WO2018117646A1 - 극저온 충격인성이 우수한 후강판 및 이의 제조방법 - Google Patents
극저온 충격인성이 우수한 후강판 및 이의 제조방법 Download PDFInfo
- Publication number
- WO2018117646A1 WO2018117646A1 PCT/KR2017/015134 KR2017015134W WO2018117646A1 WO 2018117646 A1 WO2018117646 A1 WO 2018117646A1 KR 2017015134 W KR2017015134 W KR 2017015134W WO 2018117646 A1 WO2018117646 A1 WO 2018117646A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- thick steel
- less
- impact toughness
- present
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/006—Graphite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
Definitions
- the present invention relates to a thick steel sheet excellent in cryogenic impact toughness that can be suitably used in an environment of 0 ⁇ -60 °C and its manufacturing method.
- normalizing heat treatment is usually performed by using an off-line heat treatment facility on steel (hot rolled steel sheet) manufactured by general hot rolling. .
- normalizing rolling which finishes rolling in the normalizing temperature range, has been developed and commercialized, but compared to the off-line heat treatment material, ex, impact toughness, etc.) there is a problem that is difficult to secure the quality.
- Patent Document 1 Korean Patent Publication No. 2014-0098901
- One aspect of the present invention is a thick steel sheet having the same or more physical properties as that of the conventional steel material subjected to the soaking process, while the soaking (normalizing) process required for securing toughness in a low temperature and cryogenic environment can be omitted. It is to provide a method for manufacturing.
- C 0.02 ⁇ 0.10%
- Mn 0.6 ⁇ 1.7%
- Si 0.5% or less (excluding 0%)
- P 0.02% or less
- S 0.015% or less
- Nb Cryogenic impact toughness with 0.005 ⁇ 0.05%
- V 0.005 ⁇ 0.07%
- microstructure, complex structure of 85 ⁇ 95% of ferrite and 5 ⁇ 15% of pearlite Provides excellent thick steel plate.
- the present inventors performed a separate normalizing heat treatment for the hot rolled steel sheet manufactured to secure the low temperature impact toughness of the existing thick steel sheet, but the physical properties equivalent to those of the thick steel sheet manufactured by the existing method without using such a heat treatment facility, etc. In order to provide a thick steel sheet having a deep study.
- the present invention has a technical significance that does not require a separate normalizing heat treatment by controlling the rolling temperature.
- the thick steel sheet excellent in cryogenic impact toughness is a weight%, C: 0.02 ⁇ 0.10%, Mn: 0.6 ⁇ 1.7%, Si: 0.5% or less, P: 0.02% or less, S: 0.015% or less , Nb: 0.005 to 0.05%, V: preferably 0.005 to 0.07%.
- the content of each component means weight%.
- Carbon (C) is an essential element to improve the strength of the steel, but when the content of C is excessive, it causes the increase of the rolling load during rolling due to the improvement of the high temperature strength, and the instability of the toughness at the cryogenic temperature below -20 °C Induce.
- the C content is less than 0.02%, it is difficult to secure the strength of the level required by the present invention, and in order to control to less than 0.02%, a decarburization process may be additionally required, which may cause a cost increase.
- the content exceeds 0.10%, it may be difficult to increase the rolling load and secure cryogenic toughness.
- the content of C it is preferable to control the content of C to 0.02 to 0.10%. More advantageously, the content of C may be controlled to 0.05-0.10%.
- Manganese (Mn) is an essential element for securing impact toughness of steel and controlling impurity elements such as S. However, when excessively added together with C, weldability may decrease.
- the present invention by controlling the content of C as described above, it is possible to effectively secure the toughness of the steel, and in order to obtain high strength, the strength can be improved with Mn without adding the C, so that the impact toughness can be maintained.
- Mn at 0.6% or more, but when the content is excessively over 1.7%, the weldability is deteriorated due to the excessive carbon equivalent, and the local toughness in the thick steel sheet is caused by segregation during casting. And cracks.
