- the upper limit of the linear velocity is more preferably 1400 cm / min or less, and most preferably 1300 cm / min or less.
- the yield of the carbon nanotube-containing composition increases as the synthesis temperature increases.
- the synthesis temperature of the carbon nanotube-containing composition refers to the temperature of the heated reaction tube.
- the reaction tube temperature may be measured by inserting a thermocouple into the electric furnace and placing the tip of the thermocouple at a distance of about 1 mm from the reaction tube surface.
- the temperature of the reaction tube is preferably 1100 ° C. or higher and 1500 ° C. or lower.
- the lower limit of the temperature of the reaction tube is more preferably 1150 ° C or higher, and most preferably 1200 ° C or higher.
- the upper limit of the temperature of the reaction tube is more preferably 1450 ° C. or less, and most preferably 1400 ° C. or less.
- a carbon nanotube-containing composition having an average diameter of 2.0 nm or less, a ratio of single-walled carbon nanotubes of 70% or more, and a G / D ratio of 50 or more can be synthesized.
- the average diameter of the carbon nanotube-containing composition refers to an average diameter calculated by least square average of 100 carbon nanotubes observed with a transmission electron microscope.
- the ratio of single-walled carbon nanotubes of 70% or more means that when 100 carbon nanotubes are observed, 70 or more are single-walled carbon nanotubes.
- the diameter and the number of layers were observed with a transmission electron microscope at a magnification of 300,000 times or more, and the field of view in which the diameter and the number of layers of three or more carbon nanotubes in one field of view can be judged was observed over 35 fields of view. It was calculated by counting the number and diameter of carbon nanotube layers in the field of view.
- the G / D ratio the ratio of the peak height of D band derived from the G band derived from graphite observed around 1590 cm -1 in the Raman spectrum, the defect of the amorphous carbon or graphite observed around 1350 cm -1 Say.
- a carbon nanotube with a higher G / D ratio has higher crystallinity and higher quality.
- the reaction tube 102 is a reaction tube for synthesizing carbon nanotubes and is a mullite vertical reaction tube having an inner diameter of 52 mm, an outer diameter of 60 mm, a length of 1500 mm, and an effective heating length of 1100 mm.
- the electric furnace 101 is provided on the outer periphery of the reaction tube 102, generates heat when energized, and heats the reaction tube 102 with the generated heat.
- the catalytic carbon source solution spray two-fluid nozzle 103 is a device that jets a catalytic carbon source solution 106 in which a carbon compound, an iron compound, and a sulfur compound are mixed into the reaction tube 102 in the form of a mist.
- the micro feeder 107 adjusts the supply amount of the catalytic carbon source solution 106 supplied to the catalytic carbon source solution spray two-fluid nozzle 103.
- the mass flow controller 105 adjusts the flow rates of the inert gas and the hydrogen gas that are carrier gases.
- the inert gas is supplied from an inert gas cylinder 109, and the hydrogen gas is supplied from a hydrogen gas cylinder 110, respectively.
- the collection container 104 is provided in the lower part of the reaction tube 102 and collects the carbon nanotube-containing composition synthesized in the reaction tube 102.
- the synthesized carrier gas is discharged from the exhaust pipe 108.
- Example 1 A carbon nanotube-containing composition was produced using the vertical carbon nanotube production apparatus shown in FIG.
- the electric furnace set temperature in the heating region of the reaction tube was set to 1290 ° C., and a total of 26 L / min of nitrogen gas 13 L / min and hydrogen gas 13 L / min were supplied as carrier gases to replace the inside of the reaction tube with carrier gas.
- a catalytic carbon source solution mixed at a ratio of benzene: ferrocene: thiophene 75: 5: 2.5 in terms of weight was supplied at 145 mg / min to synthesize a carbon nanotube-containing composition for 30 minutes.
- the carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state (0 ° C., 1 atm) was 0.39 mmol / L.
- the ratio of the number of sulfur atoms to the number of iron atoms contained in the catalytic carbon source solution was 1.1.
- the product was allowed to cool sufficiently, and the carbon nanotube-containing composition was taken out from the collection container.
- the obtained carbon nanotube-containing composition had an average diameter of 1.4 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 96%.
- the carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.40 mmol / L.
- the ratio of the number of sulfur atoms to the number of iron atoms contained in the catalytic carbon source solution was 1.1.
- the average diameter of the obtained carbon nanotube-containing composition was 1.3 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 74%.
- the carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.38 mmol / L.
- the ratio of the number of sulfur atoms to the number of iron atoms contained in the catalytic carbon source solution was 1.1.
- the average diameter of the obtained carbon nanotube-containing composition was 1.3 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 88%.
- Example 4 A carbon nanotube-containing composition was produced in the same manner as in Example 1, except that the carrier gas was 9 L / min nitrogen gas and 9 L / min hydrogen gas, and the catalyst carbon source solution was supplied at 101 mg / min.
- the carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.39 mmol / L.
- the obtained carbon nanotube-containing composition had an average diameter of 1.4 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 90%.
- Example 5 A carbon nanotube-containing composition was produced in the same manner as in Example 1 except that toluene was used as the carbon compound.
- the carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.38 mmol / L.
- the ratio of the number of sulfur atoms to the number of iron atoms contained in the catalytic carbon source solution was 1.1.
- the obtained carbon nanotube-containing composition had an average diameter of 1.4 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 90%.
- Example 6 A carbon nanotube-containing composition was produced in the same manner as in Example 1, except that the carrier gas was 10.4 L / min of nitrogen gas and 26 L / min in total of hydrogen gas 15.6 L / min.
- the carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.38 mmol / L.
- the average diameter of the obtained carbon nanotube-containing composition was 1.5 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 91%.
- Example 7 A carbon nanotube-containing composition was produced in the same manner as in Example 1 except that the carrier gas was changed to a total of 26 L / min of nitrogen gas 7.8 L / min and hydrogen gas 18.2 L / min.
- the carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.38 mmol / L.
- the average diameter of the obtained carbon nanotube-containing composition was 1.5 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 95%.
- Example 8 A carbon nanotube-containing composition was produced in the same manner as in Example 1 except that the carrier gas was changed to a total of 26 L / min of nitrogen gas 5.2 L / min and hydrogen gas 20.8 L / min.
- the carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.37 mmol / L.
- the average diameter of the obtained carbon nanotube-containing composition was 1.5 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 95%.
- the carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.37 mmol / L.
- the ratio of the number of sulfur atoms to the number of iron atoms contained in the catalyst carbon source solution was 1.7.
- the average diameter of the obtained carbon nanotube-containing composition was 1.5 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 89%.
- the carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.37 mmol / L.
- the ratio of the number of sulfur atoms to the number of iron atoms contained in the catalyst carbon source solution was 2.2.
- the average diameter of the obtained carbon nanotube-containing composition was 1.4 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 82%.
- the carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.4 mmol / L.
- the ratio of the number of sulfur atoms to the number of iron atoms contained in the catalytic carbon source solution was 0.66.
- the average diameter of the obtained carbon nanotube-containing composition was 2.1 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 93%.
- the carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.40 mmol / L.
- the ratio of the number of sulfur atoms to the number of iron atoms contained in the catalytic carbon source solution was 0.22.
- the average diameter of the obtained carbon nanotube-containing composition was 2.1 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 92%.
- the carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.20 mmol / L.
- the ratio of the number of sulfur atoms to the number of iron atoms contained in the catalytic carbon source solution was 0.22.
- the obtained carbon nanotube-containing composition had an average diameter of 2.2 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 90%.
- the carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 1.05 mmol / L.
- the ratio of the number of sulfur atoms to the number of iron atoms contained in the catalytic carbon source solution was 0.22.
- the obtained carbon nanotube-containing composition had an average diameter of 2.2 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 22%.
- a carbon nanotube-containing composition was produced in the same manner as in Example 1 except that decalin was used as the carbon compound.
- the carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.35 mmol / L.
- the ratio of the number of sulfur atoms to the number of iron atoms contained in the catalytic carbon source solution was 1.1.
- the average diameter of the obtained carbon nanotube-containing composition was 1.4 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 82%.
- the G / D ratio indicating the crystallinity of the carbon nanotube-containing composition was 9, it is considered that a carbon nanotube-containing composition with many defects or carbon by-products was obtained.
- highly crystalline single-walled carbon nanotubes can be produced with high efficiency and high yield.
- the single-walled carbon nanotubes obtained by the present invention are expected to be widely applied in various technical fields such as conductive inks, semiconductor devices, antistatic agents, capacitor conductive members, etc. by utilizing the characteristics.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Composite Materials (AREA)
- Carbon And Carbon Compounds (AREA)
- Conductive Materials (AREA)
Abstract
The present invention provides a method for producing a carbon nanotube-containing composition, wherein a catalyst carbon source solution containing a carbon compound, an iron compound and a sulfur compound is introduced into a reaction tube in a mixed carrier gas of hydrogen and an inert gas. According to the present invention, the molar concentration of carbon atoms in the carbon compound is from 0.16 mmol/L to 0.53 mmol/L (inclusive) based on the mixed carrier gas in a standard state; the ratio of the number of sulfur atoms in the sulfur compound to the number of iron atoms in the iron compound is 0.7-2.4; the hydrogen concentration in the mixed carrier gas is from 50% by volume to 90% by volume (inclusive) in a standard state; and the carbon compound contains an aromatic compound. According to the present invention, single-walled carbon nanotubes having high crystallinity are able to be obtained highly efficiently.
Description
本発明は単層カーボンナノチューブ含有組成物の製造方法に関する。
The present invention relates to a method for producing a single-walled carbon nanotube-containing composition.
カーボンナノチューブの構造は、グラフェンと呼ばれる炭素六角網面がナノメートルオーダーの直径の円筒に巻かれた中空の管(チューブ)である。カーボンナノチューブは、円筒構造を構成するグラフェンの層数により、単層カーボンナノチューブ、二層カーボンナノチューブ、多層カーボンナノチューブに分けられる。またグラフェンの巻き方によって、カーボンナノチューブは金属的にも半導体的にもなるなど興味深い電気的特性や機械的特性を持ち得る。カーボンナノチューブの直径、層数および長さを制御することにより、性能向上および応用性の広がりも期待されている。
The structure of the carbon nanotube is a hollow tube (tube) in which a carbon hexagonal mesh surface called graphene is wound around a cylinder having a diameter of nanometer order. Carbon nanotubes are classified into single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes depending on the number of graphene layers constituting the cylindrical structure. Also, depending on how the graphene is wound, carbon nanotubes can have interesting electrical and mechanical properties such as being metallic and semiconducting. By controlling the diameter, the number of layers, and the length of the carbon nanotube, it is expected to improve the performance and expand the applicability.
しかしながら、実際のカーボンナノチューブは層数や構造が異なる混合物として得られるため、その優れた特性を活かすにはカーボンナノチューブの作り分け技術が必要となる。特性の違いとして、単層カーボンナノチューブでは電荷が何の散乱も受けることなく移動できるバリスティック伝導であるのに対し、多層カーボンナノチューブでは複数の層を電流が流れ、層間で電荷の散乱が生じる拡散伝導である。単層カーボンナノチューブは、極めて破断しにくい柔軟性を持ちながら、ダイヤモンドを越える熱伝導性や強靭な機械的特性を有するなど、二層カーボンナノチューブや多層カーボンナノチューブより優れた特性を有する。よって単層カーボンナノチューブは、これらの特性を利用して導電性インクや半導体デバイス、静電防止剤、キャパシタ導電部材等の用途に対して今後の応用が期待されている次世代のナノカーボン材料である。
However, since actual carbon nanotubes are obtained as a mixture having a different number of layers and structures, a technique for making carbon nanotubes is necessary to make use of the excellent characteristics. A characteristic difference is that single-walled carbon nanotubes have ballistic conduction that allows the electric charge to move without receiving any scattering, whereas multi-walled carbon nanotubes cause current to flow through multiple layers, causing diffusion of charge between the layers. It is conduction. Single-walled carbon nanotubes have properties superior to double-walled carbon nanotubes and multi-walled carbon nanotubes, such as thermal conductivity exceeding that of diamond and tough mechanical properties, while having flexibility that is extremely difficult to break. Therefore, single-walled carbon nanotubes are next-generation nanocarbon materials that are expected to be applied in the future for applications such as conductive inks, semiconductor devices, antistatic agents, and capacitor conductive members. is there.
