WO2018110491A1 - 発光装置 - Google Patents
発光装置 Download PDFInfo
- Publication number
- WO2018110491A1 WO2018110491A1 PCT/JP2017/044336 JP2017044336W WO2018110491A1 WO 2018110491 A1 WO2018110491 A1 WO 2018110491A1 JP 2017044336 W JP2017044336 W JP 2017044336W WO 2018110491 A1 WO2018110491 A1 WO 2018110491A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light emitting
- light
- emitting device
- conductive layer
- emitting unit
- Prior art date
Links
- 239000010410 layer Substances 0.000 claims abstract description 152
- 239000012044 organic layer Substances 0.000 claims abstract description 87
- 238000005192 partition Methods 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 13
- 239000000758 substrate Substances 0.000 description 20
- 238000010586 diagram Methods 0.000 description 14
- 238000000231 atomic layer deposition Methods 0.000 description 9
- 239000011241 protective layer Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 230000004888 barrier function Effects 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 230000001902 propagating effect Effects 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- 238000000059 patterning Methods 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- -1 polyethylene naphthalate Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/844—Encapsulations
- H10K50/8445—Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/84—Parallel electrical configurations of multiple OLEDs
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
- H05B33/04—Sealing arrangements, e.g. against humidity
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/22—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/81—Anodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/86—Series electrical configurations of multiple OLEDs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
- H10K59/873—Encapsulations
- H10K59/8731—Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
Definitions
- the present invention relates to a light emitting device.
- OLEDs organic light emitting diodes
- the OLED has a light emitting unit, and the light emitting unit has a first electrode, an organic layer, and a second electrode.
- the organic layer includes a light emitting layer that emits light by organic electroluminescence.
- the light emitting layer emits light by a voltage between the first electrode and the second electrode.
- Patent Document 1 In the OLED, as described in Patent Document 1, dark spots may be formed.
- Patent Document 1 describes that when the second electrode is made of a material having a low work function, the second electrode is oxidized by the penetration of moisture or oxygen to form a dark spot. Further, Patent Document 1 describes that dark spots spread with time.
- Patent Document 1 describes an example of a method for suppressing the spread of dark spots.
- the OLED of Patent Document 1 includes a first electrode, a plurality of organic layers, a plurality of second electrodes, and a partition.
- the partition is located on the first electrode.
- the plurality of organic layers and the plurality of second electrodes are separated from each other by a partition wall.
- Patent Document 2 describes that a short circuit between a first electrode and a second electrode is caused by particles being manufactured.
- Patent Document 2 describes that the robustness of the above-described particles can be increased by connecting a plurality of light emitting units in series and connecting a column including the plurality of light emitting units connected in series in parallel. ing. In such a configuration, even if one of the light emitting units in any column is short-circuited, only the column including the shorted light emitting unit is insulated from the other columns.
- dark spots may occur in OLED. It is desirable that the range affected by the dark spot is as narrow as possible.
- An example of a problem to be solved by the present invention is to limit the range affected by dark spots to a limited range.
- a first light emitting unit including a first organic layer between the first anode and the first cathode;
- An inorganic layer continuously covering the first light emitting unit, the second light emitting unit, and the conductive layer, and in contact with the first conductive layer between the first cathode and the conductive layer; It is a light-emitting device provided with.
- FIG. 1 is a plan view showing a light emitting device according to Embodiment 1.
- FIG. It is the figure which removed the cathode from FIG.
- FIG. 3 is a diagram in which an organic layer and a bus electrode are removed from FIG. 2.
- FIG. 2 is a cross-sectional view taken along the line AA in FIG.
- FIG. 3 is a cross-sectional view taken along the line BB in FIG.
- FIG. 6 is a plan view showing a light emitting device according to Embodiment 2.
- FIG. 2 is a cross-sectional view taken along the line AA in FIG.
- FIG. 3 is a cross-sectional view taken along the line BB in FIG.
- FIGS. 6 is a plan view showing a light emitting device according to Embodiment 2.
- FIG. 2 is a cross-sectional view taken along the line AA in FIG
- FIG. 10 is a diagram in which an organic layer and a bus electrode are removed from FIG. 9.
- FIG. 9 is a cross-sectional view taken along the line AA in FIG. It is a figure for demonstrating the 1st example of operation
- FIG. 6 is a circuit diagram illustrating a light emitting device according to a fourth embodiment. It is a top view which shows an example of the light-emitting device shown in FIG. It is the figure which expanded the light emission part shown in FIG. It is the figure which removed the cathode from FIG. It is the figure which removed the organic layer from FIG.
- FIG. 22 is a cross-sectional view taken along the line CC of FIG. (A) is a top view which shows the light-emitting device concerning Embodiment 5, (b) is the figure which expanded the pixel shown to (a).
- FIG. 1 is a plan view showing a light emitting device 10 according to the first embodiment.
- FIG. 2 is a view in which the cathode 130 is removed from FIG.
- FIG. 3 is a diagram in which the organic layer 120, the bus electrode 152, and the bus electrode 154 are removed from FIG. 4 is a cross-sectional view taken along the line AA in FIG. 5 is a cross-sectional view taken along the line BB in FIG.
- FIG. 1 does not show the inorganic layer 200 and the protective layer 300 shown in FIGS. 4 and 5.
- the light emitting device 10 includes a plurality of light emitting units 140 and an inorganic layer 200.
- Each light emitting unit 140 includes an anode 110, an organic layer 120, and a cathode 130.
- the inorganic layer 200 extends over the plurality of light emitting units 140 and continuously covers the plurality of light emitting units 140. In this way, the inorganic layer 200 seals the plurality of light emitting units 140.
- the organic layers 120 of the light emitting units 140 are separated from each other.
- the cathodes 130 of the light emitting units 140 are separated from each other.
- the range affected by the dark spot can be limited to a limited range by separating the organic layers 120 of the light emitting units 140 from each other and the cathodes 130 of the light emitting units 140 from each other.
- dark spots can be spread by the propagation of moisture.
- moisture entering the one light emitting unit 140 passes through the organic layer 120 or the cathode 130. Thus, it does not propagate to the other light emitting units 140.
- the light emitting device 10 includes a plurality of element groups GS.
- Each element group GS includes a plurality of light emitting units 140 connected in series.
- the plurality of element groups GS are connected in parallel.
- the range of the non-light emitting region due to the dark spot can be suppressed to a limited range. Specifically, as will be described later with reference to FIG. 6, even if a dark spot occurs in one light emitting unit 140 in any element group GS and the light emitting unit 140 is opened, the light emitting unit 140 that is opened is included. A current can flow through the element group GS connected in parallel to the element group GS. In other words, the range of the non-light emitting region due to the dark spot is limited to the opened light emitting unit 140 and the light emitting unit 140 connected in series to the opened light emitting unit 140.
- the range of the non-light emitting region due to leakage can be suppressed to a limited range. Specifically, as will be described later with reference to FIG. 7, even if a leak occurs in one of the light emitting units 140 in any of the element groups GS and the light emitting unit 140 is short-circuited, the light emitting unit 140 in series is short-circuited. A current can be passed through the element group GS connected in parallel to the element group GS including the light emitting part 140 to be connected and the shorted light emitting part 140. That is, the range of the non-light emitting region due to the dark spot is limited to the light emitting unit 140 that is short-circuited.
- the light emitting device 10 includes a conductive layer 112, a plurality of light emitting units 140, a bus electrode 152, and a bus electrode 154.
- the X direction is defined as the arrangement direction of the bus electrodes 152 and 154
- the Y direction is defined as the extending direction of the bus electrodes 152 and 154.
- the Y direction intersects the X direction, and more specifically, is orthogonal to the X direction.
- Each of the bus electrode 152 and the bus electrode 154 is a conductive layer.
- the plurality of light emitting units 140 are arranged in a two-dimensional matrix along the X direction and the Y direction.
- the plurality of light emitting units 140 include nine light emitting units 140 arranged in a two-dimensional matrix of 3 rows and 3 columns between the bus electrodes 152 and 154. .
- the nine light emitting units 140 are classified into three element groups GS.
- the three element groups GS are arranged along the Y direction, and each element group GS includes three light emitting units 140 arranged in the X direction.
- the light emitting units 140 (for example, the first light emitting unit 140 (1) and the third light emitting unit 140 (3) or the second light emitting unit 140 (2) and the fourth light emitting unit 140 in FIGS. 1 to 3 in each element group GS. (4)) are connected in series.
- the three element groups GS are connected in parallel.
- the light emitting section 140 adjacent to the bus electrode 154 in each element group GS is connected to the bus electrode 152 via the anode 110, and the light emitting section 140 adjacent to the bus electrode 152 in each element group GS (for example, The first light emitting unit 140 (1) or the second light emitting unit 140 (2) in FIGS. 1 to 3 is connected to the conductive layer 112 through the conductive layer 112.
- the anodes 110 adjacent to each other in the Y direction are not connected and are separated from each other. Thereby, the area of the region overlapping with the anode 110 can be reduced, and the light transmittance of the light emitting device 10 can be increased.
- the conductive layers 112 adjacent in the Y direction are not connected and are separated from each other. Accordingly, the area of the region overlapping with the conductive layer 112 can be reduced, and the light transmittance of the light emitting device 10 can be increased.
- Each light emitting unit 140 has a pixel 142.
- the anode 110, the organic layer 120, and the cathode 130 are overlapped, and light is emitted from the organic layer 120 by the voltage between the anode 110 and the cathode 130.
- the shape of the pixel 142 is a rectangle.
- the light emitting device 10 has a light transmitting portion in a region that does not overlap with the light shielding member (specifically, the cathode 130, the bus electrode 152, and the bus electrode 154).
- the light emitting device 10 includes the light emitting units 140 adjacent to each other along the X direction (for example, the first light emitting unit 140 (1) and the third light emitting unit 140 (3) or the second light emitting unit 140 (FIG. 1 to FIG. 3). 1) and the fourth light emitting part 140 (2)) and adjacent light emitting parts 140 along the Y direction (for example, the first light emitting part 140 (1) and the second light emitting part 140 (2) in FIGS. 1 to 3). ) Or a light transmitting part between the third light emitting part 140 (3) and the fourth light emitting part 140 (4)).
- the light emitting device 10 includes a substrate 100, an anode 110, a conductive layer 112, an organic layer 120, a cathode 130, a bus electrode 152, a bus electrode 154, an inorganic layer 200, and a protective layer 300.
- the substrate 100 has translucency and includes a support substrate 100a and a barrier layer 100b.
- the substrate 100 has a first surface 102 and a second surface 104.
