WO2018123038A1 - エレベーター故障の遠隔復旧システム - Google Patents
エレベーター故障の遠隔復旧システム Download PDFInfo
- Publication number
- WO2018123038A1 WO2018123038A1 PCT/JP2016/089160 JP2016089160W WO2018123038A1 WO 2018123038 A1 WO2018123038 A1 WO 2018123038A1 JP 2016089160 W JP2016089160 W JP 2016089160W WO 2018123038 A1 WO2018123038 A1 WO 2018123038A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- elevator
- recovery
- program
- failure
- restoration
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B5/00—Applications of checking, fault-correcting, or safety devices in elevators
- B66B5/0087—Devices facilitating maintenance, repair or inspection tasks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B3/00—Applications of devices for indicating or signalling operating conditions of elevators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B5/00—Applications of checking, fault-correcting, or safety devices in elevators
- B66B5/0006—Monitoring devices or performance analysers
- B66B5/0018—Devices monitoring the operating condition of the elevator system
- B66B5/0025—Devices monitoring the operating condition of the elevator system for maintenance or repair
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B5/00—Applications of checking, fault-correcting, or safety devices in elevators
- B66B5/02—Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q9/00—Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
Definitions
- the present invention relates to a system for recovering a failure in an elevator from a remote location.
- Patent Document 1 when an individual control request (customer request) for an in-building device is generated, an update program is reconstructed according to the specifications of the in-building equipment at the monitoring center and transmitted to the control device via the communication means. And stored as a verification program. Switch to the verification program and perform self-diagnosis. If the result of self-diagnosis is good, the verification program is copied (updated) to the operation program. On the other hand, when a problem occurs in the self-diagnosis result, the existing operation program is switched and an abnormality notification is sent to the monitoring center.
- Patent Document 2 software having a function of reading an error log (error code) generated from a work machine and monitoring the state of the work machine, and a function of changing a machine control program by rewriting work machine control software
- a rewriting system is disclosed.
- an error code generated in the work machine is read, a failure occurrence location and a failure content are specified, and a set value in the machine control program of the work machine is rewritten to adjust the failure of the work machine.
- the present invention has an object to provide a remote recovery system for an elevator failure that can be more reliably recovered when a problem such as a failure is solved by updating the program.
- the present invention relates to an elevator remote recovery device that communicates with an elevator control device that controls the drive of the elevator.
- the remote recovery device includes an information processing device and a recovery diagnosis database.
- the information processing device receives a failure signal including an elevator failure code from the elevator control device, and transmits a recovery command corresponding to the elevator failure to the elevator control device.
- the recovery diagnosis database stores a plurality of types of recovery commands corresponding to the fault codes and recovery rates when the respective recovery commands are executed.
- the information processing device receives a failure signal from the elevator control device, the information processing device extracts a plurality of types of restoration commands including a program update command corresponding to the failure code included in the failure signal.
- the information processing device refers to the recovery rate of each extracted recovery command, and sends the program update command to the elevator control device when the recovery rate corresponding to the program update command is higher than other recovery commands. To do.
- the remote recovery device may include a program database that stores a program of a version different from the current version of the program applied to the elevator control device at the time of failure signal transmission.
- the information processing apparatus may transmit the new version of the program to the elevator control apparatus as a program update command.
- the remote recovery device may include a storage unit that stores program update schedule management data in which update schedules of a plurality of elevator control devices that update a new version of the program are defined.
- the information processing apparatus may advance the update order in the program update schedule management data of the destination elevator control apparatus to the top.
- the remote recovery device may include a program database that stores a version of a program different from the current version of the program applied to the elevator control device at the time of failure signal transmission.
- the information processing apparatus when no program of a newer version than the current version of the program is stored in the program database, sends the program of the version earlier than the current version of the program as an elevator control device as a program update command. May be sent to.
- the recovery operation by program update is executed when the recovery rate is higher than other recovery operations.
- problems such as failures can be resolved more reliably than before by updating the program.
- the remote recovery system 100 communicates with the elevator control device 200 that performs drive control of the elevator 20 disposed in the hoistway 11 of the building 10, and the elevator control device 200, and the elevator 20 fails.
- a remote recovery device 300 for performing the recovery operation There may be one elevator 20 or a plurality of elevators 20 that cause the remote recovery device 300 to perform the recovery operation.
- each elevator 20 may be installed in the same building 10 or may be installed in different buildings 10.
- the elevator control device 200 includes a control panel 210 that performs drive control of the elevator 20 and a communication device 250.
- the control panel 210 is a computer including a CPU and a memory inside.
- the remote recovery device 300 includes a remote monitoring center 310 including a communication device 320 and a monitoring panel 330, an information processing device 360, a maintenance database 370, and a recovery diagnosis database 380.
- the remote monitoring center 310, the information processing apparatus 360, the maintenance database 370, and the recovery diagnosis database 380 may be installed in the same place, or may be installed in different places and connected to each other via an Internet line or the like. Good.
- the communication device 250 is connected to the control panel 210 and transmits an output from the control panel 210 to the communication network 30. Further, the communication device 250 receives a command for the control panel 210 selected by the information processing device 360 with reference to the recovery diagnosis database 380 via the communication device 320 and the communication network 30 and outputs the command to the control panel 210.
- the communication device 320 receives a signal from the control panel 210 via the communication device 250 and the communication network 30 and outputs the signal to the information processing device 360. In addition, the communication device 320 transmits a command for the control panel 210 selected by the information processing device 360 to the communication network 30.
- the communication devices 250 and 320 may be devices that perform wireless communication or devices that perform wired communication.
- the communication network 30 may be an Internet communication network or a telephone line network.
- the remote monitoring center 310 is provided with a monitoring panel 330 that exchanges data with the information processing device 360 and monitors the operation status and failure status of the elevator 20.
- the monitoring panel 330 is provided with a display 331 for displaying an operation status of the elevator 20, a failure status, a notification from the information processing device 360, and the like, and a switch 332 for operating the display of the display 331.
- the monitoring panel 330 is provided with a telephone 333 that communicates with the service center 340 via the communication network 35.
- the maintenance database 370 stores history data such as specifications, inspections, maintenance, and repairs of the elevator 20.
- the restoration diagnosis database 380 stores a plurality of failure factors corresponding to the failure code output from the control panel 210 of the elevator 20, the number of cases, and data such as a restoration rate.
- the information processing apparatus 360 is a computer that includes a CPU and a memory therein.
- a failure signal output from the control panel 210 when a failure occurs in the elevator 20 is input to the information processing device 360 via the communication devices 250 and 320 and the communication network 30.
- the information processing device 360 refers to the data of the recovery diagnosis database 380 and selects a recovery instruction and a recovery diagnosis instruction corresponding to the failure code included in the failure signal.
- the selected restoration command and restoration diagnosis command are input to the control panel 210 via the communication devices 250 and 320 and the communication network 30, and cause the elevator 20 to execute a restoration operation and a restoration diagnosis operation.
- the maintenance database 370 includes elevator specification data 371, inspection history data 372, maintenance work history data 373, remote inspection history data 374, modulation history data 375, repair work history data 376, failure history data 377.
- the failure factor-specific data 378 is stored.
- elevator specification data 371, inspection history data 372, maintenance work history data 373, remote inspection history data 374, modulation history data 375, repair work history data 376, failure history data 377, by failure factor The data structure of the data 378 will be described.