また、半導体単層カーボンナノチューブは直径に反比例してバンドギャップを有するため、金属単層カーボンナノチューブと化学的手法を用いて分離することができる。このようにして分離された半導体単層カーボンナノチューブは、その柔軟性を活かして透明で折り曲げることができる優れた半導体デバイス等への応用が期待される。さらに、その直径が細いほど半導体性が高くなるため、直径の細い単層カーボンナノチューブは、より高性能な半導体材料であると見込まれる。また、デバイス等への応用ではカーボンナノチューブの結晶性が重要となる。カーボンナノチューブの電気伝導はカーボンナノチューブ表面でのキャリアの移動に起因するが、これは構造欠陥や不純物により散乱され、電気抵抗が高くなる。そのため、デバイスへの応用には結晶性の高いカーボンナノチューブが必要となる。
In addition, since the semiconductor single-walled carbon nanotube has a band gap in inverse proportion to the diameter, it can be separated from the metal single-walled carbon nanotube using a chemical method. The semiconductor single-walled carbon nanotubes thus separated are expected to be applied to an excellent semiconductor device that can be bent transparently by taking advantage of its flexibility. Furthermore, since the semiconductor property becomes higher as the diameter becomes thinner, the single-walled carbon nanotube with a smaller diameter is expected to be a higher performance semiconductor material. In addition, the crystallinity of carbon nanotubes is important for application to devices and the like. The electrical conduction of carbon nanotubes is due to the movement of carriers on the surface of the carbon nanotubes, but this is scattered by structural defects and impurities, resulting in an increase in electrical resistance. Therefore, carbon nanotubes with high crystallinity are required for application to devices.
単層カーボンナノチューブの高効率な合成法であるCVD法(Chemical vapor depositin法)は、使用される触媒の観点から大きく二種類に分類される。触媒を担持させた基板や担体からカーボンナノチューブを成長させる担持触媒法と、気相中に流動させた触媒からカーボンナノチューブを成長させる気相流動法である。特に気相流動法は、連続的に原料を投入でき、連続的に単層カーボンナノチューブを得ることができる手法として優れている。例えば特許文献1には、炭素源としてトルエンを用い、水素ガス、フェロセンおよびチオフェンを1~50m/sで供給する単層カーボンナノチューブの製造方法が開示されている。また、原料として芳香族化合物と脂肪族化合物などの複数の炭素化合物を用いた単層カーボンナノチューブの製造方法が知られている(特許文献2~4)。また、単一の炭素源を用い、炭素源の供給量を向上させた製造方法が知られている(特許文献5)。
The CVD method (Chemical vapor deposition method), which is a highly efficient method for synthesizing single-walled carbon nanotubes, is roughly classified into two types from the viewpoint of the catalyst used. There are a supported catalyst method in which carbon nanotubes are grown from a substrate or carrier on which a catalyst is supported, and a gas phase flow method in which carbon nanotubes are grown from a catalyst that has been flowed into a gas phase. In particular, the gas-phase flow method is excellent as a method that can continuously supply raw materials and continuously obtain single-walled carbon nanotubes. For example, Patent Document 1 discloses a method for producing single-walled carbon nanotubes using toluene as a carbon source and supplying hydrogen gas, ferrocene and thiophene at 1 to 50 m / s. In addition, methods for producing single-walled carbon nanotubes using a plurality of carbon compounds such as aromatic compounds and aliphatic compounds as raw materials are known (Patent Documents 2 to 4). Moreover, the manufacturing method which improved the supply amount of the carbon source using the single carbon source is known (patent document 5).
しかし特許文献1~5に記載されるカーボンナノチューブの合成方法では、得られる単層カーボンナノチューブの収量が少なく、実用化に至っていない。特に、特許文献2~4に開示された製造方法では、供給する気相中の炭素源濃度が低く、単層カーボンナノチューブの収量が低いという課題がある。また、特許文献5に開示される製造方法では、カーボンナノチューブの収率は低く、こちらも効率的な製造方法とは言い難い。さらに特許文献1~5に記載される製造方法では、キャリアガスとして水素ガスのみを用いる場合が多く、安全面やコスト面の課題があった。
However, the carbon nanotube synthesis methods described in Patent Documents 1 to 5 have a low yield of single-walled carbon nanotubes, and have not been put to practical use. In particular, the production methods disclosed in Patent Documents 2 to 4 have problems that the concentration of carbon source in the gas phase to be supplied is low and the yield of single-walled carbon nanotubes is low. Further, in the production method disclosed in Patent Document 5, the yield of carbon nanotubes is low, and this is also difficult to say as an efficient production method. Furthermore, in the production methods described in Patent Documents 1 to 5, only hydrogen gas is often used as the carrier gas, and there are problems in terms of safety and cost.
本発明では、上記のような事情に鑑みなされたものであり、高結晶な単層カーボンナノチューブを高効率に得ることができるカーボンナノチューブ含有組成物の製造方法を提供することを課題とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing a carbon nanotube-containing composition capable of obtaining highly crystalline single-walled carbon nanotubes with high efficiency.
本発明者らは、上記の課題を解決すべく鋭意検討した結果、下記の本発明に至った。
水素と不活性ガスの混合キャリアガス中で炭素化合物、鉄化合物、および硫黄化合物を含む触媒炭素源溶液を反応管に導入するカーボンナノチューブ含有組成物の製造方法であって、標準状態の混合キャリアガスを基準として、炭素化合物中の炭素原子モル濃度が0.16mmol/L以上0.53mmol/L以下、鉄化合物中の鉄原子数に対する硫黄化合物中の硫黄原子数比が0.7~2.4、混合キャリアガス中の水素濃度が標準状態で50体積%以上90体積%以下、かつ、前記炭素化合物が芳香族化合物を含むカーボンナノチューブ含有組成物の製造方法。 As a result of intensive studies to solve the above problems, the present inventors have reached the present invention described below.
A method for producing a carbon nanotube-containing composition, wherein a catalytic carbon source solution containing a carbon compound, an iron compound, and a sulfur compound is introduced into a reaction tube in a mixed carrier gas of hydrogen and an inert gas, and the mixed carrier gas in a standard state The carbon atom molar concentration in the carbon compound is 0.16 mmol / L or more and 0.53 mmol / L or less, and the ratio of the number of sulfur atoms in the sulfur compound to the number of iron atoms in the iron compound is 0.7 to 2.4. The method for producing a carbon nanotube-containing composition, wherein the hydrogen concentration in the mixed carrier gas is 50% by volume to 90% by volume in a standard state, and the carbon compound contains an aromatic compound.
水素と不活性ガスの混合キャリアガス中で炭素化合物、鉄化合物、および硫黄化合物を含む触媒炭素源溶液を反応管に導入するカーボンナノチューブ含有組成物の製造方法であって、標準状態の混合キャリアガスを基準として、炭素化合物中の炭素原子モル濃度が0.16mmol/L以上0.53mmol/L以下、鉄化合物中の鉄原子数に対する硫黄化合物中の硫黄原子数比が0.7~2.4、混合キャリアガス中の水素濃度が標準状態で50体積%以上90体積%以下、かつ、前記炭素化合物が芳香族化合物を含むカーボンナノチューブ含有組成物の製造方法。 As a result of intensive studies to solve the above problems, the present inventors have reached the present invention described below.
A method for producing a carbon nanotube-containing composition, wherein a catalytic carbon source solution containing a carbon compound, an iron compound, and a sulfur compound is introduced into a reaction tube in a mixed carrier gas of hydrogen and an inert gas, and the mixed carrier gas in a standard state The carbon atom molar concentration in the carbon compound is 0.16 mmol / L or more and 0.53 mmol / L or less, and the ratio of the number of sulfur atoms in the sulfur compound to the number of iron atoms in the iron compound is 0.7 to 2.4. The method for producing a carbon nanotube-containing composition, wherein the hydrogen concentration in the mixed carrier gas is 50% by volume to 90% by volume in a standard state, and the carbon compound contains an aromatic compound.
本発明によれば、結晶性の高い単層カーボンナノチューブを高効率に得ることができる。
According to the present invention, single-walled carbon nanotubes with high crystallinity can be obtained with high efficiency.
以下、本発明を実施するための形態を詳細に説明する。なお、以下の実施形態により、本発明が限定されるものではない。
Hereinafter, embodiments for carrying out the present invention will be described in detail. In addition, this invention is not limited by the following embodiment.
本発明は、水素と不活性ガスの混合キャリアガス中で炭素化合物、鉄化合物、および硫黄化合物を含む触媒炭素源溶液を反応管に導入するカーボンナノチューブ含有組成物の製造方法であって、標準状態の混合キャリアガスを基準として、炭素化合物中の炭素原子モル濃度が0.16mmol/L以上0.53mmol/L以下、鉄化合物中の鉄原子数に対して硫黄化合物中の硫黄原子数比が0.7~2.4、混合キャリアガス中の水素濃度が標準状態で50体積%以上90体積%以下、かつ、前記炭素化合物が芳香族化合物を含むカーボンナノチューブ含有組成物の製造方法である。
The present invention is a method for producing a carbon nanotube-containing composition in which a catalytic carbon source solution containing a carbon compound, an iron compound, and a sulfur compound is introduced into a reaction tube in a mixed carrier gas of hydrogen and an inert gas, and the standard state The carbon atom molar concentration in the carbon compound is 0.16 mmol / L or more and 0.53 mmol / L or less, and the ratio of the number of sulfur atoms in the sulfur compound to the number of iron atoms in the iron compound is 0. 7 to 2.4, a method for producing a carbon nanotube-containing composition in which the hydrogen concentration in the mixed carrier gas is 50% by volume to 90% by volume in a standard state, and the carbon compound contains an aromatic compound.
本発明の製造方法では、炭素源として芳香族化合物を含む炭素化合物を用いる。反応管に炭素化合物を供給し始めた時点を合成開始とする。反応管は、加熱炉によって、高温に加熱されており、供給された炭素化合物は、高温で分解してカーボンナノチューブ含有組成物となる。炭素化合物としては、炭素源となり得るものであれば良いが、常温で液体、かつ高温でも比較的分解しにくい芳香族化合物が好ましい。芳香族化合物としては、例えばベンゼン、トルエン、キシレン、クメン、エチルベンゼン、ジエチルベンゼン、トリメチルベンゼン、ナフタレンなどを使用することができる。これらの中でも、特にベンゼン、トルエン、エチルベンゼン、キシレンが好ましく、ベンゼンが最も好ましい。また、原料炭化水素として、ヘテロ原子を含む芳香族化合物を用いることもできるが、ヘテロ原子を含まない芳香族炭化水素化合物がより好ましい。
In the production method of the present invention, a carbon compound containing an aromatic compound is used as a carbon source. The time when the carbon compound starts to be supplied to the reaction tube is set as the start of synthesis. The reaction tube is heated to a high temperature by a heating furnace, and the supplied carbon compound is decomposed at a high temperature to become a carbon nanotube-containing composition. Any carbon compound may be used as long as it can serve as a carbon source, but an aromatic compound that is liquid at room temperature and relatively difficult to decompose at high temperature is preferable. As the aromatic compound, for example, benzene, toluene, xylene, cumene, ethylbenzene, diethylbenzene, trimethylbenzene, naphthalene and the like can be used. Among these, benzene, toluene, ethylbenzene, and xylene are particularly preferable, and benzene is most preferable. Moreover, although an aromatic compound containing a hetero atom can be used as the raw material hydrocarbon, an aromatic hydrocarbon compound containing no hetero atom is more preferable.