- the anode 110, the conductive layer 112, the organic layer 120, the cathode 130, the bus electrode 152, the bus electrode 154, the inorganic layer 200, and the protective layer 300 are located on the first surface 102 of the substrate 100.
- the second surface 104 is on the opposite side of the first surface 102.
- the support substrate 100a is located on the second surface 104 side, and the barrier layer 100b is located on the first surface 102 side.
- the support substrate 100a is a glass substrate.
- the support substrate 100a may be a resin substrate, specifically, a PEN (polyethylene naphthalate) substrate (thickness: for example 100 ⁇ m) or a transparent polyimide film (thickness: for example 20 ⁇ m). May be.
- PEN polyethylene naphthalate
- the barrier layer 100b is an inorganic layer, specifically, for example, a SiON film.
- the barrier layer 100b is provided to block moisture from the support substrate 100a.
- the inorganic layer is formed by, for example, a sputtered film (that is, a film formed by sputtering), a CVD (Chemical Vapor Deposition) film (that is, a film formed by CVD), or an ALD (Atomic Layer Deposition) film (that is, formed by ALD). Film).
- a layer formed by ALD may be stacked on a layer formed by sputtering.
- another inorganic layer may be further laminated on the inorganic layer via an organic layer. This organic layer is provided for smoothing.
- the organic layer can be formed by coating an organic material (for example, an epoxy resin, an acrylic resin, or a polyimide resin) with a slit coat and baking the organic material.
- an organic material for example, an epoxy resin, an acrylic resin, or a polyimide resin
- Another organic layer and another inorganic layer may be further laminated on the inorganic layer on the organic layer.
- the barrier layer 100b may include a plurality of inorganic layers and a plurality of organic layers that are alternately stacked.
- the anode 110 has translucency.
- the anode 110 includes, for example, at least one of ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), and AZO (Aluminum doped Zinc Oxide).
- the conductive layer 112 has translucency.
- the conductive layer 112 contains the same material as the anode 110. That is, the conductive layer 112 can be formed in the same process as the anode 110. However, the conductive layer 112 may include a material different from that of the anode 110.
- the organic layer 120 emits light by organic electroluminescence.
- the organic layer 120 includes, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
- the cathode 130 has a light shielding property, specifically, a light reflecting property.
- the cathode 130 includes, for example, at least one of Al, Ag, and Mg or an alloy thereof.
- the bus electrode 152 has conductivity.
- the bus electrode 152 can be made of, for example, MAM (Mo / Al / Mo).
- the bus electrode 154 has conductivity.
- the bus electrode 154 includes the same material as the bus electrode 152. That is, the bus electrode 154 can be formed in the same process as the bus electrode 152. However, the bus electrode 154 may include a material different from that of the bus electrode 152.
- the inorganic layer 200 is an ALD film (that is, a film formed by ALD).
- the inorganic layer 200 is provided to seal the first surface 102 of the substrate 100, the anode 110, the organic layer 120, the cathode 130, the bus electrode 152, and the bus electrode 154.
- the inorganic layer 200 includes, for example, at least one selected from the group consisting of a SiN x layer, a SiON layer, an Al 2 O 3 layer, and a TiO 2 layer, and in particular, may include a laminated film thereof.
- the inorganic layer 200 may be a CVD film (that is, a film formed by CVD).
- the protective layer 300 is provided to protect the inorganic layer 200 from external impacts.
- the protective layer 300 can be a resin layer, for example.
- the light emitting device 10 includes a plurality of light emitting units 140.
- Each light emitting unit 140 includes an anode 110, an organic layer 120, and a cathode 130.
- the anodes 110 of the light emitting units 140 are separated from each other in the X direction
- the organic layers 120 of the light emitting units 140 are separated from each other in the X direction
- the cathodes 130 of the light emitting units 140 are separated from each other in the X direction. It is separated. This prevents moisture from propagating along the X direction from one light emitting unit 140 to another light emitting unit 140.
- Each light emitting unit 140 has a pixel 142.
- the anode 110, the organic layer 120, and the cathode 130 are overlapped, and light is emitted from the organic layer 120 by the voltage between the anode 110 and the cathode 130.
- light emitted from the organic layer 120 passes through the anode 110 and is output from the substrate 100.
- the light emitted from the organic layer 120 may pass through the cathode 130 and be output from the protective layer 300. In this case, the cathode 130 needs to have translucency.
- the plurality of light emitting units 140 between the bus electrode 152 and the bus electrode 154 are connected in series. Specifically, the anode 110 of the light emitting unit 140 adjacent to the bus electrode 152 is connected to the bus electrode 152. The cathode 130 of the light emitting unit 140 adjacent to the bus electrode 154 is connected to the bus electrode 154 through the conductive layer 112. The anode 110 and the cathode 130 of the light emitting unit 140 located between the light emitting units 140 are connected to the cathode 130 of the light emitting unit 140 on the bus electrode 152 side and the anode 110 of the light emitting unit 140 on the bus electrode 154 side, respectively. ing.
- each light emitting unit 140 the end of the anode 110 on the bus electrode 154 side is covered with the organic layer 120, and the end of the organic layer 120 on the bus electrode 152 side is located on the anode 110 and exposed from the cathode 130, The end of the organic layer 120 on the bus electrode 154 side is covered with the cathode 130.
- the light emitting units 140 adjacent to each other with the bus electrode 152 in between share the common anode 110 and are connected to the common bus electrode 152. Accordingly, the interval between the light emitting units 140 adjacent to each other with the bus electrode 152 interposed therebetween can be reduced.
- the organic layer 120 of one light emitting unit 140 excluding the light emitting unit 140 adjacent to the bus electrode 154 includes the anode 110 of the one light emitting unit 140 and the other light emitting unit 140 of the one light emitting unit 140 on the bus electrode 154 side. It spreads across the anode 110 and is in contact with the anode 110 of the other light emitting unit 140. Further, a part of the organic layer 120 of the one light emitting unit 140 is embedded in a gap between the anode 110 of the one light emitting unit 140 and the anode 110 of the other light emitting unit 140, and particularly in FIG. In the example shown, this part of the organic layer 120 is in contact with the first surface 102 of the substrate 100.
- the step on the surface of the cathode 130 can be reduced, and the coating of the cathode 130 with the inorganic layer 200 is facilitated. Further, the above-described structure of the organic layer 120 allows the organic layer 120 to reliably cover the end of the anode 110 on the bus electrode 154 side, and thus the direct contact between the anode 110 and the cathode 130, that is, the anode 110 A short circuit of the cathode 130 is prevented.
- the organic layer 120 of the light emitting unit 140 adjacent to the bus electrode 154 extends across the anode 110 and the conductive layer 112 of the light emitting unit 140 and is in contact with the conductive layer 112. Further, a part of the organic layer 120 of the light emitting unit 140 is embedded in the gap between the anode 110 and the conductive layer 112, and particularly in the example shown in FIG. It is in contact with the first surface 102. With such a structure of the organic layer 120, the step on the surface of the cathode 130 can be reduced, and the coating of the cathode 130 with the inorganic layer 200 is facilitated.
- the above-described structure of the organic layer 120 allows the organic layer 120 to reliably cover the end of the anode 110 on the bus electrode 154 side, and thus the direct contact between the anode 110 and the cathode 130, that is, the anode 110 A short circuit of the cathode 130 is prevented.
- the inorganic layer 200 extends over the plurality of light emitting portions 140, and particularly covers the bus electrode 152, the plurality of light emitting portions 140, the conductive layer 112, and the bus electrode 154 continuously from the bus electrode 152 to the bus electrode 154. ing.
- the anode 110 connected to the bus electrode 152 includes a region overlapping the bus electrode 152, and the bus electrode 152 is covered with the inorganic layer 200 on the opposite side of the region of the anode 110.
- the conductive layer 112 includes a region overlapping with the bus electrode 154, and the bus electrode 154 is covered with the inorganic layer 200 on the opposite side of the conductive layer 112 from the region.
- the anode 110 of one light emitting unit 140 excluding the light emitting unit 140 adjacent to the bus electrode 152 includes a region overlapping with the cathode 130 of the other light emitting unit 140 on the bus electrode 152 side of the one light emitting unit 140.
- the cathode 130 of the light emitting unit 140 is covered with the inorganic layer 200 on the opposite side of the anode 110 from the region.
- the conductive layer 112 includes a region overlapping the cathode 130 of the light emitting unit 140 adjacent to the bus electrode 152, and the cathode 130 is covered with the inorganic layer 200 on the opposite side of the region of the conductive layer 112.
- the inorganic layer 200 is in contact with the anode 110 between the cathode 130 of one light emitting unit 140 and the organic layer 120 of the other light emitting unit 140 on the bus electrode 154 side of the one light emitting unit 140. That is, the cathode 130 of the one light emitting unit 140 and the organic layer 120 of the other light emitting unit 140 are separated from each other with a part of the inorganic layer 200 interposed therebetween. Thereby, the propagation of moisture between the cathode 130 of the one light emitting unit 140 and the organic layer 120 of the other light emitting unit 140 is prevented.
- the inorganic layer 200 is in contact with the anode 110 between the organic layer 120 of the light emitting unit 140 adjacent to the bus electrode 152 and the bus electrode 152. That is, the organic layer 120 and the bus electrode 152 of the light emitting unit 140 are separated from each other with a part of the inorganic layer 200 interposed therebetween. Thereby, the propagation of moisture between the organic layer 120 of the light emitting unit 140 and the bus electrode 152 is prevented.
- the inorganic layer 200 is in contact with the conductive layer 112 between the cathode 130 of the light emitting unit 140 adjacent to the bus electrode 154 and the bus electrode 154. That is, the cathode 130 and the bus electrode 154 of the light emitting unit 140 are separated from each other with a part of the inorganic layer 200 interposed therebetween. Thereby, the propagation of moisture between the cathode 130 of the light emitting unit 140 and the bus electrode 154 is prevented.
- the anodes 110 of the light emitting units 140 are separated from each other in the Y direction, the organic layers 120 of the light emitting units 140 are separated from each other in the Y direction, and the cathodes 130 of the light emitting units 140 are separated from each other in the Y direction. It is separated. This prevents moisture from propagating along the Y direction from one light emitting unit 140 to another light emitting unit 140.
- each light emitting unit 140 both ends of the anode 110 are covered with the organic layer 120. With such a structure, direct contact between the anode 110 and the cathode 130, that is, a short circuit between the anode 110 and the cathode 130 is prevented.
- the inorganic layer 200 extends over the plurality of light emitting units 140 and continuously covers the plurality of light emitting units 140.
