WO2018123650A1 - Method for wavelength adjustment of wavelength multiplexed signal, and optical transmission system - Google Patents
Method for wavelength adjustment of wavelength multiplexed signal, and optical transmission system Download PDFInfo
- Publication number
- WO2018123650A1 WO2018123650A1 PCT/JP2017/045085 JP2017045085W WO2018123650A1 WO 2018123650 A1 WO2018123650 A1 WO 2018123650A1 JP 2017045085 W JP2017045085 W JP 2017045085W WO 2018123650 A1 WO2018123650 A1 WO 2018123650A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wavelength
- optical
- difference
- wavelengths
- signal
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 231
- 238000000034 method Methods 0.000 title claims abstract description 28
- 230000005540 biological transmission Effects 0.000 title claims description 48
- 239000013307 optical fiber Substances 0.000 claims description 23
- 238000003860 storage Methods 0.000 claims description 14
- 238000012544 monitoring process Methods 0.000 description 23
- 238000010586 diagram Methods 0.000 description 21
- 239000000758 substrate Substances 0.000 description 18
- 230000008569 process Effects 0.000 description 14
- 238000004891 communication Methods 0.000 description 11
- 239000006185 dispersion Substances 0.000 description 11
- 230000008859 change Effects 0.000 description 9
- 238000011084 recovery Methods 0.000 description 9
- 230000001427 coherent effect Effects 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
- G02F1/025—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/068—Stabilisation of laser output parameters
- H01S5/0683—Stabilisation of laser output parameters by monitoring the optical output parameters
- H01S5/0687—Stabilising the frequency of the laser
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2543—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
- H04B10/2563—Four-wave mixing [FWM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/572—Wavelength control
Definitions
- a control unit acquires information on a plurality of wavelengths from an optical transmitter for transmitting a wavelength multiplexed signal in which a plurality of wavelengths are multiplexed.
- FIG. 1 is a diagram illustrating a configuration example of an optical communication system according to an embodiment.
- FIG. 2 is a block diagram showing an outline of a configuration related to optical wavelength division multiplexing communication in an embodiment.
- FIG. 3 is a diagram showing a schematic configuration of an optical transceiver applicable to this embodiment.
- FIG. 4 is a block diagram schematically showing the configuration of the optical transmission module 50 shown in FIG.
- FIG. 5 is a schematic diagram for explaining a thermal connection between the laser diode, the submount, and the thermoelectric cooler shown in FIG.
- FIG. 6 is a diagram showing an example of the relationship between the drive current and the center wavelength of the laser beam for the laser diode (DFB-LD) applicable to this embodiment.
- FIG. 1 is a diagram illustrating a configuration example of an optical communication system according to an embodiment.
- FIG. 2 is a block diagram showing an outline of a configuration related to optical wavelength division multiplexing communication in an embodiment.
- FIG. 3 is a diagram showing a schematic configuration of
- the wavelengths of the optical signals emitted from the three light emitting units are the shortest first wavelength, the second wavelength longer than the first wavelength, and the third wavelength longer than the second wavelength.
- the control unit calculates a first difference between the third wavelength and the second wavelength, and a second difference between the second wavelength and the first wavelength, thereby calculating the first difference. The condition is satisfied when the difference between the second difference and the second difference is smaller than the reception band of the receiver that selects the one-wavelength signal from the wavelength multiplexed signal and converts the one-wavelength signal into an electric signal. Judge that.
- FIG. 1 is a diagram illustrating a configuration example of an optical communication system according to an embodiment.
- a PON system 300 is an optical communication system according to an embodiment.
- the PON system 300 includes a station side device 301, a home side device 302, a PON line 303, and an optical splitter 304.
- the “station side device” and “home side device” may be read as “OLT (Optical Line Terminal)” and “ONU (Optical Network Unit)”, respectively.
- OLT Optical Line Terminal
- ONU Optical Network Unit
- the station-side device 301 is installed in a telecommunications carrier's office building.
- the station side device 301 mounts a host substrate (not shown).
- an optical transceiver (not shown) that converts electrical signals and optical signals into each other.
- the electrical interface 43 inputs and outputs electrical signals.
- the optical transmission module 50 outputs data from the clock data recovery IC 44 in the form of an optical signal.
- the electrical interface 43 is an interface for outputting wavelength information from the inside of the optical transmitter to the outside of the optical transmitter.
- the electrical interface 43 is also an interface for receiving a control signal from the outside of the optical transmitter.
- the optical transmission module 50 is configured to change at least one operating point of the plurality of light emitting units (see FIG. 4) according to the control signal.
- FIG. 4 is a block diagram schematically showing the configuration of the optical transmission module 50 shown in FIG.
- the optical transmission module 50 includes a temperature monitor 10, laser diodes 11, 12, 13, 14, submounts 21, 22, 23, 24, a driver 30, and an optical wavelength multiplexer ( Optical MUX) 42 and a thermoelectric cooler 48.
- the optical transmission module 50 may be a TOSA (Transmitter Optical SubAssembly) type optical transmission module.
- the optical output power when the operating point is changed by changing the drive current, the optical output power also changes. For this reason, the optical output power may vary.
- the optical output is obtained by changing the drive current of the DFB-LD section. Even if the power increases, the light absorption amount of the EA modulator can be increased by changing the bias level of the EA modulator. Thereby, in the EA modulator, the optical output power can be corrected in the direction of reducing the optical output power. Note that the change in the bias level of the EA modulator does not contribute to the change in wavelength, but the optical waveform can change somewhat. Therefore, it is preferable to change the duty ratio of the modulation signal output of the driver 30.
- FIG. 9 is a block diagram showing a configuration example of a controller included in the optical transceiver.
- the controller 41 can include a storage unit 65.
- the storage unit 65 may be provided inside the optical transceiver separately from the controller 41.
- FIG. 10 is a diagram showing an example of wavelength information.
- each of the wavelength information 71 to 74 includes transmission wavelength information ( ⁇ d1, ⁇ d2, ⁇ d3, ⁇ d4) and information indicating whether the wavelength control function is valid or invalid (for example, flag ), And a wavelength adjustment register.
- the wavelength adjustment register receives any value from + A to -A (A is a positive integer) and holds the value.
- the adjustment range of the transmission wavelength is determined by the value written in the wavelength adjustment register. For example, the transmission wavelength changes by 0.05 nm every time the register value is changed by one step.
- the value of the wavelength adjustment register is linked to the change in the temperature of the laser diode or the change in the drive current of the laser diode.
- the controller 41 can adjust the transmission wavelength specified by the wavelength information.
- the controller 41 determines the operating point of the corresponding laser diode among the laser diodes 11 to 14 based on the value written in the wavelength adjustment register.
- the controller 41 controls the drive current of the laser diode according to the operating point.
- the driver 30 controls the drive current of the laser diode.
- the controller 41 may further control the temperature of the thermoelectric cooler 48.
- the storage unit 65 only needs to store information on the wavelength to be changed among the wavelengths ⁇ d1, ⁇ d2, ⁇ d3, and ⁇ d4. Accordingly, the storage unit 65 stores at least one wavelength information.
- the phase matching condition between the wavelengths is satisfied. It occurs strongly. It is known that when the frequency of the input light is (fi, fj, fk), the frequency of the generated light is (fi + fj ⁇ fk). It is considered that the zero dispersion wavelength of the single mode fiber is distributed around 1312 nm near the center of the standard 1300 nm to 1324 nm.
- FIG. 11 is a flowchart illustrating a transmission wavelength adjustment method that can be performed when the influence of four-wave mixing is not considered.
- step S01 the value of the laser diode drive current Ild is set to the initial value, and the value of the laser diode temperature Tld is set to the initial value.
- step S05 the center wavelength of the laser light emitted from each laser diode is measured again.
- step S06 the drive current Ild is corrected according to the wavelength shift of each channel.
- the optical transmitter described below transmits an optical signal having three or more wavelengths ( ⁇ 2, ⁇ 3, ⁇ 4).
- the wavelengths ⁇ 2, ⁇ 3, and ⁇ 4 For the wavelengths ⁇ 2, ⁇ 3, and ⁇ 4, the relationship of ⁇ 2 ⁇ 3 ⁇ 4 is established, and the wavelengths ⁇ 2, ⁇ 3, and ⁇ 4 are arranged at equal intervals.
- the zero dispersion wavelength of the optical fiber exists at a wavelength greater than ( ⁇ 2 + ⁇ 3) / 2, and one of the wavelengths ⁇ 3 and ⁇ 4 may match the zero dispersion wavelength of the optical fiber (for example, 1303 to 1322 nm).
- the wavelengths ⁇ 2, ⁇ 3, and ⁇ 4 correspond to the “first wavelength”, the “second wavelength”, and the “third wavelength”, respectively.
- steps S11 to S13 are executed.
- the processes of steps S11 to S13 may be performed simultaneously or sequentially.
- step S11 the wavelength ⁇ 4 is adjusted.
- step S12 the wavelength ⁇ 3 is adjusted.
- step S13 the wavelength ⁇ 2 is adjusted.
- the adjustment results of the wavelengths ⁇ 2 to ⁇ 4 are stored in the controller 41 (storage unit 65).
- the wavelengths ⁇ 4, ⁇ 3, and ⁇ 2 are adjusted according to the first adjustment width.
- the first adjustment width is represented as “adjustment width 1”.
- the wavelengths ⁇ 4, ⁇ 3, and ⁇ 2 are adjusted to the transmission wavelengths (1009.14 nm, 1304.58 nm, and 1300.05 nm, respectively) at 100 GbE.
- step S14 the wavelength ⁇ FWM of the light generated by the four-wave mixing is calculated. Specifically, the wavelength ⁇ FWM is calculated from the wavelengths ⁇ 4, ⁇ 3, and ⁇ 2 as follows.
- step S15 the process proceeds to step S16.
- step S15 when the difference between ( ⁇ 4- ⁇ 3) and ( ⁇ 3- ⁇ 2) is 0.3 nm or more, it is determined that there is no influence due to the four-wave mixing. In this case (NO in step S15), the wavelength adjustment process ends.
- the transmission wavelength is adjusted so that crosstalk noise due to four-wave mixing does not enter the reception band B. Due to the characteristics of an optical fiber that transmits a wavelength division multiplexed signal, noise due to four-wave mixing may occur, but as shown in FIG. For example, when shifted by 0.3 nm, the noise can be cut by the reception low-pass filter.
- the wavelengths ⁇ 4, ⁇ 3, and ⁇ 2 are shifted by 0.1 nm in appropriate directions. This allows the wavelength that can be generated by four-wave mixing to be separated from the signal wavelength by 0.4 nm.
- 0.4 nm is equivalent to 70 GHz, and thus is sufficiently larger than the NRZ signal band of 25.8 Gbps. Therefore, even if noise due to four-wave mixing occurs, the noise can be treated as power crosstalk noise that can be removed by the low-pass filter of the receiver. As a result, it is possible to greatly reduce reception characteristic deterioration on the receiver side.
- FIG. 16 is a schematic diagram for explaining the wavelength adjustment processing shown in FIG.
- adjustment widths d1 and d2 represent a first adjustment width and a second adjustment width, respectively.
- at least one of the two wavelengths is adjusted so that the wavelength interval becomes narrower for two wavelengths that have a narrow wavelength interval.
- at least one of the two wavelengths is adjusted so that the wavelength interval becomes wider for two wavelengths that have a wide wavelength interval. Since the difference between ( ⁇ 4- ⁇ 3) and ( ⁇ 3- ⁇ 2) can be increased to ⁇ 0.3 nm or more, the influence of four-wave mixing distortion can be suppressed.
- Such adjustment is possible by adjusting only the wavelength ⁇ 3, adjusting two of the wavelengths ⁇ 2, ⁇ 3, and ⁇ 4, or adjusting all of the wavelengths ⁇ 2, ⁇ 3, and ⁇ 4.
- the embodiment of the present invention it is possible to realize an optical transmitter configured so as not to cause four-wave mixing distortion. Furthermore, in the embodiment of the present invention, it is possible to realize an optical transceiver including an optical transmitter and an optical transmission system that can reduce the possibility of four-wave mixing distortion. Furthermore, in the embodiment of the present invention, the wavelength of the wavelength multiplexed signal can be adjusted by controlling the optical transmitter so that the optical wave mixing distortion does not occur.
- a laser diode chip is designed and manufactured to emit light of a desired wavelength.
- the emission wavelength of the completed laser diode chip is not always as designed, and the emission wavelength may vary within a relatively wide range of specifications.
- the temperature from each laser diode can be controlled by the thermoelectric cooler 48 and the thermal resistance (corresponding submount of the submounts 21 to 24).
- the wavelength can be adjusted after the assembly of the optical transmitter so that the influence of the four-wave mixing distortion does not occur.
- the optical transmitter can store the adjusted wavelength information.
- information on the wavelength of the optical signal can be acquired from the optical transmitter through the interface. If the optical transmitter does not have wavelength information, it is necessary to actually output light from the optical transmitter and measure the wavelength in order to obtain wavelength information. According to the embodiment of the present invention, it is possible to acquire information about the wavelength of an optical signal while making it unnecessary to actually output light from an optical transmitter.
- FIG. 17 is a schematic view showing one configuration example of the host substrate according to this embodiment.
- the optical transceivers 112 and 111 a are mounted on the host substrate 1.
- the optical transceiver 111a is a three-wavelength optical transceiver, and outputs optical signals having wavelengths ⁇ 2, ⁇ 3, and ⁇ 4.
- the optical transceiver 112 outputs an optical signal having a wavelength ⁇ 1.
- the optical wavelength multiplexer receives an optical signal from each of the optical transceivers 112 and 111a and generates a wavelength multiplexed optical signal.
