WO2018116511A1 - Method for producing pluripotent stem cells - Google Patents
Method for producing pluripotent stem cells Download PDFInfo
- Publication number
- WO2018116511A1 WO2018116511A1 PCT/JP2017/026565 JP2017026565W WO2018116511A1 WO 2018116511 A1 WO2018116511 A1 WO 2018116511A1 JP 2017026565 W JP2017026565 W JP 2017026565W WO 2018116511 A1 WO2018116511 A1 WO 2018116511A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- pis
- cell
- pluripotent stem
- dis
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
Definitions
- the present invention relates to a method for producing pluripotent stem cells.
- Embryonic stem cells are cells that are made from an inner cell mass at the blastocyst stage and are pluripotent stem cells that can differentiate into various cells.
- James Thomson of the University of California succeeded in producing human ES cells, and it has been expected to differentiate ES cells into various cells for use in regenerative medicine.
- human ES cells it is necessary to use human fertilized eggs, and there are problems in bioethics for use in medicine. Therefore, at present, the use of ES cells for regenerative medicine has been postponed.
- iPS cells pluripotent stem cells having functions equivalent to those of ES cells from somatic cells derived from mammary glands, and then succeeded in producing human iPS cells.
- Non-Patent Document 1 Cell, 30, 861-872, 2007.
- Human iPS cells can be obtained by introducing four genes (SOX2, OCT3 / 4, c-Myc, Klf-4 genes) into somatic cells by gene recombination and expressing them.
- iPS cells have the same properties as ES cells and can be differentiated into various cells and organs, and since human embryos are not used, they are expected to be used for regenerative medicine.
- Patent Document 1 JP 2008-283972 A
- Patent Document 2 JP 2009-165480 A
- Patent Document 3 JP-A-2014-000083
- Patent Document 4 International Publication No. 2013/163296.
- one of the problems with iPS cells is that the conversion rate from somatic cells to iPS cells is still low and it takes time to obtain them.
- HLA antigens distinguish themselves from others by the HLA antigen presented on the cell surface.
- iPS cells In order to use cell tissues and organs prepared with iPS cells for regenerative medicine, it is necessary to match the types of these HLA antigens.
- the types of HLA antigens are very diverse, and the probability that the types of HLA antigens match is only one per thousand to 10,000.
- the cell self and others are distinguished from those other than the HLA antigen, even if regenerative medicine is performed using iPS cells having the same HLA antigen type, the patient has an autoimmune reaction, and an immunosuppressive agent. Should continue to be administered. This imposes a heavy burden on the patient.
- pluripotent stem cells can be produced from the patient's own cells. Feasibility is greatly enhanced. There are currently only two reports on methods for producing such cells.
- STAP cells Non-patent Document 2: Nature, 505, 641-647, 2014, Patent Document 4.
- STAP cells which are equivalent to iPS cells, can be produced by using black tea ingredients.
- many verifications were made after that, and it was highly possible that STAP cells used ES cells themselves, and it was proved that the paper itself that showed the method for producing STAP cells was forgery or error.
- Non-patent Document 3 Biochemical and Biophysical Research Communications, 472, 589-591, 2016
- the headline that “STAP cells could be produced” was reported, and some reports reported incorrectly, but the cells obtained in this paper did not express iPS cell markers and were pluripotent stem cells. is not.
- pluripotent stem cells having the same functions as iPS cells can be produced in a short time and with high efficiency without using genetic recombination, it is also possible to produce pluripotent stem cells using the patient's own cells. And the feasibility of regenerative medicine is greatly enhanced. However, as described above, no method for producing such pluripotent stem cells has been found so far.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a method for producing pluripotent stem cells capable of obtaining pluripotent stem cells having functions equivalent to iPS cells.
- the present invention is as follows.
- a method for producing pluripotent stem cells wherein pluripotent stem cells are obtained by culturing animal cells in a medium containing a polyamine or a DNA methylation inhibitor.
- the polyamine is at least one selected from the group consisting of spermine, spermidine, putrescine, and acetylated products thereof, and two or more polymers of the polyamines. The manufacturing method as described.
- the DNA methylation inhibitor is selected from siRNA, 5-aza-2′-deoxycytidine, sinefungin, zebralin, ethionine, acetylmethionine, and selenomethionine that inhibits expression of a gene encoding a DNA methylase.
- the present inventor searched for a substance having a function of reinitializing cells using a large number of substances, and investigated the properties of the obtained cells.
- polyamine has a function of inducing the expression of genes related to cell reprogramming.
- polyamines consequently inhibit DNA methylation, and that it reinitializes the cells, and that similar cells can be obtained using DNA methylation inhibitors. I found it.
- the differentiation induction of the cell by a polyamine or a DNA methylation inhibitor was advanced, it changed to the cell which has the marker protein of an ES cell or iPS cell, and discovered that the said cell turns into a pluripotent stem cell.
- the pluripotent stem cells can be cultured in a state that retains pluripotency, and redifferentiate into various somatic cells such as endoderm, mesoderm, and ectoderm in a medium that differentiates into embryoid bodies. It has also been confirmed that the present invention has been completed.
- pluripotent stem cells obtained using polyamine are referred to as PIS cells (Polyamine-Induced Stem cells), and pluripotent stem cells obtained using a DNA methylation inhibitor are referred to as DIS cells ( Sometimes called Demethylation-Induced Stem Cells).
- the present invention it is possible to provide a method for producing pluripotent stem cells capable of obtaining pluripotent stem cells having functions equivalent to iPS cells.
- the production method of the present invention is not only a completely new method, but the utility of the present invention is extremely high in that pluripotent stem cells are obtained from animal cells without using genetic recombination.
- PIS cells and DIS cells have excellent characteristics that they can be obtained in 1 to 3 days, have a very high conversion efficiency into the cells, and can be easily separated. Since iPS cells not only take time and labor, but also have a low probability of obtaining iPS cells, PIS cells and DIS cells are highly inventive compared to the method of producing iPS cells.
- FIG. 1 shows the state of change from lung-derived fibroblast TIG-1-20 to PIS cells.
- FIG. 1A shows TIG-1-20 cells before induction with spermine.
- FIG. 1B shows the changes that occur in TIG-1-20 cells after 6 hours induction with 40 ⁇ M spermine.
- FIG. 1C shows PIS cells obtained by induction with 40 ⁇ M spermine for 36 hours.
- FIG. 2 shows the expression level of mRNA measured by real-time PCR. The vertical axis represents the ratio (times) of the amount of mRNA in PIS cells to the amount of TIG-1-20 mRNA.
- FIG. 3 shows PIS cells that have been subjected to activity staining or immunostaining with Human ES / iPS Cell Characterization Kit.
- FIG. 4 shows a state in which PIS cells are induced into cardiomyocytes by Cardiomyocyte Differentiation Kit.
- FIG. 4A shows a state where an EB is formed.
- FIG. 4B shows how progenitor cardiomyocytes are formed from EB.
- FIG. 4C shows a state of a cardiomyocyte having fine movement.
- FIG. 5 shows the differentiation of mouse precursor white adipocyte cell line 3T3-L1 into PIS cells.
- FIG. 5A shows the appearance of 3T3-L24 cells.
- FIG. 5B shows a state of the formed EB.
- FIG. 6 shows how mouse precursor white adipocytes C3H10T1 / 2 strain was differentiated into DIS cells.
- FIG. 6A shows the state of DIS cells (DIS-SI cells).
- FIG. 6B shows the state of the DIS cell (DIS-Aza cell).
- C in FIG. 6 shows the state of early differentiation of blood cells obtained by differentiating DIS-Aza cells.
- FIG. 6D shows the state of initial differentiation of the obtained neural stem cells and neural-like materials.
- FIG. 7 shows how PIS cells were differentiated into various germ layers with high efficiency.
- FIG. 7A shows a state of differentiation into ectoderm.
- FIG. 7B shows a state of differentiation into mesoderm.
- FIG. 7C shows a state of differentiation into endoderm.
- FIG. 7A shows a state of differentiation into ectoderm.
- FIG. 7B shows a state of differentiation into mesoderm.
- FIG. 7C shows a state of differentiation into endoderm
- FIG. 8 shows how PIS cells are differentiated into brown adipocytes.
- FIG. 8A shows a state in which cells differentiated into brown adipocytes express UCP1.
- FIG. 8B shows a state where cells differentiated into brown adipocytes accumulate fat.
- FIG. 9 shows that cells obtained by differentiating mouse adipocytes 3T3-L24 into PIS cells differentiated into neural stem cells and mature neurons with high efficiency.
- FIG. 9A shows a state of differentiation into neural stem cells.
- B and C in FIG. 9 show how neural stem cells have differentiated into nerve cells
- FIG. 9B shows how mature tumor cell marker gene Tubulin III is expressed.
- FIG. 9C shows a state in which the marker gene MAP2 of mature neurons is expressed.
- the present invention obtains pluripotent stem cells by adding polyamine or a DNA methylation inhibitor to a medium and culturing animal cells (until they have a similar form to ES cells or iPS cells).
- a method for producing pluripotent stem cells is obtained.
- the animal cell may be a normal animal cell that can be grown by culture.
- the animal includes a human, preferably a mammal.
- Mammals other than humans are not particularly limited, and examples include mice, rats, rabbits, and goats.
- animals other than mammals include insects such as Drosophila.
- animal cells include fibroblasts, epidermal cells, mammary cells, adipocytes, myoblasts, osteoblasts, hepatocytes, vascular endothelial cells, or precursor cells thereof.
- animal cells include stem cells such as blood cell stem cells, mesenchymal stem cells, and neural stem cells.
- human cells can be purchased from a storage organization (ATCC, JCRB, etc.) that sells human normal cells, purchased from commercial manufacturers that sell human normal cells, or cells from humans Can be obtained by taking out
- a storage organization ATCC, JCRB, etc.
- the tissue is obtained by sampling a part of the tissue using a tissue examination apparatus, partial excision of the tissue by surgery, liposuction, or the like. Thereafter, the cells are separated by an enzyme such as trypsin and cultured in a medium for animal cells.
- the polyamine used in the present invention means a compound in which two or more primary amino groups or secondary amino groups are bonded to a linear aliphatic hydrocarbon in total.
- polyamines examples include spermine (CAS registration number 71-44-3), spermidine (CAS registration number 124-20-9), putrescine (CAS registration number 110-60-1), and acetylated forms thereof. As well as two or more polymers of these polyamines.
- acetylated polyamine examples include N-acetylputrescine, N-acetylspermidine, N-acetylspermine, diacetylputrescine, diacetylspermidine, and diacetylspermine.
- Two or more polymers of polyamine can be obtained by chemical synthesis.
- Polyamine is characterized by the presence of amino groups (—NH 2 group or —NH— group) at intervals of 3 to 4 carbon chains, acting on histones or chromosomes and inducing the expression of genes that initialize cells There is. Therefore, among polyamines other than the above (other polyamines existing in the body, other polyamines obtained by chemical synthesis, etc.), compounds having a structure similar to spermine, spermidine, putrescine, etc. are also used in the present invention. Can do. The ability to induce polyamine gene expression is strong in the order of spermine, spermidine, and putrescine, and the longer the length of the linear molecule, the greater the effect of inducing gene expression per molar concentration.
- amino groups —NH 2 group or —NH— group
- polyamine Since polyamine is water-soluble, an aqueous polyamine solution having a concentration of about 10 to 100 mM is prepared, sterilized with a 0.2 ⁇ m filter, and then added to the medium so as to have an appropriate concentration. it can.
- DNA methylation inhibitor examples include the following two types.
- siRNA that inhibits the expression of a gene encoding DNA methylase (DNMT).
- the DNA methylase is an enzyme (DNMT1) that accurately transmits DNA methylation information from a parent cell to a daughter cell when replicating a cell, an enzyme (DNMT3) that methylates DNA of a daughter cell, and the like.
- DNMT1-encoding gene or DNMT3-encoding gene corresponds to the DNMT-encoding gene.
- siRNA from Qiagen is added according to the manual to methylate DNA. Can be efficiently inhibited.
- a DNA methylation inhibitor is a methionine analog.
- Methionine analogs inhibit the methylation reaction by inhibiting the synthesis of adenosylmethionine, which is the reaction substrate for the methylation reaction.
- methionine analogs examples include 5-aza-2'-deoxycytidine (5-Aza-dc, CAS registration number 23533-33-5), sinefungin (CAS registration number 58944-73-3), and zebralin (CAS registration). No. 360-10-6), ethionine (CAS registration number 13073-35-3), acetylmethionine (CAS registration number 567-82-7), and selenomethionine (CAS registration number 3211-76-5). Since these methionine-like substances are water-soluble, prepare an aqueous solution with a concentration of about 10-100 mM, sterilize the aqueous solution with a 0.2 ⁇ m filter, and add it to the medium to an appropriate concentration. Can be used.
- PIS cells pluripotent stem cells
- DIS cells pluripotent stem cells
- DNA methylation inhibitors DNA methylation inhibitors
- PIS cells pluripotent stem cells
- DIS cells pluripotent stem cells
- DNA methylation inhibitors DNA methylation inhibitors
- a normal medium used for cell growth to a flask, dish or plate for cell culture, seeding the cells, and culturing in a CO 2 incubator at a normal culture temperature (about 37 ° C.) Allow cells to grow on bottom of flask.
- a normal medium used for the growth of human cells for example, a minimum essential medium (MEM) or a medium for iPS cells can be used. In the case of a 25 cm 2 culture flask, 100,000 to 100 It is preferable to seed about 10,000 cells.
- MEM minimum essential medium
- iPS cells In the case of a 25 cm 2 culture flask, 100,000 to 100 It is preferable to seed about 10,000 cells.
- This cell is a pluripotent stem cell PIS cell or DIS cell.
- polyamines or DNA methylation inhibitors should be added at the lowest concentration at which changes to PIS cells or DIS cells occur, so as not to cause apoptosis as much as possible.
- concentration of polyamine or DNA methylation inhibitor and the culture time depend on the cell type and the number of cells. For this reason, it is desirable to confirm the minimum concentration at which polyamine or DNA methylation inhibitor is added to PIS cells or DIS cells by optical microscope observation by preliminary experiments.