前記鉄化合物は、反応管内で分解して、鉄粒子となることにより、カーボンナノチューブ含有組成物製造の触媒として作用する。鉄粒子の好ましい形状としては、球状または楕円球のナノ粒子である。ナノ粒子の特性から、相転移温度等が変動するためカーボンナノチューブ成長時の高温では特定の形状もしくは流動的に形状を変えながらカーボンナノチューブ含有組成物合成の触媒となる。鉄化合物由来の鉄粒子を起点としてカーボンナノチューブ含有組成物が成長する。このとき鉄粒子中に溶解した炭素原子が析出することによってカーボンナノチューブ含有組成物が成長するので、鉄粒子中に溶解する炭素原子の量やその析出の度合いが、得られるカーボンナノチューブの直径、層数および長さに影響を与える。このように鉄粒子からカーボンナノチューブ含有組成物が成長するため、鉄粒子のサイズは数ナノメートルから数十ナノメートルが好ましく、数ナノメートルから十ナノメートルが最も好ましい。
The iron compound is decomposed in a reaction tube to become iron particles, thereby acting as a catalyst for producing a carbon nanotube-containing composition. A preferable shape of the iron particles is spherical or elliptical nanoparticles. Because of the characteristics of the nanoparticles, the phase transition temperature and the like fluctuate, so that the carbon nanotube-containing composition can be synthesized at a high temperature during the growth of the carbon nanotubes while changing the shape in a specific shape or fluidly. The carbon nanotube-containing composition grows starting from iron particles derived from the iron compound. At this time, the carbon nanotube-containing composition grows by the precipitation of carbon atoms dissolved in the iron particles. Therefore, the amount of carbon atoms dissolved in the iron particles and the degree of the precipitation depend on the diameter and layer of the obtained carbon nanotubes. Affects number and length. Since the carbon nanotube-containing composition is thus grown from the iron particles, the size of the iron particles is preferably several nanometers to several tens of nanometers, and most preferably several nanometers to ten nanometers.
鉄化合物として、フェロセンまたはフェロセン誘導体を用いると、カーボンナノチューブ含有組成物を連続的に高純度で製造することができるので好ましい。フェロセンまたはフェロセン誘導体のような有機金属化合物を加熱炉内で熱分解することにより、触媒としての鉄粒子を効率的に生成できる。フェロセンまたはフェロセン誘導体が好ましい理由は、フェロセン骨格を有する分子の鉄原子周辺の骨格の分解速度と分解に伴う鉄粒子の形成速度とが本発明で設定したキャリアガスの混合比率および好ましい温度範囲内で適度に好ましくなっているためと考えられる。フェロセン誘導体としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、アセチル基、カルボキシル基、水酸基、アミノ基、エポキシ基等の置換基を有するフェロセンが使用できる。フェニル基、アニシル基、フェノール基や、ヘテロ原子を含むヘテロ環化合物を置換基として有するフェロセンも使用可能である。また鉄化合物の純度が高いほどカーボンナノチューブ含有組成物製造時の副反応を抑制できるため好ましい。
It is preferable to use ferrocene or a ferrocene derivative as the iron compound because the carbon nanotube-containing composition can be continuously produced with high purity. By thermally decomposing an organometallic compound such as ferrocene or a ferrocene derivative in a heating furnace, iron particles as a catalyst can be efficiently generated. Ferrocene or a ferrocene derivative is preferred because the decomposition rate of the skeleton around the iron atom of the molecule having a ferrocene skeleton and the rate of formation of iron particles accompanying the decomposition are within the carrier gas mixing ratio and the preferred temperature range set in the present invention. This is considered to be reasonably preferable. As the ferrocene derivative, ferrocene having a substituent such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, an acetyl group, a carboxyl group, a hydroxyl group, an amino group, and an epoxy group can be used. Ferrocene having a phenyl group, anisyl group, phenol group, or a heterocyclic compound containing a hetero atom as a substituent can also be used. Moreover, since the side reaction at the time of manufacture of a carbon nanotube containing composition can be suppressed, the purity of an iron compound is preferable.
硫黄化合物は、カーボンナノチューブ含有組成物の合成を促進する助触媒として作用する。硫黄化合物は、触媒としての鉄粒子と相互作用して、カーボンナノチューブ含有組成物の成長を促進および制御することができる。硫黄化合物がカーボンナノチューブ含有組成物の成長メカニズムにおいて必要な理由は明確ではないが、硫黄原子が鉄粒子触媒中に不均一に混ざることによって、鉄粒子中またはその表面に硫黄原子が局在し、鉄粒子触媒上から成長するカーボンナノチューブの直径や方向性を定めていると推定される。本発明において、反応管に導入される鉄化合物と硫黄化合物の比率は、鉄化合物中の鉄原子数に対する硫黄化合物中の硫黄原子数比が0.7~2.4であり、さらに好ましくは0.7~1.8、最も好ましくは1.0~1.8である。この原子数比になるように鉄化合物と硫黄化合物の比率を調整することで、硫黄原子が鉄粒子中に溶解できる炭素量を制御し、平均直径の細いカーボンナノチューブ含有組成物を得ることができる。使用可能な硫黄化合物としては、チオフェン、エタンチオール、プロパンチオール、ブタンチオール、チオフェノール等の含硫黄化合物を挙げることができ、より好ましくはチオフェンである。
The sulfur compound acts as a promoter for promoting the synthesis of the carbon nanotube-containing composition. Sulfur compounds can interact with iron particles as a catalyst to promote and control the growth of the carbon nanotube-containing composition. The reason why the sulfur compound is necessary in the growth mechanism of the carbon nanotube-containing composition is not clear, but sulfur atoms are unevenly mixed in the iron particle catalyst, so that the sulfur atoms are localized in or on the iron particles, It is presumed that the diameter and directionality of the carbon nanotubes grown on the iron particle catalyst are determined. In the present invention, the ratio of the iron compound and the sulfur compound introduced into the reaction tube is such that the ratio of the number of sulfur atoms in the sulfur compound to the number of iron atoms in the iron compound is 0.7 to 2.4, more preferably 0. .7 to 1.8, most preferably 1.0 to 1.8. By adjusting the ratio of the iron compound and the sulfur compound so as to achieve this atomic ratio, the amount of carbon in which sulfur atoms can be dissolved in the iron particles can be controlled, and a carbon nanotube-containing composition having a thin average diameter can be obtained. . Usable sulfur compounds include sulfur-containing compounds such as thiophene, ethanethiol, propanethiol, butanethiol, thiophenol, and more preferably thiophene.
本発明の製造方法では、水素と不活性ガスの混合キャリアガスが用いられる。不活性ガスとしては、窒素ガス、ヘリウム、アルゴンなどが用いられる。一般に、水素は、鉄を還元することによって、鉄粒子表面を活性化すると考えられている。しかし、水素は、鉄粒子表面に吸着する性質も持ち合わせているため、混合キャリアガス中の水素量が余りにも多い場合、鉄粒子表面の水素吸着量が多すぎて、鉄粒子の触媒能が低下してしまう恐れがある。そのため、活性化に必要な水素量は確保しつつ、反応を阻害しない程度に不活性ガスで水素を薄めることが好ましい。水素と不活性ガスとの混合キャリアガス中でカーボンナノチューブ含有組成物を製造することで、鉄粒子の触媒能を保ちつつ単層カーボンナノチューブを成長させ続けることが可能である。また、水素は、炭素化合物の熱分解を促進する一方、C-H結合の熱分解を元に戻す働きもするため、使用する炭素化合物に合わせて水素濃度を調整することが好ましい。混合キャリアガスに含まれる水素の量を適切な範囲にすることで、結晶性が高く高純度の単層カーボンナノチューブ含有組成物を収率良く得ることができる。
In the production method of the present invention, a mixed carrier gas of hydrogen and inert gas is used. Nitrogen gas, helium, argon or the like is used as the inert gas. In general, hydrogen is thought to activate iron particle surfaces by reducing iron. However, since hydrogen has the property of adsorbing on the surface of iron particles, if the amount of hydrogen in the mixed carrier gas is too large, the amount of hydrogen adsorbed on the surface of the iron particles is too large and the catalytic capacity of the iron particles is reduced. There is a risk of doing. Therefore, it is preferable to dilute hydrogen with an inert gas to such an extent that the reaction is not hindered while securing the amount of hydrogen necessary for activation. By producing a carbon nanotube-containing composition in a mixed carrier gas of hydrogen and an inert gas, it is possible to continue growing single-walled carbon nanotubes while maintaining the catalytic ability of iron particles. In addition, while hydrogen promotes the thermal decomposition of the carbon compound and also serves to restore the thermal decomposition of the C—H bond, it is preferable to adjust the hydrogen concentration according to the carbon compound to be used. By setting the amount of hydrogen contained in the mixed carrier gas within an appropriate range, a single-walled carbon nanotube-containing composition having high crystallinity and high purity can be obtained with high yield.
また水素と不活性ガスの熱伝導率の違いから、水素と不活性ガスの比率は、鉄粒子の活性化や炭素化合物の分解の進行に影響する。そのため、混合キャリアガス中の水素濃度を調整することで反応の制御が可能である。不活性ガスとして窒素ガスを用いる場合、安価であるため製造コストを抑えることができるため好ましい。ただし、窒素ガス、ヘリウム、アルゴンなどは、それぞれ熱伝導率が異なるため、カーボンナノチューブ含有組成物の製造条件に合わせて不活性ガスの種類と水素濃度を選択するのが好ましい。
Also, due to the difference in thermal conductivity between hydrogen and inert gas, the ratio of hydrogen and inert gas affects the activation of iron particles and the progress of decomposition of carbon compounds. Therefore, the reaction can be controlled by adjusting the hydrogen concentration in the mixed carrier gas. When nitrogen gas is used as the inert gas, it is preferable because it is inexpensive and can reduce manufacturing costs. However, since nitrogen gas, helium, argon, and the like have different thermal conductivities, it is preferable to select the type of inert gas and the hydrogen concentration according to the production conditions of the carbon nanotube-containing composition.
混合キャリアガス中の水素濃度は、標準状態で50体積%以上90体積%以下であることが好ましい。本発明において、標準状態とは、0℃、1atmを意味する。特に不活性ガスとして窒素ガスを用いる場合は、この範囲が好ましい。さらに好ましくは60体積%以上90体積%以下であり、最も好ましくは、60体積%以上80体積%以下である。また不活性ガスとしてアルゴンを用いる場合は、窒素ガスより熱伝導率が低いため、混合キャリアガス中の水素濃度が標準状態で55体積%以上90体積%以下であることが好ましい。不活性ガスとしてヘリウムを用いる場合は、水素同様に熱伝導率が高いため、混合キャリアガス中の水素濃度は反応に寄与する濃度以上であれば良く、50体積%以上が好ましい。
The hydrogen concentration in the mixed carrier gas is preferably 50% by volume or more and 90% by volume or less in the standard state. In the present invention, the standard state means 0 ° C. and 1 atm. This range is preferable particularly when nitrogen gas is used as the inert gas. More preferably, they are 60 volume% or more and 90 volume% or less, Most preferably, they are 60 volume% or more and 80 volume% or less. In addition, when argon is used as the inert gas, the thermal conductivity is lower than that of nitrogen gas. Therefore, the hydrogen concentration in the mixed carrier gas is preferably 55% by volume or more and 90% by volume or less in the standard state. When helium is used as the inert gas, since the thermal conductivity is as high as hydrogen, the hydrogen concentration in the mixed carrier gas only needs to be higher than the concentration contributing to the reaction, and is preferably 50% by volume or higher.
炭素化合物、鉄化合物および硫黄化合物は、混合して触媒炭素源溶液として、まとめて反応管に導入することが好ましい。導入の方法としては、例えば、触媒炭素源溶液を、噴霧等によって反応管に供給することができる。噴霧する方法としては、触媒炭素源溶液を、キャリアガスと共に二流体ノズルに供給して噴霧する方法を挙げることができる。予め混合して導入することによって、炭素化合物、鉄化合物および硫黄化合物の比率を一定に保ったまま反応管内に導入することができる。そのためには、炭素化合物が、常温、常圧で液体状態であると、扱いやすさの点で好ましい。例えば炭素化合物が液体状態であると、鉄化合物や硫黄化合物が固体であった場合でも、液体状態の炭素化合物に溶解させることによって、触媒炭素源溶液を得ることができるためである。炭素化合物が常温、常圧で固体の場合は、炭素化合物を加熱溶融させて鉄化合物および硫黄化合物と混合してもかまわない。また、炭素化合物、鉄化合物および硫黄化合物を別々に合成装置に導入したい理由がある場合は、合成装置内で、炭素化合物、鉄化合物および硫黄化合物の比率が一定に保たれるように混合する機構を内部に設けたうえで、合成を行うと良い。炭素化合物が固体の場合には、溶融させて供給するか、昇華させて供給すると良い。また、炭素化合物、鉄化合物および硫黄化合物は、それぞれの分解温度および分解速度が異なるため、反応管の加熱の方法が異なる場合は、分解温度や分解速度が変わるため、比率を微調整することが好ましい場合もある。
The carbon compound, iron compound and sulfur compound are preferably mixed and introduced into the reaction tube as a catalytic carbon source solution. As an introduction method, for example, a catalytic carbon source solution can be supplied to the reaction tube by spraying or the like. Examples of the spraying method include a method in which a catalytic carbon source solution is supplied to a two-fluid nozzle together with a carrier gas and sprayed. By introducing the mixture in advance, the carbon compound, the iron compound and the sulfur compound can be introduced into the reaction tube while maintaining a constant ratio. For that purpose, it is preferable in terms of ease of handling that the carbon compound is in a liquid state at normal temperature and normal pressure. For example, when the carbon compound is in a liquid state, a catalytic carbon source solution can be obtained by dissolving it in the carbon compound in the liquid state even if the iron compound or sulfur compound is solid. When the carbon compound is solid at normal temperature and normal pressure, the carbon compound may be heated and melted and mixed with the iron compound and sulfur compound. In addition, when there is a reason to separately introduce the carbon compound, iron compound and sulfur compound into the synthesizer, a mechanism for mixing so that the ratio of the carbon compound, iron compound and sulfur compound is kept constant in the synthesizer. It is good to synthesize after providing the inside. When the carbon compound is solid, it is preferably supplied after being melted or sublimated. Carbon compounds, iron compounds, and sulfur compounds have different decomposition temperatures and decomposition rates. Therefore, if the heating method of the reaction tube is different, the decomposition temperature and decomposition rate change, so the ratio can be finely adjusted. It may be preferable.