- the three wavelengths of the optical transceiver 111a may be any three of the wavelengths ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4.
- the optical transceiver monitoring control block 20 reads information indicating the wavelengths ⁇ 2, ⁇ 3, and ⁇ 4 from the controller 41 of the optical transceiver 111a through the management interface.
- the optical transceiver monitoring control block 20 may read information indicating the wavelength ⁇ 1 from the controller 51 of the optical transceiver 112 through the management interface.
- wavelength information is sent from the optical transceiver to the optical transceiver monitoring control block 20. Since the configuration of controllers 41 and 51 is the same as the configuration shown in FIG. 9, the following description will not be repeated.
- the optical transceiver monitoring control block 20 calculates ( ⁇ 4- ⁇ 3) and ( ⁇ 3- ⁇ 2) according to the flowchart shown in FIG.
- the optical transceiver monitoring control block 20 determines the presence or absence of the influence of the four-wave mixing distortion based on the difference between ( ⁇ 4- ⁇ 3) and ( ⁇ 3- ⁇ 2).
- the optical transceiver monitoring control block 20 sends a control signal to the controller 51 of the optical transceiver 112 to adjust the wavelengths ⁇ 2, ⁇ 3, and ⁇ 4.
- FIG. 18 is a schematic view showing another configuration example of the host substrate according to this embodiment.
- the optical transceivers 113 a and 113 b are mounted on the host substrate 1.
- Each of the optical transceivers 113a and 113b is a two-wavelength optical transceiver.
- the optical transceiver 113a outputs optical signals having wavelengths ⁇ 1 and ⁇ 2.
- the optical transceiver 113b outputs an optical signal having wavelengths ⁇ 3 and ⁇ 4.
- the combination of the two wavelengths of the optical transceivers 113a and 113b is not limited.
- the optical transceiver monitoring control block 20 reads information indicating the wavelengths ⁇ 1 and ⁇ 2 from the controller 41a of the optical transceiver 113a through the management interface. Similarly, the optical transceiver monitoring control block 20 reads information indicating the wavelengths ⁇ 3 and ⁇ 4 from the controller 41b of the optical transceiver 113b through the management interface. The optical transceiver supervisory control block 20 calculates ( ⁇ 4- ⁇ 3) and ( ⁇ 3- ⁇ 2) according to the flowchart shown in FIG. The optical transceiver monitoring control block 20 determines the presence or absence of the influence of the four-wave mixing distortion based on the difference between ( ⁇ 4- ⁇ 3) and ( ⁇ 3- ⁇ 2).
- the optical transceiver monitoring control block 20 sends a control signal to the controllers 41a and 41b to adjust the wavelengths ⁇ 2, ⁇ 3, and ⁇ 4. Since the configuration of controllers 41a and 41b is the same as the configuration shown in FIG. 9, the following description will not be repeated.
- the optical transceiver monitoring control block 20 reads information indicating the wavelength ⁇ 1 from the controller 51a of the optical transceiver 114a through the management interface. Similarly, the optical transceiver monitoring control block 20 transmits information indicating the wavelength ⁇ 2 and information indicating the wavelength ⁇ 3 from the controller 51b of the optical transceiver 111b, the controller 51c of the optical transceiver 111c, and the controller 51d of the optical transceiver 111d, respectively, through the management interface. Information indicating the wavelength ⁇ 4 is read. The optical transceiver supervisory control block 20 calculates ( ⁇ 4- ⁇ 3) and ( ⁇ 3- ⁇ 2) according to the flowchart shown in FIG.
- the optical transceiver monitoring control block 20 determines whether or not there is an influence of four-wave mixing based on the difference between ( ⁇ 4- ⁇ 3) and ( ⁇ 3- ⁇ 2). When there is an influence of four-wave mixing, the optical transceiver monitoring control block 20 sends a control signal to the controllers 51b, 51c, 51d to adjust the wavelengths ⁇ 2, ⁇ 3, ⁇ 4. Since the configurations of controllers 51a, 51b, 51c, and 51d are the same as those shown in FIG. 9, the following description will not be repeated.
- 1 host board 10 temperature monitor, 11, 12, 13, 14 laser diode, 20 optical transceiver monitoring control block, 21, 22, 23, 24 submount, 30 drivers, 41, 41a, 41b, 51, 51a, 51b, 51c, 51d controller, 42 optical wavelength multiplexer, 43 electrical interface, 44 clock data recovery IC, 45 power supply IC, 46 temperature control IC, 48 thermoelectric cooler, 50 optical transmission module, 60 optical reception module, 61, 65 storage unit, 70 lane information, 71-74 wavelength information, 111, 111a, 111b, 111c, 111d, 112, 113a, 113b, 114a, 114b, 114c, 114d optical transceiver, 200 management device, 300 PON system, 301 station side Location, 302 optical network unit, 303 PON line, 304 an optical splitter, 305 trunk optical fiber, 306 branch optical fibers, S01 ⁇ S08, S1 ⁇ S16 step.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Optical Communication System (AREA)
Abstract
This method for wavelength adjustment of a wavelength multiplexed signal involves: a step in which a control unit acquires information relating to multiple wavelengths from an optical transmitter that transmits a wavelength multiplexed signal obtained by multiplexing multiple wavelengths, and determines whether or not the multiple wavelengths satisfy a condition for producing four-wave mixing; and a step in which, if the multiple wavelengths are determined to satisfy the condition, the control unit adjusts at least one of the multiple wavelengths by controlling the optical transmitter.
Description
本発明は、波長多重信号の波長の調整方法および光伝送システムに関する。本出願は、2016年12月28日に出願した日本特許出願である特願2016-256478号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
The present invention relates to a wavelength adjustment method and an optical transmission system of a wavelength division multiplexed signal. This application claims priority based on Japanese Patent Application No. 2016-256478, which is a Japanese patent application filed on December 28, 2016. All the descriptions described in the Japanese patent application are incorporated herein by reference.
光通信における伝送容量は飛躍的に高められている。近年では、100Gbpsの伝送容量を有する光通信が提案されている。
The transmission capacity in optical communication has been dramatically increased. In recent years, optical communication having a transmission capacity of 100 Gbps has been proposed.
たとえば、100ギガビットイーサネット(注:イーサネットは登録商標)あるいは100G-EPON(Ethernet(登録商標) Passive Optical Network)では、速度25.8Gbpsの互いに波長が異なる4本の光信号が送信される。具体的には、これら4本の光信号は波長分割多重(WDM)方式に従って多重化される。波長多重光は、光ファイバを通して伝送される。
For example, in 100 Gigabit Ethernet (Note: Ethernet is a registered trademark) or 100G-EPON (Ethernet (registered trademark) Passive Optical Network), four optical signals having different wavelengths and having a speed of 25.8 Gbps are transmitted. Specifically, these four optical signals are multiplexed according to a wavelength division multiplexing (WDM) system. Wavelength multiplexed light is transmitted through an optical fiber.
光ファイバのゼロ分散波長と波長多重信号の複数の波長とが、所定の条件を満たす場合に、その光ファイバの内部において4光波混合が生じる。4光波混合によって発生した光は、複数のチャネルのうちのあるチャネルの光信号に重畳することによって、クロストークノイズを誘発する。このために通信品質の劣化という問題が起こり得る。光信号の長距離の伝送のために光信号(波長多重光)のパワーを大きくするほど、4光波混合による信号の歪が大きくなる。
When the zero dispersion wavelength of the optical fiber and the plurality of wavelengths of the wavelength multiplexed signal satisfy a predetermined condition, four-wave mixing occurs inside the optical fiber. Light generated by the four-wave mixing induces crosstalk noise by being superimposed on an optical signal of a certain channel among a plurality of channels. For this reason, the problem of deterioration of communication quality may occur. As the power of the optical signal (wavelength multiplexed light) is increased for long-distance transmission of the optical signal, the distortion of the signal due to four-wave mixing increases.
特開2007-5484号公報(特許文献1)は、4光波混合の低減に向けられた光増幅装置を開示する。この光増幅装置は、信号帯域で正の波長分散を持ち、かつ波長多重化信号を増幅する光ファイバと、その光ファイバに励起光を入射する励起部とを有する。
Japanese Patent Laid-Open No. 2007-5484 (Patent Document 1) discloses an optical amplifying device directed to reducing four-wave mixing. This optical amplifying device has an optical fiber that has positive chromatic dispersion in a signal band and amplifies a wavelength multiplexed signal, and a pumping unit that makes pumping light incident on the optical fiber.
小林 亘、外5名、「SOA集積EADFBレーザによる消費電力削減と伝送距離延伸」、信学技報、電気情報通信学会、2015年10月、OSC2015-78(非特許文献1)は、SOA(半導体光増幅器)が集積されたEADFBレーザ(電界吸収型変調器集積分布帰還型レーザ)によって、従来のEADFBレーザに比べて消費電力の低減および光出力の増加が可能であることを報告する。
Wataru Kobayashi, 5 others, “Power consumption reduction and transmission distance extension by SOA integrated EADFB laser”, IEICE Technical Report, IEICE, October 2015, OSC2015-78 (Non-patent Document 1) We report that EADFB laser (electroabsorption modulator integrated distributed feedback laser) integrated with a semiconductor optical amplifier can reduce power consumption and increase optical output as compared with a conventional EADFB laser.
本発明の一態様に係る波長多重信号の波長の調整方法は、複数の波長が多重化された波長多重信号を送信するための光送信器から、制御部が複数の波長に関する情報を取得して、複数の波長が4光波混合を発生させるための条件を満たすかどうかを判定するステップと、複数の波長が条件を満たすと判定される場合に、制御部が光送信器を制御することにより、複数の波長のうちの少なくとも1つを調整するステップとを備える。
According to an aspect of the present invention, there is provided a method for adjusting a wavelength of a wavelength multiplexed signal, wherein a control unit acquires information on a plurality of wavelengths from an optical transmitter for transmitting a wavelength multiplexed signal in which a plurality of wavelengths are multiplexed. A step of determining whether or not a plurality of wavelengths satisfy a condition for generating four-wave mixing, and when a plurality of wavelengths are determined to satisfy a condition, the control unit controls the optical transmitter, Adjusting at least one of the plurality of wavelengths.
本発明の一態様に係る光伝送システムは、波長多重信号を光ファイバに送信する光伝送システムであって、波長の異なる光信号をそれぞれ発する少なくとも3つの発光部と、少なくとも3つの発光部の動作点に関する情報を記憶する記憶部と、記憶部から動作点に関する情報を読み出して、少なくとも3つの発光部から発せられる光信号の波長の間で4光波混合が発生する条件が成立しないように、少なくとも3つの発光部のうちの少なくとも1つの動作点を調整する制御部とを備える。
An optical transmission system according to an aspect of the present invention is an optical transmission system that transmits a wavelength-multiplexed signal to an optical fiber, and the operation of at least three light emitting units that emit optical signals having different wavelengths, and the operation of at least three light emitting units. A storage unit for storing information about the points, and reading out the information about the operating points from the storage unit, so that at least a condition for the four-wave mixing to occur between the wavelengths of the optical signals emitted from the at least three light emitting units is not satisfied. A control unit that adjusts at least one operating point of the three light emitting units.
[本開示が解決しようとする課題]
本開示の目的は、4光波混合によるクロストークノイズ(4光波混合歪み)の影響が抑制されるように、光送信器から発せられる光信号の波長を調整することである。
[本開示の効果]
本開示によれば、4光波混合によるクロストークノイズ(4光波混合歪み)の影響が抑制されるように、光送信器から発せられる光信号の波長を調整することができる。 [Problems to be solved by this disclosure]
The objective of this indication is adjusting the wavelength of the optical signal emitted from an optical transmitter so that the influence of the crosstalk noise (four-wave mixing distortion) by four-wave mixing may be suppressed.
[Effects of the present disclosure]
According to the present disclosure, the wavelength of the optical signal emitted from the optical transmitter can be adjusted so that the influence of crosstalk noise (four-wave mixing distortion) due to four-wave mixing is suppressed.
本開示の目的は、4光波混合によるクロストークノイズ(4光波混合歪み)の影響が抑制されるように、光送信器から発せられる光信号の波長を調整することである。
[本開示の効果]
本開示によれば、4光波混合によるクロストークノイズ(4光波混合歪み)の影響が抑制されるように、光送信器から発せられる光信号の波長を調整することができる。 [Problems to be solved by this disclosure]
The objective of this indication is adjusting the wavelength of the optical signal emitted from an optical transmitter so that the influence of the crosstalk noise (four-wave mixing distortion) by four-wave mixing may be suppressed.
[Effects of the present disclosure]
According to the present disclosure, the wavelength of the optical signal emitted from the optical transmitter can be adjusted so that the influence of crosstalk noise (four-wave mixing distortion) due to four-wave mixing is suppressed.
[本発明の実施形態の説明]
最初に本発明の実施態様を列記して説明する。 [Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described.
最初に本発明の実施態様を列記して説明する。 [Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described.
(1)本発明の一態様に係る波長多重信号の波長の調整方法は、複数の波長が多重化された波長多重信号を送信するための光送信器から、制御部が複数の波長に関する情報を取得して、複数の波長が4光波混合歪みを発生させるための条件を満たすかどうかを判定するステップと、複数の波長が条件を満たすと判定される場合に、制御部が光送信器を制御することにより、複数の波長のうちの少なくとも1つを調整するステップとを備える。
(1) In the wavelength adjustment method for a wavelength multiplexed signal according to one aspect of the present invention, the control unit receives information on the plurality of wavelengths from the optical transmitter for transmitting the wavelength multiplexed signal in which the plurality of wavelengths are multiplexed. Acquiring and determining whether or not a plurality of wavelengths satisfy a condition for generating four-wave mixing distortion, and a controller controls the optical transmitter when it is determined that the plurality of wavelengths satisfy a condition Thereby adjusting at least one of the plurality of wavelengths.
