[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018116774A1 - Carbon dioxide reduction apparatus - Google Patents

Carbon dioxide reduction apparatus Download PDF

Info

Publication number
WO2018116774A1
WO2018116774A1 PCT/JP2017/042933 JP2017042933W WO2018116774A1 WO 2018116774 A1 WO2018116774 A1 WO 2018116774A1 JP 2017042933 W JP2017042933 W JP 2017042933W WO 2018116774 A1 WO2018116774 A1 WO 2018116774A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
carbon dioxide
electrode
pipes
cell
Prior art date
Application number
PCT/JP2017/042933
Other languages
French (fr)
Japanese (ja)
Inventor
山口 仁
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017161353A external-priority patent/JP6711334B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018116774A1 publication Critical patent/WO2018116774A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B5/00Electrogenerative processes, i.e. processes for producing compounds in which electricity is generated simultaneously
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features

Definitions

  • the present disclosure relates to a carbon dioxide reduction device that reduces carbon dioxide.
  • Patent Document 1 discloses a configuration in which a laminated body in which a semiconductor and an electrode constituting a photovoltaic layer are laminated is immersed in an electrolytic solution.
  • Patent Document 1 the semiconductor is immersed in the electrolytic solution. For this reason, there exists a possibility that a semiconductor may corrode with electrolyte solution and durability may be impaired.
  • the present disclosure aims to provide a carbon dioxide reduction device capable of improving the generation efficiency of carbon compounds and improving the durability.
  • the carbon dioxide reduction device includes a photovoltaic element, a reduction electrode, and a reduction electrode.
  • the photovoltaic element generates an internal photoelectric effect when irradiated with light.
  • the reduction electrode is electrically connected to the photovoltaic device and generates a carbon compound by a reduction reaction of carbon dioxide.
  • the oxidation electrode is electrically connected to the photovoltaic element, and generates oxygen and hydrogen ions by water oxidation reaction.
  • One of the oxidation electrode and the reduction electrode is directly provided on the surface of the photovoltaic element opposite to the light receiving surface, and the other electrode of the oxidation electrode and the reduction electrode is provided apart from the photovoltaic element.
  • the light receiving surface of the photovoltaic device is not in direct contact with the electrolytic solution and can receive light from the light source without passing through the electrolytic solution, and the reduction electrode and the oxidation electrode are in contact with the electrolytic solution.
  • the photovoltaic element that receives sunlight is disposed outside the electrolytic solution, light is directly irradiated to the photovoltaic element without being absorbed by the electrolytic solution. For this reason, the photovoltaic device can absorb light with high efficiency, and can increase the electrical energy generated by the photovoltaic device. Thereby, the production
  • the temperature of the electrolyte near the oxidation electrode can be increased using the heat generated by the photovoltaic element.
  • the heat generated by the semiconductor due to sunlight can be effectively used. Thereby, the oxidation reaction of water at the oxidation electrode can be promoted, and the production efficiency of the carbon compound can be improved.
  • the photovoltaic device since the photovoltaic device is not in contact with the electrolytic solution, the photovoltaic device is not corroded by the electrolytic solution. Thereby, the durability of the carbon dioxide reduction device can be improved.
  • FIG. 2 is a sectional view taken along the line II-II in FIG. It is a front view of the carbon dioxide reduction device of a 2nd embodiment.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. It is a front view of the carbon dioxide reduction apparatus of a 3rd embodiment.
  • FIG. 6 is a sectional view taken along line VI-VI in FIG. 5.
  • the carbon dioxide reduction device 1 according to the first embodiment of the present disclosure will be described.
  • the carbon dioxide reduction device 1 of the present embodiment is configured as an artificial photosynthesis device that performs oxygen generation, hydrogen generation, and carbon compound (such as methanol) generation by irradiating sunlight.
  • the sun as a light source is located on the front side of the paper surface, and the direction from the front side of the paper surface toward the back side is the sunlight irradiation direction.
  • the sun is positioned above the carbon dioxide reduction device 1, and the direction from the upper side to the lower side of the horizontal paper surface is the sunlight irradiation direction.
  • the carbon dioxide reduction device 1 includes pipes 10 and 11.
  • the pipes 10 and 11 of the present embodiment have a square cross-sectional shape.
  • the pipes 10 and 11 are capable of circulating an electrolytic solution therein, and the pipes 10 and 11 constitute a container for containing the electrolytic solution.
  • the electrolyte is supplied from the outside by a pump, for example, and circulates inside the pipes 10 and 11.
  • the kind of electrolyte solution is not specifically limited, In this embodiment, potassium hydrogencarbonate aqueous solution is used.
  • the concentration of the aqueous potassium hydrogen carbonate solution is 0.1 mol / L.
  • the electrolytic solution may be referred to as “water” in the specification and drawings.
  • the pipes 10 and 11 include a first pipe 10 and a second pipe 11.
  • the first pipe 10 is an insulator
  • the second pipe 11 is a conductor.
  • the 1st piping 10 is comprised from resin materials, such as PVC, CPVC, and PE
  • the 2nd piping 11 is comprised from metal materials, such as aluminum and copper.
  • both the first pipe 10 and the second pipe 11 may be conductors, and an insulator may be provided between the first pipe 10 and the second pipe 11.
  • a plurality of first pipes 10 and second pipes 11 are provided.
  • the plurality of first pipes 10 are arranged in parallel, and the plurality of second pipes 11 are arranged in parallel, respectively.
  • the first pipe 10 and the second pipe 11 are stacked.
  • the second pipe 11 is disposed closer to the light source than the first pipe 10.
  • 1st piping 10 and 2nd piping 11 are arranged so that each longitudinal direction may intersect.
  • a plurality of first pipes 10 and a plurality of second pipes 11 are arranged orthogonally in a grid pattern.
  • the plurality of first pipes 10 and the plurality of second pipes 11 are arranged so as to spread in a plane, can be handled like a plate-like member, and are uniformly generated and reacted in the entire carbon dioxide reduction device 1. Can be caused.
  • first pipes 10 and the plurality of second pipes 11 intersect, there are a plurality of intersections where the first pipe 10 and the second pipe 11 intersect.
  • the first pipe 10 and the second pipe 11 are in contact at the intersection.
  • the first pipe 10 and the second pipe 11 are opened at portions that are in contact with each other at the intersection, and the inside of the first pipe 10 and the inside of the second pipe 11 communicate with each other at the intersection.
  • the carbon dioxide reduction device 1 is provided with a PV cell 12.
  • the PV cell 12 is a solar cell that converts light energy into electrical energy using the photovoltaic effect.
  • the PV cell 12 corresponds to the photovoltaic element of the present disclosure.
  • a group III-V semiconductor that is a direct transition type semiconductor is used as a semiconductor constituting the PV cell 12.
  • the group III-V semiconductor of this embodiment has a tandem structure of two junctions or three junctions and is a tunnel junction.
  • Such III-V semiconductors include GaInP / GaAs / Ge, GaInP / GaAs / GaNAs, GaInP / GaAs, AlGaInP / GaAs / Ge, AlGaInP / GaAs / GaNAs, AlGaInP / GaAs, AlGaAs / GaAs, AlGaAs / GaInNAs.
  • An oxidation electrode 13 and a reduction electrode 14 are connected to the PV cell 12.
  • the oxidation electrode 13 is connected to the anode side of the PV cell 12, and the reduction electrode 14 is connected to the cathode side of the PV cell 12.
  • the reduction electrode 14 is configured as a reaction electrode in which a reduction reaction of carbon dioxide is performed, and the oxidation electrode 13 is configured as a counter electrode.
  • a plurality of sets of PV cells 12, oxidation electrodes 13, and reduction electrodes 14 are provided.
  • the oxidation electrode 13 is configured integrally with the PV cell 12 and is provided so as to be laminated with the PV cell 12.
  • the upper surface of the PV cell 12 is a light receiving surface on which sunlight is irradiated. That is, in this embodiment, the cathode side of the PV cell 12 is a light receiving surface.
  • the oxidation electrode 13 is provided on the surface opposite to the light receiving surface of the PV cell 12.
  • IrO 2 , RuO 2 , CoO, TiO 2, graphene, or the like may be used.
  • These formed oxidation electrodes 13 also function as a protective film that suppresses corrosion of the semiconductor constituting the PV cell 12.
  • the surface opposite to the light receiving surface of the PV cell 12 may be used as the oxidation electrode 13 as it is.
  • the PV cell 12 and the oxidation electrode 13 are provided in a portion facing the light source on the outer peripheral surface of the first pipe 10.
  • the PV cell 12 is arranged so that the light receiving surface faces the sunlight side.
  • the oxidation electrode 13 is disposed in contact with the first pipe 10, and the PV cell 12 is disposed on the side far from the first pipe 10.
  • the PV cell 12 is arranged in the first pipe 10 on the side far from the light source among the first pipe 10 and the second pipe 11.
  • the PV cell 12 is arrange
  • the PV cell 12 is disposed between the two second pipes 11 in the first pipe 10.
  • the PV cell 12 is not in direct contact with the electrolytic solution, and is disposed to face the sun as a light source.
  • the PV cell 12 need not have at least the light receiving surface in direct contact with the electrolytic solution.
  • the portion of the first pipe 10 where the oxidation electrode 13 is provided is open, and the surface of the oxidation electrode 13 opposite to the PV cell 12 is in contact with the electrolyte inside the first pipe 10.
  • the oxidation electrode 13 functions as a catalyst electrode that promotes the oxidation reaction of water.