- Silicon (Si) is a major element for deoxidation of steel and an element advantageous for securing strength of steel by solid solution strengthening.
- the content of Si is controlled to 0.5% or less, except 0%.
- Phosphorus (P) is an element that is inevitably contained during the manufacture of steel, and is an element that is easily segregated and easily forms low temperature metamorphic structure, and has a great influence on the deterioration of toughness.
- S Sulfur
- S is an element that is inevitably contained during the manufacture of steel, when the content of S is excessive, there is a problem of deteriorating toughness by increasing the non-metallic inclusions.
- Niobium is an element that is advantageous for forming the structure finely and is advantageous for securing strength and impact toughness.
- the addition of the Nb is required in order to obtain stable structure refinement with homogenization of the structure during normal rolling.
- the content of Nb is determined by the amount of Nb dissolved by its temperature and time upon reheating the slab for rolling, but is generally not preferred because the content of more than 0.05% is beyond the dissolution range. On the other hand, if the content of Nb is less than 0.005%, the amount of precipitation is insufficient, and the above-described effects cannot be sufficiently obtained, which is not preferable.
- Vanadium (V) is an element advantageous for securing the strength of steel.
- the content of C is limited to secure the impact toughness of the steel and the content of Mn is controlled to control the segregation effect, the strength is insufficient due to the limitation of C and Mn through the addition of V. It can be secured.
- the V exhibits the effect at a low temperature range, there is an effect of reducing the rolling load.
- the present invention may further comprise at least 0.5% or less of each of Ni and Cr in order to further improve the physical properties for the thick steel sheet satisfying the above-described alloy composition, and further, 0.005 ⁇ 0.035% It may further include.
- Nickel (Ni) and chromium (Cr) may be added to secure the strength of the steel, and is preferably added in an amount of 0.5% or less in consideration of the carbon equivalent and the limitation of essential components.
- Titanium (Ti) combines with nitrogen to form precipitates, thereby controlling the excessive formation of precipitates by Nb and V, and in particular, there is an effect of suppressing the surface quality degradation that may occur during production of the slab.
- Ti in an amount of 0.005% or more.
- the content is excessively more than 0.035%, precipitates are excessively formed at grain boundaries, which may damage the characteristics of the steel.
- the remaining component of the present invention is iron (Fe).
- impurities which are not intended from the raw material or the surrounding environment may be inevitably mixed, and thus cannot be excluded. Since these impurities are known to those skilled in the art, all of them are not specifically mentioned in the present specification.
- the thick steel sheet of the present invention that satisfies the above-described alloy composition preferably includes a ferrite and a pearlite composite as a microstructure.
- the present invention includes 85 to 95% of ferrite and 5 to 15% of pearlite in an area fraction, thereby securing target strength and impact toughness.
- the grain size of the ferrite is ASTM particle size 7.5 or more.
- ferrite grain size is less than ASTM particle size 7.5, coarse grains may be mixed to ensure homogeneous toughness of a target level.
- the thick steel sheet of the present invention that satisfies both the alloy composition and the microstructure can secure excellent cryogenic impact toughness at 300J or more at -60 ° C. In addition, the required strength can be secured.
- the thick steel sheet of the present invention preferably has a thickness of 5 mmt or more, more preferably 5 to 100 mmt.
- the present invention can produce the target thick steel plate through the [steel slab reheating-hot rolling-cooling] process, each step will be described in detail below.
- the reheating process is intended to refine the structure by utilizing the niobium (Nb) compound formed during casting, it is preferably carried out at 1100 °C or more in order to disperse and precipitate finely Nb after re-dissolving.
- the reheating temperature is less than 1100 ° C., dissolution does not occur properly, so that fine grains cannot be induced and it is difficult to secure strength in the final steel. In addition, it is difficult to control the crystal grains by the precipitates, so that the target physical properties cannot be obtained.
- the finish hot rolling is preferably carried out at a temperature range of 850 ⁇ 910 °C.