- the inorganic layer 200 is in contact with the first surface 102 of the substrate 100 between the organic layer 120 of one light emitting unit 140 and the organic layer 120 of the other light emitting unit 140. That is, the organic layer 120 of the one light emitting unit 140 and the organic layer 120 of the other light emitting unit 140 are separated from each other with a part of the inorganic layer 200 interposed therebetween. Thereby, the propagation of moisture between the organic layer 120 of the one light emitting unit 140 and the organic layer 120 of the other light emitting unit 140 is prevented.
- the anode 110 and the conductive layer 112 are formed on the first surface 102 of the substrate 100.
- the anode 110 and the conductive layer 112 can be formed by patterning by photolithography.
- the anode 110 and the conductive layer 112 can be formed in the same process.
- bus electrode 152 and the bus electrode 154 are formed.
- the bus electrode 152 and the bus electrode 154 can be formed by patterning.
- the bus electrode 152 and the bus electrode 154 include the same material, the bus electrode 152 and the bus electrode 154 are. It can be formed in the same process.
- the organic layer 120 is formed.
- the organic layer 120 can be formed by coating, specifically, ink jet printing, or can be formed by vapor deposition, specifically, vacuum vapor deposition using a metal mask.
- the cathode 130 is formed.
- the cathode 130 can be formed by vapor deposition, specifically, vacuum vapor deposition using a metal mask.
- the inorganic layer 200 is formed.
- the inorganic layer 200 can be formed by ALD. In other examples, the inorganic layer 200 can be formed by CVD.
- the protective layer 300 is formed.
- the light emitting device 10 shown in FIGS. 1 to 5 is manufactured.
- FIG. 6 is a diagram for explaining a first example of the operation of the light-emitting device 10 shown in FIGS. 1 to 5.
- the light emitting device 10 includes two element groups GS connected in parallel.
- Each element group GS includes two light emitting units 140 connected in series. In this manner, the four light emitting units 140 are arranged in a matrix of 2 rows and 2 columns.
- the resistance of each light emitting unit 140 is R.
- the voltage of the bus electrode 152 and the bus electrode 154 is V.
- the light emitting device 10 is operating normally.
- a current of V / 2R flows through the two light emitting units 140 located in the first row, and V / 2R also flows into the two light emitting units 140 located in the second row. Current flows.
- a dark spot is generated in the light emitting unit 140 located in the first row and the first column.
- the light emitting unit 140 is opened by the generation of the dark spot.
- the element group GS connected in parallel to the element group GS including the opened light emitting unit 140 has darkness.
- FIG. 7 is a diagram for explaining a second example of the operation of the light-emitting device 10 shown in FIGS. 1 to 5.
- the example shown in FIG. 7 is the same as the example shown in FIG. 6 except for the following points.
- the light emitting device 10 is operating normally.
- FIG. 7B a leak has occurred in the light emitting unit 140 located in the first row and the first column. Due to the occurrence of the leak, the light emitting unit 140 is short-circuited. Although the current flowing through the light emitting unit 140 connected in series to the shorted light emitting unit 140 increases due to the leakage of the light emitting unit 140, the current flows through any of the light emitting units 140. In particular, in the example shown in FIG. 7B, the current flowing through each light emitting unit 140 located in the first row is V / R. On the other hand, the current flowing through the light emitting unit 140 located in the second row remains V / 2R.
- the range affected by the dark spot can be limited to a limited range.
- the range of the non-light emitting region due to dark spots or leaks can be suppressed to a limited range.
- FIG. 8 is a plan view showing the light emitting device 10 according to the second embodiment, and corresponds to FIG. 1 of the first embodiment.
- FIG. 9 is a view in which the cathode 130 is removed from FIG. 8, and corresponds to FIG. 2 of the first embodiment.
- FIG. 10 is a diagram in which the organic layer 120, the bus electrode 152, and the bus electrode 154 are removed from FIG. 9, and corresponds to FIG. 3 of the first embodiment.
- FIG. 11 is a cross-sectional view taken along the line AA of FIG. 8, and corresponds to FIG. 4 of the first embodiment.
- a plurality of light emitting units 140 arranged in the Y direction are connected in parallel.
- the range of the non-light emitting region due to the dark spot can be suppressed to a limited range.
- the light emitting unit 140 connected in parallel to the opened light emitting unit 140 even if a dark spot occurs in any of the light emitting units 140 and the light emitting unit 140 is opened, the light emitting unit 140 connected in parallel to the opened light emitting unit 140. A current can flow. That is, the range of the non-light emitting area due to the dark spot is limited to the light emitting unit 140 that is open.
- the light emitting units 140 adjacent in the X direction are not connected in series.
- the range of the non-light emitting region due to leakage can be suppressed to a limited range.
- a current can be passed through the other light emitting unit 140. That is, the range of the non-light emitting region due to leakage is limited to the light emitting unit 140 that is short-circuited.
- the bus electrodes 152 and the bus electrodes 154 are alternately arranged along the X direction. Between the bus electrode 152 and the bus electrode 154, a plurality of light emitting portions 140 are arranged along the Y direction. The plurality of light emitting units 140 between the bus electrode 152 and the bus electrode 154 are connected in parallel.
- the anodes 110 adjacent to each other in the Y direction are not connected and are separated from each other. Thereby, the area of the region overlapping with the anode 110 can be reduced, and the light transmittance of the light emitting device 10 can be increased.
- the conductive layers 112 adjacent in the Y direction are not connected and are separated from each other. Accordingly, the area of the region overlapping with the conductive layer 112 can be reduced, and the light transmittance of the light emitting device 10 can be increased.
- the light emitting units 140 adjacent to each other across the bus electrode 152 share a common anode 110 and are connected to the common bus electrode 152. Accordingly, the interval between the light emitting units 140 adjacent to each other with the bus electrode 152 interposed therebetween can be reduced.
- the cathodes 130 of the light emitting units 140 adjacent to each other with the bus electrode 154 interposed therebetween are connected to the common bus electrode 152 through the common conductive layer 112. Accordingly, the interval between the light emitting units 140 adjacent to each other with the bus electrode 154 interposed therebetween can be reduced.
- FIG. 12 is a diagram for explaining a first example of the operation of the light emitting device 10 shown in FIGS. 8 to 11.
- each light emitting section 140 is arranged in a matrix of 2 rows and 2 columns. Specifically, one bus electrode 152 is disposed between the two bus electrodes 154. Two of the four light emitting units 140 are connected in parallel between the bus electrode 152 and one bus electrode 154. The remaining two light emitting units 140 among the four light emitting units 140 are connected in parallel between the bus electrode 152 and the other bus electrode 154. The resistance of each light emitting unit 140 is R. The voltage of the bus electrode 152 and the bus electrode 154 is V.
- the light emitting device 10 is operating normally.
- the current I V / R flows through each light emitting unit 140.
- a dark spot is generated in the light emitting unit 140 located in the first row and the first column.
- the light emitting unit 140 is opened by the generation of the dark spot.
- the current does not flow through the opened light emitting unit 140 by opening the light emitting unit 140, the same current (V / R) as the current before the occurrence of the dark spot flows through the other light emitting units 140.
- FIG. 13 is a diagram for explaining a second example of the operation of the light-emitting device 10 shown in FIGS. 8 to 11.
- the example shown in FIG. 13 is the same as the example shown in FIG. 12 except for the following points.
- FIG. 13 (a) the light emitting device 10 is operating normally.
- a current I V / R flows through each light emitting unit 140.
- a leak has occurred in the light emitting unit 140 located in the first row and the first column. Due to the occurrence of the leak, the light emitting unit 140 is short-circuited. Although the current does not flow in the light emitting units 140 connected in parallel to the shorted light emitting units 140 due to the short circuit of the light emitting units 140, the light emitting units 140 that are not connected in series to the light emitting units 140 are not leaked. The same current (V / R) as the current flows.
- FIG. 14 is a diagram showing a modification of FIG.
- the light emitting device 10 shown in FIG. 14 is the same as the light emitting device 10 shown in FIGS. 8 to 11 except for the following points.
- the anodes 110 adjacent in the Y direction are connected to each other through the conductive layer 111.
- the conductive layer 111 contains the same material as the anode 110. Between the anodes 110 adjacent in the Y direction, the bus electrode 152 overlaps the conductive layer 111.
- the bus electrode 152 has higher adhesion to the conductive layer 111 than to the substrate 100. Such adhesion can prevent the bus electrode 152 from peeling off.
- the width of the conductive layer 111 is wider than the width of the bus electrode 152, and the entire lower surface of the bus electrode 152 becomes the conductive layer 111 between the anodes 110 adjacent in the Y direction. You can come in contact. Thereby, the bus electrode 152 can be firmly attached to the conductive layer 111.
- the adjacent conductive layers 112 along the Y direction are connected to each other through the conductive layer 113.
- the conductive layer 113 includes the same material as that of the conductive layer 112. Between the conductive layers 112 adjacent along the Y direction, the bus electrode 154 overlaps the conductive layer 113.
- the bus electrode 154 has higher adhesion to the conductive layer 113 than to the substrate 100. Such adhesion can prevent the bus electrode 154 from peeling off.
- the width of the conductive layer 113 is wider than the width of the bus electrode 154, and the entire lower surface of the bus electrode 154 is between the conductive layers 112 adjacent in the Y direction. To be able to contact. Thus, the bus electrode 154 can be firmly attached to the conductive layer 113.
- FIG. 15 is a circuit diagram illustrating the light emitting device 10 according to the third embodiment.
- the light emitting device 10 according to the present embodiment is the same as the light emitting device 10 according to the first embodiment except for the following points.
- the light emitting device 10 includes a plurality of groups G.
- Each group G includes a plurality of element groups GP connected in series.
- Each element group GP includes a plurality of light emitting units 140 connected in parallel.
- the light emitting device 10 includes two groups G.
- Each group G includes three element groups GP connected in series.
- Each element group GP includes four light emitting units 140 connected in parallel.
- the range of the non-light emitting region due to the dark spot can be suppressed to a limited range. Specifically, as will be described later with reference to FIG. 16, even if a dark spot occurs in one light emitting unit 140 in any element group GP and the light emitting unit 140 is opened, the light emitting unit 140 is opened in parallel. A current can be passed through the element group GP connected in series to the element group GP including the light emitting part 140 connected to and the opened light emitting part 140. That is, the range of the non-light emitting area due to the dark spot is limited to the light emitting unit 140 that is open.