上記によれば、4光波混合によるクロストークノイズ(4光波混合歪み)の影響が抑制されるように光送信器から発せられる光信号の波長を調整することができる。
According to the above, the wavelength of the optical signal emitted from the optical transmitter can be adjusted so that the influence of crosstalk noise (four-wave mixing distortion) due to four-wave mixing is suppressed.
(2)好ましくは、複数の波長は、複数の波長は、最も短い第1の波長と、第1の波長よりも長い第2の波長と、第2の波長よりも長い第3の波長とを含む。判定するステップにおいて、制御部は、第3の波長と第2の波長との間の第1の差分と、第2の波長と第1の波長との間の第2の差分とを算出して、第1の差分と第2の差分との間の差が、波長多重信号から1波長の信号を選択して前記1波長の信号を電気信号に変換する受信機の受信帯域に比べて小さい場合に、条件が成立すると判定する。
(2) Preferably, the plurality of wavelengths includes a shortest first wavelength, a second wavelength longer than the first wavelength, and a third wavelength longer than the second wavelength. Including. In the determining step, the control unit calculates a first difference between the third wavelength and the second wavelength, and a second difference between the second wavelength and the first wavelength. When the difference between the first difference and the second difference is smaller than the reception band of the receiver that selects the one-wavelength signal from the wavelength multiplexed signal and converts the one-wavelength signal into an electric signal. It is determined that the condition is satisfied.
上記によれば、受信側における受信特性の劣化を抑制することが可能になる。「受信機の受信帯域」について、受信機が実際に使用されているように限定されない。たとえば、受信機は使用されていないが、仕様あるいは規格等に従って受信帯域が予め定められていてもよい。
According to the above, it is possible to suppress degradation of reception characteristics on the reception side. The “reception band of the receiver” is not limited as the receiver is actually used. For example, the receiver is not used, but the reception band may be determined in advance according to specifications or standards.
(3)好ましくは、調整するステップにおいて、制御部は、第1の差分と第2の差分とのうちの小さいほうが、より小さくなる一方で、第1の差分と第2の差分とのうちの大きいほうが、より大きくなるように、第1の波長、第2の波長および第3の波長のうちの少なくとも1つの波長を調整する。
(3) Preferably, in the step of adjusting, the control unit reduces the smaller of the first difference and the second difference, while the smaller of the first difference and the second difference. At least one of the first wavelength, the second wavelength, and the third wavelength is adjusted so that the larger one is larger.
上記によれば、受信側における受信特性の劣化を抑制することが可能になる。
According to the above, it is possible to suppress degradation of reception characteristics on the reception side.
(4)本発明の一態様に係る光伝送システムは、波長多重信号を光ファイバに送信する光伝送システムであって、波長の異なる光信号をそれぞれ発する少なくとも3つの発光部と、少なくとも3つの発光部の動作点に関する情報を記憶する記憶部と、記憶部から動作点に関する情報を読み出して、少なくとも3つの発光部から発せられる光信号の波長の間で4光波混合が発生する条件が成立しないように、少なくとも3つの発光部のうちの少なくとも1つの発光部の動作点を調整する制御部とを備える。
(4) An optical transmission system according to an aspect of the present invention is an optical transmission system that transmits a wavelength-multiplexed signal to an optical fiber, and includes at least three light emitting units that emit optical signals having different wavelengths, and at least three light emitting units. A storage unit that stores information on the operating point of the unit, and information on the operating point is read from the storage unit so that a condition that four-wave mixing occurs between wavelengths of optical signals emitted from at least three light emitting units is not satisfied. And a control unit that adjusts an operating point of at least one of the at least three light emitting units.
上記によれば、4光波混合によるクロストークノイズの影響が抑制される光伝送システムを実現することができる。
According to the above, it is possible to realize an optical transmission system in which the influence of crosstalk noise due to four-wave mixing is suppressed.
(5)好ましくは、3つの発光部から発せられる光信号の波長は、最も短い第1の波長と、第1の波長よりも長い第2の波長と、第2の波長よりも長い第3の波長とである。制御部は、第3の波長と第2の波長との間の第1の差分と、第2の波長と第1の波長との間の第2の差分とを算出して、第1の差分と第2の差分との間の差が、波長多重信号から1波長の信号を選択して前記1波長の信号を電気信号に変換する受信機の受信帯域に比べて小さい場合に、条件が成立すると判定する。
(5) Preferably, the wavelengths of the optical signals emitted from the three light emitting units are the shortest first wavelength, the second wavelength longer than the first wavelength, and the third wavelength longer than the second wavelength. The wavelength. The control unit calculates a first difference between the third wavelength and the second wavelength, and a second difference between the second wavelength and the first wavelength, thereby calculating the first difference. The condition is satisfied when the difference between the second difference and the second difference is smaller than the reception band of the receiver that selects the one-wavelength signal from the wavelength multiplexed signal and converts the one-wavelength signal into an electric signal. Judge that.
上記によれば、受信側における特性の劣化を抑制することが可能になる。なお、「受信機の受信帯域」について、受信機が実際に使用されているように限定されない。たとえば、受信機は使用されていないが、仕様あるいは規格等に従って受信帯域が予め定められていてもよい。
According to the above, it is possible to suppress deterioration of characteristics on the receiving side. The “receiver reception band” is not limited to the fact that the receiver is actually used. For example, the receiver is not used, but the reception band may be determined in advance according to specifications or standards.
(6)好ましくは、制御部は、第1の差分と第2の差分とのうちの小さいほうが、より小さくなる一方で、第1の差分と第2の差分とのうちの大きいほうが、より大きくなるように、第1の波長、第2の波長および第3の波長のうちの少なくとも1つの波長を調整する。
(6) Preferably, the control unit is configured such that the smaller one of the first difference and the second difference is smaller, while the larger one of the first difference and the second difference is larger. As such, at least one of the first wavelength, the second wavelength, and the third wavelength is adjusted.
上記によれば、受信側における特性の劣化を抑制することが可能になる。
According to the above, it is possible to suppress deterioration of characteristics on the receiving side.
[本発明の実施形態の詳細]
以下、本発明の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 [Details of the embodiment of the present invention]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
以下、本発明の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 [Details of the embodiment of the present invention]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
図1は、一実施形態に係る光通信システムの構成例を示した図である。図1において、PONシステム300は、一実施形態に係る光通信システムである。PONシステム300は、局側装置301と、宅側装置302と、PON回線303と、光スプリッタ304とを備える。「局側装置」および「宅側装置」は「OLT(Optical Line Terminal)」および「ONU(Optical Network Unit)」とそれぞれ読み替えてもよい。
FIG. 1 is a diagram illustrating a configuration example of an optical communication system according to an embodiment. In FIG. 1, a PON system 300 is an optical communication system according to an embodiment. The PON system 300 includes a station side device 301, a home side device 302, a PON line 303, and an optical splitter 304. The “station side device” and “home side device” may be read as “OLT (Optical Line Terminal)” and “ONU (Optical Network Unit)”, respectively.
局側装置301は、通信事業者の局舎に設置される。局側装置301は、ホスト基板(図示せず)を搭載する。ホスト基板には、電気信号と光信号とを相互に変換する光トランシーバ(図示せず)が接続される。
The station-side device 301 is installed in a telecommunications carrier's office building. The station side device 301 mounts a host substrate (not shown). Connected to the host substrate is an optical transceiver (not shown) that converts electrical signals and optical signals into each other.
宅側装置302は、ユーザ側に設置される。複数の宅側装置302の各々は、PON回線303を介して局側装置301に接続される。
The home device 302 is installed on the user side. Each of the plurality of home side devices 302 is connected to the station side device 301 via the PON line 303.
PON回線303は、光ファイバにより構成された光通信回線である。PON回線303は、幹線光ファイバ305、および、少なくとも1つの支線光ファイバ306を含む。光スプリッタ304は、幹線光ファイバ305および支線光ファイバ306に接続される。PON回線303には、複数の宅側装置302が接続可能である。
The PON line 303 is an optical communication line composed of an optical fiber. The PON line 303 includes a trunk optical fiber 305 and at least one branch optical fiber 306. The optical splitter 304 is connected to the trunk optical fiber 305 and the branch optical fiber 306. A plurality of home devices 302 can be connected to the PON line 303.
局側装置301から送信された光信号は、PON回線303を通り、光スプリッタ304によって複数の宅側装置302へと分岐される。一方、各々の宅側装置302から送信された光信号は、光スプリッタ304によって集束されるとともに、PON回線303を通って局側装置301に送られる。光スプリッタ304は、外部からの電源供給を特に必要とすることなく、入力された信号から受動的に信号を分岐または多重する。
The optical signal transmitted from the station side device 301 passes through the PON line 303 and is branched to a plurality of home side devices 302 by the optical splitter 304. On the other hand, the optical signal transmitted from each home apparatus 302 is focused by the optical splitter 304 and sent to the station apparatus 301 through the PON line 303. The optical splitter 304 passively branches or multiplexes the signal from the input signal without requiring any external power supply.
高速PONシステムとして、上り信号または下り信号に複数波長が割り当てられ、複数波長を波長多重して上り信号または下り信号を構成する波長多重型PONシステムが検討されている。たとえば100Gbps級PONでは、上りおよび下りに、1波長あたりの伝送容量が25.8Gbpsの光信号をそれぞれ4波長割り当て、それらを波長多重する構成とすることができる。
As a high-speed PON system, a wavelength-multiplexed PON system in which a plurality of wavelengths are assigned to an upstream signal or a downstream signal and a plurality of wavelengths are wavelength-multiplexed to form an upstream signal or a downstream signal has been studied. For example, in a 100 Gbps class PON, an optical signal having a transmission capacity of 25.8 Gbps per wavelength is assigned to each of the upstream and the downstream in a wavelength-multiplexed manner.
図2は、一実施形態における、光波長多重通信に関する構成の概略を示したブロック図である。図2を参照して、光トランシーバ111が、ホスト基板1に実装される。この実施の形態において、光トランシーバ111およびホスト基板1は光伝送システムを構成する。光トランシーバ111は、25.8Gbps×4波長光トランシーバである。光トランシーバ111は、光トランシーバ111の動作を制御するコントローラ41を含む。
FIG. 2 is a block diagram showing an outline of a configuration related to optical wavelength division multiplexing communication in one embodiment. With reference to FIG. 2, an optical transceiver 111 is mounted on the host substrate 1. In this embodiment, the optical transceiver 111 and the host substrate 1 constitute an optical transmission system. The optical transceiver 111 is a 25.8 Gbps × 4 wavelength optical transceiver. The optical transceiver 111 includes a controller 41 that controls the operation of the optical transceiver 111.
ホスト基板1は、光トランシーバ監視制御ブロック20を有する。光トランシーバ監視制御ブロック20は、半導体集積回路により実現可能である。光トランシーバ監視制御ブロック20は、マネージメントインタフェースを通じて、光トランシーバ111から波長多重光の少なくとも1つの波長に関する情報を取得することができる。波長情報はコントローラ41の内部に記憶される。
The host board 1 has an optical transceiver monitoring control block 20. The optical transceiver monitoring control block 20 can be realized by a semiconductor integrated circuit. The optical transceiver monitoring control block 20 can acquire information on at least one wavelength of the wavelength multiplexed light from the optical transceiver 111 through the management interface. The wavelength information is stored in the controller 41.
光トランシーバ監視制御ブロック20は、マネージメントインタフェースを通じて、コントローラ41に制御信号を送ることができる。コントローラ41は、制御信号に応じて、光トランシーバ111から出力される波長多重光の少なくとも1つの波長を調整することができる。光トランシーバ監視制御ブロック20は、光トランシーバ111から出力される情報に基づいて、光トランシーバ111の異常を検出してもよい。この場合、光トランシーバ監視制御ブロック20は、管理装置200にその異常の発生を通知してもよい。たとえば4光波混合によるクロストークノイズ(4光波混合歪み)の影響が生じる可能性がある場合は、光トランシーバ監視制御ブロック20は、管理装置200に通知する。
The optical transceiver monitoring control block 20 can send a control signal to the controller 41 through the management interface. The controller 41 can adjust at least one wavelength of the wavelength multiplexed light output from the optical transceiver 111 according to the control signal. The optical transceiver monitoring control block 20 may detect an abnormality in the optical transceiver 111 based on information output from the optical transceiver 111. In this case, the optical transceiver monitoring control block 20 may notify the management device 200 of the occurrence of the abnormality. For example, when there is a possibility of the influence of crosstalk noise (four-wave mixing distortion) due to four-wave mixing, the optical transceiver monitoring control block 20 notifies the management apparatus 200.
図3は、この実施の形態に適用可能な光トランシーバの概略的な構成を示した図である。図3に示されるように、光トランシーバ111は、コントローラ41と、電気インタフェース43と、クロックデータ再生(CDR(Clock Data Recovery))IC44と、電源IC45と、温度制御IC46と、光送信モジュール50と、光受信モジュール60とを含む。この実施の形態において、光受信モジュール60は、光トランシーバに含まれる光受信器を実現する。
FIG. 3 is a diagram showing a schematic configuration of an optical transceiver applicable to this embodiment. As shown in FIG. 3, the optical transceiver 111 includes a controller 41, an electrical interface 43, a clock data recovery (CDR (Clock Data Recovery)) IC 44, a power supply IC 45, a temperature control IC 46, and an optical transmission module 50. And the optical receiving module 60. In this embodiment, the optical receiver module 60 realizes an optical receiver included in an optical transceiver.