本発明の製造方法では、所望のカーボンナノチューブを得るため、標準状態(0℃、1atm)の混合キャリアガスを基準として、炭素化合物中の炭素原子モル濃度が0.16mmol/L以上0.53mmol/L以下になるように、キャリアガス中における炭素化合物濃度を制御する。炭素化合物濃度が高すぎる場合、炭素化合物の分解が過剰に進行し、アモルファスカーボンと呼ばれる非晶質炭素が生成しやすい。アモルファスカーボンが不純物として単層カーボンナノチューブの表面や内部に付着することで、単層カーボンナノチューブの純度が低下する原因となる。さらに触媒となる鉄粒子がアモルファスカーボンによって被覆されることで、単層カーボンナノチューブの成長が妨げられ、収量低下の要因となる。また混合キャリアガスを基準とした炭素原子モル濃度が所定濃度より大きいと、特許文献3に記載されているように二層カーボンナノチューブが成長し、単層カーボンナノチューブ成長の選択性が低下することが知られている。一方でキャリアガス中における炭素化合物濃度が低すぎる場合、カーボンナノチューブの成長源となる炭素原子不足となるため、収量が低下してしまう。この場合、たとえキャリアガス流量を上げることにより単位時間当たりの炭素化合物密度を高くしても、加熱炉を通過する時間、すなわち反応時間が短くなり、カーボンナノチューブの成長が低くなる。これにより得られるカーボンナノチューブの結晶性が低下したり、長さが短くなったりする。これらの理由から高純度の単層カーボンナノチューブを得るためには、標準状態の混合キャリアガスを基準として、炭素化合物中の炭素原子モル濃度が0.16mmol/L以上0.53mmol/L以下である必要があり、より好ましくは0.20mmol/L以上0.50mmol/L以下、最も好ましくは0.25mmol/L以上0.50mmol/L以下である。
In the production method of the present invention, in order to obtain a desired carbon nanotube, the molar concentration of carbon atoms in the carbon compound is 0.16 mmol / L or more and 0.53 mmol / L based on the mixed carrier gas in the standard state (0 ° C., 1 atm). The carbon compound concentration in the carrier gas is controlled to be L or less. When the carbon compound concentration is too high, decomposition of the carbon compound proceeds excessively, and amorphous carbon called amorphous carbon tends to be generated. Amorphous carbon adheres to the surface and inside of single-walled carbon nanotubes as impurities, which causes the purity of single-walled carbon nanotubes to decrease. Furthermore, the iron particles that serve as a catalyst are coated with amorphous carbon, which hinders the growth of single-walled carbon nanotubes, which causes a decrease in yield. If the carbon atom molar concentration based on the mixed carrier gas is larger than the predetermined concentration, double-walled carbon nanotubes grow as described in Patent Document 3, and the selectivity of single-walled carbon nanotube growth may be reduced. Are known. On the other hand, when the concentration of the carbon compound in the carrier gas is too low, the carbon atom that becomes the growth source of the carbon nanotubes becomes insufficient, resulting in a decrease in yield. In this case, even if the carbon compound density per unit time is increased by increasing the carrier gas flow rate, the time for passing through the heating furnace, that is, the reaction time is shortened, and the growth of the carbon nanotubes is decreased. As a result, the crystallinity of the carbon nanotube obtained is lowered or the length is shortened. For these reasons, in order to obtain high-purity single-walled carbon nanotubes, the carbon atom molar concentration in the carbon compound is 0.16 mmol / L or more and 0.53 mmol / L or less based on the mixed carrier gas in the standard state. More preferably, it is 0.20 mmol / L or more and 0.50 mmol / L or less, and most preferably 0.25 mmol / L or more and 0.50 mmol / L or less.
炭素化合物は、芳香族化合物を含むことが好ましい。カーボンナノチューブ含有組成物は、合成温度が高温であるほど収量が向上する。炭素化合物として鎖式飽和炭化水素や鎖式不飽和炭化水素を用いた場合は、比較的低温でも反応するため、合成温度を高温にしたときに、過剰に分解し、副反応が生成しやすいという欠点がある。一方、炭素化合物として芳香族化合物を用いた場合、高温での反応において副生物を抑制できるので、カーボンナノチューブ含有組成物の収量向上の点で好ましい。また、炭素源として2種類以上の炭素化合物を用いた場合、反応の複雑化により副反応が起こり、得られるカーボンナノチューブ含有組成物の収量が低下してしまう可能性がある。炭素源として1種類の炭素化合物のみを用いることは、副反応を抑制しながら合成温度を高温にすることができ、大量生産に向いているという点で好ましい。
The carbon compound preferably contains an aromatic compound. The yield of the carbon nanotube-containing composition increases as the synthesis temperature increases. When chain-type saturated hydrocarbons or chain-type unsaturated hydrocarbons are used as the carbon compound, they react even at relatively low temperatures. Therefore, when the synthesis temperature is raised, excessive decomposition occurs and side reactions are likely to occur. There are drawbacks. On the other hand, when an aromatic compound is used as the carbon compound, by-products can be suppressed in the reaction at a high temperature, which is preferable in terms of improving the yield of the carbon nanotube-containing composition. Moreover, when two or more types of carbon compounds are used as the carbon source, side reactions may occur due to the complicated reaction, and the yield of the resulting carbon nanotube-containing composition may be reduced. The use of only one carbon compound as the carbon source is preferable in that the synthesis temperature can be increased while suppressing side reactions, and this is suitable for mass production.
芳香族化合物は、メチル基、エチル基、エチレン基等の置換基が存在する化合物であっても良い。好ましい芳香族化合物の例としては、ベンゼン、トルエン、エチルベンゼン、キシレン等が挙げられ、より好ましくはベンゼンである。
The aromatic compound may be a compound having a substituent such as a methyl group, an ethyl group or an ethylene group. Examples of preferred aromatic compounds include benzene, toluene, ethylbenzene, xylene and the like, and more preferred is benzene.
混合キャリアガスの線速度は、500cm/分以上1500cm/分以下であることが好ましい。混合キャリアガスの線速度は、合成時の熱伝導とそれに起因した炭素化合物の分解挙動に影響を与える。合成温度が比較的高いときは、炭素化合物の分解が過剰になる可能性があるため、混合キャリアガスの線速度を速く調整し、反応時間が短くなるように調整することが好ましい。一方で合成温度が比較的低いときは、炭素化合物の分解を促進させるため、混合キャリアガスの線速度を遅めに調整し、反応時間を長くして炭素化合物の分解を調整することが好ましい。また混合キャリアガスの組成によって混合キャリアガスの熱伝導率が大きくなる場合は線速度を速くし、熱伝導が小さくなる場合は線速度が遅くなるように調整することが好ましい。線速度が速すぎる場合には、反応時間が短くカーボンナノチューブ含有組成物の収量が低くなる。また、線速度があまりにも遅い場合には、合成領域での混合キャリアガスの対流の影響が支配的となってしまう。よって、混合キャリアガスの線速度が500cm/分以上1500cm/分以下であることが好ましい。線速度の下限は、より好ましくは600cm/分以上、最も好ましくは700cm/分以上である。また、線速度の上限は、より好ましくは1400cm/分以下であり、最も好ましくは1300cm/分以下である。
The linear velocity of the mixed carrier gas is preferably 500 cm / min or more and 1500 cm / min or less. The linear velocity of the mixed carrier gas affects the heat conduction during the synthesis and the decomposition behavior of the carbon compound resulting therefrom. When the synthesis temperature is relatively high, the carbon compound may be excessively decomposed. Therefore, it is preferable to adjust the linear velocity of the mixed carrier gas so as to shorten the reaction time. On the other hand, when the synthesis temperature is relatively low, in order to promote the decomposition of the carbon compound, it is preferable to adjust the linear velocity of the mixed carrier gas so as to increase the reaction time to adjust the decomposition of the carbon compound. Further, it is preferable that the linear velocity is increased when the thermal conductivity of the mixed carrier gas increases due to the composition of the mixed carrier gas, and the linear velocity is decreased when the thermal conductivity decreases. When the linear velocity is too high, the reaction time is short and the yield of the carbon nanotube-containing composition is low. In addition, when the linear velocity is too low, the influence of the convection of the mixed carrier gas in the synthesis region becomes dominant. Therefore, it is preferable that the linear velocity of the mixed carrier gas is 500 cm / min or more and 1500 cm / min or less. The lower limit of the linear velocity is more preferably 600 cm / min or more, and most preferably 700 cm / min or more. The upper limit of the linear velocity is more preferably 1400 cm / min or less, and most preferably 1300 cm / min or less.
カーボンナノチューブ含有組成物は、合成温度が高いほど収量が増加することが知られている。一方で合成温度が高温すぎる場合は、炭素化合物、鉄化合物および硫黄化合物の分解が過剰に進行する。そのため、副反応が進行しやすくなり、収量の減少や均一性(直径分布、層数割合、結晶性など)の低下が起こる。ここで、カーボンナノチューブ含有組成物の合成温度とは、加熱された反応管の温度を指すものとする。反応管温度は、例えば電気炉で加熱する場合、電気炉に熱電対を差し込み、熱電対先端を反応管表面から約1mmの距離に設置することによって測定すると良い。カーボンナノチューブ含有組成物の合成温度範囲としては、反応管の温度が1100℃以上1500℃以下であることが好ましい。反応管の温度の下限は、さらに好ましくは1150℃以上であり、最も好ましくは1200℃以上である。反応管の温度の上限は、さらに好ましくは1450℃以下であり、最も好ましくは1400℃以下である。
It is known that the yield of the carbon nanotube-containing composition increases as the synthesis temperature increases. On the other hand, when the synthesis temperature is too high, decomposition of the carbon compound, iron compound and sulfur compound proceeds excessively. As a result, side reactions are likely to proceed, resulting in a decrease in yield and uniformity (diameter distribution, layer number ratio, crystallinity, etc.). Here, the synthesis temperature of the carbon nanotube-containing composition refers to the temperature of the heated reaction tube. For example, when heating in an electric furnace, the reaction tube temperature may be measured by inserting a thermocouple into the electric furnace and placing the tip of the thermocouple at a distance of about 1 mm from the reaction tube surface. As a synthesis temperature range of the carbon nanotube-containing composition, the temperature of the reaction tube is preferably 1100 ° C. or higher and 1500 ° C. or lower. The lower limit of the temperature of the reaction tube is more preferably 1150 ° C or higher, and most preferably 1200 ° C or higher. The upper limit of the temperature of the reaction tube is more preferably 1450 ° C. or less, and most preferably 1400 ° C. or less.