- the range of the non-light emitting region due to leakage can be suppressed to a limited range. Specifically, as will be described later with reference to FIG. 17, even if a leak occurs in one light emitting unit 140 in one of the element groups GP and the light emitting unit 140 is short-circuited, the element including the shorted light emitting unit 140 A current can flow through the element group GP connected in series to the group GP. That is, the range of the non-light emitting region due to the dark spot is limited to the light emitting unit 140 short-circuited and the light emitting unit 140 connected in parallel to the shorted light emitting unit 140.
- FIG. 16 is a view for explaining a first example of the operation of the light emitting device 10 shown in FIG.
- the resistance of each light emitting unit 140 is R.
- the voltage of the bus electrode 152 and the bus electrode 154 is V.
- FIG. 16 (a) the light emitting device 10 is operating normally.
- a current of V / 3R flows through each light emitting unit 140.
- a dark spot is generated in one light emitting portion 140 of the element group GP located in the first row and first column.
- the light emitting unit 140 is opened by the dark spot.
- the combined resistance of the element group GP located in the first row and the first column is increased by opening the light emitting units 140, a current flows through each light emitting unit 140 except for the opened light emitting units 140.
- each of the three light emitting units 140 excluding the opened light emitting unit 140 has a current of 4V / 10R.
- FIG. 17 is a view for explaining a second example of the operation of the light emitting device 10 shown in FIG.
- the example shown in FIG. 17 is the same as the example shown in FIG. 16 except for the following points.
- FIG. 17 (a) the light emitting device 10 is operating normally.
- a current of V / 3R flows through each light emitting unit 140.
- a leak occurs in one light emitting unit 140 of the element group GP located in the first row and first column.
- the light emitting unit 140 is short-circuited due to leakage.
- the current flowing through the element group GP connected in series to the element group GP including the shorted light emitting part 140 increases due to the short circuit of the light emitting part 140, except for the light emitting part 140 connected in parallel to the shorted light emitting part 140, A current flows through any of the light emitting units 140.
- a current of V / 2R flows through each light emitting unit 140 in the element group GP located in each of the first row, second column, and first row, third column.
- the current flowing through each light emitting unit 140 located in the second row remains V / 3R.
- FIG. 18 is a plan view showing an example of the group G of the light-emitting devices 10 shown in FIG.
- the group G includes three element groups GP arranged in the X direction.
- Each element group GP includes three light emitting units 140 arranged in the Y direction. In this manner, the nine light emitting units 140 are arranged in a two-dimensional matrix of 3 rows and 3 columns.
- the three light emitting units 140 in each element group GP are connected in parallel. Specifically, except for the anode 110 connected to the bus electrode 152, the anodes 110 adjacent in the Y direction are connected to each other via the conductive layer 111.
- the conductive layer 111 contains the same material as the anode 110.
- the light emitting section 140 of the element group GP adjacent to the bus electrode 152 is connected in parallel between the bus electrode 152 and the anode 110 of the other element group GP on the bus electrode 154 side of the element group GP.
- the light emitting section 140 of the adjacent element group GP is connected in parallel between the anode 110 of the element group GP and the bus electrode 154, and the light emitting section 140 of the element group GP between these element groups GP is connected to the element group GP.
- the GP is connected in parallel between the anode 110 of the GP and the anode 110 of another element group GP on the bus electrode 154 side of the element group GP.
- FIG. 19 is a circuit diagram illustrating the light emitting device 10 according to the fourth embodiment, and corresponds to FIG. 15 of the third embodiment.
- the light emitting device 10 according to the present embodiment is the same as the light emitting device 10 according to the third embodiment except for the following points.
- the light emitting device 10 includes a plurality of element groups GS.
- Each element group GS includes a plurality of light emitting units 140 connected in series.
- Each light emitting unit 140 includes a plurality of sub-pixels S connected in parallel.
- the light emitting device 10 includes two element groups GS.
- Each element group GS includes three light emitting units 140 connected in series.
- Each light emitting unit 140 includes four subpixels S connected in parallel.
- the range of the non-light emitting region due to dark spots can be suppressed to a limited range.
- the opened sub-pixel A current can flow through the light emitting unit 140 connected in series to the light emitting unit 140 including the subpixel S connected in parallel to S and the opened subpixel S. That is, the range of the non-light emitting area due to the dark spot is limited to the open sub-pixel S.
- the range of the non-light emitting region due to leakage can be suppressed to a limited range.
- the shorted sub-pixel S A current can be passed through the light emitting unit 140 connected in series to the light emitting unit 140 including the.
- the range of the non-light emitting region due to the dark spot is limited to the shorted subpixel S and the subpixel S connected in parallel to the shorted subpixel S.
- FIG. 20 is a plan view showing an example of the light emitting device 10 shown in FIG.
- FIG. 21 is an enlarged view of the light emitting unit 140 shown in FIG.
- FIG. 22 is a view in which the cathode 130 is removed from FIG.
- FIG. 23 is a diagram in which the organic layer 120 is removed from FIG. 24 is a cross-sectional view taken along the line CC of FIG.
- the example shown in FIG. 20 includes three element groups GS arranged in the X direction.
- Each element group GS includes three light emitting units 140 arranged in the Y direction.
- Each light emitting unit 140 includes four subpixels S arranged in the Y direction. In this manner, the nine light emitting units 140 are arranged in a two-dimensional matrix of 3 rows and 3 columns.
- the light emitting unit 140 includes an anode 110, an organic layer 120, a cathode 130, and a plurality of partition walls 160.
- the plurality of light emitting units 140 are arranged along the Y direction and extend along the X direction.
- the side wall of the partition wall 160 is inclined toward the outside of the partition wall 160 from the lower end to the upper end of the partition wall 160.
- the partition 160 includes an organic insulating material, for example, polyimide.
- the organic layer 120 is divided into a plurality of sub organic layers 120S by a plurality of partition walls 160.
- the plurality of sub organic layers 120S are not connected and are separated from each other. Accordingly, it is possible to prevent moisture that has entered one sub organic layer 120S from propagating to another sub organic layer 120S.
- the cathode 130 has a plurality of sub-cathodes 130S. Adjacent sub-cathodes 130S are separated by barrier ribs 160. Accordingly, it is possible to prevent moisture that has entered one sub-cathode 130S from propagating to another sub-cathode 130S. In the example shown in FIGS. 21 to 23, the plurality of sub-cathodes 130S are connected to each other on the conductive layer 112 side.
- the light emitting unit 140 has a plurality of sub-pixels S. Adjacent sub-pixels S are separated from each other by a partition wall 160. In the sub-pixel S, the anode 110, the sub-organic layer 120S, and the sub-cathode 130S overlap each other, and light is emitted from the sub-organic layer 120S by the voltage between the anode 110 and the sub-cathode 130S.
- the inorganic layer 200 covers the anode 110, the plurality of sub organic layers 120S, the plurality of sub cathodes 130S, and the plurality of partition walls 160.
- the inorganic layer 200 is an ALD film (that is, a film formed by ALD) and has excellent step coverage. With such step coverage, the inorganic layer 200 can be covered even on the inclined side wall of the partition wall 160.
- the anode 110 is formed on the first surface 102 of the substrate 100.
- the partition wall 160 is formed.
- the partition wall 160 can be formed by patterning by photolithography.
- the partition layer 160 divides the organic layer 120 into a plurality of sub organic layers 120S. 24, a part of the organic layer 120 is also deposited on the upper surface of the partition wall 160.
- the cathode 130 is deposited. Due to the partition wall 160, the cathode 130 has sub-cathodes 130S separated from each other. 24, a part of the cathode 130 is also deposited on the upper surface of the partition wall 160.
- the inorganic layer 200 and the protective layer 300 are formed.
- the light emitting unit 140 shown in FIGS. 21 to 24 is manufactured.
- FIG. 25A is a plan view showing the light emitting device 10 according to the fifth embodiment.
- FIG. 25B is an enlarged view of the pixel 142 shown in FIG.
- the light emitting device 10 according to the present embodiment is the same as the light emitting device 10 according to any one of the first to fourth embodiments.
- the light emitting device 10 has an active region AR (light emitting region).
- the shape of the active region AR is a rectangle.
- the active region AR has a plurality of pixels 142 and a light transmitting portion 144.
- the light transmitting portion 144 is a region that does not overlap the light shielding member, specifically, the cathode 130. That is, the translucent part 144 includes a region located between adjacent pixels 142 along the X direction and a region located between adjacent pixels 142 along the Y direction.
- the area of the plurality of cathodes 130 in the total area of the active region AR is preferably 50% or less.
- the pixel 142 has a longitudinal direction and a lateral direction.
- the pixel 142 is a rectangle having a long side and a short side.