- these cells can be changed to PIS cells by culturing in a medium supplemented with about 10 ⁇ M to 100 ⁇ M of spermine for 1 to 2 days.
- a medium to which about 5 to 10 nM of siRNA that inhibits the expression of a gene encoding DNMT, a medium to which about 20 to 80 ⁇ M of 5-Aza-dc is added, or ethionine If the cells are cultured in a medium supplemented with about 1 to 10 mM for 1 to 3 days, these cells can be changed to DIS cells.
- PIS cells or DIS cells obtained by culturing in a medium containing the polyamine or the siRNA can be cultured in a medium containing the polyamine or the siRNA for about 1 to 4 days.
- the survival rate gradually decreases due to apoptosis, when the change to PIS cells was confirmed by light microscopy, the culture medium containing suspended PIS cells or DIS cells was collected within 0 to 1 day, and the normal rate PIS cells are preferably collected by centrifugation at 800-2000 rpm for about 3 minutes.
- an inhibitor for preventing a decrease in the survival rate of PIS cells may be added to the medium during the culture.
- a Rock inhibitor and an apoptosis inhibitor can be used as an inhibitor for preventing a decrease in survival rate.
- the Rock inhibitor include Y-27632, thiazobibin, SB431542, PD0325901
- examples of the apoptosis inhibitor include a p53 inhibitor, a Bax inhibitor, and a caspase inhibitor.
- PIS cells or DIS cells collected by centrifugation are differentiated from cells at a very high rate, redifferentiation directly into endoderm, ectoderm, and mesoderm via the embryoid body (EB) Can do.
- EB embryoid body
- a medium for acquiring and retaining pluripotent traits of PIS cells or DIS cells for example, in the case of human cells, Cellartis (registered trademark) DEF-CS 500 Culture System (Takara Bio Inc.), mTeSR1 ( Many commercially available media such as Veritas) can be used.
- mTeSR1 Many commercially available media such as Veritas
- PIS cells or DIS cell aggregates When PIS cells or DIS cell aggregates are cultured in these media, they adhere weakly (or float). The cells are suspended by pipetting (an operation in which the culture medium is aspirated and suspended by repeated pipetting), the medium and cells are collected, the cells are collected by centrifugation, and then transferred to a new medium. Since the original somatic cells that have not differentiated into PIS cells or DIS cells adhere firmly, they are not detached by pipetting, and only PIS cell aggregates or DIS cell aggregates can be recovered.
- the aggregate of PIS cells or DIS cells is made dispersed with Tryp LE Select (Gibco), 0.25% trypsin solution (Gibco), Accutase-Solution (Funakoshi), etc., and Cellaritis (registered trademark) is used.
- Tryp LE Select Gibco
- 0.25% trypsin solution Gibco
- Accutase-Solution Funakoshi
- Cellaritis registered trademark
- a PIS cell or a DIS cell has a trait equivalent to that of an iPS cell indicates that expression of genetic markers such as SOX2, Oct3 / 4, c-Myc specific to iPS cells, expression of alkaline phosphatase activity, or SSEA-4 Can be confirmed by examining the expression of surface antigen markers such as TRA1-60, TRA1-81, etc.
- RT-PCR or real-time PCR can be used to confirm the increase in gene expression, iPS cell-specific enzyme or surface antigen
- immunostaining using antibodies, Western blotting or FACS may be used.
- Differentiation induction from PIS cells or DIS cells into various cells can be performed by the same method as the induction method used for iPS cells.
- PIS cells or DIS cells differentiate into endoderm, mesoderm, ectoderm, etc. through Embryoid body (EB), and then into various somatic cells such as cardiomyocytes, adipocytes, and nerve cells. Differentiate. In the differentiation of cells, the formation efficiency of PIS cells or DIS cells is increased by forming uniform EBs similarly to iPS cells.
- EB Embryoid body
- a uniform EB can be obtained by using an embryoid body forming plate Agrowell (Veritas), Lipidure (registered trademark) -coated plate (NOF Corporation), EZSPHERE (AGC Techno Glass), or the like.
- differentiation into various cells can be performed in exactly the same medium as in the case of iPS cells.
- reagents that can induce differentiation into various cells There are many commercially available reagents that can induce differentiation into various cells, and their use is also an effective means.
- differentiation into definitive endoderm (ED) is Cellaritis (registered trademark) Definitive Endoderm ChiPSC18 (Takara Bio Inc.)
- differentiation into cardiomyocytes and hepatocytes is PSdif-Cardio Cardiomyocyte Differentiation Kit (Funakoshi Co., Ltd.), Cellartis ( (Registered trademark) iPS Cell to Hepatocyte Differentiation System (Takara Bio Inc.)
- SETMdiff Neural Induced Medium is used to efficiently differentiate cells from PIS cells or DIS cells. Can do.
- Human lung-derived fibroblasts TIG-1-20 were obtained from the JCRB cell bank (JCRB0501 strain). Human fibroblast TIG-1-20 (number of divisions: 33 times, 100,000) was cultured in a 25 cm 2 culture flask containing 6 mL of minimal medium (MEM) for 1 day to allow the cells to adhere. Those added with 10 mM putrescine, 200 ⁇ M spermidine, or 40 ⁇ M spermine and those not added (control) were cultured at 37 ° C. in a CO 2 incubator for 1 day.
- MEM minimal medium
- FIG. 1A The results when culturing with spermine added is shown in FIG.
- Fine particles appear in the cells of fibroblasts TIG-1-20 (FIG. 1A) after 6 hours (FIG. 1B), and when the culture is continued, the cells peel off from the bottom of the flask and become ES cells. It changed to a close cell (FIG. 1C).
- the cells (PIS cells) suspended in the medium are collected by centrifugation (800 rpm, 3 minutes), and Cellartis (registered trademark) DEF-CS 500 Culture System (Takara Bio Inc.) is collected. ).
- a PBS (+) diluted solution of DEF-CS COAT-1 in a 24-well plate was treated for 1 hour, and then PIS cells were suspended in DEF-CS Basal Medium to which 6 mL of a medium additive was added, and 2 mL each. The solution was dispensed into 3 wells and cultured at 37 ° C. for 2 days. The cells were detached by pipetting, and PIS cells were collected by centrifugation (800 rpm, 3 minutes).
- the obtained cells were extracted with mRNA and synthesized cDNA using RNeasy Lipid Tissue Mini Kit and QuantiTech Reverse Transcription Kit (Qiagen), and using real-time PCR primers and real-time PCR (Qiagen), The expression levels of TERT, DMNT1, SOX2, and OCT3 / 4 mRNA were examined.
- the results of real-time PCR are shown in FIG.
- the DNMT1 gene is a gene encoding a methyltransferase that plays a role in transmitting methylation information of parent cell DNA to daughter cells during DNA replication.
- FIG. 2 in PIS cells, it was found that DNMT1 expression was completely suppressed, and initialization of DNA methylation occurred.
- the expression of a telomerase-encoding gene (TERT gene) that extends telomeres was significantly increased. In other words, telomere elongation (initialization) was shortened due to aging.
- SOX2 and OCT3 / 4 genes which are ES cell marker genes and induce cell reprogramming, increased. As described above, it was demonstrated that polyamine induces cell reprogramming.
- PIS cells were cultured using Cellaris (registered trademark) DEF-CS 500 Culture System (Takara Bio Inc.) in exactly the same manner as used in Example 1 to obtain PIS cells with stable characteristics. After weakly adhering PIS cells in the medium were suspended by pipetting, the cells were collected by centrifugation at 1,500 rpm for 4 minutes.
- the obtained PIS cells were confirmed for alkaline phosphatase activity and three surface antigens (SSEA-4, TRA-1-60, TRA-1-81) by Human ES / iPS Cell Characterization Kit (Applied Stem Cell). went.
- IPS cells are also characterized by expressing alkaline phosphatase.
- SSEA-4, TRA-1-60, and TRA-1-81 are iPS cell marker genes and are proteins that are specifically expressed in iPS cells.
- PIS cells were placed in a 0.2 mL sample tube, fixed, permeabilized, and blocked in a suspended cell state, and then the primary antibody and the secondary antibody were bound.
- the cells labeled with the secondary antibody were mixed with the mount solution 1: 1 to prepare a slide glass, and the fluorescence was confirmed with a fluorescence microscope (EVOS, EVOS FL Auto). The results are shown in FIG.
- FIG. 3 is a diagram in which chromosomes are fluorescently stained, and is a diagram of activity staining or immunostaining with a fluorescent substance. If there is fluorescence, it is shown in gray in the picture of FIG. As is clear from FIG. 3, strong alkaline phosphatase activity and strong expression of SSEA-4, TRA-1-60 and TRA-1-81 antigens were confirmed. As described above, it was proved that PIS cells expressed a protein specific to iPS cells.
- Mouse preadipocyte cell line 3T3-L1 (FIG. 5A) was obtained from EDCC.
- the 3T3-L1 strain was cultured in a 25 cm 2 culture flask containing 6 mL of DMEM (Dulbecco's modified Eagle Medium) for 1 day to allow the cells to adhere.
- the one supplemented with 1 mM spermine was cultured at 37 ° C. for 3 days in a CO 2 incubator.
- ES cell-like cells (PIS-L1 cells) could be obtained in the same manner as in Example 1, and the PIS-L1 cells formed EBs as shown in FIG. 5B.
- the method for producing PIS cells can be applied not only to human fibroblasts but also to various cells of various species such as mouse adipocytes.
- Example 5 Demonstration that a DNA methylation inhibitor has the ability to reprogram cells and changes to DIS cells
- SiRNAs (catalog numbers SI000189910, SI00982338 and SI00165382) that inhibit the expression of genes encoding Qiagen DNA methylases (DNMT1, DNMT3A and DNMT3B) were obtained.
- mouse adipocyte-derived strain C3H10T1 / 2 (EC90110523-F0) was obtained from ECACC.
- the cells were cultured in DMEM for 1 day using a 24-well plate and the cells were allowed to attach to the bottom of each well of the plate.
- Gene silencing by siRNA was performed using RNAi Human / Mouse Starter Kit (Qiagen).
- the mouse adipocyte-derived strain C3H10T1 / 2 was changed to a DIS cell (DIS-SI cell), but the mouse adipocyte-derived strain C3H10T1 / 2 that was not changed was attached to the cell bottom surface. As such, only DIS-SI cells could be recovered from the medium.
- DIS-Aza cells were subjected to initial differentiation using ES-Cut Hematopoietic Differentiation Kit with Cytokine (Veritas, catalog number ST-03160), which is a differentiation medium from mouse ES cells to hematopoietic cells. .
- Cytokine (Veritas, catalog number ST-03160)
- initial differentiation into hematopoietic cells was confirmed as shown in FIG.
- DIS-Aza cells were differentiated into neurons using a differentiation medium for neural progenitor cells (STEMdiff Neural Induction Medium, Veritas).
- FIG. 6D DIS-Aza cells differentiated into neural stem cells and nerve-like cells.
- a DNA methylation inhibitor it has the ability to initialize cells to pluripotent stem cells, as in the case of polyamines, and it is possible to produce DIS cells that differentiate into various cells.
- somatic cells can be converted into PIS cells with high efficiency
- the obtained PIS cells can be differentiated into ectoderm, mesoderm or endoderm with high efficiency
- Human lung-derived fibroblasts TIG-1-20 (number of divisions 30-35) were cultured in a 25 cm 2 culture flask for 1 day using 6 mL of minimal medium (MEM) and attached to the bottom of the flask I let you.
- MEM minimal medium
- 20 ⁇ M Y-27632 and 5 ⁇ M thiazobibin, which are a Rock inhibitor, and 60 ⁇ M p53 inhibitor (Cyclic pifthrin- ⁇ -hydrobide) and 30 ⁇ M Bax inhibitor (Bax Inhibitor Peptide Peptide) are apoptosis inhibitors. was added and cultured for 8 hours, and these four types of inhibitors were sufficiently taken into the cells.
- the PIS cells were then differentiated into ectoderm, mesoderm or endoderm using Stem XVivo Ectoderm Kit, Stem XVivo Mesoderm Kit, Stem XVivo Enderdom Kit (R & D Systems).
- the differentiated cells were obtained by using anti-human Oct2 goat antibody, anti-human Brachyury goat antibody and anti-human SOX17 goat antibody included in these kits as primary antibodies, and anti-goat IgG rabbits bound with Alexa Fluor (registered trademark) 555. Immunofluorescence staining was performed using the antibody as a secondary antibody. As a result, as shown in FIGS. 7A to 7C, it was confirmed that most cells were efficiently (90% or more) and differentiated into ectoderm, mesoderm or endoderm.
- PIS cells were induced into mesoderm and differentiated into brown adipocytes using PS-dif BA Brown Adiposite Difference Kit (Veritas). The obtained cells were immunostained using an anti-UCP1 rabbit antibody (Biosis: bs192R). Moreover, 0.1 mM oleic acid was added and cultured. As a result, the differentiated cells were not only brown, but also expressed UCP1 as shown in FIG. 8A, and had the property of accumulating fat as shown in FIG. 8B. From this, it was confirmed that PIS cells were differentiated into brown adipocytes. Moreover, the differentiation efficiency of the surviving cells into brown adipocytes was 90% or more, and it was confirmed that differentiation was possible with very high efficiency.
- Example 7 Confirmation that PIS cells can be produced from adipocytes and can be differentiated with high efficiency
- Mouse adipocyte 3T3-L24 (N. Shiomi et al. (2011) JBiSE 4, 684) was cultured in a 25 cm 2 culture flask for 1 day using 6 mL of DMEM and attached to the bottom of the flask.
- a Rock inhibitor 20 ⁇ M Y-27632 and 5 ⁇ M thiazobibin, and an apoptosis inhibitor, 60 ⁇ M p53 inhibitor (Cyclic pifthrin- ⁇ -hydrobide) and 30 ⁇ M Bax inhibitor (Bax Inhibitor Peptide)
- 60 ⁇ M p53 inhibitor Cyclic pifthrin- ⁇ -hydrobide
- Bax inhibitor Bax Inhibitor Peptide
- StemSure (registered trademark) 0.1 w ⁇ v% gelatin solution (Wako Pure Chemical Industries, Ltd.) coated in each well of a 24-well culture plate, neurodifferentiation medium NDiff (registered trademark) 227 (Takara Bio Inc.) 2 mL of company: Y40002) was added, and PIS cells were cultured for 3 days to induce neural stem cells. Furthermore, these cells were differentiated into nerve cells and glial cells using Neurocult (registered trademark) Differentiation Medium (Veritas).
- the obtained nervous system cells were immunostained using an anti- ⁇ -tubulin III rabbit antibody and a MAP2 rabbit antibody as a primary antibody, and a Cy3-conjugated anti-rabbit goat antibody as a secondary antibody.
- FIG. 9A As shown in FIG. 9A, almost 100% of the cells differentiated into neural stem cells.
- FIGS. 9B and 9C it was confirmed that almost 100% of the cells further differentiated from the neural stem cells were mature neurons.
- the method for producing pluripotent stem cells of the present invention is much simpler, faster and more efficient than iPS production. Therefore, it can be used for various treatments in the field of regenerative medicine, and its industrial utility value is extremely high.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Provided is a method for producing pluripotent stem cells whereby pluripotent stem cells having a function comparable to iPS cells can be obtained. The method for producing pluripotent stem cells comprises culturing animal cells in a medium containing a polyamine or a DNA methylation inhibitor and thus acquiring the pluripotent stem cells.
Description
本発明は、多能性幹細胞の製造方法に関する。
The present invention relates to a method for producing pluripotent stem cells.
胚性幹細胞(ES細胞)は、胚盤胞期の内部細胞塊から作られる細胞であり、様々な細胞に分化できる多能性幹細胞である。1998年にカリフォルニア大学のジェームズ・トムソンらが、ヒトのES細胞の作製に成功したことをきっかけに、ES細胞を様々な細胞に分化させ、再生医療に利用することが期待されてきた。しかし、ヒトのES細胞を作製するにはヒトの受精卵を用いる必要があり、医療への利用は生命倫理上問題がある。そのため、現在ではES細胞を再生医療に利用することは見送られている。
Embryonic stem cells (ES cells) are cells that are made from an inner cell mass at the blastocyst stage and are pluripotent stem cells that can differentiate into various cells. In 1998, James Thomson of the University of California succeeded in producing human ES cells, and it has been expected to differentiate ES cells into various cells for use in regenerative medicine. However, in order to produce human ES cells, it is necessary to use human fertilized eggs, and there are problems in bioethics for use in medicine. Therefore, at present, the use of ES cells for regenerative medicine has been postponed.
これに対して、山中らは乳腺由来の体細胞から、ES細胞と同等の機能を有する多能性幹細胞(iPS細胞)の作製にマウスで成功し、その後、ヒトのiPS細胞の作製にも成功している(非特許文献1:Cell、30巻、861頁-872頁、2007年)。ヒトのiPS細胞は、4つの遺伝子(SOX2、OCT3/4、c-Myc、Klf-4遺伝子)を、遺伝子組み換えにより同時に体細胞に導入して発現させることにより得られる。iPS細胞はES細胞と同様の性質を有して、様々な細胞や臓器に分化できる上に、ヒト胚を使用しないことから、再生医療への利用が期待されている。しかし、iPS細胞は、遺伝子操作により得るため、体細胞あたりのiPS細胞の変換率は非常に低い。そのため、現在までiPS細胞の作製方法と選別方法に様々な改良が加えられてきた(特許文献1:特開2008-283972号公報、特許文献2:特開2009-165480号公報、特許文献3:特開2014-000083号公報、特許文献4:国際公開第2013/163296号)。しかしながら、依然として体細胞からiPS細胞への変換率は低く、取得までに時間がかかることがiPS細胞の問題点の1つである。
In contrast, Yamanaka et al. Succeeded in producing pluripotent stem cells (iPS cells) having functions equivalent to those of ES cells from somatic cells derived from mammary glands, and then succeeded in producing human iPS cells. (Non-Patent Document 1: Cell, 30, 861-872, 2007). Human iPS cells can be obtained by introducing four genes (SOX2, OCT3 / 4, c-Myc, Klf-4 genes) into somatic cells by gene recombination and expressing them. iPS cells have the same properties as ES cells and can be differentiated into various cells and organs, and since human embryos are not used, they are expected to be used for regenerative medicine. However, since iPS cells are obtained by genetic manipulation, the conversion rate of iPS cells per somatic cell is very low. For this reason, various improvements have been made to the iPS cell production and selection methods until now (Patent Document 1: JP 2008-283972 A, Patent Document 2: JP 2009-165480 A, Patent Document 3: JP-A-2014-000083, Patent Document 4: International Publication No. 2013/163296). However, one of the problems with iPS cells is that the conversion rate from somatic cells to iPS cells is still low and it takes time to obtain them.
さらに、細胞は細胞表面に提示したHLA抗原により、自己と他人を区別している。iPS細胞で作製した細胞組織や臓器を再生医療に利用するためには、このHLA抗原の型を一致させる必要がある。言い換えれば、iPS細胞による再生医療では、すべてのHLA型を有するiPS細胞群を準備し、それをすべての細胞や臓器に分化したものを前もって準備しておく必要がある。しかし、HLA抗原の型は非常に多岐にわたっており、HLA抗原の型が一致する確率は千人から1万人に一人にすぎない。HLA型を有するiPS細胞群とそこから分化した細胞群を準備することは不可能ではないが、現実的には極めて困難である。さらに、細胞の自己と他人の区別は、HLA抗原以外でも行われているため、HLA抗原型の一致したiPS細胞により、再生医療を行ったとしても、患者は自己免疫反応が生じ、免疫抑制剤を投与し続ける必要がある。このことは、患者にとって大きい負担を強いることになる。
Furthermore, cells distinguish themselves from others by the HLA antigen presented on the cell surface. In order to use cell tissues and organs prepared with iPS cells for regenerative medicine, it is necessary to match the types of these HLA antigens. In other words, in regenerative medicine using iPS cells, it is necessary to prepare a group of iPS cells having all HLA types, and to prepare those differentiated into all cells and organs in advance. However, the types of HLA antigens are very diverse, and the probability that the types of HLA antigens match is only one per thousand to 10,000. Although it is not impossible to prepare an iPS cell group having an HLA type and a cell group differentiated therefrom, it is actually extremely difficult. Furthermore, since the cell self and others are distinguished from those other than the HLA antigen, even if regenerative medicine is performed using iPS cells having the same HLA antigen type, the patient has an autoimmune reaction, and an immunosuppressive agent. Should continue to be administered. This imposes a heavy burden on the patient.
上記の2つの問題は、「患者から直接細胞を取り出し、それを再生医療に使う」ことにより解決できる。しかし、iPS細胞では、(1)4つの遺伝子を遺伝子操作により導入し選別するため、作製の時間と手間がかかる、(2)iPS細胞を得る確率は低く再生医療に十分な細胞を確保するまでに時間がかかる、(3)遺伝子を導入するために得られたiPS細胞の安全確認に時間がかかる、(4)ひとり当たりに膨大な労力が必要になり高額の医療費が発生するなどの理由により、患者自身の細胞を再生医療に利用することは極めて困難である。
The above two problems can be solved by “removing cells directly from a patient and using them for regenerative medicine”. However, in iPS cells, (1) it takes four hours to introduce and select four genes by genetic manipulation, which takes time and labor for preparation. (2) The probability of obtaining iPS cells is low, and sufficient cells for regenerative medicine are secured. (3) It takes time to confirm the safety of iPS cells obtained to introduce a gene, (4) A huge amount of labor is required per person, and high medical costs are incurred. Therefore, it is extremely difficult to use the patient's own cells for regenerative medicine.
一方、遺伝子組換えを用いることなく、短時間、高効率で多能性幹細胞を作製する方法を開発できれば、患者自身の細胞から、多能性幹細胞を作製することが可能になり、再生医療の実現性は非常に高まる。このような細胞の作製法に関する報告は、現在2つしか報告されていない。
On the other hand, if a method for producing pluripotent stem cells with high efficiency can be developed in a short time without using genetic recombination, pluripotent stem cells can be produced from the patient's own cells. Feasibility is greatly enhanced. There are currently only two reports on methods for producing such cells.
その1つは、STAP細胞である(非特許文献2:Nature、505巻、641頁-647頁、2014年、特許文献4)。理化学研究所の小保方らのグループは、紅茶の成分を使うことでiPS細胞と同等の細胞であるSTAP細胞を作製できることを発見した。しかし、その後に数多くの検証がなされ、STAP細胞は、ES細胞自身を用いた可能性が高く、STAP細胞の作製方法を提示した論文そのものが、捏造または誤りであることが立証された。
One of them is STAP cells (Non-patent Document 2: Nature, 505, 641-647, 2014, Patent Document 4). The group of Kobokata et al. Of RIKEN discovered that STAP cells, which are equivalent to iPS cells, can be produced by using black tea ingredients. However, many verifications were made after that, and it was highly possible that STAP cells used ES cells themselves, and it was proved that the paper itself that showed the method for producing STAP cells was forgery or error.
もう1つは、2016年にKimらにより報告された研究(非特許文献3:Biochemical and Biophysical Research Communications、472巻、589頁-591頁、2016年)であり、これが最新の研究である。彼らは癌細胞に刺激を与え、生き残った細胞がiPS細胞に近い細胞であることを発見した。この論文は、「STAP細胞を作製できた」という見出しで、一部の報道が誤って報道したが、当該論文で得られた細胞は、iPS細胞マーカーを発現しておらず、多能性幹細胞ではない。論文の著者自身の結論も「多能性幹細胞は得られなかった」と結論している。
The other is a study reported by Kim et al. In 2016 (Non-patent Document 3: Biochemical and Biophysical Research Communications, 472, 589-591, 2016), which is the latest research. They stimulated cancer cells and found that the surviving cells were close to iPS cells. In this paper, the headline that “STAP cells could be produced” was reported, and some reports reported incorrectly, but the cells obtained in this paper did not express iPS cell markers and were pluripotent stem cells. is not. The author's own conclusion also concluded that “pluripotent stem cells could not be obtained”.
すなわち、2016年現在においても、化合物で刺激することにより多能性幹細胞を誘導する方法は知られていない。
That is, as of 2016, there is no known method for inducing pluripotent stem cells by stimulation with a compound.
遺伝子組換えを用いることなく、短時間、高効率でiPS細胞と同等の機能を有する多能性幹細胞を製造できれば、患者自身の細胞を使って、多能性幹細胞を製造することも可能であり、再生医療の実現性は非常に高まる。しかしながら、上述のとおり、そのような多能性幹細胞の製造方法は、これまで全く見出されていない。
If pluripotent stem cells having the same functions as iPS cells can be produced in a short time and with high efficiency without using genetic recombination, it is also possible to produce pluripotent stem cells using the patient's own cells. And the feasibility of regenerative medicine is greatly enhanced. However, as described above, no method for producing such pluripotent stem cells has been found so far.
本発明は、上記の課題に鑑みてなされたものであり、iPS細胞と同等の機能を有する多能性幹細胞を得ることのできる、多能性幹細胞の製造方法を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for producing pluripotent stem cells capable of obtaining pluripotent stem cells having functions equivalent to iPS cells.
本発明は、以下のとおりである。
[1] ポリアミン、または、DNAメチル化阻害物質を含む培地中で、動物細胞を培養することにより、多能性幹細胞を取得する、多能性幹細胞の製造方法。
[2] 前記ポリアミンは、スペルミン、スペルミジン、プトレシン、および、それらのアセチル化体、並びに、それらポリアミンの2つ以上の重合体、からなる群から選択される少なくとも1種である、[1]に記載の製造方法。
[3] 前記DNAメチル化阻害物質は、DNAメチル化酵素をコードする遺伝子の発現を阻害するsiRNA、5-アザ-2’-デオキシシチジン、シネフンギン、ゼブラリン、エチオニン、アセチルメチオニン、および、セレノメチオニンからなる群から選択される少なくとも1種である、[1]または[2]に記載の製造方法。 The present invention is as follows.
[1] A method for producing pluripotent stem cells, wherein pluripotent stem cells are obtained by culturing animal cells in a medium containing a polyamine or a DNA methylation inhibitor.
[2] The polyamine is at least one selected from the group consisting of spermine, spermidine, putrescine, and acetylated products thereof, and two or more polymers of the polyamines. The manufacturing method as described.
[3] The DNA methylation inhibitor is selected from siRNA, 5-aza-2′-deoxycytidine, sinefungin, zebralin, ethionine, acetylmethionine, and selenomethionine that inhibits expression of a gene encoding a DNA methylase. The production method according to [1] or [2], which is at least one selected from the group consisting of:
[1] ポリアミン、または、DNAメチル化阻害物質を含む培地中で、動物細胞を培養することにより、多能性幹細胞を取得する、多能性幹細胞の製造方法。
[2] 前記ポリアミンは、スペルミン、スペルミジン、プトレシン、および、それらのアセチル化体、並びに、それらポリアミンの2つ以上の重合体、からなる群から選択される少なくとも1種である、[1]に記載の製造方法。
[3] 前記DNAメチル化阻害物質は、DNAメチル化酵素をコードする遺伝子の発現を阻害するsiRNA、5-アザ-2’-デオキシシチジン、シネフンギン、ゼブラリン、エチオニン、アセチルメチオニン、および、セレノメチオニンからなる群から選択される少なくとも1種である、[1]または[2]に記載の製造方法。 The present invention is as follows.
[1] A method for producing pluripotent stem cells, wherein pluripotent stem cells are obtained by culturing animal cells in a medium containing a polyamine or a DNA methylation inhibitor.
[2] The polyamine is at least one selected from the group consisting of spermine, spermidine, putrescine, and acetylated products thereof, and two or more polymers of the polyamines. The manufacturing method as described.
[3] The DNA methylation inhibitor is selected from siRNA, 5-aza-2′-deoxycytidine, sinefungin, zebralin, ethionine, acetylmethionine, and selenomethionine that inhibits expression of a gene encoding a DNA methylase. The production method according to [1] or [2], which is at least one selected from the group consisting of:
本発明者は、細胞を初期化する働きのある物質について、数多くの物質を用いて探索し、得られた細胞の性質を調べた。本発明者の鋭意努力の結果、ポリアミンに、細胞の初期化に関する遺伝子群の発現を誘導する働きがあることを発見した。さらに、本発明者は、ポリアミンが結果的にDNAのメチル化を阻害し、それが細胞を初期化していることを発見し、DNAメチル化阻害物質を用いても同様の細胞を得られることを見出した。また、ポリアミン、または、DNAメチル化阻害剤による細胞の分化誘導を進めると、ES細胞またはiPS細胞のマーカータンパク質を有する細胞に変化し、当該細胞が多能性幹細胞になることを発見した。
The present inventor searched for a substance having a function of reinitializing cells using a large number of substances, and investigated the properties of the obtained cells. As a result of the inventor's diligent efforts, it was discovered that polyamine has a function of inducing the expression of genes related to cell reprogramming. Furthermore, the present inventor has discovered that polyamines consequently inhibit DNA methylation, and that it reinitializes the cells, and that similar cells can be obtained using DNA methylation inhibitors. I found it. Moreover, when the differentiation induction of the cell by a polyamine or a DNA methylation inhibitor was advanced, it changed to the cell which has the marker protein of an ES cell or iPS cell, and discovered that the said cell turns into a pluripotent stem cell.
それだけでなく、当該多能性幹細胞は、多能性を保持した状態で培養可能であり、胚様体に分化させる培地で、内胚葉、中胚葉、外胚葉などの様々な体細胞に再分化することも確認でき、本発明を完成するに至った。
In addition, the pluripotent stem cells can be cultured in a state that retains pluripotency, and redifferentiate into various somatic cells such as endoderm, mesoderm, and ectoderm in a medium that differentiates into embryoid bodies. It has also been confirmed that the present invention has been completed.
以下、本明細書において、ポリアミンを用いて得られた多能性幹細胞をPIS細胞(Polyamine-Induced Stem cells)と呼び、DNAメチル化阻害剤を用いて得られた多能性幹細胞をDIS細胞(Demethylation-Induced Stem Cells)と呼ぶ場合がある。
Hereinafter, in this specification, pluripotent stem cells obtained using polyamine are referred to as PIS cells (Polyamine-Induced Stem cells), and pluripotent stem cells obtained using a DNA methylation inhibitor are referred to as DIS cells ( Sometimes called Demethylation-Induced Stem Cells).
本発明によれば、iPS細胞と同等の機能を有する多能性幹細胞を得ることのできる、多能性幹細胞の製造方法を提供することができる。なお、本発明の製造方法は、全く新しい方法であるだけでなく、遺伝子組換えを用いることなく、動物細胞から多能性幹細胞を得た点において、本発明の有用性は極めて高い。
According to the present invention, it is possible to provide a method for producing pluripotent stem cells capable of obtaining pluripotent stem cells having functions equivalent to iPS cells. In addition, the production method of the present invention is not only a completely new method, but the utility of the present invention is extremely high in that pluripotent stem cells are obtained from animal cells without using genetic recombination.
さらに、PIS細胞およびDIS細胞では、1~3日で得られる上に、当該細胞への転換効率も非常に高く、細胞の分離も容易という優れた特徴がある。iPS細胞は、時間と手間がかかるだけでなく、iPS細胞を得る確率は低いことから、PIS細胞およびDIS細胞はiPS細胞の作製方法と比較して、進歩性が極めて高い。
Furthermore, PIS cells and DIS cells have excellent characteristics that they can be obtained in 1 to 3 days, have a very high conversion efficiency into the cells, and can be easily separated. Since iPS cells not only take time and labor, but also have a low probability of obtaining iPS cells, PIS cells and DIS cells are highly inventive compared to the method of producing iPS cells.
また、患者から取得した細胞をiPS細胞に分化して再生医療に利用することは、既に記載の理由により困難であり、そのことが再生医療の実用化における大きな障害となっている。本発明のPIS細胞またはDIS細胞を作製する方法では、さまざまな細胞を短時間且つ高効率でPIS細胞またはDIS細胞に変換できる。このため、患者の一部の組織または脂肪組織等を採取すれば、再生医療に十分なPIS細胞またはDIS細胞の細胞量を短期間で確保することができる。即ち、PIS細胞またはDIS細胞を作製する方法を利用すれば、患者自身の細胞を用いて短期間で再生医療を行うことが可能になり、治療後に免疫抑制剤を使用する必要がなく、理想的な再生医療を行うことが可能である。iPS細胞と比較した場合、この点において本発明の進歩性および有効性は極めて高い。
Also, it is difficult to differentiate cells obtained from patients into iPS cells and use them in regenerative medicine for the reasons already described, and this is a major obstacle in the practical application of regenerative medicine. In the method for producing PIS cells or DIS cells of the present invention, various cells can be converted into PIS cells or DIS cells in a short time and with high efficiency. For this reason, if a part of a patient's tissue or adipose tissue is collected, a sufficient amount of PIS cells or DIS cells for regenerative medicine can be secured in a short period of time. That is, if a method for producing PIS cells or DIS cells is used, regenerative medicine can be performed in a short period of time using the patient's own cells, and it is not necessary to use an immunosuppressant after treatment, which is ideal. Regenerative medicine can be performed. Compared with iPS cells, the inventive step and effectiveness of the present invention are extremely high in this respect.
本発明は、培地に、ポリアミン、または、DNAメチル化阻害物質を添加し、動物細胞を(ES細胞またはiPS細胞と類似の形態を有するまで)培養することにより、多能性幹細胞を取得する、多能性幹細胞の製造方法である。
The present invention obtains pluripotent stem cells by adding polyamine or a DNA methylation inhibitor to a medium and culturing animal cells (until they have a similar form to ES cells or iPS cells). A method for producing pluripotent stem cells.
なお、動物細胞とは、培養により増殖可能で正常な動物の細胞であればよい。ここで、動物はヒトを含み、好ましくは哺乳動物である。ヒト以外の哺乳動物としては、特に限定されないが、例えば、マウス、ラット、ウサギ、ヤギなどが挙げられる。哺乳動物以外の動物としては、例えば、ショウジョウバエなどの昆虫類などが挙げられる。
The animal cell may be a normal animal cell that can be grown by culture. Here, the animal includes a human, preferably a mammal. Mammals other than humans are not particularly limited, and examples include mice, rats, rabbits, and goats. Examples of animals other than mammals include insects such as Drosophila.
動物細胞としては、例えば、線維芽細胞、表皮細胞、乳腺細胞、脂肪細胞、筋芽細胞、骨芽細胞、肝細胞、血管内皮細胞、または、それらの前駆細胞などが挙げられる。他の動物細胞としては、例えば、血球系幹細胞、間葉系幹細胞、神経幹細胞などの幹細胞が挙げられる。
Examples of animal cells include fibroblasts, epidermal cells, mammary cells, adipocytes, myoblasts, osteoblasts, hepatocytes, vascular endothelial cells, or precursor cells thereof. Examples of other animal cells include stem cells such as blood cell stem cells, mesenchymal stem cells, and neural stem cells.
例えば、ヒトの細胞は、ヒト正常細胞の分譲を行っている保存機関(ATCC、JCRBなど)から分譲を受けるか、ヒト正常細胞の販売を行う市販のメーカーから購入するか、または、ヒトから細胞を取り出すことにより取得できる。例えば、ヒトなどの動物の組織から細胞を取り出して用いる場合は、組織検査の装置を用いた組織の一部のサンプリング、手術等による組織の部分的切除、脂肪吸引等の方法により、組織を得た後、トリプシン等の酵素により細胞を分離し、動物細胞用の培地で培養する。
For example, human cells can be purchased from a storage organization (ATCC, JCRB, etc.) that sells human normal cells, purchased from commercial manufacturers that sell human normal cells, or cells from humans Can be obtained by taking out For example, when cells are extracted from a tissue of an animal such as a human and used, the tissue is obtained by sampling a part of the tissue using a tissue examination apparatus, partial excision of the tissue by surgery, liposuction, or the like. Thereafter, the cells are separated by an enzyme such as trypsin and cultured in a medium for animal cells.
(ポリアミン)
本発明に用いられるポリアミン(polyamine)は、直鎖脂肪族炭化水素に第一級アミノ基あるいは第二級アミノ基が合計で2つ以上結合した化合物を意味する。 (Polyamine)
The polyamine used in the present invention means a compound in which two or more primary amino groups or secondary amino groups are bonded to a linear aliphatic hydrocarbon in total.
本発明に用いられるポリアミン(polyamine)は、直鎖脂肪族炭化水素に第一級アミノ基あるいは第二級アミノ基が合計で2つ以上結合した化合物を意味する。 (Polyamine)
The polyamine used in the present invention means a compound in which two or more primary amino groups or secondary amino groups are bonded to a linear aliphatic hydrocarbon in total.
ポリアミンとしては、例えば、スペルミン(CAS登録番号71-44-3)、スペルミジン(CAS登録番号124-20-9)、プトレシン(CAS登録番号110-60-1)、および、それらのアセチル化体、並びに、それらポリアミンの2つ以上の重合体が挙げられる。
Examples of polyamines include spermine (CAS registration number 71-44-3), spermidine (CAS registration number 124-20-9), putrescine (CAS registration number 110-60-1), and acetylated forms thereof. As well as two or more polymers of these polyamines.
ポリアミンのアセチル化体(アセチル化ポリアミン)としては、例えば、N-アセチルプトレシン、N-アセチルスペルミジン、N-アセチルスペルミン、ジアセチルプトレシン、ジアセチルスペルミジン、ジアセチルスペルミンが挙げられる。なお、ポリアミンの2つ以上の重合体は、化学合成により得ることができる。
Examples of the acetylated polyamine (acetylated polyamine) include N-acetylputrescine, N-acetylspermidine, N-acetylspermine, diacetylputrescine, diacetylspermidine, and diacetylspermine. Two or more polymers of polyamine can be obtained by chemical synthesis.
ポリアミンは、炭素鎖3~4の間隔でアミノ基(-NH2基または-NH-基)が存在することで、ヒストンまたは染色体に作用し、細胞を初期化する遺伝子群の発現を誘導する特徴がある。したがって、上記以外のポリアミン(生体内に存在する他のポリアミン、化学合成により得られた他のポリアミンなど)のうち、スペルミン、スペルミジン、プトレシン等と類似の構造を有する化合物も、本発明に用いることができる。なお、ポリアミンの遺伝子発現を誘導する能力は、スペルミン、スペルミジン、プトレシンの順に強く、直鎖分子の長さが長いほど、モル濃度当たりの遺伝子の発現を誘導する効果は大きい。
Polyamine is characterized by the presence of amino groups (—NH 2 group or —NH— group) at intervals of 3 to 4 carbon chains, acting on histones or chromosomes and inducing the expression of genes that initialize cells There is. Therefore, among polyamines other than the above (other polyamines existing in the body, other polyamines obtained by chemical synthesis, etc.), compounds having a structure similar to spermine, spermidine, putrescine, etc. are also used in the present invention. Can do. The ability to induce polyamine gene expression is strong in the order of spermine, spermidine, and putrescine, and the longer the length of the linear molecule, the greater the effect of inducing gene expression per molar concentration.
なお、ポリアミンは水溶性のため、10~100mM程度の濃度のポリアミン水溶液を作製し、0.2μmの濾過フィルターにより滅菌処理した後、適切な濃度になるように培地に添加して使用することができる。
Since polyamine is water-soluble, an aqueous polyamine solution having a concentration of about 10 to 100 mM is prepared, sterilized with a 0.2 μm filter, and then added to the medium so as to have an appropriate concentration. it can.
(DNAメチル化阻害物質)
本発明に用いられるDNAメチル化阻害物質としては、例えば、以下の2種類が挙げられる。 (DNA methylation inhibitor)
Examples of the DNA methylation inhibitor used in the present invention include the following two types.
本発明に用いられるDNAメチル化阻害物質としては、例えば、以下の2種類が挙げられる。 (DNA methylation inhibitor)
Examples of the DNA methylation inhibitor used in the present invention include the following two types.
DNAメチル化阻害物質の1種としては、DNAメチル化酵素をコードする遺伝子(DNMT)の発現を阻害するsiRNAが挙げられる。DNAメチル化酵素とは、細胞を複製する際に親細胞から娘細胞にDNAのメチル化情報を正確に伝える酵素(DNMT1)、娘細胞のDNAをメチル化する酵素(DNMT3)などである。siRNAとは、特定の遺伝子のmRNAと相補する短いRNAであり、該特定の遺伝子の発現を阻害することができる。ヒトやマウスでは、DNMT1コード遺伝子またはDNMT3コード遺伝子が、DNMTをコードする遺伝子に該当し、例えば、それらの発現を阻害するsiRNAとして、キアゲン社のsiRNAをマニュアルに従って添加することにより、DNAのメチル化を効率よく阻害することができる。
An example of a DNA methylation inhibitor is siRNA that inhibits the expression of a gene encoding DNA methylase (DNMT). The DNA methylase is an enzyme (DNMT1) that accurately transmits DNA methylation information from a parent cell to a daughter cell when replicating a cell, an enzyme (DNMT3) that methylates DNA of a daughter cell, and the like. siRNA is short RNA complementary to mRNA of a specific gene, and can inhibit the expression of the specific gene. In humans and mice, the DNMT1-encoding gene or DNMT3-encoding gene corresponds to the DNMT-encoding gene. For example, as a siRNA that inhibits their expression, siRNA from Qiagen is added according to the manual to methylate DNA. Can be efficiently inhibited.
