WO2018113623A1 - 一种镜头模组 - Google Patents
一种镜头模组 Download PDFInfo
- Publication number
- WO2018113623A1 WO2018113623A1 PCT/CN2017/116906 CN2017116906W WO2018113623A1 WO 2018113623 A1 WO2018113623 A1 WO 2018113623A1 CN 2017116906 W CN2017116906 W CN 2017116906W WO 2018113623 A1 WO2018113623 A1 WO 2018113623A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- crescent
- biconcave
- ima
- lens module
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0035—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B25/00—Eyepieces; Magnifying glasses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/011—Head-up displays characterised by optical features comprising device for correcting geometrical aberrations, distortion
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0123—Head-up displays characterised by optical features comprising devices increasing the field of view
Definitions
- the present invention relates to the field of virtual reality, and in particular, to a lens module.
- VR platform opens the door to virtual world with superior immersion, natural friendly interaction and broad application prospects.
- VR is widely used, not only limited. In games, it can also be extended to other fields, including communication, media and entertainment, education, etc., to change or even subvert the way people work, play and communicate.
- VR technology is not yet very mature, it can already experience the initial products of VR.
- the parameters such as field of view, resolution and delay have a direct impact on the experience. From the initial entry-level Google Cardboard to Samsung Gear and HTC VIVE, the performance of VR products continues to increase and the functions are getting stronger and stronger.
- the resolution of the latest generation Oculus Rift is 2160 ⁇ 1200 pixels (two screens), the field of view. 110 °, refresh rate 90Hz, the newly released 3glasses Lanper s1 resolution 2880 * 1440 (two screens), the field of view angle of 110 °, the highest refresh rate of 120 Hz, the above is the physical parameters of the product.
- the current field of view of VR products is generally between 90° and 110°, and since VR glasses use more monolithic lenses on the optical structure, the parameters that can be used for optimization are extremely limited, and the conditions for clarity are met. Under the angle of view, the field of view cannot be increased. In addition, the large field of view aberrations are not effectively corrected, resulting in poor imaging performance. The general center image is clear, the surrounding is bad or even blurred, which directly affects the effect. fruit.
- the present invention is directed to the use of a single-piece lens in the optical structure of the existing VR glasses, and the parameters that can be used for optimization are extremely limited, and the field of view angle cannot be increased in the case of satisfying the definition requirement, and the large field of view aberration is also Failure to obtain effective correction results in poor imaging performance.
- the general center image is clear, the surrounding is not good or even blurred, and directly affects the experience effect.
- a lens module is proposed.
- the lenticular lens and the biconcave lens are sequentially disposed in the direction of the pupil of the human eye to the screen.
- the lenticular lens and the biconcave lens are sequentially disposed in the direction of the screen to the pupil of the human eye.
- the lenticular lens and the biconcave lens satisfy the relationship: -2.90 ⁇ f2 / f3 ⁇ - 1.92, wherein f2 is the focal length of the lenticular lens, and f3 is the focal length of the biconcave lens.
- the crescent lens and the biconcave lens respectively satisfy the following aspherical formulas:
- Z is the vector height of the point along the optical axis
- the aspherical mirror is made of a resin material.
- the aspherical mirror is made of a glass material.
- the lens module proposed by the invention can effectively correct the distortion size, reduce the distortion and distortion of the image, and correct the spherical aberration and the system distortion by using the crescent lens with positive refractive power while expanding the angle of view of the lens.
- the lens group consisting of the lenticular lens L2 and the biconcave lens L3 can correct the system spherical aberration and astigmatism, and improve the imaging performance of the edge field of view.
- the lens module of the invention has a clever design and strong practicability.
- FIG. 1 is a schematic view showing a lens module according to an embodiment of the present invention
- FIG. 2 is a MTF graph of a lens module having an angle of view of 100° according to an embodiment of the present invention
- FIG. 3 is a MTF graph of a lens module having a viewing angle of 120° according to an embodiment of the present invention
- FIG. 4 is a defocusing curve diagram of a lens module according to an embodiment of the present invention.
- FIG. 5 is a field curve diagram of a lens module according to an embodiment of the present invention.
- FIG. 6 is a distortion diagram of a lens module according to an embodiment of the present invention.
- FIG. 1 is a schematic diagram of a lens module according to an embodiment of the present invention.
- the lens module is arranged between the human eye pupil STO and the screen IMA, the screen IMA is used for displaying the virtual reality picture;
- the lens module comprises a crescent lens L1 arranged in the direction of the human eye pupil STO to the screen IMA.
- a lens group composed of the lenticular lens L2 and the biconcave lens L3; the concave surface of the crescent lens L1 faces the human eye pupil STO; the power of the crescent lens L1 is positive, the power of the lenticular lens L2 is positive, and the biconcave lens L3 The refractive power is negative; the crescent lens L1 and the biconcave lens L3 are both aspherical mirrors.
- the human eye pupil STO is equivalent to an aperture stop.
- the concave surface of the crescent lens L1 faces the human eye pupil STO and the power of the crescent lens L1 is positive, the distortion of the lens field of view angle can be effectively controlled, and the distortion can be effectively reduced.
- Image distortion and distortion can correct spherical aberration and system distortion.
- the lenticular lens L2 with positive refractive power and the double concave lens L3 with negative refractive power it is possible to correct system spherical aberration and astigmatism, and improve imaging performance of the edge field of view.
- the lenticular lens L2 and the biconcave lens L3 may be sequentially disposed in the direction of the human eye pupil STO to the screen IMA, or may be sequentially disposed in the direction of the screen IMA to the human eye pupil STO. Any of the above arrangements of the lens group can meet the imaging performance requirements. This embodiment adopts the former setting mode.
- the present invention adopts the features of the crescent lens L1 and the biconcave lens L3 as aspherical mirrors, which can effectively correct aberrations and improve in the optimization process of the virtual reality image.
- the aspherical mirror is made of a resin material; in order to create a deep immersion, the aspherical mirror has a large caliber in actual use; considering the weight and comfort of the head-mounted product, the lens made of a resin material can make the weight lighter. At the same time, the use of a multi-hole manufacturing method can increase the production rate and reduce the production cost. It can be understood that the aspherical mirror can also be made of a glass material or other transparent materials.
- the crescent lens L1 and the biconcave lens L3 satisfy the following relationship: -1.69 ⁇ f1/f3 ⁇ - 1.15, where f1 is the focal length of the crescent lens L1, and f3 is the focal length of the biconcave lens L3.
- the lenticular lens L2 and the biconcave lens L3 satisfy the relationship: -2.90 ⁇ f2 / f3 ⁇ - 1.92, where f2 is the focal length of the lenticular lens L2, and f3 is the focal length of the biconcave lens L3.
- optical parameters used in this embodiment are as follows:
- Entrance pupil diameter EPD, Entrance Pupil Diameter
- effective focal length 35 mm
- distance from the entrance to the nearest lens surface Eye relief: 10 mm;
- S1 is the aperture pupil plane (the face of the human eye pupil STO);
- S2 is the surface of the crescent lens L1 facing the human eye pupil STO;
- S3 is the surface of the crescent lens L1 facing the screen IMA;
- S4 is the lenticular lens L2
- S5 is the surface of the human eye pupil STO;
- S5 is the surface of the lenticular lens L2 facing the screen IMA;
- S6 is the surface of the biconcave lens L3 facing the human eye pupil STO;
- S7 is the surface of the biconcave lens L3 facing the screen IMA;
- IMA is the screen The location of the IMA.
- the crescent lens L1 and the biconcave lens L3 are aspherical mirrors that respectively satisfy the following aspherical formulas:
- Z is the vector height of the point along the optical axis
- k is the quadratic constant of the optical surface
- A, B, C, D, E, and F are respectively fourth order, Sixth, eighth, tenth, twelveth, and fourteenth order high order aspheric coefficients.
- 2 to 6 are graphs showing optical performance of an embodiment of the present invention.
- 2 is a MTF (modulation transfer function) graph of a lens module having an angle of view of 100° according to an embodiment of the present invention
- FIG. 3 is a lens module having an angle of view of 120° according to an embodiment of the present invention
- MTF Modulation Transfer Function
- MTF Modulation Transfer Function
- MTF Modulation Transfer Function
- MTF is the most reliable method for judging the performance of optical systems, especially for lens modules
- MTF is defined as a certain spatial frequency, between the actual image and the ideal image. The ratio of the system to the relative spatial frequency.
- FIG. 6 is the distortion curve of the lens module according to the embodiment of the present invention. The ordinate is the field of view and the abscissa is the percentage of distortion. The distortion curve represents the magnitude of the distortion in the case of different angles of view, in %. Therefore, as can be seen from FIG. 2 to FIG. 6, the optical lens has corrected various aberrations to a good degree, and the full field of view range can be clearly imaged.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
一种镜头模组,用于设置在人眼瞳孔(STO)和屏幕(IMA)之间,屏幕(IMA)用于显示虚拟现实画面;镜头模组包括沿人眼瞳孔(STO)到屏幕(IMA)的方向上依次设置的新月透镜(L1)以及由双凸透镜(L2)和双凹透镜(L3)组成的透镜群;新月透镜(L1)的凹面朝向人眼瞳孔(STO);新月透镜(L1)的光焦度为正,双凸透镜(L2)的光焦度为正,双凹透镜(L3)的光焦度为负;新月透镜(L1)和双凹透镜(L3)均为非球面镜。该镜头模组设计巧妙,实用性强。
Description
本发明涉及虚拟现实领域,尤其涉及一种镜头模组。
自2014年Facebook以20亿美元收购Oculus以来,全球的科技巨头纷纷投入到VR领域,掀起了VR商业化、普及化的浪潮,国际上有Oculus、Coogle、SONY、HTC、三星、微软等巨头的入局,国内暴风科技、乐视、爱奇艺、腾讯、华为等公司也宣布进入VR领域。虚拟现实技术当下处于大爆发和快速发展时期,无论是国际峰会,还是国内的双创周、中国科技第一展的高交会,虚拟现实技术都是这两年大热的话题。
VR平台作为继PC、移动互联网之后的新的通用计算平台,以优越的沉浸感、自然友好的交互和广阔的应用前景为人们打开了通往虚拟世界的大门,VR的应用十分广泛,不仅局限于游戏,还可以延伸到其他的领域,包括通讯、媒体和娱乐、教育等方面,能够改变甚至颠覆人们的工作、娱乐和交流的方式。
虽然VR技术目前还没有非常成熟,但已经可以对VR初期的产品进行体验,视场角、分辨率、延迟等参数对体验效果有直接的影响。从最初入门级的Google Cardboard到三星Gear、HTC VIVE,VR产品的性能不断提升,功能越来越强大,最新一代正式版Oculus Rift的分辨率为2160×1200像素(两个屏幕),视场角110°,刷新率90Hz,新发布的3glasses蓝珀s1分辨率2880*1440(两个屏幕),视场角110°,最高刷新率120Hz,以上是产品的物理参数。可以发现目前VR产品的视场角一般介于90°-110°,并且由于VR眼镜在光学结构上采用单片式镜片比较多,能够用来优化的参数极其有限,在满足清晰度要求的情况下,视场角无法加大,此外大视场像差未能得到有效矫正,导致成像性能表现欠佳,一般中心成像清晰,周边不良甚至模糊,直接影响体验效
