WO2018123647A1 - Membrane-separation activated sludge treatment device, membrane-separation activated sludge treatment method, raw water supply device, and raw water supply method - Google Patents
Membrane-separation activated sludge treatment device, membrane-separation activated sludge treatment method, raw water supply device, and raw water supply method Download PDFInfo
- Publication number
- WO2018123647A1 WO2018123647A1 PCT/JP2017/045049 JP2017045049W WO2018123647A1 WO 2018123647 A1 WO2018123647 A1 WO 2018123647A1 JP 2017045049 W JP2017045049 W JP 2017045049W WO 2018123647 A1 WO2018123647 A1 WO 2018123647A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- raw water
- tank
- reaction tank
- water
- partition plate
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Definitions
- the present invention relates to a membrane separation activated sludge treatment apparatus and a membrane separation activated sludge treatment method capable of efficiently performing nitrogen removal together with membrane separation.
- the present invention also relates to a raw water supply apparatus and a raw water supply method for supplying raw water to a reaction tank that performs biological treatment such as activated sludge treatment.
- an activated sludge method in which sewage is introduced into a reaction tank and aerated and stirred together with activated sludge for biological treatment is used.
- membrane separation is performed by immersing the membrane separation device in the reaction tank and separating the treated water into a membrane.
- the activated sludge method (Membrane Bioreactor (MBR) method) is frequently used.
- Patent Documents 1 and 2). As a technology to be realized, a membrane separation activated sludge apparatus and method for aerobic treatment (nitrification treatment) and oxygen-free treatment (denitrification treatment) in a single reaction tank have been proposed (Patent Documents 1 and 2). .
- an apparatus proposed in Patent Document 1 includes a single reaction tank 1 that performs an aerobic treatment and an oxygen-free treatment, and an immersion membrane separation unit 2 that is disposed inside the reaction tank.
- the reaction tank 1 is divided into a plurality of compartments by a partition plate 7 provided with a bottom portion spaced apart from the bottom surface of the reaction tank.
- At least one of the compartments is an aerobic compartment in which the submerged membrane separation unit 2 and the aeration means 4 are arranged, and the remaining compartments are changed from an aerobic state to an anoxic state, and from an anoxic state.
- a compartment for switching to an aerobic state, and a liquid level control means or a height control means for the partition plate is provided for switching the liquid level in the reaction tank between a state higher and lower than the upper end of the partition plate.
- Membrane separation activated sludge with partition plate insertion A management device (Baffled Membrane Bioreactor (B-MBR method)).
- the membrane separation unit 2 is continuously operated under the supply of air from the air diffuser 4 while supplying the sludge mixed liquid containing nitrate nitrogen after nitrification and the air from the inside of the partition plate to the outside. Can be performed or stopped (FIG. 3).
- an aerobic state and an oxygen-free state can be alternately created in a constant cycle in the partition outside the partition plate, thereby eliminating the need to provide a nitrifying liquid circulation pump and without stopping membrane filtration.
- nitrification and denitrification can proceed in a single reaction tank.
- the sewage transfer pump when the anaerobic process is started in the reaction tank, the sewage transfer pump is operated to supply sewage (raw water) to the reaction tank, and the water level in the reaction tank reaches the maximum water level.
- the raw water is intermittently supplied to the reaction tank by stopping the sewage transfer pump.
- Patent Document 3 a raw water supply device in which a part of the raw water supply pipe is extended outside the reaction tank and two kinds of valves are provided to remove clogging generated in the raw water supply pipe.
- Patent Document 3 is a device that removes clogging of the raw water supply pipe while changing the flow path of the raw water by opening and closing the valve, and does not solve the problem of clogging in devices such as pumps and valves. It was. Conventionally, in order to intermittently supply the raw water to the reaction tank, it is necessary to turn the pump on and off at a constant cycle, and there is a problem that the operational load of the raw water pump is large and the pump life is short. Furthermore, since it was necessary to greatly change the operation rate of the pump, it was necessary to overdesign the pump.
- the present invention provides a membrane separation activated sludge apparatus capable of efficiently denitrifying and further improving nitrogen removal efficiency in a partition plate insertion type membrane separation activated sludge treatment method.
- An object is to provide a membrane separation activated sludge method and a raw water supply device.
- the present invention can solve the problem of clogging of equipment such as pumps and valves when supplying raw water intermittently to a reaction tank that performs biological treatment such as activated sludge treatment, and reduces the operating load of the raw water pump.
- An object of the present invention is to provide a raw water supply device and a raw water supply method that reduce the amount and eliminate the need for excessive pump design.
- the inventors of the present application have at least a water tank when supplying raw water intermittently to a reaction tank that performs biological treatment. Then, the present inventors have found that the above problem can be solved by using a siphon tube provided so as to extend from the inside of the water storage tank to the outside of the water storage tank through the upper part of the water storage tank wall.
- a membrane separation activated sludge treatment apparatus having a single reaction tank for performing an aerobic treatment and an oxygen-free treatment, a submerged membrane separation unit disposed in the reaction tank, and an aeration means.
- the tank is divided into a plurality of compartments by a partition plate provided with a bottom portion separated from the bottom surface of the reaction tank, and at least one of the plurality of compartments is arranged with a submerged membrane separation unit and an aeration means.
- the membrane separation activated sludge treatment apparatus provided with a liquid level control means for switching between a higher state and a lower state, the liquid level in the reaction tank is lower than the upper end of the partition plate, and the other compartments Is anoxic Come to, membrane separation activated sludge treatment apparatus, characterized in that the liquid level in the reaction tank is provided with a raw water supply means for supplying raw water in an amount not exceeding the upper end of the partition plate to the other compartments in the reaction vessel.
- a membrane separation activated sludge treatment apparatus having a single reaction tank for performing an aerobic treatment and an oxygen-free treatment, a submerged membrane separation unit disposed in the reaction tank, and an aeration means.
- the tank is divided into a plurality of compartments by a partition plate provided with a bottom portion separated from the bottom surface of the reaction tank, and at least one of the plurality of compartments is arranged with a submerged membrane separation unit and an aeration means.
- a membrane-separated activated sludge treatment apparatus which is a section for switching from an aerobic state to an anaerobic state and from an anaerobic state to an aerobic state.
- the liquid level control means for switching the liquid level in the reaction tank between a state higher and lower than the upper end of the partition plate, and the liquid level in the reaction tank lower than the upper end of the partition plate
- the other compartments A raw water supply device comprising raw water supply means for supplying raw water in an amount of raw water whose amount in the reaction tank does not exceed the upper end of the partition plate to the other compartment in the reaction tank when in an oxygen state .
- a raw water supply device for supplying raw water to a reaction tank for biological treatment provided to extend from the inside of the water storage tank to the outside of the water storage tank through the upper part of the water storage tank wall
- a raw water supply device comprising a siphon tube.
- the membrane separation activated sludge treatment method for switching the other compartment from an aerobic state to an anaerobic state and from an anaerobic state to an aerobic state the liquid level in the reaction tank When the other compartment is in an oxygen-free state lower than the upper end, an amount of raw water that does not exceed the upper end of the partition plate is supplied to the other compartment in the reaction tank.
- Membrane separation activated sludge treatment Method for performing an aerobic treatment and an oxygen-free treatment in a single reaction tank in which an immersion membrane separation unit is arranged, wherein the bottom of the
- a raw water supply method for supplying raw water to a reaction tank that performs biological treatment and is provided so as to extend from the inside of the water storage tank to the outside of the water storage tank through the upper part of the water storage tank wall.
- the “anoxic state” does not mean only a complete anoxic state but also a state where the oxygen concentration is low enough to reduce nitrate nitrogen to nitrogen molecules by the action of denitrifying bacteria. Used in the meaning of inclusion.
- a partition plate insertion type membrane separation activated sludge treatment method B-MBR
- an aerobic state and an anoxic state are alternately created in a constant cycle in a partition outside the partition plate, While aerobic treatment and anaerobic treatment are progressing in the reaction tank, the organic matter necessary for denitrification can be provided efficiently and at low cost in the anaerobic compartment, and denitrification is advanced efficiently and organic
- the nitrogen removal efficiency from sewage can be improved.
- the raw water is intermittently supplied from the water tank to the reaction tank at a constant cycle by a simple method of continuously supplying the raw water to the water tank at a constant flow rate using the water tank and the siphon tube. Therefore, it is not necessary to control the flow rate of the raw water supplied to the reaction tank using a pump or a valve. Therefore, the problem of clogging occurring in devices such as pumps and valves can be reduced, the operating load of the raw water pump can be smoothed, and the life of the pump can be extended. In addition, since it is not necessary to change the operating rate of the raw water pump, an excessive design of the raw material pump becomes unnecessary. As a result, the cost can be reduced, and there is an advantage that the maintainability of the entire apparatus is improved.
- natural water supply apparatus of this invention it is a figure which shows typically the aspect by which raw
- A It is a figure which shows the liquid level fluctuation
- B It is a figure which shows the raw
- C) It is a figure which shows the liquid level fluctuation
- D It is a figure which shows the raw
- an immersion type membrane separation unit 2 is provided in a single tank type reaction tank 1.
- a suction pump 3 is connected to the membrane separation unit 2 outside the reaction tank 1, and an aeration tube 4 for membrane cleaning and aerobic biological treatment is provided below the membrane separation unit 2.
- the air diffuser 4 is connected to the blower 5, and air (air) is supplied from the blower 5.
- the reaction tank 1 sludge containing microorganisms is accommodated, and these microorganisms act as organic matter decomposing bacteria, and further as decomposing bacteria of these microorganisms, and perform biological treatment. Therefore, it is preferable that the reaction tank 1 has no corners or irregularities on the inner surface so that sludge is not partially unevenly distributed and oxygen is supplied uniformly. As a result, the temperature and pH of the treatment liquid become uniform in the reaction tank 1, and the decomposition treatment can proceed stably.
- Microorganisms contained in sludge contribute to the degradation of soluble organic matter such as bacteria, yeasts and fungi including fungi, and are obtained from nature, such as soil, compost, and sludge, by accumulating culture and acclimatization. The It is also possible to isolate and use the main microbial group involved in the degradation from this conditioned solution. In addition, the sludge itself containing these microorganisms is well known in this field.
- the membrane separation unit immersed in the reaction tank 1 may be one that uses a material that is not easily contaminated as the membrane itself, or one that has an appropriate gap between the membranes so that the surface of the membrane is not easily contaminated.
- the membrane separation unit 2 may be a module formed using a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane, a reverse osmosis membrane, or the like. From the economical point of view, a module using a microfiltration membrane or an ultrafiltration membrane that has a high filtration rate and can be made compact and is easy to maintain is preferable.
- the membrane may be a flat membrane, a hollow fiber membrane or the like. The submerged membrane separation unit itself used here is widely used in this field and is also commercially available.
- sewage is biologically treated in the reaction tank 1, and the air from the air diffuser 4 prevents the sludge substance and the like from adhering to the membrane surface of the membrane separation unit 2.
- the treatment liquid in the reaction tank 1 can be filtered by the membrane separation unit 2, and the filtered water can be sucked by the suction pump 3 and taken out of the tank.
- the activated sludge treatment conditions in the reaction tank 1 may be well-known conditions that are usually used in the membrane separation activated sludge method, but the MLSS (Mixed Liquor Suspended Solid) concentration is usually 3000 to 20000 mg / L, preferably 5000 to 15000 mg / L, and HRT (hydraulic residence time) is usually 2 to 24 hours, preferably 4 to 8 hours.
- MLSS Mated Liquor Suspended Solid
- HRT hydroaulic residence time
- the partition plate 7 is connected to a raw water supply device 10 and is provided with a level sensor 6 'and a partition plate 7.
- the level sensor 6 ' is a sensor for checking the liquid level, that is, the position of the liquid surface, and is well known per se.
- the partition plate 7 is provided with a bottom portion separated from the bottom surface of the reaction tank.
- the partition plate 7 surrounds the entire periphery in the lateral direction of the membrane separation unit 2 (upper and lower sides are open), but any partition material that substantially surrounds the periphery of the membrane separation unit 2 may be used.
- the partition plate 7 may be combined with the tank wall to surround the periphery of the membrane separation unit 2, and is preferably two flat plates that cooperate with the tank wall to define a rectangular region.
- the partition plate 7 surrounds one surface and the other three surfaces are surrounded by the tank wall, or the partition plate 7 surrounds the entire periphery of the membrane separation unit 2. But you can.
- such a partition plate divides the inside of the reaction vessel into a plurality of compartments, and at least one of the plurality of compartments is preferably provided with an immersion membrane separation unit and an aeration means.
- the air compartment is used, and the other compartments are compartments for switching from the aerobic state to the anaerobic state and from the anaerobic state to the aerobic state.
- the volume ratio of the partition plate (aerobic compartment in which the membrane separation unit 2 is disposed) to the outside (other compartment) is usually 1: 0.5 to 5, preferably 1: 1 to Set to be within the range of 3.
- the membrane unit accommodating section.
- the membrane unit in order to increase the processing amount per unit time, the membrane unit is accommodated as desired.
- a plurality of compartments may be provided, and the membrane unit may be immersed in each of these compartments.
- the filtration pressure is obtained by the suction pump 3, but even if the filtration pressure is obtained only by the difference between the water level in the reaction tank and the water level at the filtered water outlet, that is, the natural water head.
- the filtration pressure may be obtained by further applying pressure from the stock solution side.
- the membrane separation activated sludge treatment apparatus of the present invention has a liquid level control means for switching the liquid level in the reaction tank 1 between a higher state and a lower state than the upper end of the partition plate 7.
- this liquid level control means By this liquid level control means, the state in which the liquid in both compartments can circulate through the region above the partition plate, and the liquid does not exist above the partition plate, the flow of the liquid in both compartments is divided. A state is created.
- the membrane separation unit 2 is continuously operated under the supply of air from the air diffuser 4 while supplying the sludge mixed liquid containing nitrate nitrogen after nitrification and the air from the inside of the partition plate to the outside. Can be performed or stopped.
- an aerobic state and an oxygen-free state can be alternately created in a constant cycle in a partition outside the partition plate, that is, an oxygen-free state can be intermittently formed, and nitrification treatment by nitrifying bacteria And denitrification treatment with denitrifying bacteria can be performed in the same reaction tank.
- the sewage that has flowed into the sewage treatment facility such as a sewage treatment plant is separated and removed by sand and garbage in the pretreatment facility, and then introduced into the raw water supply device 10 from the raw water tank 9 in FIG. 1 by the raw water pump 8 ′. Then, the raw water supply device 10 is introduced into the reaction tank 1.
- the feature of the present invention is that when the liquid level in the reaction vessel is lower than the upper end of the partition plate and the partition outside the partition plate is in an oxygen-free state, the liquid level in the reaction vessel does not exceed the upper end of the partition plate.
- a raw water supply means (hereinafter also referred to as “small amount raw water supply means” for convenience) for supplying a certain amount of raw water to a section outside the partition plate in the reaction tank for a certain period of time, and a raw water supply apparatus having this means.
- the amount of raw water that is supplied by a small amount of raw water supply means so that the liquid level in the reaction tank does not exceed the upper end of the partition plate is usually that the treatment liquid is filtered by the membrane separation unit 2 and the filtered water is sucked.
- the flow rate is almost the same as or less than the membrane filtration flow rate taken out of the tank by the pump 3, and the flow rate is almost the same as the membrane filtration flow rate in that the liquid level in the reaction vessel can be kept almost constant.
- the difference between the flow rate of raw water supplied by the small amount of raw water supply means and the membrane filtration flow rate can be within 20%, preferably within 5% of the membrane filtration flow rate.
- the fixed time for supplying the raw water by the small amount of raw water supply means may be a time sufficient for the denitrification to proceed in the compartment outside the partition plate in an oxygen-free state, and usually 2 minutes to 30 minutes. Preferably, it is 5 to 10 minutes.
- FIG. 4 shows a first embodiment of the raw water supply apparatus according to the present invention.
- the raw water supply device 10 stores a water tank 12 for storing raw water supplied at a constant flow rate from the raw water tank, and stores water from the inside of the water tank 12 through the upper part of the water tank tank wall, preferably the upper end of the water tank tank wall.
- a siphon tube 13 extending outside the tank 12 is provided.
- the siphon tube is a curved tube used to raise the liquid once to a high place and move it to a low place by utilizing the property of the liquid that the liquid flows from the high liquid level to the low liquid side. means.
- the raw water is supplied from the raw water tank to the water storage tank 12 at a constant flow rate, and the raw water is not supplied from the siphon tube to the reaction tank until the water level in the water storage tank 12 reaches the constant water level (raw water stoppage) Step), and when the water level in the water tank 12 reaches a certain water level, that is, the water level corresponding to the portion where the siphon tube 13 bends at the upper end of the water tank 12, almost all the raw water in the water tank is siphoned.
- the process (raw water supply process) supplied to the reaction tank through the pipe 13 can be repeatedly performed in a constant cycle.
- the “constant flow rate” is not limited as long as the flow rate is constant at a predetermined time, and may be changed to obtain an optimum flow rate.
- the full capacity of the water storage tank is usually 0.5 to 30%, preferably 1 to 10% of the reaction tank capacity.
- the inner diameter of the siphon tube is usually 50 mm or more, preferably 100 mm or more, and more preferably 200 mm or more from the viewpoint of preventing clogging.
- the position of the end of the siphon pipe extending inside and outside the water storage tank needs to be installed so that the end of the siphon pipe existing outside the water storage tank is lower than the end of the siphon pipe existing inside the water storage tank. .
- the end part of the siphon tube existing inside the water storage tank is installed at a depth at which a necessary amount of raw water can be supplied to the reaction tank.
- the siphon tube 13 may be installed independently from the tank wall of the water storage tank 12 as long as it extends from the inside of the water storage tank 12 to the outside of the water storage tank 12 through the upper part of the water storage tank wall. From the viewpoint of space saving and cost reduction, the tank wall of the water storage tank 12 may be integrated.
- the raw water supply device 10 should be equipped with an emergency stop device and a bypass pipe equipped with a water level sensor that can sense the high water level in the water tank so that it can cope with the case where the siphon tube is blocked and the raw material leaks. Can do.
- FIG. 5 The manner in which the raw water is supplied to the reaction tank 1 by this raw water supply apparatus 10 is shown in FIG. 5 (from the raw water supply apparatus 10 of FIG. 1 to the reaction tank 1 along the time series (i) to (vi) of FIG. This will be explained with reference to the flow rate fluctuation of the raw water.
- FIG. 4 (i) t 0 to t 1 (the supply of raw water to the reaction tank is stopped)
- the raw water is stored in the water storage tank 12 and the water level rises, but until the water level reaches the constant water level, the siphon tube is transferred to the reaction tank.