DNAメチル化阻害物質の他の1種としては、メチオニン類似物質が挙げられる。メチオニン類似物質は、メチル化反応の反応基質であるアデノシルメチオニンの合成を阻害することにより、メチル化反応を阻害する。
Another example of a DNA methylation inhibitor is a methionine analog. Methionine analogs inhibit the methylation reaction by inhibiting the synthesis of adenosylmethionine, which is the reaction substrate for the methylation reaction.
メチオニン類似物質としては、例えば、5-アザ-2’-デオキシシチジン(5-Aza-dc,CAS登録番号2353-33-5)、シネフンギン(CAS登録番号58944-73-3)、ゼブラリン(CAS登録番号360-10-6)、エチオニン(CAS登録番号13073-35-3)、アセチルメチオニン(CAS登録番号567-82-7)、セレノメチオニン(CAS登録番号3211-76-5)が挙げられる。これらのメチオニン類似物質は、水溶性であるため、10-100mM程度の濃度の水溶液を調製し、該水溶液を0.2μmの濾過フィルターにより滅菌処理した後、適切な濃度になるように培地に添加して使用することができる。
Examples of methionine analogs include 5-aza-2'-deoxycytidine (5-Aza-dc, CAS registration number 23533-33-5), sinefungin (CAS registration number 58944-73-3), and zebralin (CAS registration). No. 360-10-6), ethionine (CAS registration number 13073-35-3), acetylmethionine (CAS registration number 567-82-7), and selenomethionine (CAS registration number 3211-76-5). Since these methionine-like substances are water-soluble, prepare an aqueous solution with a concentration of about 10-100 mM, sterilize the aqueous solution with a 0.2 μm filter, and add it to the medium to an appropriate concentration. Can be used.
ポリアミンによる多能性幹細胞(PIS細胞)、または、DNAメチル化阻害物質による多能性幹細胞(DIS細胞)への誘導は、動物細胞をポリアミンまたはDNAメチル化阻害物質の在下で培養することにより実施できる。細胞培養用のフラスコ、デッィシュあるはプレートに、細胞の増殖で使用される通常の培地を添加し、細胞を播種し、通常の培養温度(37℃程度)のCO2インキュベーターで培養することにより、細胞をフラスコ底面で増殖している状態にする。ヒト細胞の増殖で使用される通常の培地として、例えば、最少培地(Minimum Essential medium:MEM)やiPS細胞用の培地などを利用することができ、25cm2の培養フラスコの場合、10万~100万個程度の細胞を播種することが好ましい。
Induction of pluripotent stem cells (PIS cells) by polyamines or pluripotent stem cells (DIS cells) by DNA methylation inhibitors is carried out by culturing animal cells in the presence of polyamines or DNA methylation inhibitors. it can. By adding a normal medium used for cell growth to a flask, dish or plate for cell culture, seeding the cells, and culturing in a CO 2 incubator at a normal culture temperature (about 37 ° C.) Allow cells to grow on bottom of flask. As a normal medium used for the growth of human cells, for example, a minimum essential medium (MEM) or a medium for iPS cells can be used. In the case of a 25 cm 2 culture flask, 100,000 to 100 It is preferable to seed about 10,000 cells.
フラスコ底面に細胞が付着して細胞の増殖が開始した後、適切な濃度のポリアミン水溶液、または、DNAメチル化阻害物質の水溶液を添加し、さらに通常の培養温度(37℃程度)のCO2インキュベーターで1~4日間程度培養する。当該操作により、細胞内には無数の小さな球体が生じ、フラスコ底面に付着していた細胞が浮遊し、小さな球体の入った球状の細胞となって、ES細胞またはiPS細胞と類似の形態に変化する。この細胞が、多能性幹細胞のPIS細胞またはDIS細胞である。
After cells have adhered to the bottom of the flask and cell growth has started, an appropriate concentration of polyamine aqueous solution or DNA methylation inhibitor aqueous solution is added, and a CO 2 incubator at a normal culture temperature (about 37 ° C.) is added. Incubate for about 1 to 4 days. By this operation, innumerable small spheres are generated in the cells, the cells attached to the bottom of the flask float, become spherical cells containing small spheres, and change into a shape similar to ES cells or iPS cells. To do. This cell is a pluripotent stem cell PIS cell or DIS cell.
ポリアミンまたはDNAメチル化阻害物質の添加量が少ない場合、PIS細胞またはDIS細胞への変化が起こらず、添加量が多い場合、細胞のアポトーシス(細胞死)が誘導される。そのため、ポリアミンまたはDNAメチル化阻害物質は、PIS細胞またはDIS細胞への変化が起こる最低濃度で添加し、可能な限りアポトーシスを起こさないようにする必要がある。ポリアミンまたはDNAメチル化阻害物質の添加濃度と培養時間は、細胞種と細胞数に依存する。そのため、ポリアミンまたはDNAメチル化阻害物質の添加濃度は、光学顕微鏡観察により、PIS細胞またはDIS細胞に変化することを確認できる最少濃度を、予備実験により確認することが望ましい。
When the addition amount of the polyamine or DNA methylation inhibitor is small, no change to PIS cells or DIS cells occurs, and when the addition amount is large, cell apoptosis (cell death) is induced. Therefore, polyamines or DNA methylation inhibitors should be added at the lowest concentration at which changes to PIS cells or DIS cells occur, so as not to cause apoptosis as much as possible. The concentration of polyamine or DNA methylation inhibitor and the culture time depend on the cell type and the number of cells. For this reason, it is desirable to confirm the minimum concentration at which polyamine or DNA methylation inhibitor is added to PIS cells or DIS cells by optical microscope observation by preliminary experiments.
例えば、10~100万個の正常な線維芽細胞、脂肪細胞の場合、スペルミンを10μM~100μM程度添加した培地で1~2日間培養すれば、それらの細胞をPIS細胞に変化させることができる。さらに、上記の繊維芽細胞等に対しては、DNMTをコードする遺伝子の発現を阻害するsiRNAを5~10nM程度添加した培地、5-Aza-dcを20~80μM程度添加した培地、または、エチオニンを1~10mM程度添加した培地で、1~3日間培養すれば、それらの細胞をDIS細胞に変化させることができる。
For example, in the case of 100,000 to 1,000,000 normal fibroblasts and adipocytes, these cells can be changed to PIS cells by culturing in a medium supplemented with about 10 μM to 100 μM of spermine for 1 to 2 days. Furthermore, for the fibroblasts described above, a medium to which about 5 to 10 nM of siRNA that inhibits the expression of a gene encoding DNMT, a medium to which about 20 to 80 μM of 5-Aza-dc is added, or ethionine If the cells are cultured in a medium supplemented with about 1 to 10 mM for 1 to 3 days, these cells can be changed to DIS cells.
上記ポリアミンまたは上記siRNAを含有する培地で培養することにより得られたPIS細胞またはDIS細胞は、上記ポリアミンまたは上記siRNAを含有する培地で1~4日間程度培養できる。しかし、アポトーシスにより、次第に生存率が低下するため、光学顕微鏡によりPIS細胞への変化を確認すると、0~1日以内に、浮遊したPIS細胞またはDIS細胞を含む培養液を回収し、通常の速度(800~2000rpmで3分間程度)で遠心分離を行うことにより、PIS細胞を集めることが好ましい。
PIS cells or DIS cells obtained by culturing in a medium containing the polyamine or the siRNA can be cultured in a medium containing the polyamine or the siRNA for about 1 to 4 days. However, since the survival rate gradually decreases due to apoptosis, when the change to PIS cells was confirmed by light microscopy, the culture medium containing suspended PIS cells or DIS cells was collected within 0 to 1 day, and the normal rate PIS cells are preferably collected by centrifugation at 800-2000 rpm for about 3 minutes.
また、培地には、培養の際に、PIS細胞の生存率の低下を防ぐための阻害剤を添加してもよい。生存率の低下を防ぐための阻害剤としては、例えば、Rock阻害剤およびアポトーシス阻害剤が使用できる。Rock阻害剤としては、例えば、Y-27632、チアゾビビン、SB431542、PD0325901、アポトーシス阻害剤としては、例えば、p53阻害剤、Bax阻害剤、カスパーゼ阻害剤が挙げられる。
In addition, an inhibitor for preventing a decrease in the survival rate of PIS cells may be added to the medium during the culture. As an inhibitor for preventing a decrease in survival rate, for example, a Rock inhibitor and an apoptosis inhibitor can be used. Examples of the Rock inhibitor include Y-27632, thiazobibin, SB431542, PD0325901, and examples of the apoptosis inhibitor include a p53 inhibitor, a Bax inhibitor, and a caspase inhibitor.
一方、DNAメチル化阻害物質として、5-アザ-2’-デオキシシチジン、シネフンギン、ゼブラリン、エチオニン、アセチルメチオニン、セレノメチオニンを用いた場合、DNAのメチル化だけでなく様々なメチル化を阻害し、強い細胞毒性を有する。したがって、細胞の浮遊が起こるとすぐに、浮遊したDIS細胞を含む培養液を回収し、通常の速度(800~2000rpmで3分間程度)で遠心分離を行うことによりDIS細胞を集めることが好ましい。
On the other hand, when 5-aza-2'-deoxycytidine, sinefungin, zebularine, ethionine, acetylmethionine, selenomethionine is used as a DNA methylation inhibitor, it inhibits not only DNA methylation but also various methylation, Has strong cytotoxicity. Therefore, as soon as cell floating occurs, it is preferable to collect the DIS cells by collecting the culture medium containing the suspended DIS cells and centrifuging at a normal speed (800 to 2000 rpm for about 3 minutes).
遠心分離により回収したPIS細胞またはDIS細胞は、細胞からの分化が非常に高い割合で起こるため、胚様体(EB)を経由した内胚葉、外胚葉、中胚葉への再分化を直接行うことができる。しかしながら、再生医療に使う場合、「ES細胞またはiPS細胞と同等の形質を安定して発現させ、且つPIS細胞またはDIS細胞のみを選別する」必要がある。この場合は、ES細胞またはiPS細胞様の多能性の形質を獲得し且つ保持するための培地に添加することが好ましい。PIS細胞またはDIS細胞の多能性の形質を獲得し且つ保持するための培地として、例えば、ヒトの細胞の場合、Cellartis(登録商標) DEF-CS 500 Culture System(タカラバイオ株式会社)、mTeSR1(ベリタス社)など多くの市販の培地を用いることができる。また、当該培地での培養において、PIS細胞の生存率の低下を防ぐためには、Rock阻害剤Y-27632、チアゾビビン、SB431542、PD0325901を添加することも可能である。
Since PIS cells or DIS cells collected by centrifugation are differentiated from cells at a very high rate, redifferentiation directly into endoderm, ectoderm, and mesoderm via the embryoid body (EB) Can do. However, when it is used for regenerative medicine, it is necessary to “stablely express traits equivalent to those of ES cells or iPS cells and select only PIS cells or DIS cells”. In this case, it is preferable to add it to a medium for acquiring and maintaining ES cell or iPS cell-like pluripotent traits. As a medium for acquiring and retaining pluripotent traits of PIS cells or DIS cells, for example, in the case of human cells, Cellartis (registered trademark) DEF-CS 500 Culture System (Takara Bio Inc.), mTeSR1 ( Many commercially available media such as Veritas) can be used. In order to prevent a decrease in the survival rate of the PIS cells in the culture in the medium, it is also possible to add a Rock inhibitor Y-27632, thiazobibin, SB431542, PD0325901.
これらの培地でPIS細胞またはDIS細胞の集合体を培養すると、弱く付着(または浮遊)する。ピペッティング(ピペットにより培養液を吸引、排出を繰りかえして懸濁する操作)により当該細胞を浮遊させ、培地と細胞を回収し、遠心分離により細胞を集めた後、新しい培地に移す操作を行う。PIS細胞またはDIS細胞に分化していないもとの体細胞は、強固に付着するため、ピペッティングでは剥がれず、PIS細胞の集合体またはDIS細胞の集合体のみを回収できる。
When PIS cells or DIS cell aggregates are cultured in these media, they adhere weakly (or float). The cells are suspended by pipetting (an operation in which the culture medium is aspirated and suspended by repeated pipetting), the medium and cells are collected, the cells are collected by centrifugation, and then transferred to a new medium. Since the original somatic cells that have not differentiated into PIS cells or DIS cells adhere firmly, they are not detached by pipetting, and only PIS cell aggregates or DIS cell aggregates can be recovered.
さらに、PIS細胞またはDIS細胞の集合体を、Tryp LE Select(Gibco)、0.25%トリプシン溶液(Gibco)、Accutase-Solution(フナコシ社)等によって、細胞が分散した状態にし、Cellartis(登録商標) DEF-CS 500 Culture System(タカラバイオ株式会社)で培養した場合、個々のPIS細胞を培養器の底面に弱く付着した状態で増殖させることができる。
Further, the aggregate of PIS cells or DIS cells is made dispersed with Tryp LE Select (Gibco), 0.25% trypsin solution (Gibco), Accutase-Solution (Funakoshi), etc., and Cellaritis (registered trademark) is used. ) When cultured in DEF-CS 500 Culture System (Takara Bio Inc.), individual PIS cells can be grown in a state of weakly adhering to the bottom of the incubator.
Rock阻害剤およびアポトーシス阻害剤を添加して培養した場合、細胞にわずかな収縮が見られるが、細胞の浮遊は起こらない。この場合、Tryp LE Select、0.25%トリプシン、Accutase-Solution等により細胞を剥離させ、細胞をPBS等で洗浄後、DEF-CS 500 Culture Sytem等のiPS細胞用の培地で1-3日間培養すればよい。こうして得られたPIS細胞は、DEF-CS 500 Culture SytemあるいはStemSure(登録商標) ゼラチン溶液(和光純薬(株))等のゼラチン溶液でプレートをコートすることで、付着培養することができる。これにより、細胞の障害が修復され、アポトーシスを起こさず、且つ、高効率でPIS細胞を得ることができる。
When cultured with the addition of a Rock inhibitor and an apoptosis inhibitor, slight contraction of the cells is observed, but no cell floating occurs. In this case, the cells are detached with Tryp LE Select, 0.25% trypsin, Accutrate-Solution, etc., washed with PBS, etc., and cultured in a medium for iPS cells such as DEF-CS 500 Culture System for 1-3 days. do it. The PIS cells thus obtained can be attached and cultured by coating the plate with a gelatin solution such as DEF-CS 500 Culture System or StemSure (registered trademark) gelatin solution (Wako Pure Chemical Industries, Ltd.). Thereby, cell damage is repaired, apoptosis does not occur, and PIS cells can be obtained with high efficiency.
PIS細胞またはDIS細胞がiPS細胞と同等の形質を有することは、iPS細胞に特異的なSOX2、Oct3/4、c-Mycなどの遺伝子マーカーの発現、アルカリホスファターゼ活性の発現、または、SSEA-4、TRA1-60、TRA1-81などの表面抗原マーカーの発現等を調べることにより確認でき、遺伝子の発現上昇の確認にはRT-PCRまたはリアルタイムPCRを、iPS細胞に特異的な酵素または表面抗原の確認には、抗体を用いた免疫染色、ウエスタンブロッティングまたはFACSを利用すればよい。
The fact that a PIS cell or a DIS cell has a trait equivalent to that of an iPS cell indicates that expression of genetic markers such as SOX2, Oct3 / 4, c-Myc specific to iPS cells, expression of alkaline phosphatase activity, or SSEA-4 Can be confirmed by examining the expression of surface antigen markers such as TRA1-60, TRA1-81, etc. RT-PCR or real-time PCR can be used to confirm the increase in gene expression, iPS cell-specific enzyme or surface antigen For confirmation, immunostaining using antibodies, Western blotting or FACS may be used.
PIS細胞またはDIS細胞から様々な細胞への分化誘導は、iPS細胞で使用される誘導方法と同様の方法により行うことができる。
Differentiation induction from PIS cells or DIS cells into various cells can be performed by the same method as the induction method used for iPS cells.
PIS細胞またはDIS細胞は、iPS細胞と同様に、Embryoid body(EB)を経て、内胚葉、中胚葉、外胚葉などに分化し、その後、心筋細胞、脂肪細胞、神経細胞など様々な体細胞に分化できる。細胞の分化において、iPS細胞と同様に、均一なEBを形成することで、PIS細胞またはDIS細胞の分化効率が高まる。
Like iPS cells, PIS cells or DIS cells differentiate into endoderm, mesoderm, ectoderm, etc. through Embryoid body (EB), and then into various somatic cells such as cardiomyocytes, adipocytes, and nerve cells. Differentiate. In the differentiation of cells, the formation efficiency of PIS cells or DIS cells is increased by forming uniform EBs similarly to iPS cells.
均一なEBの形成には、数多くの市販のプレートが存在し、それら利用することも有効な手段である。例えば、胚様体形成プレートAgrowell(ベリタス社)、リピジュア(登録商標)-コートプレート(日油株式会社)、EZSPHERE(AGCテクノグラス)などを用いることで均一なEBを得ることができる。
There are a number of commercially available plates for the formation of uniform EB, and their use is also an effective means. For example, a uniform EB can be obtained by using an embryoid body forming plate Agrowell (Veritas), Lipidure (registered trademark) -coated plate (NOF Corporation), EZSPHERE (AGC Techno Glass), or the like.
また、様々な細胞への分化もiPS細胞の場合と全く同じ培地で行うことができる。様々な細胞への分化誘導を行える市販の試薬が数多く存在し、それら利用することも有効な手段である。例えば、胚体内胚葉(ED)への分化はCellartis(登録商標) Definitive Endoderm ChiPSC18(タカラバイオ株式会社)、心筋細胞や肝細胞への分化はPSdif-Cardio Cardiomyocyte Differentiation Kit(フナコシ株式会社)、Cellartis(登録商標) iPS Cell to Hepatocyte Differentiation System(タカラバイオ株式会社)、神経細胞への分化には、SETMdiff Neural Induced Medium(ベリタス社)を用いることにより、PIS細胞またはDIS細胞から効率よく細胞を分化することができる。
Also, differentiation into various cells can be performed in exactly the same medium as in the case of iPS cells. There are many commercially available reagents that can induce differentiation into various cells, and their use is also an effective means. For example, differentiation into definitive endoderm (ED) is Cellaritis (registered trademark) Definitive Endoderm ChiPSC18 (Takara Bio Inc.), and differentiation into cardiomyocytes and hepatocytes is PSdif-Cardio Cardiomyocyte Differentiation Kit (Funakoshi Co., Ltd.), Cellartis ( (Registered trademark) iPS Cell to Hepatocyte Differentiation System (Takara Bio Inc.) For differentiation into neurons, SETMdiff Neural Induced Medium (Veritas) is used to efficiently differentiate cells from PIS cells or DIS cells. Can do.
本発明を以下の実施例によりさらに詳細に説明する。しかしながら、以下の実施例は本発明の例示であって、本発明を限定することを意図するものではない。
The present invention will be described in further detail with reference to the following examples. However, the following examples are illustrative of the present invention and are not intended to limit the present invention.
実施例1:ポリアミンに細胞を初期化する能力があることの証明
Example 1: Demonstration of the ability of polyamines to initialize cells
この実験は、ポリアミンが、初期化する能力があることを証明するために実施した。
This experiment was conducted to prove that polyamines have the ability to initialize.
ヒト肺由来の線維芽細胞TIG-1-20をJCRB細胞バンク(JCRB0501株)より入手した。ヒト線維芽細胞TIG-1-20(分裂回数33回、10万個)を、6mLの最少培地(MEM)を含む25cm2の培養フラスコで、1日間培養し、細胞を付着させた。10mMのプトレシン、200μMのスペルミジン、または40μMのスペルミンを添加したものと、それらを添加していないもの(コントロール)とを、37℃で1日間CO2インキュベーター中で培養した。
Human lung-derived fibroblasts TIG-1-20 were obtained from the JCRB cell bank (JCRB0501 strain). Human fibroblast TIG-1-20 (number of divisions: 33 times, 100,000) was cultured in a 25 cm 2 culture flask containing 6 mL of minimal medium (MEM) for 1 day to allow the cells to adhere. Those added with 10 mM putrescine, 200 μM spermidine, or 40 μM spermine and those not added (control) were cultured at 37 ° C. in a CO 2 incubator for 1 day.
スペルミンを添加して培養したときの結果を、図1に示した。繊維芽細胞TIG-1-20(図1A)の細胞内に6時間後には細かな粒子上のものが出現し(図1B)、その後培養を続けると、細胞がフラスコ底部からはがれてES細胞に近い細胞(図1C)に変化した。
The results when culturing with spermine added is shown in FIG. Fine particles appear in the cells of fibroblasts TIG-1-20 (FIG. 1A) after 6 hours (FIG. 1B), and when the culture is continued, the cells peel off from the bottom of the flask and become ES cells. It changed to a close cell (FIG. 1C).
細胞が剥がれてから12時間後、培地中に懸濁した当該細胞(PIS細胞)を遠心分離(800rpm、3分間)により回収し、Cellartis(登録商標) DEF-CS 500 Culture System(タカラバイオ株式会社)を用いて培養した。培養は、24穴のプレートにDEF-CS COAT-1のPBS(+)希釈液を1時間処理した後、PIS細胞を6mLの培地添加剤を添加したDEF-CS Basal Mediumに懸濁し、2mLずつ3ウェルに分注して、37℃で2日間培養した。細胞をピペッティングにより剥がし、遠心分離(800rpm、3分間)によりPIS細胞を回収した。得られた細胞は、RNeasy Lipid Tissue Mini KitとQuantiTech Reverse Transcription Kit (キアゲン社)を用いて、mRNAの抽出とcDNAの合成を行い、リアルタイムPCR用のプライマーとリアルタイムPCR(キアゲン社)を用いて、TERT、DMNT1、SOX2、OCT3/4のmRNAの発現量を調べた。
Twelve hours after the cells are detached, the cells (PIS cells) suspended in the medium are collected by centrifugation (800 rpm, 3 minutes), and Cellartis (registered trademark) DEF-CS 500 Culture System (Takara Bio Inc.) is collected. ). For the culture, a PBS (+) diluted solution of DEF-CS COAT-1 in a 24-well plate was treated for 1 hour, and then PIS cells were suspended in DEF-CS Basal Medium to which 6 mL of a medium additive was added, and 2 mL each. The solution was dispensed into 3 wells and cultured at 37 ° C. for 2 days. The cells were detached by pipetting, and PIS cells were collected by centrifugation (800 rpm, 3 minutes). The obtained cells were extracted with mRNA and synthesized cDNA using RNeasy Lipid Tissue Mini Kit and QuantiTech Reverse Transcription Kit (Qiagen), and using real-time PCR primers and real-time PCR (Qiagen), The expression levels of TERT, DMNT1, SOX2, and OCT3 / 4 mRNA were examined.
リアルタイムPCRの結果を図2に示した。DNMT1遺伝子は、DNA複製の際に、親細胞DNAのメチル化情報を娘細胞に伝える役割のメチル化転移酵素をコードする遺伝子である。図2に示すように、PIS細胞では、DNMT1の発現が完全に抑制されており、DNAのメチル化の初期化が起こることがわかった。また、テロメアを伸長するテロメラーゼをコードする遺伝子(TERT遺伝子)の発現が著しく増加した。つまり、老化により短くなったテロメア伸長(初期化)が起こっていた。さらに、ES細胞のマーカー遺伝子であり細胞の初期化を誘導するSOX2とOCT3/4遺伝子の発現量が増加していた。以上のように、ポリアミンは、細胞の初期化を誘導することが立証された。
The results of real-time PCR are shown in FIG. The DNMT1 gene is a gene encoding a methyltransferase that plays a role in transmitting methylation information of parent cell DNA to daughter cells during DNA replication. As shown in FIG. 2, in PIS cells, it was found that DNMT1 expression was completely suppressed, and initialization of DNA methylation occurred. In addition, the expression of a telomerase-encoding gene (TERT gene) that extends telomeres was significantly increased. In other words, telomere elongation (initialization) was shortened due to aging. Furthermore, the expression levels of SOX2 and OCT3 / 4 genes, which are ES cell marker genes and induce cell reprogramming, increased. As described above, it was demonstrated that polyamine induces cell reprogramming.
実施例2:PIS細胞がiPS細胞と同等の形質を有していることの証明
Example 2: Demonstration that PIS cells have traits equivalent to iPS cells
この実験は、PIS細胞が、iPS細胞に特異的なタンパク質を発現していることを証明するために行った。
This experiment was performed to prove that PIS cells express a protein specific to iPS cells.
実施例1で用いた方法と全く同じ方法によりPIS細胞を、Cellartis(登録商標) DEF-CS 500 Culture System(タカラバイオ株式会社)を用いて培養し、形質の安定したPIS細胞を得た。当該培地中で、弱く付着したPIS細胞をピペティングにより懸濁した後、1,500rpmで4分間遠心分離して細胞を集めた。
PIS cells were cultured using Cellaris (registered trademark) DEF-CS 500 Culture System (Takara Bio Inc.) in exactly the same manner as used in Example 1 to obtain PIS cells with stable characteristics. After weakly adhering PIS cells in the medium were suspended by pipetting, the cells were collected by centrifugation at 1,500 rpm for 4 minutes.
得られたPIS細胞は、Human ES/iPS Cell Characterization Kit (Applied Stem Cell社)により、アルカリホスファターゼ活性と3つの表面抗原(SSEA-4、TRA-1-60、TRA-1-81)の確認を行った。また、iPS細胞は、アルカリホスファターゼを発現する特徴がある。さらに、SSEA-4、TRA-1-60、TRA-1-81は、iPS細胞のマーカー遺伝子であり、iPS細胞に特異的に発現するタンパク質である。
The obtained PIS cells were confirmed for alkaline phosphatase activity and three surface antigens (SSEA-4, TRA-1-60, TRA-1-81) by Human ES / iPS Cell Characterization Kit (Applied Stem Cell). went. IPS cells are also characterized by expressing alkaline phosphatase. Furthermore, SSEA-4, TRA-1-60, and TRA-1-81 are iPS cell marker genes and are proteins that are specifically expressed in iPS cells.
PIS細胞を0.2mL用のサンプルチューブに入れ、懸濁細胞の状態で固定化処理、透過処理、ブロッキングをした後、1次抗体および2次抗体を結合させた。2次抗体で標識した細胞は、マウント液と1:1で混合してスライドグラスを作製し、蛍光顕微鏡(EVOS社、EVOS FL Auto)により蛍光を確認した。結果を図3に示した。
PIS cells were placed in a 0.2 mL sample tube, fixed, permeabilized, and blocked in a suspended cell state, and then the primary antibody and the secondary antibody were bound. The cells labeled with the secondary antibody were mixed with the mount solution 1: 1 to prepare a slide glass, and the fluorescence was confirmed with a fluorescence microscope (EVOS, EVOS FL Auto). The results are shown in FIG.
図3は、染色体を蛍光染色した図であり、蛍光物質により、活性染色または免疫染色の図である。蛍光がある場合、図3の写真では灰色に示される。図3から明らかなように、アルカリホスファターゼ活性の強い活性およびSSEA-4、TRA-1-60、TRA-1-81抗原の強い発現を確認した。以上のように、PIS細胞はiPS細胞に特異的なタンパク質を発現していることを証明できた。
FIG. 3 is a diagram in which chromosomes are fluorescently stained, and is a diagram of activity staining or immunostaining with a fluorescent substance. If there is fluorescence, it is shown in gray in the picture of FIG. As is clear from FIG. 3, strong alkaline phosphatase activity and strong expression of SSEA-4, TRA-1-60 and TRA-1-81 antigens were confirmed. As described above, it was proved that PIS cells expressed a protein specific to iPS cells.
実施例3:PIS細胞が様々な細胞に分化する能力を保持していることの確認
Example 3: Confirmation that PIS cells retain the ability to differentiate into various cells
この実験は、PIS細胞が、胚様体を形成し、様々な細胞に再分化できる能力があることを証明するために行った。
This experiment was conducted to prove that PIS cells have the ability to form embryoid bodies and redifferentiate into various cells.