- the length L in the longitudinal direction of the pixel 142 is preferably short, specifically, for example, preferably 1 mm or less. When the length L in the longitudinal direction of the pixel 142 is short, even if the pixel 142 cannot emit light due to a dark spot or a leak, the non-light emitting region can be made inconspicuous.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
発光装置(10)は、複数の発光部(140)及び無機層(200)を備えている。各発光部(140)は、陽極(110)、有機層(120)及び陰極(130)を有している。無機層(200)は、複数の発光部(140)に亘って広がっており、複数の発光部(140)を連続して覆っている。このようにして、無機層(200)は、複数の発光部(140)を封止している。各発光部(140)の有機層(120)は、互いに離間している。同様にして、各発光部(140)の陰極(130)は、互いに離間している。
Description
本発明は、発光装置に関する。
近年、発光装置として、有機発光ダイオード(OLED)が開発されている。OLEDは、発光部を有しており、発光部は、第1電極、有機層及び第2電極を有している。有機層は、有機エレクトロルミネッセンスによって光を発する発光層を含んでいる。発光層は、第1電極と第2電極の間の電圧によって光を発する。
OLEDでは、特許文献1に記載されているように、ダークスポットが形成されることがある。特に特許文献1には、第2電極が低仕事関数を有する材料によって構成されている場合、水分又は酸素の侵入によって第2電極が酸化してダークスポットが形成されることについて記載されている。さらに、特許文献1には、ダークスポットは時間の経過とともに広がることについて記載されている。
特許文献1には、ダークスポットの広がりを抑える方法の一例について記載されている。具体的には、特許文献1のOLEDは、第1電極、複数の有機層、複数の第2電極及び隔壁を備えている。隔壁は、第1電極上に位置している。複数の有機層及び複数の第2電極は、隔壁によって互いに隔てられている。
一方、OLEDでは、特許文献2に記載されているように、第1電極と第2電極の間で短絡が生じることがある。特に特許文献2には、製造中の粒子によって、第1電極と第2電極の間の短絡が引き起こされることについて記載されている。
特許文献2には、複数の発光部を直列に接続し、かつ直列に接続された複数の発光部を含む列を並列に接続することで、上述した粒子に対するロバストネスを高めることができることについて記載されている。このような構成においては、いずれかの列のいずれかの発光部が短絡しても、短絡した発光部を含む列のみがその他の列から絶縁されることになる。
上述したように、OLEDでは、ダークスポットが生じることがある。ダークスポットの影響を受ける範囲は、可能な限り狭いことが望ましい。
本発明が解決しようとする課題としては、ダークスポットの影響を受ける範囲を限定的な範囲に抑えることが一例として挙げられる。
請求項1に記載の発明は、
第1陽極と第1陰極との間の第1有機層を含む第1発光部と、
第2陽極と、前記第1陰極から離間した第2陰極との間にあって前記第1有機層から離間した第2有機層を含む第2発光部と、
前記第1陰極に接続した第1導電層と、
前記第2陰極に接続した第2導電層と、
前記第1導電層及び前記第2導電層に接続した導電層と、
前記第1発光部、前記第2発光部及び前記導電層を連続して覆い、前記第1陰極と前記導電層の間で前記第1導電層に接する無機層と、
を備える発光装置である。
第1陽極と第1陰極との間の第1有機層を含む第1発光部と、
第2陽極と、前記第1陰極から離間した第2陰極との間にあって前記第1有機層から離間した第2有機層を含む第2発光部と、
前記第1陰極に接続した第1導電層と、
前記第2陰極に接続した第2導電層と、
前記第1導電層及び前記第2導電層に接続した導電層と、
前記第1発光部、前記第2発光部及び前記導電層を連続して覆い、前記第1陰極と前記導電層の間で前記第1導電層に接する無機層と、
を備える発光装置である。
上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
(実施形態1)
図1は、実施形態1に係る発光装置10を示す平面図である。図2は、図1から陰極130を取り除いた図である。図3は、図2から有機層120、バス電極152及びバス電極154を取り除いた図である。図4は、図1のA-A断面図である。図5は、図1のB-B断面図である。なお、説明のため、図1では、図4及び図5に示した無機層200及び保護層300を示していない。
図1は、実施形態1に係る発光装置10を示す平面図である。図2は、図1から陰極130を取り除いた図である。図3は、図2から有機層120、バス電極152及びバス電極154を取り除いた図である。図4は、図1のA-A断面図である。図5は、図1のB-B断面図である。なお、説明のため、図1では、図4及び図5に示した無機層200及び保護層300を示していない。
図1から図5を用いて発光装置10の概要について説明する。発光装置10は、複数の発光部140及び無機層200を備えている。各発光部140は、陽極110、有機層120及び陰極130を有している。無機層200は、複数の発光部140に亘って広がっており、複数の発光部140を連続して覆っている。このようにして、無機層200は、複数の発光部140を封止している。各発光部140の有機層120は、互いに離間している。同様にして、各発光部140の陰極130は、互いに離間している。
各発光部140の有機層120を互いに離間させ、各発光部140の陰極130を離間させることによって、ダークスポットの影響を受ける範囲を限定的な範囲に抑えることができる。具体的には、ダークスポットは、水分の伝搬によって広がり得る。対照的に、各発光部140の有機層120が互いに離間し、各発光部140の陰極130が互いに離間していると、一の発光部140に侵入した水分が有機層120又は陰極130を経由して他の発光部140に伝搬しないようになる。
発光装置10は、複数の素子群GSを備えている。各素子群GSは、直列に接続された複数の発光部140を含んでいる。複数の素子群GSは、並列に接続されている。
各素子群GS内で複数の発光部140を直列に接続し、かつ複数の素子群GSを並列に接続することで、ダークスポットによる非発光領域の範囲を限定的な範囲に抑えることができる。具体的には、図6を用いて後述するように、いずれかの素子群GSにおいて一の発光部140にダークスポットが生じてこの発光部140が開放したとしても、開放した発光部140を含む素子群GSに並列に接続した素子群GSには、電流を流すことができる。つまり、ダークスポットによる非発光領域の範囲は、開放した発光部140及び開放した発光部140に直列に接続した発光部140に限定される。
各素子群GS内で複数の発光部140を直列に接続し、かつ複数の素子群GSを並列に接続することで、リークによる非発光領域の範囲を限定的な範囲に抑えることができる。具体的には、図7を用いて後述するように、いずれかの素子群GSにおいて一の発光部140にリークが生じてこの発光部140が短絡したとしても、短絡した発光部140に直列に接続する発光部140及び短絡した発光部140を含む素子群GSに並列に接続した素子群GSには、電流を流すことができる。つまり、ダークスポットによる非発光領域の範囲は、短絡した発光部140に限定される。
次に、図1から図3を用いて、発光装置10の平面レイアウトの詳細について説明する。発光装置10は、導電層112、複数の発光部140、バス電極152及びバス電極154を備えている。図1から図3において、X方向は、バス電極152及びバス電極154の配列方向として規定されており、Y方向は、バス電極152及びバス電極154の延伸方向として規定されている。Y方向は、X方向に交わっており、より具体的にはX方向に直交している。バス電極152及びバス電極154のそれぞれは、導電層である。
複数の発光部140は、X方向及びY方向に沿って2次元マトリクス状に配置されている。特に図1から図3に示す例では、複数の発光部140は、バス電極152とバス電極154の間で3行3列の2次元マトリクス状に配置された9つの発光部140を含んでいる。9つの発光部140は、3つの素子群GSに分類されている。3つの素子群GSは、Y方向に沿って並んでおり、各素子群GSは、X方向に並ぶ3つの発光部140を含んでいる。
各素子群GS内の発光部140(例えば、図1から図3の第1発光部140(1)と第3発光部140(3)又は第2発光部140(2)と第4発光部140(4))は、直列に接続している。
3つの素子群GSは、並列に接続されている。特に、各素子群GS内でバス電極154に隣接する発光部140は、陽極110を介してバス電極152に接続しており、各素子群GS内でバス電極152に隣接する発光部140(例えば、図1から図3の第1発光部140(1)又は第2発光部140(2))は、導電層112を介して導電層112に接続している。
図1から図3に示す例では、図3に示すように、Y方向に隣り合う陽極110は、繋がっておらず、互いに離間している。これによって、陽極110と重なる領域の面積を小さくすることができ、発光装置10の光線透過率を高くすることができる。
同様にして、Y方向に隣り合う導電層112は、繋がっておらず、互いに離間している。これによって、導電層112と重なる領域の面積を小さくすることができ、発光装置10の光線透過率を高くすることができる。
各発光部140は、画素142を有している。画素142では、陽極110、有機層120及び陰極130が重なっており、陽極110と陰極130の間の電圧によって有機層120から光が発せられる。図1に示す例において、画素142の形状は矩形となっている。
図1から図3に示す例では、発光装置10は、遮光部材(具体的には、陰極130、バス電極152及びバス電極154)と重なっていない領域において透光部を有している。つまり、発光装置10は、X方向に沿って隣り合う発光部140(例えば、図1から図3の第1発光部140(1)と第3発光部140(3)又は第2発光部140(1)と第4発光部140(2))の間及びY方向に沿って隣り合う発光部140(例えば、図1から図3の第1発光部140(1)と第2発光部140(2)又は第3発光部140(3)と第4発光部140(4))の間に透光部を有している。
次に、図4を用いて、発光装置10の断面構造の詳細について説明する。発光装置10は、基板100、陽極110、導電層112、有機層120、陰極130、バス電極152、バス電極154、無機層200及び保護層300を備えている。
基板100は、透光性を有しており、支持基板100a及びバリア層100bを有している。基板100は、第1面102及び第2面104を有している。陽極110、導電層112、有機層120、陰極130、バス電極152、バス電極154、無機層200及び保護層300は、基板100の第1面102上に位置している。第2面104は、第1面102の反対側にある。支持基板100aは、第2面104側に位置し、バリア層100bは、第1面102側に位置している。
一例において、支持基板100aは、ガラス基板である。他の例において、支持基板100aは、樹脂基板であってもよく、具体的には、PEN(ポリエチレンナフタレート)基板(厚さ:例えば100μm)や透明ポリイミド膜(厚さ:例えば20μm)であってもよい。
バリア層100bは、無機層、具体的には例えばSiON膜である。バリア層100bは、支持基板100aからの水分を遮るために設けられている。無機層は、例えば、スパッタ膜(つまり、スパッタにより形成された膜)、CVD(Chemical Vapor Deposition)膜(つまり、CVDにより形成された膜)又はALD(Atomic Layer Deposition)膜(つまり、ALDにより形成された膜)である。一例において、スパッタにより形成した層の上にALDにより形成した層を積層してもよい。さらに、無機層の上に有機層を介して別の無機層をさらに積層してもよい。この有機層は、平滑化のために設けられている。一例において、有機層は、有機材料(例えば、エポキシ樹脂、アクリル樹脂又はポリイミド樹脂)をスリットコートでコーティングし、この有機材料を焼成することで形成することができる。有機層上の無機層上に別の有機層及び別の無機層をさらに積層してもよい。言い換えると、バリア層100bは、交互に積層された複数の無機層及び複数の有機層を含んでいてもよい。