- the supply flow rate is controlled using equipment such as a pump and a valve when the raw water is supplied from the raw water supply apparatus to the reaction tank. Even if not, the raw water can be intermittently supplied to the reaction tank in a constant cycle.
- a raw water pump is used when supplying raw water from the raw water tank to the water storage tank.
- this pump it is only necessary to continuously supply the raw water to the water storage tank at a constant flow rate.
- the operating load of the raw water pump is small, and the excessive design of the raw water pump is unnecessary.
- the apparatus other than the apparatus based on the immersion type membrane separation activated sludge method in which the membrane separation apparatus is immersed in the reaction tank as described above.
- the apparatus by the membrane separation activated sludge method of an outside tank type or a separate tank type can be used.
- use devices such as batch activated sludge method (SBR), nitrification denitrification method using double-pipe reactor, and carrier addition activated sludge method. Can do.
- natural water supply apparatus of this invention is shown in FIG.
- the raw water supply device 10 ′ of FIG. 6 stores a water storage tank 12 for storing the raw water supplied from the raw water tank, and stores water from the inside of the water storage tank 12 through the upper part of the water tank tank wall, preferably the upper end of the water tank tank wall.
- a siphon tube 13 (liquid level control means) extending to the outside of the tank 12 and a part of the raw water in the water tank 12 are extracted from a part of the tank wall of the water tank 12, and the water is stored outside the water tank 12.
- An auxiliary pipe 14 (a small amount of raw water supply means) is provided to supply the side portion of the siphon pipe 13 that is lower than the tank.
- the water tank 12 when the liquid level in the water tank 12 is a constant water level, that is, when the siphon tube 13 exceeds the water level corresponding to the portion that bends at the upper end of the water tank 12, the water tank All the raw water is intermittently supplied to the reaction tank through the siphon pipe 13, and before all the raw water is supplied to the reaction tank through the siphon pipe 13, a constant flow of raw water is supplied to the reaction tank through the auxiliary pipe 14.
- the “constant flow rate” is not limited as long as the flow rate is constant at a predetermined time, and may be changed to obtain an optimum flow rate.
- the full capacity of the water storage tank is usually 0.5 to 20% of the reaction tank capacity, and preferably 2 to 8% of the reaction tank capacity.
- the dimensions and location of the water storage tank, siphon pipe, and auxiliary pipe can vary depending on the amount of raw water supplied to the reaction tank and fluctuations in the flow rate.
- the inner diameter of the siphon pipe is usually 50 mm or more in order to prevent clogging.
- the inner diameter ratio between the auxiliary pipe and the siphon pipe is usually 1: 2 to 10, preferably 1: 2 to 5.
- the position from the bottom of the water tank to which the auxiliary pipe is coupled is usually set in a range of 20 to 90% of the height from the bottom of the water tank to the top of the siphon pipe, and preferably 40 to 60%. .
- the siphon tube 13 may be installed independently from the tank wall of the water storage tank 12 as long as it extends from the inside of the water storage tank 12 to the outside of the water storage tank 12 through the upper part of the water storage tank wall. From the viewpoint of space saving and cost reduction, the tank wall of the water storage tank 12 may be integrated. Moreover, it is preferable that the auxiliary piping 14 is couple
- FIG. 7C liquid level fluctuation in the reaction tank
- FIG. 7C liquid level fluctuation in the reaction tank
- FIG. 7C raw water flow rate fluctuation
- the flow rate of the raw water supplied from the auxiliary pipe 14 to the reaction vessel 1 is a flow rate at which the liquid level in the reaction vessel does not exceed the upper end of the partition plate.
- a circulation flow that descends and returns to the membrane unit housing section through the region below the partition plate 7 is formed, and the outside of the partition plate 7 is switched from an oxygen-free state to a mostly aerobic state. Further, inside the partition plate in the reaction tank 1, sludge containing a large amount of nitrate nitrogen circulated to the outside of the partition plate in which the ammonia component in the raw water is oxidized to nitrite and nitrate by the action of nitrifying bacteria. .
- FIG. 6 (v) t t 2 to t 3 (the supply of raw water to the reaction tank is stopped)
- the interior of the water storage tank 12, the siphon pipe 13 and the auxiliary pipe 14 is in an almost empty state where no raw water is present.
- the raw water tank 9 continues to be supplied from the raw water tank 9 to the water storage tank 12 at a constant flow rate, the raw water is stored in the water storage tank 12, but until the water level in the water storage tank 12 reaches the auxiliary pipe 14, There is no supply from the auxiliary pipe 14 to the reaction tank 1.
- the treatment liquid is filtered by the membrane separation unit 2, and the membrane filtration flow rate of the filtrate taken out of the tank by the suction pump 3 and the raw water flow rate supplied to the reaction tank by the auxiliary pipe are substantially the same,
- the aerobic compartment in which the membrane separation unit is arranged and the other compartments are separated by the partition plate 7.
- the air from the air diffuser 4 stays in the space surrounded by the partition plate 7, and the region outside the partition plate can be made oxygen-free because air does not circulate.
- the siphon tube 13 functions as a liquid level control means for the reaction tank.
- the liquid level in the reaction tank is lower when the liquid level in the reaction tank is lower than the upper end of the partition plate and the partition outside the partition plate is in an oxygen-free state by the auxiliary pipe 14 of the raw water supply apparatus 10 ′.
- An amount of raw water not exceeding the upper end of the partition plate can be supplied into the reaction tank, and the denitrification performance can be improved. Therefore, in the raw water supply apparatus 10 ′, the auxiliary pipe functions as the small amount raw water supply means.
- the amount of raw water supplied by the auxiliary pipe is usually equal to or substantially equal to the membrane filtration flow rate that the treated liquid is filtered by the membrane separation unit 2 and the filtered water is taken out of the tank by the suction pump 3. It is preferable that the flow rate is lower than the flow rate, and the flow rate is substantially the same as the membrane filtration flow rate in that the liquid level in the reaction vessel can be maintained almost constant.
- the difference between the flow rate of raw water supplied by the small amount of raw water supply means and the membrane filtration flow rate can be within 20%, preferably within 5% of the membrane filtration flow rate.
- the fixed time for supplying the raw water by the small amount of raw water supply means may be a time sufficient for the denitrification to proceed in the compartment outside the partition plate in an oxygen-free state, and usually 2 minutes to 30 minutes. Preferably, it is 5 to 10 minutes.
- the liquid level in the reaction tank can be increased and lowered in a constant cycle while the liquid level in the reaction tank is reduced. It is lower than the upper end of the partition plate, and when the compartment outside the partition plate is in an oxygen-free state, it becomes possible to supply raw water without increasing the liquid level in the reaction tank, and to improve denitrification performance Can do.
- raw water can be supplied to the reaction tank with a preferable flow rate fluctuation as shown in FIG. 7 (d). That is, when the liquid level in the reaction tank is lower than the upper end of the partition plate and the compartment outside the partition plate is in an oxygen-free state, the amount of raw water that does not exceed the upper end of the partition plate is reacted. Step of supplying into the tank (FIG.
- a valve that receives timer control is installed in the siphon pipe 13, and the raw water supply is set to start at an arbitrary time, or a flow rate adjustment valve is installed in the auxiliary pipe 14 to assist. It is also possible to adjust the raw water supply flow rate from the piping. Also controls raw water supply in response to instructions from ORP meter, PH meter, DO meter, NH 4 -N meter, NO 3 -N meter, etc. attached to the reaction tank, raw water tank level, and reaction tank water level.
- the control device may be attached to the raw water supply device.
- an emergency stop device equipped with a water level sensor that can sense a high water level and a bypass pipe can be installed so that it can cope with a case where the siphon pipe is blocked and the raw material leaks.
- the raw water pump 8 is turned on and off to control the liquid level in the reaction tank. Therefore, it is necessary to increase the capacity of the raw water pump sufficiently compared to the membrane filtration pump. As a result, it is necessary to install a larger raw water pump than expected from the amount of treated water, which increases the initial cost. It was. In contrast, with the raw water supply apparatus 10 ′ shown in FIG. 6, it is not necessary to use a large raw water pump, and membrane separation activated sludge treatment can be performed at low cost.
- the raw water can be continuously supplied to the water storage tank 12 at a constant flow rate by the raw water pump 8 ′ regardless of whether or not the raw water is supplied to the reaction tank 1. it can. Therefore, compared with the case where the raw water pump is operated intermittently, the operation load of the raw water pump can be smoothed and the life of the pump can be extended. Moreover, since there is no need to change the operating rate of the raw water pump, there is an advantage that an excessive design of the raw material pump becomes unnecessary.
- the apparatus 10 ′ shown in FIG. 6 uses the valves and sensors as described above by operating the liquid level fluctuation in the reaction tank and the fluctuation of the flow rate of the raw water supplied to the reaction tank strictly in advance. Even if it does not have, it has the function to raise and lower the liquid level of a reaction tank by a fixed cycle, and the organic substance required for denitrification can be efficiently provided in an oxygen-free section. In the sewage treatment, organic matter or the like adheres to equipment such as valves and sensors, so that the equipment is damaged quickly. However, by using the apparatus shown in FIG. Maintainability can be improved.
- FIG. 2 there is an apparatus and a method in which a raw water flow rate control device 11 capable of supplying raw water to the reaction tank 1 with a desired flow rate fluctuation is provided in the front stage of the reaction tank 1.
- a raw water flow rate control device 11 for example, a level sensor 6 ′′ is used, and in addition to setting a maximum water level detection point as a target water level when supplying a large amount of raw water to overflow the partition plate 7, a reaction tank The water level detection point is set at a position lower than the upper end of the partition plate as a target water level when supplying the raw water in an amount that does not exceed the upper end of the partition plate 7 into the reaction tank 1.
- the apparatus which controls the operation rate of a pump using, or the apparatus provided with the inverter etc. which control the flow volume of a raw
- the desirable flow rate fluctuation of raw water supplied to the reaction tank is a flow rate fluctuation as shown in FIG. That is, when the liquid level in the reaction tank is lower than the upper end of the partition plate and the compartment outside the partition plate is in an oxygen-free state, the amount of raw water that does not exceed the upper end of the partition plate is reacted.
- the raw water is always continuously supplied to the reaction tank at a constant flow rate, and the raw water flow rate and the membrane filtration flow rate are set to be the same, and the upper end of the partition plate is moved up and down.
- treatment conditions other than those described above and pretreatment of raw water can be performed under the same conditions as those conventionally known, and materials for various tanks and pipes used in the present invention are also conventionally known. Things can be used.
- the raw water can be intermittently supplied from the water storage tank to the reaction tank at a constant cycle without controlling the flow rate of the raw water by a pump or a valve. Therefore, the problem of clogging occurring in devices such as pumps and valves can be reduced, the operating load of the raw water pump can be smoothed, and the life of the pump can be extended. In addition, an overdesign of the raw water pump is unnecessary, and the maintainability of the entire apparatus is improved.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Activated Sludge Processes (AREA)
Abstract
[Problem] The objective of the present invention is to provide: a membrane-separation activated sludge device with which it is possible to effectively advance denitrification and improve nitrogen removal efficiency even in a partition-plate-insertion-type membrane-separation activated sludge treatment method; a raw water supply device; and methods using the devices. [Solution] A partition-plate-insertion-type membrane-separation activated sludge treatment device provided with a raw-water supply means, a raw-water supply device provided with the raw-water supply means, and a method in which these devices are used. Said membrane-separation activated sludge treatment device has a single reaction tank in which an aerobic treatment and an anoxic treatment are performed, an immersed membrane-separation unit disposed inside the reaction tank, and an aeration means, wherein the partition-plate-insertion-type membrane-separation activated sludge treatment device is provided with: a liquid position control means for switching between states in which the liquid position inside the reaction tank is higher or lower than the top end of the partition plate; and the raw water supply means, which supplies raw water to a section on the outside of the partition plate in such an amount that the liquid position inside the reaction tank does not exceed the top end of the partition plate, when the liquid position inside the reaction tank is lower than the top end of the partition plate and the section on the outside of the partition plate is in an anoxic state.
Description
本発明は、膜分離とともに窒素除去を効率的に行うことができる膜分離活性汚泥処理装置及び膜分離活性汚泥処理方法に関する。また、本発明は、活性汚泥処理等の生物処理を行う反応槽に原水を供給するための原水供給装置及び原水供給方法に関する。
The present invention relates to a membrane separation activated sludge treatment apparatus and a membrane separation activated sludge treatment method capable of efficiently performing nitrogen removal together with membrane separation. The present invention also relates to a raw water supply apparatus and a raw water supply method for supplying raw water to a reaction tank that performs biological treatment such as activated sludge treatment.
従来から、窒素やリンといった栄養塩を含む下廃水を処理するにあたっては、汚水を反応槽に導入し活性汚泥と共に曝気・攪拌して生物処理を行う活性汚泥法が用いられている。特に近年は、この活性汚泥法によって処理された処理水から固形物を含まない清澄な処理水を得るため、反応槽内に膜分離装置を浸漬させ、処理水を膜分離して排出する膜分離活性汚泥法(Membrane Bioreactor(MBR)法)が多用されている。
Conventionally, when treating sewage wastewater containing nutrient salts such as nitrogen and phosphorus, an activated sludge method in which sewage is introduced into a reaction tank and aerated and stirred together with activated sludge for biological treatment is used. Especially in recent years, in order to obtain clear treated water that does not contain solid matter from the treated water treated by this activated sludge method, membrane separation is performed by immersing the membrane separation device in the reaction tank and separating the treated water into a membrane. The activated sludge method (Membrane Bioreactor (MBR) method) is frequently used.
このような浸漬型の膜分離装置では、膜表面に汚泥が付着してファウリング(膜の目詰まり)が発生するのを防止するために、下部の散気管から空気を吹き込む必要があり、通常はほぼ連続的に散気を行っている。活性汚泥法においては、このような好気状態下では硝化が進行するが、一方で脱窒処理を行うためには槽内を無酸素状態にする必要がある。したがって、膜分離活性汚泥法においては、膜ろ過時の膜面洗浄と硝化処理のための散気の確保と、脱窒処理のための無酸素状態の確保の両立が必要であるが、これを実現する技術として、単一の反応槽内で好気処理(硝化処理)と無酸素処理(脱窒処理)を進行させる膜分離活性汚泥装置および方法が提案されている(特許文献1及び2)。
In such a submerged membrane separator, it is necessary to blow air from the lower air diffuser in order to prevent fouling (membrane clogging) from occurring on the membrane surface. Has a continuous aeration. In the activated sludge method, nitrification proceeds under such an aerobic condition. On the other hand, in order to perform the denitrification treatment, it is necessary to make the inside of the tank oxygen-free. Therefore, in the membrane separation activated sludge method, it is necessary to ensure both membrane surface cleaning during membrane filtration and aeration for nitrification and oxygen-free conditions for denitrification treatment. As a technology to be realized, a membrane separation activated sludge apparatus and method for aerobic treatment (nitrification treatment) and oxygen-free treatment (denitrification treatment) in a single reaction tank have been proposed (Patent Documents 1 and 2). .
特許文献1で提案された装置は、本願の図3に示すように、好気性処理および無酸素処理を行う単一の反応槽1と、その反応槽の内部に配置された浸漬膜分離ユニット2と、曝気手段4とを有する膜分離活性汚泥処理装置であって、反応槽1は、底部が反応槽の底面から離間して設けられた仕切板7によって複数個の区画に分割され、その複数個の区画のうちの少なくとも一つの区画を、浸漬膜分離ユニット2および曝気手段4が配置された好気区画とし、残りの区画を、好気状態から無酸素状態に、また、無酸素状態から好気状態に切り換えるための区画とし、かつ、反応槽内の液位が仕切板上端よりも高い状態と低い状態とに切り換えるための液位制御手段又は仕切板の高さ制御手段が設けられている、仕切板挿入型の膜分離活性汚泥処理装置(Baffled Membrane Bioreactor(B-MBR法))である。
As shown in FIG. 3 of the present application, an apparatus proposed in Patent Document 1 includes a single reaction tank 1 that performs an aerobic treatment and an oxygen-free treatment, and an immersion membrane separation unit 2 that is disposed inside the reaction tank. The reaction tank 1 is divided into a plurality of compartments by a partition plate 7 provided with a bottom portion spaced apart from the bottom surface of the reaction tank. At least one of the compartments is an aerobic compartment in which the submerged membrane separation unit 2 and the aeration means 4 are arranged, and the remaining compartments are changed from an aerobic state to an anoxic state, and from an anoxic state. A compartment for switching to an aerobic state, and a liquid level control means or a height control means for the partition plate is provided for switching the liquid level in the reaction tank between a state higher and lower than the upper end of the partition plate. Membrane separation activated sludge with partition plate insertion A management device (Baffled Membrane Bioreactor (B-MBR method)).
特許文献1の方法における反応槽1内の液位変動と反応槽に供給される原水の流量変動を図7(a)および(b)にそれぞれ示す。この方法では、反応槽1内の液位が最低水位になると原水ポンプ8がONとなり(t=t1)、液位が最高水位になると原水ポンプ8がOFFとなる(t=t2)よう設定して液位を変化させることにより、仕切板7よりも上の領域を介して両区画の液が流通可能な状態と、仕切板7よりも上に液が存在せず、両区画の液の流通が分断された状態とが作り出される。これにより、膜分離ユニット2は散気管4からの空気の供給下で連続的に作動させながら、仕切板の内部から外部に対し、硝化処理後の硝酸性窒素を含む汚泥混合液と空気の供給を行ったり停止したりすることが可能となる(図3)。その結果、仕切板外部の区画に、好気状態と無酸素状態を一定のサイクルで交互に創出することができ、これにより硝化液循環ポンプを設けることなく、かつ、膜ろ過を停止することなく、単一反応槽内で硝化と脱窒を進行させることが可能となる。
The liquid level fluctuation | variation in the reaction tank 1 in the method of patent document 1 and the flow volume fluctuation | variation of the raw | natural water supplied to a reaction tank are each shown to Fig.7 (a) and (b). In this method, when the liquid level in the reaction tank 1 becomes the lowest water level, the raw water pump 8 is turned on (t = t 1 ), and when the liquid level becomes the highest water level, the raw water pump 8 is turned off (t = t 2 ). By setting and changing the liquid level, the liquid in both compartments can flow through the region above the partition plate 7, and the liquid in both compartments does not exist above the partition plate 7. The state where the distribution of is divided is created. As a result, the membrane separation unit 2 is continuously operated under the supply of air from the air diffuser 4 while supplying the sludge mixed liquid containing nitrate nitrogen after nitrification and the air from the inside of the partition plate to the outside. Can be performed or stopped (FIG. 3). As a result, an aerobic state and an oxygen-free state can be alternately created in a constant cycle in the partition outside the partition plate, thereby eliminating the need to provide a nitrifying liquid circulation pump and without stopping membrane filtration. Thus, nitrification and denitrification can proceed in a single reaction tank.