  • the first pipe 10 is an oxidation pipe in which an oxidation reaction of water using the oxidation electrode 13 is performed.
  • the reduction electrode 14 is configured as a separate body from the PV cell 12 and is disposed apart from the PV cell 12.
  • a metal such as Au, Cu, Pt, In, or Sn
  • a metal oxide such as Cu, In, Sn, or Ni, or graphene doped with nitrogen
  • Graphene doped with nitrogen on a metal or metal oxide may be partially placed.
  • the 2nd piping 11 itself can also be used as the reduction electrode 14 by comprising the 2nd piping 11 with these materials.
  • the reduction electrode 14 is disposed inside the second pipe 11 and is in contact with the electrolytic solution inside the second pipe 11.
  • the PV cell 12 and the second pipe 11 are connected by a wiring 15.
  • the reduction electrode 14 is in contact with the inner wall surface of the second pipe 11, and the PV cell 12 and the reduction electrode 14 are connected by a wiring 15 through the second pipe 11 that is a conductor.
  • the reduction electrode 14 functions as a catalyst electrode that promotes the reduction reaction of carbon dioxide.
  • the second pipe 11 is a reducing pipe in which carbon dioxide is reduced using the reducing electrode 14.
  • An electrolyte membrane 16 is provided at the intersection of the first pipe 10 and the second pipe 11.
  • the electrolyte membrane 16 is disposed at a portion where the first pipe 10 and the second pipe 11 communicate with each other, and is disposed between the oxidation electrode 13 of the first pipe 10 and the reduction electrode 14 of the second pipe 11.
  • the electrolyte membrane 16 restricts movement of reaction products and the like while allowing movement of hydrogen ions in the electrolytic solution between the oxidation electrode 13 side and the reduction electrode 14 side.
  • Nafion registered trademark of DuPont
  • DuPont can be used as the electrolyte membrane 16.
  • a CO 2 supply pipe 17 is inserted in the vicinity of the reduction electrode 14. Carbon dioxide is supplied from the CO 2 supply pipe 17 to the reduction electrode 14 by bubbling.
  • the bubble size of carbon dioxide is preferably from submicron to millimeter.
  • a condenser lens 18 is provided outside the first pipe 10 and the second pipe 11.
  • the condensing lens 18 is provided corresponding to each of the plurality of PV cells 12. Specifically, one condenser lens 18 is provided for one PV cell 12, and the condenser lens 18 is disposed so as to face the light receiving surface of the PV cell 12.
  • the condenser lens 18 is fixed to the pipes 10 and 11.
  • the condensing lens 18 can be made movable with respect to the pipes 10 and 11 in order to cause the lens surface of the condensing lens 18 to follow the solar irradiation direction when the sunlight irradiation direction changes.
  • the condensing lens 18 has a function of concentrating sunlight on the PV cell 12.
  • the condenser lens 18 for example, a spherical lens, a Fresnel lens, a microlens array, or the like can be used.
  • the distance from the condenser lens 18 to the first pipe 10 is about 10 cm, and the focal point of the condenser lens 18 is about 10 cm.
  • the thickness of the whole carbon dioxide reducing device 1 becomes about 10 cm, and it becomes easy to install the carbon dioxide reducing device 1 on the roof or the roof of a building, for example.
  • the conversion efficiency from light energy to electrical energy in the PV cell 12 can be improved.
  • the group III-V semiconductor used as the PV cell 12 in this embodiment has a great effect of improving the conversion efficiency by light collection.
  • the magnification of the condenser lens 18 is 2 to 1000 times.
  • the magnification of the condenser lens 18 can be adjusted by the refractive index, thickness, etc. of the condenser lens 18.
  • the following oxidation reaction of water is performed on the surface of the oxidation electrode 13 to generate hydrogen ions and oxygen.
  • Hydrogen ions generated at the oxidation electrode 13 pass through the electrolyte membrane 16 and move to the reduction electrode 14 side, and are used for the reduction reaction of carbon dioxide.
  • the PV cell 12 since the PV cell 12 is disposed outside the electrolytic solution, sunlight is directly applied to the PV cell 12 without being absorbed by the electrolytic solution. For this reason, the PV cell 12 can absorb sunlight with high efficiency, and the electrical energy generated by the PV cell 12 can be increased. Thereby, the production
  • the PV cell 12 is arranged outside the first pipe 10, the PV cell 12 is not in contact with the electrolytic solution, and the semiconductor constituting the PV cell 12 is not corroded by the electrolytic solution. Thereby, the durability of the carbon dioxide reduction device 1 can be improved.
  • the temperature of the electrolyte near the oxidation electrode 13 can be increased by utilizing the heat generated in the PV cell 12. Thereby, the oxidation reaction of water at the oxidation electrode 13 can be promoted, and the generation efficiency of the carbon compound can be improved.
  • the electrolytic solution container is configured by combining a plurality of first pipes 10 and a plurality of second pipes 11.
  • the carbon dioxide reduction apparatus 1 can be made lightweight.
  • restoration efficiency of the carbon dioxide per unit area can be made high, and the production
  • the plurality of first pipes 10 and the plurality of second pipes 11 are arranged in a lattice shape and are arranged so as to spread in a plane.
  • the carbon dioxide reduction apparatus 1 of this embodiment can be handled similarly to a plate-like member, and can be suitably installed, for example, on a roof of a building or a rooftop.
  • FIG. 3 corresponds to FIG. 1 of the first embodiment
  • FIG. 4 corresponds to FIG. 2 of the first embodiment.
  • the first pipe 10 in which the PV cells 12 are arranged is closer to the light source that is sunlight than the second pipe 11. Arranged on the side. For this reason, the PV cell 12 and the oxidation electrode 13 provided in the first pipe 10 are arranged closer to the light source than the second pipe 11. For this reason, unlike the said 1st Embodiment, the PV cell 12 arrange
  • the PV cell 12 can absorb sunlight with high efficiency regardless of the position of the light source, and the electrical energy generated by the PV cell 12 can be increased. .
  • FIG. 5 corresponds to FIG. 1 of the first embodiment
  • FIG. 6 corresponds to FIG. 2 of the first embodiment.
  • the first pipe 10 in which the PV cells 12 are arranged is arranged on the side farther from the light source than the second pipe 11. ing. For this reason, the PV cell 12 arranged in the first pipe 10 is sandwiched between the two second pipes 11, and the second pipe 11 exists closer to the light source than the PV cell 12.
  • an inclined surface 11 a that is inclined with respect to the stacking direction of the first pipe 10 and the second pipe 11 is provided on the second pipe 11 near the light source.
  • the inclined surface 11a is provided to face the light source side.
  • the inclined surface 11 a is provided so that the second pipe 11 does not shade the PV cell 12 regardless of the position of the light source that is sunlight. For this reason, the second pipe 11 has a smaller cross-sectional area on the side closer to the light source than on the side farther from the light source.
  • the cross section of the second pipe 11 has a substantially trapezoidal shape, a substantially pentagonal shape, or a substantially triangular shape.
  • the inclined surface 11 a is provided continuously in the longitudinal direction of the second pipe 11, but may be provided at least at a site adjacent to the PV cell 12 provided in the first pipe 10. Further, the inclined surface 11a is not limited to a flat surface, and may be a curved surface that swells outward. In this case, the cross section of the inclined surface 11a second pipe 11 is arcuate.
  • the inclined surface 11a is provided on the side close to the light source in the second pipe 11, even if the position of the light source changes, the sunlight irradiated to the PV cell 12 Is not likely to be blocked by the nearby second pipe 11. For this reason, regardless of the position of the light source, the PV cell 12 can absorb sunlight with high efficiency, and the electrical energy generated by the PV cell 12 can be increased.
  • the electrolyte solution is circulated inside the first pipe 10 and the second pipe 11, but the electrolyte solution is housed inside the first pipe 10 and the second pipe 11.
  • the electrolyte solution need not necessarily be circulated.
  • the oxidation electrode 13 is provided integrally on the opposite side of the light receiving surface of the PV cell 12, and the reduction electrode 14 is connected to the PV cell 12 by a wiring 15.
  • the reduction electrode 14 may be integrally provided on the opposite side of the light receiving surface of the PV cell 12, and the oxidation electrode 13 may be connected to the PV cell 12 by a wiring 15.
  • the anode side of the PV cell 12 may be the light receiving surface.
  • the PV cell 12 is disposed on the second pipe 11 side. Specifically, the PV cell 12 is a portion of the first pipe 10 and the second pipe 11 arranged in a lattice shape that does not intersect the first pipe 10 in the second pipe 11, It is arranged between one pipe 10.
  • Integrating the PV cell 12 and the reduction electrode 14 makes it possible to raise the temperature of the electrolyte near the reduction electrode 14 using the heat generated in the PV cell 12. Thereby, the reduction reaction of carbon dioxide at the reduction electrode 14 can be promoted, and the production efficiency of the carbon compound can be improved.
  • a mediator may be included in the electrolyte solution on the reduction electrode 14 side.
  • a mediator is a compound that mediates electron transfer through a carbon dioxide reduction reaction.
  • a nitrogen-containing aromatic compound can be used as the mediator.
  • the aromatic compound is a planar ring having a delocalized ⁇ electron system containing 4n + 2 (n is an integer) ⁇ electrons.
  • Aromatic rings can be formed by 5, 6, 7, 8, 9, or 10 or more atoms.
  • Aromatic compounds include monocyclic and fused ring polycyclic.
  • the nitrogen-containing aromatic compound is a heteroaromatic compound in which one or more constituent atoms of the aromatic ring are N atoms.
  • one or more hydrogen atoms bonded to the constituent atoms of the aromatic ring may be substituted with a linear or branched lower alkyl group, a hydroxy group, an amino group, or a pyridyl group.
  • nitrogen-containing aromatic compounds constituting such mediators include imidazole, methylimidazole, dimethylimidazole, triazole, pyridine, and dimethylaminopyridine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