- the present invention limits the temperature to the normal normalized heat treatment region during finish hot rolling in order to provide a thick steel sheet having a property equal to or greater than that of the existing normalizing material without performing a separate normalizing heat treatment.
- the rolling is performed at a temperature range below the austenite recrystallization temperature, so that a normalizing effect cannot be obtained during rolling.
- the temperature exceeds 910 °C crystal grains are grown to prevent a stable normalization.
- cooling is preferably performed by air cooling.
- the present invention is economically advantageous because it does not require a separate cooling facility by performing air cooling at the time of cooling the hot rolled steel sheet, and even if the air cooling is performed, all of the target physical properties can be obtained.
- the slab having the alloy composition shown in Table 1 below was reheated at 1100 ° C. or higher, and then finished hot rolled and cooled under the conditions shown in Table 2 to prepare a final thick steel sheet.
- thick steel plates having a thickness of 20 mmt and 30 mmt were prepared for the inventive steel 1, and thicknesses of 30 mmt were prepared for the comparative steels 1 and 2, respectively.
- the re-heating is preferably carried out so that the extraction temperature is 1100 °C or more.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
구분 | 합금조성 (중량%) | |||||||||
C | Mn | Si | P | S | Nb | Ti | V | Ni | Cr | |
발명강 1 | 0.080 | 1.55 | 0.39 | 0.010 | 0.002 | 0.024 | 0.010 | 0.046 | 0.001 | 0.001 |
비교강 1 | 0.159 | 1.45 | 0.39 | 0.011 | 0.003 | 0.019 | 0.001 | 0.037 | 0.002 | 0.002 |
비교강 2 | 0.165 | 1.50 | 0.40 | 0.011 | 0.002 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 |
구분 | 제조조건 | 두께(mmt) | |
마무리 열간압연 | 냉각 | ||
발명강 1 | 880℃ | 공냉 | 30 또는 20 |
비교강 1 | 880℃ | 공냉 | 30 |
비교강 2 | 880℃ | 공냉 | 30 |
구분 | 미세조직 | 충격특성 (J) | ||||||
상 | F분율 | 0℃ | -20℃ | -30℃ | -40℃ | -50℃ | -60℃ | |
발명강 1 | F+P | 88% | 400 | 402 | 395 | 399 | 398 | 398 |
비교강 1 | F+P | 80% | 310 | 320 | 295 | 50 | 22 | 20 |
비교강 2 | F+P | 78% | 250 | 190 | 70 | 40 | 20 | 20 |
구분 | 항복강도(MPa) | 인장강도(MPa) | 충격인성(J) | 결정립 크기 | ||||
전 | 후 | 전 | 후 | 전 | 후 | 전 | 후 | |
발명강 1(30mmt) | 408 | 395 | 492 | 492 | 399 | 397 | 8.5 | 8.5 |
발명강 1(20mmt) | 420 | 398 | 502 | 495 | 353 | 358 | 8.5 | 8.7 |
비교강 2(30mmt) | 387 | 345 | 527 | 482 | 184 | 231 | 7.2 | 7.0 |
인장특성 | 1190℃ | 1160℃ | 1150℃ | 1130℃ | 1120℃ | 1100℃ | 1090℃ |
항복강도(MPa) | 416 | 416 | 411 | 406 | 408 | 398 | 383 |
인장강도(MPa) | 500 | 500 | 496 | 490 | 488 | 483 | 469 |
Claims (8)
- 중량%로, C: 0.02~0.10%, Mn: 0.6~1.7%, Si: 0.5% 이하(0%는 제외), P: 0.02% 이하, S: 0.015% 이하, Nb: 0.005~0.05%, V: 0.005~0.07%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고,미세조직으로 면적분율 85~95%의 페라이트 및 5~15%의 펄라이트의 복합조직을 갖는 극저온 충격인성이 우수한 후강판.
- 제 1항에 있어서,상기 후강판은 중량%로 Ni: 0.5% 이하 및 Cr: 0.5% 이하 중 1종 이상을 더 포함하는 극저온 충격인성이 우수한 후강판.