しかしながら、特許文献1に記載された仕切板挿入型の膜分離活性汚泥処理法では、窒素除去効率を更に向上させることが望まれていた。
However, the partition plate insertion type membrane separation activated sludge treatment method described in Patent Document 1 has been desired to further improve the nitrogen removal efficiency.
また、特許文献2の装置では、反応槽内で嫌気工程が開始されると共に汚水移送ポンプを作動させて反応槽に汚水(原水)を供給し、反応槽内の水位が最高水位に達した時点で汚水移送ポンプを停止させることにより、原水が反応槽に間欠的に供給されている。
Moreover, in the apparatus of patent document 2, when the anaerobic process is started in the reaction tank, the sewage transfer pump is operated to supply sewage (raw water) to the reaction tank, and the water level in the reaction tank reaches the maximum water level. The raw water is intermittently supplied to the reaction tank by stopping the sewage transfer pump.
従来から、活性汚水処理装置においては、反応槽に供給される原水中の有機物や繊維質により、反応槽に原水を供給する原水供給管や、ポンプおよびバルブ等の機器において詰まりが生じることが問題となっており、特に、ポンプやバルブ等を用いて原水の供給流量の制御を行う場合に、これらの機器において詰まりが生じることが問題となっていた。
Conventionally, in activated sewage treatment equipment, clogging occurs in raw water supply pipes that supply raw water to the reaction tank, pumps and valves, etc. due to organic matter and fibers in the raw water supplied to the reaction tank. In particular, when the supply flow rate of raw water is controlled using a pump, a valve or the like, clogging occurs in these devices.
このような問題を解決するために、原水供給管の一部を反応槽外に延設し、2種類のバルブを設けることにより、原水供給管に生じた詰まりを除去する原水供給装置が提案されている(特許文献3)。しかしながら、特許文献3の装置は、バルブの開閉により原水の流路を変更させながら、原水供給管の詰まりを除去する装置であり、ポンプやバルブ等の機器における詰まりの問題を解消するものではなかった。
また、従来は原水を間欠的に反応槽に供給するために、ポンプを一定のサイクルでON-OFFする必要があり、原水ポンプの運転負荷が大きく、ポンプの寿命が短いという問題があった。さらに、ポンプの稼働率を大きく変動させる必要があったため、ポンプを過剰設計する必要があった。 In order to solve such a problem, a raw water supply device has been proposed in which a part of the raw water supply pipe is extended outside the reaction tank and two kinds of valves are provided to remove clogging generated in the raw water supply pipe. (Patent Document 3). However, the device ofPatent Document 3 is a device that removes clogging of the raw water supply pipe while changing the flow path of the raw water by opening and closing the valve, and does not solve the problem of clogging in devices such as pumps and valves. It was.
Conventionally, in order to intermittently supply the raw water to the reaction tank, it is necessary to turn the pump on and off at a constant cycle, and there is a problem that the operational load of the raw water pump is large and the pump life is short. Furthermore, since it was necessary to greatly change the operation rate of the pump, it was necessary to overdesign the pump.
また、従来は原水を間欠的に反応槽に供給するために、ポンプを一定のサイクルでON-OFFする必要があり、原水ポンプの運転負荷が大きく、ポンプの寿命が短いという問題があった。さらに、ポンプの稼働率を大きく変動させる必要があったため、ポンプを過剰設計する必要があった。 In order to solve such a problem, a raw water supply device has been proposed in which a part of the raw water supply pipe is extended outside the reaction tank and two kinds of valves are provided to remove clogging generated in the raw water supply pipe. (Patent Document 3). However, the device of
Conventionally, in order to intermittently supply the raw water to the reaction tank, it is necessary to turn the pump on and off at a constant cycle, and there is a problem that the operational load of the raw water pump is large and the pump life is short. Furthermore, since it was necessary to greatly change the operation rate of the pump, it was necessary to overdesign the pump.
本発明は、上記従来の課題に鑑み、仕切板挿入型の膜分離活性汚泥処理法において、脱窒を効率的に進行させ、窒素除去効率を更に向上させることが可能な膜分離活性汚泥装置、膜分離活性汚泥方法及び原水供給装置を提供することを目的とする。
In view of the above-described conventional problems, the present invention provides a membrane separation activated sludge apparatus capable of efficiently denitrifying and further improving nitrogen removal efficiency in a partition plate insertion type membrane separation activated sludge treatment method, An object is to provide a membrane separation activated sludge method and a raw water supply device.
また、本発明は、活性汚泥処理等の生物処理を行う反応槽に原水を間欠的に供給する際に、ポンプやバルブ等の機器の詰まりの問題を解消でき、また、原水ポンプの運転負荷を低減し、ポンプの過剰設計が不要となる原水供給装置および原水供給方法を提供することを目的とする。
In addition, the present invention can solve the problem of clogging of equipment such as pumps and valves when supplying raw water intermittently to a reaction tank that performs biological treatment such as activated sludge treatment, and reduces the operating load of the raw water pump. An object of the present invention is to provide a raw water supply device and a raw water supply method that reduce the amount and eliminate the need for excessive pump design.
本願発明者らは、従来の仕切板挿入型の膜分離活性汚泥処理法において窒素除去効率が十分でない原因について鋭意研究した。その結果、特許文献1の方法では、原水の供給が開始されてから停止されるまで(図7(a)および(b)t=t1~t2)に供給された原水中の有機物は、その後仕切板による分断が完了するまでの時点(t=tB)において、仕切板の内部の溶存酸素(DO)を利用した微生物の呼吸により既に一部が消費されている可能性が高い点に着目した。
The inventors of the present application have intensively studied the cause of the insufficient nitrogen removal efficiency in the conventional partition plate insertion type membrane separation activated sludge treatment method. As a result, in the method of Patent Document 1, the organic matter in the raw water supplied from the start of the supply of the raw water until it is stopped (FIG. 7 (a) and (b) t = t 1 to t 2 ) After that, at the point in time until the partitioning by the partition plate is completed (t = t B ), there is a high possibility that a part is already consumed by respiration of microorganisms using dissolved oxygen (DO) inside the partition plate. Pay attention.
そして、特許文献1の方法では、反応槽1内の液位が仕切板7よりも低くなり、仕切板外部の区画が無酸素状態となった時点(図7(a)t=tB)から、次に液位が最低水位に達し、原水の供給が開始される時点(t=t3)までの間において、無酸素状態で進行する脱窒に必要な有機物が不足していることが、窒素除去効率が十分でない原因であることを見出した(図7(b))。その結果、反応槽内の液位が仕切板の上端よりも低く、前記その他の区画が無酸素状態であるとき(図7(a)t=tB~t3)に、反応槽内の液位が仕切板の上端を越えない量の原水を仕切板外部の区画に供給すれば、窒素除去効率を向上できることに想到し、本発明を完成した。
And, in the method of Patent Document 1, the liquid level in the reaction tank 1 becomes lower than the partition plate 7 from the time the section of the partition plate outer becomes anoxic (Fig 7 (a) t = t B ) Then, until the time when the liquid level reaches the lowest water level and the supply of raw water is started (t = t 3 ), the organic matter necessary for denitrification that proceeds in an oxygen-free state is insufficient. It was found that the nitrogen removal efficiency was not sufficient (FIG. 7B). As a result, when the liquid level in the reaction tank is lower than the upper end of the partition plate and the other compartments are in an oxygen-free state (FIG. 7 (a) t = t B to t 3 ), the liquid in the reaction tank The inventors have conceived that nitrogen removal efficiency can be improved by supplying an amount of raw water whose amount does not exceed the upper end of the partition plate to a partition outside the partition plate, and the present invention has been completed.
また、本願発明者らは、ポンプやバルブ等の詰まりや、原水ポンプの運転負荷の課題について鋭意検討した結果、生物処理を行う反応槽に原水を間欠的に供給する際に、少なくとも、貯水槽と、貯水槽の内部から貯水槽槽壁の上部を経て貯水槽の外部に延在するよう設けられたサイホン管を用いることにより、上記問題を解決できることを見出し、本発明を完成した。
In addition, as a result of intensive studies on the clogging of pumps and valves and the problem of the operational load of the raw water pump, the inventors of the present application have at least a water tank when supplying raw water intermittently to a reaction tank that performs biological treatment. Then, the present inventors have found that the above problem can be solved by using a siphon tube provided so as to extend from the inside of the water storage tank to the outside of the water storage tank through the upper part of the water storage tank wall.
すなわち本発明は、以下の(1)~(5)に関する。
(1)好気性処理および無酸素処理を行う単一の反応槽と、その反応槽の内部に配置された浸漬膜分離ユニットと、曝気手段とを有する膜分離活性汚泥処理装置であって、反応槽は、底部が反応槽の底面から離間して設けられた仕切板によって複数個の区画に分割され、その複数個の区画のうちの少なくとも一つの区画を、浸漬膜分離ユニットおよび曝気手段が配置された好気区画とし、その他の区画内を、好気状態から無酸素状態に、また、無酸素状態から好気状態に切り換えるための区画とし、かつ、反応槽内の液位が仕切板上端よりも高い状態と低い状態とに切り換えるための液位制御手段が設けられている膜分離活性汚泥処理装置において、前記反応槽内の液位が前記仕切板の上端よりも低く、前記その他の区画が無酸素状態であるときに、反応槽内の液位が仕切板の上端を越えない量の原水を反応槽内の前記その他の区画に供給する原水供給手段を設けたことを特徴とする膜分離活性汚泥処理装置。 That is, the present invention relates to the following (1) to (5).
(1) A membrane separation activated sludge treatment apparatus having a single reaction tank for performing an aerobic treatment and an oxygen-free treatment, a submerged membrane separation unit disposed in the reaction tank, and an aeration means. The tank is divided into a plurality of compartments by a partition plate provided with a bottom portion separated from the bottom surface of the reaction tank, and at least one of the plurality of compartments is arranged with a submerged membrane separation unit and an aeration means. Aerobic compartment, and other compartments for switching from an aerobic state to an anaerobic state and from an anaerobic state to an aerobic state, and the liquid level in the reaction tank is at the upper end of the partition plate In the membrane separation activated sludge treatment apparatus provided with a liquid level control means for switching between a higher state and a lower state, the liquid level in the reaction tank is lower than the upper end of the partition plate, and the other compartments Is anoxic Come to, membrane separation activated sludge treatment apparatus, characterized in that the liquid level in the reaction tank is provided with a raw water supply means for supplying raw water in an amount not exceeding the upper end of the partition plate to the other compartments in the reaction vessel.
(1)好気性処理および無酸素処理を行う単一の反応槽と、その反応槽の内部に配置された浸漬膜分離ユニットと、曝気手段とを有する膜分離活性汚泥処理装置であって、反応槽は、底部が反応槽の底面から離間して設けられた仕切板によって複数個の区画に分割され、その複数個の区画のうちの少なくとも一つの区画を、浸漬膜分離ユニットおよび曝気手段が配置された好気区画とし、その他の区画内を、好気状態から無酸素状態に、また、無酸素状態から好気状態に切り換えるための区画とし、かつ、反応槽内の液位が仕切板上端よりも高い状態と低い状態とに切り換えるための液位制御手段が設けられている膜分離活性汚泥処理装置において、前記反応槽内の液位が前記仕切板の上端よりも低く、前記その他の区画が無酸素状態であるときに、反応槽内の液位が仕切板の上端を越えない量の原水を反応槽内の前記その他の区画に供給する原水供給手段を設けたことを特徴とする膜分離活性汚泥処理装置。 That is, the present invention relates to the following (1) to (5).
(1) A membrane separation activated sludge treatment apparatus having a single reaction tank for performing an aerobic treatment and an oxygen-free treatment, a submerged membrane separation unit disposed in the reaction tank, and an aeration means. The tank is divided into a plurality of compartments by a partition plate provided with a bottom portion separated from the bottom surface of the reaction tank, and at least one of the plurality of compartments is arranged with a submerged membrane separation unit and an aeration means. Aerobic compartment, and other compartments for switching from an aerobic state to an anaerobic state and from an anaerobic state to an aerobic state, and the liquid level in the reaction tank is at the upper end of the partition plate In the membrane separation activated sludge treatment apparatus provided with a liquid level control means for switching between a higher state and a lower state, the liquid level in the reaction tank is lower than the upper end of the partition plate, and the other compartments Is anoxic Come to, membrane separation activated sludge treatment apparatus, characterized in that the liquid level in the reaction tank is provided with a raw water supply means for supplying raw water in an amount not exceeding the upper end of the partition plate to the other compartments in the reaction vessel.
(2)好気性処理および無酸素処理を行う単一の反応槽と、その反応槽の内部に配置された浸漬膜分離ユニットと、曝気手段とを有する膜分離活性汚泥処理装置であって、反応槽は、底部が反応槽の底面から離間して設けられた仕切板によって複数個の区画に分割され、その複数個の区画のうちの少なくとも一つの区画を、浸漬膜分離ユニットおよび曝気手段が配置された好気区画とし、その他の区画内を、好気状態から無酸素状態に、また、無酸素状態から好気状態に切り換えるための区画とする膜分離活性汚泥処理装置に原水を供給するための原水供給装置において、反応槽内の液位が仕切板上端よりも高い状態と低い状態とに切り換えるための液位制御手段と、前記反応槽内の液位が前記仕切板の上端よりも低く、前記その他の区画が無酸素状態であるときに、反応槽内の液位が仕切板の上端を越えない量の原水を反応槽内の前記その他の区画に供給する原水供給手段を設けたことを特徴とする原水供給装置。
(2) A membrane separation activated sludge treatment apparatus having a single reaction tank for performing an aerobic treatment and an oxygen-free treatment, a submerged membrane separation unit disposed in the reaction tank, and an aeration means. The tank is divided into a plurality of compartments by a partition plate provided with a bottom portion separated from the bottom surface of the reaction tank, and at least one of the plurality of compartments is arranged with a submerged membrane separation unit and an aeration means. To supply raw water to a membrane-separated activated sludge treatment apparatus, which is a section for switching from an aerobic state to an anaerobic state and from an anaerobic state to an aerobic state. In the raw water supply apparatus, the liquid level control means for switching the liquid level in the reaction tank between a state higher and lower than the upper end of the partition plate, and the liquid level in the reaction tank lower than the upper end of the partition plate The other compartments A raw water supply device comprising raw water supply means for supplying raw water in an amount of raw water whose amount in the reaction tank does not exceed the upper end of the partition plate to the other compartment in the reaction tank when in an oxygen state .
(3)生物処理を行う反応槽に原水を供給するための原水供給装置であって、貯水槽と、貯水槽の内部から貯水槽槽壁の上部を経て貯水槽の外部に延在するよう設けられたサイホン管とを備える原水供給装置。
(3) A raw water supply device for supplying raw water to a reaction tank for biological treatment, provided to extend from the inside of the water storage tank to the outside of the water storage tank through the upper part of the water storage tank wall A raw water supply device comprising a siphon tube.
(4)浸漬膜分離ユニットを配置した単一の反応槽内で好気性処理および無酸素処理を行う膜分離活性汚泥処理方法であって、浸漬膜分離ユニットの周囲を底部が反応槽の底面から離間して設けられた仕切板で区画し、浸漬膜分離ユニットの下方から曝気を行うとともに、反応槽内の液位を調節することにより、浸漬膜分離ユニットが配置された区画内を好気状態に維持しつつ、その他の区画内を好気状態から無酸素状態に、また、無酸素状態から好気状態に切り換える膜分離活性汚泥処理方法において、前記反応槽内の液位が前記仕切板の上端よりも低く、前記その他の区画内が無酸素状態であるときに、反応槽内の液位が前記仕切板の上端を越えない量の原水を反応槽内の前記その他の区画に供給することを特徴とする膜分離活性汚泥処理方法。
(4) A membrane separation activated sludge treatment method for performing an aerobic treatment and an oxygen-free treatment in a single reaction tank in which an immersion membrane separation unit is arranged, wherein the bottom of the periphery of the immersion membrane separation unit is from the bottom of the reaction vessel Partitioned with a partition plate provided at a distance, aerated from below the submerged membrane separation unit, and adjusted the liquid level in the reaction tank to aerobic the compartment where the submerged membrane separation unit is placed In the membrane separation activated sludge treatment method for switching the other compartment from an aerobic state to an anaerobic state and from an anaerobic state to an aerobic state, the liquid level in the reaction tank When the other compartment is in an oxygen-free state lower than the upper end, an amount of raw water that does not exceed the upper end of the partition plate is supplied to the other compartment in the reaction tank. Membrane separation activated sludge treatment Method.
(5)生物処理を行う反応槽に原水を供給する原水供給方法であって、貯水槽と、貯水槽の内部から貯水槽槽壁の上部を経て貯水槽の外部に延在するよう設けられたサイホン管を用いて、原水を一定のサイクルで間欠的に前記反応槽に供給する原水供給方法。
(5) A raw water supply method for supplying raw water to a reaction tank that performs biological treatment, and is provided so as to extend from the inside of the water storage tank to the outside of the water storage tank through the upper part of the water storage tank wall. A raw water supply method in which raw water is intermittently supplied to the reaction tank at a constant cycle using a siphon tube.
なお、本明細書において「無酸素状態」とは、完全な無酸素状態のみを意味するものではなく、脱窒菌の作用により硝酸態窒素を窒素分子に還元できる程度に酸素濃度が低い状態をも包含する意味で用いる。
In the present specification, the “anoxic state” does not mean only a complete anoxic state but also a state where the oxygen concentration is low enough to reduce nitrate nitrogen to nitrogen molecules by the action of denitrifying bacteria. Used in the meaning of inclusion.
本発明によれば、仕切板挿入型の膜分離活性汚泥処理方法(B-MBR)において、仕切板外部の区画に好気状態と無酸素状態を一定のサイクルで交互に創出し、単一の反応槽内で好気処理と無酸素処理を進行させつつ、無酸素状態の区画内に脱窒に必要な有機物を効率的かつ低コストで提供でき、脱窒を効率的に進行させ、有機性汚水からの窒素除去効率を向上させることができる。
According to the present invention, in a partition plate insertion type membrane separation activated sludge treatment method (B-MBR), an aerobic state and an anoxic state are alternately created in a constant cycle in a partition outside the partition plate, While aerobic treatment and anaerobic treatment are progressing in the reaction tank, the organic matter necessary for denitrification can be provided efficiently and at low cost in the anaerobic compartment, and denitrification is advanced efficiently and organic The nitrogen removal efficiency from sewage can be improved.