A carbon dioxide reduction apparatus is provided with photovoltaic elements (12), reduction electrodes (14) and reduction electrodes (14). Either the oxidation electrodes or the reduction electrodes are directly provided on the surface of the photovoltaic elements that is on the side opposite from the light-receiving surface and the other of the oxidation electrodes and reduction electrodes are provided at a distance from the photovoltaic elements. The light-receiving surfaces of the photovoltaic elements are not in direct contact with the electrolytic solution and can receive light from the light source without being mediated by the electrolytic solution. The reduction electrodes and the oxidation electrodes are in contact with the electrolytic solution.

Description

二酸化炭素還元装置Carbon dioxide reduction equipment 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年12月22日に出願された日本出願番号2016-249372号と、2017年8月24日に出願された日本出願番号2017-161353号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2016-249372 filed on Dec. 22, 2016 and Japanese Application No. 2017-161353 filed on Aug. 24, 2017. Is used.
 本開示は、二酸化炭素を還元する二酸化炭素還元装置に関するものである。 The present disclosure relates to a carbon dioxide reduction device that reduces carbon dioxide.
 従来より、太陽光の光エネルギー等を利用し、二酸化炭素を還元して炭素を含んだ炭素化合物(例えばメタノール)を人工的に合成するシステムが研究されている。こうした中、酸化電極で水を酸化反応させ、還元電極で二酸化炭素を還元反応させて炭素化合物を合成する方法が提案されている(例えば特許文献1参照)。特許文献1には、光起電力層を構成する半導体と電極が積層された積層体が電解液中に浸漬している構成が開示されている。 Conventionally, a system that artificially synthesizes a carbon compound (for example, methanol) containing carbon by reducing the carbon dioxide by using the light energy of sunlight has been studied. Under these circumstances, a method of synthesizing a carbon compound by oxidizing water with an oxidation electrode and reducing carbon dioxide with a reduction electrode has been proposed (see, for example, Patent Document 1). Patent Document 1 discloses a configuration in which a laminated body in which a semiconductor and an electrode constituting a photovoltaic layer are laminated is immersed in an electrolytic solution.
特開2015-183218号公報Japanese Patent Laid-Open No. 2015-183218
 しかしながら、特許文献1の構成では、太陽光が電解液を介して半導体に到達するため、光エネルギーの損失が大きくなる。また、還元反応を行う電極および酸化反応を行う電極は、半導体と積層された電極を介して半導体と接続されているため、半導体でエネルギー変換時に発生した熱を酸化反応や還元反応に有効利用することができない。このため、炭素化合物の生成効率が低下する。 However, in the configuration of Patent Document 1, since sunlight reaches the semiconductor through the electrolytic solution, the loss of light energy increases. In addition, since the electrode that performs the reduction reaction and the electrode that performs the oxidation reaction are connected to the semiconductor through an electrode stacked with the semiconductor, the heat generated during energy conversion in the semiconductor is effectively used for the oxidation reaction and the reduction reaction. I can't. For this reason, the production | generation efficiency of a carbon compound falls.
 また、特許文献1の構成では、半導体が電解液に浸漬している。このため、電解液によって半導体が腐食し、耐久性が損なわれるおそれがある。 Further, in the configuration of Patent Document 1, the semiconductor is immersed in the electrolytic solution. For this reason, there exists a possibility that a semiconductor may corrode with electrolyte solution and durability may be impaired.
 本開示は、炭素化合物の生成効率を向上させ、耐久性を向上させることが可能な二酸化炭素還元装置を提供することを目的とする。 The present disclosure aims to provide a carbon dioxide reduction device capable of improving the generation efficiency of carbon compounds and improving the durability.
 本開示の一態様によれば、二酸化炭素還元装置は、光発電素子と、還元電極と、還元電極と、を備える。光発電素子は、光が照射されることによって内部光電効果を発生する。還元電極は、光発電素子と電気的に接続され、二酸化炭素の還元反応で炭素化合物を生成する。酸化電極は、光発電素子と電気的に接続され、水の酸化反応で酸素および水素イオンを生成する。 According to one aspect of the present disclosure, the carbon dioxide reduction device includes a photovoltaic element, a reduction electrode, and a reduction electrode. The photovoltaic element generates an internal photoelectric effect when irradiated with light. The reduction electrode is electrically connected to the photovoltaic device and generates a carbon compound by a reduction reaction of carbon dioxide. The oxidation electrode is electrically connected to the photovoltaic element, and generates oxygen and hydrogen ions by water oxidation reaction.
 酸化電極および還元電極のうち一方の電極は光発電素子における受光面の反対側の面に直接設けられ、酸化電極および還元電極のうち他方の電極は光発電素子と離れて設けられる。光発電素子の受光面は電解液に直接接触しておらず電解液を介さずに光源の光を受光可能であり、還元電極および酸化電極は電解液に接触している。 One of the oxidation electrode and the reduction electrode is directly provided on the surface of the photovoltaic element opposite to the light receiving surface, and the other electrode of the oxidation electrode and the reduction electrode is provided apart from the photovoltaic element. The light receiving surface of the photovoltaic device is not in direct contact with the electrolytic solution and can receive light from the light source without passing through the electrolytic solution, and the reduction electrode and the oxidation electrode are in contact with the electrolytic solution.
 本開示の一態様によれば、太陽光を受光する光発電素子が電解液の外部に配置されているため、光は電解液に吸収されることなく光発電素子に直接照射される。このため、光発電素子は、高効率で光を吸収することができ、光発電素子が発生する電気エネルギーを大きくすることができる。これにより、炭素化合物の生成効率を向上させることができる。 According to one aspect of the present disclosure, since the photovoltaic element that receives sunlight is disposed outside the electrolytic solution, light is directly irradiated to the photovoltaic element without being absorbed by the electrolytic solution. For this reason, the photovoltaic device can absorb light with high efficiency, and can increase the electrical energy generated by the photovoltaic device. Thereby, the production | generation efficiency of a carbon compound can be improved.
 また、光発電素子および酸化電極を一体化することで、光発電素子で発生した熱を利用して、酸化電極近傍の電解液を温度上昇させることができる。特に集光型光発電素子を用いることで、太陽光による半導体の発熱を効果的に利用できる。これにより、酸化電極での水の酸化反応を促進でき、炭素化合物の生成効率を向上させることができる。 Also, by integrating the photovoltaic element and the oxidation electrode, the temperature of the electrolyte near the oxidation electrode can be increased using the heat generated by the photovoltaic element. In particular, by using a concentrating photovoltaic device, the heat generated by the semiconductor due to sunlight can be effectively used. Thereby, the oxidation reaction of water at the oxidation electrode can be promoted, and the production efficiency of the carbon compound can be improved.
 また、光発電素子は電解液に接していないため、光発電素子が電解液によって腐食することがない。これにより、二酸化炭素還元装置の耐久性を向上させることができる。 Further, since the photovoltaic device is not in contact with the electrolytic solution, the photovoltaic device is not corroded by the electrolytic solution. Thereby, the durability of the carbon dioxide reduction device can be improved.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
第1実施形態の二酸化炭素還元装置の正面図である。 図1のII-II断面図である。 第2実施形態の二酸化炭素還元装置の正面図である。 図3のIV-IV断面図である。 第3実施形態の二酸化炭素還元装置の正面図である。 図5のVI-VI断面図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings.
It is a front view of the carbon dioxide reduction device of a 1st embodiment. FIG. 2 is a sectional view taken along the line II-II in FIG. It is a front view of the carbon dioxide reduction device of a 2nd embodiment. FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. It is a front view of the carbon dioxide reduction apparatus of a 3rd embodiment. FIG. 6 is a sectional view taken along line VI-VI in FIG. 5.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other will be described with the same reference numerals.
 (第1実施形態)
 本開示の第1実施形態に係る二酸化炭素還元装置1について説明する。本実施形態の二酸化炭素還元装置1は、太陽光を照射することで酸素生成、水素生成および炭素化合物(メタノール等)生成を行う人工光合成装置として構成されている。図1では紙面手前側に光源としての太陽が位置しており、紙面手前側から奥側に向かう方向が太陽光の照射方向となっている。図2では二酸化炭素還元装置1の上方に太陽が位置しており、横紙面上側から下側に向かう方向が太陽光の照射方向となっている。
(First embodiment)
The carbon dioxide reduction device 1 according to the first embodiment of the present disclosure will be described. The carbon dioxide reduction device 1 of the present embodiment is configured as an artificial photosynthesis device that performs oxygen generation, hydrogen generation, and carbon compound (such as methanol) generation by irradiating sunlight. In FIG. 1, the sun as a light source is located on the front side of the paper surface, and the direction from the front side of the paper surface toward the back side is the sunlight irradiation direction. In FIG. 2, the sun is positioned above the carbon dioxide reduction device 1, and the direction from the upper side to the lower side of the horizontal paper surface is the sunlight irradiation direction.
 図1、図2に示すように、二酸化炭素還元装置1は、配管10、11を備えている。本実施形態の配管10、11は四角形の断面形状を有している。 As shown in FIGS. 1 and 2, the carbon dioxide reduction device 1 includes pipes 10 and 11. The pipes 10 and 11 of the present embodiment have a square cross-sectional shape.
 配管10、11は内部を電解液が流通可能となっており、配管10、11は電解液を収容する容器を構成している。図示を省略しているが、電解液は例えばポンプによって外部から供給され、配管10、11の内部を循環するようになっている。電解液の種類は特に限定されないが、本実施形態では炭酸水素カリウム水溶液を用いている。炭酸水素カリウム水溶液の濃度は、0.1mol/Lとしている。以下、明細書および図面では電解液を「水」と表記することもある。 The pipes 10 and 11 are capable of circulating an electrolytic solution therein, and the pipes 10 and 11 constitute a container for containing the electrolytic solution. Although not shown, the electrolyte is supplied from the outside by a pump, for example, and circulates inside the pipes 10 and 11. Although the kind of electrolyte solution is not specifically limited, In this embodiment, potassium hydrogencarbonate aqueous solution is used. The concentration of the aqueous potassium hydrogen carbonate solution is 0.1 mol / L. Hereinafter, the electrolytic solution may be referred to as “water” in the specification and drawings.