陽極110は、透光性を有している。陽極110は、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)及びAZO(Aluminum doped Zinc Oxide)の少なくとも一つを含んでいる。
導電層112は、透光性を有している。導電層112は、陽極110と同一の材料を含んでいる。つまり、導電層112は、陽極110と同一の工程で形成することができる。ただし、導電層112は、陽極110と異なる材料を含んでいてもよい。
有機層120は、有機エレクトロルミネッセンスによって光を発する。有機層120は、例えば、正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層を含んでいる。
陰極130は、遮光性、具体的には光反射性を有している。陰極130は、例えば、Al、Ag及びMgの少なくとも一つ又はこれらの合金を含んでいる。
バス電極152は、導電性を有している。バス電極152は、例えば、MAM(Mo/Al/Mo)にすることができる。
バス電極154は、導電性を有している。バス電極154は、バス電極152と同一の材料を含んでいる。つまり、バス電極154は、バス電極152と同一の工程で形成することができる。ただし、バス電極154は、バス電極152と異なる材料を含んでいてもよい。
無機層200は、ALD膜(つまり、ALDにより形成された膜)である。無機層200は、基板100の第1面102、陽極110、有機層120、陰極130、バス電極152及びバス電極154を封止するために設けられている。無機層200は、例えば、SiNx層、SiON層、Al2O3層及びTiO2層からなる群から選択される少なくとも1つを含んでおり、特に、これらの積層膜を含んでいてもよい。なお、無機層200は、CVD膜(つまり、CVDにより形成された膜)であってもよい。
保護層300は、外部の衝撃から無機層200を保護するために設けられている。保護層300は、例えば、樹脂層にすることができる。
発光装置10は、複数の発光部140を備えている。各発光部140は、陽極110、有機層120及び陰極130を有している。各発光部140の陽極110は、X方向において互いに離間しており、各発光部140の有機層120は、X方向において互いに離間しており、各発光部140の陰極130は、X方向において互いに離間している。これによって、水分が一の発光部140から他の発光部140へX方向に沿って伝搬することが防止される。
各発光部140は、画素142を有している。画素142では、陽極110、有機層120及び陰極130が重なっており、陽極110と陰極130の間の電圧によって有機層120から光が発せられる。図4に示す例では、有機層120から発せられた光は、陽極110を透過して基板100から出力される。ただし、他の例において、有機層120から発せられた光は、陰極130を透過して保護層300から出力されてもよい。この場合、陰極130は、透光性を有している必要がある。
バス電極152とバス電極154の間の複数の発光部140は、直列に接続されている。具体的には、バス電極152に隣接する発光部140の陽極110は、バス電極152に接続している。バス電極154に隣接する発光部140の陰極130は、導電層112を介してバス電極154に接続している。これらの発光部140の間に位置する発光部140の陽極110及び陰極130は、それぞれ、バス電極152側の発光部140の陰極130及びかつバス電極154側の発光部140の陽極110に接続している。
各発光部140において、陽極110のバス電極154側端部は、有機層120によって覆われ、有機層120のバス電極152側端部は、陽極110上に位置し、かつ陰極130から露出し、有機層120のバス電極154側端部は、陰極130によって覆われている。このような構造によって、陽極110と陰極130の直接の接触、つまり、陽極110と陰極130の短絡が防止される。
図4に示す例では、バス電極152を挟んで隣り合う発光部140は、互いに共通の陽極110を共有しており、互いに共通のバス電極152に接続している。これによって、バス電極152を挟んで隣り合う発光部140の間隔を小さくすることができる。
バス電極154に隣接する発光部140を除く一の発光部140の有機層120は、当該一の発光部140の陽極110と当該一の発光部140のバス電極154側の他の発光部140の陽極110に跨って広がっており、当該他の発光部140の陽極110に接している。さらに、当該一の発光部140の有機層120の一部は、当該一の発光部140の陽極110と当該他の発光部140の陽極110の間の隙間に埋め込まれており、特に図4に示す例では、有機層120のこの一部は基板100の第1面102に接している。有機層120のこのような構造によって、陰極130の表面の段差を小さくすることができ、無機層200による陰極130の被覆を容易にする。さらに、有機層120の上述した構造によって、有機層120が陽極110のバス電極154側端部を確実に覆うことができるようになり、陽極110と陰極130の直接の接触、つまり、陽極110と陰極130の短絡が防止される。
これに対して、バス電極154に隣接する発光部140の有機層120は、当該発光部140の陽極110と導電層112に跨って広がっており、導電層112に接している。さらに、当該発光部140の有機層120の一部は、陽極110と導電層112の間の隙間に埋め込まれており、特に図4に示す例では、有機層120のこの一部は基板100の第1面102に接している。有機層120のこのような構造によって、陰極130の表面の段差を小さくすることができ、無機層200による陰極130の被覆を容易にする。さらに、有機層120の上述した構造によって、有機層120が陽極110のバス電極154側端部を確実に覆うことができるようになり、陽極110と陰極130の直接の接触、つまり、陽極110と陰極130の短絡が防止される。
無機層200は、複数の発光部140に亘って広がっており、特に、バス電極152からバス電極154にかけて、バス電極152、複数の発光部140、導電層112及びバス電極154を連続して覆っている。
特に図4に示す例では、バス電極152に接続する陽極110は、バス電極152と重なる領域を含み、バス電極152は、当該陽極110の当該領域の反対側で無機層200によって覆われている。さらに、導電層112は、バス電極154と重なる領域を含み、バス電極154は、導電層112の当該領域の反対側で無機層200によって覆われている。
バス電極152に隣接する発光部140を除く一の発光部140の陽極110は、当該一の発光部140のバス電極152側の他の発光部140の陰極130と重なる領域を含み、当該他の発光部140の陰極130は、当該陽極110の当該領域の反対側で無機層200によって覆われている。さらに、導電層112は、バス電極152に隣接する発光部140の陰極130と重なる領域を含み、当該陰極130は、導電層112の当該領域の反対側で無機層200によって覆われている。
無機層200は、一の発光部140の陰極130と当該一の発光部140のバス電極154側の他の発光部140の有機層120の間で陽極110に接している。つまり、当該一の発光部140の陰極130と当該他の発光部140の有機層120は、無機層200の一部を挟んで互いに隔てられている。これによって、当該一の発光部140の陰極130と当該他の発光部140の有機層120の間での水分の伝搬が防止される。
さらに、無機層200は、バス電極152に隣接する発光部140の有機層120とバス電極152の間で陽極110に接している。つまり、当該発光部140の有機層120とバス電極152は、無機層200の一部を挟んで互いに隔てられている。これによって、当該発光部140の有機層120とバス電極152の間での水分の伝搬が防止される。
さらに、無機層200は、バス電極154に隣接する発光部140の陰極130とバス電極154の間で導電層112に接している。つまり、当該発光部140の陰極130とバス電極154は、無機層200の一部を挟んで互いに隔てられている。これによって、当該発光部140の陰極130とバス電極154の間での水分の伝搬が防止される。
次に、図5を用いて、発光装置10の断面構造の詳細について説明する。
各発光部140の陽極110は、Y方向において互いに離間しており、各発光部140の有機層120は、Y方向において互いに離間しており、各発光部140の陰極130は、Y方向において互いに離間している。これによって、水分が一の発光部140から他の発光部140へY方向に沿って伝搬することが防止される。
各発光部140において、陽極110の両端は、有機層120によって覆われている。このような構造によって、陽極110と陰極130の直接の接触、つまり、陽極110と陰極130の短絡が防止される。
無機層200は、複数の発光部140に亘って広がっており、複数の発光部140を連続して覆っている。
無機層200は、一の発光部140の有機層120と他の発光部140の有機層120の間で基板100の第1面102に接している。つまり、当該一の発光部140の有機層120と当該他の発光部140の有機層120は、無機層200の一部を挟んで互いに隔てられている。これによって、当該一の発光部140の有機層120と当該他の発光部140の有機層120の間での水分の伝搬が防止される。
次に、図1から図5に示した発光装置10を製造する方法の一例について説明する。
まず、基板100の第1面102上に陽極110及び導電層112を形成する。陽極110及び導電層112は、フォトリソグラフィによるパターニングによって形成することができる。特に陽極110及び導電層112が同一の材料を含む場合、陽極110及び導電層112は、同一の工程で形成することができる。
次いで、バス電極152及びバス電極154を形成する。バス電極152及びバス電極154は、パターニングによって形成することができる。特にバス電極152及びバス電極154が同一の材料を含む場合、バス電極152及びバス電極154は。同一の工程で形成することができる。
次いで、有機層120を形成する。有機層120は、塗布、具体的にはインクジェット印刷により形成することができ、又は蒸着、具体的にはメタルマスクを用いた真空蒸着により形成することができる。
次いで、陰極130を形成する。陰極130は、蒸着、具体的にはメタルマスクを用いた真空蒸着により形成することができる。
次いで、無機層200を形成する。一例において、無機層200は、ALDにより形成することができる。その他の例において、無機層200は、CVDにより形成することができる。
次いで、保護層300を形成する。
このようにして、図1から図5に示した発光装置10が製造される。
図6は、図1から図5に示した発光装置10の動作の第1例を説明するための図である。
図6に示す例では、発光装置10は、並列に接続された2つの素子群GSを備えている。各素子群GSは直列に接続された2つの発光部140を含んでいる。このようにして、4つの発光部140が2行2列のマトリクス状に配置されている。各発光部140の抵抗はRである。バス電極152とバス電極154の電圧はVである。
図6(a)では、発光装置10は、正常に動作している。特に図6(a)に示す例では、第1行に位置する2つの発光部140には、V/2Rの電流が流れ、第2行に位置する2つの発光部140にも、V/2Rの電流が流れる。
図6(b)では、第1行第1列に位置する発光部140にダークスポットが発生している。ダークスポットの発生によって、この発光部140は、開放する。発光部140の開放によって、開放した発光部140に直列に接続した発光部140には電流が流れなくなるものの、開放した発光部140を含む素子群GSに並列に接続した素子群GSには、ダークスポット発生前の電流と同じ電流(V/2R)が流れる。
図7は、図1から図5に示した発光装置10の動作の第2例を説明するための図である。図7に示す例は、以下の点を除いて、図6に示した例と同様である。
図7(a)では、発光装置10は、正常に動作している。特に図7(a)に示す例では、第1行に位置する2つの発光部140には、電流I=V/2Rが流れ、第2行に位置する2つの発光部140にも、電流I=V/2Rが流れる。