また、本発明によれば、貯水槽とサイホン管を用い、原水を貯水槽に常に一定流量で連続的に供給するという簡便な方法により、貯水槽から反応槽に原水を一定のサイクルで間欠的に供給することができるため、ポンプやバルブを用いて反応槽に供給する原水の流量を制御する必要がない。そのため、ポンプやバルブ等の機器に生じる詰まりの問題を低減でき、原水ポンプの運転負荷を平滑化でき、ポンプの寿命を延長できる。また、原水ポンプの稼働率を変動させる必要がないため、原料ポンプの過剰設計が不要となる。その結果、コスト削減が可能となり、装置全体のメンテナンス性が向上するという利点がある。
Further, according to the present invention, the raw water is intermittently supplied from the water tank to the reaction tank at a constant cycle by a simple method of continuously supplying the raw water to the water tank at a constant flow rate using the water tank and the siphon tube. Therefore, it is not necessary to control the flow rate of the raw water supplied to the reaction tank using a pump or a valve. Therefore, the problem of clogging occurring in devices such as pumps and valves can be reduced, the operating load of the raw water pump can be smoothed, and the life of the pump can be extended. In addition, since it is not necessary to change the operating rate of the raw water pump, an excessive design of the raw material pump becomes unnecessary. As a result, the cost can be reduced, and there is an advantage that the maintainability of the entire apparatus is improved.
以下、図面に基づいて、本発明に係る膜分離活性汚泥処理装置および方法、ならびに原水供給装置および方法の実施態様を説明する。なお、図1~図4及び図6において、同一機能を有する部材には、同一符号を付すものとする。
本発明の特徴は、後述する少量原水供給手段および原水供給装置にあるが、まず本発明に係る膜分離活性汚泥処理装置および方法の一実施態様の全体構成について、図1に基づき説明する。 DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a membrane separation activated sludge treatment apparatus and method, and raw water supply apparatus and method according to the present invention will be described based on the drawings. 1 to 4 and 6, members having the same function are denoted by the same reference numerals.
The features of the present invention reside in a small amount of raw water supply means and raw water supply apparatus, which will be described later. First, the overall configuration of one embodiment of the membrane separation activated sludge treatment apparatus and method according to the present invention will be described with reference to FIG.
本発明の特徴は、後述する少量原水供給手段および原水供給装置にあるが、まず本発明に係る膜分離活性汚泥処理装置および方法の一実施態様の全体構成について、図1に基づき説明する。 DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a membrane separation activated sludge treatment apparatus and method, and raw water supply apparatus and method according to the present invention will be described based on the drawings. 1 to 4 and 6, members having the same function are denoted by the same reference numerals.
The features of the present invention reside in a small amount of raw water supply means and raw water supply apparatus, which will be described later. First, the overall configuration of one embodiment of the membrane separation activated sludge treatment apparatus and method according to the present invention will be described with reference to FIG.
(膜分離活性汚泥処理装置および方法の全体構成)
図1の膜分離活性汚泥装置では、単槽式の反応槽1に、浸漬型の膜分離ユニット2が設けられている。この膜分離ユニット2には反応槽1の外で吸引ポンプ3が接続されるとともに、膜分離ユニット2の下方に、膜洗浄および好気生物処理用の散気管4が設けられている。散気管4は、ブロワ5に接続され、ブロワ5からエア(空気)が供給される。 (Overall configuration of membrane separation activated sludge treatment apparatus and method)
In the membrane separation activated sludge apparatus of FIG. 1, an immersion typemembrane separation unit 2 is provided in a single tank type reaction tank 1. A suction pump 3 is connected to the membrane separation unit 2 outside the reaction tank 1, and an aeration tube 4 for membrane cleaning and aerobic biological treatment is provided below the membrane separation unit 2. The air diffuser 4 is connected to the blower 5, and air (air) is supplied from the blower 5.
図1の膜分離活性汚泥装置では、単槽式の反応槽1に、浸漬型の膜分離ユニット2が設けられている。この膜分離ユニット2には反応槽1の外で吸引ポンプ3が接続されるとともに、膜分離ユニット2の下方に、膜洗浄および好気生物処理用の散気管4が設けられている。散気管4は、ブロワ5に接続され、ブロワ5からエア(空気)が供給される。 (Overall configuration of membrane separation activated sludge treatment apparatus and method)
In the membrane separation activated sludge apparatus of FIG. 1, an immersion type
反応槽1には、微生物を含有する汚泥が収容されており、この微生物が、有機物の分解菌、さらにはそれら微生物の分解菌として作用し、生物処理を行う。したがって、反応槽1は、汚泥が部分的に偏在することがないように、また、酸素が均一に供給されるように、内表面に角がないものや凹凸がないものが好ましい。この結果、反応槽1内では処理液の温度やpHが均一になり、安定に分解処理を進めることができる。また、汚泥に含有される微生物は、細菌類、酵母およびカビを含む真菌類など、溶解性有機物などの分解に寄与するもので、土壌、堆肥、汚泥など、自然界から集積培養および馴養によって取得される。またこの馴養液から分解に関与する主要な微生物群を単離して用いることも可能である。なお、これらの微生物を含有する汚泥自体はこの分野において周知である。
In the reaction tank 1, sludge containing microorganisms is accommodated, and these microorganisms act as organic matter decomposing bacteria, and further as decomposing bacteria of these microorganisms, and perform biological treatment. Therefore, it is preferable that the reaction tank 1 has no corners or irregularities on the inner surface so that sludge is not partially unevenly distributed and oxygen is supplied uniformly. As a result, the temperature and pH of the treatment liquid become uniform in the reaction tank 1, and the decomposition treatment can proceed stably. Microorganisms contained in sludge contribute to the degradation of soluble organic matter such as bacteria, yeasts and fungi including fungi, and are obtained from nature, such as soil, compost, and sludge, by accumulating culture and acclimatization. The It is also possible to isolate and use the main microbial group involved in the degradation from this conditioned solution. In addition, the sludge itself containing these microorganisms is well known in this field.
さらに、この反応槽1に浸漬させる膜分離ユニットは、膜そのものとして汚れにくい素材を用いたものや、膜表面に汚れがつきにくくなるように、膜間に適当な隙間を有するものを用いることが好ましい。膜分離ユニット2には、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜などを用いて形成されたモジュールを用いることができる。経済性の観点からは、ろ過速度が高くコンパクト化が可能で、メンテナンスが容易である精密ろ過膜、限外ろ過膜を用いたモジュールが好ましい。膜の形状は平膜、中空糸膜等のものが用いられる。ここで用いられる浸漬型膜分離ユニット自体はこの分野において広く用いられており、市販もされている。
Further, the membrane separation unit immersed in the reaction tank 1 may be one that uses a material that is not easily contaminated as the membrane itself, or one that has an appropriate gap between the membranes so that the surface of the membrane is not easily contaminated. preferable. The membrane separation unit 2 may be a module formed using a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane, a reverse osmosis membrane, or the like. From the economical point of view, a module using a microfiltration membrane or an ultrafiltration membrane that has a high filtration rate and can be made compact and is easy to maintain is preferable. The membrane may be a flat membrane, a hollow fiber membrane or the like. The submerged membrane separation unit itself used here is widely used in this field and is also commercially available.
このような図1に示す構成により、反応槽1内で汚水が生物学的に処理され、散気管4からのエアによって、膜分離ユニット2の膜面に汚泥物質等が付着するのを防止しながら、膜分離ユニット2によって反応槽1内の処理液をろ過し、そのろ過水を吸引ポンプ3により吸引して槽外に取り出すことができる。
With such a configuration shown in FIG. 1, sewage is biologically treated in the reaction tank 1, and the air from the air diffuser 4 prevents the sludge substance and the like from adhering to the membrane surface of the membrane separation unit 2. However, the treatment liquid in the reaction tank 1 can be filtered by the membrane separation unit 2, and the filtered water can be sucked by the suction pump 3 and taken out of the tank.
反応槽1内の活性汚泥処理条件は、膜分離活性汚泥法で通常使用する周知の条件であればよいが、MLSS(Mixed Liquor Suspended Solid)濃度は、通常3000~20000mg/L、好ましくは5000~15000mg/Lであり、HRT(水理学的滞留時間)は、通常2~24時間、好ましくは4~8時間である。
The activated sludge treatment conditions in the reaction tank 1 may be well-known conditions that are usually used in the membrane separation activated sludge method, but the MLSS (Mixed Liquor Suspended Solid) concentration is usually 3000 to 20000 mg / L, preferably 5000 to 15000 mg / L, and HRT (hydraulic residence time) is usually 2 to 24 hours, preferably 4 to 8 hours.
図1の反応槽1には、原水供給装置10が接続されるとともに、レベルセンサー6’および仕切板7が設けられている。レベルセンサー6’は、液位、すなわち、液表面の位置を調べるセンサーであり、それ自体は周知である。また、仕切板7は、図1に示すように底部が反応槽の底面から離間して設けられている。仕切板7は、膜分離ユニット2の横方向の全周囲を囲包している(上下は開放)が、膜分離ユニット2の周囲を実質的に取り囲むものであれば良い。例えば、仕切板7は槽壁と組合せて膜分離ユニット2の周囲を取り囲むものでもよく、槽壁と共働して矩形の領域を規定する2枚の平板状のものが好ましい。あるいは、膜分離ユニット2の周囲4面のうち、一面を仕切板7が、他の3面を槽壁で囲包するものや、仕切板7が膜分離ユニット2の全周囲を囲包するものでもよい。
1 is connected to a raw water supply device 10 and is provided with a level sensor 6 'and a partition plate 7. The level sensor 6 'is a sensor for checking the liquid level, that is, the position of the liquid surface, and is well known per se. Moreover, as shown in FIG. 1, the partition plate 7 is provided with a bottom portion separated from the bottom surface of the reaction tank. The partition plate 7 surrounds the entire periphery in the lateral direction of the membrane separation unit 2 (upper and lower sides are open), but any partition material that substantially surrounds the periphery of the membrane separation unit 2 may be used. For example, the partition plate 7 may be combined with the tank wall to surround the periphery of the membrane separation unit 2, and is preferably two flat plates that cooperate with the tank wall to define a rectangular region. Alternatively, of the four surrounding surfaces of the membrane separation unit 2, the partition plate 7 surrounds one surface and the other three surfaces are surrounded by the tank wall, or the partition plate 7 surrounds the entire periphery of the membrane separation unit 2. But you can.
本発明においては、このような仕切板によって、反応槽内は複数個の区画に分割され、その複数個の区画のうちの少なくとも一つの区画を、浸漬膜分離ユニットおよび曝気手段が配置された好気区画とし、その他の区画内を、好気状態から無酸素状態に、また、無酸素状態から好気状態に切り換えるための区画とする。反応槽内において、仕切板の内(膜分離ユニット2を配置した好気区画)と外(その他の区画)の容量比は、通常1:0.5~5であり、好ましくは1:1~3の範囲内となるよう設定する。
In the present invention, such a partition plate divides the inside of the reaction vessel into a plurality of compartments, and at least one of the plurality of compartments is preferably provided with an immersion membrane separation unit and an aeration means. The air compartment is used, and the other compartments are compartments for switching from the aerobic state to the anaerobic state and from the anaerobic state to the aerobic state. In the reaction tank, the volume ratio of the partition plate (aerobic compartment in which the membrane separation unit 2 is disposed) to the outside (other compartment) is usually 1: 0.5 to 5, preferably 1: 1 to Set to be within the range of 3.
なお、図1の具体例では、膜ユニット収容区画が1つだけであるが、大型の下水処理等の場合には、単位時間当たりの処理量を大きくするために、所望により、膜ユニットを収容する区画(好気区画)を複数設け、これらの各区画にそれぞれ膜ユニットを浸漬してもよい。この場合、好気区画以外の区画を複数設けることも可能であるが、1つの方が構造が単純で反応液の均一性も確保しやすいので好ましい。
In the specific example of FIG. 1, there is only one membrane unit accommodating section. However, in the case of large-scale sewage treatment, etc., in order to increase the processing amount per unit time, the membrane unit is accommodated as desired. A plurality of compartments (aerobic compartments) may be provided, and the membrane unit may be immersed in each of these compartments. In this case, it is possible to provide a plurality of compartments other than the aerobic compartment, but one is preferred because the structure is simple and the uniformity of the reaction liquid is easily secured.
また、図1の具体例においては、吸引ポンプ3でろ過圧を得ているが、反応槽内の水位と濾過水取り出し口との水位との差、すなわち自然水頭のみによって濾過圧を得てもよく、さらに原液側から加圧することによって濾過圧を得てもよい。
Further, in the specific example of FIG. 1, the filtration pressure is obtained by the suction pump 3, but even if the filtration pressure is obtained only by the difference between the water level in the reaction tank and the water level at the filtered water outlet, that is, the natural water head. In addition, the filtration pressure may be obtained by further applying pressure from the stock solution side.
本発明の膜分離活性汚泥処理装置は、反応槽1内の液位が仕切板7の上端よりも高い状態と低い状態とに切り換えるための液位制御手段有する。この液位制御手段により、仕切板よりも上の領域を介して両区画の液が流通可能な状態と、仕切板よりも上に液が存在せず、両区画の液の流通が分断された状態とが作り出される。これにより、膜分離ユニット2は散気管4からの空気の供給下で連続的に作動させながら、仕切板の内部から外部に対し、硝化処理後の硝酸性窒素を含む汚泥混合液と空気の供給を行ったり停止したりすることが可能となる。その結果、仕切板外部の区画に、好気状態と無酸素状態を一定のサイクルで交互に創出することができ、即ち、無酸素状態を間欠的に形成することができ、硝化細菌による硝化処理と脱窒細菌による脱窒処理を同一の反応槽内で行うことが可能となる。
The membrane separation activated sludge treatment apparatus of the present invention has a liquid level control means for switching the liquid level in the reaction tank 1 between a higher state and a lower state than the upper end of the partition plate 7. By this liquid level control means, the state in which the liquid in both compartments can circulate through the region above the partition plate, and the liquid does not exist above the partition plate, the flow of the liquid in both compartments is divided. A state is created. As a result, the membrane separation unit 2 is continuously operated under the supply of air from the air diffuser 4 while supplying the sludge mixed liquid containing nitrate nitrogen after nitrification and the air from the inside of the partition plate to the outside. Can be performed or stopped. As a result, an aerobic state and an oxygen-free state can be alternately created in a constant cycle in a partition outside the partition plate, that is, an oxygen-free state can be intermittently formed, and nitrification treatment by nitrifying bacteria And denitrification treatment with denitrifying bacteria can be performed in the same reaction tank.
下水処理場等の汚水処理施設に流入した汚水は、前処理設備において砂やごみ等の分離・除去を行った後、図1の原水槽9から原水ポンプ8’により原水供給装置10に導入され、次いで原水供給装置10から反応槽1へと導入される。
The sewage that has flowed into the sewage treatment facility such as a sewage treatment plant is separated and removed by sand and garbage in the pretreatment facility, and then introduced into the raw water supply device 10 from the raw water tank 9 in FIG. 1 by the raw water pump 8 ′. Then, the raw water supply device 10 is introduced into the reaction tank 1.
本発明の特徴は、反応槽内の液位が前記仕切板の上端よりも低く、仕切板外部の区画が無酸素状態であるときに、反応槽内の液位が仕切板の上端を越えない量の原水を、反応槽内の仕切板外部の区画に一定時間供給する原水供給手段(以下、便宜的に「少量原水供給手段」とも言う)、およびこの手段を有する原水供給装置にある。
The feature of the present invention is that when the liquid level in the reaction vessel is lower than the upper end of the partition plate and the partition outside the partition plate is in an oxygen-free state, the liquid level in the reaction vessel does not exceed the upper end of the partition plate. A raw water supply means (hereinafter also referred to as “small amount raw water supply means” for convenience) for supplying a certain amount of raw water to a section outside the partition plate in the reaction tank for a certain period of time, and a raw water supply apparatus having this means.
(少量原水供給手段)
本発明において、少量原水供給手段が供給する、反応槽内の液位が仕切板の上端を越えない原水の量とは、通常、膜分離ユニット2によって処理液がろ過され、そのろ過水が吸引ポンプ3により槽外に取り出される膜ろ過流量とほぼ同じ流量か、それを下回る流量であり、反応槽内の液位をほぼ一定に維持することができるという点で、膜ろ過流量とほぼ同じ流量であるのが好ましい。例えば、少量原水供給手段が供給する原水の流量と膜ろ過流量との差は、膜ろ過流量に対し20%以内、好ましくは5%以内とすることができる。また、少量原水供給手段が原水を供給する一定時間とは、無酸素状態である仕切板外部の区画において、脱窒を進行させるのに十分な時間であればよく、通常は2分~30分であり、好ましくは5分~10分である。 (Small raw water supply means)
In the present invention, the amount of raw water that is supplied by a small amount of raw water supply means so that the liquid level in the reaction tank does not exceed the upper end of the partition plate is usually that the treatment liquid is filtered by themembrane separation unit 2 and the filtered water is sucked. The flow rate is almost the same as or less than the membrane filtration flow rate taken out of the tank by the pump 3, and the flow rate is almost the same as the membrane filtration flow rate in that the liquid level in the reaction vessel can be kept almost constant. Is preferred. For example, the difference between the flow rate of raw water supplied by the small amount of raw water supply means and the membrane filtration flow rate can be within 20%, preferably within 5% of the membrane filtration flow rate. Further, the fixed time for supplying the raw water by the small amount of raw water supply means may be a time sufficient for the denitrification to proceed in the compartment outside the partition plate in an oxygen-free state, and usually 2 minutes to 30 minutes. Preferably, it is 5 to 10 minutes.