本発明の製造方法によれば、平均直径が2.0nm以下、単層カーボンナノチューブの比率が70%以上、かつ、G/D比が50以上のカーボンナノチューブ含有組成物を合成することができる。ここで、カーボンナノチューブ含有組成物の平均直径は、透過電子顕微鏡でカーボンナノチューブを100本観測し、最小二乗平均により算出した平均直径を指す。また、単層カーボンナノチューブの比率が70%以上とは、カーボンナノチューブを100本観測したとき、70本以上が単層カーボンナノチューブであることをいう。直径および層数は、透過電子顕微鏡でカーボンナノチューブを30万倍以上の倍率で観測し、1視野中3本以上のカーボンナノチューブの直径と層数が判断できる視野を35視野以上観察し、それぞれの視野にあるカーボンナノチューブの層数と直径を数えることによって算出した。
According to the production method of the present invention, a carbon nanotube-containing composition having an average diameter of 2.0 nm or less, a ratio of single-walled carbon nanotubes of 70% or more, and a G / D ratio of 50 or more can be synthesized. Here, the average diameter of the carbon nanotube-containing composition refers to an average diameter calculated by least square average of 100 carbon nanotubes observed with a transmission electron microscope. The ratio of single-walled carbon nanotubes of 70% or more means that when 100 carbon nanotubes are observed, 70 or more are single-walled carbon nanotubes. The diameter and the number of layers were observed with a transmission electron microscope at a magnification of 300,000 times or more, and the field of view in which the diameter and the number of layers of three or more carbon nanotubes in one field of view can be judged was observed over 35 fields of view. It was calculated by counting the number and diameter of carbon nanotube layers in the field of view.
そして、G/D比とは、ラマンスペクトルにおいて1590cm-1付近に見られるグラファイト由来のGバンドと、1350cm-1付近に見られるアモルファスカーボンやグラファイトの欠陥に由来のDバンドのピーク高さの比をいう。G/D比が高いカーボンナノチューブほど結晶性が高く、高品質である。
Then, the G / D ratio, the ratio of the peak height of D band derived from the G band derived from graphite observed around 1590 cm -1 in the Raman spectrum, the defect of the amorphous carbon or graphite observed around 1350 cm -1 Say. A carbon nanotube with a higher G / D ratio has higher crystallinity and higher quality.
[カーボンナノチューブ含有組成物の合成]
図1に示す縦型のカーボンナノチューブ製造装置を使用して、以下の実施例に示すカーボンナノチューブ含有組成物を製造した。 [Synthesis of carbon nanotube-containing composition]
Using the vertical carbon nanotube production apparatus shown in FIG. 1, the carbon nanotube-containing compositions shown in the following examples were produced.
図1に示す縦型のカーボンナノチューブ製造装置を使用して、以下の実施例に示すカーボンナノチューブ含有組成物を製造した。 [Synthesis of carbon nanotube-containing composition]
Using the vertical carbon nanotube production apparatus shown in FIG. 1, the carbon nanotube-containing compositions shown in the following examples were produced.
図1に示す合成装置は、電気炉101、反応管102、触媒炭素源溶液噴霧二流体ノズル103、マイクロフィーダー107、マスフローコントローラー105、回収容器104および排ガス管108によって構成される。反応管102は、カーボンナノチューブを合成するための反応管であり、内径52mm、外径60mm、長さ1500mm、有効加熱長さ1100mmのムライト製縦型反応管である。電気炉101は、反応管102の外周に設けられ、通電により発熱し、発生した熱によって反応管102を加熱する。触媒炭素源溶液噴霧二流体ノズル103は、炭素化合物、鉄化合物および硫黄化合物を混合した触媒炭素源溶液106を、反応管102中に霧状に噴出する装置である。マイクロフィーダー107は、触媒炭素源溶液噴霧二流体ノズル103に供給される触媒炭素源溶液106の供給量を調整する。マスフローコントローラー105は、キャリアガスとなる不活性ガスおよび水素ガスの流量を調整する。不活性ガスは、不活性ガスボンベ109から、水素ガスは、水素ガスボンベ110から、それぞれ供給される。回収容器104は、反応管102の下部に設けられ、反応管102内で合成されたカーボンナノチューブ含有組成物を回収する。合成後のキャリアガスは、排ガス管108から排出される。
1 includes an electric furnace 101, a reaction tube 102, a catalytic carbon source solution spray two-fluid nozzle 103, a microfeeder 107, a mass flow controller 105, a recovery container 104, and an exhaust gas pipe 108. The reaction tube 102 is a reaction tube for synthesizing carbon nanotubes and is a mullite vertical reaction tube having an inner diameter of 52 mm, an outer diameter of 60 mm, a length of 1500 mm, and an effective heating length of 1100 mm. The electric furnace 101 is provided on the outer periphery of the reaction tube 102, generates heat when energized, and heats the reaction tube 102 with the generated heat. The catalytic carbon source solution spray two-fluid nozzle 103 is a device that jets a catalytic carbon source solution 106 in which a carbon compound, an iron compound, and a sulfur compound are mixed into the reaction tube 102 in the form of a mist. The micro feeder 107 adjusts the supply amount of the catalytic carbon source solution 106 supplied to the catalytic carbon source solution spray two-fluid nozzle 103. The mass flow controller 105 adjusts the flow rates of the inert gas and the hydrogen gas that are carrier gases. The inert gas is supplied from an inert gas cylinder 109, and the hydrogen gas is supplied from a hydrogen gas cylinder 110, respectively. The collection container 104 is provided in the lower part of the reaction tube 102 and collects the carbon nanotube-containing composition synthesized in the reaction tube 102. The synthesized carrier gas is discharged from the exhaust pipe 108.
[高分解能透過型電子顕微鏡観察]
カーボンナノチューブ含有組成物1mgをエタノール1mLに入れて、10分間超音波バスを用いて分散処理を行った。分散した試料を観察用グリッド上に数滴滴下し、乾燥させた。このように試料が塗布されたグリッドを透過型電子顕微鏡(日本電子社製JEM-2100)に設置し、測定倍率30万倍、加速電圧100kVで測定を行った。得られたカーボンナノチューブ観察像100本からその直径と層数を計測した。 [High-resolution transmission electron microscope observation]
1 mg of the carbon nanotube-containing composition was placed in 1 mL of ethanol, and dispersion treatment was performed using an ultrasonic bath for 10 minutes. A few drops of the dispersed sample were dropped on the observation grid and dried. The grid thus coated with the sample was placed in a transmission electron microscope (JEM-2100 manufactured by JEOL Ltd.), and measurement was performed at a measurement magnification of 300,000 times and an acceleration voltage of 100 kV. The diameter and the number of layers were measured from 100 obtained carbon nanotube observation images.
カーボンナノチューブ含有組成物1mgをエタノール1mLに入れて、10分間超音波バスを用いて分散処理を行った。分散した試料を観察用グリッド上に数滴滴下し、乾燥させた。このように試料が塗布されたグリッドを透過型電子顕微鏡(日本電子社製JEM-2100)に設置し、測定倍率30万倍、加速電圧100kVで測定を行った。得られたカーボンナノチューブ観察像100本からその直径と層数を計測した。 [High-resolution transmission electron microscope observation]
1 mg of the carbon nanotube-containing composition was placed in 1 mL of ethanol, and dispersion treatment was performed using an ultrasonic bath for 10 minutes. A few drops of the dispersed sample were dropped on the observation grid and dried. The grid thus coated with the sample was placed in a transmission electron microscope (JEM-2100 manufactured by JEOL Ltd.), and measurement was performed at a measurement magnification of 300,000 times and an acceleration voltage of 100 kV. The diameter and the number of layers were measured from 100 obtained carbon nanotube observation images.
[ラマン分光分析法による結晶性評価]
ラマン分光計(ホリバ ジョバンイボン製 INF-300)に粉末試料を設置し、励起波長532nmのレーザーを用いて測定した。得られたラマンスペクトルにおいて1590cm-1付近に見られるグラファイト由来のGバンドと、1350cm-1付近に見られるアモルファスカーボンやグラファイトの欠陥に由来のDバンドのピーク高さの比をG/D比とした。G/D比が高いカーボンナノチューブ含有組成物ほど結晶性が高い。粉末のラマン分光分析法はサンプリングによってばらつくことがあるため、少なくとも3カ所以上測定し、その相加平均をとりG/D比を算出した。 [Evaluation of crystallinity by Raman spectroscopy]
A powder sample was placed in a Raman spectrometer (INF-300 manufactured by Horiba Jobin Yvon), and measurement was performed using a laser having an excitation wavelength of 532 nm. And G band derived from graphite observed around 1590 cm -1 in the Raman spectrum obtained, a ratio of the peak height of D band attributed to a defect of the amorphous carbon or graphite observed around 1350 cm -1 and G / D ratio did. A carbon nanotube-containing composition having a higher G / D ratio has higher crystallinity. Since the Raman spectroscopic analysis of powders may vary depending on sampling, at least three points were measured, and the arithmetic average was taken to calculate the G / D ratio.
ラマン分光計(ホリバ ジョバンイボン製 INF-300)に粉末試料を設置し、励起波長532nmのレーザーを用いて測定した。得られたラマンスペクトルにおいて1590cm-1付近に見られるグラファイト由来のGバンドと、1350cm-1付近に見られるアモルファスカーボンやグラファイトの欠陥に由来のDバンドのピーク高さの比をG/D比とした。G/D比が高いカーボンナノチューブ含有組成物ほど結晶性が高い。粉末のラマン分光分析法はサンプリングによってばらつくことがあるため、少なくとも3カ所以上測定し、その相加平均をとりG/D比を算出した。 [Evaluation of crystallinity by Raman spectroscopy]
A powder sample was placed in a Raman spectrometer (INF-300 manufactured by Horiba Jobin Yvon), and measurement was performed using a laser having an excitation wavelength of 532 nm. And G band derived from graphite observed around 1590 cm -1 in the Raman spectrum obtained, a ratio of the peak height of D band attributed to a defect of the amorphous carbon or graphite observed around 1350 cm -1 and G / D ratio did. A carbon nanotube-containing composition having a higher G / D ratio has higher crystallinity. Since the Raman spectroscopic analysis of powders may vary depending on sampling, at least three points were measured, and the arithmetic average was taken to calculate the G / D ratio.
[実施例1]
図1に示す縦型のカーボンナノチューブ製造装置を使用してカーボンナノチューブ含有組成物を製造した。反応管の加熱領域の電気炉設定温度を1290℃とし、キャリアガスとして窒素ガス13L/分および水素ガス13L/分の合計26L/分を供給して反応管内をキャリアガス置換した。ここに、重量換算でベンゼン:フェロセン:チオフェン=75:5:2.5の比率で混合した触媒炭素源溶液を145mg/分で供給し、30分間カーボンナノチューブ含有組成物の合成を行った。標準状態(0℃、1atm)の混合キャリアガスを基準とした、炭素化合物中の炭素原子モル濃度は、0.39mmol/Lであった。触媒炭素源溶液中に含まれる鉄原子数に対する硫黄原子数比は1.1であった。合成終了後、十分に放冷した後、回収容器からカーボンナノチューブ含有組成物を取り出した。得られたカーボンナノチューブ含有組成物の平均直径は1.4nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は96%であった。 [Example 1]
A carbon nanotube-containing composition was produced using the vertical carbon nanotube production apparatus shown in FIG. The electric furnace set temperature in the heating region of the reaction tube was set to 1290 ° C., and a total of 26 L / min of nitrogen gas 13 L / min and hydrogen gas 13 L / min were supplied as carrier gases to replace the inside of the reaction tube with carrier gas. A catalytic carbon source solution mixed at a ratio of benzene: ferrocene: thiophene = 75: 5: 2.5 in terms of weight was supplied at 145 mg / min to synthesize a carbon nanotube-containing composition for 30 minutes. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state (0 ° C., 1 atm) was 0.39 mmol / L. The ratio of the number of sulfur atoms to the number of iron atoms contained in the catalytic carbon source solution was 1.1. After the synthesis, the product was allowed to cool sufficiently, and the carbon nanotube-containing composition was taken out from the collection container. The obtained carbon nanotube-containing composition had an average diameter of 1.4 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 96%.