コントローラ41は、光トランシーバ111を監視および制御する。コントローラ41は、光トランシーバ111から出力される波長多重光の波長に関する情報を記憶することができる。波長に関する情報を記憶するメモリが、コントローラ41とは別に光トランシーバ111の内部に設けられてもよい。コントローラ41は、温度制御IC46などの他のICと統合されていてもよい。
The controller 41 monitors and controls the optical transceiver 111. The controller 41 can store information related to the wavelength of wavelength multiplexed light output from the optical transceiver 111. A memory that stores information on the wavelength may be provided inside the optical transceiver 111 separately from the controller 41. The controller 41 may be integrated with another IC such as the temperature control IC 46.
電気インタフェース43は、電気信号を入力および出力する。光送信モジュール50は、クロックデータ再生IC44からのデータを光信号の形態で出力する。電気インタフェース43は、波長情報を光送信器の内部から光送信器の外部に出力するためのインタフェースである。電気インタフェース43は、光送信器の外部から制御信号を受けるためのインタフェースでもある。光送信モジュール50は、制御信号に応じて、複数の発光部(図4を参照)のうちの少なくとも1つの動作点を変化させるように構成される。
The electrical interface 43 inputs and outputs electrical signals. The optical transmission module 50 outputs data from the clock data recovery IC 44 in the form of an optical signal. The electrical interface 43 is an interface for outputting wavelength information from the inside of the optical transmitter to the outside of the optical transmitter. The electrical interface 43 is also an interface for receiving a control signal from the outside of the optical transmitter. The optical transmission module 50 is configured to change at least one operating point of the plurality of light emitting units (see FIG. 4) according to the control signal.
光送信モジュール50は、光送信モジュール50内に配置された複数の発光素子の温度を制御する熱電クーラ(TEC)48を含む。熱電クーラ48は、ペルチェ素子によって実現可能である。温度制御IC46は、熱電クーラ48の温度を制御するために熱電クーラ48に制御信号を送る。後述するように、光送信モジュール50の内部には、1つの熱電クーラ(TEC)48が複数の発光素子(レーザダイオード)に対して共通して設けられる。
The optical transmission module 50 includes a thermoelectric cooler (TEC) 48 that controls the temperature of a plurality of light emitting elements arranged in the optical transmission module 50. The thermoelectric cooler 48 can be realized by a Peltier element. The temperature control IC 46 sends a control signal to the thermoelectric cooler 48 in order to control the temperature of the thermoelectric cooler 48. As will be described later, one thermoelectric cooler (TEC) 48 is provided in common to the plurality of light emitting elements (laser diodes) in the optical transmission module 50.
光受信モジュール60は、光信号を受信して、その光信号を電気信号に変換する。光受信モジュール60からの電気信号は、クロックデータ再生IC44へと送られる。クロックデータ再生IC44は、光トランシーバ111に内蔵されるよう限定されず、光トランシーバ111の外部、かつホスト基板1上に設けられてもよい。
The optical receiving module 60 receives an optical signal and converts the optical signal into an electric signal. The electrical signal from the optical receiver module 60 is sent to the clock data recovery IC 44. The clock data recovery IC 44 is not limited to be built in the optical transceiver 111, and may be provided outside the optical transceiver 111 and on the host substrate 1.
送信側のクロックデータ再生ICと受信側のクロックデータ再生ICとは個別に設けられてもよい。それぞれのICは、光トランシーバ111に内蔵されてもよく、光トランシーバ111の外部、かつホスト基板1上に設けられてもよい。
The clock data recovery IC on the transmission side and the clock data recovery IC on the reception side may be provided separately. Each IC may be incorporated in the optical transceiver 111 or provided outside the optical transceiver 111 and on the host substrate 1.
図4は、図3に示された光送信モジュール50の構成を概略的に示したブロック図である。図4に示されるように、光送信モジュール50は、温度モニタ10と、レーザダイオード11,12,13,14と、サブマウント21,22,23,24と、ドライバ30と、光波長多重器(光MUX)42と、熱電クーラ48とを備える。光送信モジュール50は、TOSA(Transmitter Optical SubAssembly)型の光送信モジュールであってもよい。
FIG. 4 is a block diagram schematically showing the configuration of the optical transmission module 50 shown in FIG. As shown in FIG. 4, the optical transmission module 50 includes a temperature monitor 10, laser diodes 11, 12, 13, 14, submounts 21, 22, 23, 24, a driver 30, and an optical wavelength multiplexer ( Optical MUX) 42 and a thermoelectric cooler 48. The optical transmission module 50 may be a TOSA (Transmitter Optical SubAssembly) type optical transmission module.
ドライバ30は、光送信モジュール50の外部(たとえば図3に示されたクロックデータ再生IC44)からの信号に応答して、レーザダイオード11,12,13,14の各々に駆動電流を供給する。レーザダイオード11,12,13,14の各々は、ドライバ30から電流が供給されることにより、レーザ光を出力する。レーザ光の中心波長は、レーザダイオード11,12,13,14の間で互いに異なる。
The driver 30 supplies a drive current to each of the laser diodes 11, 12, 13, and 14 in response to a signal from the outside of the optical transmission module 50 (for example, the clock data recovery IC 44 shown in FIG. 3). Each of the laser diodes 11, 12, 13, and 14 outputs laser light when supplied with a current from the driver 30. The center wavelength of the laser light is different between the laser diodes 11, 12, 13, and 14.
発光部としてのレーザダイオード11,12,13,14は、各々供給される駆動電流に応じて発振波長を変化させることができる。レーザダイオード11,12,13,14には、たとえば分布帰還型レーザダイオード(DFB-LD)あるいは、電界吸収型変調器集積分布帰還型レーザダイオード(EA-DFB-LD)あるいは、半導体光増幅器(SOA)が集積されたSOA集積EA-DFB-LDを用いることができる。
The laser diodes 11, 12, 13, and 14 serving as light emitting units can change the oscillation wavelength according to the supplied drive current. Examples of the laser diodes 11, 12, 13, and 14 include a distributed feedback laser diode (DFB-LD), an electroabsorption modulator integrated distributed feedback laser diode (EA-DFB-LD), or a semiconductor optical amplifier (SOA). SOA-integrated EA-DFB-LD in which are integrated).
光波長多重器42は、レーザダイオード11,12,13,14から出力された、異なる波長を有する4つの光信号を合波する。光波長多重器42は、複数の波長を有する光信号を、図示しない光ファイバ(PON回線)へと出力する。
The optical wavelength multiplexer 42 multiplexes four optical signals having different wavelengths output from the laser diodes 11, 12, 13, and 14. The optical wavelength multiplexer 42 outputs optical signals having a plurality of wavelengths to an optical fiber (PON line) (not shown).
レーザダイオード11,12,13,14は、サブマウント21,22,23,24にそれぞれ実装される。サブマウント21,22,23,24は、比較的高い熱伝導率を有する材料からなる。一実施形態では、サブマウント21,22,23,24は、窒化アルミニウム(AlN)からなる。
The laser diodes 11, 12, 13, and 14 are mounted on the submounts 21, 22, 23, and 24, respectively. The submounts 21, 22, 23, and 24 are made of a material having a relatively high thermal conductivity. In one embodiment, the submounts 21, 22, 23, 24 are made of aluminum nitride (AlN).
サブマウント21,22,23,24は熱電クーラ48に接触している。熱電クーラ48の表面において、サブマウント21,22,23,24は、互いに分離されて配置される。温度モニタ10は、熱電クーラ48の表面の温度をモニタする。
The submounts 21, 22, 23, and 24 are in contact with the thermoelectric cooler 48. On the surface of the thermoelectric cooler 48, the submounts 21, 22, 23, 24 are arranged separately from each other. The temperature monitor 10 monitors the temperature of the surface of the thermoelectric cooler 48.
図5は、図4に示されたレーザダイオード、サブマウントおよび熱電クーラの間の熱的な接続を説明するための模式図である。図5に示されるように、サブマウント21,22,23,24の各々は、対応するレーザダイオードに熱的に接続されるとともに、熱電クーラ48に熱的に接続される。サブマウント21,22,23,24の各々は、熱抵抗を有する素子である。レーザダイオード11,12,13,14は、互いに熱的に分離されている。
FIG. 5 is a schematic diagram for explaining the thermal connection between the laser diode, the submount and the thermoelectric cooler shown in FIG. As shown in FIG. 5, each of the submounts 21, 22, 23, and 24 is thermally connected to a corresponding laser diode and thermally connected to a thermoelectric cooler 48. Each of the submounts 21, 22, 23, and 24 is an element having a thermal resistance. The laser diodes 11, 12, 13, and 14 are thermally separated from each other.
ドライバ30(図4参照)は、レーザダイオード11,12,13,14にそれぞれ駆動電流I1,I2,I3,I4を供給する。ドライバ30は、駆動電流I1,I2,I3,I4を個別に調整することができる。これによりレーザダイオード11,12,13,14の各々から出力されるレーザ光の中心波長を個別に調整することができる。なお、波長の調整の際には、4つのレーザダイオード11,12,13,14のうち少なくとも1つが駆動電流に応じて発振波長を変化させるのでもよい。
The driver 30 (see FIG. 4) supplies drive currents I1, I2, I3, and I4 to the laser diodes 11, 12, 13, and 14, respectively. The driver 30 can individually adjust the drive currents I1, I2, I3, and I4. Thereby, the center wavelength of the laser beam output from each of the laser diodes 11, 12, 13, and 14 can be individually adjusted. When adjusting the wavelength, at least one of the four laser diodes 11, 12, 13, and 14 may change the oscillation wavelength according to the drive current.
波長を調整するために、駆動電流を調整するだけでなく、熱電クーラ48の温度も調整してもよい。この実施の形態において、ドライバ30およびサブマウント21,22,23,24は、光信号の波長を発光部(レーザダイオード)ごとに個別に調整できるように構成される。
In order to adjust the wavelength, not only the drive current but also the temperature of the thermoelectric cooler 48 may be adjusted. In this embodiment, the driver 30 and the submounts 21, 22, 23, and 24 are configured so that the wavelength of the optical signal can be individually adjusted for each light emitting unit (laser diode).
図6は、この実施の形態に適用可能なレーザダイオード(DFB-LD)について、駆動電流とレーザ光の中心波長との間の関係の例を示した図である。一例として、レーザダイオードの温度Tldが50℃であるときの駆動電流と中心波長との間の関係が示される。図6には、25.8Gbps特性と、信頼性保証との観点から調整可能な、駆動電流Iopの範囲の一例が示される。たとえば32mAから46mAまでの駆動電流Iopの範囲内では、中心波長を1299.8nmから1300.0nmまで変化させることが可能である。この駆動電流Iopの範囲の中から、所望の波長を有する光信号を出力するための駆動電流が決定される。すなわち、レーザダイオードの動作点が決定される。図6は、レーザダイオード11~14のうちのいずれか1つの特性の例を示す。レーザダイオード11~14の残りのレーザダイオードについても、中心波長は異なるものの、駆動電流に応じて中心波長を変化させることができる。
FIG. 6 is a diagram showing an example of the relationship between the drive current and the center wavelength of the laser beam for the laser diode (DFB-LD) applicable to this embodiment. As an example, the relationship between the drive current and the center wavelength when the temperature Tld of the laser diode is 50 ° C. is shown. FIG. 6 shows an example of the range of the drive current I op that can be adjusted from the viewpoint of 25.8 Gbps characteristics and reliability assurance. For example, the center wavelength can be changed from 1299.8 nm to 1300.0 nm within the range of the driving current I op from 32 mA to 46 mA. A driving current for outputting an optical signal having a desired wavelength is determined from the range of the driving current I op . That is, the operating point of the laser diode is determined. FIG. 6 shows an example of the characteristics of any one of the laser diodes 11 to 14. Regarding the remaining laser diodes of the laser diodes 11 to 14, although the center wavelength is different, the center wavelength can be changed according to the drive current.
DFB-LDの場合には、駆動電流を変更することにより動作点を変更した場合には、光出力パワーも変化する。このために、光出力パワーがばらつくことが起こり得る。一方、レーザダイオード11,12,13,14にEA-DFB-LDを採用した実施の形態では、たとえば図7および図8に示されるように、DFB-LD部の駆動電流を変えることにより光出力パワーが上がったとしても、EA変調器のバイアスレベルを変えることによってEA変調器の光吸収量を増やすことができる。これにより、EA変調器において、光出力パワーを減らす方向に光出力パワーを補正することができる。なお、EA変調器のバイアスレベルの変化は、波長の変化に寄与しないが、光波形は多少変化しうる。したがって、ドライバ30の変調信号出力のデューティ比も変化させることが好ましい。
In the case of DFB-LD, when the operating point is changed by changing the drive current, the optical output power also changes. For this reason, the optical output power may vary. On the other hand, in the embodiment employing the EA-DFB-LD for the laser diodes 11, 12, 13, and 14, as shown in FIGS. 7 and 8, for example, the optical output is obtained by changing the drive current of the DFB-LD section. Even if the power increases, the light absorption amount of the EA modulator can be increased by changing the bias level of the EA modulator. Thereby, in the EA modulator, the optical output power can be corrected in the direction of reducing the optical output power. Note that the change in the bias level of the EA modulator does not contribute to the change in wavelength, but the optical waveform can change somewhat. Therefore, it is preferable to change the duty ratio of the modulation signal output of the driver 30.
同様に、レーザダイオード11,12,13,14がSOA集積EA-DFB-LDである場合、DFB-LD部に供給される電流によって波長を調整できるとともに、EA部およびSOA部において光出力パワーを調整することができる。したがって、レーザダイオード11,12,13,14にSOA集積EA-DFB-LDを採用した実施の形態では、よりフレキシブルな調整を実現できるので、波長の調整範囲を広げることができる。
Similarly, when the laser diodes 11, 12, 13, and 14 are SOA integrated EA-DFB-LD, the wavelength can be adjusted by the current supplied to the DFB-LD unit, and the optical output power can be adjusted in the EA unit and the SOA unit. Can be adjusted. Therefore, in the embodiment in which the SOA integrated EA-DFB-LD is used for the laser diodes 11, 12, 13, and 14, more flexible adjustment can be realized, so that the wavelength adjustment range can be expanded.