本発明において、少量原水供給手段が供給する、反応槽内の液位が仕切板の上端を越えない原水の量とは、通常、膜分離ユニット2によって処理液がろ過され、そのろ過水が吸引ポンプ3により槽外に取り出される膜ろ過流量とほぼ同じ流量か、それを下回る流量であり、反応槽内の液位をほぼ一定に維持することができるという点で、膜ろ過流量とほぼ同じ流量であるのが好ましい。例えば、少量原水供給手段が供給する原水の流量と膜ろ過流量との差は、膜ろ過流量に対し20%以内、好ましくは5%以内とすることができる。また、少量原水供給手段が原水を供給する一定時間とは、無酸素状態である仕切板外部の区画において、脱窒を進行させるのに十分な時間であればよく、通常は2分~30分であり、好ましくは5分~10分である。 (Small raw water supply means)
In the present invention, the amount of raw water that is supplied by a small amount of raw water supply means so that the liquid level in the reaction tank does not exceed the upper end of the partition plate is usually that the treatment liquid is filtered by the
(原水供給装置の第1の実施態様)
図4に、本発明に係る原水供給装置の第1の実施態様を示す。
原水供給装置10には、原水槽から一定の流量で供給された原水を貯える貯水槽12と、貯水槽12の内部から貯水槽槽壁の上部、好ましくは貯水槽槽壁の上端を介して貯水槽12の外部に延在するサイホン管13が設けられている。ここで、サイホン管とは、液体は液面の高い方から低い方に向かって流れ移るという液体の性質を利用して、液体を一度高所に上げて低所に移すために用いる曲管を意味する。 (First embodiment of raw water supply apparatus)
FIG. 4 shows a first embodiment of the raw water supply apparatus according to the present invention.
The rawwater supply device 10 stores a water tank 12 for storing raw water supplied at a constant flow rate from the raw water tank, and stores water from the inside of the water tank 12 through the upper part of the water tank tank wall, preferably the upper end of the water tank tank wall. A siphon tube 13 extending outside the tank 12 is provided. Here, the siphon tube is a curved tube used to raise the liquid once to a high place and move it to a low place by utilizing the property of the liquid that the liquid flows from the high liquid level to the low liquid side. means.
図4に、本発明に係る原水供給装置の第1の実施態様を示す。
原水供給装置10には、原水槽から一定の流量で供給された原水を貯える貯水槽12と、貯水槽12の内部から貯水槽槽壁の上部、好ましくは貯水槽槽壁の上端を介して貯水槽12の外部に延在するサイホン管13が設けられている。ここで、サイホン管とは、液体は液面の高い方から低い方に向かって流れ移るという液体の性質を利用して、液体を一度高所に上げて低所に移すために用いる曲管を意味する。 (First embodiment of raw water supply apparatus)
FIG. 4 shows a first embodiment of the raw water supply apparatus according to the present invention.
The raw
このような構成により、原水槽から貯水槽12に原水が一定流量で供給され、貯水槽12内の水位が一定水位に到達するまでは、サイホン管から反応槽に原水が供給されない工程(原水停止工程)と、貯水槽12内の水位が一定水位、即ち、サイホン管13が貯水槽12の槽壁の上端で曲折する部分に相当する水位に到達すると、貯水槽内のほぼ全ての原水がサイホン管13を通して反応槽に供給される工程(原水供給工程)を、一定のサイクルで繰り返し行うことが可能となる。本発明において「一定流量」とは、ある所定の時間において流量が一定であればよく、最適な流量とするために変更されることがあってもよい。
With such a configuration, the raw water is supplied from the raw water tank to the water storage tank 12 at a constant flow rate, and the raw water is not supplied from the siphon tube to the reaction tank until the water level in the water storage tank 12 reaches the constant water level (raw water stoppage) Step), and when the water level in the water tank 12 reaches a certain water level, that is, the water level corresponding to the portion where the siphon tube 13 bends at the upper end of the water tank 12, almost all the raw water in the water tank is siphoned. The process (raw water supply process) supplied to the reaction tank through the pipe 13 can be repeatedly performed in a constant cycle. In the present invention, the “constant flow rate” is not limited as long as the flow rate is constant at a predetermined time, and may be changed to obtain an optimum flow rate.
貯水槽の満水時容量は、通常反応槽容量の0.5~30%であり、好ましくは1~10%である。サイホン管の内径は、詰まり防止の点から、通常50mm以上、好ましくは100mm以上、更に好ましくは200mm以上である。貯水槽内外に延在するサイホン管端部の位置は、貯水槽内部に存在するサイホン管の端部よりも、貯水槽外部に存在するサイホン管の端部が低位となるよう設置する必要がある。また、貯水槽内部に存在するサイホン管の端部は、必要な原水量を反応槽に供給できる深度に設置する。
The full capacity of the water storage tank is usually 0.5 to 30%, preferably 1 to 10% of the reaction tank capacity. The inner diameter of the siphon tube is usually 50 mm or more, preferably 100 mm or more, and more preferably 200 mm or more from the viewpoint of preventing clogging. The position of the end of the siphon pipe extending inside and outside the water storage tank needs to be installed so that the end of the siphon pipe existing outside the water storage tank is lower than the end of the siphon pipe existing inside the water storage tank. . Moreover, the end part of the siphon tube existing inside the water storage tank is installed at a depth at which a necessary amount of raw water can be supplied to the reaction tank.
サイホン管13は、貯水槽12の内部から貯水槽槽壁の上部を介して貯水槽12の外部に延在するものであれば、貯水槽12の槽壁と独立して設置されてもよいが、省スペース及びコスト削減の点から、貯水槽12の槽壁と一体となって構成されていてもよい。
原水供給装置10には、万一サイホン管が閉塞し原料が漏洩した場合に対処可能なように、貯水槽内の高水位を感知できる水位センサーを備えた緊急停止装置やバイパス配管を設置することができる。 The siphontube 13 may be installed independently from the tank wall of the water storage tank 12 as long as it extends from the inside of the water storage tank 12 to the outside of the water storage tank 12 through the upper part of the water storage tank wall. From the viewpoint of space saving and cost reduction, the tank wall of the water storage tank 12 may be integrated.
The rawwater supply device 10 should be equipped with an emergency stop device and a bypass pipe equipped with a water level sensor that can sense the high water level in the water tank so that it can cope with the case where the siphon tube is blocked and the raw material leaks. Can do.
原水供給装置10には、万一サイホン管が閉塞し原料が漏洩した場合に対処可能なように、貯水槽内の高水位を感知できる水位センサーを備えた緊急停止装置やバイパス配管を設置することができる。 The siphon
The raw
この原水供給装置10により原水が反応槽1に供給される態様を、図4の時系列(i)~(vi)に沿って、図5(図1の原水供給装置10から反応槽1に供給される原水の流量変動)を参照しつつ説明する。
The manner in which the raw water is supplied to the reaction tank 1 by this raw water supply apparatus 10 is shown in FIG. 5 (from the raw water supply apparatus 10 of FIG. 1 to the reaction tank 1 along the time series (i) to (vi) of FIG. This will be explained with reference to the flow rate fluctuation of the raw water.
図4(i)t=0~t 1 (反応槽への原水の供給が停止)
原水槽から貯水槽12に原水が一定流量で供給されると、貯水槽12内に原水が貯留され水位が上昇していくが、水位が一定水位に到達するまでは、サイホン管から反応槽に原水が供給されることはない。したがって、この時間帯(t=0~t1)において、サイホン管により反応槽に供給される原水の流量は0である(図5:t=0~t1)。 FIG. 4 (i) t = 0 to t 1 (the supply of raw water to the reaction tank is stopped)
When raw water is supplied from the raw water tank to thewater storage tank 12 at a constant flow rate, the raw water is stored in the water storage tank 12 and the water level rises, but until the water level reaches the constant water level, the siphon tube is transferred to the reaction tank. Raw water is never supplied. Therefore, in this time zone (t = 0 to t 1 ), the flow rate of the raw water supplied to the reaction tank by the siphon tube is 0 (FIG. 5: t = 0 to t 1 ).
原水槽から貯水槽12に原水が一定流量で供給されると、貯水槽12内に原水が貯留され水位が上昇していくが、水位が一定水位に到達するまでは、サイホン管から反応槽に原水が供給されることはない。したがって、この時間帯(t=0~t1)において、サイホン管により反応槽に供給される原水の流量は0である(図5:t=0~t1)。 FIG. 4 (i) t = 0 to t 1 (the supply of raw water to the reaction tank is stopped)
When raw water is supplied from the raw water tank to the
図4(ii)~(iv)t=t 1 ~t 2 (サイホン管により原水が反応槽に供給)
次いで、貯水槽12内の水位が、一定水位、即ち、サイホン管13が貯水槽12の槽壁の上端で曲折する部分に相当する水位に到達すると、貯水槽内の原水がサイホン管13を通して反応槽に供給され始め(t=t1)、その後貯水槽12内のほぼ全ての原水が反応槽に供給され、貯水槽12およびサイホン管13の内部は、原水の存在しないほぼ空の状態となる(t=t2)。したがって、この時間帯(t=t1~t2)においては、原水が一定流量でサイホン管を通して反応槽に供給される(図5:t=t1~t2)。 4 (ii) to (iv) t = t 1 to t 2 (Raw water is supplied to the reaction tank through a siphon tube)
Next, when the water level in thewater storage tank 12 reaches a constant water level, that is, the water level corresponding to the portion where the siphon pipe 13 bends at the upper end of the water tank 12, the raw water in the water tank reacts through the siphon pipe 13. After being supplied to the tank (t = t 1 ), almost all the raw water in the water storage tank 12 is then supplied to the reaction tank, and the water storage tank 12 and the siphon tube 13 are almost empty with no raw water present. (T = t 2 ). Therefore, in this time zone (t = t 1 to t 2 ), raw water is supplied to the reaction tank through the siphon tube at a constant flow rate (FIG. 5: t = t 1 to t 2 ).
次いで、貯水槽12内の水位が、一定水位、即ち、サイホン管13が貯水槽12の槽壁の上端で曲折する部分に相当する水位に到達すると、貯水槽内の原水がサイホン管13を通して反応槽に供給され始め(t=t1)、その後貯水槽12内のほぼ全ての原水が反応槽に供給され、貯水槽12およびサイホン管13の内部は、原水の存在しないほぼ空の状態となる(t=t2)。したがって、この時間帯(t=t1~t2)においては、原水が一定流量でサイホン管を通して反応槽に供給される(図5:t=t1~t2)。 4 (ii) to (iv) t = t 1 to t 2 (Raw water is supplied to the reaction tank through a siphon tube)
Next, when the water level in the
図4(v)t=t 2 ~t 3 (反応槽への原水の供給が停止)
その後も、原水は一定の流量で貯水槽12に供給され続けるため原水は貯水槽12内に貯留していくが、貯水槽12内の水位が前記一定水位に到達するまでは、原水がサイホン管13から反応槽に供給されることはない。したがって、この時間帯(t=t2~t3)における反応槽への原水の供給流量は0となる(図5:t=t2~t3)。 FIG. 4 (v) t = t 2 to t 3 (supply of raw water to the reaction tank is stopped)
After that, since the raw water continues to be supplied to thewater storage tank 12 at a constant flow rate, the raw water is stored in the water storage tank 12. However, until the water level in the water storage tank 12 reaches the constant water level, the raw water is siphoned. 13 is not supplied to the reaction vessel. Therefore, the supply flow rate of raw water to the reaction tank in this time zone (t = t 2 to t 3 ) becomes 0 (FIG. 5: t = t 2 to t 3 ).
その後も、原水は一定の流量で貯水槽12に供給され続けるため原水は貯水槽12内に貯留していくが、貯水槽12内の水位が前記一定水位に到達するまでは、原水がサイホン管13から反応槽に供給されることはない。したがって、この時間帯(t=t2~t3)における反応槽への原水の供給流量は0となる(図5:t=t2~t3)。 FIG. 4 (v) t = t 2 to t 3 (supply of raw water to the reaction tank is stopped)
After that, since the raw water continues to be supplied to the
図4(vi)t=t 3 (サイホン管による原水の供給が再開)
貯水槽12内の水位が前記一定水位に到達すると、サイホン管による原水の反応槽への供給が再開される(図5:t=t3)。 FIG. 4 (vi) t = t 3 (supply of raw water through siphon tube resumes)
When the water level in thewater storage tank 12 reaches the predetermined water level, the supply of raw water to the reaction tank through the siphon tube is resumed (FIG. 5: t = t 3 ).
貯水槽12内の水位が前記一定水位に到達すると、サイホン管による原水の反応槽への供給が再開される(図5:t=t3)。 FIG. 4 (vi) t = t 3 (supply of raw water through siphon tube resumes)
When the water level in the
以上のような貯水槽とサイホン管を有する原水供給装置10(図4)を用いることにより、原水供給装置から反応槽に原水を供給する際にポンプやバルブ等の機器を用いて供給流量を制御しなくても、一定のサイクルで原水を間欠的に反応槽に供給することができる。
By using the raw water supply apparatus 10 (FIG. 4) having the water storage tank and the siphon tube as described above, the supply flow rate is controlled using equipment such as a pump and a valve when the raw water is supplied from the raw water supply apparatus to the reaction tank. Even if not, the raw water can be intermittently supplied to the reaction tank in a constant cycle.
なお、原水供給装置10においても、原水槽から貯水槽に原水を供給する際に原水ポンプを使用するが、このポンプでは原水を常に一定流量で連続的に貯水槽に供給すればよいため、従来法のように原水ポンプやバルブをON-OFFさせて使用する場合に比べ、原水ポンプの運転負荷が小さく、原水ポンプの過剰設計が不要となる。
In the raw water supply apparatus 10 as well, a raw water pump is used when supplying raw water from the raw water tank to the water storage tank. However, in this pump, it is only necessary to continuously supply the raw water to the water storage tank at a constant flow rate. Compared to the case where the raw water pump and valves are turned on and off as in the law, the operating load of the raw water pump is small, and the excessive design of the raw water pump is unnecessary.
図4に示す原水供給装置およびこれを用いた原水供給方法を適用できる生物処理装置としては、前述したような、反応槽内に膜分離装置を浸漬させる浸漬型の膜分離活性汚泥法による装置以外にも、槽外循環式や別槽式の膜分離活性汚泥法による装置を用いることができる。また、仕切板挿入型の膜分離活性汚泥処理装置以外にも、回分式活性汚泥法(SBR)、二重管型反応装置による硝化脱窒法、担体添加型活性汚泥法等による装置を使用することができる。
As the biological treatment apparatus to which the raw water supply apparatus shown in FIG. 4 and the raw water supply method using the raw water supply apparatus can be applied, the apparatus other than the apparatus based on the immersion type membrane separation activated sludge method in which the membrane separation apparatus is immersed in the reaction tank as described above. Moreover, the apparatus by the membrane separation activated sludge method of an outside tank type or a separate tank type can be used. In addition to the separator-type membrane separation activated sludge treatment device, use devices such as batch activated sludge method (SBR), nitrification denitrification method using double-pipe reactor, and carrier addition activated sludge method. Can do.
(原水供給装置の第2の実施態様)
本発明の原水供給装置の第2の実施態様を図6に示す。
図6の原水供給装置10’には、原水槽から供給された原水を貯える貯水槽12と、貯水槽12の内部から貯水槽槽壁の上部、好ましくは貯水槽槽壁の上端を介して貯水槽12の外部に延在するサイホン管13(液位制御手段)と、貯水槽12内の原水の一部を貯水槽12の槽壁の一部から抜き出し、貯水槽12の外部であって貯水槽よりも低位にあるサイホン管13の側部に供給する補助配管14(少量原水供給手段)が設けられている。 (Second Embodiment of Raw Water Supply Device)
The 2nd embodiment of the raw | natural water supply apparatus of this invention is shown in FIG.
The rawwater supply device 10 ′ of FIG. 6 stores a water storage tank 12 for storing the raw water supplied from the raw water tank, and stores water from the inside of the water storage tank 12 through the upper part of the water tank tank wall, preferably the upper end of the water tank tank wall. A siphon tube 13 (liquid level control means) extending to the outside of the tank 12 and a part of the raw water in the water tank 12 are extracted from a part of the tank wall of the water tank 12, and the water is stored outside the water tank 12. An auxiliary pipe 14 (a small amount of raw water supply means) is provided to supply the side portion of the siphon pipe 13 that is lower than the tank.
本発明の原水供給装置の第2の実施態様を図6に示す。
図6の原水供給装置10’には、原水槽から供給された原水を貯える貯水槽12と、貯水槽12の内部から貯水槽槽壁の上部、好ましくは貯水槽槽壁の上端を介して貯水槽12の外部に延在するサイホン管13(液位制御手段)と、貯水槽12内の原水の一部を貯水槽12の槽壁の一部から抜き出し、貯水槽12の外部であって貯水槽よりも低位にあるサイホン管13の側部に供給する補助配管14(少量原水供給手段)が設けられている。 (Second Embodiment of Raw Water Supply Device)
The 2nd embodiment of the raw | natural water supply apparatus of this invention is shown in FIG.
The raw
図6のような構成により、貯水槽12内の液位が一定水位、即ち、サイホン管13が貯水槽12の槽壁の上端で曲折する部分に相当する水位を越えた場合には、貯水槽内の全ての原水がサイホン管13により反応槽に間欠的に供給され、また、全ての原水がサイホン管13により反応槽に供給される前には、一定流量の原水が補助配管14により反応槽に供給される。本発明において「一定流量」とは、ある所定の時間において流量が一定であればよく、最適な流量とするために変更されることがあってもよい。
6, when the liquid level in the water tank 12 is a constant water level, that is, when the siphon tube 13 exceeds the water level corresponding to the portion that bends at the upper end of the water tank 12, the water tank All the raw water is intermittently supplied to the reaction tank through the siphon pipe 13, and before all the raw water is supplied to the reaction tank through the siphon pipe 13, a constant flow of raw water is supplied to the reaction tank through the auxiliary pipe 14. To be supplied. In the present invention, the “constant flow rate” is not limited as long as the flow rate is constant at a predetermined time, and may be changed to obtain an optimum flow rate.
貯水槽の満水時容量は、通常、反応槽容量の0.5~20%であり、好ましくは反応槽容量の2~8%である。貯水槽、サイホン管および補助配管のそれぞれの寸法や配置位置は、反応槽に供給する原水の量や流量変動により変わり得るが、例えば、サイホン管の内径は、詰まり防止の点から、通常50mm以上、好ましくは100mm以上、更に好ましくは200mm以上であり、補助配管とサイホン管の内径比率は、通常1:2~10であり、好ましくは1:2~5ある。また、補助配管を結合させる貯水槽の底面からの位置は、通常、貯水槽底部からサイホン管上端までの高さの20~90%の範囲であり、好ましくは40~60%となるよう設定する。サイホン管13は、貯水槽12の内部から貯水槽槽壁の上部を介して貯水槽12の外部に延在するものであれば、貯水槽12の槽壁と独立して設置されてもよいが、省スペース及びコスト削減の点から、貯水槽12の槽壁と一体となって構成されていてもよい。また、補助配管14は、サイホン管が設置された貯水槽の槽壁に対向する槽壁に結合していることが好ましい。
The full capacity of the water storage tank is usually 0.5 to 20% of the reaction tank capacity, and preferably 2 to 8% of the reaction tank capacity. The dimensions and location of the water storage tank, siphon pipe, and auxiliary pipe can vary depending on the amount of raw water supplied to the reaction tank and fluctuations in the flow rate. For example, the inner diameter of the siphon pipe is usually 50 mm or more in order to prevent clogging. The inner diameter ratio between the auxiliary pipe and the siphon pipe is usually 1: 2 to 10, preferably 1: 2 to 5. Further, the position from the bottom of the water tank to which the auxiliary pipe is coupled is usually set in a range of 20 to 90% of the height from the bottom of the water tank to the top of the siphon pipe, and preferably 40 to 60%. . The siphon tube 13 may be installed independently from the tank wall of the water storage tank 12 as long as it extends from the inside of the water storage tank 12 to the outside of the water storage tank 12 through the upper part of the water storage tank wall. From the viewpoint of space saving and cost reduction, the tank wall of the water storage tank 12 may be integrated. Moreover, it is preferable that the auxiliary piping 14 is couple | bonded with the tank wall facing the tank wall of the water storage tank in which the siphon tube was installed.