図1に示す縦型のカーボンナノチューブ製造装置を使用してカーボンナノチューブ含有組成物を製造した。反応管の加熱領域の電気炉設定温度を1290℃とし、キャリアガスとして窒素ガス13L/分および水素ガス13L/分の合計26L/分を供給して反応管内をキャリアガス置換した。ここに、重量換算でベンゼン:フェロセン:チオフェン=75:5:2.5の比率で混合した触媒炭素源溶液を145mg/分で供給し、30分間カーボンナノチューブ含有組成物の合成を行った。標準状態(0℃、1atm)の混合キャリアガスを基準とした、炭素化合物中の炭素原子モル濃度は、0.39mmol/Lであった。触媒炭素源溶液中に含まれる鉄原子数に対する硫黄原子数比は1.1であった。合成終了後、十分に放冷した後、回収容器からカーボンナノチューブ含有組成物を取り出した。得られたカーボンナノチューブ含有組成物の平均直径は1.4nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は96%であった。 [Example 1]
A carbon nanotube-containing composition was produced using the vertical carbon nanotube production apparatus shown in FIG. The electric furnace set temperature in the heating region of the reaction tube was set to 1290 ° C., and a total of 26 L / min of nitrogen gas 13 L / min and hydrogen gas 13 L / min were supplied as carrier gases to replace the inside of the reaction tube with carrier gas. A catalytic carbon source solution mixed at a ratio of benzene: ferrocene: thiophene = 75: 5: 2.5 in terms of weight was supplied at 145 mg / min to synthesize a carbon nanotube-containing composition for 30 minutes. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state (0 ° C., 1 atm) was 0.39 mmol / L. The ratio of the number of sulfur atoms to the number of iron atoms contained in the catalytic carbon source solution was 1.1. After the synthesis, the product was allowed to cool sufficiently, and the carbon nanotube-containing composition was taken out from the collection container. The obtained carbon nanotube-containing composition had an average diameter of 1.4 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 96%.
[実施例2]
ベンゼン:フェロセン:チオフェン=75:3:1.5の比率で混合した触媒炭素源溶液を用いた以外は実施例1と同様にカーボンナノチューブ含有組成物を製造した。この時の標準状態の混合キャリアガスを基準とした炭素化合物中の炭素原子モル濃度は0.40mmol/Lであった。触媒炭素源溶液中に含まれる鉄原子数に対する硫黄原子数比は1.1であった。得られたカーボンナノチューブ含有組成物の平均直径は1.3nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は74%であった。 [Example 2]
A carbon nanotube-containing composition was produced in the same manner as in Example 1 except that a catalytic carbon source solution mixed in a ratio of benzene: ferrocene: thiophene = 75: 3: 1.5 was used. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.40 mmol / L. The ratio of the number of sulfur atoms to the number of iron atoms contained in the catalytic carbon source solution was 1.1. The average diameter of the obtained carbon nanotube-containing composition was 1.3 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 74%.
ベンゼン:フェロセン:チオフェン=75:3:1.5の比率で混合した触媒炭素源溶液を用いた以外は実施例1と同様にカーボンナノチューブ含有組成物を製造した。この時の標準状態の混合キャリアガスを基準とした炭素化合物中の炭素原子モル濃度は0.40mmol/Lであった。触媒炭素源溶液中に含まれる鉄原子数に対する硫黄原子数比は1.1であった。得られたカーボンナノチューブ含有組成物の平均直径は1.3nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は74%であった。 [Example 2]
A carbon nanotube-containing composition was produced in the same manner as in Example 1 except that a catalytic carbon source solution mixed in a ratio of benzene: ferrocene: thiophene = 75: 3: 1.5 was used. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.40 mmol / L. The ratio of the number of sulfur atoms to the number of iron atoms contained in the catalytic carbon source solution was 1.1. The average diameter of the obtained carbon nanotube-containing composition was 1.3 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 74%.
[実施例3]
ベンゼン:フェロセン:チオフェン=75:8:4の比率で混合した触媒炭素源溶液を用いた以外は実施例1と同様にカーボンナノチューブ含有組成物を製造した。この時の標準状態の混合キャリアガスを基準とした炭素化合物中の炭素原子モル濃度は0.38mmol/Lであった。触媒炭素源溶液中に含まれる鉄原子数に対する硫黄原子数比は1.1であった。得られたカーボンナノチューブ含有組成物の平均直径は1.3nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は88%であった。 [Example 3]
A carbon nanotube-containing composition was produced in the same manner as in Example 1 except that a catalytic carbon source solution mixed in a ratio of benzene: ferrocene: thiophene = 75: 8: 4 was used. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.38 mmol / L. The ratio of the number of sulfur atoms to the number of iron atoms contained in the catalytic carbon source solution was 1.1. The average diameter of the obtained carbon nanotube-containing composition was 1.3 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 88%.
ベンゼン:フェロセン:チオフェン=75:8:4の比率で混合した触媒炭素源溶液を用いた以外は実施例1と同様にカーボンナノチューブ含有組成物を製造した。この時の標準状態の混合キャリアガスを基準とした炭素化合物中の炭素原子モル濃度は0.38mmol/Lであった。触媒炭素源溶液中に含まれる鉄原子数に対する硫黄原子数比は1.1であった。得られたカーボンナノチューブ含有組成物の平均直径は1.3nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は88%であった。 [Example 3]
A carbon nanotube-containing composition was produced in the same manner as in Example 1 except that a catalytic carbon source solution mixed in a ratio of benzene: ferrocene: thiophene = 75: 8: 4 was used. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.38 mmol / L. The ratio of the number of sulfur atoms to the number of iron atoms contained in the catalytic carbon source solution was 1.1. The average diameter of the obtained carbon nanotube-containing composition was 1.3 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 88%.
[実施例4]
キャリアガスを窒素ガス9L/分および水素ガス9L/分の合計18L/分とし、触媒炭素源溶液を101mg/分で供給した以外は実施例1と同様にカーボンナノチューブ含有組成物を製造した。この時の標準状態の混合キャリアガスを基準とした炭素化合物中の炭素原子モル濃度は0.39mmol/Lであった。得られたカーボンナノチューブ含有組成物の平均直径は1.4nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は90%であった。 [Example 4]
A carbon nanotube-containing composition was produced in the same manner as in Example 1, except that the carrier gas was 9 L / min nitrogen gas and 9 L / min hydrogen gas, and the catalyst carbon source solution was supplied at 101 mg / min. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.39 mmol / L. The obtained carbon nanotube-containing composition had an average diameter of 1.4 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 90%.
キャリアガスを窒素ガス9L/分および水素ガス9L/分の合計18L/分とし、触媒炭素源溶液を101mg/分で供給した以外は実施例1と同様にカーボンナノチューブ含有組成物を製造した。この時の標準状態の混合キャリアガスを基準とした炭素化合物中の炭素原子モル濃度は0.39mmol/Lであった。得られたカーボンナノチューブ含有組成物の平均直径は1.4nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は90%であった。 [Example 4]
A carbon nanotube-containing composition was produced in the same manner as in Example 1, except that the carrier gas was 9 L / min nitrogen gas and 9 L / min hydrogen gas, and the catalyst carbon source solution was supplied at 101 mg / min. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.39 mmol / L. The obtained carbon nanotube-containing composition had an average diameter of 1.4 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 90%.
[実施例5]
炭素化合物としてトルエンを用いた以外は実施例1と同様にカーボンナノチューブ含有組成物を製造した。この時の標準状態の混合キャリアガスを基準とした炭素化合物中の炭素原子モル濃度は0.38mmol/Lであった。触媒炭素源溶液中に含まれる鉄原子数に対する硫黄原子数比は1.1であった。得られたカーボンナノチューブ含有組成物の平均直径は1.4nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は90%であった。 [Example 5]
A carbon nanotube-containing composition was produced in the same manner as in Example 1 except that toluene was used as the carbon compound. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.38 mmol / L. The ratio of the number of sulfur atoms to the number of iron atoms contained in the catalytic carbon source solution was 1.1. The obtained carbon nanotube-containing composition had an average diameter of 1.4 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 90%.
炭素化合物としてトルエンを用いた以外は実施例1と同様にカーボンナノチューブ含有組成物を製造した。この時の標準状態の混合キャリアガスを基準とした炭素化合物中の炭素原子モル濃度は0.38mmol/Lであった。触媒炭素源溶液中に含まれる鉄原子数に対する硫黄原子数比は1.1であった。得られたカーボンナノチューブ含有組成物の平均直径は1.4nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は90%であった。 [Example 5]
A carbon nanotube-containing composition was produced in the same manner as in Example 1 except that toluene was used as the carbon compound. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.38 mmol / L. The ratio of the number of sulfur atoms to the number of iron atoms contained in the catalytic carbon source solution was 1.1. The obtained carbon nanotube-containing composition had an average diameter of 1.4 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 90%.
[実施例6]
キャリアガスを窒素ガス10.4L/分および水素ガス15.6L/分の合計26L/分とした以外は実施例1と同様にカーボンナノチューブ含有組成物を製造した。この時の標準状態の混合キャリアガスを基準とした炭素化合物中の炭素原子モル濃度は0.38mmol/Lであった。得られたカーボンナノチューブ含有組成物の平均直径は1.5nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は91%であった。 [Example 6]
A carbon nanotube-containing composition was produced in the same manner as in Example 1, except that the carrier gas was 10.4 L / min of nitrogen gas and 26 L / min in total of hydrogen gas 15.6 L / min. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.38 mmol / L. The average diameter of the obtained carbon nanotube-containing composition was 1.5 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 91%.
キャリアガスを窒素ガス10.4L/分および水素ガス15.6L/分の合計26L/分とした以外は実施例1と同様にカーボンナノチューブ含有組成物を製造した。この時の標準状態の混合キャリアガスを基準とした炭素化合物中の炭素原子モル濃度は0.38mmol/Lであった。得られたカーボンナノチューブ含有組成物の平均直径は1.5nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は91%であった。 [Example 6]
A carbon nanotube-containing composition was produced in the same manner as in Example 1, except that the carrier gas was 10.4 L / min of nitrogen gas and 26 L / min in total of hydrogen gas 15.6 L / min. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.38 mmol / L. The average diameter of the obtained carbon nanotube-containing composition was 1.5 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 91%.
[実施例7]
キャリアガスを窒素ガス7.8L/分および水素ガス18.2L/分の合計26L/分とした以外は実施例1と同様にカーボンナノチューブ含有組成物を製造した。この時の標準状態の混合キャリアガスを基準とした炭素化合物中の炭素原子モル濃度は0.38mmol/Lであった。得られたカーボンナノチューブ含有組成物の平均直径は1.5nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は95%であった。 [Example 7]
A carbon nanotube-containing composition was produced in the same manner as in Example 1 except that the carrier gas was changed to a total of 26 L / min of nitrogen gas 7.8 L / min and hydrogen gas 18.2 L / min. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.38 mmol / L. The average diameter of the obtained carbon nanotube-containing composition was 1.5 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 95%.
キャリアガスを窒素ガス7.8L/分および水素ガス18.2L/分の合計26L/分とした以外は実施例1と同様にカーボンナノチューブ含有組成物を製造した。この時の標準状態の混合キャリアガスを基準とした炭素化合物中の炭素原子モル濃度は0.38mmol/Lであった。得られたカーボンナノチューブ含有組成物の平均直径は1.5nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は95%であった。 [Example 7]
A carbon nanotube-containing composition was produced in the same manner as in Example 1 except that the carrier gas was changed to a total of 26 L / min of nitrogen gas 7.8 L / min and hydrogen gas 18.2 L / min. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.38 mmol / L. The average diameter of the obtained carbon nanotube-containing composition was 1.5 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 95%.
[実施例8]
キャリアガスを窒素ガス5.2L/分および水素ガス20.8L/分の合計26L/分とした以外は実施例1と同様にカーボンナノチューブ含有組成物を製造した。この時の標準状態の混合キャリアガスを基準とした炭素化合物中の炭素原子モル濃度は0.37mmol/Lであった。得られたカーボンナノチューブ含有組成物の平均直径は1.5nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は95%であった。 [Example 8]
A carbon nanotube-containing composition was produced in the same manner as in Example 1 except that the carrier gas was changed to a total of 26 L / min of nitrogen gas 5.2 L / min and hydrogen gas 20.8 L / min. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.37 mmol / L. The average diameter of the obtained carbon nanotube-containing composition was 1.5 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 95%.