図9は、光トランシーバに含まれるコントローラの構成例を示したブロック図である。図9に示されるように、コントローラ41は、記憶部65を備えることができる。記憶部65は、コントローラ41とは別に光トランシーバの内部に設けられてもよい。
FIG. 9 is a block diagram showing a configuration example of a controller included in the optical transceiver. As shown in FIG. 9, the controller 41 can include a storage unit 65. The storage unit 65 may be provided inside the optical transceiver separately from the controller 41.
記憶部65は、レーン情報70と、波長情報71~74とを記憶することができる。レーン情報70は、レーン1,レーン2,レーン3,レーン4の4つのレーン(通信路)と、各レーンで伝送される光信号の波長(λd1,λd2,λd3,λd4)とを関連付ける情報である。送信波長λd1,λd2,λd3,λd4は、それぞれ、レーザダイオード11,12,13,14から送信される光信号の波長である。波長情報71~74は、それぞれ、送信波長λd1,λd2,λd3,λd4に関する情報であり、レーザダイオード11~14の動作点の情報に相当する。
The storage unit 65 can store lane information 70 and wavelength information 71 to 74. The lane information 70 is information for associating four lanes (communication paths) of lane 1, lane 2, lane 3, and lane 4 with wavelengths (λd1, λd2, λd3, λd4) of optical signals transmitted in each lane. is there. Transmission wavelengths λd1, λd2, λd3, and λd4 are wavelengths of optical signals transmitted from the laser diodes 11, 12, 13, and 14, respectively. The wavelength information 71 to 74 is information related to the transmission wavelengths λd1, λd2, λd3, and λd4, and corresponds to information on operating points of the laser diodes 11 to 14, respectively.
図10は、波長情報の一例を示した図である。図10に示されるように、波長情報71~74の各々は、送信波長の情報(λd1,λd2,λd3,λd4)と、波長制御機能が有効または無効のいずれであるかを示す情報(たとえばフラグ)、および波長調整レジスタを含む。波長調整レジスタは、たとえば+Aから-A(Aは正の整数)までのいずれかの値を受けて、その値を保持する。波長調整レジスタに書き込まれた値によって、送信波長の調整幅が決定される。たとえば、レジスタの値を一段階変化させるごとに送信波長が0.05nm変化する。波長調整レジスタの値は、レーザダイオードの温度の変化分またはレーザダイオードの駆動電流の変化分に紐づけられている。
FIG. 10 is a diagram showing an example of wavelength information. As shown in FIG. 10, each of the wavelength information 71 to 74 includes transmission wavelength information (λd1, λd2, λd3, λd4) and information indicating whether the wavelength control function is valid or invalid (for example, flag ), And a wavelength adjustment register. For example, the wavelength adjustment register receives any value from + A to -A (A is a positive integer) and holds the value. The adjustment range of the transmission wavelength is determined by the value written in the wavelength adjustment register. For example, the transmission wavelength changes by 0.05 nm every time the register value is changed by one step. The value of the wavelength adjustment register is linked to the change in the temperature of the laser diode or the change in the drive current of the laser diode.
ある波長情報において波長制御機能が有効であるように波長制御機能が設定されている場合には、コントローラ41は、その波長情報によって指定される送信波長を調整することができる。コントローラ41は、波長調整レジスタに書き込まれた値に基づいて、レーザダイオード11~14のうちの対応するレーザダイオードの動作点を決定する。コントローラ41は、その動作点に従って、レーザダイオードの駆動電流を制御する。これによりドライバ30は、レーザダイオードの駆動電流を制御する。コントローラ41は、さらに、熱電クーラ48の温度を制御してもよい。なお、記憶部65は、波長λd1,λd2,λd3,λd4のうち、変化させる波長の情報のみを記憶していればよい。したがって、記憶部65は、少なくとも1つの波長情報を記憶する。
When the wavelength control function is set so that the wavelength control function is effective in certain wavelength information, the controller 41 can adjust the transmission wavelength specified by the wavelength information. The controller 41 determines the operating point of the corresponding laser diode among the laser diodes 11 to 14 based on the value written in the wavelength adjustment register. The controller 41 controls the drive current of the laser diode according to the operating point. As a result, the driver 30 controls the drive current of the laser diode. The controller 41 may further control the temperature of the thermoelectric cooler 48. The storage unit 65 only needs to store information on the wavelength to be changed among the wavelengths λd1, λd2, λd3, and λd4. Accordingly, the storage unit 65 stores at least one wavelength information.
たとえばITU-T G.652 で示されているシングルモードファイバのゼロ分散波長の仕様は、1300nm~1324nmとして規定されている。100GbEでの送信波長は、λ1=1295.56nm(1294.53nm~1296.59 nm)、λ2=1300.05nm(1299.02nm~1301.09nm)、λ3=1304.58nm(1303.54nm~1305.63nm)、λ4=1309.14nm(1308.09nm~1310.19nm)であると規定される。
For example, ITU-T G. The specification of the zero dispersion wavelength of the single mode fiber indicated by 652 is defined as 1300 nm to 1324 nm. The transmission wavelength at 100 GbE is λ1 = 1295.56 nm (1294.53 nm to 1296.59 nm), λ2 = 1300.05 nm (1299.02 nm to 1301.09 nm), and λ3 = 1304.58 nm (1303.54 nm to 1305.nm). 63 nm) and λ4 = 1309.14 nm (1308.09 nm to 1310.19 nm).
4光波混合は、光ファイバのゼロ分散波長と送信波長が一致、あるいは光ファイバのゼロ分散波長と2つの異なる送信波長の中間値が一致する場合に、各波長間の位相整合条件が満たされて強く発生する。入力光の周波数が(fi,fj,fk)の場合、発生する光の周波数は(fi+fj-fk)となることが知られている。シングルモードファイバのゼロ分散波長は、規格1300nm~1324nmの中心付近1312nmを中心に分布していると考えられる。このため、100GbEの波長配置において、4光波混合の発生波長が自送信波長に重なってクロストークの問題となるのは、波長(λ2+λ3)/2が光ファイバのゼロ分散波長と一致する場合、または波長λ3が光ファイバのゼロ分散波長と一致する場合であり、後者の確率が支配的となる。
In the four-wave mixing, when the zero dispersion wavelength of the optical fiber matches the transmission wavelength, or the intermediate value of the two different transmission wavelengths matches the zero dispersion wavelength of the optical fiber, the phase matching condition between the wavelengths is satisfied. It occurs strongly. It is known that when the frequency of the input light is (fi, fj, fk), the frequency of the generated light is (fi + fj−fk). It is considered that the zero dispersion wavelength of the single mode fiber is distributed around 1312 nm near the center of the standard 1300 nm to 1324 nm. For this reason, in the wavelength arrangement of 100 GbE, the generation wavelength of the four-wave mixing overlaps with the self-transmission wavelength and causes a problem of crosstalk when the wavelength (λ2 + λ3) / 2 matches the zero dispersion wavelength of the optical fiber, or This is a case where the wavelength λ3 matches the zero dispersion wavelength of the optical fiber, and the latter probability is dominant.
4つの光信号の波長が等間隔に配置されている場合、4光波混合により発生した光の波長は信号光の波長と同一となる。このため、受信側では、O/E変換前に光バンドパスフィルタでの除去が不可能となる。したがって受信側における受信特性に影響が生じる。特に、4光波混合により発生した光の波長が信号光の波長に非常に近接する場合には、4光波混合により発生した光がコヒーレントクロストークノイズになる。受信機側では、コヒーレントクロストークノイズは、光バンドパスフィルタで除去できないだけでなく、O/E変換後の低域通過フィルタでも除去することができない。したがって、コヒーレントクロストークノイズは、受信特性の大きな劣化を引き起こす要因となる。
When the wavelengths of the four optical signals are arranged at equal intervals, the wavelength of the light generated by the four-wave mixing is the same as the wavelength of the signal light. For this reason, removal by the optical bandpass filter is impossible on the receiving side before O / E conversion. Therefore, reception characteristics on the receiving side are affected. In particular, when the wavelength of light generated by four-wave mixing is very close to the wavelength of signal light, the light generated by four-wave mixing becomes coherent crosstalk noise. On the receiver side, coherent crosstalk noise cannot be removed not only by the optical bandpass filter but also by the low-pass filter after O / E conversion. Therefore, coherent crosstalk noise is a factor that causes a large deterioration in reception characteristics.
たとえば波長λ3がゼロ分散波長に一致する場合を想定する。4光波混合が発生した場合に、送信波長領域と同一波長領域に入る可能性がある波長λFWMは、下記のとおりである。
For example, assume that the wavelength λ3 matches the zero dispersion wavelength. The wavelength λ FWM that may enter the same wavelength region as the transmission wavelength region when four-wave mixing occurs is as follows.
λFWM=λ3+λ3-λ2≒λ4
λFWM=λ3+λ3-λ4≒λ2
λFWM=λ4+λ2-λ3≒λ3
図11は、4光波混合の影響を考慮しない場合に実施可能な、送信波長の調整方法を示したフローチャートである。図11に示されるように、ステップS01において、レーザダイオードの駆動電流Ildの値が初期値に設定されるとともに、レーザダイオードの温度Tldの値が初期値に設定される。 λ FWM = λ3 + λ3-λ2 ≒ λ4
λ FWM = λ3 + λ3-λ4 ≒ λ2
λ FWM = λ4 + λ2-λ3 ≒ λ3
FIG. 11 is a flowchart illustrating a transmission wavelength adjustment method that can be performed when the influence of four-wave mixing is not considered. As shown in FIG. 11, in step S01, the value of the laser diode drive current Ild is set to the initial value, and the value of the laser diode temperature Tld is set to the initial value.
λFWM=λ3+λ3-λ4≒λ2
λFWM=λ4+λ2-λ3≒λ3
図11は、4光波混合の影響を考慮しない場合に実施可能な、送信波長の調整方法を示したフローチャートである。図11に示されるように、ステップS01において、レーザダイオードの駆動電流Ildの値が初期値に設定されるとともに、レーザダイオードの温度Tldの値が初期値に設定される。 λ FWM = λ3 + λ3-λ2 ≒ λ4
λ FWM = λ3 + λ3-λ4 ≒ λ2
λ FWM = λ4 + λ2-λ3 ≒ λ3
FIG. 11 is a flowchart illustrating a transmission wavelength adjustment method that can be performed when the influence of four-wave mixing is not considered. As shown in FIG. 11, in step S01, the value of the laser diode drive current Ild is set to the initial value, and the value of the laser diode temperature Tld is set to the initial value.
ステップS02において、各レーザダイオードから発せられるレーザ光の中心波長が測定される。ステップS03において、中心波長のずれ(ΔWL)の平均値が算出される。ステップS04において、中心波長のずれの平均値に基づいて、レーザダイオードの温度Tldが補正される。
In step S02, the center wavelength of the laser light emitted from each laser diode is measured. In step S03, an average value of the center wavelength shift (ΔWL) is calculated. In step S04, the temperature Tld of the laser diode is corrected based on the average value of the shift of the center wavelength.
ステップS05において、再度、各レーザダイオードから発せられるレーザ光の中心波長が測定される。ステップS06において、各チャネルの波長ずれに応じて、駆動電流Ildを補正する。
In step S05, the center wavelength of the laser light emitted from each laser diode is measured again. In step S06, the drive current Ild is corrected according to the wavelength shift of each channel.
ステップS07において、中心波長のずれΔWLが目標値(Target)未満であるかどうかが判定される。ずれΔWLが目標値未満である場合(ステップS07においてYES)には、波長調整処理は終了する。
In step S07, it is determined whether or not the shift ΔWL of the center wavelength is less than the target value (Target). If deviation ΔWL is less than the target value (YES in step S07), the wavelength adjustment process ends.
一方、中心波長のずれΔWLが目標値(Target)以上である場合(ステップS07においてNO)、ステップS08において、駆動電流Ildの値が下限値未満である、または駆動電流Ildの値が上限値を上回る、のいずれか一方が成立するかどうかが判断される。駆動電流Ildの値が下限値以上かつ上限値以下である場合(ステップS08においてNO)、ステップS06の処理が再度実行される。駆動電流Ildの値が下限値未満あるいは上限値を上回る場合(ステップS08においてYES)、波長調整処理は終了する。
On the other hand, when the shift ΔWL of the center wavelength is equal to or greater than the target value (Target) (NO in step S07), in step S08, the value of the drive current Ild is less than the lower limit value, or the value of the drive current Ild exceeds the upper limit value. It is determined whether or not either of the above is established. When the value of drive current Ild is not less than the lower limit value and not more than the upper limit value (NO in step S08), the process in step S06 is executed again. If the value of drive current Ild is less than the lower limit value or exceeds the upper limit value (YES in step S08), the wavelength adjustment process ends.
この実施の形態では、4つの光信号の波長λd1,λd2,λd3,λd4を個別に調整することが可能である。波長λd1,λd2,λd3,λd4の調整のタイミングは特に限定されるものではない。一実施形態では、製造段階において、4つの光信号の波長λd1,λd2,λd3,λd4が個別に調整されてもよい。あるいは、ホスト基板への光トランシーバのプラグインをトリガとして、波長調整処理が実行されてもよい。
In this embodiment, the wavelengths λd1, λd2, λd3, and λd4 of the four optical signals can be individually adjusted. The adjustment timing of the wavelengths λd1, λd2, λd3, and λd4 is not particularly limited. In one embodiment, the wavelengths λd1, λd2, λd3, and λd4 of the four optical signals may be individually adjusted during the manufacturing stage. Alternatively, the wavelength adjustment process may be executed with the plug-in of the optical transceiver to the host substrate as a trigger.