次に、図6の原水供給装置10’と反応槽1の作用を、図6の時系列(i)~(vi)に沿って、図7の(c)(反応槽内の液位変動)および(d)(反応槽への原水流量変動)を参照しつつ説明する。
Next, the actions of the raw water supply apparatus 10 ′ and the reaction tank 1 in FIG. 6 are shown in FIG. 7C (liquid level fluctuation in the reaction tank) along the time series (i) to (vi) in FIG. And it demonstrates referring (d) (raw water flow rate fluctuation | variation to a reaction tank).
図6(i)t=0~t 1 (補助配管により一定流量の原水が反応槽に供給)
原水槽9から貯水槽12に原水が一定流量で供給されると、貯水槽12内の水位が上昇してゆき、水位が貯水槽12の槽壁の一部に結合する補助配管14よりも上位に上昇すると、原水が補助配管14からサイホン管を経て反応槽1に供給される。ここで、補助配管14から反応槽1に供給される原水の流量は、反応槽内の液位が仕切板の上端を越えない流量である。この時間帯(t=0~t1)において、補助配管により反応槽1に供給される原水の流量は一定であり(図7(d)t=0~t1)、この原水の流量が膜ろ過流量とほぼ同じであれば、反応槽内の液位もほぼ一定となる(図7(c)t=0~t1)。この時、反応槽内の液位は仕切板上端よりも低いため、膜分離ユニット2が配置された好気区画(仕切板内部)とそれ以外の区画(仕切板外部)とは仕切板7により分断されており、仕切板外部は無酸素状態となる。 FIG. 6 (i) t = 0 to t 1 (A constant flow of raw water is supplied to the reaction tank through the auxiliary piping)
When raw water is supplied from the raw water tank 9 to thewater storage tank 12 at a constant flow rate, the water level in the water storage tank 12 rises, and the water level is higher than the auxiliary pipe 14 coupled to a part of the tank wall of the water storage tank 12. The raw water is supplied from the auxiliary pipe 14 to the reaction tank 1 through the siphon pipe. Here, the flow rate of the raw water supplied from the auxiliary pipe 14 to the reaction vessel 1 is a flow rate at which the liquid level in the reaction vessel does not exceed the upper end of the partition plate. In this time zone (t = 0 to t 1 ), the flow rate of the raw water supplied to the reaction tank 1 by the auxiliary pipe is constant (FIG. 7 (d) t = 0 to t 1 ), and the flow rate of the raw water is a membrane. If it is almost the same as the filtration flow rate, the liquid level in the reaction tank is also substantially constant (FIG. 7 (c) t = 0 to t 1 ). At this time, since the liquid level in the reaction tank is lower than the upper end of the partition plate, the aerobic compartment (inside the partition plate) in which the membrane separation unit 2 is arranged and the other compartment (outside the partition plate) are separated by the partition plate 7. It is divided and the outside of the partition plate is in an oxygen-free state.
原水槽9から貯水槽12に原水が一定流量で供給されると、貯水槽12内の水位が上昇してゆき、水位が貯水槽12の槽壁の一部に結合する補助配管14よりも上位に上昇すると、原水が補助配管14からサイホン管を経て反応槽1に供給される。ここで、補助配管14から反応槽1に供給される原水の流量は、反応槽内の液位が仕切板の上端を越えない流量である。この時間帯(t=0~t1)において、補助配管により反応槽1に供給される原水の流量は一定であり(図7(d)t=0~t1)、この原水の流量が膜ろ過流量とほぼ同じであれば、反応槽内の液位もほぼ一定となる(図7(c)t=0~t1)。この時、反応槽内の液位は仕切板上端よりも低いため、膜分離ユニット2が配置された好気区画(仕切板内部)とそれ以外の区画(仕切板外部)とは仕切板7により分断されており、仕切板外部は無酸素状態となる。 FIG. 6 (i) t = 0 to t 1 (A constant flow of raw water is supplied to the reaction tank through the auxiliary piping)
When raw water is supplied from the raw water tank 9 to the
図6(ii)~(iv)t=t 1 ~t 2 (サイホン管により多量の原水が反応槽に供給)
次いで、貯水槽12内の水位が、一定水位、即ち、サイホン管13が貯水槽12の槽壁の上端で曲折する部分に相当する水位に到達すると、原水供給装置内の原水がサイホン管13を通して反応槽1に供給され始め(t=t1)、原水供給装置内の全ての原水が反応槽1に供給される。この時間帯(t=t1~t2)における反応槽1への原水の供給流量は、その前の時間帯((i)t=0~t1))における供給流量よりも多く(図7(d))、反応槽内の液位は上昇して仕切板7の上端よりも高くなる(図7(c)t=tA)。その結果、仕切板の影響はなく、散気管4からのエアで槽全体に及ぶ循環流(膜ユニット収容区画から、仕切板7の上を越えてその他の区画に入り、該その他の区画内を下降し、仕切板7よりも下の領域を介して膜ユニット収容区画に戻る循環流)が形成され、仕切板7の外部は無酸素状態から大部分が好気状態に切り換わる。また、反応槽1内の仕切板内部において、原水中のアンモニア成分が、硝化細菌の作用により亜硝酸態、さらに硝酸態に酸化された、硝酸態窒素を多く含む汚泥が仕切板外部に循環する。 6 (ii) to (iv) t = t 1 to t 2 (a large amount of raw water is supplied to the reaction tank through a siphon tube)
Next, when the water level in thewater storage tank 12 reaches a constant water level, that is, the water level corresponding to the portion where the siphon pipe 13 bends at the upper end of the tank wall of the water storage tank 12, the raw water in the raw water supply device passes through the siphon pipe 13. All the raw water in the raw water supply device is supplied to the reaction tank 1 when it is supplied to the reaction tank 1 (t = t 1 ). The supply flow rate of raw water to the reaction tank 1 in this time zone (t = t 1 to t 2 ) is larger than the supply flow rate in the previous time zone ((i) t = 0 to t 1 ) (FIG. 7). (D)), the liquid level in the reaction vessel rises and becomes higher than the upper end of the partition plate 7 (FIG. 7 (c) t = t A ). As a result, there is no influence of the partition plate, and the circulation flow extending over the entire tank by the air from the diffuser pipe 4 (from the membrane unit housing section, enters the other section over the partition plate 7, and enters the other section. A circulation flow that descends and returns to the membrane unit housing section through the region below the partition plate 7 is formed, and the outside of the partition plate 7 is switched from an oxygen-free state to a mostly aerobic state. Further, inside the partition plate in the reaction tank 1, sludge containing a large amount of nitrate nitrogen circulated to the outside of the partition plate in which the ammonia component in the raw water is oxidized to nitrite and nitrate by the action of nitrifying bacteria. .
次いで、貯水槽12内の水位が、一定水位、即ち、サイホン管13が貯水槽12の槽壁の上端で曲折する部分に相当する水位に到達すると、原水供給装置内の原水がサイホン管13を通して反応槽1に供給され始め(t=t1)、原水供給装置内の全ての原水が反応槽1に供給される。この時間帯(t=t1~t2)における反応槽1への原水の供給流量は、その前の時間帯((i)t=0~t1))における供給流量よりも多く(図7(d))、反応槽内の液位は上昇して仕切板7の上端よりも高くなる(図7(c)t=tA)。その結果、仕切板の影響はなく、散気管4からのエアで槽全体に及ぶ循環流(膜ユニット収容区画から、仕切板7の上を越えてその他の区画に入り、該その他の区画内を下降し、仕切板7よりも下の領域を介して膜ユニット収容区画に戻る循環流)が形成され、仕切板7の外部は無酸素状態から大部分が好気状態に切り換わる。また、反応槽1内の仕切板内部において、原水中のアンモニア成分が、硝化細菌の作用により亜硝酸態、さらに硝酸態に酸化された、硝酸態窒素を多く含む汚泥が仕切板外部に循環する。 6 (ii) to (iv) t = t 1 to t 2 (a large amount of raw water is supplied to the reaction tank through a siphon tube)
Next, when the water level in the
図6(v)t=t 2 ~t 3 (反応槽への原水の供給が停止)
原水供給装置10’内の全ての原水が反応槽1に供給されると、貯水槽12、サイホン管13および補助配管14の内部は、原水の存在しないほぼ空の状態となる。その後も、原水槽9から貯水槽12に一定の流量で供給され続けるため原水は貯水槽12内に貯留していくが、貯水槽12内の水位が補助配管14に到達するまでは、原水が補助配管14から反応槽1に供給されることはない。したがって、この時間帯(t=t2~t3)における反応槽1への原水の供給流量は0となり、反応槽1内の液位は次第に低下していき、t=tBの時点で液位が仕切板上端より低くなる(図7(c)(d)t=t2~t3)。 FIG. 6 (v) t = t 2 to t 3 (the supply of raw water to the reaction tank is stopped)
When all of the raw water in the rawwater supply apparatus 10 ′ is supplied to the reaction tank 1, the interior of the water storage tank 12, the siphon pipe 13 and the auxiliary pipe 14 is in an almost empty state where no raw water is present. After that, since the raw water tank 9 continues to be supplied from the raw water tank 9 to the water storage tank 12 at a constant flow rate, the raw water is stored in the water storage tank 12, but until the water level in the water storage tank 12 reaches the auxiliary pipe 14, There is no supply from the auxiliary pipe 14 to the reaction tank 1. Accordingly, the supply flow rate of raw water to the reaction tank 1 in this time zone (t = t 2 to t 3 ) becomes 0, the liquid level in the reaction tank 1 gradually decreases, and the liquid level at time t = t B is reached. The position becomes lower than the upper end of the partition plate (FIGS. 7C and 7D) t = t 2 to t 3 .
原水供給装置10’内の全ての原水が反応槽1に供給されると、貯水槽12、サイホン管13および補助配管14の内部は、原水の存在しないほぼ空の状態となる。その後も、原水槽9から貯水槽12に一定の流量で供給され続けるため原水は貯水槽12内に貯留していくが、貯水槽12内の水位が補助配管14に到達するまでは、原水が補助配管14から反応槽1に供給されることはない。したがって、この時間帯(t=t2~t3)における反応槽1への原水の供給流量は0となり、反応槽1内の液位は次第に低下していき、t=tBの時点で液位が仕切板上端より低くなる(図7(c)(d)t=t2~t3)。 FIG. 6 (v) t = t 2 to t 3 (the supply of raw water to the reaction tank is stopped)
When all of the raw water in the raw
図6(vi)t=t 3 ~t 4 (補助配管による一定流量の原水供給が再開)
貯水槽12内の水位が補助配管14に到達すると、補助配管による原水の反応槽1への供給が再開される(図7(d)t=t3)。この時間帯(t=t3~t4)における反応槽への原水の供給流量は、反応槽内の液位が仕切板の上端を越えない一定の流量である(図7(d)t=t3~t4)。膜分離ユニット2によって処理液がろ過され、そのろ過水が吸引ポンプ3により槽外に取り出される膜ろ過流量と、補助配管により反応槽に供給される原水流量がほぼ同じであれば、反応槽内の液位もほぼ一定となる(図7(c)t=t3~t4)。この時、反応槽内の液位は仕切板上端よりも低いため、膜分離ユニットが配置された好気区画とそれ以外の区画とが仕切板7により分断されている。その結果、散気管4からのエアは仕切板7で囲まれた空間内で留まることになり、仕切板外部の領域はエアが循環しないため無酸素状態にすることができる。また、補助配管14から原水が一定流量で反応槽の仕切板外部の区画に供給されるため、脱窒菌が必要とする原水中の有機物が不足することなく、硝酸態の窒素を窒素分子に還元する脱窒が進行する。なお、このとき、膜分離ユニット2の洗浄エアは散気管4から連続的に供給されているため、ろ過は停止する必要はなく継続される。 Fig. 6 (vi) t = t 3 to t 4 (The supply of raw water at a constant flow rate through the auxiliary pipe is resumed)
When the water level in thewater storage tank 12 reaches the auxiliary pipe 14, the supply of the raw water to the reaction tank 1 by the auxiliary pipe is resumed (FIG. 7 (d) t = t 3 ). The raw water supply flow rate to the reaction tank in this time zone (t = t 3 to t 4 ) is a constant flow rate at which the liquid level in the reaction tank does not exceed the upper end of the partition plate (FIG. 7 (d) t = t 3 to t 4 ). If the treatment liquid is filtered by the membrane separation unit 2, and the membrane filtration flow rate of the filtrate taken out of the tank by the suction pump 3 and the raw water flow rate supplied to the reaction tank by the auxiliary pipe are substantially the same, The liquid level is also substantially constant (FIG. 7 (c) t = t 3 to t 4 ). At this time, since the liquid level in the reaction tank is lower than the upper end of the partition plate, the aerobic compartment in which the membrane separation unit is arranged and the other compartments are separated by the partition plate 7. As a result, the air from the air diffuser 4 stays in the space surrounded by the partition plate 7, and the region outside the partition plate can be made oxygen-free because air does not circulate. Moreover, since raw water is supplied from the auxiliary pipe 14 to the compartment outside the partition plate of the reaction tank at a constant flow rate, nitrate nitrogen is reduced to nitrogen molecules without running out of organic matter in the raw water required for denitrifying bacteria. Denitrification to proceed. At this time, since the cleaning air of the membrane separation unit 2 is continuously supplied from the diffusion tube 4, the filtration does not need to be stopped and is continued.
貯水槽12内の水位が補助配管14に到達すると、補助配管による原水の反応槽1への供給が再開される(図7(d)t=t3)。この時間帯(t=t3~t4)における反応槽への原水の供給流量は、反応槽内の液位が仕切板の上端を越えない一定の流量である(図7(d)t=t3~t4)。膜分離ユニット2によって処理液がろ過され、そのろ過水が吸引ポンプ3により槽外に取り出される膜ろ過流量と、補助配管により反応槽に供給される原水流量がほぼ同じであれば、反応槽内の液位もほぼ一定となる(図7(c)t=t3~t4)。この時、反応槽内の液位は仕切板上端よりも低いため、膜分離ユニットが配置された好気区画とそれ以外の区画とが仕切板7により分断されている。その結果、散気管4からのエアは仕切板7で囲まれた空間内で留まることになり、仕切板外部の領域はエアが循環しないため無酸素状態にすることができる。また、補助配管14から原水が一定流量で反応槽の仕切板外部の区画に供給されるため、脱窒菌が必要とする原水中の有機物が不足することなく、硝酸態の窒素を窒素分子に還元する脱窒が進行する。なお、このとき、膜分離ユニット2の洗浄エアは散気管4から連続的に供給されているため、ろ過は停止する必要はなく継続される。 Fig. 6 (vi) t = t 3 to t 4 (The supply of raw water at a constant flow rate through the auxiliary pipe is resumed)
When the water level in the
以上の通り、サイホン管13を用いることにより、ポンプやバルブにより原水の供給流量を制御しなくても、一定のサイクルで多量の原水を間欠的に反応槽に供給し、反応槽内の液位を一定のサイクルで上昇および下降させることができる。したがって、原水供給装置10’においてサイホン管は反応槽の液位制御手段として機能する。
また、原水供給装置10’の補助配管14により、反応槽内の液位が仕切板の上端よりも低く、仕切板の外側の区画が無酸素状態であるときに、反応槽内の液位が仕切板の上端を越えない量の原水を反応槽内に供給することができ、脱窒性能を向上させることができる。したがって、原水供給装置10’において補助配管は前記少量原水供給手段として機能する。 As described above, by using the siphontube 13, a large amount of raw water is intermittently supplied to the reaction tank in a constant cycle without controlling the supply flow rate of the raw water by a pump or a valve. Can be raised and lowered in a certain cycle. Therefore, in the raw water supply apparatus 10 ′, the siphon tube functions as a liquid level control means for the reaction tank.
In addition, the liquid level in the reaction tank is lower when the liquid level in the reaction tank is lower than the upper end of the partition plate and the partition outside the partition plate is in an oxygen-free state by theauxiliary pipe 14 of the raw water supply apparatus 10 ′. An amount of raw water not exceeding the upper end of the partition plate can be supplied into the reaction tank, and the denitrification performance can be improved. Therefore, in the raw water supply apparatus 10 ′, the auxiliary pipe functions as the small amount raw water supply means.
また、原水供給装置10’の補助配管14により、反応槽内の液位が仕切板の上端よりも低く、仕切板の外側の区画が無酸素状態であるときに、反応槽内の液位が仕切板の上端を越えない量の原水を反応槽内に供給することができ、脱窒性能を向上させることができる。したがって、原水供給装置10’において補助配管は前記少量原水供給手段として機能する。 As described above, by using the siphon
In addition, the liquid level in the reaction tank is lower when the liquid level in the reaction tank is lower than the upper end of the partition plate and the partition outside the partition plate is in an oxygen-free state by the
ここで、補助配管が供給する原水の量は、通常、膜分離ユニット2によって処理液がろ過され、そのろ過水が吸引ポンプ3により槽外に取り出される膜ろ過流量とほぼ同じ流量か、それを下回る流量であり、反応槽内の液位をほぼ一定に維持することができるという点で、膜ろ過流量とほぼ同じ流量であるのが好ましい。例えば、少量原水供給手段が供給する原水の流量と膜ろ過流量との差は、膜ろ過流量に対し20%以内、好ましくは5%以内とすることができる。また、少量原水供給手段が原水を供給する一定時間とは、無酸素状態である仕切板外部の区画において、脱窒を進行させるのに十分な時間であればよく、通常は2分~30分であり、好ましくは5分~10分である。
Here, the amount of raw water supplied by the auxiliary pipe is usually equal to or substantially equal to the membrane filtration flow rate that the treated liquid is filtered by the membrane separation unit 2 and the filtered water is taken out of the tank by the suction pump 3. It is preferable that the flow rate is lower than the flow rate, and the flow rate is substantially the same as the membrane filtration flow rate in that the liquid level in the reaction vessel can be maintained almost constant. For example, the difference between the flow rate of raw water supplied by the small amount of raw water supply means and the membrane filtration flow rate can be within 20%, preferably within 5% of the membrane filtration flow rate. Further, the fixed time for supplying the raw water by the small amount of raw water supply means may be a time sufficient for the denitrification to proceed in the compartment outside the partition plate in an oxygen-free state, and usually 2 minutes to 30 minutes. Preferably, it is 5 to 10 minutes.
図6に示す貯水槽とサイホン管と補助配管を備えた原水供給装置を用いることにより、反応槽の液位を一定のサイクルで上昇および下降させる機能を有しつつ、反応槽内の液位が仕切板の上端よりも低く、仕切板外部の区画が無酸素状態であるときに、反応槽内の液位上昇を伴わずに、原水を供給することが可能となり、脱窒性能を向上させることができる。
By using the raw water supply apparatus provided with the water storage tank, siphon pipe and auxiliary pipe shown in FIG. 6, the liquid level in the reaction tank can be increased and lowered in a constant cycle while the liquid level in the reaction tank is reduced. It is lower than the upper end of the partition plate, and when the compartment outside the partition plate is in an oxygen-free state, it becomes possible to supply raw water without increasing the liquid level in the reaction tank, and to improve denitrification performance Can do.
このような原水供給装置10’(図6)を用いることにより、図7(d)に示すような好ましい流量変動で原水を反応槽に供給することができる。即ち、反応槽内の液位が仕切板の上端よりも低く、仕切板外部の区画が無酸素状態であるときに、反応槽内の液位が仕切板の上端を越えない量の原水を反応槽内に供給する工程(図7:t=0~t1、t3~t4)(少量原水供給工程)と、反応槽内の液位を仕切り板上端よりも低い状態から高い状態に切り換えるために、前記工程における原水供給流量よりも多い流量の原水を反応槽内に供給する工程(t=t1~t2)(液位制御工程)と、反応槽内の液位を仕切り板上端よりも高い状態から低い状態に切り換えるために、原水の供給を停止する工程(t=t2~t3)(原水停止工程)を、この順で一定のサイクルで繰り返して行うような流量変動で供給することができる。このような流動変動とすることにより、同一の反応槽内で、好気処理と無酸素処理を進行させつつ、無酸素状態の脱窒処理区画内に有機物を効率的かつ安定に供給することができる。
By using such raw water supply apparatus 10 '(FIG. 6), raw water can be supplied to the reaction tank with a preferable flow rate fluctuation as shown in FIG. 7 (d). That is, when the liquid level in the reaction tank is lower than the upper end of the partition plate and the compartment outside the partition plate is in an oxygen-free state, the amount of raw water that does not exceed the upper end of the partition plate is reacted. Step of supplying into the tank (FIG. 7: t = 0 to t 1 , t 3 to t 4 ) (small amount of raw water supplying process) and switching the liquid level in the reaction tank from a state lower than the upper end of the partition plate to a higher state Therefore, a step (t = t 1 to t 2 ) (liquid level control step) of supplying raw water having a flow rate higher than the raw water supply flow rate in the above step into the reaction tank, and a liquid level in the reaction tank at the upper end of the partition plate In order to switch from a higher state to a lower state, the process of stopping the supply of raw water (t = t 2 to t 3 ) (raw water stop process) is performed with a flow rate fluctuation that is repeated in this order in a constant cycle. Can be supplied. By adopting such flow fluctuations, it is possible to efficiently and stably supply organic substances into the anaerobic denitrification section while aerobic treatment and anaerobic treatment proceed in the same reaction tank. it can.
図6に示す原水供給装置では、サイホン管13にタイマーの制御を受けるバルブを設置し、任意の時間に原水供給を開始するよう設定したり、補助配管14に流量調整弁を設置して、補助配管からの原水供給流量を調整することも可能である。また、反応槽に取り付けたORP計、PH計、DO計、NH4-N計、NO3-N計などからの指示や原水槽水位、反応槽水位からの指示を受け、原水供給を制御する制御装置を原水供給装置に取り付けてもよい。さらに、万一サイホン管が閉塞し原料が漏洩した場合に対処可能なように、高水位を感知できる水位センサーを備えた緊急停止装置やバイパス配管を設置することができる。
In the raw water supply apparatus shown in FIG. 6, a valve that receives timer control is installed in the siphon pipe 13, and the raw water supply is set to start at an arbitrary time, or a flow rate adjustment valve is installed in the auxiliary pipe 14 to assist. It is also possible to adjust the raw water supply flow rate from the piping. Also controls raw water supply in response to instructions from ORP meter, PH meter, DO meter, NH 4 -N meter, NO 3 -N meter, etc. attached to the reaction tank, raw water tank level, and reaction tank water level. The control device may be attached to the raw water supply device. Furthermore, an emergency stop device equipped with a water level sensor that can sense a high water level and a bypass pipe can be installed so that it can cope with a case where the siphon pipe is blocked and the raw material leaks.
従来の仕切板挿入型膜分離活性汚泥装置では、反応槽1内の液位の最低水位と最高水位を検知して、原水ポンプ8をON-OFFすることにより反応槽内の液位を制御しているため、原水ポンプの容量を膜ろ過ポンプと比較して十分大きくする必要があり、その結果、処理水量から想定されるよりも大型の原水ポンプを設置する必要が生じ、初期コストが増加していた。これに対し、図6に示す原水供給装置10’であれば、大型の原水ポンプを使用する必要がなく低コストで膜分離活性汚泥処理を行うことができる。
In the conventional partition plate insertion type membrane separation activated sludge apparatus, the lowest water level and the highest water level in the reaction tank 1 are detected, and the raw water pump 8 is turned on and off to control the liquid level in the reaction tank. Therefore, it is necessary to increase the capacity of the raw water pump sufficiently compared to the membrane filtration pump. As a result, it is necessary to install a larger raw water pump than expected from the amount of treated water, which increases the initial cost. It was. In contrast, with the raw water supply apparatus 10 ′ shown in FIG. 6, it is not necessary to use a large raw water pump, and membrane separation activated sludge treatment can be performed at low cost.
また、図4及び図6に示す装置の場合には、反応槽1への原水供給の有無にかかわらず、原水を原水ポンプ8’により貯水槽12に常に一定流量で連続的に供給することができる。したがって、原水ポンプを間欠的に運転する場合に比べ、原水ポンプの運転負荷を平滑化でき、ポンプの寿命を延長できる。また、原水ポンプの稼働率を変動させる必要がないため、原料ポンプの過剰設計が不要となるという利点がある。
In the case of the apparatus shown in FIGS. 4 and 6, the raw water can be continuously supplied to the water storage tank 12 at a constant flow rate by the raw water pump 8 ′ regardless of whether or not the raw water is supplied to the reaction tank 1. it can. Therefore, compared with the case where the raw water pump is operated intermittently, the operation load of the raw water pump can be smoothed and the life of the pump can be extended. Moreover, since there is no need to change the operating rate of the raw water pump, there is an advantage that an excessive design of the raw material pump becomes unnecessary.
さらに、図6に示す装置10’は、反応槽内の液位変動と反応槽に供給する原水の流量変動を予め厳密に制御して稼働させることにより、上記のようなバルブやセンサーを全く使用しなくても、反応槽の液位を一定のサイクルで上昇および下降させる機能を有しつつ、無酸素状態の区画内に脱窒に必要な有機物を効率的に提供できる。汚水処理においては、バルブやセンサー等の機器に有機物等が付着するため機器の損傷が速いことが問題であったが、図6の装置とすることによりこのような問題も解消し、装置全体のメンテナンス性を向上させることができる。
Furthermore, the apparatus 10 ′ shown in FIG. 6 uses the valves and sensors as described above by operating the liquid level fluctuation in the reaction tank and the fluctuation of the flow rate of the raw water supplied to the reaction tank strictly in advance. Even if it does not have, it has the function to raise and lower the liquid level of a reaction tank by a fixed cycle, and the organic substance required for denitrification can be efficiently provided in an oxygen-free section. In the sewage treatment, organic matter or the like adheres to equipment such as valves and sensors, so that the equipment is damaged quickly. However, by using the apparatus shown in FIG. Maintainability can be improved.
本発明の別の実施態様としては、図2に示すように、望ましい流量変動で反応槽1に原水を供給できるような原水流量制御装置11を反応槽1の前段に設ける装置及び方法がある。原水流量制御装置11としては、例えば、レベルセンサー6''を用い、仕切板7を越流させるために多量の原水を供給する際の目標水位として最高水位検出点を設定する他に、反応槽1内の液位が仕切板7の上端を越えない量の原水を反応槽1内に供給する際の目標水位として、仕切板上端部より低い位置に水位検出点を設定し、これらの検出点を利用してポンプの稼働率を制御する装置や、望ましい流量変動で反応槽に原水を供給するよう原水ポンプの流量を制御するインバータ等を備えた装置を使用することができる。
As another embodiment of the present invention, as shown in FIG. 2, there is an apparatus and a method in which a raw water flow rate control device 11 capable of supplying raw water to the reaction tank 1 with a desired flow rate fluctuation is provided in the front stage of the reaction tank 1. As the raw water flow rate control device 11, for example, a level sensor 6 ″ is used, and in addition to setting a maximum water level detection point as a target water level when supplying a large amount of raw water to overflow the partition plate 7, a reaction tank The water level detection point is set at a position lower than the upper end of the partition plate as a target water level when supplying the raw water in an amount that does not exceed the upper end of the partition plate 7 into the reaction tank 1. The apparatus which controls the operation rate of a pump using, or the apparatus provided with the inverter etc. which control the flow volume of a raw | natural water pump so that raw | natural water may be supplied to a reaction tank by desired flow volume fluctuation | variation can be used.
本発明において、反応槽に供給する原水の望ましい流量変動とは、図7(d)に示すような流量変動である。即ち、反応槽内の液位が仕切板の上端よりも低く、仕切板外部の区画が無酸素状態であるときに、反応槽内の液位が仕切板の上端を越えない量の原水を反応槽内に供給する工程(t=0~t1、t3~t4)(以下、便宜的に「少量原水供給工程」とも言う)と、反応槽内の液位を仕切り板上端よりも低い状態から高い状態に切り換えるために、前記工程における原水供給流量よりも多い流量の原水を反応槽内に供給する工程(t=t1~t2)(以下、「液位制御工程」とも言う)と、反応槽内の液位を仕切り板上端よりも高い状態から低い状態に切り換えるために、原水の供給を停止する工程(t=t2~t3)(以下、「原水停止工程」とも言う)とを、この順で一定のサイクルで繰り返して行うような流量変動である。このような流動変動とすることにより、同一の反応槽内で、好気処理と無酸素処理を進行させつつ、無酸素状態の脱窒処理区画内に有機物を効率的かつ安定に供給することができる。
In the present invention, the desirable flow rate fluctuation of raw water supplied to the reaction tank is a flow rate fluctuation as shown in FIG. That is, when the liquid level in the reaction tank is lower than the upper end of the partition plate and the compartment outside the partition plate is in an oxygen-free state, the amount of raw water that does not exceed the upper end of the partition plate is reacted. Steps for supplying into the tank (t = 0 to t 1 , t 3 to t 4 ) (hereinafter also referred to as “small amount raw water supply step” for convenience), and the liquid level in the reaction tank is lower than the upper end of the partition plate In order to switch from a state to a high state, a step of supplying raw water having a flow rate larger than the raw water supply flow rate in the step into the reaction tank (t = t 1 to t 2 ) (hereinafter also referred to as “liquid level control step”) And a step of stopping the supply of raw water (t = t 2 to t 3 ) (hereinafter also referred to as “raw water stop step”) in order to switch the liquid level in the reaction tank from a state higher than the upper end of the partition plate to a lower state. ) Are repeated in this order at a constant cycle. By adopting such flow fluctuations, it is possible to efficiently and stably supply organic substances into the anaerobic denitrification section while aerobic treatment and anaerobic treatment proceed in the same reaction tank. it can.
本発明のさらに別の実施態様としては、反応槽に原水を常に一定流量で連続的に供給すると共に、原水流量と膜ろ過流量を同一に設定したうえで、仕切板の上端部を上下に移動させて越流状態と分断状態を繰り返し達成するよう制御する方法がある。
As another embodiment of the present invention, the raw water is always continuously supplied to the reaction tank at a constant flow rate, and the raw water flow rate and the membrane filtration flow rate are set to be the same, and the upper end of the partition plate is moved up and down. There is a method of controlling to repeatedly achieve the overflow condition and the split condition.
本発明においては、上記以外の処理条件および原水の前処理は、従来から周知の方法と同様の条件で行うことができ、本発明において使用する各種の槽や配管等の材質も従来から周知のものを使用することができる。
In the present invention, treatment conditions other than those described above and pretreatment of raw water can be performed under the same conditions as those conventionally known, and materials for various tanks and pipes used in the present invention are also conventionally known. Things can be used.
以上のとおり、本発明によれば、仕切板挿入型の膜分離活性汚泥処理方法(B-MBR)において、単一の反応槽内で好気処理と無酸素処理を進行させつつ、無酸素状態の区画内に脱窒に必要な有機物を提供でき、脱窒を連続的かつ効率的に進行させ、窒素除去効率を向上させることができる。
また、本発明によりポンプやバルブによる原水の流量制御を行わなくても、貯水槽から反応槽に原水を一定のサイクルで間欠的に供給することができる。そのため、ポンプやバルブ等の機器に生じる詰まりの問題を低減でき、原水ポンプの運転負荷を平滑化でき、ポンプの寿命を延長できる。また、原水ポンプの過剰設計が不要とり、装置全体のメンテナンス性が向上する。 As described above, according to the present invention, in the membrane separation activated sludge treatment method (B-MBR) with a partition plate insertion type, an aerobic treatment and an oxygen-free treatment are advanced in a single reaction tank, and an oxygen-free state is achieved. The organic matter necessary for denitrification can be provided in the compartment, and the denitrification can proceed continuously and efficiently to improve the nitrogen removal efficiency.
Further, according to the present invention, the raw water can be intermittently supplied from the water storage tank to the reaction tank at a constant cycle without controlling the flow rate of the raw water by a pump or a valve. Therefore, the problem of clogging occurring in devices such as pumps and valves can be reduced, the operating load of the raw water pump can be smoothed, and the life of the pump can be extended. In addition, an overdesign of the raw water pump is unnecessary, and the maintainability of the entire apparatus is improved.
また、本発明によりポンプやバルブによる原水の流量制御を行わなくても、貯水槽から反応槽に原水を一定のサイクルで間欠的に供給することができる。そのため、ポンプやバルブ等の機器に生じる詰まりの問題を低減でき、原水ポンプの運転負荷を平滑化でき、ポンプの寿命を延長できる。また、原水ポンプの過剰設計が不要とり、装置全体のメンテナンス性が向上する。 As described above, according to the present invention, in the membrane separation activated sludge treatment method (B-MBR) with a partition plate insertion type, an aerobic treatment and an oxygen-free treatment are advanced in a single reaction tank, and an oxygen-free state is achieved. The organic matter necessary for denitrification can be provided in the compartment, and the denitrification can proceed continuously and efficiently to improve the nitrogen removal efficiency.
Further, according to the present invention, the raw water can be intermittently supplied from the water storage tank to the reaction tank at a constant cycle without controlling the flow rate of the raw water by a pump or a valve. Therefore, the problem of clogging occurring in devices such as pumps and valves can be reduced, the operating load of the raw water pump can be smoothed, and the life of the pump can be extended. In addition, an overdesign of the raw water pump is unnecessary, and the maintainability of the entire apparatus is improved.
1 反応槽
2 膜分離ユニット
3 吸引ポンプ
4 散気管
5 ブロワ
6,6’,6'' レベルセンサー
7 仕切板
8,8’,8'' 原水ポンプ
9 原水槽
10,10’ 原水供給装置
11 原水流量制御装置
12 貯水槽
13 サイホン管(液位制御手段)
14 補助配管(少量原水供給手段) DESCRIPTION OF SYMBOLS 1Reaction tank 2 Membrane separation unit 3 Suction pump 4 Aeration pipe 5 Blower 6,6 ', 6''Level sensor 7 Partition plate 8,8', 8 '' Raw water pump 9 Raw water tank 10,10 'Raw water supply device 11 Raw water Flow control device 12 Water storage tank 13 Siphon tube (liquid level control means)
14 Auxiliary pipe
2 膜分離ユニット
3 吸引ポンプ
4 散気管
5 ブロワ
6,6’,6'' レベルセンサー
7 仕切板
8,8’,8'' 原水ポンプ
9 原水槽
10,10’ 原水供給装置
11 原水流量制御装置
12 貯水槽
13 サイホン管(液位制御手段)
14 補助配管(少量原水供給手段) DESCRIPTION OF SYMBOLS 1
14 Auxiliary pipe
Claims (19)
- 好気性処理および無酸素処理を行う単一の反応槽と、その反応槽の内部に配置された浸漬膜分離ユニットと、曝気手段とを有する膜分離活性汚泥処理装置であって、反応槽は、底部が反応槽の底面から離間して設けられた仕切板によって複数個の区画に分割され、その複数個の区画のうちの少なくとも一つの区画を、浸漬膜分離ユニットおよび曝気手段が配置された好気区画とし、その他の区画内を、好気状態から無酸素状態に、また、無酸素状態から好気状態に切り換えるための区画とし、かつ、反応槽内の液位が仕切板上端よりも高い状態と低い状態とに切り換えるための液位制御手段が設けられている膜分離活性汚泥処理装置において、
前記反応槽内の液位が前記仕切板の上端よりも低く、前記その他の区画が無酸素状態であるときに、反応槽内の液位が仕切板の上端を越えない量の原水を反応槽内の前記その他の区画に供給する原水供給手段を設けたことを特徴とする膜分離活性汚泥処理装置。 A membrane separation activated sludge treatment apparatus having a single reaction tank for performing an aerobic treatment and an anaerobic treatment, an immersion membrane separation unit disposed inside the reaction tank, and an aeration means, The bottom is divided into a plurality of compartments by a partition plate provided apart from the bottom surface of the reaction vessel, and at least one of the compartments is preferably provided with an immersion membrane separation unit and aeration means. Air compartment, other compartments from aerobic state to anoxic state, and a compartment for switching from anoxic state to aerobic state, and the liquid level in the reaction tank is higher than the upper end of the partition plate In the membrane separation activated sludge treatment apparatus provided with the liquid level control means for switching between the state and the low state,
When the liquid level in the reaction vessel is lower than the upper end of the partition plate and the other compartments are in an oxygen-free state, an amount of raw water that does not exceed the upper end of the partition plate is supplied to the reaction vessel. A membrane-separated activated sludge treatment apparatus, characterized in that it is provided with raw water supply means for supplying to the other compartments. - 前記液位制御手段がサイホン管を用いた手段である、請求項1記載の膜分離活性汚泥処理装置。 The membrane separation activated sludge treatment apparatus according to claim 1, wherein the liquid level control means is a means using a siphon tube.