実施例2において得られたPIS細胞を用いて、心筋細胞に分化させる実験を行った。PSdif-Cardio Cardiomyocyte Differentiation Kit(フナコシ株式会社)を用い、当該キットが提供するマニュアルに従って、培養を行った。心筋細胞に分化誘導した結果を図4に示した。PIS細胞は、EBを形成し(図4A)、前駆心筋細胞(図4B)に変化し、最終的には微細な振動をする心筋細胞(図4C)に変化した。以上のように、PIS細胞は、胚葉体および体細胞に分化する能力を有する多能性幹細胞であることを証明できた。
Experiment using PIS cells obtained in Example 2 to differentiate into cardiomyocytes was performed. Culture was performed using PSdif-Cardio Cardiomyocyte Differentiation Kit (Funakoshi Co., Ltd.) according to the manual provided by the kit. The results of differentiation induction into cardiomyocytes are shown in FIG. PIS cells formed EBs (FIG. 4A), changed to progenitor cardiomyocytes (FIG. 4B), and finally changed to cardiomyocytes with fine oscillations (FIG. 4C). As described above, PIS cells were proved to be pluripotent stem cells having the ability to differentiate into embryoid bodies and somatic cells.
実施例4:ヒト線維芽細胞以外の細胞でもPIS細胞を作製できることの確認
Example 4: Confirmation that PIS cells can be produced using cells other than human fibroblasts
この実験は、ヒト線維芽細胞以外の細胞から、PIS細胞を作製できることを確認するために行った。
This experiment was conducted to confirm that PIS cells can be produced from cells other than human fibroblasts.
マウス前駆脂肪細胞株3T3-L1(図5A)をEDCCより入手した。3T3-L1株を6mLのDMEM(Dulbecco's modified Eagle Medium)を含む25cm2の培養フラスコで1日間培養し、細胞を付着させた。1mMのスペルミンを添加したものを、37℃で3日間CO2インキュベーター中で培養した。その結果、実施例1と同様に、ES細胞様の細胞(PIS-L1細胞)を得ることができ、図5のBに示すようにPIS-L1細胞は、EBを形成した。以上のように、PIS細胞の作製方法は、ヒト線維芽細胞だけでなく、マウス脂肪細胞など様々な種の様々な細胞に適用できる方法であることを証明できた。
Mouse preadipocyte cell line 3T3-L1 (FIG. 5A) was obtained from EDCC. The 3T3-L1 strain was cultured in a 25 cm 2 culture flask containing 6 mL of DMEM (Dulbecco's modified Eagle Medium) for 1 day to allow the cells to adhere. The one supplemented with 1 mM spermine was cultured at 37 ° C. for 3 days in a CO 2 incubator. As a result, ES cell-like cells (PIS-L1 cells) could be obtained in the same manner as in Example 1, and the PIS-L1 cells formed EBs as shown in FIG. 5B. As described above, it was proved that the method for producing PIS cells can be applied not only to human fibroblasts but also to various cells of various species such as mouse adipocytes.
実施例5:DNAメチル化阻害物質に細胞を初期化する能力があり、DIS細胞に変化することの証明
Example 5: Demonstration that a DNA methylation inhibitor has the ability to reprogram cells and changes to DIS cells
この実験は、DNAメチル化阻害剤に、細胞をES細胞の状態まで初期化する能力があり、DIS細胞を作製できることを証明するために実施した。
This experiment was conducted in order to prove that the DNA methylation inhibitor has the ability to initialize cells to the state of ES cells and can produce DIS cells.
キアゲン社のDNAメチル化酵素(DNMT1、DNMT3AおよびDNMT3B)をコードする遺伝子の発現を阻害するsiRNA(カタログ番号SI000189910、SI00982338およびSI00165382)を入手した。また、マウス脂肪細胞由来株C3H10T1/2(EC90110523-F0)をECACCより入手した。24穴のプレートを用いて、DMEM中で該細胞を1日間培養し、細胞をプレートの各ウェルの底面に付着させた。siRNAによる遺伝子のサイレンシングは、RNAi Human/Mouse Starter Kit(キアゲン社)を用いて行った。これら3つのsiRNA(5nM)を含む200μLのDMEM(血清を含まない)に、6μLのHyperfect Transfer Reagentを加えてsiRNAの沈澱物を形成した後、1日間培養した。その後、200μLのLIF(Wako(株) カタログ番号129-05601)を添加したES細胞用無血清培地(DSファーマバイオ社)と交換しさらに3日間培養した。その結果、図6のAに示すように、マウス脂肪細胞由来株C3H10T1/2は、DIS細胞(DIS-SI細胞)に変化したが、変化しないマウス脂肪細胞由来株C3H10T1/2は細胞底面に付着したままであり、DIS-SI細胞のみを培地から回収できた。
SiRNAs (catalog numbers SI000189910, SI00982338 and SI00165382) that inhibit the expression of genes encoding Qiagen DNA methylases (DNMT1, DNMT3A and DNMT3B) were obtained. In addition, mouse adipocyte-derived strain C3H10T1 / 2 (EC90110523-F0) was obtained from ECACC. The cells were cultured in DMEM for 1 day using a 24-well plate and the cells were allowed to attach to the bottom of each well of the plate. Gene silencing by siRNA was performed using RNAi Human / Mouse Starter Kit (Qiagen). 6 μL of Hyperfect Transfer Reagent was added to 200 μL of DMEM (serum-free) containing these three siRNAs (5 nM) to form a siRNA precipitate, followed by culturing for 1 day. Thereafter, the medium was replaced with a serum-free medium for ES cells (DS PharmaBio) supplemented with 200 μL of LIF (Wako Co., Ltd. catalog number 129-05601) and further cultured for 3 days. As a result, as shown in FIG. 6A, the mouse adipocyte-derived strain C3H10T1 / 2 was changed to a DIS cell (DIS-SI cell), but the mouse adipocyte-derived strain C3H10T1 / 2 that was not changed was attached to the cell bottom surface. As such, only DIS-SI cells could be recovered from the medium.
5-Aza-dcについても同様の実験を行った。C3H10T1/2株を500mLのDMEMを含む25cm2の培養フラスコで1日間培養し、細胞を付着させた40μMの5-Aza-dcを添加したDMEMで培養した後、6mLのLIF(Wako(株) カタログ番号129-05601)と40μMの5-Aza-dcを添加したES細胞用無血清培地(DSファーマバイオ社)と交換しさらに3日間培養した。その結果、図6のBに示すように、前駆脂肪細胞の3T3-L1は、DIS細胞(DIS-Aza細胞と呼ぶ)に変化したが3T3-L1細胞は細胞底面に付着したままであり、DIS-Aza細胞のみを培地から回収できた。
A similar experiment was conducted for 5-Aza-dc. C3H10T1 / 2 strain was cultured for 1 day in a 25 cm 2 culture flask containing 500 mL of DMEM, cultured in DMEM supplemented with 40 μM 5-Aza-dc to which cells were attached, and then 6 mL of LIF (Wako Corp.). The medium was replaced with a serum-free medium for ES cells (DS PharmaBio) supplemented with catalog number 129-05601) and 40 μM 5-Aza-dc, and further cultured for 3 days. As a result, as shown in FIG. 6B, the preadipocyte 3T3-L1 was changed to a DIS cell (referred to as DIS-Aza cell), but the 3T3-L1 cell remained attached to the cell bottom. -Only Aza cells could be recovered from the medium.
さらに、得られたDIS-Aza細胞をマウスES細胞から造血系細胞への分化培地であるES-Cut Hematopoietic Differentiation Kit with Cytokine(ベリタス社、カタログ番号ST-03160)を用いて、初期分化を行った。その結果、図6のCに示すように血球系細胞への初期分化を確認した。また、神経前駆細胞への分化培地(STEMdiff Neural Induction Medium、ベリタス社)を用いて、DIS-Aza細胞を神経細胞に分化させた。図6のDに示すように、DIS-Aza細胞は、神経幹細胞および神経様細胞に分化した。以上のように、DNAメチル化阻害物質を用いてもポリアミンと同様に、細胞を多能性幹細胞に初期化する能力があり、様々な細胞に分化するDIS細胞を作製できることを証明できた。
Furthermore, the obtained DIS-Aza cells were subjected to initial differentiation using ES-Cut Hematopoietic Differentiation Kit with Cytokine (Veritas, catalog number ST-03160), which is a differentiation medium from mouse ES cells to hematopoietic cells. . As a result, initial differentiation into hematopoietic cells was confirmed as shown in FIG. Further, DIS-Aza cells were differentiated into neurons using a differentiation medium for neural progenitor cells (STEMdiff Neural Induction Medium, Veritas). As shown in FIG. 6D, DIS-Aza cells differentiated into neural stem cells and nerve-like cells. As described above, it was proved that, even if a DNA methylation inhibitor is used, it has the ability to initialize cells to pluripotent stem cells, as in the case of polyamines, and it is possible to produce DIS cells that differentiate into various cells.
実施例6:高効率でPIS細胞を作製できることの確認
Example 6: Confirmation that PIS cells can be produced with high efficiency
この実験は、(1)体細胞を高効率でPIS細胞にでき、(2)得られたPIS細胞を高効率で外胚葉、中胚葉または内胚葉に分化することが可能であり、(3)高効率で様々な細胞に分化できることを証明するために実施した。
In this experiment, (1) somatic cells can be converted into PIS cells with high efficiency, (2) the obtained PIS cells can be differentiated into ectoderm, mesoderm or endoderm with high efficiency, and (3) This was carried out to prove that the cells can be differentiated into various cells with high efficiency.
ヒト肺由来の線維芽細胞TIG-1-20(分裂回数30-35回)を、6mLの最少培地(MEM)を用いて、25cm2の培養フラスコ中で1日間培養し、フラスコの底面に付着させた。培養フラスコに、Rock阻害剤である20μMのY-27632および5μMのチアゾビビンと、アポトーシス阻害剤である60μMのp53阻害剤(Cyclic pifthrin―α―hydrobtomide)および30μMのBax阻害剤(Bax Inhibitor Peptide V5)とを添加して8時間培養し、この4種類の阻害剤を十分に細胞内に取り込ませた。その後、100mMのスペルミン溶液を添加して、24時間培養した。培養した細胞は、阻害剤の影響によりRockの活性化とアポトーシスとが抑制されるためにやや縮んだ状態になるが、それ以外には変化が見られなかった。また、Hoechst 33342で核染色した場合も、アポトーシス時に起こる染色体の断片化は見られなかった。
Human lung-derived fibroblasts TIG-1-20 (number of divisions 30-35) were cultured in a 25 cm 2 culture flask for 1 day using 6 mL of minimal medium (MEM) and attached to the bottom of the flask I let you. In a culture flask, 20 μM Y-27632 and 5 μM thiazobibin, which are a Rock inhibitor, and 60 μM p53 inhibitor (Cyclic pifthrin-α-hydrobide) and 30 μM Bax inhibitor (Bax Inhibitor Peptide Peptide) are apoptosis inhibitors. Was added and cultured for 8 hours, and these four types of inhibitors were sufficiently taken into the cells. Thereafter, 100 mM spermine solution was added and cultured for 24 hours. The cultured cells were slightly contracted due to the inhibition of Rock activation and apoptosis due to the influence of the inhibitor, but no other changes were observed. In addition, even when nuclear staining was performed with Hoechst 33342, chromosome fragmentation that occurred during apoptosis was not observed.
培養フラスコに、Tryp-LE Select溶液(Gibco)0.8mLを添加して細胞をはがし、PBS溶液10mLに入れた後、遠心分離(800rpm、3分間)により細胞を回収した。上澄みを取り除いた後、PBS溶液10mLを用いて同様の操作を行った。得られた細胞を、DEF-CS 500 Culture System(タカラバイオ株式会社)を用いて2日間培養し、細胞の修復を行うと同時に、安定したPIS細胞を得た。その後、このPIS細胞を、Stem XVivo Ectoderm Kit、Stem XVivo Mesoderm Kit、Stem XVivo Endoderm Kit (R&D Systems社)を用いて、外胚葉、中胚葉または内胚葉に分化させた。分化した細胞は、これらのキットに含まれている抗ヒトOct2ヤギ抗体、抗ヒトBrachyuryヤギ抗体および抗ヒトSOX17ヤギ抗体を一次抗体として用い、Alexa Fluor(登録商標) 555を結合した抗ヤギIgGウサギ抗体を二次抗体として用いて、蛍光免疫染色を行った。その結果、図7のA~Cに示すように、ほとんどの細胞が効率良く(90%以上)、外胚葉、中胚葉または内胚葉に分化していることを確認した。
To the culture flask, 0.8 mL of Tryp-LE Select solution (Gibco) was added to peel off the cells. After putting in 10 mL of PBS solution, the cells were collected by centrifugation (800 rpm, 3 minutes). After removing the supernatant, the same operation was performed using 10 mL of PBS solution. The obtained cells were cultured for 2 days using DEF-CS 500 Culture System (Takara Bio Inc.) to repair the cells, and at the same time, stable PIS cells were obtained. The PIS cells were then differentiated into ectoderm, mesoderm or endoderm using Stem XVivo Ectoderm Kit, Stem XVivo Mesoderm Kit, Stem XVivo Enderdom Kit (R & D Systems). The differentiated cells were obtained by using anti-human Oct2 goat antibody, anti-human Brachyury goat antibody and anti-human SOX17 goat antibody included in these kits as primary antibodies, and anti-goat IgG rabbits bound with Alexa Fluor (registered trademark) 555. Immunofluorescence staining was performed using the antibody as a secondary antibody. As a result, as shown in FIGS. 7A to 7C, it was confirmed that most cells were efficiently (90% or more) and differentiated into ectoderm, mesoderm or endoderm.