図7(b)では、第1行第1列に位置する発光部140にリークが発生している。リークの発生によって、この発光部140は、短絡する。発光部140のリークによって、短絡した発光部140に直列に接続した発光部140に流れる電流は増加するものの、いずれの発光部140にも電流が流れる。特に図7(b)に示す例では、第1行に位置する各発光部140に流れる電流は、V/Rである。一方、第2行に位置する発光部140に流れる電流は、V/2Rのままである。
以上、本実施形態によれば、ダークスポットの影響を受ける範囲を限定的な範囲に抑えることができる。
さらに、本実施形態によれば、ダークスポット又はリークによる非発光領域の範囲を限定的な範囲に抑えることができる。
(実施形態2)
図8は、実施形態2に係る発光装置10を示す平面図であり、実施形態1の図1に対応する。図9は、図8から陰極130を取り除いた図であり、実施形態1の図2に対応する。図10は、図9から有機層120、バス電極152及びバス電極154を取り除いた図であり、実施形態1の図3に対応する。図11は、図8のA-A断面図であり、実施形態1の図4に対応する。
図8は、実施形態2に係る発光装置10を示す平面図であり、実施形態1の図1に対応する。図9は、図8から陰極130を取り除いた図であり、実施形態1の図2に対応する。図10は、図9から有機層120、バス電極152及びバス電極154を取り除いた図であり、実施形態1の図3に対応する。図11は、図8のA-A断面図であり、実施形態1の図4に対応する。
図8から図11に示す例では、Y方向に沿って並ぶ複数の発光部140が並列に接続されている。複数の発光部140を並列に接続することで、ダークスポットによる非発光領域の範囲を限定的な範囲に抑えることができる。具体的には、図12を用いて後述するように、いずれかの発光部140にダークスポットが生じてこの発光部140が開放したとしても、開放した発光部140に並列に接続した発光部140には、電流を流すことができる。つまり、ダークスポットによる非発光領域の範囲は、開放した発光部140に限定される。
さらに、図8から図11に示す例では、X方向に沿って隣り合う発光部140が直列に接続されていない。X方向に沿って隣り合う発光部140を直列に接続しないことで、リークによる非発光領域の範囲を限定的な範囲に抑えることができる。具体的には、図13を用いて後述するように、一方の発光部140にリークが生じてこの発光部140が短絡したとしても、もう一方の発光部140には電流を流すことができる。つまり、リークによる非発光領域の範囲は、短絡した発光部140に限定される。
図8から図10を用いて、発光装置10の平面レイアウトの詳細について説明する。
バス電極152とバス電極154は、X方向に沿って交互に並んでいる。バス電極152とバス電極154の間では、複数の発光部140がY方向に沿って並んでいる。バス電極152とバス電極154の間の複数の発光部140は、並列に接続されている。
図8から図10に示す例では、図10に示すように、Y方向に隣り合う陽極110は、繋がっておらず、互いに離間している。これによって、陽極110と重なる領域の面積を小さくすることができ、発光装置10の光線透過率を高くすることができる。
同様にして、Y方向に隣り合う導電層112は、繋がっておらず、互いに離間している。これによって、導電層112と重なる領域の面積を小さくすることができ、発光装置10の光線透過率を高くすることができる。
図11を用いて、発光装置10の断面構造の詳細について説明する。
バス電極152を挟んで隣り合う発光部140は、互いに共通の陽極110を共有しており、互いに共通のバス電極152に接続している。これによって、バス電極152を挟んで隣り合う発光部140の間隔を小さくすることができる。
バス電極154を挟んで隣り合う発光部140の陰極130は、互いに共通の導電層112を介して、互いに共通のバス電極152に接続している。これによって、バス電極154を挟んで隣り合う発光部140の間隔を小さくすることができる。
図12は、図8から図11に示した発光装置10の動作の第1例を説明するための図である。
図12に示す例では、4つの発光部140が2行2列のマトリクス状に配置されている。具体的には、2つのバス電極154の間に1つのバス電極152が配置されている。4つの発光部140のうちの2つの発光部140は、バス電極152と一方のバス電極154の間で並列に接続されている。4つの発光部140のうちの残り2つの発光部140は、バス電極152ともう一方のバス電極154の間で並列に接続されている。各発光部140の抵抗はRである。バス電極152とバス電極154の電圧はVである。
図12(a)では、発光装置10は、正常に動作している。特に図12(a)に示す例では、各発光部140には、電流I=V/Rが流れる。
図12(b)では、第1行第1列に位置する発光部140にダークスポットが発生している。ダークスポットの発生によって、この発光部140は、開放する。発光部140の開放によって、開放した発光部140には電流が流れなくなるものの、その他の発光部140には、ダークスポット発生前の電流と同じ電流(V/R)が流れる。
図13は、図8から図11に示した発光装置10の動作の第2例を説明するための図である。図13に示す例は、以下の点を除いて、図12に示した例と同様である。
図13(a)では、発光装置10は、正常に動作している。特に図13(a)に示す例では、各発光部140には、電流I=V/Rが流れる。
図13(b)では、第1行第1列に位置する発光部140にリークが発生している。リークの発生によって、この発光部140は、短絡する。発光部140の短絡によって、短絡した発光部140に並列に接続した発光部140には電流が流れなくなるものの、これらの発光部140に直列に接続していない発光部140には、リーク発生前の電流と同じ電流(V/R)が流れる。
図14は、図8の変形例を示す図である。図14に示す発光装置10は、以下の点を除いて、図8から図11に示した発光装置10と同様である。
Y方向に沿って隣り合う陽極110は、導電層111を介して互いに接続している。導電層111は、陽極110と同一の材料を含んでいる。Y方向に沿って隣り合う陽極110の間において、バス電極152は、導電層111と重なっている。バス電極152は、基板100に対してよりも導電層111に対して高い密着性を有している。このような密着性によって、バス電極152の剥がれを防止することができる。特に図14に示す例では、導電層111の幅は、バス電極152の幅よりも広くなっており、Y方向に沿って隣り合う陽極110の間でバス電極152の下面全体が導電層111に接することができるようになっている。これによって、バス電極152を導電層111に強固に密着させることができる。
Y方向に沿って隣り合う導電層112は、導電層113を介して互いに接続している。導電層113は、導電層112と同一の材料を含んでいる。Y方向に沿って隣り合う導電層112の間において、バス電極154は、導電層113と重なっている。バス電極154は、基板100に対してよりも導電層113に対して高い密着性を有している。このような密着性によって、バス電極154の剥がれを防止することができる。特に図14に示す例では、導電層113の幅は、バス電極154の幅よりも広くなっており、Y方向に沿って隣り合う導電層112の間でバス電極154の下面全体が導電層113に接することができるようになっている。これによって、バス電極154を導電層113に強固に密着させることができる。
(実施形態3)
図15は、実施形態3に係る発光装置10を示す回路図である。本実施形態に係る発光装置10は、以下の点を除いて、実施形態1に係る発光装置10と同様である。
図15は、実施形態3に係る発光装置10を示す回路図である。本実施形態に係る発光装置10は、以下の点を除いて、実施形態1に係る発光装置10と同様である。
発光装置10は、複数の群Gを備えている。各群Gは、直列に接続された複数の素子群GPを含んでいる。各素子群GPは、並列に接続された複数の発光部140を含んでいる。特に図15に示す例では、発光装置10は、2つの群Gを備えている。各群Gは、直列に接続された3つの素子群GPを含んでいる。各素子群GPは、並列に接続された4つの発光部140を含んでいる。
各素子群GP内で複数の発光部140を並列に接続し、かつ複数の素子群GPを直列に接続することで、ダークスポットによる非発光領域の範囲を限定的な範囲に抑えることができる。具体的には、図16を用いて後述するように、いずれかの素子群GPにおいて一の発光部140にダークスポットが生じてこの発光部140が開放したとしても、開放した発光部140に並列に接続した発光部140及び開放した発光部140を含む素子群GPに直列に接続した素子群GPには、電流を流すことができる。つまり、ダークスポットによる非発光領域の範囲は、開放した発光部140に限定される。
さらに、各素子群GP内で複数の発光部140を並列に接続し、かつ各素子群GPを直列に接続することで、リークによる非発光領域の範囲を限定的な範囲に抑えることができる。具体的には、図17を用いて後述するように、いずれかの素子群GPにおいて一の発光部140にリークが生じてこの発光部140が短絡したとしても、短絡した発光部140を含む素子群GPに直列に接続した素子群GPには、電流を流すことができる。つまり、ダークスポットによる非発光領域の範囲は、短絡した発光部140及び短絡した発光部140に並列に接続した発光部140に限定される。
図16は、図15に示した発光装置10の動作の第1例を説明するための図である。各発光部140の抵抗はRである。バス電極152とバス電極154の電圧はVである。
図16(a)では、発光装置10は、正常に動作している。特に図16(a)に示す例では、各発光部140にV/3Rの電流が流れる。
図16(b)では、第1行第1列に位置する素子群GPのうちの一の発光部140にダークスポットが生じている。ダークスポットによって、この発光部140は開放する。発光部140の開放によって第1行第1列に位置する素子群GPの合成抵抗が増加するものの、開放した発光部140を除いて各発光部140には電流が流れる。具体的には、図16(b)に示す例では、第1行第1列に位置する素子群GPにおいて、開放した発光部140を除く3つの発光部140のそれぞれには4V/10Rの電流が流れ、第1行第2列及び第1行第3列のそれぞれに位置する素子群GPにおいて、各発光部140に3V/10Rの電流が流れる。一方、第2行に位置する各発光部140に流れる電流は、V/3Rのままである。
図17は、図15に示した発光装置10の動作の第2例を説明するための図である。図17に示す例は、以下の点を除いて、図16に示した例と同様である。
図17(a)では、発光装置10は、正常に動作している。特に図17(a)に示す例では、各発光部140にV/3Rの電流が流れる。
図17(b)では、第1行第1列に位置する素子群GPのうちの一の発光部140にリークが生じている。リークによって、この発光部140は短絡する。発光部140の短絡によって、短絡した発光部140を含む素子群GPに直列に接続した素子群GPに流れる電流は増加するものの、短絡した発光部140に並列に接続した発光部140を除いて、いずれの発光部140にも電流が流れる。具体的には、図17(b)に示す例では、第1行第2列及び第1行第3列のそれぞれに位置する素子群GPにおいて、各発光部140にV/2Rの電流が流れる。一方、第2行に位置する各発光部140に流れる電流は、V/3Rのままである。
図18は、図15に示した発光装置10の群Gの一例を示す平面図である。
図18に示す例では、群Gは、X方向に並ぶ3つの素子群GPを含んでいる。各素子群GPは、Y方向に並ぶ3つの発光部140を含んでいる。このようにして、9つの発光部140が3行3列の2次元マトリクス状に配置されている。
各素子群GP内の3つの発光部140は、並列に接続している。具体的には、バス電極152に接続する陽極110を除いて、Y方向に沿って隣り合う陽極110は、導電層111を介して互いに接続している。導電層111は、陽極110と同一の材料を含んでいる。バス電極152に隣接する素子群GPの発光部140は、バス電極152と当該素子群GPのバス電極154側の他の素子群GPの陽極110との間で並列に接続され、バス電極154に隣接する素子群GPの発光部140は、当該素子群GPの陽極110とバス電極154の間で並列に接続され、これらの素子群GPの間の素子群GPの発光部140は、当該素子群GPの陽極110と当該素子群GPのバス電極154側の他の素子群GPの陽極110の間で並列に接続されている。