図12は、この実施の形態に係る光送信器の波長調整方法を説明するフローチャートである。図12を参照して、ステップS1において、レーザダイオードから出力される光信号の波長が、4光波混合歪の発生条件を満たさない所定の波長となるように、レーザダイオード11,12,13,14の動作点を設定する。ステップS2において、ステップS1の処理により決定されたレーザダイオードの動作点を記憶部61に記憶させる。すなわち、光送信器は、レーザダイオードの動作点の情報を保持する。
FIG. 12 is a flowchart for explaining the wavelength adjustment method of the optical transmitter according to this embodiment. Referring to FIG. 12, in step S1, the laser diodes 11, 12, 13, and 14 are set so that the wavelength of the optical signal output from the laser diode becomes a predetermined wavelength that does not satisfy the four-wave mixing distortion generation condition. Set the operating point. In step S2, the operating point of the laser diode determined by the process in step S1 is stored in the storage unit 61. That is, the optical transmitter holds information on the operating point of the laser diode.
図13は、この実施の形態に係る光送信器の波長調整方法を詳細に説明するフローチャートである。このフローチャートに示される処理は、たとえば、ホスト基板1上の光トランシーバ監視制御ブロック20により実行される。
FIG. 13 is a flowchart for explaining in detail the wavelength adjusting method of the optical transmitter according to this embodiment. The processing shown in this flowchart is executed by, for example, the optical transceiver monitoring control block 20 on the host substrate 1.
以下に説明される光送信器は、3波長(λ2,λ3,λ4)以上の波長を有する光信号を送信する。波長λ2,λ3,λ4について、λ2<λ3<λ4の関係が成立し、波長λ2,λ3,λ4が等間隔で配置される。なお、光ファイバのゼロ分散波長は、(λ2+λ3)/2より大きい波長に存在し、波長λ3と波長λ4のいずれか一方が光ファイバのゼロ分散波長に一致する可能性がある波長(たとえば1303~1322nm)であるとする。なお、本発明の実施の形態において、波長λ2,λ3,λ4は、それぞれ「第1の波長」、「第2の波長」および「第3の波長」に相当する。
The optical transmitter described below transmits an optical signal having three or more wavelengths (λ2, λ3, λ4). For the wavelengths λ2, λ3, and λ4, the relationship of λ2 <λ3 <λ4 is established, and the wavelengths λ2, λ3, and λ4 are arranged at equal intervals. Note that the zero dispersion wavelength of the optical fiber exists at a wavelength greater than (λ2 + λ3) / 2, and one of the wavelengths λ3 and λ4 may match the zero dispersion wavelength of the optical fiber (for example, 1303 to 1322 nm). In the embodiment of the present invention, the wavelengths λ2, λ3, and λ4 correspond to the “first wavelength”, the “second wavelength”, and the “third wavelength”, respectively.
図9および図13を参照して、ステップS11~S13の処理が実行される。ステップS11~S13の処理は同時に実行されてもよく、順に実行されてもよい。ステップS11において、波長λ4が調整される。ステップS12において、波長λ3が調整される。ステップS13において、波長λ2が調整される。波長λ2~λ4の各々の調整の結果は、コントローラ41(記憶部65)に記憶される。
Referring to FIG. 9 and FIG. 13, the processes of steps S11 to S13 are executed. The processes of steps S11 to S13 may be performed simultaneously or sequentially. In step S11, the wavelength λ4 is adjusted. In step S12, the wavelength λ3 is adjusted. In step S13, the wavelength λ2 is adjusted. The adjustment results of the wavelengths λ2 to λ4 are stored in the controller 41 (storage unit 65).
ステップS11~S13では、第1の調整幅に従って波長λ4,λ3,λ2が調整される。図13では、第1の調整幅を「調整幅1」と表す。たとえば波長規格が中心波長+/-1nmである場合には、第1の調整幅は、+/-0.5nmとすることができる。ステップS11~S13での処理により、波長λ4,λ3,λ2が、100GbEでの送信波長(それぞれ1309.14nm,1304.58nm,1300.05nm)に調整される。
In steps S11 to S13, the wavelengths λ4, λ3, and λ2 are adjusted according to the first adjustment width. In FIG. 13, the first adjustment width is represented as “adjustment width 1”. For example, when the wavelength standard is the center wavelength +/− 1 nm, the first adjustment width can be +/− 0.5 nm. By the processing in steps S11 to S13, the wavelengths λ4, λ3, and λ2 are adjusted to the transmission wavelengths (1009.14 nm, 1304.58 nm, and 1300.05 nm, respectively) at 100 GbE.
ステップS14において、4光波混合によって生じる光の波長λFWMが計算される。具体的には、波長λ4,λ3,λ2から以下のように波長λFWMが計算される。
In step S14, the wavelength λ FWM of the light generated by the four-wave mixing is calculated. Specifically, the wavelength λ FWM is calculated from the wavelengths λ4, λ3, and λ2 as follows.
λFWM332=λ3+λ3-λ2
λFWM423=λ4+λ2-λ3
λFWM334=λ3+λ3-λ4
ステップS15において、4光波混合による影響(クロストークノイズ)の有無が判定される。以下のように、(λ4-λ3)と(λ3-λ2)との差が所定の範囲内である場合に、4光波混合による影響が有ると判定される。所定の範囲は、25.8Gbpsの場合の受信機(波長多重信号から1波長の信号を選択して1波長の信号を電気信号に変換する受信機)の必要な受信帯域を考慮して定められる。一例では、所定の範囲は、+/-0.3nmである。 λ FWM332 = λ3 + λ3-λ2
λ FWM423 = λ4 + λ2-λ3
λ FWM334 = λ3 + λ3-λ4
In step S15, it is determined whether or not there is an influence (crosstalk noise) due to four-wave mixing. As described below, when the difference between (λ4-λ3) and (λ3-λ2) is within a predetermined range, it is determined that there is an influence due to four-wave mixing. The predetermined range is determined in consideration of a necessary reception band of a receiver in the case of 25.8 Gbps (a receiver that selects a signal of one wavelength from a wavelength multiplexed signal and converts the signal of one wavelength into an electric signal). . In one example, the predetermined range is +/− 0.3 nm.
λFWM423=λ4+λ2-λ3
λFWM334=λ3+λ3-λ4
ステップS15において、4光波混合による影響(クロストークノイズ)の有無が判定される。以下のように、(λ4-λ3)と(λ3-λ2)との差が所定の範囲内である場合に、4光波混合による影響が有ると判定される。所定の範囲は、25.8Gbpsの場合の受信機(波長多重信号から1波長の信号を選択して1波長の信号を電気信号に変換する受信機)の必要な受信帯域を考慮して定められる。一例では、所定の範囲は、+/-0.3nmである。 λ FWM332 = λ3 + λ3-λ2
λ FWM423 = λ4 + λ2-λ3
λ FWM334 = λ3 + λ3-λ4
In step S15, it is determined whether or not there is an influence (crosstalk noise) due to four-wave mixing. As described below, when the difference between (λ4-λ3) and (λ3-λ2) is within a predetermined range, it is determined that there is an influence due to four-wave mixing. The predetermined range is determined in consideration of a necessary reception band of a receiver in the case of 25.8 Gbps (a receiver that selects a signal of one wavelength from a wavelength multiplexed signal and converts the signal of one wavelength into an electric signal). . In one example, the predetermined range is +/− 0.3 nm.
|λ4-λFWM332|<0.3nm
|λ3-λFWM423|<0.3nm
|λ2-λFWM334|<0.3nm
いずれの場合も、(λ4-λ3)と(λ3-λ2)との差が0.3nmよりも小さい場合に相当する。したがって、4光波混合による影響が有りと判定される。この場合(ステップS15においてYES)、処理はステップS16に進む。 | Λ4 -λ FWM332 | < 0.3nm
| Λ3 -λ FWM423 | < 0.3nm
| Λ2 -λ FWM334 | < 0.3nm
In either case, this corresponds to the case where the difference between (λ4-λ3) and (λ3-λ2) is smaller than 0.3 nm. Therefore, it is determined that there is an influence due to the four-wave mixing. In this case (YES in step S15), the process proceeds to step S16.
|λ3-λFWM423|<0.3nm
|λ2-λFWM334|<0.3nm
いずれの場合も、(λ4-λ3)と(λ3-λ2)との差が0.3nmよりも小さい場合に相当する。したがって、4光波混合による影響が有りと判定される。この場合(ステップS15においてYES)、処理はステップS16に進む。 | Λ4 -λ FWM332 | < 0.3nm
| Λ3 -λ FWM423 | < 0.3nm
| Λ2 -λ FWM334 | < 0.3nm
In either case, this corresponds to the case where the difference between (λ4-λ3) and (λ3-λ2) is smaller than 0.3 nm. Therefore, it is determined that there is an influence due to the four-wave mixing. In this case (YES in step S15), the process proceeds to step S16.
ステップS16において、第2の調整幅に従って波長λ4,λ3,λ2が調整される。図13では、第2の調整幅を「調整幅2」と表す。たとえば第2の調整幅は、+/-0.6nmとすることができる。ステップS16では、(λ4-λ3)と(λ3-λ2)との差が0.3nmよりも大きくなるように波長λ4,λ3,λ2が調整される。ステップS16の処理が実行された後、ステップS15の処理が実行される。
In step S16, the wavelengths λ4, λ3, and λ2 are adjusted according to the second adjustment width. In FIG. 13, the second adjustment width is represented as “adjustment width 2”. For example, the second adjustment width can be +/− 0.6 nm. In step S16, the wavelengths λ4, λ3, and λ2 are adjusted so that the difference between (λ4-λ3) and (λ3-λ2) is greater than 0.3 nm. After the process of step S16 is executed, the process of step S15 is executed.
なお、ステップS15において、(λ4-λ3)と(λ3-λ2)との差が0.3nm以上である場合に、4光波混合による影響なしと判断される。この場合(ステップS15においてNO)、波長調整処理は終了する。
In step S15, when the difference between (λ4-λ3) and (λ3-λ2) is 0.3 nm or more, it is determined that there is no influence due to the four-wave mixing. In this case (NO in step S15), the wavelength adjustment process ends.
さらに、本実施の形態では、図11に示されたフローチャートの処理と、図13に示されたフローチャートのステップS14,S15,S16の処理とを組み合わせた波長調整処理を実行してもよい。この組み合わせの波長調整処理では、まず、図11に示されたフローチャートに従って波長λ2~λ4の粗調整を実行する。次に、図13に示されたフローチャートのステップS14,S15,S16の処理を実行することにより波長λ2~λ4の微調整を実行する。
Furthermore, in the present embodiment, a wavelength adjustment process combining the process of the flowchart shown in FIG. 11 and the processes of steps S14, S15, and S16 of the flowchart shown in FIG. 13 may be executed. In this combination of wavelength adjustment processing, first, coarse adjustment of the wavelengths λ2 to λ4 is executed according to the flowchart shown in FIG. Next, fine adjustment of the wavelengths λ2 to λ4 is performed by executing the processing of steps S14, S15, and S16 of the flowchart shown in FIG.
一般にNRZ(Non Return Zero)伝送において、光受信機の望ましい受信帯域B(3dBダウンポイント)は(ビットレート)×0.7とされる。25.8Gbpsの場合、受信機に必要な受信帯域Bは約17.5GHzであり、それより高周波の信号及びノイズは、受信器の低域通過特性(または受信器に内蔵された低域通過フィルタ)によって除去される。4光波混合によるクロストークノイズがこの受信帯域Bの中に入る場合はコヒーレントクロストークノイズとなり、受信特性が大きく劣化する。たとえば図14に示されるように、4光波混合により発生した光の波長が信号光の波長に非常に近接する場合には、4光波混合により発生した光がコヒーレントクロストークノイズになる。
In general, in NRZ (Non Return Zero) transmission, a desirable reception band B (3 dB down point) of an optical receiver is (bit rate) × 0.7. In the case of 25.8 Gbps, the reception band B required for the receiver is about 17.5 GHz, and higher frequency signals and noise are low-pass characteristics of the receiver (or a low-pass filter built in the receiver). ). When crosstalk noise due to four-wave mixing falls within this reception band B, it becomes coherent crosstalk noise, and reception characteristics are greatly degraded. For example, as shown in FIG. 14, when the wavelength of light generated by four-wave mixing is very close to the wavelength of signal light, the light generated by four-wave mixing becomes coherent crosstalk noise.
この実施の形態では、送信波長を調整して4光波混合によるクロストークノイズが、受信帯域Bに入らないようにする。波長多重信号を伝送する光ファイバの特性のために、4光波混合によるノイズが発生する可能性があるが、図15に示されるように、4光波混合によるノイズの波長を信号光の波長に対して、たとえば0.3nmずらした場合、そのノイズを受信低域通過フィルタでカットすることができる。信号波長と4光波混合で発生した光の波長との間の間隔を受信帯域Bの2倍(=2B)以上にすることによって、潜在的な4光波混合歪による通信品質の劣化を防ぐことができる。
In this embodiment, the transmission wavelength is adjusted so that crosstalk noise due to four-wave mixing does not enter the reception band B. Due to the characteristics of an optical fiber that transmits a wavelength division multiplexed signal, noise due to four-wave mixing may occur, but as shown in FIG. For example, when shifted by 0.3 nm, the noise can be cut by the reception low-pass filter. By setting the interval between the signal wavelength and the wavelength of the light generated by the four-wave mixing to be at least twice the reception band B (= 2B), it is possible to prevent communication quality deterioration due to potential four-wave mixing distortion. it can.