 配管10、11には、第1配管10と、第2配管11が含まれている。本実施形態では、第1配管10を絶縁体とし、第2配管11を導体としている。具体的には、第1配管10をPVC、CPVC、PE等の樹脂材料から構成し、第2配管11をアルミニウムや銅等の金属材料から構成している。なお、第1配管10および第2配管11の両方を導体とし、第1配管10および第2配管11の間に絶縁体を設けてもよい。 The pipes 10 and 11 include a first pipe 10 and a second pipe 11. In the present embodiment, the first pipe 10 is an insulator, and the second pipe 11 is a conductor. Specifically, the 1st piping 10 is comprised from resin materials, such as PVC, CPVC, and PE, and the 2nd piping 11 is comprised from metal materials, such as aluminum and copper. Note that both the first pipe 10 and the second pipe 11 may be conductors, and an insulator may be provided between the first pipe 10 and the second pipe 11.
 第1配管10および第2配管11はそれぞれ複数設けられている。複数の第1配管10はそれぞれ並列配置されており、複数の第2配管11はそれぞれ並列配置されている。第1配管10と第2配管11は積層配置されている。本実施形態では、第2配管11が第1配管10よりも光源に近い側に配置されている。 A plurality of first pipes 10 and second pipes 11 are provided. The plurality of first pipes 10 are arranged in parallel, and the plurality of second pipes 11 are arranged in parallel, respectively. The first pipe 10 and the second pipe 11 are stacked. In the present embodiment, the second pipe 11 is disposed closer to the light source than the first pipe 10.
 第1配管10と第2配管11は、それぞれの長手方向が交差するように配置されている。本実施形態では、複数の第1配管10と複数の第2配管11が直交して格子状に配置されている。このため、複数の第1配管10と複数の第2配管11は平面的に広がるように配置され、板状部材のように扱うことができ、且つ二酸化炭素還元装置1の全体で均一に生成反応を起こさせることができる。 1st piping 10 and 2nd piping 11 are arranged so that each longitudinal direction may intersect. In the present embodiment, a plurality of first pipes 10 and a plurality of second pipes 11 are arranged orthogonally in a grid pattern. For this reason, the plurality of first pipes 10 and the plurality of second pipes 11 are arranged so as to spread in a plane, can be handled like a plate-like member, and are uniformly generated and reacted in the entire carbon dioxide reduction device 1. Can be caused.
 また、複数の第1配管10と複数の第2配管11が交差するため、第1配管10と第2配管11が交差する交差部が複数箇所存在している。第1配管10と第2配管11は、交差部で接触している。第1配管10と第2配管11は、それぞれ交差部で接触している部位が開口しており、交差部において第1配管10の内部と第2配管11の内部が連通している。 Further, since the plurality of first pipes 10 and the plurality of second pipes 11 intersect, there are a plurality of intersections where the first pipe 10 and the second pipe 11 intersect. The first pipe 10 and the second pipe 11 are in contact at the intersection. The first pipe 10 and the second pipe 11 are opened at portions that are in contact with each other at the intersection, and the inside of the first pipe 10 and the inside of the second pipe 11 communicate with each other at the intersection.
 二酸化炭素還元装置1には、PVセル12が設けられている。PVセル12は、光起電力効果を利用して光エネルギーを電気エネルギーに変換する太陽電池である。なお、PVセル12が本開示の光発電素子に相当している。 The carbon dioxide reduction device 1 is provided with a PV cell 12. The PV cell 12 is a solar cell that converts light energy into electrical energy using the photovoltaic effect. The PV cell 12 corresponds to the photovoltaic element of the present disclosure.
 本実施形態では、PVセル12を構成する半導体として直接遷移型半導体であるIII-V族半導体を用いている。本実施形態のIII-V族半導体は、2接合または3接合のタンデム構造であり、トンネル接合となっている。そのようなIII-V族半導体としては、GaInP/GaAs/Ge、GaInP/GaAs/GaNAs、GaInP/GaAs、AlGaInP/GaAs/Ge、AlGaInP/GaAs/GaNAs、AlGaInP/GaAs、AlGaAs/GaAs、AlGaAs/GaInNAs、AlGaInP/GaInNAs、a-SiGe/a-Si/a-Si、a-SiGe/a-Siを例示でき、各半導体は各々PN接合を形成し、基板はGe基板若しくはGaAs基板を用いる。このPN接合が2つであれば2接合で、3つであれば3接合である。また、III-V族半導体の基板としてSi半導体を用いてもよい。 In the present embodiment, a group III-V semiconductor that is a direct transition type semiconductor is used as a semiconductor constituting the PV cell 12. The group III-V semiconductor of this embodiment has a tandem structure of two junctions or three junctions and is a tunnel junction. Such III-V semiconductors include GaInP / GaAs / Ge, GaInP / GaAs / GaNAs, GaInP / GaAs, AlGaInP / GaAs / Ge, AlGaInP / GaAs / GaNAs, AlGaInP / GaAs, AlGaAs / GaAs, AlGaAs / GaInNAs. AlGaInP / GaInNAs, a-SiGe / a-Si / a-Si, and a-SiGe / a-Si, each semiconductor forming a PN junction, and the substrate is a Ge substrate or a GaAs substrate. If there are two PN junctions, there are two junctions, and if there are three, there are three junctions. Further, a Si semiconductor may be used as the substrate of the III-V group semiconductor.
 PVセル12には、酸化電極13と還元電極14が接続されている。酸化電極13はPVセル12のアノード側に接続され、還元電極14はPVセル12のカソード側に接続されている。還元電極14は二酸化炭素の還元反応が行われる反応電極として構成されており、酸化電極13は対極として構成されている。本実施形態では、PVセル12、酸化電極13および還元電極14が複数組設けられている。 An oxidation electrode 13 and a reduction electrode 14 are connected to the PV cell 12. The oxidation electrode 13 is connected to the anode side of the PV cell 12, and the reduction electrode 14 is connected to the cathode side of the PV cell 12. The reduction electrode 14 is configured as a reaction electrode in which a reduction reaction of carbon dioxide is performed, and the oxidation electrode 13 is configured as a counter electrode. In the present embodiment, a plurality of sets of PV cells 12, oxidation electrodes 13, and reduction electrodes 14 are provided.
 酸化電極13は、PVセル12と一体的に構成されており、PVセル12と積層して設けられている。図2において、PVセル12の上面が太陽光が照射される受光面である。つまり、本実施形態ではPVセル12のカソード側が受光面となっている。酸化電極13は、PVセル12の受光面の反対面に設けられている。酸化電極13としては、例えばIrO2、RuO2、CoO、TiO2またはグラフェン等を成膜して用いればよい。これらの成膜された酸化電極13は、PVセル12を構成する半導体の腐食を抑制する保護膜としても機能する。あるいはPVセル12の受光面の反対面をそのまま酸化電極13としてもよい。 The oxidation electrode 13 is configured integrally with the PV cell 12 and is provided so as to be laminated with the PV cell 12. In FIG. 2, the upper surface of the PV cell 12 is a light receiving surface on which sunlight is irradiated. That is, in this embodiment, the cathode side of the PV cell 12 is a light receiving surface. The oxidation electrode 13 is provided on the surface opposite to the light receiving surface of the PV cell 12. As the oxidation electrode 13, for example, IrO 2 , RuO 2 , CoO, TiO 2, graphene, or the like may be used. These formed oxidation electrodes 13 also function as a protective film that suppresses corrosion of the semiconductor constituting the PV cell 12. Alternatively, the surface opposite to the light receiving surface of the PV cell 12 may be used as the oxidation electrode 13 as it is.
 PVセル12および酸化電極13は、第1配管10の外周面における光源に対向する部位に設けられている。PVセル12は、受光面が太陽光側を向くように配置されている。酸化電極13は第1配管10に接するように配置されており、PVセル12は第1配管10から遠い側に配置されている。 The PV cell 12 and the oxidation electrode 13 are provided in a portion facing the light source on the outer peripheral surface of the first pipe 10. The PV cell 12 is arranged so that the light receiving surface faces the sunlight side. The oxidation electrode 13 is disposed in contact with the first pipe 10, and the PV cell 12 is disposed on the side far from the first pipe 10.
 PVセル12は、第1配管10および第2配管11のうち、光源から遠い側の第1配管10に配置されている。PVセル12は、格子状に配置された第1配管10および第2配管11のうち、第1配管10における第2配管11と交差していない部位に配置されている。本実施形態では、PVセル12は、第1配管10における2つの第2配管11の間に配置されている。本実施形態では、第1配管10よりも第2配管11の方が光源に近い側に配置されているため、PVセル12は2つの第2配管11の間に挟まれている。 The PV cell 12 is arranged in the first pipe 10 on the side far from the light source among the first pipe 10 and the second pipe 11. The PV cell 12 is arrange | positioned in the site | part which does not cross | intersect the 2nd piping 11 in the 1st piping 10 among the 1st piping 10 and the 2nd piping 11 arrange | positioned at grid | lattice form. In the present embodiment, the PV cell 12 is disposed between the two second pipes 11 in the first pipe 10. In the present embodiment, since the second pipe 11 is arranged closer to the light source than the first pipe 10, the PV cell 12 is sandwiched between the two second pipes 11.
 PVセル12は、電解液に直接接しておらず、光源である太陽に対向して配置されている。PVセル12は、少なくとも受光面が電解液に直接接してしなければよい。第1配管10における酸化電極13が設けられた部位は開口しており、酸化電極13におけるPVセル12と反対側の面は第1配管10の内部の電解液に接している。酸化電極13は、水の酸化反応を促進する触媒電極として機能する。第1配管10は、酸化電極13を用いた水の酸化反応が行われる酸化用配管となっている。 The PV cell 12 is not in direct contact with the electrolytic solution, and is disposed to face the sun as a light source. The PV cell 12 need not have at least the light receiving surface in direct contact with the electrolytic solution. The portion of the first pipe 10 where the oxidation electrode 13 is provided is open, and the surface of the oxidation electrode 13 opposite to the PV cell 12 is in contact with the electrolyte inside the first pipe 10. The oxidation electrode 13 functions as a catalyst electrode that promotes the oxidation reaction of water. The first pipe 10 is an oxidation pipe in which an oxidation reaction of water using the oxidation electrode 13 is performed.
 還元電極14は、PVセル12と別体として構成されており、PVセル12と離れて配置されている。還元電極14としては、Au、Cu、Pt、In、Sn等の金属、Cu、In、Sn、Ni等の金属酸化物、若しくは窒素ドープしたグラフェンを用いることができる。金属あるいは金属酸化物に窒素ドープしたグラフェンを部分的に乗せるようにしてもよい。また、これらの材料によって第2配管11を構成することで、第2配管11自体を還元電極14とすることもできる。 The reduction electrode 14 is configured as a separate body from the PV cell 12 and is disposed apart from the PV cell 12. As the reduction electrode 14, a metal such as Au, Cu, Pt, In, or Sn, a metal oxide such as Cu, In, Sn, or Ni, or graphene doped with nitrogen can be used. Graphene doped with nitrogen on a metal or metal oxide may be partially placed. Moreover, the 2nd piping 11 itself can also be used as the reduction electrode 14 by comprising the 2nd piping 11 with these materials.