さらに、PIS細胞に対し、PS-dif BA Brown Adipocyte Differentiation Kit(ベリタス社)を用いて、中胚葉への誘導および褐色脂肪細胞への分化を行った。得られた細胞は、抗UCP1ウサギ抗体(Biosis社:bs192R)を用いて免疫染色した。また、0.1mMのオレイン酸を添加して培養した。その結果、分化した細胞は、褐色を呈するだけでなく、図8のAに示すようにUCP1を発現しており、図8のBに示すように脂肪を蓄積する性質があった。このことから、PIS細胞が褐色脂肪細胞に分化していることを確認した。また、生存した細胞の褐色脂肪細胞へ分化効率は90%以上であり、非常に高効率で分化できることを確認した。
Furthermore, PIS cells were induced into mesoderm and differentiated into brown adipocytes using PS-dif BA Brown Adiposite Difference Kit (Veritas). The obtained cells were immunostained using an anti-UCP1 rabbit antibody (Biosis: bs192R). Moreover, 0.1 mM oleic acid was added and cultured. As a result, the differentiated cells were not only brown, but also expressed UCP1 as shown in FIG. 8A, and had the property of accumulating fat as shown in FIG. 8B. From this, it was confirmed that PIS cells were differentiated into brown adipocytes. Moreover, the differentiation efficiency of the surviving cells into brown adipocytes was 90% or more, and it was confirmed that differentiation was possible with very high efficiency.
実施例7:脂肪細胞からPIS細胞を作製でき、高効率で分化できることの確認
Example 7: Confirmation that PIS cells can be produced from adipocytes and can be differentiated with high efficiency
この実験は、体内に多量に存在し、且つ脂肪吸引等で多量に得られる脂肪細胞から、効率よくPIS細胞を作製および分化させることが可能であることを証明するために実施した。
This experiment was conducted in order to prove that PIS cells can be efficiently produced and differentiated from adipocytes present in large amounts in the body and obtained in large amounts by liposuction or the like.
マウス脂肪細胞3T3-L24(N.Shiomi et al.(2011) JBiSE 4, 684)を、6mLのDMEMを用いて、25cm2の培養フラスコで1日間培養し、フラスコの底面に付着させた。培養フラスコに、Rock阻害剤である20μMのY-27632および5μMのチアゾビビンと、アポトーシス阻害剤である60μMのp53阻害剤(Cyclic pifthrin-α-hydrobtomide)および30μMのBax阻害剤(Bax Inhibitor Peptide V5)と、を添加して8時間培養し、この4種類の阻害剤を十分に細胞内に取り込ませた。その後、100mMのスペルミン溶液を添加して、2日間培養した。Tryp-LE Select溶液(Gibco)1mLを添加して細胞をはがし、PBS溶液10mLに入れた後、遠心分離(800rpm、3分間)により細胞を回収した。上澄みを取り除いた後、PBS溶液10mLを用いて同様の操作を行った。さらに、得られた細胞は、StemMedium(登録商標)マウスES細胞用無血清培地(DSファーマバイオメディカル株式会社)を用いて2日間培養し、細胞の修復を行うと同時に、形質の安定したPIS細胞を得た。
Mouse adipocyte 3T3-L24 (N. Shiomi et al. (2011) JBiSE 4, 684) was cultured in a 25 cm 2 culture flask for 1 day using 6 mL of DMEM and attached to the bottom of the flask. In a culture flask, a Rock inhibitor, 20 μM Y-27632 and 5 μM thiazobibin, and an apoptosis inhibitor, 60 μM p53 inhibitor (Cyclic pifthrin-α-hydrobide) and 30 μM Bax inhibitor (Bax Inhibitor Peptide) Were added and cultured for 8 hours, and these four types of inhibitors were sufficiently taken into the cells. Thereafter, 100 mM spermine solution was added and cultured for 2 days. The cells were detached by adding 1 mL of Tryp-LE Select solution (Gibco), put into 10 mL of PBS solution, and then collected by centrifugation (800 rpm, 3 minutes). After removing the supernatant, the same operation was performed using 10 mL of PBS solution. Furthermore, the obtained cells were cultured for 2 days using a serum-free medium for Stemdium (registered trademark) mouse ES cells (DS Pharma Biomedical Co., Ltd.) to repair the cells, and at the same time, stable PIS cells Got.
StemSure(登録商標) 0.1w・v%ゼラチン溶液(和光純薬工業株式会社)を用いてコーティングされた24ウェルの培養プレートの各ウェルに、神経分化培地NDiff(登録商標) 227(タカラバイオ株式会社:Y40002)を2mL入れ、PIS細胞を3日間培養して神経幹細胞に誘導した。さらに、これらの細胞を、Neurocult(登録商標) Differentiation Medium (ベリタス社)を用いて神経細胞やグリア細胞に分化させた。得られた神経系の細胞に対し、抗β―チューブリンIIIウサギ抗体とMAP2ウサギ抗体を一次抗体、Cy3結合抗ウサギヤギ抗体を二次抗体として、免疫染色を行った。その結果、図9のAに示すように、ほぼ100%の細胞が神経幹細胞に分化した。図9のBとCに示すように、さらに神経幹細胞から分化した細胞も、ほぼ100%が成熟神経細胞であることを確認した。
StemSure (registered trademark) 0.1 w · v% gelatin solution (Wako Pure Chemical Industries, Ltd.) coated in each well of a 24-well culture plate, neurodifferentiation medium NDiff (registered trademark) 227 (Takara Bio Inc.) 2 mL of company: Y40002) was added, and PIS cells were cultured for 3 days to induce neural stem cells. Furthermore, these cells were differentiated into nerve cells and glial cells using Neurocult (registered trademark) Differentiation Medium (Veritas). The obtained nervous system cells were immunostained using an anti-β-tubulin III rabbit antibody and a MAP2 rabbit antibody as a primary antibody, and a Cy3-conjugated anti-rabbit goat antibody as a secondary antibody. As a result, as shown in FIG. 9A, almost 100% of the cells differentiated into neural stem cells. As shown in FIGS. 9B and 9C, it was confirmed that almost 100% of the cells further differentiated from the neural stem cells were mature neurons.
今回開示された実施形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
The embodiments and examples disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
本発明の多能性幹細胞の製造方法は、iPSの作製よりも、はるかに簡便、迅速かつ高効率である。したがって、再生医療の分野の様々な治療に利用可能であり、産業上の利用価値は極めて高い。
The method for producing pluripotent stem cells of the present invention is much simpler, faster and more efficient than iPS production. Therefore, it can be used for various treatments in the field of regenerative medicine, and its industrial utility value is extremely high.
Claims (3)
- ポリアミン、または、DNAメチル化阻害物質を含む培地中で、動物細胞を培養することにより、多能性幹細胞を取得する、多能性幹細胞の製造方法。 A method for producing pluripotent stem cells, wherein pluripotent stem cells are obtained by culturing animal cells in a medium containing polyamine or a DNA methylation inhibitor.
- 前記ポリアミンは、スペルミン、スペルミジン、プトレシン、および、それらのアセチル化体、並びに、それらポリアミンの2つ以上の重合体、からなる群から選択される少なくとも1種である、請求項1に記載の製造方法。 2. The production according to claim 1, wherein the polyamine is at least one selected from the group consisting of spermine, spermidine, putrescine, and acetylated products thereof, and two or more polymers of the polyamines. Method.
- 前記DNAメチル化阻害物質は、DNAメチル化酵素をコードする遺伝子の発現を阻害するsiRNA、5-アザ-2’-デオキシシチジン、シネフンギン、ゼブラリン、エチオニン、アセチルメチオニン、および、セレノメチオニンからなる群から選択される少なくとも1種である、請求項1または2に記載の製造方法。 The DNA methylation inhibitor is selected from the group consisting of siRNA, 5-aza-2′-deoxycytidine, cinefungin, zebralin, ethionine, acetylmethionine, and selenomethionine that inhibits the expression of a gene encoding a DNA methylase. The production method according to claim 1, wherein the production method is at least one selected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018557524A JP7033318B2 (en) | 2016-12-19 | 2017-07-21 | Method for producing pluripotent stem cells |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-245644 | 2016-12-19 | ||
JP2016245644 | 2016-12-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018116511A1 true WO2018116511A1 (en) | 2018-06-28 |
Family
ID=62626155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/026565 WO2018116511A1 (en) | 2016-12-19 | 2017-07-21 | Method for producing pluripotent stem cells |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7033318B2 (en) |
WO (1) | WO2018116511A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022504764A (en) * | 2018-10-11 | 2022-01-13 | ザ ユナイテッド ステイツ オブ アメリカ アズ リプリゼンテッド バイ ザ セクレタリー、デパートメント オブ ヘルス アンド ヒューマン サービシーズ | Compositions and Methods for Cell Culture |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010004989A1 (en) * | 2008-07-07 | 2010-01-14 | タカラバイオ株式会社 | Method for production of pluripotent stem cell |
JP2011050379A (en) * | 2009-08-07 | 2011-03-17 | Kyoto Univ | CANINE iPS CELL AND METHOD OF PRODUCING THE SAME |
WO2013100140A1 (en) * | 2011-12-29 | 2013-07-04 | 国立大学法人 京都大学 | Induction of pluripotent stem cell cells from germ cells |
-
2017
- 2017-07-21 JP JP2018557524A patent/JP7033318B2/en active Active
- 2017-07-21 WO PCT/JP2017/026565 patent/WO2018116511A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010004989A1 (en) * | 2008-07-07 | 2010-01-14 | タカラバイオ株式会社 | Method for production of pluripotent stem cell |
JP2011050379A (en) * | 2009-08-07 | 2011-03-17 | Kyoto Univ | CANINE iPS CELL AND METHOD OF PRODUCING THE SAME |
WO2013100140A1 (en) * | 2011-12-29 | 2013-07-04 | 国立大学法人 京都大学 | Induction of pluripotent stem cell cells from germ cells |
Non-Patent Citations (5)
Title |
---|
FEDERATION, A. J. ET AL.: "The use of small molecules in somatic-cell reprogramming", TRENDS CELL BIOL., vol. 24, no. 3, 2014, pages 179 - 187, XP055510250 * |
HOU, P. ET AL.: "Pluripotent Stem Cells Induced from Mouse Somatic Cells by Small-Molecule Compounds", SCIENCE, vol. 341, 2013, pages 651 - 654, XP055079363 * |
PLEWS, J. R. ET AL.: "Activation of Pluripotency Genes in Human Fibroblast Cells by a Novel mRNA Based Approach", PLOS ONE, vol. 5, no. 12, 2010, pages e14397, XP002635012 * |
SHI, Y. ET AL.: "Induction of Pluripotent Stem Cells from Mouse Embryonic Fibroblasts by Oct 4 and Klf4 with Small-Molecule Compounds", CELL STEM CELL, vol. 3, 2008, pages 568 - 574, XP007913847 * |
WANG, X. ET AL.: "The synergistic effect of 5Azadc and TSA on maintenance of pluripotency of chicken ESCs by overexpression of NANOG gene", IN VITRO CELL .DEV.BIOL.-ANIMAL, vol. 52, no. 4, 28 January 2016 (2016-01-28), pages 488 - 496, XP035943760 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022504764A (en) * | 2018-10-11 | 2022-01-13 | ザ ユナイテッド ステイツ オブ アメリカ アズ リプリゼンテッド バイ ザ セクレタリー、デパートメント オブ ヘルス アンド ヒューマン サービシーズ | Compositions and Methods for Cell Culture |
Also Published As
Publication number | Publication date |
---|---|
JP7033318B2 (en) | 2022-03-10 |
JPWO2018116511A1 (en) | 2019-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102210850B1 (en) | Compositions and methods for reprograming non-pluripotent cells into pluripotent stem cells | |
CA2413275C (en) | Somatic pluripotent cells | |
KR20080056181A (en) | Method of deriving progenitor cell line | |
KR20140050514A (en) | Cell culture substrate, and cell culturing method using the substrate and method for inducing differentiation of pluripotent stem cells using the substrate | |
JP2014501114A (en) | Methods for generating induced pluripotent stem cells and differentiated cells | |
Oh et al. | Human-induced pluripotent stem cells generated from intervertebral disc cells improve neurologic functions in spinal cord injury | |
US20210024897A1 (en) | Pluripotent stem cell differentiation-promoting agent | |
WO2018218480A1 (en) | Methods for chemically induced lineage reprogramming | |
JP2022070912A (en) | Methods for re-derivatizing various pluripotent stem cell-derived brown fat cells | |
Gericota et al. | Canine epidermal neural crest stem cells: characterization and potential as therapy candidate for a large animal model of spinal cord injury | |
Moraveji et al. | Inhibition of glycogen synthase kinase-3 promotes efficient derivation of pluripotent stem cells from neonatal mouse testis | |
JP6139054B2 (en) | Cell culture substrate, cell culture method using the same, and differentiation induction method for pluripotent stem cells | |
WO2016204298A1 (en) | METHOD FOR PRODUCING CANINE iPS CELLS | |
WO2018116511A1 (en) | Method for producing pluripotent stem cells | |
CN109661461B (en) | Method for inducing pluripotent stem cells by in vitro differentiation | |
CN112553160B (en) | Method and culture medium for chemically inducing cortical neurons | |
KR102180598B1 (en) | Medium composition for inducing differentiation of stem cells into cardiomyocytes | |
JP6611170B2 (en) | Method for inducing differentiation and selection of induced pluripotent stem cells | |
WO2022254961A1 (en) | Cell culture supplement for producing stem cells, and method for producing stem cells | |
Xu et al. | Road to future: iPSC clinical application in Parkinson’s disease treatment | |
KR20050083106A (en) | Production method of human neural progenitor cell line from human embroyonic stem cells | |
WO2015098111A1 (en) | METHOD FOR ESTABLISHING iPS CELLS AND METHOD FOR LONG-TERM MAINTENANCE OF STEM CELLS | |
Ha et al. | Research Article Human Dental Pulp-Derived Mesenchymal Stem Cell Potential to Differentiate into Smooth Muscle-Like Cells In Vitro | |
JP2015123079A (en) | METHOD FOR ESTABLISHING iPS CELLS, AND METHOD FOR LONG-TERM MAINTENANCE OF STEM CELLS | |
Yeola | Generating multipotent stem cells from primary human adipocytes for tissue repair |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17884904 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018557524 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17884904 Country of ref document: EP Kind code of ref document: A1 |