一例では、波長λ4,λ3,λ2をそれぞれ0.1nm適切な方向にずらす。これにより4光波混合によって発生する可能性がある波長を、信号波長から0.4nm離すことができる。光信号波長1300nmにおいて、0.4nmは70GHz相当であるため、25.8GbpsのNRZ信号帯域に比べて十分大きい。したがって、4光波混合によるノイズが仮に発生したとしても、そのノイズは、受信機の低域通過フィルタで除去することのできる、パワークロストークノイズとして扱うことができる。これにより、受信機側での受信特性劣化を大きく低減することができる。
In one example, the wavelengths λ4, λ3, and λ2 are shifted by 0.1 nm in appropriate directions. This allows the wavelength that can be generated by four-wave mixing to be separated from the signal wavelength by 0.4 nm. At an optical signal wavelength of 1300 nm, 0.4 nm is equivalent to 70 GHz, and thus is sufficiently larger than the NRZ signal band of 25.8 Gbps. Therefore, even if noise due to four-wave mixing occurs, the noise can be treated as power crosstalk noise that can be removed by the low-pass filter of the receiver. As a result, it is possible to greatly reduce reception characteristic deterioration on the receiver side.
図16は、図13に示された波長調整処理を説明するための模式図である。図16において、調整幅d1,d2は、それぞれ、第1の調整幅および第2の調整幅を表す。この実施の形態では、波長λ2,λ3,λ4のうち、波長間隔の狭い2つの波長について、波長間隔がより狭くなるように、2つの波長の少なくとも一方を調整する。一方、波長λ2,λ3,λ4のうち、波長間隔の広い2つの波長について、波長間隔がより広くなるように、2つの波長の少なくとも一方を調整する。(λ4-λ3)と(λ3-λ2)との差を±0.3nm以上に広げることができるので、4光波混合歪みの影響を抑制することができる。このような調整は、波長λ3のみを調整する、波長λ2,λ3,λ4のうちの2つを調整する、または、波長λ2,λ3,λ4のすべてを調整する、のいずれによっても可能である。
FIG. 16 is a schematic diagram for explaining the wavelength adjustment processing shown in FIG. In FIG. 16, adjustment widths d1 and d2 represent a first adjustment width and a second adjustment width, respectively. In this embodiment, among the wavelengths λ2, λ3, and λ4, at least one of the two wavelengths is adjusted so that the wavelength interval becomes narrower for two wavelengths that have a narrow wavelength interval. On the other hand, among the wavelengths λ2, λ3, and λ4, at least one of the two wavelengths is adjusted so that the wavelength interval becomes wider for two wavelengths that have a wide wavelength interval. Since the difference between (λ4-λ3) and (λ3-λ2) can be increased to ± 0.3 nm or more, the influence of four-wave mixing distortion can be suppressed. Such adjustment is possible by adjusting only the wavelength λ3, adjusting two of the wavelengths λ2, λ3, and λ4, or adjusting all of the wavelengths λ2, λ3, and λ4.
以上のように、本発明の実施の形態では、4光波混合歪みを生じさせないように構成された光送信器を実現できる。さらに、本発明の実施の形態では、4光波混合歪が生じる可能性を低下させることが可能な光送信器を含む光トランシーバ、および光伝送システムを実現できる。さらに、本発明の実施の形態では、光送信器を制御して、光波混合歪が生じないように、波長多重信号の波長を調整することができる。
As described above, in the embodiment of the present invention, it is possible to realize an optical transmitter configured so as not to cause four-wave mixing distortion. Furthermore, in the embodiment of the present invention, it is possible to realize an optical transceiver including an optical transmitter and an optical transmission system that can reduce the possibility of four-wave mixing distortion. Furthermore, in the embodiment of the present invention, the wavelength of the wavelength multiplexed signal can be adjusted by controlling the optical transmitter so that the optical wave mixing distortion does not occur.
通常では、レーザダイオードチップは、所望の波長の光を出射するように設計および製造される。しかしながら出来上がったレーザダイオードチップの発光波長は必ずしも設計通りではなく、発光波長が仕様上の比較的広い範囲内でばらついている可能性がある。本発明の実施の形態によれば、各レーザダイオードからの温度を、熱電クーラ48および熱抵抗(サブマウント21~24のうちの対応するサブマウント)によって制御可能である。これにより、光送信器の組み立て後において、4光波混合歪の影響が生じないように波長を調整することができる。
Normally, a laser diode chip is designed and manufactured to emit light of a desired wavelength. However, the emission wavelength of the completed laser diode chip is not always as designed, and the emission wavelength may vary within a relatively wide range of specifications. According to the embodiment of the present invention, the temperature from each laser diode can be controlled by the thermoelectric cooler 48 and the thermal resistance (corresponding submount of the submounts 21 to 24). Thus, the wavelength can be adjusted after the assembly of the optical transmitter so that the influence of the four-wave mixing distortion does not occur.
さらに、光送信器は、調整後の波長の情報を記憶することができる。光送信器が波長の情報を記憶することにより、インタフェースを通じて、光信号の波長についての情報を光送信器から取得することができる。光送信器が波長の情報を有さない場合には、波長の情報を得るために、光送信器から実際に光を出力して、波長を測定する必要がある。本発明の実施の形態によれば、光送信器から実際に光を出力することを不要にしながら光信号の波長についての情報を取得することができる。
Furthermore, the optical transmitter can store the adjusted wavelength information. By storing the wavelength information by the optical transmitter, information on the wavelength of the optical signal can be acquired from the optical transmitter through the interface. If the optical transmitter does not have wavelength information, it is necessary to actually output light from the optical transmitter and measure the wavelength in order to obtain wavelength information. According to the embodiment of the present invention, it is possible to acquire information about the wavelength of an optical signal while making it unnecessary to actually output light from an optical transmitter.
本発明の実施の形態は、互いに異なる波長を有する複数の光信号をそれぞれ出力する発光部を備えた光伝送システムに適用可能である。したがって以下に例示されるように、この実施の形態において、光トランシーバは、4波長光トランシーバに限定されるものではない。また、1台の光トランシーバから少なくとも3つの波長情報を取得するように限定されず、複数の光トランシーバから少なくとも3つの波長に関する情報を取得してもよい。
The embodiment of the present invention can be applied to an optical transmission system including a light emitting unit that outputs a plurality of optical signals having different wavelengths. Therefore, as illustrated below, in this embodiment, the optical transceiver is not limited to a four-wavelength optical transceiver. Further, it is not limited to acquiring at least three wavelength information from one optical transceiver, and information on at least three wavelengths may be acquired from a plurality of optical transceivers.
図17は、この実施の形態に係るホスト基板の1つの構成例を示した概略図である。図17に示されるように、光トランシーバ112,111aがホスト基板1に実装される。光トランシーバ111aは、3波長光トランシーバであり、波長λ2,λ3,λ4を有する光信号を出力する。光トランシーバ112は、波長λ1を有する光信号を出力する。図示しないが、光波長多重器が光トランシーバ112,111aの各々から光信号を受けて、波長多重光信号を生成する。なお、光トランシーバ111aの3つの波長は、波長λ1,λ2,λ3,λ4のうちの任意の3つであってもよい。
FIG. 17 is a schematic view showing one configuration example of the host substrate according to this embodiment. As shown in FIG. 17, the optical transceivers 112 and 111 a are mounted on the host substrate 1. The optical transceiver 111a is a three-wavelength optical transceiver, and outputs optical signals having wavelengths λ2, λ3, and λ4. The optical transceiver 112 outputs an optical signal having a wavelength λ1. Although not shown, the optical wavelength multiplexer receives an optical signal from each of the optical transceivers 112 and 111a and generates a wavelength multiplexed optical signal. The three wavelengths of the optical transceiver 111a may be any three of the wavelengths λ1, λ2, λ3, and λ4.
光トランシーバ監視制御ブロック20は、マネージメントインタフェースを通じて、光トランシーバ111aのコントローラ41から、波長λ2,λ3,λ4を示す情報を読み取る。光トランシーバ監視制御ブロック20は、マネージメントインタフェースを通じて、光トランシーバ112のコントローラ51から、波長λ1を示す情報を読み取ってもよい。光トランシーバ112,111aの各々がホスト基板1にプラグインされたときに、波長の情報が、その光トランシーバから光トランシーバ監視制御ブロック20へと送られる。コントローラ41,51の構成は、図9に示された構成と同様であるので以後の説明は繰り返さない。
The optical transceiver monitoring control block 20 reads information indicating the wavelengths λ2, λ3, and λ4 from the controller 41 of the optical transceiver 111a through the management interface. The optical transceiver monitoring control block 20 may read information indicating the wavelength λ1 from the controller 51 of the optical transceiver 112 through the management interface. When each of the optical transceivers 112 and 111 a is plugged into the host substrate 1, wavelength information is sent from the optical transceiver to the optical transceiver monitoring control block 20. Since the configuration of controllers 41 and 51 is the same as the configuration shown in FIG. 9, the following description will not be repeated.
光トランシーバ監視制御ブロック20は、図13に示されたフローチャートに従って、(λ4-λ3)と(λ3-λ2)とを計算する。光トランシーバ監視制御ブロック20は、(λ4-λ3)と(λ3-λ2)との差分に基づいて4光波混合歪の影響の有無を判定する。4光波混合歪の影響がある場合には、光トランシーバ監視制御ブロック20は、光トランシーバ112のコントローラ51に制御信号を送り、波長λ2,λ3,λ4を調整する。
The optical transceiver monitoring control block 20 calculates (λ4-λ3) and (λ3-λ2) according to the flowchart shown in FIG. The optical transceiver monitoring control block 20 determines the presence or absence of the influence of the four-wave mixing distortion based on the difference between (λ4-λ3) and (λ3-λ2). When there is an influence of four-wave mixing distortion, the optical transceiver monitoring control block 20 sends a control signal to the controller 51 of the optical transceiver 112 to adjust the wavelengths λ2, λ3, and λ4.
図18は、この実施の形態に係るホスト基板の別の構成例を示した概略図である。図18に示されるように、光トランシーバ113a,113bがホスト基板1に実装される。光トランシーバ113a,113bの各々は、2波長光トランシーバである。光トランシーバ113aは、波長λ1,λ2を有する光信号を出力する。光トランシーバ113bは波長λ3,λ4を有する光信号を出力する。光トランシーバ113a,113bの2つの波長の組み合わせは限定されない。
FIG. 18 is a schematic view showing another configuration example of the host substrate according to this embodiment. As shown in FIG. 18, the optical transceivers 113 a and 113 b are mounted on the host substrate 1. Each of the optical transceivers 113a and 113b is a two-wavelength optical transceiver. The optical transceiver 113a outputs optical signals having wavelengths λ1 and λ2. The optical transceiver 113b outputs an optical signal having wavelengths λ3 and λ4. The combination of the two wavelengths of the optical transceivers 113a and 113b is not limited.
光トランシーバ監視制御ブロック20は、マネージメントインタフェースを通じて、光トランシーバ113aのコントローラ41aから、波長λ1,λ2を示す情報を読み取る。同じく、光トランシーバ監視制御ブロック20は、マネージメントインタフェースを通じて、光トランシーバ113bのコントローラ41bから、波長λ3,λ4を示す情報を読み取る。光トランシーバ監視制御ブロック20は、図13に示されたフローチャートに従って、(λ4-λ3)と(λ3-λ2)とを計算する。光トランシーバ監視制御ブロック20は、(λ4-λ3)と(λ3-λ2)との差分に基づいて4光波混合歪の影響の有無を判定する。4光波混合歪の影響がある場合には、光トランシーバ監視制御ブロック20は、コントローラ41a,41bに制御信号を送り、波長λ2,λ3,λ4を調整する。コントローラ41a,41bの構成は、図9に示された構成と同様であるので以後の説明は繰り返さない。
The optical transceiver monitoring control block 20 reads information indicating the wavelengths λ1 and λ2 from the controller 41a of the optical transceiver 113a through the management interface. Similarly, the optical transceiver monitoring control block 20 reads information indicating the wavelengths λ3 and λ4 from the controller 41b of the optical transceiver 113b through the management interface. The optical transceiver supervisory control block 20 calculates (λ4-λ3) and (λ3-λ2) according to the flowchart shown in FIG. The optical transceiver monitoring control block 20 determines the presence or absence of the influence of the four-wave mixing distortion based on the difference between (λ4-λ3) and (λ3-λ2). When there is an influence of four-wave mixing distortion, the optical transceiver monitoring control block 20 sends a control signal to the controllers 41a and 41b to adjust the wavelengths λ2, λ3, and λ4. Since the configuration of controllers 41a and 41b is the same as the configuration shown in FIG. 9, the following description will not be repeated.
図19は、この実施の形態に係るホスト基板のさらに別の構成例を示した概略図である。図19に示されるように、光トランシーバ114a,114b,114c,114dがホスト基板1に実装される。光トランシーバ114a,114b,114c,114dは、それぞれ、波長λ1,λ2,λ3,λ4を有する光信号を出力する。
FIG. 19 is a schematic view showing still another configuration example of the host substrate according to this embodiment. As shown in FIG. 19, optical transceivers 114 a, 114 b, 114 c and 114 d are mounted on the host substrate 1. The optical transceivers 114a, 114b, 114c, and 114d output optical signals having wavelengths λ1, λ2, λ3, and λ4, respectively.