- 前記膜分離活性汚泥処理装置が、貯水槽と、貯水槽の内部から貯水槽槽壁の上部を経て貯水槽の外部に延在するよう設けられたサイホン管と、貯水槽内の原水の一部を貯水槽槽壁の一部から抜き出し、貯水槽の外部であって貯水槽よりも低位にあるサイホン管の側部に供給する補助配管とを備えた原水供給装置を有する、請求項1または2記載の膜分離活性汚泥処理装置。 The membrane-separated activated sludge treatment apparatus includes a water tank, a siphon pipe provided to extend from the inside of the water tank to the outside of the water tank through the upper part of the water tank wall, and a part of the raw water in the water tank The raw water supply device is provided with an auxiliary pipe that extracts water from a part of the water tank tank wall and supplies it to the side portion of the siphon pipe outside the water tank and lower than the water tank. The membrane separation activated sludge treatment apparatus as described.
- 好気性処理および無酸素処理を行う単一の反応槽と、その反応槽の内部に配置された浸漬膜分離ユニットと、曝気手段とを有する膜分離活性汚泥処理装置であって、反応槽は、底部が反応槽の底面から離間して設けられた仕切板によって複数個の区画に分割され、その複数個の区画のうちの少なくとも一つの区画を、浸漬膜分離ユニットおよび曝気手段が配置された好気区画とし、その他の区画内を、好気状態から無酸素状態に、また、無酸素状態から好気状態に切り換えるための区画とする膜分離活性汚泥処理装置に原水を供給するための原水供給装置において、
反応槽内の液位が仕切板上端よりも高い状態と低い状態とに切り換えるための液位制御手段と、前記反応槽内の液位が前記仕切板の上端よりも低く、前記その他の区画が無酸素状態であるときに、反応槽内の液位が仕切板の上端を越えない量の原水を反応槽内の前記その他の区画に供給する原水供給手段を設けたことを特徴とする原水供給装置。 A membrane separation activated sludge treatment apparatus having a single reaction tank for performing an aerobic treatment and an anaerobic treatment, an immersion membrane separation unit disposed inside the reaction tank, and an aeration means, The bottom is divided into a plurality of compartments by a partition plate provided apart from the bottom surface of the reaction vessel, and at least one of the compartments is preferably provided with an immersion membrane separation unit and aeration means. Raw water supply for supplying raw water to a membrane-separated activated sludge treatment apparatus that is used as a compartment for switching from an aerobic state to an anoxic state and from an anaerobic state to an aerobic state. In the device
A liquid level control means for switching the liquid level in the reaction tank between a state higher and lower than the upper end of the partition plate, a liquid level in the reaction tank lower than the upper end of the partition plate, and the other compartments Raw water supply characterized by comprising raw water supply means for supplying raw water in such an amount that the liquid level in the reaction tank does not exceed the upper end of the partition plate to the other compartment in the reaction tank when in an oxygen-free state apparatus. - 前記液位制御手段がサイホン管を用いた手段である、請求項4記載の原水供給装置。 The raw water supply apparatus according to claim 4, wherein the liquid level control means is means using a siphon tube.
- 前記原水供給装置が、貯水槽と、貯水槽の内部から貯水槽槽壁の上部を経て貯水槽の外部に延在するよう設けられたサイホン管と、貯水槽内の原水の一部を貯水槽槽壁の一部から抜き出し、貯水槽の外部であって貯水槽よりも低位にあるサイホン管の側部に供給する補助配管とを備える、請求項4または5記載の原水供給装置。 The raw water supply device includes a water tank, a siphon tube provided to extend from the inside of the water tank to the outside of the water tank through the upper part of the water tank wall, and a part of the raw water in the water tank. The raw water supply apparatus according to claim 4 or 5, further comprising: an auxiliary pipe that is extracted from a part of the tank wall and is supplied to a side portion of the siphon pipe that is outside the water tank and lower than the water tank.
- 生物処理を行う反応槽に原水を供給するための原水供給装置であって、貯水槽と、貯水槽の内部から貯水槽槽壁の上部を経て貯水槽の外部に延在するよう設けられたサイホン管とを備える原水供給装置。 A raw water supply device for supplying raw water to a reaction tank for biological treatment, wherein the water tank and a siphon provided from the inside of the water tank to the outside of the water tank through the upper part of the water tank wall A raw water supply device comprising a pipe.
- 前記反応槽が、好気性処理および無酸素処理を単一の反応槽内で行う反応槽である、請求項7記載の原水供給装置。 The raw water supply apparatus according to claim 7, wherein the reaction tank is a reaction tank that performs aerobic treatment and oxygen-free treatment in a single reaction tank.
- 前記反応槽が、浸漬膜分離ユニットと曝気手段とを内部に配置する反応槽である、請求項7または8記載の原水供給装置。 The raw water supply device according to claim 7 or 8, wherein the reaction tank is a reaction tank in which an immersion membrane separation unit and an aeration means are disposed.
- 前記原水供給装置が、貯水槽内の原水の一部を貯水槽槽壁の一部から抜き出し、貯水槽の外部であって貯水槽よりも低位にある前記サイホン管の側部に供給する補助配管を更に備える、請求項7~9のいずれか1項に記載の原水供給装置。 Auxiliary piping in which the raw water supply device extracts a part of the raw water in the water tank from a part of the water tank wall and supplies it to the side of the siphon pipe outside the water tank and lower than the water tank The raw water supply device according to any one of claims 7 to 9, further comprising:
- 浸漬膜分離ユニットを配置した単一の反応槽内で好気性処理および無酸素処理を行う膜分離活性汚泥処理方法であって、浸漬膜分離ユニットの周囲を底部が反応槽の底面から離間して設けられた仕切板で区画し、浸漬膜分離ユニットの下方から曝気を行うとともに、反応槽内の液位を調節することにより、浸漬膜分離ユニットが配置された区画内を好気状態に維持しつつ、その他の区画内を好気状態から無酸素状態に、また、無酸素状態から好気状態に切り換える膜分離活性汚泥処理方法において、
前記反応槽内の液位が前記仕切板の上端よりも低く、前記その他の区画内が無酸素状態であるときに、反応槽内の液位が前記仕切板の上端を越えない量の原水を反応槽内の前記その他の区画に供給することを特徴とする膜分離活性汚泥処理方法。 A membrane separation activated sludge treatment method that performs aerobic treatment and oxygen-free treatment in a single reaction vessel in which an immersion membrane separation unit is arranged, and the bottom of the immersion membrane separation unit is separated from the bottom surface of the reaction vessel. By partitioning with the provided partition plate, aeration is performed from below the submerged membrane separation unit, and by adjusting the liquid level in the reaction tank, the inside of the compartment where the submerged membrane separation unit is arranged is maintained in an aerobic state. Meanwhile, in the membrane separation activated sludge treatment method for switching the other compartments from an aerobic state to an anaerobic state, and from an anaerobic state to an aerobic state,
When the liquid level in the reaction tank is lower than the upper end of the partition plate and the other compartments are in an oxygen-free state, the amount of raw water in the reaction tank does not exceed the upper end of the partition plate. A membrane-separated activated sludge treatment method, wherein the membrane is supplied to the other compartment in the reaction tank. - 反応槽内の液位の調節をサイホン管を用いて行う、請求項11記載の膜分離活性汚泥処理方法。 The membrane separation activated sludge treatment method according to claim 11, wherein the liquid level in the reaction vessel is adjusted using a siphon tube.
- 反応槽内の液位の調節と、反応槽内の前記その他の区画への原水の供給が、貯水槽と、貯水槽の内部から貯水槽槽壁の上部を経て貯水槽の外部に延在するサイホン管と、貯水槽内の原水の一部を抜き出し、貯水槽の外部であって貯水槽よりも低位にあるサイホン管の側部に供給する補助配管とを備えた原水供給装置により行われる、請求項11または12記載の膜分離活性汚泥処理方法。 The adjustment of the liquid level in the reaction tank and the supply of raw water to the other compartments in the reaction tank extend from the water storage tank and the inside of the water storage tank to the outside of the water storage tank through the upper part of the water storage tank wall. It is carried out by a raw water supply device comprising a siphon pipe and an auxiliary pipe that extracts a part of the raw water in the water tank and supplies it to the side of the siphon pipe outside the water tank and lower than the water tank. The membrane separation activated sludge treatment method according to claim 11 or 12.
- 前記反応槽内の液位が仕切板の上端を越えない量の原水を反応槽内に供給する工程と、反応槽内の液位を仕切り板上端よりも低い状態から高い状態に切り換えるために、前記工程における原水供給流量よりも多い流量の原水を反応槽内に供給する工程と、反応槽内の液位を仕切り板上端よりも高い状態から低い状態に切り換えるために原水の供給を停止する工程とを、この順で繰り返し行う、請求項11~13のいずれか1項に記載の膜分離活性汚泥処理方法。
In order to switch the liquid level in the reaction tank from a state lower than the upper end of the partition plate to a higher state, the step of supplying the amount of raw water in the reaction tank so that the liquid level in the reaction tank does not exceed the upper end of the partition plate, A step of supplying raw water having a flow rate higher than the raw water supply flow rate in the step into the reaction tank, and a step of stopping the supply of raw water in order to switch the liquid level in the reaction tank from a state higher than the upper end of the partition plate to a lower state. The membrane separation activated sludge treatment method according to any one of claims 11 to 13, wherein the steps are repeated in this order.
- 生物処理を行う反応槽に原水を供給する原水供給方法であって、貯水槽と、貯水槽の内部から貯水槽槽壁の上部を経て貯水槽の外部に延在するよう設けられたサイホン管を用いて、原水を一定のサイクルで間欠的に前記反応槽に供給する原水供給方法。 A raw water supply method for supplying raw water to a reaction tank for biological treatment, comprising: a water storage tank; and a siphon tube provided so as to extend from the inside of the water storage tank to the outside of the water storage tank through the upper part of the water storage tank wall. A raw water supply method that uses and supplies raw water to the reaction tank intermittently in a constant cycle.
- 前記反応槽が、好気性処理および無酸素処理を単一の反応槽内で行う反応槽である、請求項15記載の原水供給方法。 The raw water supply method according to claim 15, wherein the reaction tank is a reaction tank in which aerobic treatment and oxygen-free treatment are performed in a single reaction tank.
- 前記反応槽が、浸漬膜分離ユニットと曝気手段とを内部に配置する反応槽である、請求項15または16記載の原水供給方法。 The raw water supply method according to claim 15 or 16, wherein the reaction tank is a reaction tank in which an immersion membrane separation unit and an aeration means are disposed.
- 前記反応槽への原水の供給が、貯水槽内の原水の一部を抜き出し、貯水槽の外部であって貯水槽よりも低位にあるサイホン管の側部に供給する補助配管を更に用いて行われる、請求項15~17のいずれか1項に記載の原水供給方法。 The supply of the raw water to the reaction tank is further performed by using an auxiliary pipe that extracts a part of the raw water in the water tank and supplies it to the side of the siphon pipe outside the water tank and lower than the water tank. The raw water supply method according to any one of claims 15 to 17, wherein:
- 前記反応槽内に原水を供給する工程と、前記工程における原水の供給流量よりも多い流量の原水を反応槽内に供給する工程と、原水の供給を停止する工程とを、この順で繰り返し行う、請求項15~18のいずれか1項に記載の原水供給方法。 The step of supplying the raw water into the reaction tank, the step of supplying the raw water at a flow rate higher than the supply flow rate of the raw water in the step, and the step of stopping the supply of the raw water are repeated in this order. The raw water supply method according to any one of claims 15 to 18.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-254055 | 2016-12-27 | ||
JP2016254064A JP6941440B2 (en) | 2016-12-27 | 2016-12-27 | Raw water supply device and raw water supply method |
JP2016-254064 | 2016-12-27 | ||
JP2016254055A JP6941439B2 (en) | 2016-12-27 | 2016-12-27 | Membrane separation activated sludge treatment equipment, membrane separation activated sludge treatment method and raw water supply equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018123647A1 true WO2018123647A1 (en) | 2018-07-05 |
Family
ID=62708052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/045049 WO2018123647A1 (en) | 2016-12-27 | 2017-12-15 | Membrane-separation activated sludge treatment device, membrane-separation activated sludge treatment method, raw water supply device, and raw water supply method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018123647A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210395122A1 (en) * | 2018-10-17 | 2021-12-23 | Ebara Jitsugyo Co., Ltd. | Apparatus and method for biological treatment of organic wastewater |
WO2021261543A1 (en) * | 2020-06-26 | 2021-12-30 | 国立大学法人北海道大学 | Sewage treatment device, method for controlling sewage treatment device, and program |
WO2022004642A1 (en) * | 2020-06-29 | 2022-01-06 | 国立大学法人北海道大学 | Wastewater treatment device and wastewater treatment method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS43552Y1 (en) * | 1965-10-08 | 1968-01-11 | ||
JPS60248294A (en) * | 1984-05-23 | 1985-12-07 | Mitsubishi Kakoki Kaisha Ltd | Treating apparatus of waste water |
JPS6359396A (en) * | 1986-08-30 | 1988-03-15 | Kankyo Eng Kk | Biological treatment of waste water |
JPH04215892A (en) * | 1990-09-03 | 1992-08-06 | Kubota Corp | Sewage purifying tank |
JPH07275887A (en) * | 1994-04-06 | 1995-10-24 | Toto Ltd | Purifying tank |
JPH09294502A (en) * | 1996-05-08 | 1997-11-18 | Susumu Maruyama | Filter-integrated water tank and filtering method |
JP2004261711A (en) * | 2003-02-28 | 2004-09-24 | Yoshikimi Watanabe | Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method |
JP2005279447A (en) * | 2004-03-30 | 2005-10-13 | Kubota Corp | Water treatment method and apparatus |
-
2017
- 2017-12-15 WO PCT/JP2017/045049 patent/WO2018123647A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS43552Y1 (en) * | 1965-10-08 | 1968-01-11 | ||
JPS60248294A (en) * | 1984-05-23 | 1985-12-07 | Mitsubishi Kakoki Kaisha Ltd | Treating apparatus of waste water |
JPS6359396A (en) * | 1986-08-30 | 1988-03-15 | Kankyo Eng Kk | Biological treatment of waste water |
JPH04215892A (en) * | 1990-09-03 | 1992-08-06 | Kubota Corp | Sewage purifying tank |
JPH07275887A (en) * | 1994-04-06 | 1995-10-24 | Toto Ltd | Purifying tank |
JPH09294502A (en) * | 1996-05-08 | 1997-11-18 | Susumu Maruyama | Filter-integrated water tank and filtering method |
JP2004261711A (en) * | 2003-02-28 | 2004-09-24 | Yoshikimi Watanabe | Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method |
JP2005279447A (en) * | 2004-03-30 | 2005-10-13 | Kubota Corp | Water treatment method and apparatus |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210395122A1 (en) * | 2018-10-17 | 2021-12-23 | Ebara Jitsugyo Co., Ltd. | Apparatus and method for biological treatment of organic wastewater |
WO2021261543A1 (en) * | 2020-06-26 | 2021-12-30 | 国立大学法人北海道大学 | Sewage treatment device, method for controlling sewage treatment device, and program |
WO2022004642A1 (en) * | 2020-06-29 | 2022-01-06 | 国立大学法人北海道大学 | Wastewater treatment device and wastewater treatment method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4125941B2 (en) | Waste water treatment apparatus and waste water treatment method using the same | |
JP4997460B2 (en) | Wastewater treatment system | |
US9975796B2 (en) | Process, apparatus and membrane bioreactor for wastewater treatment | |
JP4059790B2 (en) | Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method | |
US11053150B2 (en) | Wastewater treatment system and method | |
KR100876323B1 (en) | Advanced treatment apparatus for treatment of sewage water or waste water using aerobic microorganism activation apparatus | |
KR100873416B1 (en) | Sewage processing apparatus and method using activated sludge of a sequencing batch reactor | |
WO2018198422A1 (en) | Membrane-separation activated sludge treatment device and membrane-separation activated sludge treatment method | |
US20120012524A1 (en) | Membrane bioreactor process | |
WO2018123647A1 (en) | Membrane-separation activated sludge treatment device, membrane-separation activated sludge treatment method, raw water supply device, and raw water supply method | |
JP6941439B2 (en) | Membrane separation activated sludge treatment equipment, membrane separation activated sludge treatment method and raw water supply equipment | |
KR100940123B1 (en) | Floating catalysis sewage disposal facility system | |
JP7016623B2 (en) | Membrane separation activated sludge treatment equipment and membrane separation activated sludge treatment method | |
JP5246665B2 (en) | Methane fermentation treatment apparatus and methane fermentation treatment method | |
KR101367229B1 (en) | Operating method of advanced treatment process use of submerged membrane and advanced treatment apparatus thereof | |
Ng et al. | Study on a sequencing batch membrane bioreactor for wastewater treatment | |
JP7220740B2 (en) | MEMBRANE ACTIVATED SLUDGE TREATMENT APPARATUS AND MEMBRANE ACTIVATED SLUDGE TREATMENT METHOD | |
JP7121823B2 (en) | Membrane separation activated sludge treatment device, membrane separation activated sludge treatment method and raw water supply device | |
KR101817471B1 (en) | Wastewater Treatment System | |
JP7016622B2 (en) | Membrane separation activated sludge treatment equipment and membrane separation activated sludge treatment method | |
KR20150016775A (en) | Advanced water treatment system with improved treatment efficiency for concentrated sludge | |
JP7488130B2 (en) | Sewage treatment device and sewage treatment method | |
JP6941440B2 (en) | Raw water supply device and raw water supply method | |
RU2644904C1 (en) | Method of biological purification of wastewater from nitrogen phosphoric and organic compounds | |
KR20040021146A (en) | The Biological Nutrient Removal System Using The Porous Media |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17887478 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17887478 Country of ref document: EP Kind code of ref document: A1 |