キャリアガスを窒素ガス5.2L/分および水素ガス20.8L/分の合計26L/分とした以外は実施例1と同様にカーボンナノチューブ含有組成物を製造した。この時の標準状態の混合キャリアガスを基準とした炭素化合物中の炭素原子モル濃度は0.37mmol/Lであった。得られたカーボンナノチューブ含有組成物の平均直径は1.5nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は95%であった。 [Example 8]
A carbon nanotube-containing composition was produced in the same manner as in Example 1 except that the carrier gas was changed to a total of 26 L / min of nitrogen gas 5.2 L / min and hydrogen gas 20.8 L / min. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.37 mmol / L. The average diameter of the obtained carbon nanotube-containing composition was 1.5 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 95%.
[実施例9]
ベンゼン:フェロセン:チオフェン=75:5:3.75の比率で混合した触媒炭素源溶液を用いた以外は実施例7と同様にカーボンナノチューブ含有組成物を製造した。この時の標準状態の混合キャリアガスを基準とした炭素化合物中の炭素原子モル濃度は0.37mmol/Lであった。また、触媒炭素源溶液中に含まれる鉄原子数に対する硫黄原子数比は1.7であった。得られたカーボンナノチューブ含有組成物の平均直径は1.5nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は89%であった。 [Example 9]
A carbon nanotube-containing composition was produced in the same manner as in Example 7 except that a catalytic carbon source solution mixed in a ratio of benzene: ferrocene: thiophene = 75: 5: 3.75 was used. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.37 mmol / L. The ratio of the number of sulfur atoms to the number of iron atoms contained in the catalyst carbon source solution was 1.7. The average diameter of the obtained carbon nanotube-containing composition was 1.5 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 89%.
ベンゼン:フェロセン:チオフェン=75:5:3.75の比率で混合した触媒炭素源溶液を用いた以外は実施例7と同様にカーボンナノチューブ含有組成物を製造した。この時の標準状態の混合キャリアガスを基準とした炭素化合物中の炭素原子モル濃度は0.37mmol/Lであった。また、触媒炭素源溶液中に含まれる鉄原子数に対する硫黄原子数比は1.7であった。得られたカーボンナノチューブ含有組成物の平均直径は1.5nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は89%であった。 [Example 9]
A carbon nanotube-containing composition was produced in the same manner as in Example 7 except that a catalytic carbon source solution mixed in a ratio of benzene: ferrocene: thiophene = 75: 5: 3.75 was used. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.37 mmol / L. The ratio of the number of sulfur atoms to the number of iron atoms contained in the catalyst carbon source solution was 1.7. The average diameter of the obtained carbon nanotube-containing composition was 1.5 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 89%.
[実施例10]
ベンゼン:フェロセン:チオフェン=75:5:5の比率で混合した触媒炭素源溶液を用いた以外は実施例7と同様にカーボンナノチューブ含有組成物を製造した。この時の標準状態の混合キャリアガスを基準とした炭素化合物中の炭素原子モル濃度は0.37mmol/Lであった。また、触媒炭素源溶液中に含まれる鉄原子数に対する硫黄原子数比は2.2であった。得られたカーボンナノチューブ含有組成物の平均直径は1.4nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は82%であった。 [Example 10]
A carbon nanotube-containing composition was produced in the same manner as in Example 7 except that a catalytic carbon source solution mixed in a ratio of benzene: ferrocene: thiophene = 75: 5: 5 was used. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.37 mmol / L. The ratio of the number of sulfur atoms to the number of iron atoms contained in the catalyst carbon source solution was 2.2. The average diameter of the obtained carbon nanotube-containing composition was 1.4 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 82%.
ベンゼン:フェロセン:チオフェン=75:5:5の比率で混合した触媒炭素源溶液を用いた以外は実施例7と同様にカーボンナノチューブ含有組成物を製造した。この時の標準状態の混合キャリアガスを基準とした炭素化合物中の炭素原子モル濃度は0.37mmol/Lであった。また、触媒炭素源溶液中に含まれる鉄原子数に対する硫黄原子数比は2.2であった。得られたカーボンナノチューブ含有組成物の平均直径は1.4nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は82%であった。 [Example 10]
A carbon nanotube-containing composition was produced in the same manner as in Example 7 except that a catalytic carbon source solution mixed in a ratio of benzene: ferrocene: thiophene = 75: 5: 5 was used. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.37 mmol / L. The ratio of the number of sulfur atoms to the number of iron atoms contained in the catalyst carbon source solution was 2.2. The average diameter of the obtained carbon nanotube-containing composition was 1.4 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 82%.
[比較例1]
ベンゼン:フェロセン:チオフェン=75:5:1.5の比率で混合した触媒炭素源溶液を用いた以外は実施例1と同様にカーボンナノチューブ含有組成物を製造した。この時の標準状態の混合キャリアガスを基準とした炭素化合物中の炭素原子モル濃度は0.4mmol/Lであった。触媒炭素源溶液中に含まれる鉄原子数に対する硫黄原子数比は0.66であった。得られたカーボンナノチューブ含有組成物の平均直径は2.1nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は93%であった。 [Comparative Example 1]
A carbon nanotube-containing composition was produced in the same manner as in Example 1 except that a catalytic carbon source solution mixed in a ratio of benzene: ferrocene: thiophene = 75: 5: 1.5 was used. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.4 mmol / L. The ratio of the number of sulfur atoms to the number of iron atoms contained in the catalytic carbon source solution was 0.66. The average diameter of the obtained carbon nanotube-containing composition was 2.1 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 93%.
ベンゼン:フェロセン:チオフェン=75:5:1.5の比率で混合した触媒炭素源溶液を用いた以外は実施例1と同様にカーボンナノチューブ含有組成物を製造した。この時の標準状態の混合キャリアガスを基準とした炭素化合物中の炭素原子モル濃度は0.4mmol/Lであった。触媒炭素源溶液中に含まれる鉄原子数に対する硫黄原子数比は0.66であった。得られたカーボンナノチューブ含有組成物の平均直径は2.1nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は93%であった。 [Comparative Example 1]
A carbon nanotube-containing composition was produced in the same manner as in Example 1 except that a catalytic carbon source solution mixed in a ratio of benzene: ferrocene: thiophene = 75: 5: 1.5 was used. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.4 mmol / L. The ratio of the number of sulfur atoms to the number of iron atoms contained in the catalytic carbon source solution was 0.66. The average diameter of the obtained carbon nanotube-containing composition was 2.1 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 93%.
[比較例2]
ベンゼン:フェロセン:チオフェン=75:5:0.5の比率で混合した触媒炭素源溶液を用いた以外は実施例1と同様にカーボンナノチューブ含有組成物を製造した。この時の標準状態の混合キャリアガスを基準とした炭素化合物中の炭素原子モル濃度は0.40mmol/Lであった。触媒炭素源溶液中に含まれる鉄原子数に対する硫黄原子数比は0.22であった。得られたカーボンナノチューブ含有組成物の平均直径は2.1nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は92%であった。 [Comparative Example 2]
A carbon nanotube-containing composition was produced in the same manner as in Example 1 except that a catalytic carbon source solution mixed in a ratio of benzene: ferrocene: thiophene = 75: 5: 0.5 was used. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.40 mmol / L. The ratio of the number of sulfur atoms to the number of iron atoms contained in the catalytic carbon source solution was 0.22. The average diameter of the obtained carbon nanotube-containing composition was 2.1 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 92%.
ベンゼン:フェロセン:チオフェン=75:5:0.5の比率で混合した触媒炭素源溶液を用いた以外は実施例1と同様にカーボンナノチューブ含有組成物を製造した。この時の標準状態の混合キャリアガスを基準とした炭素化合物中の炭素原子モル濃度は0.40mmol/Lであった。触媒炭素源溶液中に含まれる鉄原子数に対する硫黄原子数比は0.22であった。得られたカーボンナノチューブ含有組成物の平均直径は2.1nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は92%であった。 [Comparative Example 2]
A carbon nanotube-containing composition was produced in the same manner as in Example 1 except that a catalytic carbon source solution mixed in a ratio of benzene: ferrocene: thiophene = 75: 5: 0.5 was used. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.40 mmol / L. The ratio of the number of sulfur atoms to the number of iron atoms contained in the catalytic carbon source solution was 0.22. The average diameter of the obtained carbon nanotube-containing composition was 2.1 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 92%.
[比較例3]
ベンゼン:フェロセン:チオフェン=75:5:0.5の比率で混合した触媒炭素源溶液を73mg/分で供給した以外は実施例1と同様にカーボンナノチューブ含有組成物を製造した。この時の標準状態の混合キャリアガスを基準とした炭素化合物中の炭素原子モル濃度は0.20mmol/Lであった。触媒炭素源溶液中に含まれる鉄原子数に対する硫黄原子数比は0.22であった。得られたカーボンナノチューブ含有組成物の平均直径は2.2nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は90%であった。 [Comparative Example 3]
A carbon nanotube-containing composition was produced in the same manner as in Example 1 except that a catalytic carbon source solution mixed at a ratio of benzene: ferrocene: thiophene = 75: 5: 0.5 was supplied at 73 mg / min. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.20 mmol / L. The ratio of the number of sulfur atoms to the number of iron atoms contained in the catalytic carbon source solution was 0.22. The obtained carbon nanotube-containing composition had an average diameter of 2.2 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 90%.
ベンゼン:フェロセン:チオフェン=75:5:0.5の比率で混合した触媒炭素源溶液を73mg/分で供給した以外は実施例1と同様にカーボンナノチューブ含有組成物を製造した。この時の標準状態の混合キャリアガスを基準とした炭素化合物中の炭素原子モル濃度は0.20mmol/Lであった。触媒炭素源溶液中に含まれる鉄原子数に対する硫黄原子数比は0.22であった。得られたカーボンナノチューブ含有組成物の平均直径は2.2nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は90%であった。 [Comparative Example 3]
A carbon nanotube-containing composition was produced in the same manner as in Example 1 except that a catalytic carbon source solution mixed at a ratio of benzene: ferrocene: thiophene = 75: 5: 0.5 was supplied at 73 mg / min. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.20 mmol / L. The ratio of the number of sulfur atoms to the number of iron atoms contained in the catalytic carbon source solution was 0.22. The obtained carbon nanotube-containing composition had an average diameter of 2.2 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 90%.
[比較例4]
ベンゼン:フェロセン:チオフェン=75:5:0.5の比率で混合した触媒炭素源溶液を381mg/分で供給した以外は実施例1と同様にカーボンナノチューブ含有組成物を製造した。この時の標準状態の混合キャリアガスを基準とした炭素化合物中の炭素原子モル濃度は1.05mmol/Lであった。触媒炭素源溶液中に含まれる鉄原子数に対する硫黄原子数比は0.22であった。得られたカーボンナノチューブ含有組成物の平均直径は2.2nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は22%であった。 [Comparative Example 4]
A carbon nanotube-containing composition was produced in the same manner as in Example 1 except that a catalytic carbon source solution mixed at a ratio of benzene: ferrocene: thiophene = 75: 5: 0.5 was supplied at 381 mg / min. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 1.05 mmol / L. The ratio of the number of sulfur atoms to the number of iron atoms contained in the catalytic carbon source solution was 0.22. The obtained carbon nanotube-containing composition had an average diameter of 2.2 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 22%.
ベンゼン:フェロセン:チオフェン=75:5:0.5の比率で混合した触媒炭素源溶液を381mg/分で供給した以外は実施例1と同様にカーボンナノチューブ含有組成物を製造した。この時の標準状態の混合キャリアガスを基準とした炭素化合物中の炭素原子モル濃度は1.05mmol/Lであった。触媒炭素源溶液中に含まれる鉄原子数に対する硫黄原子数比は0.22であった。得られたカーボンナノチューブ含有組成物の平均直径は2.2nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は22%であった。 [Comparative Example 4]
A carbon nanotube-containing composition was produced in the same manner as in Example 1 except that a catalytic carbon source solution mixed at a ratio of benzene: ferrocene: thiophene = 75: 5: 0.5 was supplied at 381 mg / min. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 1.05 mmol / L. The ratio of the number of sulfur atoms to the number of iron atoms contained in the catalytic carbon source solution was 0.22. The obtained carbon nanotube-containing composition had an average diameter of 2.2 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 22%.
[比較例5]
炭素化合物としてデカリンを用いた以外は実施例1と同様にカーボンナノチューブ含有組成物を製造した。この時の標準状態の混合キャリアガスを基準とした炭素化合物中の炭素原子モル濃度は0.35mmol/Lであった。触媒炭素源溶液中に含まれる鉄原子数に対する硫黄原子数比は1.1であった。得られたカーボンナノチューブ含有組成物の平均直径は1.4nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は82%であった。しかし、カーボンナノチューブ含有組成物の結晶性を示すG/D比が9であったため、欠陥もしくは炭素副生物が多いカーボンナノチューブ含有組成物が得られたと考えられる。 [Comparative Example 5]
A carbon nanotube-containing composition was produced in the same manner as in Example 1 except that decalin was used as the carbon compound. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.35 mmol / L. The ratio of the number of sulfur atoms to the number of iron atoms contained in the catalytic carbon source solution was 1.1. The average diameter of the obtained carbon nanotube-containing composition was 1.4 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 82%. However, since the G / D ratio indicating the crystallinity of the carbon nanotube-containing composition was 9, it is considered that a carbon nanotube-containing composition with many defects or carbon by-products was obtained.
炭素化合物としてデカリンを用いた以外は実施例1と同様にカーボンナノチューブ含有組成物を製造した。この時の標準状態の混合キャリアガスを基準とした炭素化合物中の炭素原子モル濃度は0.35mmol/Lであった。触媒炭素源溶液中に含まれる鉄原子数に対する硫黄原子数比は1.1であった。得られたカーボンナノチューブ含有組成物の平均直径は1.4nmであり、カーボンナノチューブ含有組成物中の単層カーボンナノチューブ比率は82%であった。しかし、カーボンナノチューブ含有組成物の結晶性を示すG/D比が9であったため、欠陥もしくは炭素副生物が多いカーボンナノチューブ含有組成物が得られたと考えられる。 [Comparative Example 5]
A carbon nanotube-containing composition was produced in the same manner as in Example 1 except that decalin was used as the carbon compound. The carbon atom molar concentration in the carbon compound based on the mixed carrier gas in the standard state at this time was 0.35 mmol / L. The ratio of the number of sulfur atoms to the number of iron atoms contained in the catalytic carbon source solution was 1.1. The average diameter of the obtained carbon nanotube-containing composition was 1.4 nm, and the single-walled carbon nanotube ratio in the carbon nanotube-containing composition was 82%. However, since the G / D ratio indicating the crystallinity of the carbon nanotube-containing composition was 9, it is considered that a carbon nanotube-containing composition with many defects or carbon by-products was obtained.
本発明の製造方法では、高結晶な単層カーボンナノチューブを高効率かつ高収量で製造することができる。この発明により得られる単層カーボンナノチューブは、その特性を利用して、導電性インクや半導体デバイス、静電防止剤、キャパシタ導電部材等各種の技術分野において、幅広い応用が期待される。
In the production method of the present invention, highly crystalline single-walled carbon nanotubes can be produced with high efficiency and high yield. The single-walled carbon nanotubes obtained by the present invention are expected to be widely applied in various technical fields such as conductive inks, semiconductor devices, antistatic agents, capacitor conductive members, etc. by utilizing the characteristics.
101 電気炉
102 反応管
103 触媒炭素源溶液噴霧二流体ノズル
104 回収容器
105 マスフローコントローラー
106 触媒炭素源溶液
107 マイクロフィーダー
108 排ガス管
109 不活性ガスボンベ
110 水素ガスボンベ 101Electric furnace 102 Reaction tube 103 Catalytic carbon source solution spray two-fluid nozzle 104 Recovery vessel 105 Mass flow controller 106 Catalytic carbon source solution 107 Microfeeder 108 Exhaust gas tube 109 Inert gas cylinder 110 Hydrogen gas cylinder
102 反応管
103 触媒炭素源溶液噴霧二流体ノズル
104 回収容器
105 マスフローコントローラー
106 触媒炭素源溶液
107 マイクロフィーダー
108 排ガス管
109 不活性ガスボンベ
110 水素ガスボンベ 101
Claims (6)
- 水素と不活性ガスの混合キャリアガス中で炭素化合物、鉄化合物、および硫黄化合物を含む触媒炭素源溶液を反応管に導入するカーボンナノチューブ含有組成物の製造方法であって、標準状態の混合キャリアガスを基準として、炭素化合物中の炭素原子モル濃度が0.16mmol/L以上0.53mmol/L以下、鉄化合物中の鉄原子数に対する硫黄化合物中の硫黄原子数比が0.7~2.4、混合キャリアガス中の水素濃度が標準状態で50体積%以上90体積%以下、かつ、前記炭素化合物が芳香族化合物を含むカーボンナノチューブ含有組成物の製造方法。 A method for producing a carbon nanotube-containing composition, wherein a catalytic carbon source solution containing a carbon compound, an iron compound, and a sulfur compound is introduced into a reaction tube in a mixed carrier gas of hydrogen and an inert gas, and the mixed carrier gas in a standard state The carbon atom molar concentration in the carbon compound is 0.16 mmol / L or more and 0.53 mmol / L or less, and the ratio of the number of sulfur atoms in the sulfur compound to the number of iron atoms in the iron compound is 0.7 to 2.4. The method for producing a carbon nanotube-containing composition, wherein the hydrogen concentration in the mixed carrier gas is 50% by volume to 90% by volume in a standard state, and the carbon compound contains an aromatic compound.
- 混合キャリアガスの線速度が500cm/分以上1500cm/分以下である請求項1に記載のカーボンナノチューブ含有組成物の製造方法。 The method for producing a carbon nanotube-containing composition according to claim 1, wherein the linear velocity of the mixed carrier gas is 500 cm / min or more and 1500 cm / min or less.
- 反応管の温度が1100℃以上1500℃以下である請求項1または2に記載のカーボンナノチューブ含有組成物の製造方法。 The method for producing a carbon nanotube-containing composition according to claim 1 or 2, wherein the temperature of the reaction tube is 1100 ° C or higher and 1500 ° C or lower.
- 不活性ガスが窒素、ヘリウム、およびアルゴンから選ばれる少なくとも1種を含む請求項1~3のいずれかに記載のカーボンナノチューブ含有組成物の製造方法。 The method for producing a carbon nanotube-containing composition according to any one of claims 1 to 3, wherein the inert gas contains at least one selected from nitrogen, helium, and argon.
- 鉄化合物がフェロセンまたはフェロセン誘導体である請求項1~4のいずれかに記載のカーボンナノチューブ含有組成物の製造方法。 The method for producing a carbon nanotube-containing composition according to any one of claims 1 to 4, wherein the iron compound is ferrocene or a ferrocene derivative.
- 硫黄化合物がチオフェン、エタンチオール、プロパンチオール、ブタンチオール、およびチオフェノールから選ばれる少なくとも1種を含む請求項1~5のいずれかに記載のカーボンナノチューブ含有組成物の製造方法。 6. The method for producing a carbon nanotube-containing composition according to claim 1, wherein the sulfur compound contains at least one selected from thiophene, ethanethiol, propanethiol, butanethiol, and thiophenol.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018500756A JPWO2018123796A1 (en) | 2016-12-26 | 2017-12-21 | Method for producing single-walled carbon nanotube-containing composition |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016250941 | 2016-12-26 | ||
JP2016-250941 | 2016-12-26 | ||
JP2017-159910 | 2017-08-23 | ||
JP2017159910 | 2017-08-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018123796A1 true WO2018123796A1 (en) | 2018-07-05 |
Family
ID=62711124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/045896 WO2018123796A1 (en) | 2016-12-26 | 2017-12-21 | Method for producing single-walled carbon nanotube-containing composition |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2018123796A1 (en) |
WO (1) | WO2018123796A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110577208A (en) * | 2019-08-18 | 2019-12-17 | 复旦大学 | A kind of natriophilic conductive carbon nanotube framework material and its preparation method and application |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006213590A (en) * | 2005-01-04 | 2006-08-17 | National Institute Of Advanced Industrial & Technology | Carbon fiber assembly comprising ultrafine single-walled carbon nanotubes and method for producing the same |
JP2007246316A (en) * | 2006-03-14 | 2007-09-27 | National Institute Of Advanced Industrial & Technology | Method for producing single-walled carbon nanotube |
JP2014094869A (en) * | 2012-11-12 | 2014-05-22 | National Institute Of Advanced Industrial & Technology | Method for producing carbon nanotube, carbon nanotube, and identification marker |
JP2015048263A (en) * | 2013-08-30 | 2015-03-16 | 帝人株式会社 | Carbon nanotube aggregate containing single-walled carbon nanotube and double-walled carbon nanotube, and synthesis method thereof |
-
2017
- 2017-12-21 WO PCT/JP2017/045896 patent/WO2018123796A1/en active Application Filing
- 2017-12-21 JP JP2018500756A patent/JPWO2018123796A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006213590A (en) * | 2005-01-04 | 2006-08-17 | National Institute Of Advanced Industrial & Technology | Carbon fiber assembly comprising ultrafine single-walled carbon nanotubes and method for producing the same |
JP2007246316A (en) * | 2006-03-14 | 2007-09-27 | National Institute Of Advanced Industrial & Technology | Method for producing single-walled carbon nanotube |
JP2014094869A (en) * | 2012-11-12 | 2014-05-22 | National Institute Of Advanced Industrial & Technology | Method for producing carbon nanotube, carbon nanotube, and identification marker |
JP2015048263A (en) * | 2013-08-30 | 2015-03-16 | 帝人株式会社 | Carbon nanotube aggregate containing single-walled carbon nanotube and double-walled carbon nanotube, and synthesis method thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110577208A (en) * | 2019-08-18 | 2019-12-17 | 复旦大学 | A kind of natriophilic conductive carbon nanotube framework material and its preparation method and application |
CN110577208B (en) * | 2019-08-18 | 2022-11-18 | 复旦大学 | A kind of natriophilic conductive carbon nanotube framework material and its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018123796A1 (en) | 2019-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2025643B1 (en) | Method for producing single-walled carbon nanotubes | |
EP3053877B1 (en) | Method for manufacturing bundle-type carbon nanotubes having a large specific surface area | |
CA2559070C (en) | Single, multi-walled, functionalized and doped carbon nanotubes and composites thereof | |
JP5550833B2 (en) | Method and apparatus for high quality single-walled carbon nanotube growth | |
JP5102633B2 (en) | Method for growing long carbon single-walled nanotubes | |
US10758898B2 (en) | Method for manufacturing carbon nanotube agglomerate having controlled bulk density | |
KR101864850B1 (en) | Method for producing carbon nanostructures, and device | |
JP6492598B2 (en) | Method for producing carbon nanotube | |
Abbaslou et al. | The effects of carbon concentration in the precursor gas on the quality and quantity of carbon nanotubes synthesized by CVD method | |
US9950926B2 (en) | Method for production of germanium nanowires encapsulated within multi-walled carbon nanotubes | |
Peng et al. | Diameter-controlled growth of aligned single-walled carbon nanotubes on quartz using molecular nanoclusters as catalyst precursors | |
JP5364904B2 (en) | Method for producing carbon nanofiber aggregate | |
CN107614426B (en) | Method for producing carbon nanotube-containing composition | |
WO2018123796A1 (en) | Method for producing single-walled carbon nanotube-containing composition | |
Mansoor et al. | Optimization of ethanol flow rate for improved catalytic activity of Ni particles to synthesize MWCNTs using a CVD reactor | |
JP2018016521A (en) | Method for producing single layer carbon nanotube-containing composition | |
JP4706058B2 (en) | Method for producing a carbon fiber aggregate comprising ultrafine single-walled carbon nanotubes | |
KR20160062810A (en) | Method for preparing carbon nanotube and hybrid carbon nanotube composite | |
KR101580928B1 (en) | synthetic method of Si-CNFs based on Co-Cu catalysts | |
Zhu et al. | Synthesis of carbon coated silica nanowires | |
Jeong et al. | The effect of synthesis conditions on the growth of carbon nanofilaments using intermetallic copper-tin catalysts | |
JP6950939B2 (en) | Catalyst support for synthesizing carbon nanotube aggregates and members for synthesizing carbon nanotube aggregates | |
Sadeghian et al. | Synthesis optimisation and characterisation of multiwalled carbon nanotubes produced by spray pyrolysis of hexane | |
RU2427423C1 (en) | Metal-oxide catalyst for growing bundles of carbon nanotubes from gaseous phase | |
Khairurrijal et al. | Structural characteristics of carbon nanotubes fabricated using simple spray pyrolysis method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018500756 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17886581 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17886581 Country of ref document: EP Kind code of ref document: A1 |