- 제 1항에 있어서,상기 후강판은 중량%로 Ti: 0.005~0.035%를 더 포함하는 극저온 충격인성이 우수한 후강판.
- 제 1항에 있어서,상기 후강판은 페라이트 결정립 크기(grain size)가 ASTM 입도번호 7.5 이상인 극저온 충격인성이 우수한 후강판.
- 제 1항에 있어서,상기 후강판은 -60℃에서 충격인성이 300J 이상인 극저온 충격인성이 우수한 후강판.
- 중량%로, C: 0.02~0.10%, Mn: 0.6~1.7%, Si: 0.5% 이하(0%는 제외), P: 0.02% 이하, S: 0.015% 이하, Nb: 0.005~0.05%, V: 0.005~0.07%, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 강 슬라브를 1100℃ 이상에서 재가열하는 단계;상기 재가열된 강 슬라브를 850~910℃에서 마무리 열간압연하여 열연강판으로 제조하는 단계; 및상기 마무리 열간압연 후 상온까지 공냉하는 단계를 포함하는 극저온 충격인성이 우수한 후강판의 제조방법.
- 제 6항에 있어서,상기 강 슬라브는 중량%로 Ni: 0.5% 이하 및 Cr: 0.5% 이하 중 1종 이상을 더 포함하는 극저온 충격인성이 우수한 후강판의 제조방법.
- 제 6항에 있어서,상기 강 슬라브는 중량%로 Ti: 0.005~0.035%를 더 포함하는 극저온 충격인성이 우수한 후강판의 제조방법.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES17883359T ES2898085T3 (es) | 2016-12-22 | 2017-12-20 | Lámina de acero de gran espesor que tiene una excelente dureza al impacto criogénico y procedimiento de fabricación de la misma |
EP17883359.6A EP3561111B1 (en) | 2016-12-22 | 2017-12-20 | Thick steel sheet having excellent cryogenic impact toughness and manufacturing method therefor |
CN201780079143.8A CN110088334B (zh) | 2016-12-22 | 2017-12-20 | 具有优异的低温冲击韧性的厚钢板及其制造方法 |
JP2019532809A JP6857244B2 (ja) | 2016-12-22 | 2017-12-20 | 極低温衝撃靭性に優れた厚鋼板及びその製造方法 |
US16/472,246 US11649515B2 (en) | 2016-12-22 | 2017-12-20 | Thick steel plate having excellent cryogenic impact toughness and manufacturing method therefor |
CA3047960A CA3047960C (en) | 2016-12-22 | 2017-12-20 | Thick steel plate having excellent cryogenic impact toughness and manufacturing method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0176513 | 2016-12-22 | ||
KR1020160176513A KR101917453B1 (ko) | 2016-12-22 | 2016-12-22 | 극저온 충격인성이 우수한 후강판 및 이의 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018117646A1 true WO2018117646A1 (ko) | 2018-06-28 |
Family
ID=62626782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/015134 WO2018117646A1 (ko) | 2016-12-22 | 2017-12-20 | 극저온 충격인성이 우수한 후강판 및 이의 제조방법 |
Country Status (8)
Country | Link |
---|---|
US (1) | US11649515B2 (ko) |
EP (1) | EP3561111B1 (ko) |
JP (1) | JP6857244B2 (ko) |
KR (1) | KR101917453B1 (ko) |
CN (1) | CN110088334B (ko) |
CA (1) | CA3047960C (ko) |
ES (1) | ES2898085T3 (ko) |
WO (1) | WO2018117646A1 (ko) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102255822B1 (ko) * | 2019-12-06 | 2021-05-25 | 주식회사 포스코 | 저온충격인성이 우수한 노말라이징 열처리 강판 및 제조방법 |