果。
发明内容
本发明针对现有VR眼镜在光学结构上采用单片式镜片比较多,能够用来优化的参数极其有限,在满足清晰度要求的情况下,视场角无法加大,此外大视场像差未能得到有效矫正,导致成像性能表现欠佳,一般中心成像清晰,周边不良甚至模糊,直接影响体验效果的问题,提出了一种镜头模组。
本发明就该技术问题而提出的技术方案如下:
本发明提出了一种镜头模组,用于设置在人眼瞳孔和屏幕之间,屏幕用于显示虚拟现实画面;镜头模组包括沿人眼瞳孔到屏幕的方向上依次设置的新月透镜以及由双凸透镜和双凹透镜组成的透镜群;新月透镜的凹面朝向人眼瞳孔;新月透镜的光焦度为正,双凸透镜的光焦度为正,双凹透镜的光焦度为负;新月透镜和双凹透镜均为非球面镜。
本发明上述的镜头模组中,双凸透镜和双凹透镜沿人眼瞳孔到屏幕的方向上依次设置。
本发明上述的镜头模组中,双凸透镜和双凹透镜沿屏幕到人眼瞳孔的方向上依次设置。
本发明上述的镜头模组中,新月透镜和双凹透镜满足下列关系式:-1.69<f1/f3<-1.15,其中,f1为新月透镜的焦距,f3为双凹透镜的焦距。
本发明上述的镜头模组中,双凸透镜与双凹透镜满足关系式:-2.90<f2/f3<-1.92,其中,f2为双凸透镜的焦距,f3为双凹透镜的焦距。
本发明上述的镜头模组中,新月透镜和双凹透镜分别满足以下非球面公式:
其中,r为光学表面上一点到光轴的距离;
Z为该点沿光轴方向的矢高;
c为该光学表面的曲率;c=1/r;
k为该光学表面的二次曲线常数,A、B、C、D、E、F分别为四阶、六阶、八阶、十阶、十二阶、十四阶高阶非球面系数。
本发明上述的镜头模组中,非球面镜由树脂材料制成。
本发明上述的镜头模组中,非球面镜由玻璃材料制成。
本发明上述的镜头模组中,屏幕为曲面。
本发明所提出的镜头模组通过采用光焦度为正的新月透镜可以在扩大镜头视场角度的同时有效控制畸变大小,降低图像的变形和失真,能够矫正球差与系统畸变,同时,采用由双凸透镜L2和双凹透镜L3组成的透镜群能够矫正系统球差和像散,提高边缘视场的成像性能。本发明的镜头模组设计巧妙,实用性强。
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1示出了本发明实施例的镜头模组的示意图;
图2是本发明实施例的视场角为100°的镜头模组的MTF曲线图;
图3是本发明实施例的视场角为120°的镜头模组的MTF曲线图;
图4是本发明实施例的镜头模组的离焦曲线图;
图5是本发明实施例的镜头模组的场曲曲线图;
图6是本发明实施例的镜头模组的畸变曲线图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
参见图1,图1示出了本发明实施例的镜头模组的示意图。该镜头模组用于设置在人眼瞳孔STO和屏幕IMA之间,屏幕IMA用于显示虚拟现实画面;镜头模组包括沿人眼瞳孔STO到屏幕IMA的方向上依次设置的新月透镜L1
以及由双凸透镜L2和双凹透镜L3组成的透镜群;新月透镜L1的凹面朝向人眼瞳孔STO;新月透镜L1的光焦度为正,双凸透镜L2的光焦度为正,双凹透镜L3的光焦度为负;新月透镜L1和双凹透镜L3均为非球面镜。在本技术方案中,人眼瞳孔STO相当于孔径光阑。
在上述技术方案中,通过采用新月透镜L1的凹面朝向人眼瞳孔STO,以及新月透镜L1的光焦度为正的技术特征,可以在扩大镜头视场角度的同时有效控制畸变大小,降低图像的变形和失真,能够矫正球差与系统畸变。
通过采用光焦度为正的双凸透镜L2以及光焦度为负的双凹透镜L3,能够矫正系统球差和像散,提高边缘视场的成像性能。
进一步地,双凸透镜L2和双凹透镜L3可以沿人眼瞳孔STO到屏幕IMA的方向上依次设置,也可以沿屏幕IMA到人眼瞳孔STO的方向上依次设置。透镜群上述任意一种设置方式都能满足成像性能需求。本实施例采用前一种设置方式。
进一步地,由于非球面镜具有更大的自由度和灵活性,本发明采用新月透镜L1和双凹透镜L3为非球面镜的特征,能够在虚拟现实画面的优化过程中能有效地矫正像差,改善像质,提高光学性能,得以匹配高分辨率的2K甚至更高分辨率的显示屏幕。
进一步地,非球面镜由树脂材料制成;为营造深度的沉浸感,实际使用时非球面镜的口径较大;考虑到头戴式产品的重量以及舒适感,采用树脂材料制造透镜可以使重量更轻便;同时采用一模多穴的制造方式,可以提升出品率,降低生产成本。可以理解,非球面镜还可以采用玻璃材料制成,或者其他透明材料制成。
进一步地,新月透镜L1和双凹透镜L3满足下列关系式:-1.69<f1/f3<-1.15,其中,f1为新月透镜L1的焦距,f3为双凹透镜L3的焦距。
进一步地,双凸透镜L2与双凹透镜L3满足关系式:-2.90<f2/f3<-1.92,其中,f2为双凸透镜L2的焦距,f3为双凹透镜L3的焦距。
进一步地,当镜头模组存在场曲时,通过镜头模组的各光束的交点不与理想像点重合,虽然在每个特定点都能得到清晰的像点,但整个像平面则是一个
曲面。在使用时人眼不能同时看清虚拟显示画面的各个位置:当中心成像清晰时,边缘模糊,或者边缘清晰中心模糊,这两种情况给观察者造成困难。在本实施例中,屏幕IMA为曲面;通过采用曲面屏幕IMA,可以有效地帮助我们矫正场曲,使中心和边缘视场能同时清晰成像。
进一步地,本实施例所采用的光学参数如下:
入瞳直径(EPD,Entrance Pupil Diameter):5mm;有效焦距:35mm;入瞳到最近透镜面的距离(Eye relief):10mm;
K | A | B | C | D | E | F | |
S2 | 4.19 | -3.35E-05 | 2.46E-07 | -6.88E-10 | 1.00E-12 | -4.10E-16 | 0.00E+00 |
S3 | -0.63 | 7.96E-06 | -3.75E-08 | -2.42E-11 | 4.05E-13 | 3.67E-16 | 0.00E+00 |
S6 | -7.65 | 6.86E-06 | -1.39E-08 | 1.33E-11 | -4.80E-15 | -6.88E-19 | 0.00E+00 |
S7 | -7.47 | 4.17E-06 | -8.28E-09 | 7.71E-12 | -1.67E-15 | -7.78E-19 | 0.00E+00 |
其中,S1为孔径光阑面(人眼瞳孔STO所在面);S2为新月透镜L1的朝向人眼瞳孔STO的表面;S3为新月透镜L1的朝向屏幕IMA的表面;S4为双凸透镜L2的朝向人眼瞳孔STO的表面;S5为双凸透镜L2的朝向屏幕IMA的表面;S6为双凹透镜L3的朝向人眼瞳孔STO的表面;S7为双凹透镜L3的朝向屏幕IMA的表面;IMA为屏幕IMA的位置。
新月透镜L1和双凹透镜L3为非球面镜,分别满足以下非球面公式:
其中,r为光学表面上一点到光轴的距离;
Z为该点沿光轴方向的矢高;
c为该光学表面的曲率;c=1/r;
k为该光学表面的二次曲线常数,A、B、C、D、E、F分别为四阶、
六阶、八阶、十阶、十二阶、十四阶高阶非球面系数。采用本实施例的方案可以实现了VR超大视场角,并且全视场范围均清晰成像,带给大家更清晰、更深度的沉浸式体验。
图2至图6为本发明实施例的光学性能曲线图。具体地,图2是本发明实施例的视场角为100°的镜头模组的MTF(调制传递函数)曲线图;图3是本发明实施例的视场角为120°的镜头模组的MTF(调制传递函数)曲线图;调制传递函数(MTF)是光学系统性能判断中最可靠的判断方法,特别是对于镜头模组;MTF定义为一定空间频率下,实际像与理想像之间调制度之比相对空间频率的函数。MTF曲线横坐标是空间频率lp/mm(线对/毫米),细节信息对应高频,轮廓信息对应低频。纵坐标是对比度(%),曲线越高,表明成像质量越好。因为实际像的对比度总小于输入图像的对比度,所以MTF的数值介于0-1之间。图2和图3中不同的曲线表示不同的视场对应的像高,T和S分别表示子午方向和弧矢方向的MTF。由图2和图3的MTF曲线可知,整个视场范围内都可成像清晰。依此光路结构进行优化设计,可匹配更高像素分辨率的显示屏幕。
图4是本发明实施例的镜头模组的离焦(Through Focus)曲线图,离焦曲线表明对设定空间频率不同视场的子午、弧矢MTF与离焦量的关系,图中横坐标是离焦量,纵坐标是对比度,通过此图可以看出各视场的最佳焦面的一致性,MTF是否对离焦比较敏感。由图4可知,各视场最佳焦面基本一致,各视场像质均匀清晰。
图5是本发明实施例的镜头模组的场曲曲线图,由常用的可见光波段中的F、d、C(F=0.486um,d=0.588um,C=0.656um)三色光的波长来表示,T和S分别表示子午和弧矢方向,纵坐标为视场,单位为角度,横坐标为场曲,单位为毫米(mm);图6是本发明实施例的镜头模组的畸变曲线图,纵坐标为视场,横坐标为畸变的百分比值。畸变曲线图表示不同视场角情况下的畸变大小值,单位为%。所以,由图2至图6可知,该光学镜头已将各种像差校正到一个较好程度,全视场范围可清晰成像。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进
或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。
Claims (9)
- 一种镜头模组,其特征在于,用于设置在人眼瞳孔(STO)和屏幕(IMA)之间,屏幕(IMA)用于显示虚拟现实画面;镜头模组包括沿人眼瞳孔(STO)到屏幕(IMA)的方向上依次设置的新月透镜(L1)以及由双凸透镜(L2)和双凹透镜(L3)组成的透镜群;新月透镜(L1)的凹面朝向人眼瞳孔(STO);新月透镜(L1)的光焦度为正,双凸透镜(L2)的光焦度为正,双凹透镜(L3)的光焦度为负;新月透镜(L1)和双凹透镜(L3)均为非球面镜。
- 根据权利要求1所述的镜头模组,其特征在于,双凸透镜(L2)和双凹透镜(L3)沿人眼瞳孔(STO)到屏幕(IMA)的方向上依次设置。
- 根据权利要求1所述的镜头模组,其特征在于,双凸透镜(L2)和双凹透镜(L3)沿屏幕(IMA)到人眼瞳孔(STO)的方向上依次设置。
- 根据权利要求1所述的镜头模组,其特征在于,新月透镜(L1)和双凹透镜(L3)满足下列关系式:-1.69<f1/f3<-1.15,其中,f1为新月透镜(L1)的焦距,f3为双凹透镜(L3)的焦距。
- 根据权利要求1所述的镜头模组,其特征在于,双凸透镜(L2)与双凹透镜(L3)满足关系式:-2.90<f2/f3<-1.92,其中,f2为双凸透镜(L2)的焦距,f3为双凹透镜(L3)的焦距。
- 根据权利要求1所述的镜头模组,其特征在于,非球面镜由树脂材料制成。
- 根据权利要求1所述的镜头模组,其特征在于,非球面镜由玻璃材料制成。
- 根据权利要求1所述的镜头模组,其特征在于,屏幕(IMA)为曲面。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611201986.4A CN108227190B (zh) | 2016-12-21 | 2016-12-21 | 一种镜头模组 |
CN201611201986.4 | 2016-12-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018113623A1 true WO2018113623A1 (zh) | 2018-06-28 |
Family
ID=62624439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/116906 WO2018113623A1 (zh) | 2016-12-21 | 2017-12-18 | 一种镜头模组 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108227190B (zh) |
WO (1) | WO2018113623A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109100857A (zh) * | 2018-09-21 | 2018-12-28 | 杭州有人光电技术有限公司 | 一种低f数低畸变全高清投影镜头 |
CN109507788A (zh) * | 2019-01-10 | 2019-03-22 | 厦门爱劳德光电有限公司 | 一种大光圈近红外镜头 |
CN110018553A (zh) * | 2019-02-28 | 2019-07-16 | 苏州科技大学 | 一种用于虚拟现实头盔的光学镜头 |
CN111999896A (zh) * | 2020-09-17 | 2020-11-27 | 中航华东光电有限公司 | 用于虚拟现实头戴显示器的目视光学系统 |
CN113873231A (zh) * | 2021-09-26 | 2021-12-31 | 江西盛泰精密光学有限公司 | 摄像头模组烘烤的监测系统及方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110261996B (zh) * | 2019-05-23 | 2022-01-11 | 北京灵犀微光科技有限公司 | 基于数字光处理的成像镜头及增强现实设备 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007328160A (ja) * | 2006-06-08 | 2007-12-20 | Canon Inc | 接眼光学系及びそれを有するファインダー光学系 |
CN104081251A (zh) * | 2012-01-30 | 2014-10-01 | 株式会社尼康 | 目镜光学系统和光学设备 |
US20150116823A1 (en) * | 2013-10-25 | 2015-04-30 | Ricoh Imaging Company, Ltd. | Finder optical system |
CN104849864A (zh) * | 2015-06-05 | 2015-08-19 | 罗明杨 | 虚拟现实眼镜 |
CN105259658A (zh) * | 2015-10-30 | 2016-01-20 | 深圳市火乐科技发展有限公司 | 一种提高虚拟显示目镜光学系统成像质量的装置及方法 |
US20160209726A1 (en) * | 2015-01-21 | 2016-07-21 | Ricoh Imaging Company, Ltd. | Eyepiece optical system |
CN206557474U (zh) * | 2016-12-21 | 2017-10-13 | 深圳市掌网科技股份有限公司 | 一种虚拟现实头显设备 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1009866B (zh) * | 1988-06-30 | 1990-10-03 | 浙江大学 | 小畸变薄型摄影物镜 |
JP2005284153A (ja) * | 2004-03-30 | 2005-10-13 | Nidec Copal Corp | 撮像レンズ |
CN100476493C (zh) * | 2006-01-24 | 2009-04-08 | 亚洲光学股份有限公司 | 拾像光学系统 |
CN203519925U (zh) * | 2013-06-29 | 2014-04-02 | 歌尔声学股份有限公司 | 一种头戴显示器 |
CN204515242U (zh) * | 2015-01-26 | 2015-07-29 | 青岛歌尔声学科技有限公司 | 一种目镜、头戴目镜系统和微显示头戴设备 |
CN105589201A (zh) * | 2016-02-02 | 2016-05-18 | 张国斌 | 一种轻小型大视场近眼显示光学系统 |
CN106019567B (zh) * | 2016-06-30 | 2019-09-27 | 北京小鸟看看科技有限公司 | 一种目镜系统和头戴显示设备 |
CN106324838B (zh) * | 2016-09-30 | 2019-04-16 | 中国科学院长春光学精密机械与物理研究所 | 一种虚拟现实设备及虚拟现实系统 |
-
2016
- 2016-12-21 CN CN201611201986.4A patent/CN108227190B/zh active Active
-
2017
- 2017-12-18 WO PCT/CN2017/116906 patent/WO2018113623A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007328160A (ja) * | 2006-06-08 | 2007-12-20 | Canon Inc | 接眼光学系及びそれを有するファインダー光学系 |
CN104081251A (zh) * | 2012-01-30 | 2014-10-01 | 株式会社尼康 | 目镜光学系统和光学设备 |
US20150116823A1 (en) * | 2013-10-25 | 2015-04-30 | Ricoh Imaging Company, Ltd. | Finder optical system |
US20160209726A1 (en) * | 2015-01-21 | 2016-07-21 | Ricoh Imaging Company, Ltd. | Eyepiece optical system |
CN104849864A (zh) * | 2015-06-05 | 2015-08-19 | 罗明杨 | 虚拟现实眼镜 |
CN105259658A (zh) * | 2015-10-30 | 2016-01-20 | 深圳市火乐科技发展有限公司 | 一种提高虚拟显示目镜光学系统成像质量的装置及方法 |
CN206557474U (zh) * | 2016-12-21 | 2017-10-13 | 深圳市掌网科技股份有限公司 | 一种虚拟现实头显设备 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109100857A (zh) * | 2018-09-21 | 2018-12-28 | 杭州有人光电技术有限公司 | 一种低f数低畸变全高清投影镜头 |
CN109507788A (zh) * | 2019-01-10 | 2019-03-22 | 厦门爱劳德光电有限公司 | 一种大光圈近红外镜头 |
CN109507788B (zh) * | 2019-01-10 | 2024-02-09 | 厦门爱劳德光电有限公司 | 一种大光圈近红外镜头 |
CN110018553A (zh) * | 2019-02-28 | 2019-07-16 | 苏州科技大学 | 一种用于虚拟现实头盔的光学镜头 |
CN110018553B (zh) * | 2019-02-28 | 2023-12-08 | 苏州科技大学 | 一种用于虚拟现实头盔的光学镜头 |
CN111999896A (zh) * | 2020-09-17 | 2020-11-27 | 中航华东光电有限公司 | 用于虚拟现实头戴显示器的目视光学系统 |
CN111999896B (zh) * | 2020-09-17 | 2022-04-19 | 中航华东光电有限公司 | 用于虚拟现实头戴显示器的目视光学系统 |
CN113873231A (zh) * | 2021-09-26 | 2021-12-31 | 江西盛泰精密光学有限公司 | 摄像头模组烘烤的监测系统及方法 |
CN113873231B (zh) * | 2021-09-26 | 2024-05-03 | 江西盛泰精密光学有限公司 | 摄像头模组烘烤的监测系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108227190A (zh) | 2018-06-29 |
CN108227190B (zh) | 2020-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018113623A1 (zh) | 一种镜头模组 | |
TWI627463B (zh) | 目鏡光學系統 | |
CN104090354B (zh) | 一种无色差的头戴设备用广角内调焦镜头及头戴设备 | |
TWI624685B (zh) | 目鏡光學系統 | |
TWI627464B (zh) | 目鏡光學系統 | |
CN108051920B (zh) | 一种适用于虚拟现实设备的光学系统 | |
EP3702825B1 (en) | Head-mounted display device | |
WO2021139725A1 (zh) | 近眼显示装置 | |
TWI664448B (zh) | 目鏡光學系統 | |
CN104049369B (zh) | 一种用于头戴显示设备的镜头及头戴设备 | |
CN106199926B (zh) | 光学镜头 | |
WO2017161486A1 (zh) | 短距离光学放大模组、眼镜、头盔及vr系统 | |
KR20210030281A (ko) | 접안 렌즈 및 표시 장치 | |
CN113325565B (zh) | 一种反射式目镜光学系统及头戴近眼显示装置 | |
CN112630978B (zh) | 一种大视场角的目镜光学系统及头戴显示装置 | |
CN105717643A (zh) | 一种反射式虚拟现实光学系统 | |
CN109407301B (zh) | 一种目镜及头戴式设备 | |
CN108931850A (zh) | 一种可穿戴式光学系统、装置及方法 | |
CN111258053A (zh) | 一种目镜镜头及近眼显示系统 | |
CN112764221B (zh) | 一种大视场角的目镜光学系统及头戴显示装置 | |
CN107065144B (zh) | 广角镜头 | |
CN108663784B (zh) | 超广角镜头 | |
CN110596898B (zh) | 一种一屏双目式头戴显示光学系统及设备 | |
CN205581417U (zh) | 一种虚拟现实光学系统 | |
CN207301489U (zh) | 一种可穿戴式光学系统和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17882385 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/10/2019) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17882385 Country of ref document: EP Kind code of ref document: A1 |