- the elevator specification data 371 has a data structure for storing the management number, model, date of manufacture, manufacturing number, name of the installed building, and usage data of the installed building of the elevator 20.
- the use of the installed building is, for example, an office, a general residence, a restaurant, a school, and the like.
- the inspection history data 372 has a data structure for storing the control number of the elevator 20, the date and time of inspection conducted by the engineer 350 on the site, inspection items, and inspection result data.
- the inspection includes, for example, inspection of the open / closed state of the doors 13 and 26 of the elevator 20 shown in FIG. 23 inspection, traveling speed inspection, and the like.
- whether or not an abnormality has been found as a result of the inspection whether an abnormality has not been found but maintenance work such as cleaning is necessary, or parts need to be replaced soon are input as the inspection result.
- reference numeral 25 denotes a weight.
- the maintenance work history data 373 has a database structure for storing the control number of the elevator 20, the maintenance work date and time of the elevator 20 performed by the engineer 350 in the field, maintenance work items, and maintenance work results.
- the maintenance work items include, for example, inspection of the operation state of the elevator 20, cleaning of the door rail of the elevator 20, refueling to the driving device 24 shown in FIG. 1, adjustment of the brake of the elevator 20, and the like. The results of maintenance, cleaning, refueling, adjustment, etc. are entered in the maintenance work results.
- the remote inspection history data 374 has a data structure for storing the control number of the elevator 20, the remote inspection date and time, the remote inspection item, and the remote inspection result.
- the remote inspection of the elevator 20 is performed by the control panel 210 of the elevator 20 according to a preset schedule such as once a month, for example.
- the control panel 210 of the elevator 20 moves the cage 22 of the elevator 20 shown in FIG. 1 to a predetermined floor. During this movement, various sensors attached to the elevator 20 are checked for abnormalities in driving performance (acceleration, presence or absence of abnormal noise), door opening / closing, brakes, emergency batteries, external communication devices, and the like.
- the inspection result is stored in the remote inspection history data 374 from the information processing device 360 via the communication devices 250 and 320 and the communication network 30.
- the remote inspection may be performed according to an instruction from the remote monitoring center 310.
- the modulation history data 375 has a data structure for storing the management number of the elevator 20, the modulation occurrence date and time, the modulation item, and the modulation correspondence result.
- the modulation of the elevator 20 refers to a case where the result of the inspection, inspection, maintenance work or remote inspection by the engineer 350 does not reach the abnormal value but changes from the normal value of the elevator 20. . For example, as a result of checking the traveling speed, the value is within the allowable value, but when the previous check or when the deviation of the elevator 20 from the value of the previous check result is large, the modulation item Recorded as “traveling speed”.
- the repair work history data 376 has a data structure for storing the control number of the elevator 20, the repair work date, the repair work item, and the repair work result.
- the repair work is a restoration work by replacement of parts such as replacement of the wire 23, replacement of the hanger roller, replacement of the brake pad, replacement of the control board, and replacement of the relay. Therefore, the name of the replacement part such as “wire replacement”, “hanger roller replacement”, “brake pad replacement”, etc. is entered in the repair work item, and “repair work completed”, “re-repair” are entered in the repair work result column. Items such as “Necessary” are entered.
- the failure history data 377 has a data structure for storing a management number of the elevator 20, a failure occurrence date and time, a failure code, a recovery method, and a recovery determination result.
- the failure code is a code output from the control panel 210 when a failure occurs in the elevator 20 or a combination of numbers and English letters.
- the types of failure codes are, for example, about 1000 types.
- the restoration method item is input as “engineer dispatch”.
- the item of the recovery method for example, when the remote recovery system 100 recovers, “Remote recovery” is input.
- “Recovery” is input.
- “failure” is input.
- the failure factor-specific data 378 includes the number of failure factors corresponding to the failure code as a result of inspection and inspection by the engineer 350 when a certain failure code is output from the control panel 210, and remote Stored is the total number of failure factors corresponding to the failure code when the recovery system 100 recovers. For example, when the failure code is 0001 indicating a failure related to the doors 13 and 26, the engineer 350 inspected the site, and as a result, the cause of the output of the failure code “0001” is the clogging of the door sill (failure factor 1). Or a contact failure of the switch of the door opening / closing device (failure factor 2), or other failure factor 3.
- the failure factor-specific data includes 100 cases of a door clogging factor (failure factor 1) when a failure code “0001” is output, and a contact failure of the door opening / closing device switch (failure factor 2). ) In the data structure such that 50 cases and other failure factor 3 cases are 10 cases, and the data is arranged in descending order of the number of cases. In the case of recovery by the remote recovery system 100, when the elevator 20 is successfully recovered by the recovery command, the number of failure factors corresponding to the failure code that is the basis of the recovery command is added to the total number of failure factors.
- the restoration diagnosis database 380 includes a restoration diagnosis instruction set that is a set of restoration instructions and restoration diagnosis instructions in descending order of the number of failure causes in the failure cause-specific data 378, and elevators by executing the restoration instructions. Stored is a recovery rate (%), which is the rate at which 20 failures have been recovered.
- the restoration diagnosis database 380 is a database in which the restoration diagnosis command set and the restoration rate are linked to the failure factor-specific data 378 described above.
- the data configuration of the recovery diagnosis database 380 when the failure code is “0001” indicating a failure related to the doors 13 and 26 will be described. If the door sill is clogged (Failure factor 1), the restoration diagnosis data will be “Failure factor 1”, “Door circuit reset + door high torque open / close” as the restoration command, and “Door open / close diagnostic” as the restoration diagnostic command.
- the data structure is such that a recovery diagnosis command set A, which is a set of two commands, and a recovery rate x% by a recovery operation by this recovery command are linked.
- the restoration diagnosis data is “door circuit reset + door opening / retry retry” as the restoration command in the number of failure cause 2 data, restoration diagnosis.
- the data structure is such that a recovery diagnosis command set B, which is a set of two commands of “door opening / closing diagnosis”, and a recovery rate y% of the recovery operation by this recovery command are linked as commands.
- the recovery diagnosis data has a data configuration in which the recovery diagnosis command set C and the recovery rate z% are linked to the number data of the failure factor 3.
- the recovery diagnosis database 380 includes the failure code, the failure factor corresponding to the failure code, the number of the failure factors, the recovery diagnosis command set that is a set of the recovery command and the recovery diagnosis, and the recovery rate. It is stored in the database in association.
- the recovery rate y% is a larger value than the recovery rates x% and z%
- the recovery diagnosis command set B has a higher recovery rate than the recovery diagnosis command set A and the recovery diagnosis command set C. ing.
- the operation of the remote recovery system 100 when a failure signal is transmitted from the elevator 20 will be described with reference to FIGS. 2, 5, and 6.
- the remote recovery operation when the failure code signal “0001” regarding the doors 13 and 26 is first transmitted will be described.
- a remote recovery operation when a failure code “0002” related to a control circuit incorporated in the control panel 210 is transmitted will be described.
- the remote recovery operation when a failure code “0003” related to the brake in the drive unit 24 is transmitted will be described.
- the remote recovery system 100 can also cope with a case where a failure code related to a part other than the above is transmitted.
- the control panel 210 of the elevator 20 determines whether or not a failure has occurred in the elevator 20.
- a failure relating to the doors 13 and 26 of the elevator 20 for example, a failure such as a door opening / closing failure
- the control panel 210 displays a failure code “0001” indicating the failure occurrence date and time and the failure is a failure relating to the door. Output to 250. If no failure occurs in the elevator 20, the control panel 210 returns to the beginning of step S ⁇ b> 101 and continues monitoring the elevator 20.
- the communication device 250 When the failure code “0001” is input from the control panel 210, the communication device 250, as shown in step S102 of FIGS. 2 and 5, includes the failure code “0001”, the management number of the elevator 20, and the failure occurrence date and time.
- a signal is transmitted to the communication network 30. 2 and 5, the communication device 320 of the remote monitoring center 310 receives the failure signal transmitted from the communication device 250 via the communication network 30.
- the communication device 320 When receiving the failure signal, the communication device 320 outputs the failure code “0001” included in the failure signal, the management number of the elevator 20, and the failure occurrence date and time to the information processing device 360.
- the information processing apparatus 360 stores the input failure code “0001”, the management number of the elevator 20, and the failure occurrence date / time in the failure history data 377 of the maintenance database 370.
- the information processing apparatus 360 determines whether or not the failed elevator 20 can be remotely recovered, as shown in step S104 of FIG.
- the information processing device 360 acquires the model, manufacturing date, and manufacturing number of the elevator 20 from the elevator specification data 371 using the management number of the elevator 20. Based on the acquired specification data, the information processing device 360 confirms whether the elevator 20 has a specification that allows a recovery operation and a recovery diagnosis operation based on a recovery command and a recovery diagnosis command from the remote recovery device 300.
- the information processing device 360 outputs a signal notifying the remote monitoring center 310 that remote recovery is impossible, as shown in step S124 in FIGS. To do.
- the information processing apparatus 360 refers to inspection history data 372, maintenance work history data 373, remote inspection history data 374, modulation history data 375, repair work history data 376, and failure history data 377.
- the following (a) to (f) are confirmed.
- C) There was an abnormality diagnosis result in the elevator 20 by remote inspection.
- D Recently, the elevator 20 has been modulated.
- E The elevator 20 has recently been repaired.
- the elevator 20 has recently transmitted a failure signal with the same failure code “0001”.
- the information processing apparatus 360 should dispatch the engineer 350 to the building 10 rather than the recovery by the remote recovery system 100. And NO is determined in step S104 of FIG. 2 and 5, the information processing apparatus 360 outputs a notification that remote recovery is not possible to the remote monitoring center 310.
- the information processing apparatus 360 confirms whether the building 10 is a building with many false signal transmissions from the elevator specification data 371 and the failure history data 377 using the management number of the elevator 20. In such a case, the information processing apparatus 360 determines that it is better to dispatch the engineer 350 to the building 10 than the recovery by the remote recovery system 100 because there is a high possibility of erroneous transmission of a failure signal. 5 is judged NO. Then, the information processing apparatus 360 outputs a remote recovery impossible notification to the remote monitoring center 310 as shown in step S124 of FIGS.
- the notification that remote recovery is not possible which is output from the information processing device 360 to the remote monitoring center 310, is displayed on the display 331 of the remote monitoring center 310 as shown in FIG.
- the supervisor 334 causes the elevator 20 to stop operating and announce as shown in step S125 of FIGS. 2 and 6.
- the supervisor 334 instructs the service center 340 in the vicinity of the building 10 to dispatch the engineer 350 to the building 10 by the telephone 333 as shown in step S126 of FIGS.
- the information processing apparatus 360 displays the input failure code “0001”, the management number of the elevator 20, and the failure occurrence date and time in the maintenance database in step S103.
- the failure history data 377 of 370 is stored. Then, the information processing apparatus 360 ends the remote recovery operation without updating other data in the maintenance database 370 and updating the recovery diagnosis database 380.
- step S104 shown in FIG. 5 the information processing apparatus 360, as shown in FIG. 2, the inspection history data 372, the maintenance work history data 373, the remote inspection history data 374, the modulation history data 375, and the repair work history data 376. Then, the following (g) to (n) are confirmed with reference to the failure history data 377.
- G It is a specification that allows the elevator 20 to perform a recovery operation and a recovery diagnosis operation by a recovery command and a recovery diagnosis command from the remote recovery device 300.
- the elevator 20 has not been instructed to re-adjust in a recent inspection.
- I The elevator 20 has no maintenance plan recently or on the day, and the possibility of misadjustment is not predicted.
- the information processing apparatus 360 determines YES in step S104 shown in FIG. 5, and starts remote recovery in the remote monitoring center 310 in step S105. Notice. This signal is displayed on the display 331 of the remote monitoring center 310. As a result, the supervisor 334 of the remote monitoring center 310 is notified that the remote recovery of the elevator 20 is started.
- the information processing apparatus 360 When the information processing apparatus 360 notifies the remote monitoring center 310 of the start of remote recovery in step S105, the information processing apparatus 360 proceeds to step S106 shown in FIG. 5 and selects a recovery instruction and a recovery diagnosis instruction corresponding to the failure code “0001”.
- the recovery diagnosis database 380 is a database in which the recovery factor instruction data and the recovery rate are linked to the failure factor-specific data 378.
- the data configuration of the recovery diagnosis database 380 when the failure code is “0001” indicating a failure relating to the doors 13 and 26 will be briefly described again.
- the restoration diagnosis data is “door circuit reset + door high-torque opening / closing” as the restoration command, and “door opening / closing” as the restoration diagnosis command.
- This is a data structure in which a recovery diagnosis command set A, which is a set of two commands “diagnosis”, and a recovery rate x% by a recovery operation by this recovery command are linked.
- the restoration diagnosis data is “door circuit reset + door opening / retry retry” as the restoration command in the number of failure cause 2 data, restoration diagnosis.
- the data structure is such that a recovery diagnosis command set B, which is a set of two commands of “door opening / closing diagnosis”, and a recovery rate y% of the recovery operation by this recovery command are linked as commands.
- the restoration diagnosis data has a data configuration in which the restoration diagnosis command set C and the restoration rate z% are linked to the number of cases of failure factor 3.
- the recovery rate y% is larger than the recovery rates x% and z%, and the recovery diagnosis command set B has a recovery rate higher than that of the recovery diagnosis command set A and the recovery diagnosis command set C. It is high.
- the information processing apparatus 360 may select, as a recovery command, a command corresponding to the failure factor having the largest number of cases among the plurality of failure factors corresponding to the failure code “0001”. Further, the information processing apparatus 360 may select a command having the highest recovery rate among a plurality of commands corresponding to the failure code “0001” as a recovery command. Then, the information processing device 360 selects a restoration diagnosis command set that is set together with the restoration command selected by the restoration diagnosis command corresponding to the selected restoration command.
- the information processing apparatus 360 selects a command corresponding to a failure factor having the largest number of cases among a plurality of failure factors corresponding to the failure code “0001” as a recovery command.
- the information processing apparatus 360 refers to the recovery diagnosis database 380 and confirms the failure factor having the largest number of cases when the failure code is “0001” as the recovery instruction.
- the information processing apparatus 360 performs a restoration operation for executing a restoration operation corresponding to the garbage clogging of the door sill (fault factor 1) which is the most frequent failure factor, “door circuit reset + door high torque opening / closing”,
- a restoration diagnosis command set A including two “door opening / closing diagnosis” which is a restoration diagnosis command for executing a restoration diagnosis operation corresponding to the result of the restoration operation is selected.
- the information processing apparatus 360 selects a command having the highest recovery rate among a plurality of commands corresponding to the failure code “0001” as a recovery command.
- the information processing apparatus 360 refers to the recovery diagnosis database 380 and confirms the recovery rate with the highest recovery rate corresponding to the failure code “0001” as the recovery command.
- the information processing apparatus 360 performs a restoration command for executing a restoration operation corresponding to the factor (failure factor 2) caused by the contact failure of the switch having the highest restoration rate y%, “door circuit reset + door opening / closing retry”,
- a restoration diagnosis command set B including two “door opening / closing diagnosis” which is a restoration diagnosis command for executing a restoration diagnosis operation corresponding to the result of the restoration operation is selected.
- the selection of whether to be based on the most frequent failure factor corresponding to the failure code “0001” or based on the recovery rate of the recovery diagnosis command set corresponding to the failure code “0001” is as follows: You may do as follows. For example, of the ratio of the maximum number of cases to the next number of cases (number of cases ratio) and the ratio of the maximum recovery rate and the next recovery rate (recovery rate ratio), You may select the one where the maximum value protrudes. Further, for example, if the previous remote recovery has failed, a different selection method may be used. Further, the selection of the restoration diagnosis command set may be determined by, for example, the model and specification of the elevator 20.
- the information processing apparatus 360 selects the restoration diagnosis instruction set A based on the failure factor 1 having the largest number corresponding to the failure code “0001”.
- the information processing apparatus 360 transmits the selected restoration diagnosis command set A from the communication device 320 as shown in step S107 of FIGS. 2 and 5, when receiving the recovery diagnosis command set A from the communication device 320, the communication device 250 outputs the recovery command and the recovery diagnosis command to the control panel 210.
- the control panel 210 determines that the elevator 20 is stopped, the weight sensor of the cage 22, the camera in the cage 22, the output of the person sensor in the cage 22, etc. Make sure there are no passengers inside.
- the control panel 210 confirms that the elevator 20 is stopped and that there are no passengers in the basket 22, the control panel 210 "starts remote recovery from now on” from the speaker of the communication device installed in the basket 22. The elevator door will open and close. "
- the control panel 210 proceeds to step S110 in FIG. 5 and executes a recovery operation according to the recovery command. Since the received restoration command is “door circuit reset + door high torque opening / closing” which is a restoration command for executing a restoration operation corresponding to the garbage clogging of the door sill (fault factor 1), the control panel 210 First, the door circuit of the control panel 210 is reset. This operation resets the state in which the door circuit cannot open or close the door 13 or the door 26 and detects the open (or closed) state or the half-open (or half-closed) state, and opens or closes the door 13 or the door 26. This is a possible operation.
- the control panel 210 increases the torque of the drive motor of the door 13 and the door 26 by 20 to 30% than usual, and opens and closes the door 13 and the door 26 with a force larger than usual.
- This operation is an operation in which the garbage stuck in the door sill is moved from the sill and the opening / closing operation of the doors 13 and 26 is restored to the normal state.
- the control panel 210 restores the garbage stuck in the thresholds of the doors 13 and 26 to check whether the doors 13 and 26 have been opened and closed. “Door open / close diagnosis” which is a diagnosis command is executed.
- the control panel 210 opens and closes the door 13 and the door 26 with a normal torque, and can the opening and closing operation be performed within a predetermined opening / closing time, or whether the current of the drive motor for the door 13 and the door 26 is larger than usual. Confirm. Next, the control panel 210 opens and closes the door 13 and the door 26 by reducing the torque of the drive motor by about 20% from the normal state, and checks whether there is any abnormality in the opening and closing time.
- step S113 the control panel 210 outputs a determination result signal that the elevator 20 has been restored.
- This signal is transmitted from the communication device 250 to the communication network 30.
- the transmitted determination result signal is received by the communication device 320 as shown in step S ⁇ b> 114 of FIG. 6, and the determination result is input to the information processing device 360.
- the determination result is notified from the information processing apparatus 360 to the remote monitoring center 310 as shown in step S115 of FIG. 6, and the result is displayed on the display 331 of the remote monitoring center 310.
- the monitor 334 of the remote monitoring center 310 confirms this display, as shown in step S116 of FIG. 6, the operation of the elevator 20 is resumed and an announcement operation is performed. Further, the information processing apparatus 360 updates the maintenance database 370 and the recovery diagnosis database 380 as shown in steps S117 and S118 of FIG.
- step S119 the control panel 210 outputs a determination result signal indicating that the restoration of the elevator 20 has failed.
- This signal is transmitted from the communication device 250 to the communication network 30.
- the transmitted determination result signal is received by the communication device 320 as shown in step S120 of FIG. 6, and the determination result is input to the information processing device 360. Further, the determination result is notified from the information processing apparatus 360 to the remote monitoring center 310 as shown in step S121 of FIG. 6, and the result is displayed on the display 331 of the remote monitoring center 310.
- the supervisor 334 After confirming this display, the supervisor 334 causes the elevator 20 to stop operating and announce as shown in step S122 of FIG. In addition, the supervisor 334 instructs the service center 340 near the building 10 to dispatch the engineer 350 to the building 10 by the telephone 333 as shown in step S123 of FIGS. Further, the information processing apparatus 360 updates the maintenance database 370 and the recovery diagnosis database 380 as shown in steps S117 and S118 of FIG.
- the information processing apparatus 360 updates the maintenance database 370 as follows, when the determination signal that the elevator 20 has been restored as shown in step S113 of FIG. 5 is input.
- the information processing apparatus 360 displays “remote recovery” in the recovery method item of the failure history data 377, and the recovery determination result. Store “Recovery” in the item.
- the communication device 320 receives the failure signal
- the information processing device 360 maintains the failure code “0001” input from the communication device 320, the management number of the elevator 20, and the failure occurrence date and time.
- the failure history data 377 of the database 370 is stored. Accordingly, all items of the failure history data 377 are updated by storing the current recovery method and the recovery determination result.
- the information processing apparatus 360 refers to the recovery diagnosis database 380 and clogs the door sill that is the most frequent failure factor (failure factor 1) when the failure code is “0001” as the recovery command. 2) of “door circuit reset + door open / retry retry” that is a recovery command for executing a recovery operation corresponding to (2)) and “door open / close diagnosis” that is a recovery diagnostic command for executing a recovery diagnostic operation corresponding to the result of this recovery operation.
- a recovery diagnosis command set A consisting of two is selected and a recovery operation and a recovery diagnosis operation are executed.
- the number of failure codes “0001” and failure factor 1 (garbage clogs on the door sill) in the restoration diagnosis database 380 is increased by one, and the restoration rate corresponding to the number of successful restorations.
- the information processing device 360 increases the number of failure factors 1 of the failure code “0001” in the failure factor-specific data 378 by one.
- the information processing device 360 updates the maintenance database 370 and the restoration diagnosis database 380 as follows when the determination signal indicating that the restoration of the elevator 20 has failed as shown in step S119 of FIG. 5 is input.
- the information processing apparatus 360 displays “remote recovery” in the recovery method item of the failure history data 377, and a recovery determination. Store “failure” in the result item. Further, the number of cases of failure code “0001” and failure factor 1 (garbage on the door sill) in the restoration diagnosis database 380 is left as it is, and the restoration rate is lowered by the amount of restoration failure. Note that if the recovery fails, the number of failure factors 1 of the failure code “0001” in the failure factor-specific data 378 is not changed.
- the information processing apparatus 360 selects the restoration diagnosis instruction set A based on the most frequent failure factor corresponding to the failure code “0001”.
- the information processing device 360 selects the recovery diagnosis command set B based on the recovery rate of the recovery diagnosis command set corresponding to the failure code “0001”
- the normal operation is performed instead of the recovery operation of “door high torque opening / closing”.
- a difference is that a recovery operation of “door opening / closing retry” in which the opening / closing operation of the doors 13 and 26 is performed again by torque is performed.
- Other operations are the same as when the restoration diagnosis command set A is selected.
- the number of door clogging (failure factor 1), which was the most frequent failure factor in the case of the failure code “0001”, increases. For this reason, when the remote recovery system 100 selects a recovery diagnosis command set based on the most frequent failure factor corresponding to the failure code “0001”, the failure code “0001” is input at the time of the next remote recovery. At this time, the information processing apparatus 360 selects the restoration diagnosis command set A again. When the recovery rate of the recovery diagnosis command set A is higher than the recovery rate of the recovery diagnosis command set B, the information processing apparatus 360 has a recovery rate of a plurality of commands corresponding to the failure code “0001”. Even when the highest command is selected as the return command, the restoration diagnosis command set A is selected.
- the recovery rate of the recovery diagnosis command set A becomes relatively high. That is, the recovery rate ratio of the recovery diagnosis command set B to the recovery diagnosis command set A is increased.
- the restoration rate ratio becomes larger than the number ratio calculated as the ratio of the number of failure factors 1 to the number of failures 2
- the information processing apparatus 360 recovers among the plurality of commands corresponding to the failure code “0001”. The command with the highest rate is selected as the return command.
- the information processing apparatus 360 selects the restoration diagnosis command set B having the highest restoration rate when the failure code “0001” is input at the time of the next remote restoration. Further, when the information processing device 360 does not select the restoration diagnosis command set A that has failed to be restored in the previous remote restoration, the failure factor 1 is linked to the failure factor 2 having the largest number corresponding to the failure code “0001”. Restored diagnosis command set B is selected.
- the information processing apparatus 360 selects the restoration diagnosis command set B having the highest restoration rate among the plurality of instructions corresponding to the failure code “0001” and succeeds in the restoration of the elevator 20, the restoration diagnosis instruction set The recovery rate of B increases. Therefore, in the next remote recovery, the information processing apparatus 360 selects the recovery diagnosis command set B as in the previous time. On the other hand, if the restoration diagnosis command set B fails to restore the elevator 20, the restoration rate of the restoration diagnosis command set B is lowered. When the recovery rate of the recovery diagnosis command set B is lower than the recovery rate of the recovery diagnosis command set A, the information processing device 360 selects the recovery diagnosis command set A. If the information processing device 360 does not select the recovery diagnosis command set B that has failed to recover in the previous remote recovery, the recovery diagnosis with the high recovery rate corresponding to the failure code “0001” next to the recovery diagnosis command set B Select command set A.
- the remote recovery system 100 increases the number of failure factors and the recovery rate of the selected recovery diagnosis command set when the remote recovery is successful. In addition, if the remote recovery system 100 fails, the remote recovery system 100 reduces the recovery rate of the selected recovery diagnosis command set without changing the number of failure factors. For this reason, if the remote recovery is successful, there is a high possibility that the recovery diagnosis command set selected in the remote recovery is selected in the next remote recovery. Further, if the remote recovery fails, the possibility that the recovery diagnosis command set selected by the remote recovery is selected at the next remote recovery is reduced. For this reason, as the number of remote restorations increases, the information processing apparatus 360 can select a restoration diagnosis command set having a high possibility of restoration corresponding to the failure code from the restoration diagnosis database 380, and the restoration of the elevator 20 is ensured. Can be improved.
- the engineer 350 inspected the site to find out that the cause of the output of the failure code “0002” is defective in the relay attached to the control panel 210. This is a case (failure factor 4), a case where there is a defect in the relay drive circuit that drives the relay (failure factor 5), or another failure factor 6.
- the failure factor-specific data 378 indicates that when the failure code is “0002”, there are 100 cases where the failure is caused by a failure (failure factor 4), 50 cases where the failure of the relay drive circuit is caused (failure factor 5), etc.
- the data structure is such that there are 10 cases of failure factor 6 and the data is arranged in descending order. As described above, in the case of recovery by the remote recovery system 100, when the elevator 20 is successfully recovered by the recovery command, the number of failure factors corresponding to the failure code that is the basis of the recovery command is the overall failure factor. It is added to the number of cases.
- the restoration diagnosis database 380 is a database in which a restoration diagnosis instruction set and a restoration rate are linked to the failure factor-specific data 378.
- the data configuration of the recovery diagnosis database 380 when the failure code is “0002” indicating a failure related to the control circuit will be described.
- the restoration diagnosis data is “control circuit reset + low speed up / down operation” as the restoration command in the number data of the failure factor 4 and “each floor operation, high speed” as the restoration diagnosis command.
- the data structure is obtained by linking a recovery diagnosis command set E, which is a set of two commands, “operation on each floor and high-speed operation diagnosis”, and a recovery rate b% by a recovery operation based on the recovery diagnosis command.
- the recovery diagnosis data has a data structure in which the recovery diagnosis command set F and the recovery rate c% are linked to the number data of the failure factor 6.
- the recovery diagnosis database 380 includes the failure code, the failure factor corresponding to the failure code, the number of the failure factors, the recovery diagnosis command set that is a set of the recovery command and the recovery diagnosis, and the recovery rate. It is stored in the database in association. Note that the recovery rate is the highest in b% of the recovery diagnosis command set E.
- the information processing device 360 selects the restoration diagnosis instruction set D based on the failure factor having the largest number of cases corresponding to the failure code “0002”. 360 transmits a restoration diagnosis command set D to the control panel 210.
- the control panel 210 After executing the control circuit reset operation, the control panel 210 performs low-speed up and down operations that raise and lower the cage 22 of the elevator 20 at low speed. After that, the control panel 210 performs each floor operation that stops on each floor without opening and closing the doors 13 and 26, high speed operation that operates between a plurality of floors at high speed, operation that stops on each floor, and high speed operation Check for any abnormal driving.
- the control panel 210 When there is no abnormality in each floor operation and high-speed operation, the control panel 210 outputs a determination result of successful restoration of the elevator 20. In addition, when an abnormality is detected in each floor operation or high-speed operation, the control panel 210 outputs a determination result of failure in restoration of the elevator 20. This determination result is input from the control panel 210 to the information processing device 360 via the communication devices 250 and 320. As described above, the information processing apparatus 360 may select failure history data 377, failure factor-specific data 378, recovery diagnosis so that a recovery diagnosis command set having a higher recovery possibility can be selected based on the determination result. The database 380 is updated.
- the information processing apparatus 360 selects the recovery diagnosis command set E having the highest recovery rate corresponding to the failure code “0002”, the information processing apparatus 360 transmits the recovery diagnosis instruction set E to the control panel 210.
- the control panel 210 executes the operation between the lowermost floor and the uppermost floor for moving the basket 22 of the elevator 20 between the lowermost floor and the uppermost floor.
- the control panel 210 executes each floor operation and high-speed operation described above, performs restoration diagnosis of the elevator 20, and outputs a determination result of whether the restoration of the elevator 20 has succeeded or failed.
- the determination result is input from the control panel 210 to the information processing device 360 via the communication devices 250 and 320.
- the information processing device 360 updates the failure history data 377, the failure factor-specific data 378, and the recovery diagnosis database 380 so that a recovery diagnosis command set having a higher recovery possibility can be selected based on the determination result.
- the failure factor-specific data 378 includes 100 cases in which the brake circuit abnormality is the cause (failure factor 7), 50 cases in the case of failure factor 8, and other failure factors 9
- the data structure is such that there are 10 cases, and the data is arranged in descending order.
- the restoration diagnosis database 380 is a database in which a restoration diagnosis command set and a restoration rate are linked to failure factor-specific data 378.
- the data structure of the recovery diagnosis database 380 when the failure code is “0003” indicating a failure related to the brake will be described.
- the restoration diagnosis data includes two data, “control circuit reset” as a restoration command and “brake torque diagnosis” as a restoration diagnosis command.
- the data configuration is such that a recovery diagnosis command set G, which is a set of commands, and a recovery rate d% by a recovery operation based on the recovery diagnosis command are linked.
- the recovery diagnosis data includes the recovery diagnosis command set H and the recovery rate e%, the recovery diagnosis command set I and the recovery rate f% in the number data of the failure factor 8 and the failure factor 9, respectively.
- the recovery diagnosis database 380 includes the failure code, the failure factor corresponding to the failure code, the number of the failure factors, the recovery diagnosis command set that is a set of the recovery command and the recovery diagnosis, and the recovery rate. It is stored in the database in association. Note that the recovery rate is highest in e% of the recovery diagnosis command set H.
- the information processing device 360 selects the restoration diagnosis command set G based on the failure factor having the largest number of cases corresponding to the failure code “0003” in step S106 in FIG. In this case, the information processing device 360 transmits a restoration diagnosis command set G to the control panel 210.
- the control panel 210 executes a brake torque diagnosis operation in the field confirmation shown in step S109 of FIG.
- the brake torque diagnosis operation the hoisting machine in the driving device 24 is not rotated by a mechanical brake, and a driving force is applied to the hoisting machine to confirm that the hoisting machine does not rotate by the holding force of the brake. Is the action. If there is no abnormality in this operation, the control panel 210 makes an announcement of remote recovery assuming that the site of the elevator 20 can be confirmed in step S109 of FIG. Thereafter, the process proceeds to step S110 in FIG. 5, and the control panel 210 executes a control circuit reset operation.
- the control panel 210 executes a brake torque diagnosis operation.
- the control panel 210 outputs a determination result indicating that the elevator 20 has been successfully restored. Further, when the hoisting machine rotates, the control panel 210 outputs a determination result of failure in restoration of the elevator 20.
- This determination result is input from the control panel 210 to the information processing device 360 via the communication devices 250 and 320.
- the information processing device 360 updates the failure history data 377, the failure factor-specific data 378, and the recovery diagnosis database 380 so that a recovery diagnosis command set having a high recovery possibility can be selected based on the determination result.
- the information processing apparatus 360 selects the restoration diagnosis command set H having the highest restoration rate corresponding to the failure code “0003” and causes the control panel 210 to execute the restoration operation and the restoration diagnosis operation. You can also.
- control panel 210 determines that remote recovery cannot be started, and notifies the remote monitoring center 310 that remote recovery is not possible without executing the remote recovery operation.
- the remote recovery system 100 performs a recovery operation and recovery diagnosis on the elevator 20 according to a command from the remote recovery device 300 disposed at a location away from the elevator 20.
- the operation can be executed to restore the elevator 20. For this reason, when failure occurs in the elevator 20, the elevator 20 can be restored in a short time without dispatching the technician 350 to the site, and the operation service of the elevator 20 can be improved.
- the remote recovery system 100 can select a failure history data 377, failure factor-specific data 378, so that a recovery diagnosis command set having a high possibility of recovery can be selected in the next remote recovery based on the recovery determination result.
- the recovery diagnosis database 380 is updated. Therefore, as the number of remote restorations increases, the information processing apparatus 360 can select a more appropriate restoration diagnosis command set corresponding to the failure code from the restoration diagnosis database 380. Thereby, the restoration of the elevator 20 can be reliably performed, and the time required for the restoration can be shortened to improve the operation service of the elevator 20.
- FIG. 9 shows a configuration particularly related to the program update command among the configurations of the elevator failure remote recovery system according to the embodiment of the present invention.
- the remote recovery apparatus 300 includes a program database 390.
- the development center 400 is added in addition to the information processing apparatus 360.
- the development center 400 and the remote recovery device 300 can communicate with each other via the communication network 37.
- the communication network 37 may be an Internet communication network or a telephone line network.
- FIG. 10 shows functional blocks particularly related to the program update command among the functional blocks of the elevator fault remote recovery system according to the embodiment of the present invention.
- the remote recovery apparatus 300 includes a program database 390, as in FIG.
- the development center 400 is added in addition to the information processing apparatus 360.
- the maintenance database 370 (storage unit) includes program update history data 381 and program update schedule management data 382.
- FIG. 11 illustrates program update history data 381. In this data, an update history of the control program of the elevator control device 200 is stored.
- Data is managed for each elevator management number.
- the management content includes the elevator model, the application program, the version of the application program, and the update date of the current version of the program.
- control programs are applied depending on the model of the elevator 20.
- different control programs are applied to a hydraulic elevator and a rope elevator.
- Different control programs are applied to the single machine elevator and the group management elevator.
- different control programs are applied to the upper floor elevator and the lower floor elevator.
- the model shown in FIG. 11 reflects, for example, the distinction between the hydraulic type and the rope type described above, the distinction between single machine management and group management, and the distinction between high floor use and low floor use.
- P is added in front of the model symbol to make the control program suitable for the model.
- the program PAAA is written as an application program for the model AAA.
- Such a control program complies with, for example, PESSSR (Programmable Electronic Systems Safety in Related Applications for Lifts) which is a standard of a programmable electronic system for an elevator.
- PESSSR Programmable Electronic Systems Safety in Related Applications for Lifts
- the program update schedule management data 382 is generated by the information processing apparatus 360 when a new version of the control program is stored (downloaded) in the program database 390.
- the control program of the elevator control device 200 is generated at, for example, the development center 400 remote from the remote recovery device 300.
- the development center 400 new versions of control programs are sequentially generated. For example, when a new function is developed at the development center 400, a new version of the control program is generated so that the associated processing can be performed by the elevator control device 200.
- model-specific control programs are stored from the old version to the new version.
- different (new and old) control programs including the current version of the control program applied to the elevator control device 200 are also stored.
- a new version of the control program is generated at the development center 400, it is added to the program database 390.
- FIG. 12 illustrates a flow for creating a control program update schedule.
- a functional unit that executes each step is virtually generated in the information processing apparatus 360.
- the information processing apparatus 360 refers to the program database of the development center 400 periodically or based on a notification from the development center 400 (S1002).
- control program stored in the program database of the development center 400 and the control program stored in the program database 390 of the remote recovery apparatus 300 are compared. That is, among the control programs stored in the program database of the development center 400, it is determined whether there is an unregistered, that is, a new version of the control program that is not stored in the program database 390 of the remote recovery device 300. (S1004). If there is no new version of the control program in the program database of the development center 400, the flow ends.
- the information processing apparatus 360 acquires (downloads) the new version of the control program from the development center 400 (S1006).
- the information processing apparatus 360 refers to the program update history data 381 and extracts the elevator 20 (more precisely, the elevator management number) to which the same type of program as the acquired new version of the control program is applied (S1008). .
- the information processing device 360 creates an update schedule of the new version of the control program for the extracted elevator 20 to the elevator control device 200 (S1010).
- the order of upgrade (version upgrade) for updating the control program to a new version is set.
- an update schedule is set so that the upgrades are performed in order from the oldest manufacturing date of the elevator 20 and the elevator control device 200, for example.
- program update as a remote recovery command operation will be described.
- the abnormality may be resolved by program update.
- the current version of the control program applied to the elevator control device 200 is Ver. 2.0
- the previous generation version Ver. 1.0 the version one generation after the current version is Ver. It is represented by 3.0.
- Ver. In 1.0 as a function of the elevator 20, for example, it is assumed that a stop floor skip function passing through a specific floor is provided. Ver. In 2.0, a specific floor forced stop function is added in addition to the stop floor skip function. Furthermore, Ver. In 3.0, an adjustment function is added to give priority to the specific floor forced stop function when the passing floor set by the stop floor skip function overlaps with the forced stop floor set by the specific forced stop function. Suppose.
- the current version Ver If the passing floor set by the stop floor skip function in 2.0 and the forced stop floor set by the specific forced stop function overlap, the conflicting functions conflict and the control panel 210 (CPU board) There is a risk of anomalies (eg system freeze).
- anomalies eg system freeze.
- the control program is updated so that an older version of Ver. 1.0 or a new version of Ver. With an adjustment function to adjust when both functions compete. If updated to 3.0, the abnormality of the control panel 210 is resolved.
- step S106 the information processing apparatus 360 executes the flow illustrated in FIG. 14 when selecting the restoration command and the restoration diagnosis command corresponding to the failure code.
- a functional unit that executes each step is virtually generated in the information processing apparatus 360. For example, when executing step S1014, a restoration diagnosis command set selection unit is generated, when executing step S1022, an update schedule confirmation unit is generated, and when executing step S1026, an update schedule changing unit is generated.
- the information processing device 360 refers to the recovery diagnosis database 380 and extracts a recovery diagnosis command set corresponding to the failure code included in the failure signal transmitted from the elevator control device 200 (S1012).
- FIG. 15 exemplifies a failure diagnosis “0015”, that is, a restoration diagnosis command set when the failure device is the CPU board of the control panel 210.
- two sets of restoration diagnosis command sets K1 and K3 are illustrated as failure factors 10 (for example, system freeze).
- the restoration diagnosis instruction set K1 program update is included as the restoration process
- the restoration diagnosis instruction set K3 parameter change is included as the restoration process.
- the recovery diagnosis database 380 stores a recovery rate (success rate) for each recovery diagnosis command set.
- the recovery rate is g%> h%> i%.
- the information processing apparatus 360 selects the set with the highest recovery rate from the recovery diagnosis instruction set corresponding to the failure code (S1014). For example, since the restoration rate g% of the restoration diagnostic command set K1 including program update in the restoration process is higher than the restoration rates h% and i% of the other restoration diagnostic command sets K2 and K3, the restoration diagnostic command set K1 is selected. .
- the information processing apparatus 360 determines whether or not the restoration command of the selected restoration diagnosis command set is a program update (S1016). If the restoration command is different from the program update, processing is executed according to the selected restoration diagnosis command set (S1018).
- the information processing apparatus 360 determines whether to apply the old version or the new version of the current program as the control program to be updated. Specifically, when a program version newer than the current version is stored in the program database 390, the new version program is transmitted as a program update command.
- the information processing device 360 refers to the program update schedule management data 382 (S1020), and determines whether or not the management number of the restoration target elevator 20 (elevator control device 200) is included in the program update schedule management data 382. (S1022).
- the information processing apparatus 360 selects the control program of the previous version one generation before the current version as the update program (S1024). Thereafter, an old version of the control program is transmitted to the elevator control device 200 and updated (downgraded).
- the information processing device 360 advances the update order of the restoration target elevator 20 (elevator control device 200) to the top. (S1026).
- the update program applied to the elevator control device 200 to be restored becomes the new version (S1028).
- a new version of the control program is transmitted to the elevator control device 200 and is updated (upgraded).
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Indicating And Signalling Devices For Elevators (AREA)
- Maintenance And Inspection Apparatuses For Elevators (AREA)
Abstract
Description
(a)エレベーター20が最近の検査で調整手直し指示があったものである。
(b)エレベーター20が最近、あるいは、当日に保守計画があり調整ミスの可能性が予測されるものである。
(c)遠隔点検でエレベーター20に異常の診断結果があった。
(d)最近、エレベーター20に変調の発生があった。
(e)エレベーター20が、最近、修理工事が実施されているものである。
(f)エレベーター20が、最近、同様の故障コード「0001」による故障信号を発信している。
(g)エレベーター20が遠隔復旧装置300からの復旧指令、復旧診断指令によって復旧動作、復旧診断動作が可能な仕様である。
(h)エレベーター20が最近の検査で調整手直し指示があったものではない。
(i)エレベーター20が、最近、あるいは、当日に保守計画がなく調整ミスの可能性が予測されるものではない。
(j)遠隔点検でエレベーター20に異常の診断結果がない。
(k)最近、エレベーター20に変調の発生がない。
(l)エレベーター20が、最近、修理工事が実施されているものではない。
(m)エレベーター20が、最近、同様の故障コード「0001」による故障信号を発信していない。
(n)ビル10が故障信号の誤発信の多い建物ではない。
図9~図15を用いて、プログラム更新指令による遠隔復旧処理について説明する。図9には、本発明の実施形態におけるエレベーター故障の遠隔復旧システムの構成のうち、特にプログラム更新指令に関連する構成が示されている。図1との違いは、遠隔復旧装置300がプログラムデータベース390を備えた点にある。また、プログラムデータベース390にアクセス可能な構成として、情報処理装置360に加えて開発センター400を加えた点にある。開発センター400と遠隔復旧装置300とは通信ネットワーク37を介して通信可能となっている。通信ネットワーク37は、インターネット通信網であってもよいし、電話回線網であってもよい。
Claims (4)
- エレベーターの駆動制御を行うエレベーター制御装置と通信する、エレベーターの遠隔復旧装置であって、
前記エレベーター制御装置から前記エレベーターの故障コードを含む故障信号を受信するとともに、前記エレベーターの故障に対応する復旧指令を前記エレベーター制御装置に発信する情報処理装置と、
前記故障コードに対応する複数種類の前記復旧指令及びそれぞれの前記復旧指令が実行されたときの復旧率が記憶された復旧診断データベースと、
を備え、
前記情報処理装置は、
前記エレベーター制御装置から前記故障信号を受信したときに、前記故障信号に含まれる前記故障コードに対応する、プログラム更新指令を含む複数種類の前記復旧指令を抽出し、
抽出されたそれぞれの前記復旧指令の復旧率を参照し、前記プログラム更新指令に対応する復旧率が他の前記復旧指令と比較して高いときに、前記プログラム更新指令を前記エレベーター制御装置に発信する、
エレベーターの遠隔復旧装置。 - 請求項1に記載のエレベーターの遠隔復旧装置であって、
前記故障信号発信時における前記エレベーター制御装置に適用された、現バージョンのプログラムとは異なるバージョンのプログラムが記憶されたプログラムデータベースを備え、
前記現バージョンのプログラムよりも新しいバージョンのプログラムが前記プログラムデータベースに記憶されている場合に、前記情報処理装置は、前記プログラム更新指令として、前記新しいバージョンのプログラムを前記エレベーター制御装置に送信する、
エレベーターの遠隔復旧装置。 - 請求項2に記載のエレベーターの遠隔復旧装置であって、
前記新しいバージョンのプログラムを更新する複数のエレベーター制御装置の更新スケジュールが定められたプログラム更新スケジュール管理データを記憶する記憶部を備え、
前記情報処理装置は、前記プログラム更新指令として前記新しいバージョンのプログラムを前記エレベーター制御装置に送信する際に、当該送信先の前記エレベーター制御装置の前記プログラム更新スケジュール管理データにおける更新順序を先頭に繰り上げる、
エレベーターの遠隔復旧装置。 - 請求項1に記載のエレベーターの遠隔復旧装置であって、
前記故障信号発信時における前記エレベーター制御装置に適用された、現バージョンのプログラムとは異なるバージョンのプログラムが記憶されたプログラムデータベースを備え、
前記情報処理装置は、前記現バージョンのプログラムよりも新しいバージョンのプログラムが前記プログラムデータベースに記憶されていない場合に、前記プログラム更新指令として、前記現バージョンのプログラムよりも前のバージョンのプログラムを前記エレベーター制御装置に送信する、
エレベーターの遠隔復旧装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018551882A JP6564147B2 (ja) | 2016-12-28 | 2016-12-28 | エレベーター故障の遠隔復旧システム |
KR1020197018233A KR102161285B1 (ko) | 2016-12-28 | 2016-12-28 | 엘리베이터 고장의 원격 복구 시스템 |
PCT/JP2016/089160 WO2018123038A1 (ja) | 2016-12-28 | 2016-12-28 | エレベーター故障の遠隔復旧システム |
CN201680091879.2A CN110139822B (zh) | 2016-12-28 | 2016-12-28 | 电梯故障的远程恢复系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/089160 WO2018123038A1 (ja) | 2016-12-28 | 2016-12-28 | エレベーター故障の遠隔復旧システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018123038A1 true WO2018123038A1 (ja) | 2018-07-05 |
Family
ID=62711017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/089160 WO2018123038A1 (ja) | 2016-12-28 | 2016-12-28 | エレベーター故障の遠隔復旧システム |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6564147B2 (ja) |
KR (1) | KR102161285B1 (ja) |
CN (1) | CN110139822B (ja) |
WO (1) | WO2018123038A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08278897A (ja) * | 1995-04-06 | 1996-10-22 | Intec:Kk | 通信システムにおける端末装置の障害復旧方法 |
JP2001240337A (ja) * | 2000-02-29 | 2001-09-04 | Toshiba Elevator Co Ltd | エレベータ制御装置及びエレベータ遠隔監視装置 |
JP2003256367A (ja) * | 2002-03-06 | 2003-09-12 | Seiko Epson Corp | 電子機器のエラーに関する情報提供システムおよび電気機器のエラー実績を管理するサーバ |
JP2005275631A (ja) * | 2004-03-23 | 2005-10-06 | Mitsubishi Electric Information Systems Corp | 監視センターサーバ及び監視装置 |
JP2006092278A (ja) * | 2004-09-24 | 2006-04-06 | Fuji Xerox Co Ltd | 障害復旧支援システム、障害復旧支援装置および管理装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR940000653B1 (ko) * | 1988-10-31 | 1994-01-26 | 금성산전 주식회사 | 엘리베이터의 도아 폐방 제어방법 및 회로. |
KR100957900B1 (ko) * | 2006-02-10 | 2010-05-13 | 미쓰비시덴키 가부시키가이샤 | 엘리베이터 제어 프로그램의 원격 갱신 시스템 |
JP2008144435A (ja) | 2006-12-08 | 2008-06-26 | Shin Caterpillar Mitsubishi Ltd | 作業機械管理システム |
JP2009286600A (ja) | 2008-05-30 | 2009-12-10 | Hitachi Building Systems Co Ltd | 遠隔監視システムの制御プログラム書替え方法 |
ES2601585T3 (es) * | 2009-12-18 | 2017-02-15 | Thyssenkrupp Elevator Ag | Procedimiento para el telediagnóstico de una instalación de ascensor e instalación de ascensor para la realización del procedimiento |
CN105217389B (zh) * | 2015-10-22 | 2017-07-14 | 广州日滨科技发展有限公司 | 电梯备件远程管理的方法及系统 |
CN105731209A (zh) * | 2016-03-17 | 2016-07-06 | 天津大学 | 基于物联网的电梯故障智能预测与诊断及维护方法 |
-
2016
- 2016-12-28 JP JP2018551882A patent/JP6564147B2/ja active Active
- 2016-12-28 WO PCT/JP2016/089160 patent/WO2018123038A1/ja active Application Filing
- 2016-12-28 KR KR1020197018233A patent/KR102161285B1/ko active IP Right Grant
- 2016-12-28 CN CN201680091879.2A patent/CN110139822B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08278897A (ja) * | 1995-04-06 | 1996-10-22 | Intec:Kk | 通信システムにおける端末装置の障害復旧方法 |
JP2001240337A (ja) * | 2000-02-29 | 2001-09-04 | Toshiba Elevator Co Ltd | エレベータ制御装置及びエレベータ遠隔監視装置 |
JP2003256367A (ja) * | 2002-03-06 | 2003-09-12 | Seiko Epson Corp | 電子機器のエラーに関する情報提供システムおよび電気機器のエラー実績を管理するサーバ |
JP2005275631A (ja) * | 2004-03-23 | 2005-10-06 | Mitsubishi Electric Information Systems Corp | 監視センターサーバ及び監視装置 |
JP2006092278A (ja) * | 2004-09-24 | 2006-04-06 | Fuji Xerox Co Ltd | 障害復旧支援システム、障害復旧支援装置および管理装置 |
Also Published As
Publication number | Publication date |
---|---|
KR20190083670A (ko) | 2019-07-12 |
JPWO2018123038A1 (ja) | 2019-01-17 |
KR102161285B1 (ko) | 2020-09-29 |
JP6564147B2 (ja) | 2019-08-21 |
CN110139822B (zh) | 2020-12-22 |
CN110139822A (zh) | 2019-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6615386B2 (ja) | エレベーターの遠隔監視装置 | |
JP6437176B2 (ja) | エレベーター故障の遠隔復旧システム | |
WO2018100606A1 (ja) | エレベーター故障の遠隔復旧システム | |
JP6479284B2 (ja) | エレベーター故障の遠隔復旧システム | |
JP6564147B2 (ja) | エレベーター故障の遠隔復旧システム | |
JP6479285B2 (ja) | エレベーター故障の遠隔復旧システム | |
WO2018100604A1 (ja) | エレベーター故障の遠隔復旧システム | |
JP6580276B2 (ja) | エレベーター故障の遠隔復旧システム | |
JP6537745B2 (ja) | エレベーターの遠隔監視システム | |
JP6419360B1 (ja) | エレベーターシステム | |
WO2018122996A1 (ja) | エレベーター故障の遠隔復旧システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018551882 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16925369 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197018233 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16925369 Country of ref document: EP Kind code of ref document: A1 |