CN111455255B (zh) * | 2020-03-30 | 2022-05-06 | 江阴兴澄特种钢铁有限公司 | 一种80-100mm特厚海上风电用EH36钢的制备方法 |
KR102484995B1 (ko) * | 2020-12-10 | 2023-01-04 | 주식회사 포스코 | 진공열차 튜브용 열연강판 및 그 제조방법 |
KR102487758B1 (ko) * | 2020-12-18 | 2023-01-12 | 주식회사 포스코 | 저온 충격인성이 우수한 고강도 강판 및 그 제조방법 |
KR102512885B1 (ko) * | 2020-12-21 | 2023-03-23 | 주식회사 포스코 | 강도와 저온 충격인성이 우수한 극후강판 및 그 제조방법 |
CN112899443A (zh) * | 2021-01-14 | 2021-06-04 | 山东钢铁集团日照有限公司 | 4-8mm薄规格高韧性结构钢中厚钢板的制造工艺 |
KR20230089767A (ko) | 2021-12-14 | 2023-06-21 | 주식회사 포스코 | 고강도 및 충격인성이 우수한 강재 및 그 제조방법 |
KR20240098514A (ko) | 2022-12-21 | 2024-06-28 | 주식회사 포스코 | 강도와 인성이 우수한 강판 및 그 제조방법 |
CN117004885B (zh) * | 2023-07-24 | 2024-10-22 | 鞍钢股份有限公司 | 一种超低温高强度容器钢板及其制造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004232091A (ja) * | 2004-03-29 | 2004-08-19 | Jfe Steel Kk | 耐地震特性に優れた構造用鋼材の製造方法 |
KR20090069871A (ko) * | 2007-12-26 | 2009-07-01 | 주식회사 포스코 | 용접열영향부의 저온인성과 인장강도가 우수한 고강도구조용 강재 및 그 제조방법 |
KR20110060449A (ko) * | 2009-11-30 | 2011-06-08 | 주식회사 포스코 | 저온인성 및 수소유기균열 저항성이 우수한 압력용기용 강판 및 그 제조방법 |
KR20120074638A (ko) * | 2010-12-28 | 2012-07-06 | 주식회사 포스코 | 중심부 물성 및 수소유기균열 저항성이 우수한 압력용기용 극후물 강판 및 그 제조방법 |
KR20130021407A (ko) * | 2010-06-29 | 2013-03-05 | 제이에프이 스틸 가부시키가이샤 | 가공성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법 |
KR20160068048A (ko) * | 2014-12-04 | 2016-06-15 | 주식회사 포스코 | 상온 가공성 및 저온 충격인성이 우수한 중탄소강 비조질 선재 및 이의 제조방법 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4072543A (en) | 1977-01-24 | 1978-02-07 | Amax Inc. | Dual-phase hot-rolled steel strip |
US4397698A (en) | 1979-11-06 | 1983-08-09 | Republic Steel Corporation | Method of making as-hot-rolled plate |
JPH0995731A (ja) | 1995-10-02 | 1997-04-08 | Nkk Corp | 低温用建築向け鋼材の製造方法 |
KR100435465B1 (ko) | 1999-12-20 | 2004-06-10 | 주식회사 포스코 | 극저온인성이 우수한 항복강도 63kgf/㎟급 후강판의제조방법 |
JP4655372B2 (ja) | 2001-01-25 | 2011-03-23 | Jfeスチール株式会社 | 高い降伏点を有する高張力鋼材の製造方法 |
EP1662014B1 (en) | 2003-06-12 | 2018-03-07 | JFE Steel Corporation | Steel plate and welded steel tube exhibiting low yield ratio, high strength and high toughness and method for production thereof |
JP4572002B1 (ja) * | 2009-10-28 | 2010-10-27 | 新日本製鐵株式会社 | 強度、延性の良好なラインパイプ用鋼板およびその製造方法 |
KR101322067B1 (ko) | 2009-12-28 | 2013-10-25 | 주식회사 포스코 | 용접 후 열처리 저항성이 우수한 고강도 강판 및 그 제조방법 |