光トランシーバ監視制御ブロック20は、マネージメントインタフェースを通じて、光トランシーバ114aのコントローラ51aから、波長λ1を示す情報を読み取る。同じく、光トランシーバ監視制御ブロック20は、マネージメントインタフェースを通じて、光トランシーバ111bのコントローラ51b、光トランシーバ111cのコントローラ51c、光トランシーバ111dのコントローラ51dから、それぞれ、波長λ2を示す情報、波長λ3を示す情報、波長λ4を示す情報を読み取る。光トランシーバ監視制御ブロック20は、図13に示されたフローチャートに従って、(λ4-λ3)と(λ3-λ2)とを計算する。
The optical transceiver monitoring control block 20 reads information indicating the wavelength λ1 from the controller 51a of the optical transceiver 114a through the management interface. Similarly, the optical transceiver monitoring control block 20 transmits information indicating the wavelength λ2 and information indicating the wavelength λ3 from the controller 51b of the optical transceiver 111b, the controller 51c of the optical transceiver 111c, and the controller 51d of the optical transceiver 111d, respectively, through the management interface. Information indicating the wavelength λ4 is read. The optical transceiver supervisory control block 20 calculates (λ4-λ3) and (λ3-λ2) according to the flowchart shown in FIG.
光トランシーバ監視制御ブロック20は、(λ4-λ3)と(λ3-λ2)との差分に基づいて4光波混合の影響の有無を判定する。4光波混合の影響がある場合には、光トランシーバ監視制御ブロック20は、コントローラ51b,51c,51dに制御信号を送り、波長λ2,λ3,λ4を調整する。コントローラ51a,51b,51c,51dの構成は、図9に示された構成と同様であるので以後の説明は繰り返さない。
The optical transceiver monitoring control block 20 determines whether or not there is an influence of four-wave mixing based on the difference between (λ4-λ3) and (λ3-λ2). When there is an influence of four-wave mixing, the optical transceiver monitoring control block 20 sends a control signal to the controllers 51b, 51c, 51d to adjust the wavelengths λ2, λ3, λ4. Since the configurations of controllers 51a, 51b, 51c, and 51d are the same as those shown in FIG. 9, the following description will not be repeated.
今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
It should be considered that the embodiment disclosed this time is illustrative in all respects and not restrictive. The scope of the present invention is shown not by the above-described embodiment but by the scope of claims, and is intended to include meanings equivalent to the scope of claims and all modifications within the scope.
1 ホスト基板、10 温度モニタ、11,12,13,14 レーザダイオード、20 光トランシーバ監視制御ブロック、21,22,23,24 サブマウント、30 ドライバ、41,41a,41b,51,51a,51b,51c,51d コントローラ、42 光波長多重器、43 電気インタフェース、44 クロックデータ再生IC、45 電源IC、46 温度制御IC、48 熱電クーラ、50 光送信モジュール、60 光受信モジュール、61,65 記憶部、70 レーン情報、71~74 波長情報、111,111a,111b,111c,111d,112,113a,113b,114a,114b,114c,114d 光トランシーバ、200 管理装置、300 PONシステム、301 局側装置、302 宅側装置、303 PON回線、304 光スプリッタ、305 幹線光ファイバ、306 支線光ファイバ、S01~S08,S1~S16 ステップ。
1 host board, 10 temperature monitor, 11, 12, 13, 14 laser diode, 20 optical transceiver monitoring control block, 21, 22, 23, 24 submount, 30 drivers, 41, 41a, 41b, 51, 51a, 51b, 51c, 51d controller, 42 optical wavelength multiplexer, 43 electrical interface, 44 clock data recovery IC, 45 power supply IC, 46 temperature control IC, 48 thermoelectric cooler, 50 optical transmission module, 60 optical reception module, 61, 65 storage unit, 70 lane information, 71-74 wavelength information, 111, 111a, 111b, 111c, 111d, 112, 113a, 113b, 114a, 114b, 114c, 114d optical transceiver, 200 management device, 300 PON system, 301 station side Location, 302 optical network unit, 303 PON line, 304 an optical splitter, 305 trunk optical fiber, 306 branch optical fibers, S01 ~ S08, S1 ~ S16 step.
Claims (6)
- 複数の波長が多重化された波長多重信号を送信するための光送信器から、制御部が前記複数の波長に関する情報を取得して、前記複数の波長が4光波混合歪みを発生させるための条件を満たすかどうかを判定するステップと、
前記複数の波長が前記条件を満たすと判定される場合に、前記制御部が前記光送信器を制御することにより、前記複数の波長のうちの少なくとも1つを調整するステップとを備える、波長多重信号の波長の調整方法。 A condition for the control unit to acquire information on the plurality of wavelengths from an optical transmitter for transmitting a wavelength division multiplexed signal in which a plurality of wavelengths are multiplexed, and for the plurality of wavelengths to generate four-wave mixing distortion Determining whether or not
And a step of adjusting at least one of the plurality of wavelengths by controlling the optical transmitter when the plurality of wavelengths are determined to satisfy the condition. Signal wavelength adjustment method. - 前記複数の波長は、最も短い第1の波長と、前記第1の波長よりも長い第2の波長と、前記第2の波長よりも長い第3の波長と、を含み、
前記判定するステップにおいて、前記制御部は、前記第3の波長と前記第2の波長との間の第1の差分と、前記第2の波長と前記第1の波長との間の第2の差分とを算出して、前記第1の差分と前記第2の差分との間の差が、前記波長多重信号から1波長の信号を選択して前記1波長の信号を電気信号に変換する受信機の受信帯域に比べて小さい場合に、前記条件が成立すると判定する、請求項1に記載の波長多重信号の波長の調整方法。 The plurality of wavelengths includes a shortest first wavelength, a second wavelength longer than the first wavelength, and a third wavelength longer than the second wavelength;
In the determining step, the control unit includes a first difference between the third wavelength and the second wavelength, and a second difference between the second wavelength and the first wavelength. A difference is calculated, and a difference between the first difference and the second difference is received by selecting one wavelength signal from the wavelength multiplexed signal and converting the one wavelength signal into an electric signal. The method of adjusting a wavelength of a wavelength multiplexed signal according to claim 1, wherein the condition is determined to be satisfied when the received band is smaller than a reception band of the receiver. - 前記調整するステップにおいて、前記制御部は、前記第1の差分と前記第2の差分とのうちの小さいほうが、より小さくなる一方で、前記第1の差分と前記第2の差分とのうちの大きいほうが、より大きくなるように、前記第1の波長、前記第2の波長および前記第3の波長のうちの少なくとも1つの波長を調整する、請求項2に記載の波長多重信号の波長の調整方法。 In the adjusting step, the control unit is configured to reduce a smaller one of the first difference and the second difference, while reducing the smaller of the first difference and the second difference. The wavelength adjustment of the wavelength multiplexed signal according to claim 2, wherein at least one of the first wavelength, the second wavelength, and the third wavelength is adjusted so that a larger value is larger. Method.
- 波長多重信号を光ファイバに送信する光伝送システムであって、
波長の異なる光信号をそれぞれ発する少なくとも3つの発光部と、
前記少なくとも3つの発光部の動作点に関する情報を記憶する記憶部と、
前記記憶部から前記動作点に関する前記情報を読み出して、前記少なくとも3つの発光部から発せられる前記光信号の波長の間で4光波混合が発生する条件が成立しないように、前記少なくとも3つの発光部のうちの少なくとも1つの発光部の前記動作点を調整する制御部とを備える、光伝送システム。 An optical transmission system for transmitting a wavelength multiplexed signal to an optical fiber,
At least three light-emitting units that emit optical signals having different wavelengths, and
A storage unit for storing information on operating points of the at least three light emitting units;
The at least three light emitting units are read so that the information on the operating point is read from the storage unit and a condition that four-wave mixing occurs between wavelengths of the optical signals emitted from the at least three light emitting units is not satisfied. A control unit that adjusts the operating point of at least one of the light emitting units. - 前記3つの発光部から発せられる前記光信号の波長は、最も短い第1の波長と、前記第1の波長よりも長い第2の波長と、前記第2の波長よりも長い第3の波長とであり、
前記制御部は、前記第3の波長と前記第2の波長との間の第1の差分と、前記第2の波長と前記第1の波長との間の第2の差分とを算出して、前記第1の差分と前記第2の差分との間の差が、前記波長多重信号から1波長の信号を選択して前記1波長の信号を電気信号に変換する受信機の受信帯域に比べて小さい場合に、前記条件が成立すると判定する、請求項4に記載の光伝送システム。 The wavelengths of the optical signals emitted from the three light emitting units are the shortest first wavelength, the second wavelength longer than the first wavelength, and the third wavelength longer than the second wavelength. And
The control unit calculates a first difference between the third wavelength and the second wavelength, and a second difference between the second wavelength and the first wavelength. The difference between the first difference and the second difference is compared with a reception band of a receiver that selects a signal of one wavelength from the wavelength multiplexed signal and converts the signal of the one wavelength into an electric signal. The optical transmission system according to claim 4, wherein it is determined that the condition is satisfied when the condition is small. - 前記制御部は、前記第1の差分と前記第2の差分とのうちの小さいほうが、より小さくなる一方で、前記第1の差分と前記第2の差分とのうちの大きいほうが、より大きくなるように、前記第1の波長、前記第2の波長および前記第3の波長のうちの少なくとも1つの波長を調整する、請求項5に記載の光伝送システム。 In the control unit, the smaller one of the first difference and the second difference becomes smaller, while the larger one of the first difference and the second difference becomes larger. As described above, the optical transmission system according to claim 5, wherein at least one of the first wavelength, the second wavelength, and the third wavelength is adjusted.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016256478 | 2016-12-28 | ||
JP2016-256478 | 2016-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018123650A1 true WO2018123650A1 (en) | 2018-07-05 |
Family
ID=62707314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/045085 WO2018123650A1 (en) | 2016-12-28 | 2017-12-15 | Method for wavelength adjustment of wavelength multiplexed signal, and optical transmission system |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018123650A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000151510A (en) * | 1998-11-06 | 2000-05-30 | Furukawa Electric Co Ltd:The | Wavelength multiplex optical transmitter and wavelength multiplex light transmission system using the wavelength multiplex optical transmitter |
JP2003234701A (en) * | 2002-02-12 | 2003-08-22 | Hitachi Ltd | Optical transmission apparatus and optical transmission system capable of reducing transmission quality deterioration caused by four wave mixing |
JP2008245162A (en) * | 2007-03-28 | 2008-10-09 | Nec Corp | Wavelength multiplex optical transmission system and wavelength multiplex optical transmission method |
US20090208223A1 (en) * | 2008-02-20 | 2009-08-20 | Harmonic Inc. | Four wave mixing suppression |
JP2012023607A (en) * | 2010-07-15 | 2012-02-02 | Nec Corp | Wavelength multiplex optical transmission system and wavelength interval setting method |
-
2017
- 2017-12-15 WO PCT/JP2017/045085 patent/WO2018123650A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000151510A (en) * | 1998-11-06 | 2000-05-30 | Furukawa Electric Co Ltd:The | Wavelength multiplex optical transmitter and wavelength multiplex light transmission system using the wavelength multiplex optical transmitter |
JP2003234701A (en) * | 2002-02-12 | 2003-08-22 | Hitachi Ltd | Optical transmission apparatus and optical transmission system capable of reducing transmission quality deterioration caused by four wave mixing |
JP2008245162A (en) * | 2007-03-28 | 2008-10-09 | Nec Corp | Wavelength multiplex optical transmission system and wavelength multiplex optical transmission method |
US20090208223A1 (en) * | 2008-02-20 | 2009-08-20 | Harmonic Inc. | Four wave mixing suppression |
JP2012023607A (en) * | 2010-07-15 | 2012-02-02 | Nec Corp | Wavelength multiplex optical transmission system and wavelength interval setting method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9455782B2 (en) | Monitoring a multiplexed laser array in an optical communication system | |
JP4885175B2 (en) | Laser device based on Fabry-Perot laser diode and injection method thereof | |
JP4364134B2 (en) | Wavelength division multiplexing passive optical network with self-injection-locked Fabry-Perot laser diode light source | |
US9160455B2 (en) | External cavity laser array system and WDM optical system including same | |
EP3008844B1 (en) | Tunable laser with multiple in-line sections | |
WO2018123122A1 (en) | Optical transmitter, optical transceiver, and manufacturing method of optical transmitter | |
US9628175B2 (en) | Tunable transceivers for colorless spectrum-sliced WDM passive optical networks | |
KR101600014B1 (en) | Wavelength division multiplexing passive optical network and optical output signal performance measuring method for the network | |
EP2904726B1 (en) | Wdm system with externally modulated filtered laser array | |
US10020636B2 (en) | Tunable laser with multiple in-line sections including sampled gratings | |
Pachnicke et al. | Tunable WDM-PON system with centralized wavelength control | |
US9768585B2 (en) | Tunable laser including parallel lasing cavities with a common output | |
US8818208B2 (en) | Laser mux assembly for providing a selected wavelength | |
US20100322624A1 (en) | Bidirectional transmission network apparatus based on tunable rare-earth-doped fiber laser | |
US9343870B2 (en) | Semiconductor laser diode with integrated heating region | |
US20170040774A1 (en) | Extended cavity fabry-perot laser assembly capable of high speed optical modulation with narrow mode spacing and wdm optical system including same | |
WO2018123650A1 (en) | Method for wavelength adjustment of wavelength multiplexed signal, and optical transmission system | |
Mathlouthi et al. | High-bit-rate dense SS-WDM PON using SOA-based noise reduction with a novel balanced detection | |
KR100947345B1 (en) | System for controlling driving current of laser diode in wavelength division multiplexed-passive optical network | |
Lee et al. | 16-channel tunable VCSEL array with 50-GHz channel spacing for TWDM-PON ONUs | |
Eun-Gu et al. | 16-Channel Tunable VCSEL Array with 50-GHz Channel Spacing for TWDM-PON ONUs | |
Yeh et al. | Using simply self-injection technology for low cost upstream signal in 10 Gbps TDM-PON |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17885706 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17885706 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |