WO2018123505A1 - Alkali-free glass substrate production method - Google Patents
Alkali-free glass substrate production method Download PDFInfo
- Publication number
- WO2018123505A1 WO2018123505A1 PCT/JP2017/044085 JP2017044085W WO2018123505A1 WO 2018123505 A1 WO2018123505 A1 WO 2018123505A1 JP 2017044085 W JP2017044085 W JP 2017044085W WO 2018123505 A1 WO2018123505 A1 WO 2018123505A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass
- alkali
- glass substrate
- raw material
- producing
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B17/00—Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
- C03B17/06—Forming glass sheets
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B5/00—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
- C03B5/02—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
- C03B5/027—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B5/00—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
- C03B5/16—Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
- C03B5/225—Refining
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C1/00—Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
- C03C1/02—Pretreated ingredients
Definitions
- the present invention relates to a method for producing an alkali-free glass substrate, and more specifically, an alkali-free glass suitable for a display including a thin film transistor (TFT: Thin Film Transistor) having a low temperature polysilicon (LTPS: Low Temperature p-Si) film.
- TFT Thin Film Transistor
- LTPS Low Temperature p-Si film.
- the present invention relates to a method for manufacturing a substrate.
- a glass substrate is used as a support substrate in a flat panel display.
- An electric circuit pattern such as a TFT is formed on the surface of the glass substrate.
- a non-alkali glass substrate that does not substantially contain an alkali metal component is employed for this type of glass substrate so as not to adversely affect the TFT or the like.
- the glass substrate is exposed to a high-temperature atmosphere in an electric circuit pattern forming process such as a thin film forming process or a thin film patterning process.
- an electric circuit pattern forming process such as a thin film forming process or a thin film patterning process.
- thermal shrinkage the volume of the glass substrate shrinks
- the shape and dimensions of the electrical circuit pattern formed on the glass substrate will deviate from the design values, and a flat panel display having the desired electrical performance is obtained. It will be difficult. For this reason, a glass substrate on which a thin film pattern such as an electric circuit pattern is formed on the surface, such as a glass substrate for a flat panel display, is desired to have a small thermal shrinkage rate.
- the glass substrate is exposed to a very high temperature atmosphere, for example, 450 ° C. to 600 ° C.
- a very high temperature atmosphere for example, 450 ° C. to 600 ° C.
- the electric circuit pattern has a high definition, it is difficult to obtain desired electrical performance when heat shrinkage occurs. Therefore, it is strongly desired that the glass substrate used for such applications has a very low thermal shrinkage rate.
- a float method As a method for forming a glass substrate used for a flat panel display or the like, a float method, a down draw method represented by an overflow down draw method, or the like is known.
- molten glass is flowed out onto a float bath filled with molten tin, and stretched in the horizontal direction to form a glass ribbon.
- This is a method for forming a glass substrate.
- the conveying direction of the glass ribbon is the horizontal direction, it is easy to lengthen the slow cooling furnace. For this reason, it is easy to make the cooling rate of the glass ribbon in a slow cooling furnace low enough. Therefore, the float method has an advantage that it is easy to obtain a glass substrate having a small heat shrinkage rate.
- the downdraw method is a method in which molten glass is drawn downward to form a plate shape.
- the overflow downdraw method which is a kind of downdraw method, is a method of forming a glass ribbon by stretching downward a molten glass overflowed from both sides of a forming body having a substantially wedge-shaped cross section. The molten glass overflowing from both sides of the molded body flows down along both side surfaces of the molded body and merges below the molded body. Therefore, in the overflow down draw method, the surface of the glass ribbon does not come into contact with anything other than air, and is formed by surface tension. A flat glass substrate can be obtained. Further, the overflow downdraw method has an advantage that a thin glass substrate can be easily formed.
- the molded body since the molten glass flows downward from the molded body, in order to dispose a long slow cooling furnace under the molded body, the molded body must be disposed at a high place.
- the length dimension of the slow cooling furnace is limited, and it may be difficult to arrange a sufficiently long slow cooling furnace.
- the cooling rate of the glass ribbon becomes high, so that it becomes difficult to form a glass substrate having a small heat shrinkage rate.
- Patent Document 1 discloses a non-alkali glass composition having a high strain point. The document also describes that the strain point increases as the ⁇ -OH value representing the amount of water in the glass decreases.
- the effect of reducing the heat shrinkage due to the increase in the strain point of the glass becomes smaller as the strain point becomes higher.
- the glass whose composition is designed so that the strain point is high has high viscosity, so that it is difficult to melt and mold, and the production efficiency is low.
- the burden on the production equipment increases.
- there is a limit to a method for reducing the heat shrinkage rate by adopting a high strain point composition Therefore, it is important to increase the strain point by lowering the ⁇ -OH value, but it is extremely difficult to significantly reduce the ⁇ -OH value of glass when mass-producing on an industrial scale. .
- the present invention has been made in view of such circumstances, and an object thereof is to produce a non-alkali glass substrate capable of producing a non-alkali glass substrate having a higher strain point by reducing the ⁇ -OH value of the glass. Is to provide.
- the present inventors have found that the amount of ⁇ -OH in the glass can be significantly reduced by optimizing the raw material batch configuration, the melting method, etc., and are proposed as the present invention. is there.
- the alkali-free glass production method of the present invention continuously produces a SiO 2 —Al 2 O 3 —RO (RO is one or more of MgO, CaO, BaO, SrO, and ZnO) -based alkali-free glass substrates.
- non-alkali glass is a glass to which an alkali metal oxide component is not intentionally added, and specifically, alkali metal oxides (Li 2 O, Na 2 O, and K in the glass composition).
- 2 O means a glass having a content of 2000 ppm (mass) or less.
- Manufacturing continuously means that glass is continuously manufactured for a certain period in a continuous melting kiln such as a tank kiln.
- SiO 2 —Al 2 O 3 —RO system means “a glass composition system containing SiO 2 , Al 2 O 3 and RO as essential components.
- Electrical melting means that electricity is passed through the glass. The glass is melted by Joule heat generated thereby.
- substantially free of arsenic and antimony means that a glass raw material or glass cullet containing these components is not intentionally added to the glass batch. More specifically, it means that, in the obtained glass, arsenic is 50 ppm or less as As 2 O 3 and antimony is 50 ppm or less as Sb 2 O 3 on a molar basis.
- the “down draw method” is a general term for a molding method in which a molten glass is molded while continuously being drawn downward.
- the present invention is characterized in that the glass is melted using electric heating.
- the melting of the glass mainly by electric heating, it is possible to suppress an increase in moisture in the atmosphere. As a result, it becomes possible to greatly suppress the moisture supply of the glass from the atmosphere, and it becomes easy to produce a glass with a high strain point.
- a molybdenum electrode is used for conducting heating by heating.
- Molybdenum electrodes have a high degree of freedom in location and shape. Therefore, even in the case of non-alkali glass that is difficult to conduct electricity, an optimal electrode arrangement and electrode shape can be adopted, and current heating is facilitated.
- the present invention is characterized by containing a tin compound as a fining agent and substantially free of an arsenic compound and an antimony compound.
- Arsenic compounds and antimony compounds function as fining agents, but if these components are present in the glass, the molybdenum electrode is significantly eroded, making it difficult to continuously produce glass on an industrial scale. .
- tin does not erode the molybdenum electrode. Therefore, by adopting the above-described configuration, it becomes easy to produce glass without bubbles by energization heating.
- the glass is formed into a plate shape by a downdraw method.
- the downdraw method is a method of forming molten glass into a plate shape while extending vertically downward.
- the slow cooling furnace is shorter and the slow cooling time (distance) after forming is sufficient. It is difficult to secure. That is, it is a disadvantageous method for obtaining a glass having a small thermal shrinkage rate. Therefore, the merit of increasing the strain point of the glass by reducing the water content is extremely large.
- the present invention it is desirable not to use radiation heating by burner combustion.
- “Do not use radiant heating by burner combustion” means that radiant heating by burner combustion is not performed at the time of normal production, and does not exclude the use of a burner at the start of production (at the time of temperature rise). Further, it is not excluded to use radiant heating with a heater at the time of production start-up or normal production.
- the time of production start-up refers to a period until the raw material batch is melted to become a glass melt and can be heated by electric current.
- the amount of moisture contained in the atmosphere in the melting furnace is extremely reduced, and the moisture supplied from the atmosphere into the glass can be greatly reduced. As a result, it becomes possible to produce a glass with a very low water content.
- the equipment required for combustion heating such as burner, flue, fuel tank, fuel supply path, air supply device (in the case of air combustion), oxygen generator (in the case of oxygen combustion), exhaust gas treatment device, dust collector, etc. It can be unnecessary or greatly simplified, and it is possible to make the melting kiln compact and to reduce the equipment cost.
- chloride it is preferable to add chloride to the raw material batch.
- Chloride has the effect of reducing moisture in the glass.
- the moisture contained in the glass decreases, the strain point of the glass increases. Therefore, if the above configuration is adopted, it becomes easy to produce a glass having a high strain point.
- a raw material it is preferable not to add a raw material to be a boron source in the raw material batch.
- the glass raw material used as a boron source has a hygroscopic property and also contains crystal water, it is easy to bring moisture into the glass. Then, if the said structure is employ
- boric anhydride for at least a part of the glass raw material serving as a boron source.
- a glass cullet made of glass having a ⁇ -OH value of 0.4 / mm or less is added to at least a part of the glass cullet. It is preferable to use it.
- the “glass cullet” means defective glass generated during the production of glass, recycled glass collected from the market, or the like.
- ⁇ -OH value refers to a value obtained by measuring the transmittance of glass using FT-IR and using the following equation.
- ⁇ -OH value (1 / X) log (T1 / T2)
- X Glass wall thickness (mm)
- T1 Transmittance (%) at a reference wavelength of 3846 cm ⁇ 1
- T2 Minimum transmittance (%) near the hydroxyl absorption wavelength of 3600 cm ⁇ 1 Since alkali-free glass has a high volume resistance, it tends to be difficult to melt compared to glass containing alkali. Therefore, if the above configuration is adopted, the glass can be easily melted and the moisture content of the obtained glass can be further reduced.
- the glass raw material and / or the melting conditions it is preferable to adjust the glass raw material and / or the melting conditions so that the ⁇ -OH value of the obtained glass is 0.2 / mm or less.
- the obtained glass has a strain point of 690 ° C. or higher.
- the “strain point” is a value measured based on the method of ASTM C336-71.
- the obtained glass has a thermal shrinkage of 25 ppm or less.
- thermal shrinkage was measured under the condition that the glass was heated from room temperature to 500 ° C. at a rate of 5 ° C./min, held at 500 ° C. for 1 hour, and then cooled at a rate of 5 ° C./min. It is a time value.
- the present invention is preferably used for manufacturing a glass substrate on which a low-temperature polysilicon TFT is formed.
- the low-temperature polysilicon TFT has a heat treatment temperature as high as 450 to 600 ° C. when formed on the substrate, and the circuit pattern becomes finer. Therefore, a glass substrate used for this type of application requires a particularly low thermal shrinkage rate. Therefore, the merit of adopting the method of the present invention capable of producing a glass substrate having a very high strain point is extremely great.
- the method of the present invention includes a step of preparing a raw material batch, a step of electrically melting the prepared batch, and a step of forming the molten glass into a plate shape.
- Step of preparing raw material batch First, SiO 2 —Al 2 O 3 —RO (RO is one or more of MgO, CaO, BaO, SrO and ZnO) based composition, more specifically, in mol%.
- a glass raw material is prepared so as to be an alkali-free glass containing 50 to 75% of SiO 2 , 5 to 20% of Al 2 O 3 and 5 to 30% of RO. A suitable glass composition will be described later.
- silica sand (SiO 2 ) or the like can be used as a silicon source.
- the aluminum source alumina (Al 2 O 3 ), aluminum hydroxide (Al (OH) 3 ), or the like can be used.
- Al hydroxide contains crystal water, when the usage rate is large, it becomes difficult to reduce the moisture content of the glass. Therefore, it is preferable not to use aluminum hydroxide as much as possible.
- the usage rate of aluminum hydroxide may be 50% or less, 40% or less, 30% or less, 20% or less, 10% or less with respect to 100% of the aluminum source (Al 2 O 3 conversion). Preferably, it is desirable not to use it if possible.
- Alkaline earth metal sources include calcium carbonate (CaCO 3 ), magnesium oxide (MgO), magnesium hydroxide (Mg (OH) 2 ), barium carbonate (BaCO 3 ), barium nitrate (Ba (NO 3 ) 2 ), Strontium carbonate (SrCO 3 ), strontium nitrate (Sr (NO 3 ) 2 ), or the like can be used.
- magnesium hydroxide contains crystal water, when the usage rate is large, it becomes difficult to reduce the moisture content of the glass. Therefore, it is preferable not to use magnesium hydroxide as much as possible.
- magnesium hydroxide is preferably 50% or less, 40% or less, 30% or less, 20% or less, 10% or less with respect to 100% magnesium source (MgO conversion), and should not be used if possible. Is desirable.
- Zinc oxide (ZnO) or the like can be used as the zinc source.
- the batch contains chloride.
- Chloride functions as a dehydrating agent that significantly reduces the moisture content of the glass. Moreover, there exists an effect which accelerates
- the chloride has an effect of taking in and dissolving a silica raw material such as silica sand at the time of decomposition.
- alkaline earth metal chloride such as strontium chloride, aluminum chloride and the like can be used.
- a tin compound is included in a batch.
- the tin compound functions as a fining agent. It also has the function of increasing the strain point and lowering the high temperature viscosity.
- tin oxide SnO 2
- tin oxide it is preferable to use tin oxide having an average particle diameter D 50 in the range of 0.3 to 50 ⁇ m. When the average particle diameter D 50 of the tin oxide powder is small, aggregation between the particles occurs and clogging in the blending plant is likely to occur.
- a preferable range of the average particle diameter D 50 of the tin oxide powder is 2 to 50 ⁇ m, particularly 5 to 50 ⁇ m.
- boron sources not containing B 2 O 3 as a glass composition in other words
- orthoboric acid (H 3 BO 3 ) and boric anhydride (B 2 O 3 ) are known as boron sources, but these raw materials are hygroscopic, so depending on the storage conditions, a large amount of boron may be contained in the glass. Bring in moisture.
- orthoboric acid contains crystallization water, it becomes difficult to reduce the water content of the glass when the use ratio is large.
- increasing the proportion of boric anhydride as possible are preferable. Specifically, it is desirable to use boric anhydride in an amount of 50% or more, 70% or more, 90% or more, particularly 100% for the boron source (B 2 O 3 conversion).
- various glass materials can be used in addition to the above depending on the glass composition.
- zircon (ZrSiO 4 ) or the like as a zirconia source titanium oxide (TiO 2 ) or the like as a titanium source, aluminum metaphosphate (Al (PO 3 ) 3 ), magnesium pyrophosphate (Mg 2 P 2 O 7 ) or the like as a phosphate source.
- zircon (ZrSiO 4 ) or the like as a zirconia source titanium oxide (TiO 2 ) or the like as a titanium source
- magnesium pyrophosphate (Mg 2 P 2 O 7 ) or the like as a phosphate source.
- the batch does not substantially contain an arsenic compound and an antimony compound.
- the molybdenum electrode is eroded, so that it is difficult to stably melt the electrode for a long time.
- these components are not preferable from an environmental viewpoint.
- the ratio of the glass cullet used relative to the total amount of the raw material batch is preferably 1% by mass or more, 5% by mass or more, and particularly preferably 10% by mass or more.
- the ratio of the glass cullet used relative to the total amount of the raw material batch is preferably 1% by mass or more, 5% by mass or more, and particularly preferably 10% by mass or more.
- the glass cullet used has a ⁇ -OH value of 0.4 / mm or less, 0.35 / mm or less, 0.3 / mm or less, 0.25 / m or less, 0.2 / mm or less.
- a low moisture glass cullet made of glass of 0.15 / mm or less is desirable.
- the lower limit value of the ⁇ -OH value of the low moisture glass cullet is not particularly limited, but is practically 0.01 / mm or more.
- the amount of low-moisture glass cullet used is preferably 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, and 90% by mass or more, particularly the total amount of the glass cullet used.
- the glass raw material, the glass cullet, or the raw material batch prepared by mixing these may contain moisture. It may also absorb moisture from the atmosphere during storage. Therefore, in the present invention, it is preferable to introduce dry air into a raw material silo for weighing and supplying individual glass raw materials, a pre-furnace silo for feeding a prepared raw material batch into a melting furnace, and the like.
- Step of electromelting the prepared raw material batch Next, the prepared raw material batch is put into a melting kiln and is electrically melted.
- the melting kiln has a plurality of molybdenum electrodes.
- electricity is applied between the molybdenum electrodes, electricity is passed through the glass melt, and the glass is continuously melted by the Joule heat.
- radiant heating with a heater or a burner may be supplementarily used, but from the viewpoint of lowering the ⁇ -OH value of the glass, it is desirable to achieve complete electric melting without using a burner.
- moisture generated by combustion is taken into the glass, making it difficult to sufficiently reduce the moisture content of the glass.
- the electrode shape is preferably a rod shape. If it is rod-shaped, it is possible to arrange a desired number of electrodes at an arbitrary position on the side wall surface or bottom wall surface of the melting furnace while maintaining a desired inter-electrode distance. As for the arrangement of the electrodes, it is desirable to arrange a plurality of pairs on the wall surface (side wall surface, bottom wall surface, etc.), particularly the bottom wall surface of the melting furnace, with the distance between the electrodes shortened.
- the raw material batch charged into the melting kiln is melted by energization heating to become a glass melt (molten glass).
- the chloride contained in the raw material batch decomposes and volatilizes, thereby removing moisture in the glass into the atmosphere and reducing the ⁇ -OH value of the glass.
- the tin compound contained in the raw material batch dissolves in the glass melt and acts as a fining agent. More specifically, the tin component releases oxygen bubbles during the temperature rising process. The released oxygen bubbles are removed from the glass by expanding and floating the bubbles contained in the glass melt. Further, the tin component absorbs oxygen bubbles in the temperature lowering process, thereby eliminating bubbles remaining in the glass.
- the glass melted in the melting kiln is supplied to the molding apparatus, but a clarification tank, a stirring tank, a state adjustment tank, etc. are arranged between the melting kiln and the molding apparatus, and after passing these, You may make it supply. Further, it is preferable that at least the contact surface with the glass of the communication flow path connecting between the melting furnace and the molding apparatus (or each tank provided therebetween) is made of platinum or a platinum alloy in order to prevent contamination of the glass.
- the overflow down-draw method is a method in which molten glass overflows from both sides of a saddle-shaped refractory with a wedge-shaped cross section, and the overflowed molten glass is joined at the lower end of the saddle-shaped refractory and stretched downward to form a glass plate. It is the method of shape
- the surface to be the surface of the glass substrate is not in contact with the bowl-shaped refractory, and is formed in a free surface state. Therefore, an unpolished glass substrate having a good surface quality can be manufactured at a low cost, and the glass can be easily made large and thin.
- the structure and material of the bowl-shaped refractory used in the overflow downdraw method are not particularly limited as long as desired dimensions and surface accuracy can be realized.
- the method of applying a force when performing downward stretch molding is not particularly limited.
- a method may be adopted in which a heat-resistant roll having a sufficiently large width is rotated and stretched in contact with the glass, or a plurality of pairs of heat-resistant rolls are contacted only near the end face of the glass. It is also possible to adopt a method of stretching by stretching.
- a slot down method or the like can be adopted.
- the glass thus formed into a plate shape is cut into a predetermined size and subjected to various chemical or mechanical processing as required to form a glass substrate.
- composition of alkali-free glass As a composition of alkali-free glass to which the production method of the present invention can be suitably applied, it is SiO 2 60 to 75%, Al 2 O 3 9.5 to 17%, B 2 O in mol%. 3 to 9%, MgO 0 to 8%, CaO 0 to 15%, SrO 0 to 10%, BaO 0 to 10%, SnO 2 0.001 to 1%, Cl 0 to 3%, As 2 Examples thereof include glass that does not substantially contain O 3 and Sb 2 O 3 and has a molar ratio (CaO + SrO + BaO) / Al 2 O 3 of 0.5 to 1.0.
- the reason for limiting the content of each component as described above will be described below. In addition, in description of content of each component,% display represents mol% unless there is particular notice.
- SiO 2 is a component that forms a glass skeleton.
- the SiO 2 content is preferably 60 to 75%, 62 to 75%, 63 to 75%, 64 to 75%, 64 to 74%, particularly 65 to 74%.
- the content of SiO 2 is too small, the density becomes too high, the acid resistance is likely to decrease.
- the content of SiO 2 is too large, the high-temperature viscosity becomes high and the meltability tends to decrease, and devitrification crystals such as cristobalite are likely to precipitate, and the liquidus temperature is likely to rise. Become.
- Al 2 O 3 is a component that forms a glass skeleton, a component that increases the strain point and Young's modulus, and a component that further suppresses phase separation.
- the content of Al 2 O 3 is preferably 9.5 to 17%, 9.5 to 16%, 9.5 to 15.5%, particularly preferably 10 to 15%.
- the strain point the Young's modulus tends to decrease, also tends glass phase separation.
- the content of Al 2 O 3 is too large, devitrification crystals such as mullite and anorthite are likely to precipitate, and the liquidus temperature is likely to rise.
- B 2 O 3 is a component that enhances meltability and increases devitrification resistance.
- the content of B 2 O 3 is preferably 0 to 9%, 0 to 8.5%, 0 to 8%, 0 to 7.5%, particularly preferably 0 to 7.5%.
- B 2 content of O 3 is too small, it tends to decrease. Meltability and devitrification resistance, also resistance tends to decrease with respect to hydrofluoric acid chemical.
- the content of B 2 O 3 is too large, the Young's modulus and the strain point tends to decrease. In addition, the amount of water brought in increases.
- the content of B 2 O 3 is preferably 0 to 3%, 0 to 2%, particularly preferably 0 to 1%. More preferably not.
- substantially free of B 2 O 3 means that B 2 O 3 is not intentionally added, that is, a raw material that becomes a boron source is not added, and the case where it is mixed as an impurity is excluded. is not. More objectively, it means that the content of B 2 O 3 is 0.1% or less.
- MgO is a component that lowers the viscosity at high temperature and increases the meltability, and among alkaline earth metal oxides, it is a component that significantly increases the Young's modulus.
- the MgO content is preferably 0 to 8%, 0 to 7%, 0 to 6.7%, 0 to 6.4%, particularly preferably 0 to 6%.
- CaO is a component that lowers the high-temperature viscosity without lowering the strain point and significantly increases the meltability. Further, among the alkaline earth metal oxides, since the introduced raw material is relatively inexpensive, it is a component that lowers the raw material cost.
- the CaO content is preferably 0 to 10%, 2 to 15%, 2 to 14%, 2 to 13%, 2 to 12%, particularly preferably 2 to 11%. When there is too little content of CaO, it will become difficult to receive the said effect. On the other hand, when there is too much content of CaO, while glass will become easy to devitrify, a thermal expansion coefficient will become high easily.
- SrO is a component that suppresses phase separation and increases devitrification resistance. Furthermore, it is a component that lowers the high-temperature viscosity without increasing the strain point and increases the meltability, and also suppresses the rise in the liquidus temperature.
- the SrO content is preferably 0 to 10%, 0.1 to 10%, 0.1 to 9%, 0.1 to 8%, 0.1 to 7%, particularly preferably 0.1 to 6%. . When there is too little content of SrO, it will become difficult to receive the said effect. On the other hand, when the content of SrO is too large, strontium silicate devitrification crystals are likely to precipitate, and devitrification resistance is likely to be lowered.
- BaO is a component that significantly increases devitrification resistance.
- the BaO content is preferably 0 to 10%, 0 to 7%, 0 to 6%, 0 to 5%, particularly preferably 0.1 to 5%.
- When there is too little content of BaO it will become difficult to receive the said effect.
- On the other hand when there is too much content of BaO, while a density will become high too much, a meltability will fall easily. Further, devitrified crystals containing BaO are likely to precipitate, and the liquidus temperature is likely to rise.
- SnO 2 is a component that has a good clarification action in a high temperature range, a component that increases the strain point, and a component that decreases high temperature viscosity. There is also an advantage that the molybdenum electrode is not eroded.
- the SnO 2 content is preferably 0.001 to 1%, 0.001 to 0.5%, 0.001 to 0.3%, and particularly preferably 0.01 to 0.3%.
- the content of SnO 2 is too large, the devitrified crystal of SnO 2 is likely to precipitate, and the precipitation of the devitrified crystal of ZrO 2 is easily promoted.
- the content of SnO 2 is less than 0.001%, it becomes difficult to enjoy the above-mentioned effects.
- Cl has a dehydrating effect, that is, an effect of reducing the amount of water in the glass.
- Cl has an effect of promoting melting of the alkali-free glass. If Cl is added, the melting temperature can be lowered and the action of the clarifying agent is promoted. As a result, the melting cost is reduced and the glass manufacturing kiln is reduced. It is possible to extend the service life. However, if the Cl content is too large, the strain point tends to decrease. For this reason, the Cl content is preferably 0 to 3%, 0.001 to 3%, 0.001 to 2%, and particularly preferably 0.001 to 1%.
- As 2 O 3 and Sb 2 O 3 are not substantially contained. Specifically, it means that the contents of As 2 O 3 and Sb 2 O 3 are both 50 ppm or less. These components are useful as fining agents, but should not be used because they erode the molybdenum electrode and make electromelting difficult on an industrial scale. Moreover, it is preferable not to use from an environmental viewpoint.
- the molar ratio (CaO + SrO + BaO) / Al 2 O 3 is an important component ratio in order to achieve both a high specific Young's modulus and a high strain point and to improve devitrification resistance.
- the molar ratio (CaO + SrO + BaO) / Al 2 O 3 is 0.5 to 1.5, 0.5 to 1.3, 0.5 to 1.2, 0.5 to 1.1, 0.6 to 1 .1, particularly 0.7 to 1.1.
- the molar ratio (CaO + SrO + BaO) / Al 2 O 3 is too small, devitrification crystals caused by mullite and alkaline earth are likely to precipitate, and the devitrification resistance is significantly reduced.
- the following components may be added as optional components.
- the content of other components other than the above components is preferably 10% or less, and particularly preferably 5% or less in total, from the viewpoint of accurately enjoying the effects of the present invention.
- ZnO is a component that enhances meltability. However, when ZnO is contained in a large amount, the glass tends to be devitrified and the strain point tends to be lowered.
- the content of ZnO is preferably 0 to 5%, 0 to 4%, 0 to 3%, particularly preferably 0 to 2%.
- P 2 O 5 is a component that increases the strain point and is a component that can suppress precipitation of devitrified crystals of alkaline earth aluminosilicates such as anorthite. However, when P 2 O 5 is contained in a large amount, the glass is likely to be phase-separated.
- the content of P 2 O 5 is preferably 0 to 2.5%, 0 to 1.5%, 0 to 1%, particularly 0 to 0.5%.
- TiO 2 is a component that lowers the viscosity at high temperature and increases the meltability, and is a component that suppresses solarization. However, when TiO 2 is contained in a large amount, the glass is colored and the transmittance tends to decrease. .
- the content of TiO 2 is preferably 0 to 4%, 0 to 3%, 0 to 2%, particularly preferably 0 to 0.1%.
- Y 2 O 3 and Nb 2 O 5 have a function of increasing the strain point, Young's modulus, and the like. However, when the content of these components is more than 2%, the density tends to increase.
- La 2 O 3 also has a function of increasing the strain point, Young's modulus, and the like, but in recent years, the price of the introduced raw material has been rising.
- the alkali-free glass of the present invention does not completely exclude the inclusion of La 2 O 3 , but from the viewpoint of batch cost, it is preferable not to add it substantially.
- the content of La 2 O 3 is preferably 2% or less, 1% or less, 0.5% or less, and is not substantially contained (0.1% or less).
- ZrO 2 functions to increase the strain point and Young's modulus. However, when the content of ZrO 2 is too large, the devitrification resistance is significantly decreased. In particular, when SnO 2 is contained, it is necessary to strictly regulate the content of ZrO 2 .
- the content of ZrO 2 is preferably 0.2% or less, 0.15% or less, and particularly preferably 0.1% or less.
- the alkali-free glass substrate obtained by the method of the present invention was heated at a rate of 5 ° C./min from room temperature to 500 ° C., held at 500 ° C. for 1 hour, and then cooled at a rate of 5 ° C./min.
- the thermal shrinkage rate is 25 ppm or less, 20 ppm or less, 15 ppm or less, 12 ppm or less, particularly 10 ppm or less.
- the thermal shrinkage rate is large, it becomes difficult to use as a substrate for forming a low-temperature polysilicon TFT.
- the alkali-free glass substrate obtained by the method of the present invention is made of a glass having a ⁇ -OH value of 0.2 / mm or less, 0.18 / mm or less, 0.16 / mm or less, particularly 0.15 / mm or less. It is preferable to become.
- the lower limit of the ⁇ -OH value is not limited, but is preferably 0.01 / mm or more, particularly preferably 0.05 / mm or more. If the ⁇ -OH value is large, the strain point of the glass will not be sufficiently high, and it will be difficult to significantly reduce the thermal shrinkage rate.
- the alkali-free glass obtained by the method of the present invention has a strain point of more than 670 ° C, more than 675 ° C, more than 680 ° C, more than 685 ° C, more than 690 ° C, more than 700 ° C, more than 710 ° C, particularly more than 720 ° C. Is preferred. If it does in this way, in the manufacturing process of a low-temperature polysilicon TFT, it will become easy to suppress the thermal contraction of a glass substrate.
- the alkali-free glass substrate obtained by the method of the present invention has a temperature corresponding to 10 4.0 dPa ⁇ s at 1350 ° C. or lower, 1345 ° C. or lower, 1340 ° C. or lower, 1335 ° C. or lower, 1330 ° C. or lower, especially 1325 ° C. or lower. It is preferable to consist of a certain glass. When the temperature at 10 4.0 dPa ⁇ s increases, the temperature at the time of molding becomes too high, and the manufacturing cost of the glass substrate tends to increase.
- the “temperature corresponding to 10 4.0 dPa ⁇ s” is a value measured by a platinum ball pulling method.
- the alkali-free glass substrate obtained by the method of the present invention is preferably made of glass having a temperature at 10 2.5 dPa ⁇ s of 1700 ° C. or lower, 1695 ° C. or lower, 1690 ° C. or lower, particularly 1680 ° C. or lower.
- the “temperature corresponding to 10 2.5 dPa ⁇ s” is a value measured by a platinum ball pulling method.
- the alkali-free glass obtained by the method of the present invention has a liquidus temperature of less than 1300 ° C, 1290 ° C or less, 1210 ° C or less, 1200 ° C or less, 1190 ° C or less, 1180 ° C or less, 1170 ° C or less, 1160 ° C or less, particularly 1150.
- the glass is preferably made of glass having a temperature of not higher than ° C. If it does in this way, it will become easy to prevent the situation where devitrification crystal occurs at the time of glass manufacture, and productivity falls. Furthermore, since it becomes easy to shape
- the liquidus temperature is an index of devitrification resistance. The lower the liquidus temperature, the better the devitrification resistance.
- “Liquid phase temperature” is obtained by passing the standard sieve 30 mesh (500 ⁇ m) and putting the glass powder remaining in 50 mesh (300 ⁇ m) into a platinum boat for 24 hours in a temperature gradient furnace set at 1100 ° C. to 1350 ° C. After holding, the platinum boat is taken out and refers to the temperature at which devitrification (crystal foreign matter) is observed in the glass.
- the alkali-free glass substrate obtained by the method of the present invention has a viscosity at a liquidus temperature of 10 4.8 dPa ⁇ s or more, 10 4.9 dPa ⁇ s or more, 10 5.0 dPa ⁇ s or more, 10 5.1. dPa ⁇ s or more, 10 5.2 dPa ⁇ s or more, preferably 10 5.3 dPa ⁇ s or more, particularly preferably 10 5.4 dPa ⁇ s or more.
- the viscosity at the liquidus temperature is an index of moldability. The higher the viscosity at the liquidus temperature, the better the moldability.
- the “viscosity at the liquidus temperature” refers to the viscosity of the glass at the liquidus temperature and can be measured by, for example, a platinum ball pulling method.
- FIG. 2 is an explanatory diagram showing a schematic configuration of the glass manufacturing facility 1 for carrying out the manufacturing method of the present invention.
- the glass production facility 10 includes a melting furnace 1 for electrically melting a raw material batch, a clarification tank 2 provided on the downstream side of the melting furnace 2, an adjustment tank 3 provided on the downstream side of the clarification tank 2, and an adjustment.
- the melting furnace 1, the clarification tank 2, the adjustment tank 3, and the molding apparatus 4 are connected by connecting flow paths 5, 6, and 7, respectively.
- the melting furnace 1 has a bottom wall, a side wall, and a ceiling wall, and each of these walls is formed of a high zirconia refractory such as ZrO 2 electroformed refractory or dense zircon.
- the side wall is designed to be thin so that the refractory is easily cooled.
- a plurality of pairs of molybdenum electrodes are installed on the left and right side wall lower portions and bottom walls. Each electrode is provided with cooling means so that the electrode temperature does not rise excessively.
- the glass can be directly energized and heated by applying electricity between the electrodes. In this embodiment, there is no burner (except for the burner at the start of production) or heater used during normal production.
- the upstream side wall of the melting furnace 1 is provided with an inlet for raw material supplied from a furnace silo (not shown), and an outlet is formed on the downstream side wall.
- the melting furnace 1 and the clarification tank 2 communicate with each other through a narrow communication flow path 5 having an upstream end.
- the clarification tank 2 has a bottom wall, a side wall, and a ceiling wall, and each of these walls is formed of a high zirconia refractory.
- the communication channel 5 has a bottom wall, side walls, and a ceiling wall, and each of these walls is also formed of a high zirconia refractory such as a ZrO 2 electroformed refractory.
- the clarification tank 2 has a smaller volume than the melting furnace 1, and the bottom wall and the inner wall surface of the side wall (at least the inner wall surface part in contact with the molten glass) are lined with platinum or a platinum alloy, Platinum or a platinum alloy is also lined on the bottom wall of the path 5 and the inner wall surface of the side wall.
- the clarification tank 2 In the clarification tank 2, the downstream end of the outflow path 5 is opened on the upstream side wall.
- the clarification tank 2 is a part where clarification of the glass is mainly performed, and fine bubbles contained in the glass are floated up by the clarification gas released from the clarifier and removed from the glass.
- An outlet is formed in the downstream side wall of the clarification tank 2, and the adjustment tank 3 communicates with the downstream side of the clarification tank 2 via a narrow communication channel 6 having the outlet at the upstream end. .
- the said adjustment tank 3 has a bottom wall, a side wall, and a ceiling wall, and these each wall is formed with the high zirconia refractory.
- the communication channel 6 has a bottom wall, side walls, and a ceiling wall, and each of these walls is also formed of a high zirconia refractory such as a ZrO 2 electroformed refractory.
- the inner wall surface of the bottom wall and the side wall of the adjustment tank 3 (at least the inner wall surface part in contact with the molten glass) is lined with platinum or a platinum alloy, and the bottom wall of the communication channel 7 and the inner wall surface of the side wall Also, platinum or a platinum alloy is lined.
- the adjustment tank 3 is a part that mainly adjusts the glass to a state suitable for molding, and gradually adjusts the temperature of the molten glass to a viscosity suitable for molding.
- An outlet is formed in the side wall on the downstream side of the adjustment tank 3, and the molding device 4 communicates with the downstream side of the adjustment tank 3 via a narrow communication channel 7 having the outlet at the upstream end. .
- the molding apparatus 4 is a downdraw molding apparatus, for example, an overflow downdraw molding apparatus.
- the bottom wall and the inner wall surface of the side wall of the communication channel 7 are lined with platinum or a platinum alloy.
- the supply path in a present Example points out from the communication flow path 5 provided in the downstream of a melting kiln to the communication flow path 7 provided in the shaping
- the glass manufacturing equipment which consists of each part of a melting kiln, a clarification tank, an adjustment tank, and a shaping
- each said equipment showed what formed platinum or a platinum alloy by lining a refractory material, it cannot be overemphasized that the equipment comprised with platinum or platinum alloy itself may be used instead of this.
- a raw material batch is prepared so as to be SiO 2 —Al 2 O 3 — (B 2 O 3 ) —RO-based alkali-free glass.
- a raw material batch is prepared so as to have the composition shown in Table 1.
- boric anhydride is actively used as the boron source, no boron source material is used, hydroxide raw material is not used, and glass cullet with a low ⁇ -OH value is actively used.
- the raw materials are appropriately selected so that the obtained glass has a low ⁇ -OH value.
- the prepared glass material is put into the melting furnace 1 and melted and vitrified.
- a voltage is applied to the molybdenum electrode and the glass is directly energized and heated.
- the glass raw material is heated using a burner, and when the initially charged glass raw material is melted, the burner is stopped and the process proceeds to direct current heating.
- the molten glass vitrified in the melting furnace 1 is guided to the clarification tank 2 through the communication channel 5.
- the molten glass contains a large number of bubbles trapped in the melt, which are present between the bubbles generated during the vitrification reaction and the raw material particles. It is lifted and removed by a clear gas released from a certain SnO 2 .
- the molten glass clarified in the clarification tank 2 is guided to the adjustment tank through the communication channel 6.
- the molten glass led to the adjustment tank 3 is high temperature, has a low viscosity, and cannot be directly molded by a molding apparatus. Therefore, the temperature of the glass is lowered in an adjustment tank and adjusted to a viscosity suitable for molding.
- the molten glass whose viscosity has been adjusted in the adjusting tank 3 is guided to the overflow downdraw molding device through the communication channel 7 and formed into a thin plate shape. Further, cutting, end face processing and the like are performed, and a glass substrate made of alkali-free glass can be obtained.
- the glass raw material was supplied to the melting furnace and melted, and then the molten glass was clarified and homogenized in the clarification tank and the adjustment tank, and adjusted to a viscosity suitable for molding. Melting conditions were as shown in Tables 2 and 3.
- “energization” means current heating by a molybdenum electrode
- “burner” means radiant heating by oxyfuel combustion using a burner.
- the molten glass was supplied to an overflow downdraw molding apparatus, formed into a plate shape, and then cut to obtain a glass sample having a thickness of 0.5 mm.
- the molten glass exiting the melting kiln was supplied to the molding apparatus while contacting only platinum or a platinum alloy.
- the ⁇ -OH value of glass was determined by measuring the transmittance of the glass using FT-IR and using the following formula.
- ⁇ -OH value (1 / X) log10 (T 1 / T 2 )
- X Glass wall thickness (mm)
- T 1 Transmittance (%) at a reference wavelength of 3846 cm ⁇ 1
- T 2 Minimum transmittance (%) in the vicinity of a hydroxyl group absorption wavelength of 3600 cm ⁇ 1
- the strain point was measured based on the method of ASTM C336-71.
- the thermal shrinkage was measured by the following method. First, as shown in FIG. 3A, a 160 mm ⁇ 30 mm strip sample G is prepared as a sample of the glass substrate 1. A marking M is formed on each end of the strip-shaped sample G in the long side direction at a position 20 to 40 mm away from the edge by using # 1000 water-resistant abrasive paper. After that, as shown in FIG. 3B, the strip-shaped sample G on which the marking M is formed is folded in two along the direction orthogonal to the marking M to produce sample pieces Ga and Gb. Then, only one sample piece Gb is heated from room temperature to 500 ° C. at 5 ° C./min, held at 500 ° C.
- the method of the present invention it is possible to easily obtain a glass substrate having a small thermal shrinkage rate, which is suitable for producing a low-temperature polysilicon TFT.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Glass Compositions (AREA)
Abstract
The present invention provides an alkali-free glass substrate production method with which it is possible to produce an alkali-free glass substrate of a higher strain point by lowering the β-OH value of the glass. This method is for continuously producing an alkali-free glass substrate based on SiO2-Al2O3-RO (RO represents at least one selected from among MgO, CaO, BaO, SrO, and ZnO), and is characterized by comprising: a step for preparing a raw material batch that contains a tin compound but does not substantially contain any arsenic compound or antimony compound; a step for electrically melting the prepared raw material batch in a melting furnace that is capable of passing a current and applying heat via a molybdenum electrode; and a step for shaping the molten glass into a plate form by a down-draw process.
Description
本発明は、無アルカリガラス基板の製造方法に関し、詳細には、低温ポリシリコン(LTPS:Low Temperature p-Si)膜を有する薄膜トランジスタ(TFT:Thin Film Transistor)を備えるディスプレイなどに好適な無アルカリガラス基板の製造方法に関する。
The present invention relates to a method for producing an alkali-free glass substrate, and more specifically, an alkali-free glass suitable for a display including a thin film transistor (TFT: Thin Film Transistor) having a low temperature polysilicon (LTPS: Low Temperature p-Si) film. The present invention relates to a method for manufacturing a substrate.
フラットパネルディスプレイには、一般的に、支持基板として、ガラス基板が用いられている。このガラス基板の表面上には、TFTなどの電気回路パターンが形成される。このため、この種のガラス基板には、TFTなどに悪影響を及ぼさないように、アルカリ金属成分を実質的に含まない無アルカリガラス基板が採用されている。
In general, a glass substrate is used as a support substrate in a flat panel display. An electric circuit pattern such as a TFT is formed on the surface of the glass substrate. For this reason, a non-alkali glass substrate that does not substantially contain an alkali metal component is employed for this type of glass substrate so as not to adversely affect the TFT or the like.
またガラス基板は、薄膜形成工程や、薄膜のパターニング工程などの電気回路パターンの形成工程において高温雰囲気に曝される。ガラス基板が高温雰囲気に曝されると、ガラスの構造緩和が進行するため、ガラス基板の体積が収縮(以下、このガラスの収縮のことを「熱収縮」という。)することとなる。電気回路パターンの形成工程においてガラス基板に熱収縮が生じると、ガラス基板上に形成される電気回路パターンの形状寸法が、設計値からずれてしまい、所望の電気的性能を有するフラットパネルディスプレイが得難くなってしまう。このため、フラットパネルディスプレイ用のガラス基板など、電気回路パターンなどの薄膜パターンが表面に形成されるガラス基板には、熱収縮率が小さいことが望まれている。
In addition, the glass substrate is exposed to a high-temperature atmosphere in an electric circuit pattern forming process such as a thin film forming process or a thin film patterning process. When the glass substrate is exposed to a high temperature atmosphere, the structural relaxation of the glass proceeds, so that the volume of the glass substrate shrinks (hereinafter, the shrinkage of the glass is referred to as “thermal shrinkage”). If thermal shrinkage occurs in the glass substrate during the electrical circuit pattern formation process, the shape and dimensions of the electrical circuit pattern formed on the glass substrate will deviate from the design values, and a flat panel display having the desired electrical performance is obtained. It will be difficult. For this reason, a glass substrate on which a thin film pattern such as an electric circuit pattern is formed on the surface, such as a glass substrate for a flat panel display, is desired to have a small thermal shrinkage rate.
特に、低温ポリシリコン膜を有するTFTを備える高精細なディスプレイ用のガラス基板の場合、低温ポリシリコン膜を形成する際に、例えば450℃~600℃という非常に高い温度雰囲気に曝され、熱収縮が生じやすいが、電気回路パターンが高精細であるため、熱収縮が生じると所望する電気的性能が得難くなる。それゆえ、このような用途に使用されるガラス基板には、熱収縮率が非常に小さいことが強く望まれている。
In particular, in the case of a high-definition glass substrate having a TFT having a low-temperature polysilicon film, when the low-temperature polysilicon film is formed, the glass substrate is exposed to a very high temperature atmosphere, for example, 450 ° C. to 600 ° C. However, since the electric circuit pattern has a high definition, it is difficult to obtain desired electrical performance when heat shrinkage occurs. Therefore, it is strongly desired that the glass substrate used for such applications has a very low thermal shrinkage rate.
ところで、フラットパネルディスプレイなどに用いられるガラス基板の成形方法としては、フロート法や、オーバーフローダウンドロー法に代表されるダウンドロー法などが知られている。
Incidentally, as a method for forming a glass substrate used for a flat panel display or the like, a float method, a down draw method represented by an overflow down draw method, or the like is known.
フロート法とは、溶融ガラスを溶融スズが満たされたフロートバスの上に流出させ、水平方向に引き延ばしてガラスリボンを形成した後に、フロートバスの下流側に設けられた徐冷炉においてガラスリボンを徐冷することにより、ガラス基板を成形する方法である。フロート法では、ガラスリボンの搬送方向が水平方向となるため、徐冷炉を長くすることが容易である。このため、徐冷炉におけるガラスリボンの冷却速度を十分に低くしやすい。従って、フロート法には、熱収縮率の小さなガラス基板が得やすいというメリットがある。
In the float method, molten glass is flowed out onto a float bath filled with molten tin, and stretched in the horizontal direction to form a glass ribbon. This is a method for forming a glass substrate. In the float process, since the conveying direction of the glass ribbon is the horizontal direction, it is easy to lengthen the slow cooling furnace. For this reason, it is easy to make the cooling rate of the glass ribbon in a slow cooling furnace low enough. Therefore, the float method has an advantage that it is easy to obtain a glass substrate having a small heat shrinkage rate.
しかしながら、フロート法では、薄いガラス基板を成形することが困難であるというデメリットや、成形後に、ガラス基板の表面を研磨して、ガラス基板の表面に付着しているスズを除去しなければならないというデメリットがある。
However, with the float method, it is difficult to mold a thin glass substrate, and after molding, the surface of the glass substrate must be polished to remove tin adhering to the surface of the glass substrate. There are disadvantages.
一方、ダウンドロー法は、溶融ガラスを下方に引き伸ばして板状に形成する方法である。ダウンドロー法の一種であるオーバーフローダウンドロー法は、横断面略楔形の成形体(forming body)の両側から溢れさせた溶融ガラスを下方に引き伸ばすことによりガラスリボンを成形する方法である。成形体の両側から溢れた溶融ガラスは、成形体の両側面に沿って流下し、成形体の下方において合流する。従って、オーバーフローダウンドロー法では、ガラスリボンの表面が、空気以外と接触せず、表面張力によって形成されるため、成形後に表面を研磨せずとも、表面に異物が付着しておらず、表面が平坦なガラス基板を得ることができる。また、オーバーフローダウンドロー法によれば、薄いガラス基板を成形しやすいというメリットもある。
On the other hand, the downdraw method is a method in which molten glass is drawn downward to form a plate shape. The overflow downdraw method, which is a kind of downdraw method, is a method of forming a glass ribbon by stretching downward a molten glass overflowed from both sides of a forming body having a substantially wedge-shaped cross section. The molten glass overflowing from both sides of the molded body flows down along both side surfaces of the molded body and merges below the molded body. Therefore, in the overflow down draw method, the surface of the glass ribbon does not come into contact with anything other than air, and is formed by surface tension. A flat glass substrate can be obtained. Further, the overflow downdraw method has an advantage that a thin glass substrate can be easily formed.
その一方で、ダウンドロー法は、溶融ガラスが成形体から下方に向かって流下するため、長い徐冷炉を成形体の下に配置するためには、成形体を高所に配置しなければならない。しかしながら、実際上は、工場の天井の高さ制約などにより、成形体を配置できる高さには制約がある。つまり、ダウンドロー法では、徐冷炉の長さ寸法に制約があり、十分に長い徐冷炉を配置することが困難である場合がある。徐冷炉の長さが短い場合、ガラスリボンの冷却速度が高くなるため、熱収縮率の小さなガラス基板を成形することが困難となる。
On the other hand, in the downdraw method, since the molten glass flows downward from the molded body, in order to dispose a long slow cooling furnace under the molded body, the molded body must be disposed at a high place. However, in practice, there is a restriction on the height at which the molded body can be disposed due to the height restriction of the ceiling of the factory. That is, in the downdraw method, the length dimension of the slow cooling furnace is limited, and it may be difficult to arrange a sufficiently long slow cooling furnace. When the length of the slow cooling furnace is short, the cooling rate of the glass ribbon becomes high, so that it becomes difficult to form a glass substrate having a small heat shrinkage rate.
そこで、ガラスの歪点を高くして、ガラスの熱収縮率を小さくすることが提案されている。例えば特許文献1には、歪点の高い無アルカリガラス組成が開示されている。また同文献には、ガラス中の水分量を表すβ-OH値が低いほど、歪点が上昇することが記載されている。
Therefore, it has been proposed to increase the strain point of the glass and reduce the thermal shrinkage of the glass. For example, Patent Document 1 discloses a non-alkali glass composition having a high strain point. The document also describes that the strain point increases as the β-OH value representing the amount of water in the glass decreases.
ガラスの歪点の上昇による熱収縮率の低減効果は、図1に示すように、歪点が高くなるほど小さくなる。しかも歪点が高くなるように組成設計されたガラスは粘性が高いため、溶融、成形が難しく、生産効率が低い。しかもこのようなガラスでは溶融温度や成形温度が高くなることから、製造設備への負担が大きくなる。このため特許文献1のように、高歪点組成を採用して熱収縮率を低減する方法には限界がある。そこでβ-OH値を低下させて、歪点を上昇させることが重要になってくるが、工業的規模で大量生産する場合、ガラスのβ-OH値を大幅に低下させることは極めて困難である。
As shown in FIG. 1, the effect of reducing the heat shrinkage due to the increase in the strain point of the glass becomes smaller as the strain point becomes higher. In addition, the glass whose composition is designed so that the strain point is high has high viscosity, so that it is difficult to melt and mold, and the production efficiency is low. In addition, since such a glass has a high melting temperature and molding temperature, the burden on the production equipment increases. For this reason, as in Patent Document 1, there is a limit to a method for reducing the heat shrinkage rate by adopting a high strain point composition. Therefore, it is important to increase the strain point by lowering the β-OH value, but it is extremely difficult to significantly reduce the β-OH value of glass when mass-producing on an industrial scale. .
本発明は、かかる事情に鑑みてなされたものであり、その目的は、ガラスのβ-OH値を低下させて、より歪点の高い無アルカリガラス基板を製造し得る無アルカリガラス基板の製造方法を提供することにある。
The present invention has been made in view of such circumstances, and an object thereof is to produce a non-alkali glass substrate capable of producing a non-alkali glass substrate having a higher strain point by reducing the β-OH value of the glass. Is to provide.
本発明者等は種々の検討を行った結果、原料バッチ構成、溶融方法等を最適化することにより、ガラスのβ-OH量を大幅に低下させられることを見出し、本発明として提案するものである。
As a result of various investigations, the present inventors have found that the amount of β-OH in the glass can be significantly reduced by optimizing the raw material batch configuration, the melting method, etc., and are proposed as the present invention. is there.
即ち、本発明の無アルカリガラスの製造方法は、SiO2-Al2O3-RO(ROはMgO、CaO、BaO、SrO及びZnOの1種以上)系の無アルカリガラス基板を連続的に製造する方法であって、錫化合物を含有し、且つヒ素化合物及びアンチモン化合物を実質的に含まないように原料バッチを調製する工程と、調製した原料バッチを、モリブデン電極による通電加熱が可能な溶融窯で電気溶融する工程と、溶融されたガラスをダウンドロー法により板状に成形する工程とを含むことを特徴とする。
That is, the alkali-free glass production method of the present invention continuously produces a SiO 2 —Al 2 O 3 —RO (RO is one or more of MgO, CaO, BaO, SrO, and ZnO) -based alkali-free glass substrates. And a step of preparing a raw material batch containing a tin compound and substantially free of an arsenic compound and an antimony compound, and a melting furnace capable of electrically heating the prepared raw material batch with a molybdenum electrode. And a step of forming the molten glass into a plate shape by a down draw method.
ここで「無アルカリガラス」とは、アルカリ金属酸化物成分を意図的に添加していないガラスであり、具体的にはガラス組成中のアルカリ金属酸化物(Li2O、Na2O、及びK2O)の含有量が2000ppm(質量)以下であるガラスを意味する。「連続的に製造する」とは、タンク窯等の連続溶融窯でガラスを一定期間連続的に製造することを意味する。「SiO2-Al2O3-RO系」とは、「SiO2、Al2O3及びROを必須成分とするガラス組成系を意味する。「電気溶融」とは、ガラス中に電気を通電し、それによって発生するジュール熱でガラスを溶融する溶融方法である。なおここではヒーターやバーナーによる輻射加熱を補助的に利用する溶融方法を排除するものではない。「ヒ素及びアンチモンを実質的に含まない」とは、これらの成分を含むガラス原料やガラスカレットを、ガラスバッチに意図的に添加しないことを意味する。より具体的には、得られるガラス中に、モル基準で、ヒ素がAs2O3として50ppm以下、アンチモンがSb2O3として50ppm以下であることを意味する。「ダウンドロー法」とは、溶融ガラスを下方に連続的に引き延ばしながら成形する成形法の総称である。
Here, the “non-alkali glass” is a glass to which an alkali metal oxide component is not intentionally added, and specifically, alkali metal oxides (Li 2 O, Na 2 O, and K in the glass composition). 2 O) means a glass having a content of 2000 ppm (mass) or less. “Manufacturing continuously” means that glass is continuously manufactured for a certain period in a continuous melting kiln such as a tank kiln. “SiO 2 —Al 2 O 3 —RO system” means “a glass composition system containing SiO 2 , Al 2 O 3 and RO as essential components.“ Electrical melting ”means that electricity is passed through the glass. The glass is melted by Joule heat generated thereby. It should be noted that the melting method using auxiliary radiation heating by a heater or burner is not excluded here. “Substantially free of arsenic and antimony” means that a glass raw material or glass cullet containing these components is not intentionally added to the glass batch. More specifically, it means that, in the obtained glass, arsenic is 50 ppm or less as As 2 O 3 and antimony is 50 ppm or less as Sb 2 O 3 on a molar basis. The “down draw method” is a general term for a molding method in which a molten glass is molded while continuously being drawn downward.
また本発明では通電加熱を利用してガラスを溶融することを特徴とする。ガラスの溶融を通電加熱主体で行うことにより、雰囲気中の水分の増加を抑制することができる。結果として、雰囲気からのガラスの水分供給を大幅に抑制することが可能になり、歪点の高いガラスを製造することが容易になる。
Further, the present invention is characterized in that the glass is melted using electric heating. By performing the melting of the glass mainly by electric heating, it is possible to suppress an increase in moisture in the atmosphere. As a result, it becomes possible to greatly suppress the moisture supply of the glass from the atmosphere, and it becomes easy to produce a glass with a high strain point.
また本発明では、通電加熱を行うためにモリブデン電極を採用している。モリブデン電極は配置場所や形状の自由度が高い。それゆえ電気を通し難い無アルカリガラスであっても、最適な電極配置、電極形状を採用することができ、通電加熱が容易になる。
Further, in the present invention, a molybdenum electrode is used for conducting heating by heating. Molybdenum electrodes have a high degree of freedom in location and shape. Therefore, even in the case of non-alkali glass that is difficult to conduct electricity, an optimal electrode arrangement and electrode shape can be adopted, and current heating is facilitated.
また本発明では、錫化合物を清澄剤として含み、且つヒ素化合物及びアンチモン化合物を実質的に含まないことを特徴とする。ヒ素化合物やアンチモン化合物は清澄剤として機能するが、これらの成分がガラス中に存在していると、モリブデン電極が著しく浸食されてしまい、工業的規模でのガラスの連続的な製造が困難になる。一方、錫はモリブデン電極を浸食することがない。よって上記構成を採用することにより、泡のないガラスを通電加熱によって製造することが容易になる。
The present invention is characterized by containing a tin compound as a fining agent and substantially free of an arsenic compound and an antimony compound. Arsenic compounds and antimony compounds function as fining agents, but if these components are present in the glass, the molybdenum electrode is significantly eroded, making it difficult to continuously produce glass on an industrial scale. . On the other hand, tin does not erode the molybdenum electrode. Therefore, by adopting the above-described configuration, it becomes easy to produce glass without bubbles by energization heating.
また本発明では、ダウンドロー法によってガラスを板状に成形することを特徴とする。ダウンドロー法は、溶融ガラスを鉛直下方に引き延ばしながら板状に成形する方法であり、水平方向にガラスを引き出すフロート法に比べると、徐冷炉が短く、成形後の徐冷時間(距離)を十分に確保することが困難である。つまり熱収縮率の小さいガラスを得るには不利な方法である。それゆえ、水分量を少なくしてガラスの歪点を高めるメリットが極めて大きい。
In the present invention, the glass is formed into a plate shape by a downdraw method. The downdraw method is a method of forming molten glass into a plate shape while extending vertically downward. Compared with the float method in which glass is drawn out in the horizontal direction, the slow cooling furnace is shorter and the slow cooling time (distance) after forming is sufficient. It is difficult to secure. That is, it is a disadvantageous method for obtaining a glass having a small thermal shrinkage rate. Therefore, the merit of increasing the strain point of the glass by reducing the water content is extremely large.
本発明においては、バーナー燃焼による輻射加熱を併用しないことが望ましい。「バーナー燃焼による輻射加熱を併用しない」とは、通常生産時にバーナー燃焼による輻射加熱を一切行わないことを意味し、生産立ち上げ時(昇温時)のバーナー使用を排除するものではない。また生産立ち上げ時や通常生産時に、ヒーターによる輻射加熱を併用することを排除するものではない。なお生産立ち上げ時とは、原料バッチが溶解してガラス融液になり、通電加熱可能になるまでの期間を指す。
In the present invention, it is desirable not to use radiation heating by burner combustion. “Do not use radiant heating by burner combustion” means that radiant heating by burner combustion is not performed at the time of normal production, and does not exclude the use of a burner at the start of production (at the time of temperature rise). Further, it is not excluded to use radiant heating with a heater at the time of production start-up or normal production. In addition, the time of production start-up refers to a period until the raw material batch is melted to become a glass melt and can be heated by electric current.
上記構成を採用すれば、溶融窯内の雰囲気に含まれる水分量が極めて少なくなり、雰囲気からガラス中に供給される水分を大幅に減少させることができる。その結果、極めて水分含有量の低いガラスを製造することが可能になる。また燃焼加熱する際に必要な、バーナー、煙道、燃料タンク、燃料供給経路、空気供給装置(空気燃焼の場合)、酸素発生装置(酸素燃焼の場合)、排ガス処理装置、集塵機等の設備が不要、又は大幅に簡略化でき、溶融窯のコンパクト化、設備コストの低廉化を図ることが可能になる。
If the above configuration is adopted, the amount of moisture contained in the atmosphere in the melting furnace is extremely reduced, and the moisture supplied from the atmosphere into the glass can be greatly reduced. As a result, it becomes possible to produce a glass with a very low water content. The equipment required for combustion heating, such as burner, flue, fuel tank, fuel supply path, air supply device (in the case of air combustion), oxygen generator (in the case of oxygen combustion), exhaust gas treatment device, dust collector, etc. It can be unnecessary or greatly simplified, and it is possible to make the melting kiln compact and to reduce the equipment cost.
本発明においては、原料バッチ中に、塩化物を添加することが好ましい。
In the present invention, it is preferable to add chloride to the raw material batch.
塩化物はガラス中の水分を低下させる効果がある。ガラス中に含まれる水分が少なくなると、ガラスの歪点が上昇する。それゆえ上記構成を採用すれば、歪点の高いガラスを製造することが容易になる。
Chloride has the effect of reducing moisture in the glass. When the moisture contained in the glass decreases, the strain point of the glass increases. Therefore, if the above configuration is adopted, it becomes easy to produce a glass having a high strain point.
本発明においては、原料バッチ中に、ホウ素源となる原料を添加しないことが好ましい。
In the present invention, it is preferable not to add a raw material to be a boron source in the raw material batch.
ホウ素源となるガラス原料は吸湿性があり、また結晶水を含むものもあるため、ガラス中に水分を持ちこみやすい。そこで上記構成を採用すれば、得られるガラスの水分量をさらに低下させることが可能になる。またホウ素成分(B2O3)は、ガラスの歪点を低下させやすい成分であることから、上記構成を採用すれば、歪点の高いガラスが得易くなる。
Since the glass raw material used as a boron source has a hygroscopic property and also contains crystal water, it is easy to bring moisture into the glass. Then, if the said structure is employ | adopted, it will become possible to further reduce the moisture content of the glass obtained. The boron component (B 2 O 3), since a likely component to lower the strain point of the glass, by adopting the above configuration, a high strain point glass is easily obtained.
本発明においては、ガラス組成として、さらにB2O3を含有する無アルカリガラス基板を製造するに際し、ホウ素源となるガラス原料の少なくとも一部に、無水ホウ酸を使用することが好ましい。
In the present invention, when producing an alkali-free glass substrate further containing B 2 O 3 as a glass composition, it is preferable to use boric anhydride for at least a part of the glass raw material serving as a boron source.
上記構成を採用すれば、得られるガラスの水分量をさらに低下させることが可能になる。またホウ素成分(B2O3)は、ガラスの溶融性を向上させる成分であることから、上記構成を採用すれば、生産性に優れたガラスを得やすくなる。
If the said structure is employ | adopted, it will become possible to further reduce the moisture content of the glass obtained. The boron component (B 2 O 3), since a component for improving the meltability of the glass, by adopting the above configuration, it becomes easy to obtain an excellent glass productivity.
本発明においては、原料バッチ中に、水酸化物原料を含有しないことが好ましい。
In the present invention, it is preferable that no hydroxide raw material is contained in the raw material batch.
上記構成を採用すれば、得られるガラスの水分量をさらに低下させることが可能になる。
If the above configuration is adopted, it becomes possible to further reduce the moisture content of the obtained glass.
本発明においては、原料バッチ中にガラスカレットを添加して無アルカリガラス基板を製造するに際し、ガラスカレットの少なくとも一部に、β-OH値が0.4/mm以下のガラスからなるガラスカレットを使用することが好ましい。ここで「ガラスカレット」とは、ガラスの製造中に生じた不良ガラス、又は市場から回収されたリサイクルガラス等を意味する。「β-OH値」は、FT-IRを用いてガラスの透過率を測定し、下記の式を用いて求めた値を指す。
In the present invention, when producing a non-alkali glass substrate by adding a glass cullet to a raw material batch, a glass cullet made of glass having a β-OH value of 0.4 / mm or less is added to at least a part of the glass cullet. It is preferable to use it. Here, the “glass cullet” means defective glass generated during the production of glass, recycled glass collected from the market, or the like. “Β-OH value” refers to a value obtained by measuring the transmittance of glass using FT-IR and using the following equation.
β-OH値 = (1/X)log(T1/T2)
X:ガラス肉厚(mm)
T1:参照波長3846cm-1における透過率(%)
T2:水酸基吸収波長3600cm-1付近における最小透過率(%)
無アルカリガラスは体積抵抗が高いことから、アルカリを含有するガラスに比べて溶融し難い傾向がある。そこで上記構成を採用すれば、ガラスの溶融が容易になるとともに、得られるガラスの水分量をさらに低下させることが可能になる。 β-OH value = (1 / X) log (T1 / T2)
X: Glass wall thickness (mm)
T1: Transmittance (%) at a reference wavelength of 3846 cm −1
T2: Minimum transmittance (%) near the hydroxyl absorption wavelength of 3600 cm −1
Since alkali-free glass has a high volume resistance, it tends to be difficult to melt compared to glass containing alkali. Therefore, if the above configuration is adopted, the glass can be easily melted and the moisture content of the obtained glass can be further reduced.
X:ガラス肉厚(mm)
T1:参照波長3846cm-1における透過率(%)
T2:水酸基吸収波長3600cm-1付近における最小透過率(%)
無アルカリガラスは体積抵抗が高いことから、アルカリを含有するガラスに比べて溶融し難い傾向がある。そこで上記構成を採用すれば、ガラスの溶融が容易になるとともに、得られるガラスの水分量をさらに低下させることが可能になる。 β-OH value = (1 / X) log (T1 / T2)
X: Glass wall thickness (mm)
T1: Transmittance (%) at a reference wavelength of 3846 cm −1
T2: Minimum transmittance (%) near the hydroxyl absorption wavelength of 3600 cm −1
Since alkali-free glass has a high volume resistance, it tends to be difficult to melt compared to glass containing alkali. Therefore, if the above configuration is adopted, the glass can be easily melted and the moisture content of the obtained glass can be further reduced.
本発明においては、得られるガラスのβ-OH値が0.2/mm以下となるように、ガラス原料及び/又は溶融条件を調節することが好ましい。
In the present invention, it is preferable to adjust the glass raw material and / or the melting conditions so that the β-OH value of the obtained glass is 0.2 / mm or less.
上記構成を採用すれば、歪点が高く、熱収縮率の高いガラスを得ることが容易になる。
If the above configuration is adopted, it becomes easy to obtain a glass having a high strain point and a high heat shrinkage rate.
本発明においては、得られるガラスの歪点が690℃以上となることが好ましい。ここで「歪点」は、ASTM C336-71の方法に基づいて測定した値である。
In the present invention, it is preferable that the obtained glass has a strain point of 690 ° C. or higher. Here, the “strain point” is a value measured based on the method of ASTM C336-71.
上記構成を採用すれば、熱収縮率が極めて小さいガラスを得ることができる。
If the above configuration is adopted, a glass having a very small heat shrinkage rate can be obtained.
本発明においては、得られるガラスの熱収縮率が25ppm以下となることが好ましい。ここで「熱収縮率」とは、ガラスを常温から500℃まで5℃/分の速度で昇温し、500℃で1時間保持した後に、5℃/分の速度で降温させる条件で測定した時の値である。
In the present invention, it is preferable that the obtained glass has a thermal shrinkage of 25 ppm or less. Here, “thermal shrinkage” was measured under the condition that the glass was heated from room temperature to 500 ° C. at a rate of 5 ° C./min, held at 500 ° C. for 1 hour, and then cooled at a rate of 5 ° C./min. It is a time value.
上記構成を採用すれば、低温ポリシリコンTFTを形成するのに好適なガラス基板を得ることができる。
If the above configuration is adopted, a glass substrate suitable for forming a low-temperature polysilicon TFT can be obtained.
本発明においては、低温ポリシリコンTFTが形成されるガラス基板の製造に用いられることが好ましい。
In the present invention, it is preferably used for manufacturing a glass substrate on which a low-temperature polysilicon TFT is formed.
低温ポリシリコンTFTは、基板上に形成する際の熱処理温度が450~600℃付近と高温であり、しかも回路パターンがより微細になる。よってこの種の用途に使用されるガラス基板には、特に熱収縮率の小さいものが必要になる。それゆえ非常に歪点の高いガラス基板を作製可能な本発明方法を採用するメリットが極めて大きい。
The low-temperature polysilicon TFT has a heat treatment temperature as high as 450 to 600 ° C. when formed on the substrate, and the circuit pattern becomes finer. Therefore, a glass substrate used for this type of application requires a particularly low thermal shrinkage rate. Therefore, the merit of adopting the method of the present invention capable of producing a glass substrate having a very high strain point is extremely great.
以下、本発明の無アルカリガラスの製造方法を詳述する。
Hereinafter, the method for producing the alkali-free glass of the present invention will be described in detail.
本発明の方法は、原料バッチを調製する工程と、調製したバッチを電気溶融する工程と、溶融されたガラスを板状に成形する工程とを含む。
The method of the present invention includes a step of preparing a raw material batch, a step of electrically melting the prepared batch, and a step of forming the molten glass into a plate shape.
(1)原料バッチを調製する工程
まず、SiO2-Al2O3-RO(ROはMgO、CaO、BaO、SrO及びZnOの1種以上)系の組成、より具体的には、モル%で、SiO2 50~75%、Al2O3 5~20%、RO 5~30%含有する無アルカリガラスとなるようにガラス原料を調製する。なお好適なガラス組成については後述する。 (1) Step of preparing raw material batch First, SiO 2 —Al 2 O 3 —RO (RO is one or more of MgO, CaO, BaO, SrO and ZnO) based composition, more specifically, in mol%. A glass raw material is prepared so as to be an alkali-free glass containing 50 to 75% of SiO 2 , 5 to 20% of Al 2 O 3 and 5 to 30% of RO. A suitable glass composition will be described later.
まず、SiO2-Al2O3-RO(ROはMgO、CaO、BaO、SrO及びZnOの1種以上)系の組成、より具体的には、モル%で、SiO2 50~75%、Al2O3 5~20%、RO 5~30%含有する無アルカリガラスとなるようにガラス原料を調製する。なお好適なガラス組成については後述する。 (1) Step of preparing raw material batch First, SiO 2 —Al 2 O 3 —RO (RO is one or more of MgO, CaO, BaO, SrO and ZnO) based composition, more specifically, in mol%. A glass raw material is prepared so as to be an alkali-free glass containing 50 to 75% of SiO 2 , 5 to 20% of Al 2 O 3 and 5 to 30% of RO. A suitable glass composition will be described later.
ガラス原料は、例えば珪素源として珪砂(SiO2)等を用いることができる。
As the glass raw material, for example, silica sand (SiO 2 ) or the like can be used as a silicon source.
アルミニウム源としてアルミナ(Al2O3)、水酸化アルミニウム(Al(OH)3)等を用いることができる。なお水酸化アルミニウムは結晶水を含むため、使用割合が大きい場合にはガラスの水分量を低下させにくくなる。それゆえ水酸化アルミニウムは、できる限り使用しないことが好ましい。具体的には、アルミニウム源(Al2O3換算)100%に対して、水酸化アルミニウムの使用割合を50%以下、40%以下、30%以下、20%以下、10%以下とすることが好ましく、できれば使用しないことが望ましい。
As the aluminum source, alumina (Al 2 O 3 ), aluminum hydroxide (Al (OH) 3 ), or the like can be used. In addition, since aluminum hydroxide contains crystal water, when the usage rate is large, it becomes difficult to reduce the moisture content of the glass. Therefore, it is preferable not to use aluminum hydroxide as much as possible. Specifically, the usage rate of aluminum hydroxide may be 50% or less, 40% or less, 30% or less, 20% or less, 10% or less with respect to 100% of the aluminum source (Al 2 O 3 conversion). Preferably, it is desirable not to use it if possible.
アルカリ土類金属源には、炭酸カルシウム(CaCO3)、酸化マグネシウム(MgO)、水酸化マグネシウム(Mg(OH)2)、炭酸バリウム(BaCO3)、硝酸バリウム(Ba(NO3)2)、炭酸ストロンチウム(SrCO3)、硝酸ストロンチウム(Sr(NO3)2)等を用いることができる。なお水酸化マグネシウムは結晶水を含むため、使用割合が大きい場合にはガラスの水分量を低下させにくくなる。それゆえ水酸化マグネシウムは、できる限り使用しないことが好ましい。具体的には、マグネシウム源(MgO換算)100%に対して、水酸化マグネシウムを50%以下、40%以下、30%以下、20%以下、10%以下とすることが好ましく、できれば使用しないことが望ましい。
Alkaline earth metal sources include calcium carbonate (CaCO 3 ), magnesium oxide (MgO), magnesium hydroxide (Mg (OH) 2 ), barium carbonate (BaCO 3 ), barium nitrate (Ba (NO 3 ) 2 ), Strontium carbonate (SrCO 3 ), strontium nitrate (Sr (NO 3 ) 2 ), or the like can be used. In addition, since magnesium hydroxide contains crystal water, when the usage rate is large, it becomes difficult to reduce the moisture content of the glass. Therefore, it is preferable not to use magnesium hydroxide as much as possible. Specifically, magnesium hydroxide is preferably 50% or less, 40% or less, 30% or less, 20% or less, 10% or less with respect to 100% magnesium source (MgO conversion), and should not be used if possible. Is desirable.
亜鉛源として酸化亜鉛(ZnO)等を用いることができる。
Zinc oxide (ZnO) or the like can be used as the zinc source.
さらに本発明においては、バッチ中に塩化物を含むことが好ましい。塩化物は、ガラスの水分量を大幅に低下させる脱水剤として機能する。また清澄剤である錫化合物の作用を促進する効果がある。さらに塩化物は、1200℃以上の温度域で分解、揮発して清澄ガスを発生し、その攪拌効果により異質層の形成を抑制する。また、塩化物は、その分解時に珪砂等のシリカ原料を取り込んで溶解させる効果がある。塩化物としては、例えば塩化ストロンチウム等のアルカリ土類金属の塩化物、塩化アルミニウム等を使用することができる。
Furthermore, in the present invention, it is preferable that the batch contains chloride. Chloride functions as a dehydrating agent that significantly reduces the moisture content of the glass. Moreover, there exists an effect which accelerates | stimulates the effect | action of the tin compound which is a clarifier. Furthermore, chloride decomposes and volatilizes in a temperature range of 1200 ° C. or higher to generate a clear gas, and suppresses the formation of a heterogeneous layer due to the stirring effect. In addition, the chloride has an effect of taking in and dissolving a silica raw material such as silica sand at the time of decomposition. As the chloride, for example, alkaline earth metal chloride such as strontium chloride, aluminum chloride and the like can be used.
さらに本発明においては、バッチ中に錫化合物を含む。錫化合物は、清澄剤として機能する。また歪点を高めたり、高温粘性を低下させたりする働きがある。錫化合物としては、例えば酸化錫(SnO2)等を使用することができる。なお酸化錫を用いる場合、平均粒径D50が0.3~50μmの範囲にある酸化錫を用いることが好ましい。酸化錫粉末の平均粒径粒径D50が小さいと粒子間の凝集が起こり、調合プラントでの詰まりが生じ易くなる。一方、酸化錫粉末の平均粒径D50が大きいと、酸化錫粉末のガラス融液への溶解反応が遅れ、融液の清澄が進まない。結果としてガラス溶融の適切な時期に酸素ガスを十分に放出できなくなり、ガラス製品中に泡が残存し易く、泡品位に優れた製品を得ることが難しくなる。またガラス製品中に、SnO2結晶の未溶解ブツが出現する事態を引き起こし易くなる。酸化錫粉末の平均粒径D50の好適な範囲は2~50μm、特に5~50μmである。
Furthermore, in this invention, a tin compound is included in a batch. The tin compound functions as a fining agent. It also has the function of increasing the strain point and lowering the high temperature viscosity. As the tin compound, for example, tin oxide (SnO 2 ) can be used. When tin oxide is used, it is preferable to use tin oxide having an average particle diameter D 50 in the range of 0.3 to 50 μm. When the average particle diameter D 50 of the tin oxide powder is small, aggregation between the particles occurs and clogging in the blending plant is likely to occur. On the other hand, when the average particle diameter D 50 of the tin oxide powder larger, the dissolution reaction of the glass melt of the tin oxide powder is delayed, no progress has fining of the melt. As a result, oxygen gas cannot be sufficiently released at an appropriate time of glass melting, bubbles are likely to remain in the glass product, and it becomes difficult to obtain a product excellent in foam quality. Also in the glass product, easily causing a so undissolved lumps of SnO 2 crystal appears. A preferable range of the average particle diameter D 50 of the tin oxide powder is 2 to 50 μm, particularly 5 to 50 μm.
さらに本発明においては、ホウ素源となる原料を含有しない(換言するとガラス組成としてB2O3を含有しない)ことが好ましい。つまりホウ素源としては、オルトホウ酸(H3BO3)や無水ホウ酸(B2O3)が知られているが、これらの原料は吸湿性があるため、保管状況によってはガラス中に多量の水分を持ちこんでしまう。またオルトホウ酸は結晶水を含むため、使用割合が大きい場合にはガラスの水分量を低下させにくくなる。なおガラス組成としてB2O3を含有せざるを得ない場合は、できる限り無水ホウ酸の使用割合を高くすることが好ましい。具体的には、ホウ素源(B2O3換算)100%に対して、50%以上、70%以上、90%以上、特に全量を無水ホウ酸とすることが望ましい。
Further, in the present invention do not contain ingredients which the boron source (not containing B 2 O 3 as a glass composition in other words) is preferred. In other words, orthoboric acid (H 3 BO 3 ) and boric anhydride (B 2 O 3 ) are known as boron sources, but these raw materials are hygroscopic, so depending on the storage conditions, a large amount of boron may be contained in the glass. Bring in moisture. In addition, since orthoboric acid contains crystallization water, it becomes difficult to reduce the water content of the glass when the use ratio is large. In the case containing forced to B 2 O 3 as a glass composition, increasing the proportion of boric anhydride as possible are preferable. Specifically, it is desirable to use boric anhydride in an amount of 50% or more, 70% or more, 90% or more, particularly 100% for the boron source (B 2 O 3 conversion).
さらに本発明においては、上記以外にも、ガラス組成に応じて種々のガラス原料を用いることができる。例えばジルコニア源としてジルコン(ZrSiO4)等を、チタン源として酸化チタン(TiO2)等を、リン酸源としてメタリン酸アルミ(Al(PO3)3)、ピロリン酸マグネシウム(Mg2P2O7)等をそれぞれ使用することができる。
Furthermore, in the present invention, various glass materials can be used in addition to the above depending on the glass composition. For example, zircon (ZrSiO 4 ) or the like as a zirconia source, titanium oxide (TiO 2 ) or the like as a titanium source, aluminum metaphosphate (Al (PO 3 ) 3 ), magnesium pyrophosphate (Mg 2 P 2 O 7 ) or the like as a phosphate source. Can be used respectively.
本発明においては、バッチ中にヒ素化合物及びアンチモン化合物を実質的に含まないようにすることが重要である。これらの成分を含有していると、モリブデン電極を浸食するため、長期に亘って安定して電気溶融することが困難になる。またこれらの成分は、環境上好ましくない。
In the present invention, it is important that the batch does not substantially contain an arsenic compound and an antimony compound. When these components are contained, the molybdenum electrode is eroded, so that it is difficult to stably melt the electrode for a long time. Moreover, these components are not preferable from an environmental viewpoint.
本発明においては、上記したガラス原料に加えて、ガラスカレットを使用することが好ましい。ガラスカレットを使用する場合、原料バッチの総量に対するガラスカレットの使用割合は1質量%以上、5質量%以上、特に10質量%以上であることが好ましい。ガラスカレットの使用割合の上限に制約はないが、50質量%以下、40質量%以下、特に30質量%以下であることが好ましい。また使用するガラスカレットの少なくとも一部を、β-OH値が0.4/mm以下、0.35/mm以下、0.3/mm以下、0.25/m以下、0.2/mm以下、特に0.15/mm以下のガラスからなる低水分ガラスカレットとすることが望ましい。なお低水分ガラスカレットのβ-OH値の下限値は特に制限されないが、現実的には0.01/mm以上である。
In the present invention, it is preferable to use glass cullet in addition to the glass raw material described above. When glass cullet is used, the ratio of the glass cullet used relative to the total amount of the raw material batch is preferably 1% by mass or more, 5% by mass or more, and particularly preferably 10% by mass or more. Although there is no restriction | limiting in the upper limit of the usage rate of glass cullet, it is preferable that it is 50 mass% or less, 40 mass% or less, especially 30 mass% or less. Further, at least a part of the glass cullet used has a β-OH value of 0.4 / mm or less, 0.35 / mm or less, 0.3 / mm or less, 0.25 / m or less, 0.2 / mm or less. In particular, a low moisture glass cullet made of glass of 0.15 / mm or less is desirable. The lower limit value of the β-OH value of the low moisture glass cullet is not particularly limited, but is practically 0.01 / mm or more.
低水分ガラスカレットの使用量は、使用するガラスカレットの総量に対して50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上であることが好ましく、特に全量を低水分ガラスカレットとすることが望ましい。低水分ガラスカレットのβ-OH値が十分に低くない場合、或いは低水分ガラスカレットの使用割合が少ない場合は、得られるガラスのβ-OH値を低下させる効果が小さくなる。
なお、ガラス原料、ガラスカレット或いはこれらを調合した原料バッチは、水分を含んでいることがある。また保管中に大気中の水分を吸収することもある。そこで本発明では、個々のガラス原料を秤量、供給するための原料サイロや、調製された原料バッチを溶融窯に投入するための炉前サイロ等の内部に乾燥空気を導入することが好ましい。 The amount of low-moisture glass cullet used is preferably 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, and 90% by mass or more, particularly the total amount of the glass cullet used. Is preferably a low moisture glass cullet. When the β-OH value of the low moisture glass cullet is not sufficiently low, or when the usage rate of the low moisture glass cullet is small, the effect of lowering the β-OH value of the obtained glass becomes small.
In addition, the glass raw material, the glass cullet, or the raw material batch prepared by mixing these may contain moisture. It may also absorb moisture from the atmosphere during storage. Therefore, in the present invention, it is preferable to introduce dry air into a raw material silo for weighing and supplying individual glass raw materials, a pre-furnace silo for feeding a prepared raw material batch into a melting furnace, and the like.
なお、ガラス原料、ガラスカレット或いはこれらを調合した原料バッチは、水分を含んでいることがある。また保管中に大気中の水分を吸収することもある。そこで本発明では、個々のガラス原料を秤量、供給するための原料サイロや、調製された原料バッチを溶融窯に投入するための炉前サイロ等の内部に乾燥空気を導入することが好ましい。 The amount of low-moisture glass cullet used is preferably 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, and 90% by mass or more, particularly the total amount of the glass cullet used. Is preferably a low moisture glass cullet. When the β-OH value of the low moisture glass cullet is not sufficiently low, or when the usage rate of the low moisture glass cullet is small, the effect of lowering the β-OH value of the obtained glass becomes small.
In addition, the glass raw material, the glass cullet, or the raw material batch prepared by mixing these may contain moisture. It may also absorb moisture from the atmosphere during storage. Therefore, in the present invention, it is preferable to introduce dry air into a raw material silo for weighing and supplying individual glass raw materials, a pre-furnace silo for feeding a prepared raw material batch into a melting furnace, and the like.
(2)調製した原料バッチを電気溶融する工程
次に、調製した原料バッチを、溶融窯に投入し、電気溶融する。 (2) Step of electromelting the prepared raw material batch Next, the prepared raw material batch is put into a melting kiln and is electrically melted.
次に、調製した原料バッチを、溶融窯に投入し、電気溶融する。 (2) Step of electromelting the prepared raw material batch Next, the prepared raw material batch is put into a melting kiln and is electrically melted.
溶融窯は、複数のモリブデン電極を有するものであり、モリブデン電極間に電気を印加することにより、ガラス融液中に電気が通電され、そのジュール熱によってガラスを連続的に溶融する。なお補助的にヒーターやバーナーによる輻射加熱を併用してもよいが、ガラスのβ-OH値を低下させる観点から、バーナーを用いない完全電気溶融とすることが望ましい。バーナーによる加熱を行う場合、燃焼によって生じた水分がガラス中に取り込まれてしまい、ガラスの水分量を十分に低下させることが難しくなる。
The melting kiln has a plurality of molybdenum electrodes. When electricity is applied between the molybdenum electrodes, electricity is passed through the glass melt, and the glass is continuously melted by the Joule heat. In addition, radiant heating with a heater or a burner may be supplementarily used, but from the viewpoint of lowering the β-OH value of the glass, it is desirable to achieve complete electric melting without using a burner. When heating with a burner, moisture generated by combustion is taken into the glass, making it difficult to sufficiently reduce the moisture content of the glass.
モリブデン電極は、既述の通り、配置場所や電極形状の自由度が高いため、電気を通し難い無アルカリガラスであっても、最適な電極配置、電極形状を採用することができ、通電加熱が容易になる。電極形状としてはロッド状であることが好ましい。ロッド状であれば、溶融窯の側壁面や底壁面の任意の位置に、所望の電極間距離を保って、所望の数の電極を配置することが可能である。電極の配置は、溶融窯の壁面(側壁面、底壁面等)、特に底壁面に、電極間距離を短くして複数対配置することが望ましい。なおガラス中にヒ素成分やアンチモン成分が含まれている場合、既述の理由からモリブデン電極が使用できず、代わりにこれらの成分で浸食を受けない錫電極を使用する必要がある。ところが錫電極は、配置場所や電極形状の自由度が非常に低いため、無アルカリガラスを電気溶融することが難しくなる。
As described above, since the molybdenum electrode has a high degree of freedom in the location and shape of the electrode, even if it is non-alkali glass that is difficult to conduct electricity, the optimal electrode arrangement and electrode shape can be adopted, It becomes easy. The electrode shape is preferably a rod shape. If it is rod-shaped, it is possible to arrange a desired number of electrodes at an arbitrary position on the side wall surface or bottom wall surface of the melting furnace while maintaining a desired inter-electrode distance. As for the arrangement of the electrodes, it is desirable to arrange a plurality of pairs on the wall surface (side wall surface, bottom wall surface, etc.), particularly the bottom wall surface of the melting furnace, with the distance between the electrodes shortened. When glass contains an arsenic component or an antimony component, a molybdenum electrode cannot be used for the reasons described above, and instead, a tin electrode that is not subject to erosion by these components must be used. However, since the tin electrode has a very low degree of freedom in the location and the electrode shape, it becomes difficult to electrically melt the alkali-free glass.
溶融窯に投入された原料バッチは、通電加熱により溶融し、ガラス融液(溶融ガラス)となる。その際、原料バッチ中に含まれる塩化物は、分解、揮発することによってガラス中の水分を雰囲気中に持ち去り、ガラスのβ-OH値を低減する。また原料バッチ中に含まれる錫化合物は、ガラス融液中に溶解し、清澄剤として作用する。詳述すると、錫成分は、昇温過程で酸素泡を放出する。放出された酸素泡は、ガラス融液中に含まれる泡を拡大、浮上させてガラスから除去する。また錫成分は、降温過程では酸素泡を吸収することで、ガラス中に残存する泡を消滅させる。
The raw material batch charged into the melting kiln is melted by energization heating to become a glass melt (molten glass). At that time, the chloride contained in the raw material batch decomposes and volatilizes, thereby removing moisture in the glass into the atmosphere and reducing the β-OH value of the glass. Moreover, the tin compound contained in the raw material batch dissolves in the glass melt and acts as a fining agent. More specifically, the tin component releases oxygen bubbles during the temperature rising process. The released oxygen bubbles are removed from the glass by expanding and floating the bubbles contained in the glass melt. Further, the tin component absorbs oxygen bubbles in the temperature lowering process, thereby eliminating bubbles remaining in the glass.
なお溶融窯で溶融されたガラスは、成形装置へ供給されるが、溶融窯と成形装置の間に清澄槽、撹拌槽、状態調節槽等を配置し、これらを通過させた後に、成形装置に供給するようにしてもよい。また溶融窯と成形装置(或いはその間に設ける各槽)の間を繋ぐ連絡流路は、ガラスの汚染を防止するために、少なくともガラスとの接触面が白金又は白金合金製であることが好ましい。
The glass melted in the melting kiln is supplied to the molding apparatus, but a clarification tank, a stirring tank, a state adjustment tank, etc. are arranged between the melting kiln and the molding apparatus, and after passing these, You may make it supply. Further, it is preferable that at least the contact surface with the glass of the communication flow path connecting between the melting furnace and the molding apparatus (or each tank provided therebetween) is made of platinum or a platinum alloy in order to prevent contamination of the glass.
(3)溶融されたガラスを板状に成形する工程
次に、溶融窯で溶融されたガラスを成形装置に供給し、ダウンドロー法により板状に成形する。 (3) The process of shape | molding the fuse | melted glass in plate shape Next, the glass fuse | melted with the melting furnace is supplied to a shaping | molding apparatus, and it shape | molds in plate shape by the down draw method.
次に、溶融窯で溶融されたガラスを成形装置に供給し、ダウンドロー法により板状に成形する。 (3) The process of shape | molding the fuse | melted glass in plate shape Next, the glass fuse | melted with the melting furnace is supplied to a shaping | molding apparatus, and it shape | molds in plate shape by the down draw method.
ダウンドロー法としては、オーバーフローダウンドロー法を採用することが好ましい。オーバーフローダウンドロー法とは、断面が楔状の樋状耐火物の両側から溶融ガラスを溢れさせて、溢れた溶融ガラスを樋状耐火物の下端で合流させながら、下方に延伸成形してガラスを板状に成形する方法である。オーバーフローダウンドロー法では、ガラス基板の表面となるべき面は樋状耐火物に接触せず、自由表面の状態で成形される。このため、未研磨で表面品位が良好なガラス基板を安価に製造することができ、またガラスの大型化や薄型化も容易である。なお、オーバーフローダウンドロー法で用いる樋状耐火物の構造や材質は、所望の寸法や表面精度を実現できるものであれば、特に限定されない。また、下方への延伸成形を行う際に、力を印加する方法も特に限定されない。例えば、十分に大きい幅を有する耐熱性ロールをガラスに接触させた状態で回転させて延伸する方法を採用してもよいし、複数の対になった耐熱性ロールをガラスの端面近傍のみに接触させて延伸する方法を採用してもよい。なおオーバーフローダウンドロー法以外にも、例えば、スロットダウン法等を採用することが可能である。
It is preferable to adopt the overflow downdraw method as the downdraw method. The overflow down-draw method is a method in which molten glass overflows from both sides of a saddle-shaped refractory with a wedge-shaped cross section, and the overflowed molten glass is joined at the lower end of the saddle-shaped refractory and stretched downward to form a glass plate. It is the method of shape | molding in a shape. In the overflow down draw method, the surface to be the surface of the glass substrate is not in contact with the bowl-shaped refractory, and is formed in a free surface state. Therefore, an unpolished glass substrate having a good surface quality can be manufactured at a low cost, and the glass can be easily made large and thin. The structure and material of the bowl-shaped refractory used in the overflow downdraw method are not particularly limited as long as desired dimensions and surface accuracy can be realized. In addition, the method of applying a force when performing downward stretch molding is not particularly limited. For example, a method may be adopted in which a heat-resistant roll having a sufficiently large width is rotated and stretched in contact with the glass, or a plurality of pairs of heat-resistant rolls are contacted only near the end face of the glass. It is also possible to adopt a method of stretching by stretching. In addition to the overflow down draw method, for example, a slot down method or the like can be adopted.
なおこのようにして板状に成形されたガラスは、所定のサイズに切断され、必要に応じて各種の化学的、或いは機械的な加工等が施され、ガラス基板となる。
Note that the glass thus formed into a plate shape is cut into a predetermined size and subjected to various chemical or mechanical processing as required to form a glass substrate.
(4)無アルカリガラスの組成
本発明の製造方法を好適に適用できる無アルカリガラスの組成として、モル%で、SiO2 60~75%、Al2O3 9.5~17%、B2O3 0~9%、MgO 0~8%、CaO 0~15%、SrO 0~10%、BaO 0~10%、SnO2 0.001~1%、Cl 0~3%を含有し、As2O3及びSb2O3を実質的に含有せず、モル比(CaO+SrO+BaO)/Al2O3が0.5~1.0であるガラスが例示できる。上記のように各成分の含有量を限定した理由を以下に示す。なお、各成分の含有量の説明において、%表示は、特に断りがある場合を除き、モル%を表す。 (4) Composition of alkali-free glass As a composition of alkali-free glass to which the production method of the present invention can be suitably applied, it is SiO 2 60 to 75%, Al 2 O 3 9.5 to 17%, B 2 O in mol%. 3 to 9%, MgO 0 to 8%, CaO 0 to 15%, SrO 0 to 10%, BaO 0 to 10%, SnO 2 0.001 to 1%, Cl 0 to 3%, As 2 Examples thereof include glass that does not substantially contain O 3 and Sb 2 O 3 and has a molar ratio (CaO + SrO + BaO) / Al 2 O 3 of 0.5 to 1.0. The reason for limiting the content of each component as described above will be described below. In addition, in description of content of each component,% display represents mol% unless there is particular notice.
本発明の製造方法を好適に適用できる無アルカリガラスの組成として、モル%で、SiO2 60~75%、Al2O3 9.5~17%、B2O3 0~9%、MgO 0~8%、CaO 0~15%、SrO 0~10%、BaO 0~10%、SnO2 0.001~1%、Cl 0~3%を含有し、As2O3及びSb2O3を実質的に含有せず、モル比(CaO+SrO+BaO)/Al2O3が0.5~1.0であるガラスが例示できる。上記のように各成分の含有量を限定した理由を以下に示す。なお、各成分の含有量の説明において、%表示は、特に断りがある場合を除き、モル%を表す。 (4) Composition of alkali-free glass As a composition of alkali-free glass to which the production method of the present invention can be suitably applied, it is SiO 2 60 to 75%, Al 2 O 3 9.5 to 17%, B 2 O in mol%. 3 to 9%, MgO 0 to 8%, CaO 0 to 15%, SrO 0 to 10%, BaO 0 to 10%, SnO 2 0.001 to 1%, Cl 0 to 3%, As 2 Examples thereof include glass that does not substantially contain O 3 and Sb 2 O 3 and has a molar ratio (CaO + SrO + BaO) / Al 2 O 3 of 0.5 to 1.0. The reason for limiting the content of each component as described above will be described below. In addition, in description of content of each component,% display represents mol% unless there is particular notice.
SiO2は、ガラスの骨格を形成する成分である。SiO2の含有量は60~75%、62~75%、63~75%、64~75%、64~74%、特に65~74%であることが好ましい。SiO2の含有量が少な過ぎると、密度が高くなり過ぎると共に、耐酸性が低下し易くなる。一方、SiO2の含有量が多過ぎると、高温粘度が高くなり、溶融性が低下し易くなることに加えて、クリストバライト等の失透結晶が析出し易くなって、液相温度が上昇し易くなる。
SiO 2 is a component that forms a glass skeleton. The SiO 2 content is preferably 60 to 75%, 62 to 75%, 63 to 75%, 64 to 75%, 64 to 74%, particularly 65 to 74%. When the content of SiO 2 is too small, the density becomes too high, the acid resistance is likely to decrease. On the other hand, if the content of SiO 2 is too large, the high-temperature viscosity becomes high and the meltability tends to decrease, and devitrification crystals such as cristobalite are likely to precipitate, and the liquidus temperature is likely to rise. Become.
Al2O3は、ガラスの骨格を形成する成分であり、また歪点やヤング率を高める成分であり、更に分相を抑制する成分である。Al2O3の含有量は9.5~17%、9.5~16%、9.5~15.5%、特に10~15%であることが好ましい。Al2O3の含有量が少な過ぎると、歪点、ヤング率が低下し易くなり、またガラスが分相し易くなる。一方、Al2O3の含有量が多過ぎると、ムライトやアノーサイト等の失透結晶が析出し易くなって、液相温度が上昇し易くなる。
Al 2 O 3 is a component that forms a glass skeleton, a component that increases the strain point and Young's modulus, and a component that further suppresses phase separation. The content of Al 2 O 3 is preferably 9.5 to 17%, 9.5 to 16%, 9.5 to 15.5%, particularly preferably 10 to 15%. When the content of Al 2 O 3 is too small, the strain point, the Young's modulus tends to decrease, also tends glass phase separation. On the other hand, when the content of Al 2 O 3 is too large, devitrification crystals such as mullite and anorthite are likely to precipitate, and the liquidus temperature is likely to rise.
B2O3は、溶融性を高めると共に、耐失透性を高める成分である。B2O3の含有量は0~9%、0~8.5%、0~8%、0~7.5%、特に0~7.5%であることが好ましい。B2O3の含有量が少な過ぎると、溶融性や耐失透性が低下し易くなり、またフッ酸系の薬液に対する耐性が低下し易くなる。一方、B2O3の含有量が多過ぎると、ヤング率や歪点が低下し易くなる。また水分量の持ち込みが多くなる。なお歪点の上昇や水分量の低減を優先させる場合には、B2O3の含有量を0~3%、0~2%、特に0~1%とすることが好ましく、実質的に含まないことがより望ましい。なお「B2O3を実質的に含まない」とは、B2O3を意図的に添加しない、即ちホウ素源となる原料を添加しないことを意味し、不純物として混入する場合を排除するものではない。より客観的にはB2O3の含有量が0.1%以下であることを指す。
B 2 O 3 is a component that enhances meltability and increases devitrification resistance. The content of B 2 O 3 is preferably 0 to 9%, 0 to 8.5%, 0 to 8%, 0 to 7.5%, particularly preferably 0 to 7.5%. When B 2 content of O 3 is too small, it tends to decrease. Meltability and devitrification resistance, also resistance tends to decrease with respect to hydrofluoric acid chemical. On the other hand, when the content of B 2 O 3 is too large, the Young's modulus and the strain point tends to decrease. In addition, the amount of water brought in increases. In the case where priority is given to an increase in strain point and a reduction in water content, the content of B 2 O 3 is preferably 0 to 3%, 0 to 2%, particularly preferably 0 to 1%. More preferably not. Note that “substantially free of B 2 O 3 ” means that B 2 O 3 is not intentionally added, that is, a raw material that becomes a boron source is not added, and the case where it is mixed as an impurity is excluded. is not. More objectively, it means that the content of B 2 O 3 is 0.1% or less.
MgOは、高温粘性を下げて、溶融性を高める成分であり、アルカリ土類金属酸化物の中では、ヤング率を顕著に高める成分である。MgOの含有量は0~8%、0~7%、0~6.7%、0~6.4%、特に0~6%であることが好ましい。MgOの含有量が少な過ぎると、溶融性やヤング率が低下し易くなる。一方、MgOの含有量が多過ぎると、耐失透性が低下し易くなると共に、歪点が低下し易くなる。
MgO is a component that lowers the viscosity at high temperature and increases the meltability, and among alkaline earth metal oxides, it is a component that significantly increases the Young's modulus. The MgO content is preferably 0 to 8%, 0 to 7%, 0 to 6.7%, 0 to 6.4%, particularly preferably 0 to 6%. When there is too little content of MgO, a meltability and a Young's modulus will fall easily. On the other hand, when there is too much content of MgO, devitrification resistance will fall easily and a strain point will fall easily.
CaOは、歪点を低下させずに、高温粘性を下げて、溶融性を顕著に高める成分である。また、アルカリ土類金属酸化物の中では、導入原料が比較的安価であるため、原料コストを低廉化する成分である。CaOの含有量は0~10%、2~15%、2~14%、2~13%、2~12%、特に2~11%であることが好ましい。CaOの含有量が少な過ぎると、上記効果を享受し難くなる。一方、CaOの含有量が多過ぎると、ガラスが失透し易くなると共に、熱膨張係数が高くなり易い。
CaO is a component that lowers the high-temperature viscosity without lowering the strain point and significantly increases the meltability. Further, among the alkaline earth metal oxides, since the introduced raw material is relatively inexpensive, it is a component that lowers the raw material cost. The CaO content is preferably 0 to 10%, 2 to 15%, 2 to 14%, 2 to 13%, 2 to 12%, particularly preferably 2 to 11%. When there is too little content of CaO, it will become difficult to receive the said effect. On the other hand, when there is too much content of CaO, while glass will become easy to devitrify, a thermal expansion coefficient will become high easily.
SrOは、分相を抑制し、また耐失透性を高める成分である。更に、歪点を低下させずに、高温粘性を下げて、溶融性を高める成分であると共に、液相温度の上昇を抑制する成分である。SrOの含有量は0~10%、0.1~10%、0.1~9%、0.1~8%、0.1~7%、特に0.1~6%であることが好ましい。SrOの含有量が少な過ぎると、上記効果を享受し難くなる。一方、SrOの含有量が多過ぎると、ストロンチウムシリケート系の失透結晶が析出し易くなって、耐失透性が低下し易くなる。
SrO is a component that suppresses phase separation and increases devitrification resistance. Furthermore, it is a component that lowers the high-temperature viscosity without increasing the strain point and increases the meltability, and also suppresses the rise in the liquidus temperature. The SrO content is preferably 0 to 10%, 0.1 to 10%, 0.1 to 9%, 0.1 to 8%, 0.1 to 7%, particularly preferably 0.1 to 6%. . When there is too little content of SrO, it will become difficult to receive the said effect. On the other hand, when the content of SrO is too large, strontium silicate devitrification crystals are likely to precipitate, and devitrification resistance is likely to be lowered.
BaOは、耐失透性を顕著に高める成分である。BaOの含有量はBaOの含有量は0~10%、0~7%、0~6%、0~5%、特に0.1~5%であることが好ましい。BaOの含有量が少な過ぎると、上記効果を享受し難くなる。一方、BaOの含有量が多過ぎると、密度が高くなり過ぎると共に、溶融性が低下し易くなる。またBaOを含む失透結晶が析出し易くなって、液相温度が上昇し易くなる。
BaO is a component that significantly increases devitrification resistance. The BaO content is preferably 0 to 10%, 0 to 7%, 0 to 6%, 0 to 5%, particularly preferably 0.1 to 5%. When there is too little content of BaO, it will become difficult to receive the said effect. On the other hand, when there is too much content of BaO, while a density will become high too much, a meltability will fall easily. Further, devitrified crystals containing BaO are likely to precipitate, and the liquidus temperature is likely to rise.
SnO2は、高温域で良好な清澄作用を有する成分であると共に、歪点を高める成分であり、また高温粘性を低下させる成分である。またモリブデン電極を浸食しないというメリットがある。SnO2の含有量は0.001~1%、0.001~0.5%、0.001~0.3%、特に0.01~0.3%であることが好ましい。SnO2の含有量が多過ぎると、SnO2の失透結晶が析出し易くなり、またZrO2の失透結晶の析出を促進し易くなる。なお、SnO2の含有量が0.001%より少ないと、上記効果を享受し難くなる。
SnO 2 is a component that has a good clarification action in a high temperature range, a component that increases the strain point, and a component that decreases high temperature viscosity. There is also an advantage that the molybdenum electrode is not eroded. The SnO 2 content is preferably 0.001 to 1%, 0.001 to 0.5%, 0.001 to 0.3%, and particularly preferably 0.01 to 0.3%. When the content of SnO 2 is too large, the devitrified crystal of SnO 2 is likely to precipitate, and the precipitation of the devitrified crystal of ZrO 2 is easily promoted. Incidentally, when the content of SnO 2 is less than 0.001%, it becomes difficult to enjoy the above-mentioned effects.
Clは、脱水効果、即ち、ガラス中の水分量を低下させる効果がある。またClは無アルカリガラスの溶融を促進する効果があり、Clを添加すれば、溶融温度を低温化できると共に、清澄剤の作用を促進し、結果として、溶融コストを低廉化しつつ、ガラス製造窯の長寿命化を図ることができる。しかし、Clの含有量が多過ぎると、歪点が低下し易くなる。このため、Clの含有量は、0~3%、0.001~3%、0.001~2%、特に0.001~1%であることが好ましい。
Cl has a dehydrating effect, that is, an effect of reducing the amount of water in the glass. In addition, Cl has an effect of promoting melting of the alkali-free glass. If Cl is added, the melting temperature can be lowered and the action of the clarifying agent is promoted. As a result, the melting cost is reduced and the glass manufacturing kiln is reduced. It is possible to extend the service life. However, if the Cl content is too large, the strain point tends to decrease. For this reason, the Cl content is preferably 0 to 3%, 0.001 to 3%, 0.001 to 2%, and particularly preferably 0.001 to 1%.
As2O3及びSb2O3は実質的に含有しない。具体的にはAs2O3及びSb2O3の含有量が何れも50ppm以下であることを意味する。これらの成分は、清澄剤として有用であるが、モリブデン電極を浸食し、工業的規模での電気溶融を困難にするため使用すべきでない。また環境的観点からも使用しないことが好ましい。
As 2 O 3 and Sb 2 O 3 are not substantially contained. Specifically, it means that the contents of As 2 O 3 and Sb 2 O 3 are both 50 ppm or less. These components are useful as fining agents, but should not be used because they erode the molybdenum electrode and make electromelting difficult on an industrial scale. Moreover, it is preferable not to use from an environmental viewpoint.
モル比(CaO+SrO+BaO)/Al2O3は、高比ヤング率と高歪点を両立させると共に、耐失透性を高める上で、重要な成分比率である。モル比(CaO+SrO+BaO)/Al2O3は0.5~1.5、0.5~1.3であり、0.5~1.2、0.5~1.1、0.6~1.1、特に0.7~1.1であることが好ましい。モル比(CaO+SrO+BaO)/Al2O3が小さ過ぎると、ムライトやアルカリ土類に起因する失透結晶が析出し易くなり、耐失透性が著しく低下する。一方、モル比(CaO+SrO+BaO)/Al2O3が大きくなると、クリストバライトやアノーサイト等のアルカリ土類アルミノシリケート系の失透結晶が析出し易くなり、耐失透性が低下し易くなることに加えて、比ヤング率や歪点を高め難くなる。
The molar ratio (CaO + SrO + BaO) / Al 2 O 3 is an important component ratio in order to achieve both a high specific Young's modulus and a high strain point and to improve devitrification resistance. The molar ratio (CaO + SrO + BaO) / Al 2 O 3 is 0.5 to 1.5, 0.5 to 1.3, 0.5 to 1.2, 0.5 to 1.1, 0.6 to 1 .1, particularly 0.7 to 1.1. When the molar ratio (CaO + SrO + BaO) / Al 2 O 3 is too small, devitrification crystals caused by mullite and alkaline earth are likely to precipitate, and the devitrification resistance is significantly reduced. On the other hand, when the molar ratio (CaO + SrO + BaO) / Al 2 O 3 increases, alkaline earth aluminosilicate devitrification crystals such as cristobalite and anorthite tend to precipitate, and devitrification resistance tends to decrease. Therefore, it is difficult to increase the specific Young's modulus and the strain point.
上記成分以外にも、例えば、任意成分として、以下の成分を添加してもよい。なお、上記成分以外の他の成分の含有量は、本発明の効果を的確に享受する観点から、合量で10%以下、特に5%以下が好ましい。
In addition to the above components, for example, the following components may be added as optional components. In addition, the content of other components other than the above components is preferably 10% or less, and particularly preferably 5% or less in total, from the viewpoint of accurately enjoying the effects of the present invention.
ZnOは、溶融性を高める成分である。しかし、ZnOを多量に含有させると、ガラスが失透し易くなり、また歪点が低下し易くなる。ZnOの含有量は0~5%、0~4%、0~3%、特に0~2%が好ましい。
ZnO is a component that enhances meltability. However, when ZnO is contained in a large amount, the glass tends to be devitrified and the strain point tends to be lowered. The content of ZnO is preferably 0 to 5%, 0 to 4%, 0 to 3%, particularly preferably 0 to 2%.
P2O5は、歪点を高める成分であると共に、アノーサイト等のアルカリ土類アルミノシリケート系の失透結晶の析出を抑制し得る成分である。但し、P2O5を多量に含有させると、ガラスが分相し易くなる。P2O5の含有量は、好ましくは0~2.5%、0~1.5%、0~1%、特に0~0.5%である。
P 2 O 5 is a component that increases the strain point and is a component that can suppress precipitation of devitrified crystals of alkaline earth aluminosilicates such as anorthite. However, when P 2 O 5 is contained in a large amount, the glass is likely to be phase-separated. The content of P 2 O 5 is preferably 0 to 2.5%, 0 to 1.5%, 0 to 1%, particularly 0 to 0.5%.
TiO2は、高温粘性を下げて、溶融性を高める成分であると共に、ソラリゼーションを抑制する成分であるが、TiO2を多量に含有させると、ガラスが着色して、透過率が低下し易くなる。TiO2の含有量は0~4%、0~3%、0~2%、特に0~0.1%が好ましい。
TiO 2 is a component that lowers the viscosity at high temperature and increases the meltability, and is a component that suppresses solarization. However, when TiO 2 is contained in a large amount, the glass is colored and the transmittance tends to decrease. . The content of TiO 2 is preferably 0 to 4%, 0 to 3%, 0 to 2%, particularly preferably 0 to 0.1%.
Y2O3、Nb2O5には、歪点、ヤング率等を高める働きがある。しかし、これらの成分の含有量が各々2%より多いと、密度が増加し易くなる。
Y 2 O 3 and Nb 2 O 5 have a function of increasing the strain point, Young's modulus, and the like. However, when the content of these components is more than 2%, the density tends to increase.
La2O3にも、歪点、ヤング率等を高める働きがあるが、近年、導入原料の価格が高騰している。本発明の無アルカリガラスは、La2O3の含有を完全に排除するものではないが、バッチコストの観点から、実質的に添加しないことが好ましい。La2O3の含有量は、好ましくは2%以下、1%以下、0.5%以下、実質的に含有させないこと(0.1%以下)が望ましい。
La 2 O 3 also has a function of increasing the strain point, Young's modulus, and the like, but in recent years, the price of the introduced raw material has been rising. The alkali-free glass of the present invention does not completely exclude the inclusion of La 2 O 3 , but from the viewpoint of batch cost, it is preferable not to add it substantially. The content of La 2 O 3 is preferably 2% or less, 1% or less, 0.5% or less, and is not substantially contained (0.1% or less).
ZrO2は、歪点、ヤング率を高める働きがある。しかし、ZrO2の含有量が多過ぎると、耐失透性が顕著に低下する。特に、SnO2を含有させる場合は、ZrO2の含有量を厳密に規制する必要がある。ZrO2の含有量は0.2%以下、0.15%以下、特に0.1%以下が好ましい。
ZrO 2 functions to increase the strain point and Young's modulus. However, when the content of ZrO 2 is too large, the devitrification resistance is significantly decreased. In particular, when SnO 2 is contained, it is necessary to strictly regulate the content of ZrO 2 . The content of ZrO 2 is preferably 0.2% or less, 0.15% or less, and particularly preferably 0.1% or less.
(5)無アルカリガラス基板の特性等
次に本発明の方法によって得られる無アルカリガラス基板について説明する。 (5) Characteristics of alkali-free glass substrate, etc. Next, the alkali-free glass substrate obtained by the method of the present invention will be described.
次に本発明の方法によって得られる無アルカリガラス基板について説明する。 (5) Characteristics of alkali-free glass substrate, etc. Next, the alkali-free glass substrate obtained by the method of the present invention will be described.
本発明の方法によって得られる無アルカリガラス基板は、ガラスを常温から500℃まで5℃/分の速度で昇温し、500℃で1時間保持した後に、5℃/分の速度で降温させたときの熱収縮率が25ppm以下、20ppm以下、15ppm以下、12ppm以下、特に10ppm以下となることが好ましい。熱収縮率が大きいと、低温ポリシリコンTFTを形成するための基板として使用することが難しくなる。
The alkali-free glass substrate obtained by the method of the present invention was heated at a rate of 5 ° C./min from room temperature to 500 ° C., held at 500 ° C. for 1 hour, and then cooled at a rate of 5 ° C./min. It is preferable that the thermal shrinkage rate is 25 ppm or less, 20 ppm or less, 15 ppm or less, 12 ppm or less, particularly 10 ppm or less. When the thermal shrinkage rate is large, it becomes difficult to use as a substrate for forming a low-temperature polysilicon TFT.
本発明の方法によって得られる無アルカリガラス基板は、β-OH値が0.2/mm以下、0.18/mm以下、0.16/mm以下、特に0.15/mm以下であるガラスからなることが好ましい。なおβ-OH値の下限値は制限されないが、0.01/mm以上、特に0.05/mm以上であることが好ましい。β-OH値が大きいと、ガラスの歪点が十分に高くならず、熱収縮率を大幅に低減することが難しくなる。
The alkali-free glass substrate obtained by the method of the present invention is made of a glass having a β-OH value of 0.2 / mm or less, 0.18 / mm or less, 0.16 / mm or less, particularly 0.15 / mm or less. It is preferable to become. The lower limit of the β-OH value is not limited, but is preferably 0.01 / mm or more, particularly preferably 0.05 / mm or more. If the β-OH value is large, the strain point of the glass will not be sufficiently high, and it will be difficult to significantly reduce the thermal shrinkage rate.
本発明の方法によって得られる無アルカリガラスは、歪点が670℃超、675℃超、680℃超、685℃超、690℃超、700℃超、710℃超、特に720℃超であることが好ましい。このようにすれば、低温ポリシリコンTFTの製造工程において、ガラス基板の熱収縮を抑制し易くなる。
The alkali-free glass obtained by the method of the present invention has a strain point of more than 670 ° C, more than 675 ° C, more than 680 ° C, more than 685 ° C, more than 690 ° C, more than 700 ° C, more than 710 ° C, particularly more than 720 ° C. Is preferred. If it does in this way, in the manufacturing process of a low-temperature polysilicon TFT, it will become easy to suppress the thermal contraction of a glass substrate.
本発明の方法によって得られる無アルカリガラス基板は、104.0dPa・sに相当する温度が1350℃以下、1345℃以下、1340℃以下、1335℃以下、1330℃以下、特に1325℃以下であるガラスからなることが好ましい。104.0dPa・sにおける温度が高くなると、成形時の温度が高くなり過ぎて、ガラス基板の製造コストが高騰し易くなる。なお「104.0dPa・sに相当する温度」は、白金球引き上げ法で測定した値である。
The alkali-free glass substrate obtained by the method of the present invention has a temperature corresponding to 10 4.0 dPa · s at 1350 ° C. or lower, 1345 ° C. or lower, 1340 ° C. or lower, 1335 ° C. or lower, 1330 ° C. or lower, especially 1325 ° C. or lower. It is preferable to consist of a certain glass. When the temperature at 10 4.0 dPa · s increases, the temperature at the time of molding becomes too high, and the manufacturing cost of the glass substrate tends to increase. The “temperature corresponding to 10 4.0 dPa · s” is a value measured by a platinum ball pulling method.
本発明の方法によって得られる無アルカリガラス基板は、102.5dPa・sにおける温度が1700℃以下、1695℃以下、1690℃以下、特に1680℃以下であるガラスからなることが好ましい。102.5dPa・sにおける温度が高くなると、ガラスを溶解し難くなって、ガラス基板の製造コストが高騰すると共に、泡等の欠陥が生じ易くなる。なお、「102.5dPa・sに相当する温度」は、白金球引き上げ法で測定した値である。
The alkali-free glass substrate obtained by the method of the present invention is preferably made of glass having a temperature at 10 2.5 dPa · s of 1700 ° C. or lower, 1695 ° C. or lower, 1690 ° C. or lower, particularly 1680 ° C. or lower. When the temperature at 10 2.5 dPa · s increases, it becomes difficult to melt the glass, the manufacturing cost of the glass substrate rises, and defects such as bubbles easily occur. The “temperature corresponding to 10 2.5 dPa · s” is a value measured by a platinum ball pulling method.
本発明の方法によって得られる無アルカリガラスは、液相温度が1300℃未満、1290℃以下、1210℃以下、1200℃以下、1190℃以下、1180℃以下、1170℃以下、1160℃以下、特に1150℃以下であるガラスからなることが好ましい。このようにすれば、ガラス製造時に失透結晶が発生して、生産性が低下する事態を防止し易くなる。更に、オーバーフローダウンドロー法で成形し易くなるため、ガラス基板の表面品位を高め易くなると共に、ガラス基板の製造コストを低廉化することができる。そして、近年のガラス基板の大型化、及びディスプレイの高精細化の観点から、表面欠陥となり得る失透物を極力抑制するためにも、耐失透性を高める意義は非常に大きい。なお、液相温度は、耐失透性の指標であり、液相温度が低い程、耐失透性に優れる。「液相温度」は、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れて、1100℃から1350℃に設定された温度勾配炉中に24時間保持した後、白金ボートを取り出し、ガラス中に失透(結晶異物)が認められた温度を指す。
The alkali-free glass obtained by the method of the present invention has a liquidus temperature of less than 1300 ° C, 1290 ° C or less, 1210 ° C or less, 1200 ° C or less, 1190 ° C or less, 1180 ° C or less, 1170 ° C or less, 1160 ° C or less, particularly 1150. The glass is preferably made of glass having a temperature of not higher than ° C. If it does in this way, it will become easy to prevent the situation where devitrification crystal occurs at the time of glass manufacture, and productivity falls. Furthermore, since it becomes easy to shape | mold by the overflow down draw method, while it becomes easy to improve the surface quality of a glass substrate, the manufacturing cost of a glass substrate can be reduced. And from the viewpoint of increasing the size of a glass substrate in recent years and increasing the definition of a display, the significance of increasing the devitrification resistance is extremely great in order to suppress devitrification substances that can be surface defects as much as possible. The liquidus temperature is an index of devitrification resistance. The lower the liquidus temperature, the better the devitrification resistance. “Liquid phase temperature” is obtained by passing the standard sieve 30 mesh (500 μm) and putting the glass powder remaining in 50 mesh (300 μm) into a platinum boat for 24 hours in a temperature gradient furnace set at 1100 ° C. to 1350 ° C. After holding, the platinum boat is taken out and refers to the temperature at which devitrification (crystal foreign matter) is observed in the glass.
本発明の方法によって得られる無アルカリガラス基板は、液相温度における粘度が104.8dPa・s以上、104.9dPa・s以上、105.0dPa・s以上、105.1dPa・s以上、105.2dPa・s以上、105.3dPa・s以上、特に105.4dPa・s以上であるガラスからなることが好ましい。このようにすれば、成形時に失透が生じ難くなるため、オーバーフローダウンドロー法でガラス基板を成形し易くなり、結果として、ガラス基板の表面品位を高めることが可能になり、またガラス基板の製造コストを低廉化することができる。なお、液相温度における粘度は、成形性の指標であり、液相温度における粘度が高い程、成形性が向上する。なお「液相温度における粘度」は、液相温度におけるガラスの粘度を指し、例えば白金球引き上げ法で測定可能である。
The alkali-free glass substrate obtained by the method of the present invention has a viscosity at a liquidus temperature of 10 4.8 dPa · s or more, 10 4.9 dPa · s or more, 10 5.0 dPa · s or more, 10 5.1. dPa · s or more, 10 5.2 dPa · s or more, preferably 10 5.3 dPa · s or more, particularly preferably 10 5.4 dPa · s or more. In this way, devitrification is less likely to occur at the time of molding, so it becomes easier to mold the glass substrate by the overflow downdraw method, and as a result, the surface quality of the glass substrate can be improved, and the glass substrate is manufactured. Cost can be reduced. The viscosity at the liquidus temperature is an index of moldability. The higher the viscosity at the liquidus temperature, the better the moldability. The “viscosity at the liquidus temperature” refers to the viscosity of the glass at the liquidus temperature and can be measured by, for example, a platinum ball pulling method.
[実施例1]
以下、本発明の製造方法の実施形態を説明する。図2は、本発明の製造方法を実施するためのガラス製造設備1の概略構成を示す説明図である。 [Example 1]
Hereinafter, embodiments of the production method of the present invention will be described. FIG. 2 is an explanatory diagram showing a schematic configuration of theglass manufacturing facility 1 for carrying out the manufacturing method of the present invention.
以下、本発明の製造方法の実施形態を説明する。図2は、本発明の製造方法を実施するためのガラス製造設備1の概略構成を示す説明図である。 [Example 1]
Hereinafter, embodiments of the production method of the present invention will be described. FIG. 2 is an explanatory diagram showing a schematic configuration of the
まずガラス製造設備の構成を説明する。ガラス製造設備10は、原料バッチを電気溶融する溶融窯1と、該溶融窯2の下流側に設けられた清澄槽2と、該清澄槽2の下流側に設けられた調整槽3と、調整槽3の下流側に設けられた成形装置4とを有し、溶融窯1、清澄槽2、調整槽3及び成形装置4は、それぞれ連絡流路5、6、7によって接続されている。
First, the structure of the glass manufacturing facility will be explained. The glass production facility 10 includes a melting furnace 1 for electrically melting a raw material batch, a clarification tank 2 provided on the downstream side of the melting furnace 2, an adjustment tank 3 provided on the downstream side of the clarification tank 2, and an adjustment. The melting furnace 1, the clarification tank 2, the adjustment tank 3, and the molding apparatus 4 are connected by connecting flow paths 5, 6, and 7, respectively.
前記溶融窯1は、底壁、側壁、及び天井壁とを有し、これらの各壁は、ZrO2電鋳耐火物等の高ジルコニア系耐火物やデンスジルコンで形成される。側壁は、耐火物が冷却され易いように壁厚が薄く設計されている。また左右両側の側壁下部及び底壁には複数対のモリブデン電極が設置される。各電極には電極温度が過度に上昇しないように冷却手段が設けられる。そして電極間に電気を印加することによりガラスを直接通電加熱することができる。なお本実施態様では、通常生産時に使用するバーナー(生産立ち上げ時のバーナーは除く)やヒーターは設けられていない。
The melting furnace 1 has a bottom wall, a side wall, and a ceiling wall, and each of these walls is formed of a high zirconia refractory such as ZrO 2 electroformed refractory or dense zircon. The side wall is designed to be thin so that the refractory is easily cooled. In addition, a plurality of pairs of molybdenum electrodes are installed on the left and right side wall lower portions and bottom walls. Each electrode is provided with cooling means so that the electrode temperature does not rise excessively. The glass can be directly energized and heated by applying electricity between the electrodes. In this embodiment, there is no burner (except for the burner at the start of production) or heater used during normal production.
前記溶融窯1の上流側の側壁には、炉前サイロ(図示せず)から供給される原料の投入口が設けられ、下流側の側壁には、流出口が形成されており、該流出口を上流端に有する幅狭の連絡流路5を介して溶融窯1と清澄槽2とが連通している。
The upstream side wall of the melting furnace 1 is provided with an inlet for raw material supplied from a furnace silo (not shown), and an outlet is formed on the downstream side wall. The melting furnace 1 and the clarification tank 2 communicate with each other through a narrow communication flow path 5 having an upstream end.
前記清澄槽2は、底壁、側壁及び天井壁とを有し、これらの各壁は、高ジルコニア系耐火物で形成されている。また前記連絡流路5は、底壁、側壁及び天井壁を有し、これらの各壁も、ZrO2電鋳耐火物等の高ジルコニア系耐火物で形成されている。前記清澄槽2は、溶融窯1よりも容積が小さく、その底壁及び側壁の内壁面(少なくとも溶融ガラスと接触する内壁面部位)は、白金又は白金合金が内張されており、前記連絡流路5の底壁及び側壁の内壁面にも白金又は白金合金が内張されている。この清澄槽2は、上流側の側壁に前記流出路5の下流端が開口している。清澄槽2は主としてガラスの清澄が行われる部位であり、ガラス中に含まれる微細な泡が、清澄剤から放出される清澄ガスにより拡大浮上され、ガラスから除去される。
The clarification tank 2 has a bottom wall, a side wall, and a ceiling wall, and each of these walls is formed of a high zirconia refractory. The communication channel 5 has a bottom wall, side walls, and a ceiling wall, and each of these walls is also formed of a high zirconia refractory such as a ZrO 2 electroformed refractory. The clarification tank 2 has a smaller volume than the melting furnace 1, and the bottom wall and the inner wall surface of the side wall (at least the inner wall surface part in contact with the molten glass) are lined with platinum or a platinum alloy, Platinum or a platinum alloy is also lined on the bottom wall of the path 5 and the inner wall surface of the side wall. In the clarification tank 2, the downstream end of the outflow path 5 is opened on the upstream side wall. The clarification tank 2 is a part where clarification of the glass is mainly performed, and fine bubbles contained in the glass are floated up by the clarification gas released from the clarifier and removed from the glass.
前記清澄槽2の下流側の側壁には、流出口が形成され、流出口を上流端に有する幅狭の連絡流路6を介して清澄槽2の下流側に調整槽3が連通している。
An outlet is formed in the downstream side wall of the clarification tank 2, and the adjustment tank 3 communicates with the downstream side of the clarification tank 2 via a narrow communication channel 6 having the outlet at the upstream end. .
前記調整槽3は、底壁、側壁及び天井壁とを有し、これらの各壁は、高ジルコニア系耐火物で形成されている。また前記連絡流路6は、底壁、側壁及び天井壁を有し、これらの各壁も、ZrO2電鋳耐火物等の高ジルコニア系耐火物で形成されている。前記調整槽3の底壁及び側壁の内壁面(少なくとも溶融ガラスと接触する内壁面部位)は、白金又は白金合金が内張されており、前記連絡流路7の底壁及び側壁の内壁面にも、白金又は白金合金が内張されている。調整槽3は主としてガラスを成形に適した状態に調整する部位であり、溶融ガラスの温度を徐々に低下させて成形に適した粘度に調整する。
The said adjustment tank 3 has a bottom wall, a side wall, and a ceiling wall, and these each wall is formed with the high zirconia refractory. The communication channel 6 has a bottom wall, side walls, and a ceiling wall, and each of these walls is also formed of a high zirconia refractory such as a ZrO 2 electroformed refractory. The inner wall surface of the bottom wall and the side wall of the adjustment tank 3 (at least the inner wall surface part in contact with the molten glass) is lined with platinum or a platinum alloy, and the bottom wall of the communication channel 7 and the inner wall surface of the side wall Also, platinum or a platinum alloy is lined. The adjustment tank 3 is a part that mainly adjusts the glass to a state suitable for molding, and gradually adjusts the temperature of the molten glass to a viscosity suitable for molding.
前記調整槽3の下流側の側壁には、流出口が形成され、流出口を上流端に有する幅狭の連絡流路7を介して調整槽3の下流側に成形装置4が連通している。
An outlet is formed in the side wall on the downstream side of the adjustment tank 3, and the molding device 4 communicates with the downstream side of the adjustment tank 3 via a narrow communication channel 7 having the outlet at the upstream end. .
成形装置4は、ダウンドロー成形装置であり、例えばオーバーフローダウンドロー成形装置である。また前記連絡流路7の底壁及び側壁の内壁面は、白金又は白金合金が内張されている。
The molding apparatus 4 is a downdraw molding apparatus, for example, an overflow downdraw molding apparatus. The bottom wall and the inner wall surface of the side wall of the communication channel 7 are lined with platinum or a platinum alloy.
なお本実施例における供給経路とは、溶融窯の下流に設けられる連絡流路5から、成形装置上流側に設けられた連絡流路7までを指す。またここでは溶融窯、清澄槽、調整槽及び成形装置の各部位からなるガラス製造設備を例示したが、例えば調整槽と成形装置の間に、ガラスを攪拌均質化する攪拌槽を設けておくことも可能である。さらに上記各設備は、白金又は白金合金が耐火物に内張されてなるものを示したが、これに代えて白金又は白金合金自身で構成された設備を使用してもよいことは言うまでもない。
In addition, the supply path in a present Example points out from the communication flow path 5 provided in the downstream of a melting kiln to the communication flow path 7 provided in the shaping | molding apparatus upstream. Moreover, although the glass manufacturing equipment which consists of each part of a melting kiln, a clarification tank, an adjustment tank, and a shaping | molding apparatus was illustrated here, for example, between the adjustment tank and the shaping | molding apparatus, the stirring tank which stirs and homogenizes glass should be provided. Is also possible. Furthermore, although each said equipment showed what formed platinum or a platinum alloy by lining a refractory material, it cannot be overemphasized that the equipment comprised with platinum or platinum alloy itself may be used instead of this.
以上のような構成を有するガラス製造設備を用いてガラスを製造する方法を述べる。
A method for producing glass using the glass production equipment having the above-described configuration will be described.
まずSiO2-Al2O3-(B2O3)-RO系無アルカリガラスとなるように原料バッチを調製する。例えば表1の組成となるように原料バッチを調製する。なお原料バッチの調製に当たっては、ホウ素源として無水ホウ酸を積極的に使用する、ホウ素源となる原料を使用しない、水酸化物原料を使用しない、β-OH値の低いガラスカレットを積極的に使用する等、得られるガラスのβ-OH値が低くなるよう、原料の選択を適切に行う。
First, a raw material batch is prepared so as to be SiO 2 —Al 2 O 3 — (B 2 O 3 ) —RO-based alkali-free glass. For example, a raw material batch is prepared so as to have the composition shown in Table 1. In preparing raw material batches, boric anhydride is actively used as the boron source, no boron source material is used, hydroxide raw material is not used, and glass cullet with a low β-OH value is actively used. The raw materials are appropriately selected so that the obtained glass has a low β-OH value.
続いて調合したガラス原料を溶融窯1に投入し、溶融、ガラス化する。溶融窯1内では、モリブデン電極へ電圧印加してガラスを直接通電加熱する。本実施態様ではバーナー燃焼による輻射加熱を行わないため、雰囲気中の水分増加が起こらず、雰囲気からガラス中へ供給される水分量が大幅に低下する。なお本実施態様では、生産立ち上げ時はバーナーを用いてガラス原料を加熱し、最初に投入したガラス原料が融液化した時点でバーナーを停止し、直接通電加熱に移行する。
Subsequently, the prepared glass material is put into the melting furnace 1 and melted and vitrified. In the melting furnace 1, a voltage is applied to the molybdenum electrode and the glass is directly energized and heated. In this embodiment, since radiation heating by burner combustion is not performed, moisture in the atmosphere does not increase, and the amount of moisture supplied from the atmosphere into the glass is greatly reduced. In this embodiment, when starting production, the glass raw material is heated using a burner, and when the initially charged glass raw material is melted, the burner is stopped and the process proceeds to direct current heating.
溶融窯1でガラス化された溶融ガラスは、連絡流路5を通って清澄槽2へ導かれる。溶融ガラス中には、ガラス化反応時に発生した泡や原料粒子間に存在し、融液中の閉じ込められた泡が多数含まれているが、清澄槽2では、これらの泡を清澄剤成分であるSnO2から放出された清澄ガスにより拡大浮上させて除去する。
The molten glass vitrified in the melting furnace 1 is guided to the clarification tank 2 through the communication channel 5. The molten glass contains a large number of bubbles trapped in the melt, which are present between the bubbles generated during the vitrification reaction and the raw material particles. It is lifted and removed by a clear gas released from a certain SnO 2 .
清澄槽2で清澄された溶融ガラスは、連絡流路6を通って調整槽へ導かれる。調整槽3へ導かれた溶融ガラスは高温であり、粘性が低く、そのまま成形装置で成形することはできない。そこで調整槽にてガラスの温度を下げ、成形に適した粘度に調整する。
The molten glass clarified in the clarification tank 2 is guided to the adjustment tank through the communication channel 6. The molten glass led to the adjustment tank 3 is high temperature, has a low viscosity, and cannot be directly molded by a molding apparatus. Therefore, the temperature of the glass is lowered in an adjustment tank and adjusted to a viscosity suitable for molding.
調整槽3で粘性が調整された溶融ガラスは、連絡流路7を通ってオーバーフローダウンドロー成形装置へ導かれ、薄板状に成形される。さらに切断、端面加工等が施され、無アルカリガラスからなるガラス基板を得ることができる。
The molten glass whose viscosity has been adjusted in the adjusting tank 3 is guided to the overflow downdraw molding device through the communication channel 7 and formed into a thin plate shape. Further, cutting, end face processing and the like are performed, and a glass substrate made of alkali-free glass can be obtained.
上記方法によれば、ガラス中に供給される水分を極力少なくすることが可能であるため、β-OH値を0.2/mm以下にすることが可能であり、熱収縮率の小さいガラスを得ることができる。
[実施例2]
次に、本発明方法を用いて製造したガラスについて説明する。 According to the above method, it is possible to reduce the moisture supplied into the glass as much as possible, so that the β-OH value can be reduced to 0.2 / mm or less, and a glass having a low thermal shrinkage rate can be obtained. Obtainable.
[Example 2]
Next, the glass manufactured using the method of the present invention will be described.
[実施例2]
次に、本発明方法を用いて製造したガラスについて説明する。 According to the above method, it is possible to reduce the moisture supplied into the glass as much as possible, so that the β-OH value can be reduced to 0.2 / mm or less, and a glass having a low thermal shrinkage rate can be obtained. Obtainable.
[Example 2]
Next, the glass manufactured using the method of the present invention will be described.
まずモル%でSiO2 66.1%、Al2O3 12.9%、B2O3 6.0%、MgO 3.8%、CaO 7.5%、SrO 1.0%、BaO 2.5%、SnO2 0.1%、Cl 0.1%含有する組成となるように珪砂、酸化アルミニウム、オルトホウ酸、無水ホウ酸、炭酸カルシウム、硝酸ストロンチウム、炭酸バリウム、酸化錫、塩化ストロンチウム、塩化バリウム及び上記組成のガラスカレットを混合し、調合した。なおホウ酸原料に占める無水ホウ酸の割合、及び原料全体に占めるガラスカレットの使用割合を表2、3に示す。なお上記原料中のアルカリ金属酸化物成分の混入量は合量で0.01%であった。
First, in mol%, SiO 2 66.1%, Al 2 O 3 12.9%, B 2 O 3 6.0%, MgO 3.8%, CaO 7.5%, SrO 1.0%, BaO 2. Silica sand, aluminum oxide, orthoboric acid, boric anhydride, calcium carbonate, strontium nitrate, barium carbonate, tin oxide, strontium chloride, chloride so that the composition contains 5%, SnO 2 0.1%, Cl 0.1% Barium and glass cullet having the above composition were mixed and prepared. Tables 2 and 3 show the ratio of boric anhydride to the boric acid raw material and the glass cullet usage ratio to the entire raw material. The total amount of the alkali metal oxide component in the raw material was 0.01%.
次に、ガラス原料を、溶融窯に供給して溶融し、続いて清澄槽、調整槽内で、溶融ガラスを清澄均質化するとともに、成形に適した粘度に調整した。溶融条件は表2、3に示す通りとした。表中の「通電」は、モリブデン電極による通電加熱を意味し、「バーナー」はバーナーを用いた酸素燃焼による輻射加熱を意味する。
Next, the glass raw material was supplied to the melting furnace and melted, and then the molten glass was clarified and homogenized in the clarification tank and the adjustment tank, and adjusted to a viscosity suitable for molding. Melting conditions were as shown in Tables 2 and 3. In the table, “energization” means current heating by a molybdenum electrode, and “burner” means radiant heating by oxyfuel combustion using a burner.
続いて溶融ガラスをオーバーフローダウンドロー成形装置に供給し、板状に成形した後、切断することにより、0.5mm厚のガラス試料を得た。なお溶融窯を出た溶融ガラスは、白金又は白金合金のみと接触しながら成形装置へと供給された。
Subsequently, the molten glass was supplied to an overflow downdraw molding apparatus, formed into a plate shape, and then cut to obtain a glass sample having a thickness of 0.5 mm. The molten glass exiting the melting kiln was supplied to the molding apparatus while contacting only platinum or a platinum alloy.
得られたガラス試料について、β-OH値、ガラスの歪点及び熱収縮率を評価した。結果を表2、3に示す。
The obtained glass samples were evaluated for β-OH value, glass strain point and heat shrinkage. The results are shown in Tables 2 and 3.
ガラスのβ-OH値は、FT-IRを用いてガラスの透過率を測定し、下記の式を用いて求めた。
The β-OH value of glass was determined by measuring the transmittance of the glass using FT-IR and using the following formula.
β-OH値 = (1/X)log10(T1/T2)
X :ガラス肉厚(mm)
T1:参照波長3846cm-1における透過率(%)
T2:水酸基吸収波長3600cm-1付近における最小透過率(%)
歪点は、ASTM C336-71の方法に基づいて測定した。 β-OH value = (1 / X) log10 (T 1 / T 2 )
X: Glass wall thickness (mm)
T 1 : Transmittance (%) at a reference wavelength of 3846 cm −1
T 2 : Minimum transmittance (%) in the vicinity of a hydroxyl group absorption wavelength of 3600 cm −1
The strain point was measured based on the method of ASTM C336-71.
X :ガラス肉厚(mm)
T1:参照波長3846cm-1における透過率(%)
T2:水酸基吸収波長3600cm-1付近における最小透過率(%)
歪点は、ASTM C336-71の方法に基づいて測定した。 β-OH value = (1 / X) log10 (T 1 / T 2 )
X: Glass wall thickness (mm)
T 1 : Transmittance (%) at a reference wavelength of 3846 cm −1
T 2 : Minimum transmittance (%) in the vicinity of a hydroxyl group absorption wavelength of 3600 cm −1
The strain point was measured based on the method of ASTM C336-71.
熱収縮率は以下の方法で測定した。まず図3(a)に示すように、ガラス基板1の試料として160mm×30mmの短冊状試料Gを準備する。この短冊状試料Gの長辺方向の両端部のそれぞれに、#1000の耐水研磨紙を用いて、端縁から20~40mm離れた位置でマーキングMを形成する。その後、図3(b)に示すように、マーキングMを形成した短冊状試料GをマーキングMと直交方向に沿って2つに折り割って、試料片Ga,Gbを作製する。そして、一方の試料片Gbのみを、常温から500℃まで5℃/分で昇温させ、500℃で1時間保持した後に、5℃/分で降温させる熱処理を行う。上記熱処理後、図3(c)に示すように、熱処理を行っていない試料片Gaと、熱処理を行った試料片Gbを並列に配列した状態で、2つの試料片Ga,GbのマーキングMの位置ずれ量(△L1,△L2)をレーザー顕微鏡によって読み取り、下記の式により熱収縮率を算出する。なお、式中のl0は、初期のマーキングM間の距離である。
The thermal shrinkage was measured by the following method. First, as shown in FIG. 3A, a 160 mm × 30 mm strip sample G is prepared as a sample of the glass substrate 1. A marking M is formed on each end of the strip-shaped sample G in the long side direction at a position 20 to 40 mm away from the edge by using # 1000 water-resistant abrasive paper. After that, as shown in FIG. 3B, the strip-shaped sample G on which the marking M is formed is folded in two along the direction orthogonal to the marking M to produce sample pieces Ga and Gb. Then, only one sample piece Gb is heated from room temperature to 500 ° C. at 5 ° C./min, held at 500 ° C. for 1 hour, and then heat-treated to lower the temperature at 5 ° C./min. After the heat treatment, as shown in FIG. 3C, in the state where the sample piece Ga that has not been heat-treated and the sample piece Gb that has been heat-treated are arranged in parallel, the markings M of the two sample pieces Ga and Gb The amount of displacement (ΔL1, ΔL2) is read with a laser microscope, and the thermal contraction rate is calculated by the following equation. Note that l 0 in the equation is a distance between the initial markings M.
熱収縮率=[{ΔL1(μm)+ΔL2(μm)}×103]/l0(mm) (ppm)
Thermal contraction rate = [{ΔL 1 (μm) + ΔL 2 (μm)} × 10 3 ] / l 0 (mm) (ppm)
本発明の方法によれば、低温ポリシリコンTFTの作製に好適な、熱収縮率の小さなガラス基板を容易に得ることができる。
According to the method of the present invention, it is possible to easily obtain a glass substrate having a small thermal shrinkage rate, which is suitable for producing a low-temperature polysilicon TFT.
1 溶融窯
2 清澄槽
3 調整層
4 成形装置
5、6、7 連絡流路
10 ガラス製造設備 DESCRIPTION OFSYMBOLS 1 Melting kiln 2 Clarification tank 3 Adjustment layer 4 Molding apparatus 5, 6, 7 Connecting flow path 10 Glass manufacturing equipment
2 清澄槽
3 調整層
4 成形装置
5、6、7 連絡流路
10 ガラス製造設備 DESCRIPTION OF
Claims (11)
- SiO2-Al2O3-RO(ROはMgO、CaO、BaO、SrO及びZnOの1種以上)系の無アルカリガラス基板を連続的に製造する方法であって、錫化合物を含有し、且つヒ素化合物及びアンチモン化合物を実質的に含まないように原料バッチを調製する工程と、調製した原料バッチを、モリブデン電極による通電加熱が可能な溶融窯で電気溶融する工程と、溶融されたガラスをダウンドロー法により板状に成形する工程とを含むことを特徴とする無アルカリガラス基板の製造方法。 A method of continuously producing a non-alkali glass substrate of SiO 2 —Al 2 O 3 —RO (RO is one or more of MgO, CaO, BaO, SrO and ZnO), comprising a tin compound, and Preparing a raw material batch so that it does not substantially contain an arsenic compound and an antimony compound, electrically melting the prepared raw material batch in a melting furnace capable of conducting heating with a molybdenum electrode, and lowering the molten glass And a step of forming into a plate shape by a draw method.
- バーナー燃焼による輻射加熱を併用しないことを特徴とする請求項1に記載の無アルカリガラス基板の製造方法。 The method for producing an alkali-free glass substrate according to claim 1, wherein radiation heating by burner combustion is not used in combination.
- 原料バッチ中に、塩化物を添加することを特徴とする請求項1又は2に記載の無アルカリガラス基板の製造方法。 3. A method for producing an alkali-free glass substrate according to claim 1 or 2, wherein chloride is added to the raw material batch.
- 原料バッチ中に、ホウ素源となる原料を添加しないことを特徴とする請求項1~3の何れかに記載の無アルカリガラス基板の製造方法。 The method for producing an alkali-free glass substrate according to any one of claims 1 to 3, wherein a raw material serving as a boron source is not added to the raw material batch.
- ガラス組成として、さらにB2O3を含有する無アルカリガラス基板を製造する方法であって、ホウ素源となるガラス原料の少なくとも一部に、無水ホウ酸を使用することを特徴とする請求項1~3の何れかに記載の無アルカリガラス基板の製造方法。 2. A method for producing an alkali-free glass substrate further containing B 2 O 3 as a glass composition, wherein boric anhydride is used as at least a part of a glass raw material to be a boron source. 4. A method for producing an alkali-free glass substrate according to any one of items 1 to 3.
- 原料バッチ中に、水酸化物原料を含有しないことを特徴とする請求項1~5の何れかに記載の無アルカリガラス基板の製造方法。 6. The method for producing an alkali-free glass substrate according to claim 1, wherein the raw material batch does not contain a hydroxide raw material.
- 原料バッチ中にガラスカレットを添加して無アルカリガラス基板を製造する方法であって、ガラスカレットの少なくとも一部に、β-OH値が0.4/mm以下のガラスからなるガラスカレットを使用することを特徴とする請求項1~6の何れかに記載の無アルカリガラス基板の製造方法。 A method for producing a non-alkali glass substrate by adding glass cullet to a raw material batch, wherein a glass cullet made of glass having a β-OH value of 0.4 / mm or less is used as at least a part of the glass cullet. The method for producing an alkali-free glass substrate according to any one of claims 1 to 6.
- 得られるガラスのβ-OH値が0.2/mm以下となるように、ガラス原料及び/又は溶融条件を調節することを特徴とする請求項1~7の何れかに記載の無アルカリガラス基板の製造方法。 8. The alkali-free glass substrate according to claim 1, wherein the glass raw material and / or the melting conditions are adjusted so that the obtained glass has a β-OH value of 0.2 / mm or less. Manufacturing method.
- 得られるガラスの歪点が690℃より高くなることを特徴とする請求項1~8の何れかに記載の無アルカリガラス基板の製造方法。 The method for producing an alkali-free glass substrate according to any one of claims 1 to 8, wherein the obtained glass has a strain point higher than 690 ° C.
- 得られるガラスの熱収縮率が25ppm以下となることを特徴とする請求項1~9の何れかに記載の無アルカリガラスの製造方法。 The method for producing an alkali-free glass according to any one of claims 1 to 9, wherein the glass has a heat shrinkage rate of 25 ppm or less.
- 低温p-SiTFTが形成されるガラス基板の製造に用いられることを特徴とする請求項1~10の何れかに記載の無アルカリガラス基板の製造方法。 The method for producing an alkali-free glass substrate according to any one of claims 1 to 10, which is used for producing a glass substrate on which a low-temperature p-Si TFT is formed.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020197018400A KR102483260B1 (en) | 2016-12-26 | 2017-12-07 | Manufacturing method of alkali-free glass substrate |
US16/473,364 US20200140314A1 (en) | 2016-12-26 | 2017-12-07 | Method for manufacturing alkali-free glass substrate |
CN201780080891.8A CN110114318A (en) | 2016-12-26 | 2017-12-07 | The manufacturing method of alkali-free glass substrate |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016251134 | 2016-12-26 | ||
JP2016-251134 | 2016-12-26 | ||
JP2017-111419 | 2017-06-06 | ||
JP2017111419A JP7333159B2 (en) | 2016-12-26 | 2017-06-06 | Method for producing alkali-free glass substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018123505A1 true WO2018123505A1 (en) | 2018-07-05 |
Family
ID=62707615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/044085 WO2018123505A1 (en) | 2016-12-26 | 2017-12-07 | Alkali-free glass substrate production method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018123505A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021131668A1 (en) * | 2019-12-23 | 2021-07-01 | 日本電気硝子株式会社 | Glass substrate manufacturing method and glass substrate |
WO2022130831A1 (en) * | 2020-12-17 | 2022-06-23 | 日本電気硝子株式会社 | Method for producing alkali-free glass substrate |
US11584680B2 (en) * | 2019-03-19 | 2023-02-21 | AGC Inc. | Alkali-free glass substrate |
CN115947539A (en) * | 2022-12-23 | 2023-04-11 | 中建材玻璃新材料研究院集团有限公司 | Aluminosilicate glass for display substrate and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012001376A (en) * | 2010-06-14 | 2012-01-05 | Nippon Electric Glass Co Ltd | Crystalline glass, natural marble-like crystallized glass, and method for producing the same |
JP2013151407A (en) * | 2011-12-29 | 2013-08-08 | Nippon Electric Glass Co Ltd | Alkali-free glass |
WO2016185976A1 (en) * | 2015-05-18 | 2016-11-24 | 日本電気硝子株式会社 | Non-alkali glass substrate |
-
2017
- 2017-12-07 WO PCT/JP2017/044085 patent/WO2018123505A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012001376A (en) * | 2010-06-14 | 2012-01-05 | Nippon Electric Glass Co Ltd | Crystalline glass, natural marble-like crystallized glass, and method for producing the same |
JP2013151407A (en) * | 2011-12-29 | 2013-08-08 | Nippon Electric Glass Co Ltd | Alkali-free glass |
WO2016185976A1 (en) * | 2015-05-18 | 2016-11-24 | 日本電気硝子株式会社 | Non-alkali glass substrate |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11584680B2 (en) * | 2019-03-19 | 2023-02-21 | AGC Inc. | Alkali-free glass substrate |
WO2021131668A1 (en) * | 2019-12-23 | 2021-07-01 | 日本電気硝子株式会社 | Glass substrate manufacturing method and glass substrate |
CN114845962A (en) * | 2019-12-23 | 2022-08-02 | 日本电气硝子株式会社 | Method for producing glass substrate and glass substrate |
WO2022130831A1 (en) * | 2020-12-17 | 2022-06-23 | 日本電気硝子株式会社 | Method for producing alkali-free glass substrate |
CN115947539A (en) * | 2022-12-23 | 2023-04-11 | 中建材玻璃新材料研究院集团有限公司 | Aluminosilicate glass for display substrate and preparation method thereof |
CN115947539B (en) * | 2022-12-23 | 2024-03-12 | 中建材玻璃新材料研究院集团有限公司 | Aluminosilicate glass for display substrate and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7153241B2 (en) | Method for manufacturing alkali-free glass substrate and alkali-free glass substrate | |
JP7333159B2 (en) | Method for producing alkali-free glass substrate | |
WO2018123505A1 (en) | Alkali-free glass substrate production method | |
JP7421161B2 (en) | Method for manufacturing alkali-free glass substrate and alkali-free glass substrate | |
JP7197835B2 (en) | Glass plate manufacturing method | |
WO2021261446A1 (en) | Method for manufacturing low alkali glass plate, and low alkali glass plate | |
WO2022054738A1 (en) | Method for manufacturing low alkali glass plate, and low alkali glass plate | |
WO2022130831A1 (en) | Method for producing alkali-free glass substrate | |
KR20160125350A (en) | Silicate glass production method, silicate glass, and silica raw material for silica glass | |
CN118954946A (en) | Method for producing low alkali glass plate and low alkali glass plate | |
JP2015189620A (en) | Method for producing alkali-free glass, concretely, method for producing alkali-free glass suitable as display substrate such as liquid crystal display and organic el (oled) display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17886809 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197018400 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17886809 Country of ref document: EP Kind code of ref document: A1 |