JP5170212B2 (ja) | 2010-11-08 | 2013-03-27 | Jfeスチール株式会社 | 高い降伏点を有する高張力鋼材の製造方法 |
JP5589885B2 (ja) | 2010-11-30 | 2014-09-17 | Jfeスチール株式会社 | 建築構造部材向け角形鋼管用厚肉熱延鋼板およびその製造方法 |
CA2843588C (en) | 2011-08-09 | 2018-02-20 | Nippon Steel & Sumitomo Metal Corporation | High yield ratio hot rolled steel sheet which has excellent low temperature impact energy absorption and haz softening resistance and method of production of same |
CN102605296A (zh) | 2012-03-13 | 2012-07-25 | 宝山钢铁股份有限公司 | 一种核电压力容器用钢及其制造方法 |
KR101505260B1 (ko) | 2013-01-31 | 2015-03-24 | 현대제철 주식회사 | 강관용 열연강판 및 강관 제조 방법 |
JP5630523B2 (ja) | 2013-04-02 | 2014-11-26 | Jfeスチール株式会社 | 窒化処理用鋼板およびその製造方法 |
JP6160574B2 (ja) | 2014-07-31 | 2017-07-12 | Jfeスチール株式会社 | 強度−均一伸びバランスに優れた高強度熱延鋼板およびその製造方法 |
KR101639907B1 (ko) | 2014-12-22 | 2016-07-15 | 주식회사 포스코 | 수소유기균열(hic) 저항성 및 저온인성이 우수한 압력용기용 강재 및 이의 제조방법 |
KR101639909B1 (ko) | 2014-12-22 | 2016-07-15 | 주식회사 포스코 | 내수소유기균열성과 내황화물응력균열성이 우수한 후물 열연강판 및 그 제조방법 |
ES2826878T3 (es) * | 2015-04-22 | 2021-05-19 | Nippon Steel Corp | Chapa de acero laminada en caliente, material de acero y procedimiento para producir chapa de acero laminada en caliente |
-
2016
- 2016-12-22 KR KR1020160176513A patent/KR101917453B1/ko active IP Right Grant
-
2017
- 2017-12-20 CA CA3047960A patent/CA3047960C/en active Active
- 2017-12-20 EP EP17883359.6A patent/EP3561111B1/en active Active
- 2017-12-20 US US16/472,246 patent/US11649515B2/en active Active
- 2017-12-20 WO PCT/KR2017/015134 patent/WO2018117646A1/ko unknown
- 2017-12-20 ES ES17883359T patent/ES2898085T3/es active Active
- 2017-12-20 JP JP2019532809A patent/JP6857244B2/ja active Active
- 2017-12-20 CN CN201780079143.8A patent/CN110088334B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004232091A (ja) * | 2004-03-29 | 2004-08-19 | Jfe Steel Kk | 耐地震特性に優れた構造用鋼材の製造方法 |
KR20090069871A (ko) * | 2007-12-26 | 2009-07-01 | 주식회사 포스코 | 용접열영향부의 저온인성과 인장강도가 우수한 고강도구조용 강재 및 그 제조방법 |
KR20110060449A (ko) * | 2009-11-30 | 2011-06-08 | 주식회사 포스코 | 저온인성 및 수소유기균열 저항성이 우수한 압력용기용 강판 및 그 제조방법 |
KR20130021407A (ko) * | 2010-06-29 | 2013-03-05 | 제이에프이 스틸 가부시키가이샤 | 가공성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법 |
KR20120074638A (ko) * | 2010-12-28 | 2012-07-06 | 주식회사 포스코 | 중심부 물성 및 수소유기균열 저항성이 우수한 압력용기용 극후물 강판 및 그 제조방법 |
KR20160068048A (ko) * | 2014-12-04 | 2016-06-15 | 주식회사 포스코 | 상온 가공성 및 저온 충격인성이 우수한 중탄소강 비조질 선재 및 이의 제조방법 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3561111A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3561111B1 (en) | 2021-08-18 |