 還元電極14は、第2配管11の内部に配置されており、第2配管11の内部の電解液に接している。PVセル12と第2配管11は配線15で接続されている。還元電極14は第2配管11の内壁面に接しており、PVセル12と還元電極14は、導体である第2配管11を介して配線15で接続されている。還元電極14は、二酸化炭素の還元反応を促進する触媒電極として機能する。第2配管11は、還元電極14を用いた二酸化炭素の還元が行われる還元用配管となっている。 The reduction electrode 14 is disposed inside the second pipe 11 and is in contact with the electrolytic solution inside the second pipe 11. The PV cell 12 and the second pipe 11 are connected by a wiring 15. The reduction electrode 14 is in contact with the inner wall surface of the second pipe 11, and the PV cell 12 and the reduction electrode 14 are connected by a wiring 15 through the second pipe 11 that is a conductor. The reduction electrode 14 functions as a catalyst electrode that promotes the reduction reaction of carbon dioxide. The second pipe 11 is a reducing pipe in which carbon dioxide is reduced using the reducing electrode 14.
 第1配管10と第2配管11の交差部には、電解質膜16が設けられている。電解質膜16は、第1配管10と第2配管11が連通する部位に配置され、第1配管10の酸化電極13と第2配管11の還元電極14の間に配置されることになる。電解質膜16は、酸化電極13側と還元電極14側の間で、電解液中の水素イオンの移動を許容しつつ、反応生成物等の移動を制限する。電解質膜16としては、例えばナフィオン(デュポン社の登録商標)を用いることができる。 An electrolyte membrane 16 is provided at the intersection of the first pipe 10 and the second pipe 11. The electrolyte membrane 16 is disposed at a portion where the first pipe 10 and the second pipe 11 communicate with each other, and is disposed between the oxidation electrode 13 of the first pipe 10 and the reduction electrode 14 of the second pipe 11. The electrolyte membrane 16 restricts movement of reaction products and the like while allowing movement of hydrogen ions in the electrolytic solution between the oxidation electrode 13 side and the reduction electrode 14 side. For example, Nafion (registered trademark of DuPont) can be used as the electrolyte membrane 16.
 第2配管11には、還元電極14の近傍にCO2供給管17が挿入されている。二酸化炭素がCO2供給管17からバブリングによって還元電極14に供給される。二酸化炭素のバブルサイズはサブミクロンからミリメートルが望ましい。 In the second pipe 11, a CO 2 supply pipe 17 is inserted in the vicinity of the reduction electrode 14. Carbon dioxide is supplied from the CO 2 supply pipe 17 to the reduction electrode 14 by bubbling. The bubble size of carbon dioxide is preferably from submicron to millimeter.
 第1配管10および第2配管11の外部には、集光レンズ18が設けられている。集光レンズ18は、複数のPVセル12のそれぞれに対応して設けられている。具体的には、1つのPVセル12に対して1つの集光レンズ18が設けられており、集光レンズ18はPVセル12の受光面に対向するように配置されている。集光レンズ18は、配管10、11に対して固定された状態となっている。また、太陽光の照射方向が変化した場合に集光レンズ18のレンズ面を太陽の照射方向に追随させるために、集光レンズ18を配管10、11に対して可動にすることもできる。 A condenser lens 18 is provided outside the first pipe 10 and the second pipe 11. The condensing lens 18 is provided corresponding to each of the plurality of PV cells 12. Specifically, one condenser lens 18 is provided for one PV cell 12, and the condenser lens 18 is disposed so as to face the light receiving surface of the PV cell 12. The condenser lens 18 is fixed to the pipes 10 and 11. In addition, the condensing lens 18 can be made movable with respect to the pipes 10 and 11 in order to cause the lens surface of the condensing lens 18 to follow the solar irradiation direction when the sunlight irradiation direction changes.
 集光レンズ18は、太陽光をPVセル12に集光する機能を備えている。集光レンズ18としては、例えば球面レンズ、フレネルレンズあるいはマイクロレンズアレイ等を用いることができる。 The condensing lens 18 has a function of concentrating sunlight on the PV cell 12. As the condenser lens 18, for example, a spherical lens, a Fresnel lens, a microlens array, or the like can be used.
 本実施形態では、集光レンズ18から第1配管10までの距離を10cm程度とし、集光レンズ18の焦点は10cm程度としている。これにより、二酸化炭素還元装置1全体の厚みが10cm程度になり、二酸化炭素還元装置1を例えば建物の屋根や屋上に設置しやすくなっている。 In the present embodiment, the distance from the condenser lens 18 to the first pipe 10 is about 10 cm, and the focal point of the condenser lens 18 is about 10 cm. Thereby, the thickness of the whole carbon dioxide reducing device 1 becomes about 10 cm, and it becomes easy to install the carbon dioxide reducing device 1 on the roof or the roof of a building, for example.
 集光レンズ18によって太陽光を集光することで、PVセル12における光エネルギーから電気エネルギーへの変換効率を向上させることができる。特に、本実施形態でPVセル12として用いているIII-V族半導体は、集光による変換効率を向上させる効果が大きい。 By condensing sunlight with the condenser lens 18, the conversion efficiency from light energy to electrical energy in the PV cell 12 can be improved. In particular, the group III-V semiconductor used as the PV cell 12 in this embodiment has a great effect of improving the conversion efficiency by light collection.
 本実施形態では、集光レンズ18の倍率を2~1000倍としている。集光レンズ18の倍率は、集光レンズ18の屈折率、厚み等によって調整することができる。 In this embodiment, the magnification of the condenser lens 18 is 2 to 1000 times. The magnification of the condenser lens 18 can be adjusted by the refractive index, thickness, etc. of the condenser lens 18.
 PVセル12では、太陽光が照射されると内部光電効果(光起電力効果)によって電子/正孔対が発生する。PVセル12で発生した正孔は酸化電極13に移動し、電子は還元電極14に移動する。 In the PV cell 12, when sunlight is irradiated, electron / hole pairs are generated by the internal photoelectric effect (photovoltaic effect). The holes generated in the PV cell 12 move to the oxidation electrode 13 and the electrons move to the reduction electrode 14.
 酸化電極13の表面では、以下に示す水の酸化反応が行われ、水素イオンおよび酸素が生成する。 The following oxidation reaction of water is performed on the surface of the oxidation electrode 13 to generate hydrogen ions and oxygen.
 2H2O+4h+→4H++O2
 酸化電極13で発生した水素イオンは、電解質膜16を透過して還元電極14側に移動し、二酸化炭素の還元反応に用いられる。
2H 2 O + 4h + → 4H + + O 2
Hydrogen ions generated at the oxidation electrode 13 pass through the electrolyte membrane 16 and move to the reduction electrode 14 side, and are used for the reduction reaction of carbon dioxide.
 還元電極14の表面では、以下に示す二酸化炭素の還元反応が行われ、炭素化合物(メタノール等)および水素が生成する。 On the surface of the reduction electrode 14, the following carbon dioxide reduction reaction is performed, and a carbon compound (such as methanol) and hydrogen are generated.
 CO2+6H++6e-→CH3OH+H2
 2H++2e-→H2
 PVセル12では、太陽光が照射されることで内部光電効果によって電子が励起されるが、光エネルギーのうち一部は熱として放出される。このため、太陽光が照射されることでPVセル12は発熱する。本実施形態では、PVセル12および酸化電極13が一体化されているので、PVセル12で発生した熱は酸化電極13に直接伝えられる。これにより、酸化電極13が温度上昇し、酸化電極13に接している電解液が温度上昇する。
CO 2 + 6H + + 6e → CH 3 OH + H 2 O
2H + + 2e - → H 2
In the PV cell 12, electrons are excited by the internal photoelectric effect when irradiated with sunlight, but a part of the light energy is released as heat. For this reason, the PV cell 12 generates heat when irradiated with sunlight. In this embodiment, since the PV cell 12 and the oxidation electrode 13 are integrated, the heat generated in the PV cell 12 is directly transmitted to the oxidation electrode 13. Thereby, the temperature of the oxidation electrode 13 rises, and the temperature of the electrolyte solution in contact with the oxidation electrode 13 rises.
 以上説明した本実施形態では、PVセル12が電解液の外部に配置されているため、太陽光は電解液に吸収されることなくPVセル12に直接照射される。このため、PVセル12は、高効率で太陽光を吸収することができ、PVセル12が発生する電気エネルギーを大きくすることができる。これにより、炭素化合物の生成効率を向上させることができる。 In the present embodiment described above, since the PV cell 12 is disposed outside the electrolytic solution, sunlight is directly applied to the PV cell 12 without being absorbed by the electrolytic solution. For this reason, the PV cell 12 can absorb sunlight with high efficiency, and the electrical energy generated by the PV cell 12 can be increased. Thereby, the production | generation efficiency of a carbon compound can be improved.
 また、PVセル12は第1配管10の外部に配置されているため、PVセル12は電解液に接しておらず、PVセル12を構成する半導体が電解液によって腐食することがない。これにより、二酸化炭素還元装置1の耐久性を向上させることができる。 Further, since the PV cell 12 is arranged outside the first pipe 10, the PV cell 12 is not in contact with the electrolytic solution, and the semiconductor constituting the PV cell 12 is not corroded by the electrolytic solution. Thereby, the durability of the carbon dioxide reduction device 1 can be improved.
 また、本実施形態では、PVセル12および酸化電極13を一体化することで、PVセル12と酸化電極13を接続する配線が不要となり、PVセル12で発生した電気エネルギーの損失を小さくすることができる。 Further, in this embodiment, by integrating the PV cell 12 and the oxidation electrode 13, wiring for connecting the PV cell 12 and the oxidation electrode 13 becomes unnecessary, and the loss of electric energy generated in the PV cell 12 is reduced. Can do.
 また、PVセル12および酸化電極13を一体化することで、PVセル12で発生した熱を利用して、酸化電極13近傍の電解液を温度上昇させることができる。これにより、酸化電極13での水の酸化反応を促進でき、炭素化合物の生成効率を向上させることができる。 Further, by integrating the PV cell 12 and the oxidation electrode 13, the temperature of the electrolyte near the oxidation electrode 13 can be increased by utilizing the heat generated in the PV cell 12. Thereby, the oxidation reaction of water at the oxidation electrode 13 can be promoted, and the generation efficiency of the carbon compound can be improved.
 また、本実施形態では、電解液の容器を複数の第1配管10および複数の第2配管11を組み合わせて構成している。これにより、二酸化炭素還元装置1を軽量にすることができる。また、単位面積当たりの二酸化炭素の還元効率を高くし、炭素化合物の生成効率を向上させることができる。 Further, in this embodiment, the electrolytic solution container is configured by combining a plurality of first pipes 10 and a plurality of second pipes 11. Thereby, the carbon dioxide reduction apparatus 1 can be made lightweight. Moreover, the reduction | restoration efficiency of the carbon dioxide per unit area can be made high, and the production | generation efficiency of a carbon compound can be improved.
 また、複数の第1配管10および複数の第2配管11は格子状に配置され、平面的に広がるように配置されている。このため、本実施形態の二酸化炭素還元装置1は、板状部材と同様に扱うことができ、例えば建物の屋根や屋上などに好適に設置することができる。 Further, the plurality of first pipes 10 and the plurality of second pipes 11 are arranged in a lattice shape and are arranged so as to spread in a plane. For this reason, the carbon dioxide reduction apparatus 1 of this embodiment can be handled similarly to a plate-like member, and can be suitably installed, for example, on a roof of a building or a rooftop.
 (第2実施形態)
 次に、本開示の第2実施形態について説明する。以下、上記第1実施形態と同様の部分については説明を省略し、異なる部分についてのみ説明する。なお、図3は上記第1実施形態の図1に対応し、図4は上記第1実施形態の図2に対応している。
(Second Embodiment)
Next, a second embodiment of the present disclosure will be described. Hereinafter, description of the same parts as those in the first embodiment will be omitted, and only different parts will be described. 3 corresponds to FIG. 1 of the first embodiment, and FIG. 4 corresponds to FIG. 2 of the first embodiment.
 図3、図4に示すように、本第2実施形態では、上記第1実施形態と異なり、PVセル12が配置された第1配管10が第2配管11よりも太陽光である光源に近い側に配置されている。このため、第1配管10に設けられたPVセル12および酸化電極13は、第2配管11よりも光源に近い位置に配置されている。このため、上記第1実施形態と異なり、第1配管10に配置されたPVセル12は、2つの第2配管11の間に挟まれておらず、第2配管11がPVセル12よりも光源に近い側に存在していない。これにより、光源の位置が変化した場合であっても、PVセル12に照射される太陽光が近傍の第2配管11に遮られるおそれがない。 As shown in FIGS. 3 and 4, in the second embodiment, unlike the first embodiment, the first pipe 10 in which the PV cells 12 are arranged is closer to the light source that is sunlight than the second pipe 11. Arranged on the side. For this reason, the PV cell 12 and the oxidation electrode 13 provided in the first pipe 10 are arranged closer to the light source than the second pipe 11. For this reason, unlike the said 1st Embodiment, the PV cell 12 arrange | positioned at the 1st piping 10 is not pinched | interposed between the two 2nd piping 11, and the 2nd piping 11 is a light source rather than the PV cell 12. Does not exist on the near side. Thereby, even if it is a case where the position of a light source changes, there is no possibility that the sunlight irradiated to the PV cell 12 may be interrupted by the nearby second pipe 11.
 つまり、本第2実施形態の構成によれば、光源の位置に関わらず、PVセル12は高効率で太陽光を吸収することができ、PVセル12が発生する電気エネルギーを大きくすることができる。 That is, according to the configuration of the second embodiment, the PV cell 12 can absorb sunlight with high efficiency regardless of the position of the light source, and the electrical energy generated by the PV cell 12 can be increased. .
 (第3実施形態)
 次に、本開示の第3実施形態について説明する。以下、上記各実施形態と同様の部分については説明を省略し、異なる部分についてのみ説明する。なお、図5は上記第1実施形態の図1に対応し、図6は上記第1実施形態の図2に対応している。
(Third embodiment)
Next, a third embodiment of the present disclosure will be described. Hereinafter, description of the same parts as those in the above embodiments will be omitted, and only different parts will be described. 5 corresponds to FIG. 1 of the first embodiment, and FIG. 6 corresponds to FIG. 2 of the first embodiment.
 図5、図6に示すように、本第3実施形態では、上記第1実施形態と同様、PVセル12が配置された第1配管10が第2配管11よりも光源から遠い側に配置されている。このため、第1配管10に配置されたPVセル12は、2つの第2配管11の間に挟まれており、第2配管11がPVセル12よりも光源に近い側に存在している。 As shown in FIGS. 5 and 6, in the third embodiment, as in the first embodiment, the first pipe 10 in which the PV cells 12 are arranged is arranged on the side farther from the light source than the second pipe 11. ing. For this reason, the PV cell 12 arranged in the first pipe 10 is sandwiched between the two second pipes 11, and the second pipe 11 exists closer to the light source than the PV cell 12.
 本第3実施形態では、第2配管11における光源に近い側には、第1配管10および第2配管11の積層方向に対して傾斜した傾斜面11aが設けられている。傾斜面11aは、光源側に向くように設けられている。傾斜面11aは、太陽光である光源の位置によらず、第2配管11がPVセル12に対して影を作らないように設けられている。このため、第2配管11は、光源に近い側は光源から遠い側よりも断面積が小さくなっている。第2配管11の断面は、略台形形状、略五角形状ないし略三角形状となっている。 In the third embodiment, an inclined surface 11 a that is inclined with respect to the stacking direction of the first pipe 10 and the second pipe 11 is provided on the second pipe 11 near the light source. The inclined surface 11a is provided to face the light source side. The inclined surface 11 a is provided so that the second pipe 11 does not shade the PV cell 12 regardless of the position of the light source that is sunlight. For this reason, the second pipe 11 has a smaller cross-sectional area on the side closer to the light source than on the side farther from the light source. The cross section of the second pipe 11 has a substantially trapezoidal shape, a substantially pentagonal shape, or a substantially triangular shape.
 傾斜面11aは、第2配管11の長手方向に連続して設けられているが、少なくとも第1配管10に設けられたPVセル12に隣接する部位に設けられていればよい。また、傾斜面11aは平面に限らず、外側に向かって膨らんだ曲面であってもよい。この場合、傾斜面11a第2配管11の断面は円弧状となる。 The inclined surface 11 a is provided continuously in the longitudinal direction of the second pipe 11, but may be provided at least at a site adjacent to the PV cell 12 provided in the first pipe 10. Further, the inclined surface 11a is not limited to a flat surface, and may be a curved surface that swells outward. In this case, the cross section of the inclined surface 11a second pipe 11 is arcuate.
 本第3実施形態によれば、第2配管11における光源に近い側に傾斜面11aが設けられているので、光源の位置が変化した場合であっても、PVセル12に照射される太陽光が近傍の第2配管11に遮られるおそれがない。このため、光源の位置に関わらず、PVセル12は高効率で太陽光を吸収することができ、PVセル12が発生する電気エネルギーを大きくすることができる。 According to the third embodiment, since the inclined surface 11a is provided on the side close to the light source in the second pipe 11, even if the position of the light source changes, the sunlight irradiated to the PV cell 12 Is not likely to be blocked by the nearby second pipe 11. For this reason, regardless of the position of the light source, the PV cell 12 can absorb sunlight with high efficiency, and the electrical energy generated by the PV cell 12 can be increased.
 (他の実施形態)
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。また、上記各実施形態に開示された手段は、実施可能な範囲で適宜組み合わせてもよい。
(Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present disclosure. Further, the means disclosed in each of the above embodiments may be appropriately combined within a practicable range.
 (1)上記各実施形態では、第1配管10および第2配管11をそれぞれ複数設けた例について説明したが、第1配管10および第2配管11はそれぞれ少なくとも1つ設けられていればよい。 (1) In each of the above-described embodiments, an example in which a plurality of the first pipes 10 and the second pipes 11 are provided has been described.
 (2)上記各実施形態では、PVセル12、酸化電極13および還元電極14を複数組設けた例について説明したが、これらは少なくとも1組設けられていればよい。 (2) In each of the above embodiments, an example in which a plurality of sets of the PV cell 12, the oxidation electrode 13, and the reduction electrode 14 are provided has been described.
 (3)上記各実施形態では、第1配管10および第2配管11の内部に電解液を循環させるように構成したが、第1配管10および第2配管11の内部に電解液が収容されていればよく、電解液は必ずしも循環させなくてもよい。 (3) In each of the above embodiments, the electrolyte solution is circulated inside the first pipe 10 and the second pipe 11, but the electrolyte solution is housed inside the first pipe 10 and the second pipe 11. The electrolyte solution need not necessarily be circulated.
 (4)上記各実施形態では、PVセル12の受光面の反対側に酸化電極13を一体化して設け、還元電極14をPVセル12と別体として配線15で接続するようにしたが、これに限らず、PVセル12の受光面の反対側に還元電極14を一体化して設け、酸化電極13をPVセル12と別体として配線15で接続するようにしてもよい。この場合、PVセル12のアノード側を受光面とすればよい。 (4) In each of the above embodiments, the oxidation electrode 13 is provided integrally on the opposite side of the light receiving surface of the PV cell 12, and the reduction electrode 14 is connected to the PV cell 12 by a wiring 15. However, the reduction electrode 14 may be integrally provided on the opposite side of the light receiving surface of the PV cell 12, and the oxidation electrode 13 may be connected to the PV cell 12 by a wiring 15. In this case, the anode side of the PV cell 12 may be the light receiving surface.
 また、PVセル12は、第2配管11側に配置される。具体的には、PVセル12は、格子状に配置された第1配管10および第2配管11のうち、第2配管11における第1配管10と交差していない部位であって、2つの第1配管10の間に配置される。 Further, the PV cell 12 is disposed on the second pipe 11 side. Specifically, the PV cell 12 is a portion of the first pipe 10 and the second pipe 11 arranged in a lattice shape that does not intersect the first pipe 10 in the second pipe 11, It is arranged between one pipe 10.
 PVセル12および還元電極14を一体化することで、PVセル12で発生した熱を利用して、還元電極14近傍の電解液を温度上昇させることができる。これにより、還元電極14での二酸化炭素の還元反応を促進でき、炭素化合物の生成効率を向上させることができる。 Integrating the PV cell 12 and the reduction electrode 14 makes it possible to raise the temperature of the electrolyte near the reduction electrode 14 using the heat generated in the PV cell 12. Thereby, the reduction reaction of carbon dioxide at the reduction electrode 14 can be promoted, and the production efficiency of the carbon compound can be improved.
 (5)上記各実施形態の構成において、還元電極14側の電解液にメディエータを含有させてもよい。メディエータは、二酸化炭素還元反応で電子伝達を仲介する化合物である。メディエータとしては、窒素含有芳香族化合物を用いることができる。芳香族化合物は、4n+2個(nは整数)のπ電子を含有する非局在π電子系を有する平面環である。芳香環は、5、6、7、8、9個、又は10個以上の原子によって形成され得る。芳香族化合物は、単環式および縮合環多環式を含んでいる。 (5) In the configuration of each embodiment described above, a mediator may be included in the electrolyte solution on the reduction electrode 14 side. A mediator is a compound that mediates electron transfer through a carbon dioxide reduction reaction. A nitrogen-containing aromatic compound can be used as the mediator. The aromatic compound is a planar ring having a delocalized π electron system containing 4n + 2 (n is an integer) π electrons. Aromatic rings can be formed by 5, 6, 7, 8, 9, or 10 or more atoms. Aromatic compounds include monocyclic and fused ring polycyclic.
 窒素含有芳香族化合物は、芳香環の構成原子の1以上がN原子となっている複素芳香族化合物である。窒素含有芳香族化合物は、芳香環の構成原子と結合する1以上の水素が、直鎖または分岐鎖低級アルキル基、ヒドロキシ基、アミノ基、ピリジル基で置換されていてもよい。このようなメディエータを構成する窒素含有芳香族化合物として、イミダゾール、メチルイミダゾール、ジメチルイミダゾール、トリアゾール、ピリジン、ジメチルアミノピリジンを例示できる。 The nitrogen-containing aromatic compound is a heteroaromatic compound in which one or more constituent atoms of the aromatic ring are N atoms. In the nitrogen-containing aromatic compound, one or more hydrogen atoms bonded to the constituent atoms of the aromatic ring may be substituted with a linear or branched lower alkyl group, a hydroxy group, an amino group, or a pyridyl group. Examples of nitrogen-containing aromatic compounds constituting such mediators include imidazole, methylimidazole, dimethylimidazole, triazole, pyridine, and dimethylaminopyridine.

Claims (12)

  1.  光が照射されることによって内部光電効果を発生する光発電素子(12)と、
     前記光発電素子と電気的に接続され、二酸化炭素の還元反応で炭素化合物を生成する還元電極(14)と、
     前記光発電素子と電気的に接続され、水の酸化反応で酸素および水素イオンを生成する酸化電極(13)とを備え、
     前記酸化電極および前記還元電極のうち一方の電極は前記光発電素子における受光面の反対側の面に直接設けられ、前記酸化電極および前記還元電極のうち他方の電極は前記光発電素子と離れて設けられており、
     前記光発電素子の受光面は電解液に直接接触しておらず前記電解液を介さずに光源の光を受光可能であり、前記還元電極および前記酸化電極は前記電解液に接触している二酸化炭素還元装置。
    A photovoltaic element (12) that generates an internal photoelectric effect when irradiated with light; and
    A reduction electrode (14) that is electrically connected to the photovoltaic element and generates a carbon compound by a reduction reaction of carbon dioxide;
    An oxidation electrode (13) that is electrically connected to the photovoltaic element and generates oxygen and hydrogen ions by an oxidation reaction of water;
    One of the oxidation electrode and the reduction electrode is directly provided on the surface of the photovoltaic element opposite to the light receiving surface, and the other electrode of the oxidation electrode and the reduction electrode is separated from the photovoltaic element. Provided,
    The light receiving surface of the photovoltaic device is not in direct contact with the electrolytic solution and can receive light from the light source without going through the electrolytic solution, and the reduction electrode and the oxidation electrode are in contact with the electrolytic solution. Carbon reduction device.
  2.  前記電解液が流通可能な第1配管(10)と、前記電解液が流通可能な第2配管(11)とを備え、
     前記第1配管と前記第2配管は内部が連通しており、
     前記第1配管では、前記酸化電極が前記電解液に接しており、前記第2配管では、前記還元電極が前記電解液に接している請求項1に記載の二酸化炭素還元装置。
    A first pipe (10) through which the electrolyte can flow; and a second pipe (11) through which the electrolyte can flow;
    The first pipe and the second pipe communicate with each other inside,
    The carbon dioxide reduction device according to claim 1, wherein the oxidation electrode is in contact with the electrolytic solution in the first pipe, and the reduction electrode is in contact with the electrolytic solution in the second pipe.
  3.  前記第1配管および前記第2配管が連通する部位に、プロトンの移動を許容する電解質膜(16)が設けられている請求項2に記載の二酸化炭素還元装置。 The carbon dioxide reduction device according to claim 2, wherein an electrolyte membrane (16) that allows proton movement is provided at a site where the first pipe and the second pipe communicate with each other.
  4.  前記第2配管の内部には、バブル状の二酸化炭素を供給するCO2供給管(17)が設けられている請求項2または3に記載の二酸化炭素還元装置。 The carbon dioxide reduction device according to claim 2 or 3, wherein a CO 2 supply pipe (17) for supplying bubble-like carbon dioxide is provided inside the second pipe.
  5.  前記第1配管および前記第2配管はそれぞれ複数設けられ、前記複数の第1配管および前記複数の第2配管はそれぞれ並列配置され、
     前記第1配管および前記第2配管は長手方向が交差し、前記複数の第1配管および前記複数の第2配管は格子状に配置されている請求項2ないし4のいずれか1つに記載の二酸化炭素還元装置。
    A plurality of the first pipes and the second pipes are provided, and the plurality of first pipes and the plurality of second pipes are arranged in parallel,
    The longitudinal direction of the first pipe and the second pipe intersect each other, and the plurality of first pipes and the plurality of second pipes are arranged in a grid pattern. Carbon dioxide reduction device.
  6.  前記光発電素子は、格子状に配置された前記第1配管および前記第2配管のうち、いずれか一方の配管における他方の配管と交差していない部位に配置されている請求項5に記載の二酸化炭素還元装置。 The said photovoltaic device is arrange | positioned in the site | part which does not cross | intersect the other piping in any one piping among the said 1st piping and the said 2nd piping arrange | positioned at the grid | lattice form. Carbon dioxide reduction device.
  7.  前記光発電素子は、前記一方の配管における2つの前記他方の配管の間に配置されている請求項6に記載の二酸化炭素還元装置。 The carbon dioxide reducing device according to claim 6, wherein the photovoltaic element is disposed between two other pipes in the one pipe.
  8.  前記第1配管および前記第2配管のうち前記光発電素子が配置された一方の配管が他方の配管よりも光源から遠い側に配置されている請求項2ないし7のいずれか1つに記載の二酸化炭素還元装置。 8. The pipe according to claim 2, wherein one of the first pipe and the second pipe on which the photovoltaic element is arranged is arranged on a side farther from the light source than the other pipe. Carbon dioxide reduction device.
  9.  前記他方の配管の前記光源に近い側には傾斜面(11a)が設けられている請求項8に記載の二酸化炭素還元装置。 The carbon dioxide reduction device according to claim 8, wherein an inclined surface (11a) is provided on a side of the other pipe close to the light source.
  10.  前記第1配管および前記第2配管のうち前記光発電素子が配置された一方の配管が他方の配管よりも光源に近い側に配置されている請求項2ないし6のいずれか1つに記載の二酸化炭素還元装置。 The one pipe | tube in which the said photovoltaic device was arrange | positioned among the said 1st piping and the said 2nd piping is arrange | positioned at the side closer to a light source rather than the other piping. Carbon dioxide reduction device.
  11.  前記光発電素子に照射される光を所定の倍率で集光する集光レンズ(18)を備える請求項1ないし10のいずれか1つに記載の二酸化炭素還元装置。 The carbon dioxide reduction device according to any one of claims 1 to 10, further comprising a condensing lens (18) that condenses the light applied to the photovoltaic element at a predetermined magnification.
  12.  前記光発電素子は複数設けられており、
     前記集光レンズは、前記複数の光発電素子のそれぞれの位置に対応して設けられている請求項11に記載の二酸化炭素還元装置。
    A plurality of the photovoltaic elements are provided,
    The carbon dioxide reduction device according to claim 11, wherein the condenser lens is provided corresponding to each position of the plurality of photovoltaic elements.
PCT/JP2017/042933 2016-12-22 2017-11-30 Carbon dioxide reduction apparatus WO2018116774A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016249372 2016-12-22
JP2016-249372 2016-12-22
JP2017161353A JP6711334B2 (en) 2016-12-22 2017-08-24 Carbon dioxide reduction device
JP2017-161353 2017-08-24

Publications (1)

Publication Number Publication Date
WO2018116774A1 true WO2018116774A1 (en) 2018-06-28

Family

ID=62626244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042933 WO2018116774A1 (en) 2016-12-22 2017-11-30 Carbon dioxide reduction apparatus

Country Status (1)

Country Link
WO (1) WO2018116774A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5262181A (en) * 1975-11-17 1977-05-23 Allied Chem Photoelectrolytic cell utilizing solar radiation
JPS5495508A (en) * 1977-12-05 1979-07-28 Rca Corp Storage of solar energy
JP2003288955A (en) * 2002-03-27 2003-10-10 Research Institute Of Innovative Technology For The Earth Method and apparatus for producing hydrogen utilizing sunlight
JP2006188370A (en) * 2004-12-28 2006-07-20 Nissan Motor Co Ltd Photoelectrochemical cell
JP2014101550A (en) * 2012-11-20 2014-06-05 Toshiba Corp Photochemical reaction system
JP2015113520A (en) * 2013-12-13 2015-06-22 富士フイルム株式会社 Artificial photosynthesis module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5262181A (en) * 1975-11-17 1977-05-23 Allied Chem Photoelectrolytic cell utilizing solar radiation
JPS5495508A (en) * 1977-12-05 1979-07-28 Rca Corp Storage of solar energy
JP2003288955A (en) * 2002-03-27 2003-10-10 Research Institute Of Innovative Technology For The Earth Method and apparatus for producing hydrogen utilizing sunlight
JP2006188370A (en) * 2004-12-28 2006-07-20 Nissan Motor Co Ltd Photoelectrochemical cell
JP2014101550A (en) * 2012-11-20 2014-06-05 Toshiba Corp Photochemical reaction system
JP2015113520A (en) * 2013-12-13 2015-06-22 富士フイルム株式会社 Artificial photosynthesis module

Similar Documents

Publication Publication Date Title
US10472724B2 (en) Chemical reaction device
US10596544B2 (en) Chemical reaction system
US10378116B2 (en) Photoelectrochemical reaction device
US10612146B2 (en) Electrochemical reaction device
ES2562913T3 (en) Device and procedure for hydrogen photovoltaic generation
US9540741B2 (en) Light-driven hydroiodic acid splitting from semiconductive fuel generator
US20190010617A1 (en) Photoelectrode, method of manufacturing the same, and photoelectrochemical reaction device including the same
JP6495630B2 (en) Photoelectrochemical reactor
JP2018154865A (en) Electrochemical reaction apparatus
JP2017048442A (en) Electrochemical reaction device
US8293079B2 (en) Electrolysis via vertical multi-junction photovoltaic cell
US20170247804A1 (en) Electrochemical reaction device and electrochemical reaction method
JPWO2015177950A1 (en) Photoelectrochemical reactor
JP6631467B2 (en) Carbon dioxide reduction device
WO2018116774A1 (en) Carbon dioxide reduction apparatus
US20160372270A1 (en) Photoelectrochemical reaction device
JP6711334B2 (en) Carbon dioxide reduction device
JP6640686B2 (en) Electrochemical reactor
JP6610442B2 (en) Artificial photosynthesis device
CN217009203U (en) Electrode grid line and solar cell
JP2019011502A (en) Photoelectrochemical device
JP2017210681A (en) Fuel generation method and fuel generation device
CN104485150B (en) Porous silicon PN junction nuclear battery and preparation method thereof
WO2014039798A1 (en) Light-driven hydroiodic acid splitting from semiconductive fuel generator
JP2017218679A (en) Chemical reaction device and operation method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884207

Country of ref document: EP

Kind code of ref document: A1