[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018115200A1 - Plateforme de direction destinée à un dispositif médical, en particulier un cathéter intracardiaque - Google Patents

Plateforme de direction destinée à un dispositif médical, en particulier un cathéter intracardiaque Download PDF

Info

Publication number
WO2018115200A1
WO2018115200A1 PCT/EP2017/083950 EP2017083950W WO2018115200A1 WO 2018115200 A1 WO2018115200 A1 WO 2018115200A1 EP 2017083950 W EP2017083950 W EP 2017083950W WO 2018115200 A1 WO2018115200 A1 WO 2018115200A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
ultrasound
basis
region
probe
Prior art date
Application number
PCT/EP2017/083950
Other languages
English (en)
Inventor
Godefridus Antonius Harks
Frans VENKER
Harm Jan Willem Belt
Reinardus Gerhardus AARNINK
Original Assignee
Koninklijke Philips N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips N.V. filed Critical Koninklijke Philips N.V.
Priority to JP2019554021A priority Critical patent/JP7157074B2/ja
Priority to EP17828900.5A priority patent/EP3558151B1/fr
Priority to US16/469,716 priority patent/US11628014B2/en
Publication of WO2018115200A1 publication Critical patent/WO2018115200A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00694Aspects not otherwise provided for with means correcting for movement of or for synchronisation with the body
    • A61B2017/00699Aspects not otherwise provided for with means correcting for movement of or for synchronisation with the body correcting for movement caused by respiration, e.g. by triggering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00694Aspects not otherwise provided for with means correcting for movement of or for synchronisation with the body
    • A61B2017/00703Aspects not otherwise provided for with means correcting for movement of or for synchronisation with the body correcting for movement of heart, e.g. ECG-triggered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2063Acoustic tracking systems, e.g. using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • A61B2090/365Correlation of different images or relation of image positions in respect to the body augmented reality, i.e. correlating a live optical image with another image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • A61B2090/367Correlation of different images or relation of image positions in respect to the body creating a 3D dataset from 2D images using position information

Definitions

  • Navigation platform for a medical device particularly an intracardiac catheter
  • the invention relates to a system and a method for assisting a user in navigating a medical device in a region of a patient body. Moreover, the invention relates to a computer program for carrying out the method.
  • the region of the patient body may particularly be a cardiac chamber and the medical device may particularly be an intracardiac catheter or another intracardiac device.
  • Interventional cardiology procedures including electrophysiology (EP) and structural heart disease (SHD) procedures rely on the use of fluoroscopy that allows real-time visualization of the anatomy and of radiopaque devices used in these procedures.
  • the major disadvantage of fluoroscopy is however the exposure of the patient and staff to radiation doses. Therefore, there is a trend and desire to minimize the use of fluoroscopy during these procedures.
  • Another disadvantage of fluoroscopy is the inability to visualize soft-tissue structures.
  • Ultrasound (US) imaging is also often used in these procedures, including intracardiac echocardiography (ICE), transesophageal echocardiography (TEE) and transthoracic echocardiography (TTE). US imaging has the advantage that it allows for the visualization of soft-tissue structures and blood flow without harmful scatter radiation.
  • ICE intracardiac echocardiography
  • TEE transesophageal echocardiography
  • TTE transthoracic echocardiography
  • Navigation platforms for navigating medical devices in cardiology procedures therefore may use additional hardware for tracking the medical device in accordance with a certain tracking modality such as electromagnetic (EM) tracking, impedance tracking, optical shape sensing or satellite -based tracking.
  • EM electromagnetic
  • these tracking modalities give rise to inaccuracies with respect to the localization of medical device relative to the anatomy as e.g. shown in the US images.
  • the tracked devices are used to reconstruct the anatomy of the heart or another body region as in electro-anatomical mapping, for example, the generated representation of the anatomy may be inaccurate due to inaccuracies in the tracking of the devices.
  • EM tracking such inaccuracies may particularly be due to metal in the environment which can cause disturbances.
  • impedance tracking patches on the patient surface are used as reference but inhomogeneities in impedances for various tissues (e.g. cardiac and lung) and changes in volume load during the procedure can create inaccuracies.
  • tissue e.g. cardiac and lung
  • changes in volume load during the procedure can create inaccuracies.
  • a fixture at the patient table is used as a reference and the position error of this fixture propagates over the length of the optical fiber.
  • GPS Global Positioning System
  • the invention provides a system for assisting a user in navigating a medical device in a region of a patient body.
  • the system comprises: (i) a 3D model providing unit configured to provide a three-dimensional model of the region of the patient body, (ii) an ultrasound probe for acquiring image signals of the region of the patient body and an ultrasound unit configured to provide live images of the region of the patient body on the basis of the image signals, (iii) at least one ultrasound sensor attached to the medical device for sensing ultrasound signals emitted by the ultrasound probe, (iv) a tracking unit configured to determine a relative position of the at last one ultrasound sensor with respect to the live images and/or the ultrasound probe on the basis of the sensed ultrasound signals, and (v) a mapping unit configured to map the determined relative position of the at least one ultrasound sensor onto the model to generate a visualization of the region of the patient body on the basis of the model and on the basis of the result of the mapping.
  • the position of the medical device is tracked by determining the relative position of the at least one ultrasound sensor with respect to the ultrasound probe on the basis of the ultrasound signals emitted by the ultrasound probe and sensed by the ultrasound sensor, it is possible to accurately track the medical device in relation to the anatomy of the region of the patient body as imaged by means of the ultrasound probe. Further, the position of the ultrasound sensor and, thus, of the medical device can be displayed in relation to a model of the relevant region of the patient body. This is done on the basis of the mapping of the position onto the model, which particularly corresponds to a transformation of the position into a reference frame in which the model is defined.
  • the mapping unit is configured to generate a visualization of the model in which the position of the at least one ultrasound sensor is marked.
  • the mapping unit is further configured to map the live images onto the model and to overlay the model with the live images in the visualizations on the basis of the result of this mapping.
  • the medical device can be accurately steered within the region of the patient body.
  • the mapping unit is configured to map the live images onto the model on the basis of an image comparison of the live images and the model.
  • the image comparison may particularly be carried out on the basis of fiducial features in the live images and corresponding features of the model.
  • the live images can be mapped onto the model relatively quickly and easily.
  • the mapping unit is configured to map the live images onto the model on the basis of a relative position and orientation of the ultrasound probe with respect to a reference frame associated with the model. It is an advantage of this embodiment that the mapping on the basis of the position and orientation information allows for a very accurate matching of the live images and the model.
  • the position information may be taken into consideration in addition to the comparison of the live images and the model in order to improve the accuracy of the mapping. Likewise, it is possible to carry out the mapping on the basis of the comparison or on the basis of the position and orientation information alone.
  • the 3D model providing unit is configured to create the model using ultrasound images acquired using the ultrasound probe during an initialization phase in which a further ultrasound sensor is positioned at a reference position and the reference frame is defined on the basis of a relative position and orientation of the ultrasound probe with respect to the further ultrasound sensor determined on the basis of the ultrasound signals sensed by the further ultrasound sensor.
  • a related embodiment includes that the further ultrasound sensor is positioned at the reference position during the acquisition of the live images and that the mapping unit is configured to determine the relative position and orientation of the ultrasound probe with respect to the reference frame on the basis of the relative position and/or orientation of the further ultrasound sensor with respect to the ultrasound probe.
  • the further ultrasound sensor may be attached to a further medical device.
  • This medical device may be held a fixed position during the initialization phase and during the procedure, in which the position of the aforementioned at least one ultrasound sensor is tracked, so that the position of the further ultrasound sensor mounted on the device can be used in the aforementioned way as a position reference.
  • the further medical device may specifically be used in order to provide a position reference.
  • the further medical device may have another function during the procedure.
  • An example of such a further medical device is a diagnostic electrophysiology (EP) catheter which may be used for sensing electrical signals or for applying electrical signals to tissue for stimulation.
  • EP diagnostic electrophysiology
  • the system further comprises a tracking arrangement for determining the position and orientation of the ultrasound probe with respect to the reference frame, the tracking arrangement using at least one tracking technique from the group comprising electromagnetic tracking, impedance tracking, optical shape sensing and satellite -based tracking.
  • the he region of the patient body may undergo a periodic motion having different motion phases.
  • the model is a dynamic model comprising a deforming sub-model for each of the motion phases and that the mapping unit is configured to determine a current motion phase and to map the relative position of the at least one ultrasound sensor on the deforming sub-model for current motion phase.
  • the periodic motion of the region of the patient body may be due to cardiac motion and/or due to respiratory motion.
  • the current motion phases may be identified on the basis of the live ultrasound images. Likewise, other techniques may be applied to identify the motion phases.
  • the medical device is configured to carry out electrical measurements to generate an electro -anatomical map of the region of the patient body and wherein the mapping unit is configured to overlay the electro-anatomical map over the model on the basis of the relative position of the at least one ultrasound sensor with respect to the ultrasound probe during the measurements.
  • the electro-anatomical map may particularly comprise an activation map and/or a voltage map of the region of the patient body which may include a region of the patient's heart.
  • the mapping unit is configured to generate a visualization of the model corresponding to a view as seen by a virtual eye based on the position of the at least one ultrasound sensor.
  • the virtual eye may particularly be located at the position of the at least one ultrasound sensor. In such a way the anatomy of the relevant region of the patient body can be viewed from the point of view the ultrasound sensor which may particularly be attached to the tip of the medical device.
  • the virtual eye may be positioned at the location of a certain anatomical landmark presented in the three-dimensional model.
  • the view as seen by the virtual eye particularly comprises parts of the model which are included in a field of view of the virtual eye.
  • the field of view of the virtual eye may particularly be directed along the longitudinal direction of the distal end section of the medical device in this case and cover a region in front of the medical device.
  • the mapping unit is configured to map the live images onto the view and to overlay the view with the live image in the visualization on the basis of the result of the mapping. In a further related embodiment, the mapping unit is configured to generate the visualization on the basis of a mapping of the live image and/or the position and orientation of the ultrasound probe to the model and on the basis of the relative position and orientation of the at least one ultrasound sensor with respect to the ultrasound probe.
  • one embodiment includes that the ultrasound probe is configured to emit ultrasound signals into different directions and that the tracking unit is configured to determine the position of the at least one ultrasound sensor based on a reception level of the ultrasound signals in ultrasound sensor.
  • the tracking unit is configured to determine the position of the at least one ultrasound sensor on the basis of a time difference between the emission of the ultrasound signals by the ultrasound probe and their sensing by the ultrasound sensor.
  • the invention provides a method for assisting a user in navigating a medical device in a region of a patient body.
  • the method comprises: (i) providing a three-dimensional model of the region of the patient body, (ii) obtaining live images of the region the patient body on the basis of image signals acquired using an ultrasound probe, (iii) determining a relative position of at least one an ultrasound sensor attached to the medical device with respect to the ultrasound probe, the ultrasound sensor sensing ultrasound signal emitted by the ultrasound probe, (iv) mapping the determined relative position of the at least one ultrasound sensor onto the model to generate a visualization of the region of the patient body on the basis of the model and on the basis of the result of the mapping.
  • the invention provides a computer program comprising program code for instructing a computer device to perform the method, when the computer program is executed on the computer device.
  • Fig. 1 schematically and exemplarily shows components of a system for navigating a medical device in a region of a patient body
  • Fig. 2 schematically and exemplarily shows a three-dimensional model of a left atrium of a heart
  • Fig. 3a schematically and exemplarily shows a two-dimensional slice corresponding to a field of view of an US probe of the system, which is mapped onto the model
  • Fig. 3b schematically and exemplarily shows a three-dimensional cone corresponding to a field of view of an US probe of the system, which is mapped onto the model
  • Fig. 4 schematically and exemplarily shows a visualization in which a live US- image and a position of the medical device is overlaid over the model
  • Fig. 5 schematically and exemplarily shows on overlay of a current position and preceding positions of an US sensor attached to the medical device over the model
  • Fig. 6 schematically and exemplarity shows steps of a procedure for generating visualizations in which a position of a medical device is shown using a model.
  • Fig. 1 schematically and exemplarily shows components of a system for navigating a medical device 1 in a region of a patient body, which may particularly correspond to a cardiac chamber.
  • the system allows for visualizing the relevant region of the patient body and a position and/or orientation of one or more medical device(s) 1 used in the region of the patient body to a physician performing an interventional procedure using the medical device. On the basis of the generated visualizations, the physician can steer the medical device 1 during the interventional procedure.
  • the medical device 1 may be a catheter, particularly an ablation catheter, a needle or a guidewire, for example.
  • the system may particularly be used for carrying out structural heart disease procedures including valve replacement/repair (e.g. Transcatheter Aortic Valve Replacement (TAVR), mitraclip, pulmonic valve, tricuspid valve etc.) and occlusions (e.g. ASD/PFO closure, VSD closure, left atrial appendage closure, etc.).
  • valve replacement/repair e.g. Transcatheter Aortic Valve Replacement (TAVR), mitraclip, pulmonic valve, tricuspid valve etc.
  • occlusions e.g. ASD/PFO closure, VSD closure, left atrial appendage closure, etc.
  • the system may be used in electrophysiology (EP) studies with ablation, including catheter ablation procedure for treatment of arrhythmias including atrial fibrillation (AF).
  • EP electrophysiology
  • the system comprises a miniaturized US probe 2 which includes an US transducer for emitting US signals and for sensing echoes of the US signals in order to generate US images with respect to a certain field of view.
  • the US probe 2 is inserted into the patient body to acquire live US images of the relevant body region essentially in real-time.
  • it may be attached to a catheter or a similar elongated device.
  • the US probe 2 is configured to acquire three- or two-dimensional US images.
  • the US signals sensed by means of the US probe 2 are processed in a US unit 3 which is located external to the patient body and connected to the US probe 2 and which is configured to generate the US images on the basis of US signals in a manner known to the person skilled in the art as such.
  • the relevant region of the patient body includes a cardiac chamber
  • US probe 2 is preferably inserted into the heart to image the relevant cardiac chamber in accordance with an ICE technique.
  • the US probe 2 may likewise be configured and utilized in accordance with another echocardiography technique known to a person skilled in the art, such as echocardiographic imaging from the esophagus as in TEE or echocardiographic imaging from a position external to the patient body as in TTE.
  • the system comprises a tracking arrangement for determining the position and/or orientation of the medical device 1 relative to the US probe 2. This tracking arrangement will be described in more detail further below.
  • the system On the basis of the relative position and/or orientation of the medical device 1 with respect to the US probe 2, the system generates the visualization of the position and/or orientation of the medical device 1 in the relevant region of the patient body.
  • the visualization of the relevant region of the patient body and of the position and/or orientation of the medical device 1 positioned therein is based on a three-dimensional model of the relevant region of the patient body. More specifically, the system may generate visualizations in which the live US images and indications of the position and/or orientation of the medical device are overlaid over the model. In addition or as an alternative, the system may generate visualizations which include a part of the model included in the field of view of a virtual eye at the tip of the medical device 1. This part of the model may further be overlaid by the live US images in the visualizations.
  • the system further comprises a display unit 4.
  • the display unit 4 may comprise a monitor screen.
  • the display unit 4 may be configured in another way and may comprise virtual reality glasses, for example.
  • the three-dimensional model of the relevant region of the patient is preferably created prior to the actual interventional procedure during which the live US images are acquired and stored in a 3D model providing unit 5 for use during the actual interventional procedure.
  • a corresponding model 21 of the left atrium of the heart is schematically illustrated in Fig. 2.
  • the model is created on the basis of a series of US images acquired using the US probe 2 during an initialization phase preceding the actual interventional procedure.
  • the US probe 2 may be moved to image relevant region of the patient body essentially completely in a series of US images.
  • the 3D model providing unit 5 may create the model by combining the US images, particularly by stitching the US images. For this purpose, any stitching technique known the person skilled in the art may be applied.
  • the relevant region of the patient body comprises the left atrium of the heart, as it is the case in ablation of atrial fibrillation (AF), for example, it may be imaged from the right atrium through the interatrial septum.
  • the US probe 2 is placed at an appropriate position in the right atrium and is operated to acquire a series of US images of the left atrium under different viewing angles so that the left atrium is imaged essentially completely.
  • a model of the left atrium may then be created in the 3D model providing unit 5 by stitching the acquired US images.
  • the US probe 2 may be positioned within the left atrium for acquiring the series of images of the left atrium under different viewing angles.
  • a transseptal puncture can be made in order to cross the interatrial septum with the US probe 2.
  • a sufficiently small US probe 2 may be used which allows for a safe transseptal crossing.
  • the US probe 2 may be moved in a suitable combination of translations, deflections and rotations.
  • the positions and orientation of the US probe 2 may optionally be tracked with respect to a certain reference frame in order to determine the position and orientation of the model in this reference frame.
  • the position and orientation may be used in the process of mapping the live US images onto the model.
  • any suitable tracking technique known to a person skilled in the art may be used. Examples of such tracking techniques include a tracking on the basis of images of the relevant region of the patient body acquired using a suitable imaging modality, such as fluoroscopy, or EM tracking, impedance tracking, optical shape sensing and satellite- based tracking.
  • the position and orientation of the US probe 2 may be tracked relative to the position and orientation of a further medical device in a manner further described below, when the further medical device, which is also referred to a reference device herein below, is positioned at a fixed reference location during the initialization phase and during the actual interventional procedure.
  • the reference device defines the reference frame for the tracking of the US probe 2.
  • the model of the relevant body region of a particular patient may be selected from a plurality of pre-generated models for the same body region, which may be generated on the basis of data collected for other patients and stored in a corresponding library. These models may likewise be created on the basis of US image data. Alternatively, these models may be created on the basis of imaging data of another imaging modality, such as computed tomography (CT imaging) or magnetic resonance (MR) imaging. From the pre-generated models, one model may be selected which best matches with the anatomy of the patient.
  • CT imaging computed tomography
  • MR magnetic resonance
  • the selection of the best matching model may again be carried out on the basis of US images acquired during an initialization phase.
  • the model may be selected, which has the largest similarity to the US images in accordance with the suitable similarity measure.
  • the similarities between an US image and the model may be determined on the basis of a segmented version of the US image, which may be computed using a suitable procedure known the person skilled in the art.
  • the similarity measure may be computed on the basis of the number of overlapping points between the segmented US image and the model for the best overlap between the segmented US image and the model.
  • the position and orientation of the selected model in a reference frame may again be determined as described above.
  • the three-dimensional model may be created on the basis of images of the relevant body region which are not acquired using the US probe 2 but using another imaging modality.
  • the images may be acquired using another US imaging modality, such as TEE or TTE.
  • another imaging modality may be used to acquire one or more image(s) for creating the model, such as, for example computed tomography (CT) imaging, magnetic resonance (MR) imaging or 3D rotational angiography (3DATG).
  • CT computed tomography
  • MR magnetic resonance
  • 3DATG 3D rotational angiography
  • the position and orientation of the model in a reference frame may be determined, e.g. by tracking the utilized US probe or on the basis of the known image frame of the CT or MR image.
  • the three-dimensional model of the relevant body region may represent the body region in one particularly phase of its periodic motion.
  • visualizations may only be generated for the relevant motion phase. This particularly means that only live US images and position and/or orientation information acquired during the relevant motion phase are used in the system. These data may be selected on the basis of a gating signal, which indicates the start and end of the relevant motion phase in each cycle of the periodic motion.
  • the relevant motion phase may correspond to the systole or the diastole.
  • the gating signal may be derived from an electrocardiography (ECG) signal for, example.
  • ECG electrocardiography
  • the gating signal may be derived from position and/or orientation information of the US probe 2 and/or the tracked medical device 1.
  • the gating signal may be derived from the live US images acquired by means of the US probe 2.
  • a statistical property of the live US images varying in synchronization with the period motion of the heart such as the mean pixel value (in case of two-dimensional images) or voxel value (in case of three- dimensional images) or the variance of all pixel or voxel values, may be evaluated, and the gating signal may be derived from the variations of this property.
  • a gating mechanism may be applied with respect to other motions of the heart, such as respiratory motion.
  • the model of the heart may be created for a particular phase of the respiratory motion of the heart, and only live US images and position and/or orientation information acquired during this phase are used in the system for generating a visualization.
  • the system may further comprise a sensor for determining the respiratory motion, such as, for example, a sensor for determining the ventilation air flow and/or a sensor for determining the movement of the patient's chest or abdominal wall during breathing.
  • the data including the live US images and the position and/or orientation data are unlocked (for the relevant phase of the respiratory motion) or locked (during other phases of the respiratory motion) for the creation of visualizations.
  • a dynamic model may be used.
  • This model may include deforming sub-models for each relevant phase of the periodic motion of the relevant body region, where of each deforming sub-model models the changing form of the relevant body region.
  • These sub-models may be defined on the basis of vector fields describing the displacement of image portions of the model with time during the motion phases.
  • the system uses the associated sub-model for generating the visualizations on the basis of live US images and position and/or orientation information for the tracked medical device 1 acquired during this motion phase.
  • Corresponding sub-models may be created for different phases of the cardiac motion and/or for the respiratory motion of the relevant body region.
  • suitable trigger signals are used, which may be derived in a similar manner as the aforementioned gating signals.
  • the trigger signals may particularly again be derived from an ECG signal or from another signal varying in synchronization with the heart motion.
  • the dynamic model may also be generated for different phases of the respiratory motion of the heart and the corresponding phases may be identified using a sensor for determining the respiratory motion.
  • models of various regions of interest may be created.
  • One such region may be the left atrium as described above.
  • models can particularly be created for other heart chambers, such as the right atrium, left and right ventricle, or for vessels such as the aorta, pulmonary artery, pulmonary veins, inferior vena cava, superior vena cava, coronary arteries, coronary veins, or for a valve anatomy, such as the aortic valve, mitral valve, tricuspid valve, pulmonary valve, or the esophagus.
  • the tracking arrangement for determining the position and/or orientation of the medical device 1 relative to the US probe 2 includes at least one US sensor 6 attached to the medical device 1, particularly to its tip.
  • the US sensor 6 is configured to sense US signals incident onto the US sensor 6.
  • the US sensor 6 may comprise a foil of US sensitive material.
  • the US sensor 6 may comprise an US transducer, such as for example, a lead zirconium titanate (PZT) transducer, a single crystal transducer (SXL), a capacitive micro -machined ultrasonic transducer (CMUT) or a piezoelectric micro-machined ultrasonic transducer (PMUT), where only the ability to sense US signals is used here.
  • PZT lead zirconium titanate
  • SXL single crystal transducer
  • CMUT capacitive micro -machined ultrasonic transducer
  • PMUT piezoelectric micro-machined ultrasonic transducer
  • the US sensor 6 senses US signals emitted by the US probe 2.
  • the US sensor 6 is connected to a tracking unit 7 which determines the relative position of the US sensor 6 with respect to the US probe 2 on the basis of the sensed US signals and, thus, determines the relative position of the tip of the medical device 1 with respect to the US probe 2.
  • a tracking unit 7 determines the relative position of the US sensor 6 with respect to the US probe 2 on the basis of the sensed US signals and, thus, determines the relative position of the tip of the medical device 1 with respect to the US probe 2.
  • at least one further US sensor 6 is attached to the medical device 1 and the tracking unit 6 also determines the relative position of the further US sensor 6 with respect to the US probe 2 on the basis of the US signals sensed by the further US sensor 6.
  • the tracking unit determines the orientation of the medical device 1.
  • the tracking unit 7 evaluates the US signals sensed by the US sensor 6 while the US probe 2 images the volume of interest by emitting US beam pulses under different azimuth angles and, in case of a 3D US probe 2, also under different elevation angles.
  • the tracking unit 7 compares the responses to the emitted US beams sensed by the US sensor 6 and determines the azimuth angle and, in case of a 3D US probe 2, also the elevation angle under which the beam(s) resulting in the maximum response(s) have been emitted.
  • the determined angle(s) define(s) the relative angular position of the US sensor 6 with respect to the US probe 2.
  • the distance between the US sensor 6 and the US probe 2 is determined on the basis of the time delays between the times of the transmission of the beams producing the maximum responses and the times of the sensing of the beams by the US sensor 6, i.e. on the basis of the time of flight of the beams.
  • the system generates visualizations in which the live US images and indications of the position and/or orientation of the medical device 1 are overlaid over the model of the relevant region of the patient body. These visualizations are displayed at the display unit 4 during an interventional procedure in order to assist the physician in steering the medical device 1 during the interventional procedure.
  • a mapping unit 8 of the system maps the live US images acquired using the imaging probe 2 onto the model of the relevant region of the patient body provided by the 3D model providing unit 5.
  • the mapping unit 8 determines the part of the model which is included in the live images.
  • this mapping is schematically and exemplarily illustrated for a two-dimensional slice 31 corresponding to a field of view of an US probe 2 for acquiring two-dimensional images, which is mapped onto the model 21 of the left atrium shown in Fig. 2.
  • Fig. 3b schematically and exemplarily illustrated the mapping for a three-dimensional cone 32 corresponding to a field of view of an US probe 2 for acquiring three-dimensional images, which is mapped onto the model 21 of the left atrium shown in Fig. 2.
  • the mapping of a live US image onto the model is performed on the basis of the comparison between the live US image and the model.
  • an image registration between the live US image and the model may be carried out which involves the determination of a rigid transformation for transforming the US image such that it matches a portion of the model.
  • the rigid transformation comprises a rotation and/or a translation.
  • the mapping unit 8 may identify fiducial image points in the live US image and map these image points to corresponding points of the model in order to determine the transformation.
  • the mapping of fiducial points can be carried out using known computer vision techniques, such as, for example, scale-invariant feature transform (SIFT).
  • SIFT scale-invariant feature transform
  • a registration method may be applied which determines the rigid transformation such that the transformed live US image has the largest similarity to the model.
  • Such a registration procedure may be performed on the basis of a segmented version of the live US image, which may be determined using a suitable segmentation procedure known the person skilled in the art.
  • the similarity between the (transformed) US image and the model may again be determined on the basis of a suitable similarity measure, e.g. as explained above.
  • the mapping of the live US image onto the model may also be made by matching estimated motion vectors describing the displacement of image portions in the live image pertaining to one motion phase relative to the positions of the image portions in a live image of the preceding motion phase with the motion vectors describing the displacement of image portions of the dynamic model.
  • the mapping of the live US images onto the model may be performed on the basis of the aforementioned image registration procedure alone.
  • the determined transformation may also be evaluated to determine the relative position of the US probe 2 with respect to the model, i.e. in the reference frame in which the model is defined.
  • the mapping of a live US image onto the model may be performed on the basis of information about the position and orientation of the US probe 2 in case the position and orientation of the model has been determined with respect to a reference frame as explained above.
  • the mapping unit 8 may determine a rigid transformation for transforming the live US image into the reference frame in which the model is defined and maps the live US image onto the model by applying this transformation.
  • the transformation may be determined on the basis of the information about position and orientation of the US probe 2 alone or it may be determined based on this information and additionally based on an image registration between the live US image and the model as explained above.
  • the mapping unit 8 determines the relative position and orientation of the field of view of the US probe 2 with respect to the model and uses this information for determining which part of the model is imaged by the US probe 2 in the live US image.
  • the determination of the position and orientation of the US probe 2 with respect to the reference frame may be made using any of the tracking techniques already referred to above in connection with the description of the creation of the model. Thus, it may be determined on the basis of images of the relevant body region acquired using a suitable imaging modality, such as fluoroscopy, or on the basis of EM tracking, impedance tracking, optical shape sensing or satellite-based tracking.
  • the position and orientation of the US probe 2 may likewise be tracked with respect to the reference device when the reference device is held at the same fixed position during the initialization phase in which the model is created and during the actual interventional procedure.
  • the position and orientation of the reference device defines the reference frame of the model.
  • the reference device may be equipped with US sensors and on the basis of the US signals sensed by the US sensors, the relative position and orientation of the US probe 2 and the reference device is determined as explained above in connection with the medical device 1. On the basis of this information, the position and orientation of the US probe 2 relative to the model is determined.
  • the reference device may be specifically provided in order to establish a reference position and orientation for the tracking of the US probe 2.
  • the reference device may be a medical device which has another function during the
  • interventional procedure but is substantially not moved during the procedure, such as, for example, a diagnostic EP catheter for sensor electrical signals or applying electrical signals to tissue for stimulation.
  • the mapping unit 8 may create a visualization in which the live US image is overlaid over the model in accordance with the result of the mapping. Further, the mapping unit 8 marks the position(s) of the US sensor(s) 6 attached to the medical device 1 in the visualization, i.e. in the live US image and the model as included in the visualization. The marking may be made by placing corresponding dots or other symbols in the visualization. The visualization is then displayed at the display unit 4 of the system.
  • a corresponding visualization is schematically and exemplarily illustrated in Fig. 4 for a three-dimensional US image 41. In the example illustrated in Fig. 4, the medical device 1 is shown in the US image and the position of an US sensor 6 attached to the tip of the medical device 1 is marked with a dot 42.
  • the mapping unit 8 determines the relative position(s) of the US sensor(s) 6 attached to the medical device 1 with respect to live US image and/or the model.
  • This may be done on the basis of the relative position(s) of the US sensor(s) 6 with respect to the US probe 2 as determined in the tracking unit 7 and on the basis of the relative position of the US probe 2 or the live US image acquired using the US probe 2 with respect to the model. These data allow for determining the relative position(s) of the US sensor(s) 6 with respect to the model so that the mapping unit 8 can place the marks in the visualization accordingly.
  • mapping unit 8 may directly determine the position(s) of the US sensor(s) 6 in the model. This is particularly possible if the position and orientation of the medical device 1 defines the reference frame of the model as describe above.
  • the mapping unit 8 generates the visualizations in such a way that each of the visualizations shows the current position(s) of the US sensor(s) attached to the medical device 1, i.e. the position(s) at the time of the acquisition of the live US image included in the visualization.
  • a physician viewing the visualization at the display unit can easily determine the current position and/or orientation of the medical device 1 during the interventional procedure.
  • the mapping unit 8 may generate the visualizations in such a way that previous positions of the one or more of the US sensor(s) 6 attached to the medical device 1 are marked in addition to the current position(s).
  • a corresponding visualization is illustrated in Fig. 5.
  • the current position of a US sensor 6 attached to a medical device 1 is indicated by means of a mark 51 in the model 21 of the left atrium and previous positions of the US sensor are indicated by means of marks 52a-c.
  • the visualizations may be generated such that previous positions of the US sensor 6 attached to the device's tip are additionally marked in the visualizations.
  • the medical device 1 is an ablation catheter.
  • the previous positions may correspond to previous ablation points.
  • ablation parameters such as power and duration, which were used for ablation at the ablation points, or lesion parameters may be stored in the mapping unit 8 and displayed in connection with the marks identifying the ablations points in the visualizations.
  • the system may mark positions of a planned (future) trajectory of the medical device 1 in the presented visualization in order to assist the physician viewing the visualizations in following the planned trajectory.
  • the mapping unit 8 generates visualizations for displaying at the display unit 4, which comprise a part of the model included in the view of a virtual eye at the location of the US sensor 6 attached to the tip of the medical device 1.
  • the field of view of the virtual eye may particularly be directed along the longitudinal direction of the distal end section of the medical device 1 and cover a region in front of the medical device 1.
  • the visualization may be generated from the three-dimensional model and optionally also from the live US images.
  • the mapping unit 8 maps the position and orientation of the medical device 1 on the model. This mapping is performed on the basis of a mapping of plural US sensors 6 attached to the medical device 1 on the model. The latter mapping is carried out directly or on the basis of the mapping of the position and orientation of the US probe 2 onto the model and on the basis of the relative positions of the US sensors 6 with respect to the US probe 2 as already described above. On the basis of the mapping of the position and orientation of the medical device 1 onto the model, the mapping unit 8 then determines the parts of the model which are included in the field of view of the virtual eye and generates the visualization such that it includes these parts in a view which corresponds to the view as seen by the virtual eye.
  • mapping unit 8 may map the live US images acquired by means of the US probe 2 onto the determined view of the model on the basis of a
  • the mapping unit 8 may determine a rigid transformation for transforming the image space corresponding to the live US image to a new image space corresponding to the field of view of the virtual eye on the basis of the relative position and orientation of the medical device 1 with respect to the US probe 2. This transformation is then applied to the live US image. Thereupon, the mapping unit 8 generate a visualization in which the transformed live US image is overlaid over the model.
  • the 3D model providing unit 5, the tracking unit 7 and the mapping unit 8 may be implemented as software modules executed on one or more computer device(s).
  • a corresponding computer program is provided and installed on the computer device(s), which comprises instructions for executing the functions of the units.
  • the computer device(s) is/are particularly connected to the US probe 2 and the US sensor(s) 6 in order to control the operation of the US probe 2 and to receive US signals acquired by the US probe 2 and the US sensor(s) 6.
  • the computer device(s) is/are connected to the display unit 4 to control the display unit 4 to display the generated visualizations as explained above.
  • step 61 the three-dimensional model of the relevant region of the patient body is generated in the initialization phase as explained above.
  • live US images are acquired by means of the US probe 2 (step 62).
  • step 63 live US images are acquired by means of the US probe 2 (step 62).
  • step 63 live US images are acquired by means of the US probe 2 (step 62).
  • step 63 live US images are acquired by means of the US probe 2 (step 62).
  • step 63 the relative position(s) of the US sensor(s) 6 attached to the medical device 1 and the US probe 2 is/are determined as explained above (step 63).
  • the mapping unit 8 generates a visualization as described above in which the positions of the US sensor(s) are marked in the model 21 (step 65).
  • the mapping unit may map the live US images acquired by means of the US probe onto the model 21 (step 66) and overlay the live US images over the model 21 accordingly in the generated visualization.
  • the positions of US sensors 6 attached to these medical devices 1 may all be marked in the visualizations and/or the mapping unit 8 may generate visualizations corresponding to views as seen by virtual eyes at the locations of the tips of the different medical devices 1. In the latter case, it may also be possible to switch between these visualizations.
  • the mapping unit 8 may mark in the visualization pertaining to one medical device 1 the positions of US sensor 6 attached to the other medical devices 1 if they are included in the field of view of the virtual eye at the tip of the relevant medical device 1.
  • the corresponding marks may be positioned on the basis of a mapping of the positions of the US sensors 6 onto the field of view of the virtual eye.
  • the medical device 1 is an EP catheter which is used for generating an electro-anatomical map of the relevant region of the patient body, such as a cardiac chamber.
  • This map may be overlaid over the aforementioned visualizations generated in the system on the basis of the model and may include an activation map indicating local activation times and/or a voltage map indicating local electrogram amplitudes.
  • the EP catheter may comprise a plurality of electrodes for sensing electrical signals and optionally for delivering stimulation signals and on the basis of the sensed electrical signals, local activation times and/or electrogram amplitudes are determined in a way known to a person skilled in the art.
  • the EP catheter For generating the activation and/or voltage map, the EP catheter is moved within the relevant region of the patient body and local measurements are made at different locations within the region. At each measurement location, the positions of the electrodes are determined on the basis of the US signals sensed by means of the US sensor(s) 6 attached to the EP catheter as explained above. Then, the results of the local measurements are combined to generate the map and the mapping unit 8 may overlay the map onto the model of the relevant region of the patient body on the basis of the recorded position ad orientation information.
  • the generated visualizations may be fused with fluoroscopy images of the relevant region of the patient body acquired using a fluoroscopy device.
  • a computer program may be stored/distributed on a suitable medium, such as an optical storage medium or a solid-state medium, supplied together with or as part of other hardware, but may also be distributed in other forms, such as via the Internet or other wired or wireless telecommunication systems.
  • a suitable medium such as an optical storage medium or a solid-state medium, supplied together with or as part of other hardware, but may also be distributed in other forms, such as via the Internet or other wired or wireless telecommunication systems.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Robotics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

L'invention concerne un système pour aider à diriger un dispositif médical (1) dans une région du corps d'un patient, telle qu'une chambre cardiaque. Le système comprend une unité (5) pour produire un modèle tridimensionnel de la région et une sonde à ultrasons (2) pour acquérir des signaux d'image de la région du corps du patient. Au moins un capteur à ultrasons (6) est fixé au dispositif médical (1) pour détecter des signaux à ultrasons émis par la sonde à ultrasons (2), et une unité de suivi (7) détermine une position relative dudit capteur à ultrasons (6) par rapport aux images en direct et/ou à la sonde à ultrasons (2) sur la base des signaux à ultrasons détectés. En outre, une unité de mappage (8) mappe la position relative déterminée dudit capteur à ultrasons (6) sur le modèle en vue de générer une visualisation de la région du corps du patient.
PCT/EP2017/083950 2016-12-20 2017-12-20 Plateforme de direction destinée à un dispositif médical, en particulier un cathéter intracardiaque WO2018115200A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019554021A JP7157074B2 (ja) 2016-12-20 2017-12-20 医療機器、特に心臓カテーテルのためのナビゲーション・プラットフォーム
EP17828900.5A EP3558151B1 (fr) 2016-12-20 2017-12-20 Plateforme de direction destinée à un cathéter intracardiaque
US16/469,716 US11628014B2 (en) 2016-12-20 2017-12-20 Navigation platform for a medical device, particularly an intracardiac catheter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662436509P 2016-12-20 2016-12-20
US62/436509 2016-12-20
EP17171529 2017-05-17
EP17171529.5 2017-05-17

Publications (1)

Publication Number Publication Date
WO2018115200A1 true WO2018115200A1 (fr) 2018-06-28

Family

ID=58715044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/083950 WO2018115200A1 (fr) 2016-12-20 2017-12-20 Plateforme de direction destinée à un dispositif médical, en particulier un cathéter intracardiaque

Country Status (1)

Country Link
WO (1) WO2018115200A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109345632A (zh) * 2018-09-17 2019-02-15 深圳达闼科技控股有限公司 一种获取图像的方法、相关装置及可读存储介质
EP4111982A1 (fr) * 2021-06-29 2023-01-04 Koninklijke Philips N.V. Systèmes et appareils de navigation et de guidage procédural de résection feuillet laser sous échocardiographie intracardiaque

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1312309A1 (fr) * 2001-11-09 2003-05-21 ZN Vision Technologies AG Procédé de détermination de la position d'un objet avec d'images à résolution locale
WO2008103383A1 (fr) * 2007-02-20 2008-08-28 Gildenberg Philip L Procédures et procédés chirurgicaux assistés par vidéostéréotaxie et audiostéréotaxie
US20090149740A1 (en) * 2007-12-11 2009-06-11 Siemens Aktiengesellschaft A medical intervention device
EP2204121A1 (fr) * 2008-12-31 2010-07-07 St. Jude Medical, Atrial Fibrillation Division, Inc. Procédé et appareil pour l'annulation des artéfacts de mouvement dans une navigation interventionnelle médicale
WO2011138698A1 (fr) 2010-05-03 2011-11-10 Koninklijke Philips Electronics N.V. Poursuite ultrasonore de transducteur(s) à ultrasons embarqués sur un outil d'intervention
US20120259209A1 (en) * 2011-04-11 2012-10-11 Harhen Edward P Ultrasound guided positioning of cardiac replacement valves
WO2015092667A1 (fr) * 2013-12-20 2015-06-25 Koninklijke Philips N.V. Système et procédé pour suivre un instrument de pénétration
WO2016009350A1 (fr) * 2014-07-16 2016-01-21 Koninklijke Philips N.V. Outil intelligent en temps réel et visualisation de l'anatomie dans des flux de travail d'imagerie 3d pour des procédures interventionnelles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1312309A1 (fr) * 2001-11-09 2003-05-21 ZN Vision Technologies AG Procédé de détermination de la position d'un objet avec d'images à résolution locale
WO2008103383A1 (fr) * 2007-02-20 2008-08-28 Gildenberg Philip L Procédures et procédés chirurgicaux assistés par vidéostéréotaxie et audiostéréotaxie
US20090149740A1 (en) * 2007-12-11 2009-06-11 Siemens Aktiengesellschaft A medical intervention device
EP2204121A1 (fr) * 2008-12-31 2010-07-07 St. Jude Medical, Atrial Fibrillation Division, Inc. Procédé et appareil pour l'annulation des artéfacts de mouvement dans une navigation interventionnelle médicale
WO2011138698A1 (fr) 2010-05-03 2011-11-10 Koninklijke Philips Electronics N.V. Poursuite ultrasonore de transducteur(s) à ultrasons embarqués sur un outil d'intervention
US20120259209A1 (en) * 2011-04-11 2012-10-11 Harhen Edward P Ultrasound guided positioning of cardiac replacement valves
WO2015092667A1 (fr) * 2013-12-20 2015-06-25 Koninklijke Philips N.V. Système et procédé pour suivre un instrument de pénétration
WO2016009350A1 (fr) * 2014-07-16 2016-01-21 Koninklijke Philips N.V. Outil intelligent en temps réel et visualisation de l'anatomie dans des flux de travail d'imagerie 3d pour des procédures interventionnelles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUANXIANG LU ET AL.: "A New Sensor Technology for 2D Ultrasound-Guided Needle Tracking", MICCAI, vol. 8674, 2014, pages 389 - 396, XP055140790, DOI: doi:10.1007/978-3-319-10470-6_49

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109345632A (zh) * 2018-09-17 2019-02-15 深圳达闼科技控股有限公司 一种获取图像的方法、相关装置及可读存储介质
JP2020044331A (ja) * 2018-09-17 2020-03-26 深▲セン▼▲達▼▲闥▼科技控股有限公司Cloudminds (Shenzhen) Holdings Co., Ltd. 画像取得方法、関連装置及び読み取り可能な記憶媒体
EP4111982A1 (fr) * 2021-06-29 2023-01-04 Koninklijke Philips N.V. Systèmes et appareils de navigation et de guidage procédural de résection feuillet laser sous échocardiographie intracardiaque
WO2023275175A1 (fr) * 2021-06-29 2023-01-05 Koninklijke Philips N.V. Systèmes et appareils pour la navigation et le guidage interventionnel de la résection laser d'une valve sous échocardiographie intracardiaque

Similar Documents

Publication Publication Date Title
US11628014B2 (en) Navigation platform for a medical device, particularly an intracardiac catheter
JP5345275B2 (ja) 超音波データと事前取得イメージの重ね合わせ
JP4795099B2 (ja) 超音波を用いた電気解剖学的地図と事前取得イメージの重ね合わせ
JP5253723B2 (ja) 生理的データを使用した多様式の画像の断片化と位置合わせ
US8870779B2 (en) Display of two-dimensional ultrasound fan
JP6719885B2 (ja) 心内信号を利用した位置合わせマップ
US8428690B2 (en) Intracardiac echocardiography image reconstruction in combination with position tracking system
JP5622995B2 (ja) 超音波システム用のビーム方向を用いたカテーテル先端部の表示
JP2018171445A (ja) 二次元画像/写真を心臓の心外膜図のような3d再構成上に投影する方法
US20060253024A1 (en) Software product for three-dimensional cardiac imaging using ultrasound contour reconstruction
US20060241445A1 (en) Three-dimensional cardial imaging using ultrasound contour reconstruction
US20080287805A1 (en) System and method to guide an instrument through an imaged subject
WO2018115200A1 (fr) Plateforme de direction destinée à un dispositif médical, en particulier un cathéter intracardiaque
AU2012258444A1 (en) Display of two-dimensional ultrasound fan

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17828900

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554021

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017828900

Country of ref document: EP

Effective date: 20190722