US11649515B2 (en) | 2023-05-16 |
EP3561111A1 (en) | 2019-10-30 |
CA3047960C (en) | 2024-03-12 |
JP2020509189A (ja) | 2020-03-26 |
KR20180073074A (ko) | 2018-07-02 |
JP6857244B2 (ja) | 2021-04-14 |
KR101917453B1 (ko) | 2018-11-09 |
CA3047960A1 (en) | 2018-06-28 |
CN110088334B (zh) | 2021-06-11 |
EP3561111A4 (en) | 2019-10-30 |
CN110088334A (zh) | 2019-08-02 |
US20190316219A1 (en) | 2019-10-17 |
ES2898085T3 (es) | 2022-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018117646A1 (ko) | 극저온 충격인성이 우수한 후강판 및 이의 제조방법 | |
WO2017111510A1 (ko) | 열간 가공성이 우수한 비자성 강재 및 그 제조방법 | |
WO2016104975A1 (ko) | Pwht 후 인성이 우수한 고강도 압력용기용 강재 및 그 제조방법 | |
WO2018074887A1 (ko) | 고강도 철근 및 이의 제조 방법 | |
WO2021091138A1 (ko) | 저온 충격인성이 우수한 고강도 강재 및 그 제조방법 | |
WO2018110853A1 (ko) | 저온역 버링성이 우수한 고강도 복합조직강 및 그 제조방법 | |
WO2018117700A1 (ko) | 고강도 고인성 후강판 및 이의 제조방법 | |
WO2018117676A1 (ko) | 내마모성과 인성이 우수한 오스테나이트계 강재 및 그 제조방법 | |
WO2018117497A1 (ko) | 길이방향 균일 연신율이 우수한 용접강관용 강재, 이의 제조방법 및 이를 이용한 강관 | |
WO2018117450A1 (ko) | 저온인성 및 후열처리 특성이 우수한 내sour 후판 강재 및 그 제조방법 | |
WO2015099222A1 (ko) | 용접성 및 버링성이 우수한 열연강판 및 그 제조방법 | |
WO2020111856A2 (ko) | 연성 및 저온 인성이 우수한 고강도 강재 및 이의 제조방법 | |
WO2018117614A1 (ko) | 표면부 nrl-dwt 물성이 우수한 극후물 강재 및 그 제조방법 | |
WO2012043984A2 (ko) | 수소유기균열 저항성이 우수한 라인 파이프용 강판 및 그 제조 방법 | |
WO2018117496A1 (ko) | 고온 템퍼링 열처리 및 용접 후 열처리 저항성이 우수한 압력용기용 강재 및 이의 제조방법 | |
WO2020080602A1 (ko) | 방진성 및 성형성이 우수한 고망간 강재의 제조방법 및 이에 의해 제조된 고망간 강재 | |
WO2017111443A1 (ko) | 열간 저항성이 우수한 고강도 구조용 강판 및 그 제조방법 | |
WO2013154254A1 (ko) | 재질 균일성이 우수한 고탄소 열연강판 및 이의 제조방법 | |
WO2018117650A1 (ko) | 표면부 nrl-dwt 물성이 우수한 극후물 강재 및 그 제조방법 | |
WO2016105003A1 (ko) | 취성균열전파 저항성이 우수한 구조용 극후물 강재 및 그 제조방법 | |
WO2016072679A1 (ko) | 강도와 충격 인성이 우수한 선재 및 그 제조방법 | |
WO2022086049A1 (ko) | 열적 안정성이 우수한 고강도 강판 및 이의 제조방법 | |
WO2018110850A1 (ko) | 충격인성이 우수한 고강도 선재 및 그 제조방법 | |
WO2020085852A1 (ko) | 항복강도가 우수한 오스테나이트계 고망간 강재 및 그 제조방법 | |
WO2020130329A1 (ko) | 성형성이 우수한 고강도 열연강판 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17883359 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019532809 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3047960 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017883359 Country of ref document: EP Effective date: 20190722 |