(実施形態4)
図19は、実施形態4に係る発光装置10を示す回路図であり、実施形態3の図15に対応する。本実施形態に係る発光装置10は、以下の点を除いて、実施形態3に係る発光装置10と同様である。
図19は、実施形態4に係る発光装置10を示す回路図であり、実施形態3の図15に対応する。本実施形態に係る発光装置10は、以下の点を除いて、実施形態3に係る発光装置10と同様である。
発光装置10は、複数の素子群GSを備えている。各素子群GSは、直列に接続された複数の発光部140を含んでいる。各発光部140は、並列に接続された複数のサブ画素Sを含んでいる。特に図15に示す例では、発光装置10は、2つの素子群GSを備えている。各素子群GSは、直列に接続された3つの発光部140を含んでいる。各発光部140は、並列に接続された4つのサブ画素Sを含んでいる。
各発光部140内で複数のサブ画素Sを並列に接続し、かつ複数の発光部140を直列に接続することで、ダークスポットによる非発光領域の範囲を限定的な範囲に抑えることができる。具体的には、図16を用いて説明した例と同様にして、いずれかの発光部140において一のサブ画素Sにダークスポットが生じてこのサブ画素Sが開放したとしても、開放したサブ画素Sに並列に接続したサブ画素S及び開放したサブ画素Sを含む発光部140に直列に接続した発光部140には、電流を流すことができる。つまり、ダークスポットによる非発光領域の範囲は、開放したサブ画素Sに限定される。
さらに、各発光部140内で複数のサブ画素Sを並列に接続し、かつ発光部140を直列に接続することで、リークによる非発光領域の範囲を限定的な範囲に抑えることができる。具体的には、図17を用いて説明した例と同様にして、いずれかの発光部140において一のサブ画素Sにリークが生じてこのサブ画素Sが短絡したとしても、短絡したサブ画素Sを含む発光部140に直列に接続した発光部140には、電流を流すことができる。つまり、ダークスポットによる非発光領域の範囲は、短絡したサブ画素S及び短絡したサブ画素Sに並列に接続したサブ画素Sに限定される。
図20は、図19に示した発光装置10の一例を示す平面図である。図21は、図20に示した発光部140を拡大した図である。図22は、図21から陰極130を取り除いた図である。図23は、図22から有機層120を取り除いた図である。図24は、図21のC-C断面図である。
図20に示す例では、X方向に並ぶ3つの素子群GSを備えている。各素子群GSは、Y方向に並ぶ3つの発光部140を含んでいる。各発光部140は、Y方向に並ぶ4つのサブ画素Sを含んでいる。このようにして、9つの発光部140が3行3列の2次元マトリクス状に配置されている。
図21から図24を用いて発光部140の詳細について説明する。発光部140は、陽極110、有機層120、陰極130及び複数の隔壁160を有している。
図21から図23に示すように、複数の発光部140は、Y方向に沿って並び、X方向に沿って延びている。図24に示すように、隔壁160の側壁は、隔壁160の下端から上端に向かうにつれて隔壁160の外側に向けて傾いている。隔壁160は、有機絶縁材料、例えばポリイミドを含んでいる。
有機層120は、複数の隔壁160によって複数のサブ有機層120Sに分断されている。複数のサブ有機層120Sは、繋がっておらず、互いに離間している。これによって、一のサブ有機層120Sに侵入した水分が他のサブ有機層120Sに伝搬することを防ぐことができる。
陰極130は、複数のサブ陰極130Sを有している。隣り合うサブ陰極130Sは、隔壁160によって隔てられている。これによって、一のサブ陰極130Sに侵入した水分が他のサブ陰極130Sに伝搬することを防ぐことができる。図21から図23に示す例では、複数のサブ陰極130Sは、導電層112側で互いに繋がっている。
発光部140は、複数のサブ画素Sを有している。隣り合うサブ画素Sは、隔壁160によって互いに隔てられている。サブ画素Sでは、陽極110、サブ有機層120S及びサブ陰極130Sが重なっており、陽極110とサブ陰極130Sの間の電圧によってサブ有機層120Sから光が発せられる。
無機層200は、陽極110、複数のサブ有機層120S、複数のサブ陰極130S及び複数の隔壁160を覆っている。特に図24に示す例では、無機層200は、ALD膜(すなわち、ALDにより形成された膜)であり、段差被覆性に優れている。このような段差被覆性によって、無機層200は隔壁160の傾いた側壁であっても覆うことができる。
次に、図21から図24に示した発光部140を製造する方法の一例を説明する。
まず、基板100の第1面102上に陽極110を形成する。
次いで、隔壁160を形成する。隔壁160は、フォトリソグラフィによるパターニングによって形成することができる。
次いで、有機層120を堆積する。隔壁160によって、有機層120は、複数のサブ有機層120Sに分断される。なお、図24に示すように、有機層120の一部は、隔壁160の上面上にも堆積される。
次いで、陰極130を堆積する。隔壁160によって、陰極130は、互いに分断されたサブ陰極130Sを有するようになる。なお、図24に示すように、陰極130の一部は、隔壁160の上面上にも堆積される。
次いで、無機層200及び保護層300を形成する。
このようにして、図21から図24に示した発光部140が製造される。
(実施形態5)
図25(a)は、実施形態5に係る発光装置10を示す平面図である。図25(b)は、図25(a)に示した画素142を拡大した図である。本実施形態に係る発光装置10は、実施形態1から実施形態4までのいずれかに係る発光装置10と同様である。
図25(a)は、実施形態5に係る発光装置10を示す平面図である。図25(b)は、図25(a)に示した画素142を拡大した図である。本実施形態に係る発光装置10は、実施形態1から実施形態4までのいずれかに係る発光装置10と同様である。
図25(a)に示すように、発光装置10は、活性領域AR(発光領域)を有している。図25(a)に示す例では、活性領域ARの形状は矩形である。活性領域ARは、複数の画素142及び透光部144を有している。透光部144は、遮光部材、具体的には、陰極130と重なっていない領域である。つまり、透光部144は、X方向に沿って隣り合う画素142の間に位置する領域及びY方向に沿って隣り合う画素142の間に位置する領域を含んでいる。
発光装置10が透光性を有する必要がある場合、活性領域ARの全面積のうち複数の陰極130の面積は、50%以下であることが好ましい。
図25(b)に示すように、画素142は、長手方向及び短手方向を有している。特に図25(b)に示す例では、画素142は、長辺及び短辺を有する矩形である。画素142の長手方向の長さLは短いことが好ましく、具体的には、例えば1mm以下であることが好ましい。画素142の長手方向の長さLが短いと、仮に、ダークスポット又はリークによって画素142が光を発することができなくなっても、非発光領域を目立たせないようにすることができる。
以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
この出願は、2016年12月13日に出願された日本出願特願2016-241026号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
Claims (16)
- 第1陽極と第1陰極との間の第1有機層を含む第1発光部と、
第2陽極と、前記第1陰極から離間した第2陰極との間にあって前記第1有機層から離間した第2有機層を含む第2発光部と、
前記第1陰極に接続した第1導電層と、
前記第2陰極に接続した第2導電層と、
前記第1導電層及び前記第2導電層に接続した導電層と、
前記第1発光部、前記第2発光部及び前記導電層を連続して覆い、前記第1陰極と前記導電層の間で前記第1導電層に接する無機層と、
を備える発光装置。 - 請求項1に記載の発光装置において、
前記第1発光部及び前記第2発光部は、並列に接続されている発光装置。 - 請求項1又は2に記載の発光装置において、
前記第1導電層は、前記導電層と重なる領域を含み、
前記導電層は、前記第1導電層の前記領域の反対側で前記無機層によって覆われている発光装置。 - 請求項1から3までのいずれか一項に記載の発光装置において、
前記第1導電層は、前記第1陰極と重なる領域を含み、
前記第1陰極は、前記第1導電層の前記領域の反対側で前記無機層によって覆われている発光装置。 - 請求項1から4までのいずれか一項に記載の発光装置において、
前記第1導電層は、前記第1陽極と同一の材料を含む発光装置。 - 請求項1から5までのいずれか一項に記載の発光装置において、
前記第1陽極から離間した第3陽極と、前記第1陽極と接続する第3陰極との間の第3有機層を含む第3発光部を備える発光装置。 - 請求項1から6までのいずれか一項に記載の発光装置において、
前記第1有機層は、前記第1陽極と前記導電層に跨って広がり、前記導電層に接している発光装置。 - 請求項1から7までのいずれか一項に記載の発光装置において、
前記第1陽極及び前記第2陽極に接続し、前記第1陽極及び前記第2陽極と同一の材料を含む第3導電層を備える発光装置。 - 請求項1から8までのいずれか一項に記載の発光装置において、
前記第1発光部は、
隔壁と、
前記隔壁によって互いに隔てられた複数のサブ画素と、
を有し、
前記無機層は、前記複数のサブ画素のそれぞれを覆っている発光装置。 - 請求項1から9までのいずれか一項に記載の発光装置において、
前記第1導電層及び前記第2導電層に接続し、前記第1導電層及び前記第2導電層と同一の材料を含む第4導電層を備える発光装置。 - 請求項1から9までのいずれか一項に記載の発光装置において、
前記第1導電層及び前記第2導電層は、互いに離間している発光装置。 - 請求項1から11までのいずれか一項に記載の発光装置において、
前記無機層は、ALD膜である発光装置。 - 請求項1から12までのいずれか一項に記載の発光装置において、
前記第1発光部の画素は、長手方向及び短手方向を有し、
前記第1発光部の画素の長手方向の長さは1mm以下である発光装置。 - 請求項1から13までのいずれか一項に記載の発光装置において、
前記第1発光部及び前記第2発光部の間に位置する第1透光部を備える発光装置。 - 請求項6に記載の発光装置において、
前記第1発光部及び前記第3発光部の間に位置する第2透光部を備える発光装置。 - 請求項1から15までのいずれか一項に記載の発光装置において、
前記第1発光部及び前記第2発光部を含む複数の発光部と、透光部と、を含む活性領域を備え、
前記活性領域は、前記第1陰極及び前記第2陰極を含む複数の陰極を含み、
前記活性領域の全面積のうち前記複数の陰極の面積が50%以下である発光装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/469,491 US11094915B2 (en) | 2016-12-13 | 2017-12-11 | Light emitting device including bus electrodes configured in parallel to directly contact OLED electrodes |
JP2018556660A JP6701383B2 (ja) | 2016-12-13 | 2017-12-11 | 発光装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016241026 | 2016-12-13 | ||
JP2016-241026 | 2016-12-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018110491A1 true WO2018110491A1 (ja) | 2018-06-21 |
Family
ID=62558813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/044336 WO2018110491A1 (ja) | 2016-12-13 | 2017-12-11 | 発光装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11094915B2 (ja) |
JP (1) | JP6701383B2 (ja) |
WO (1) | WO2018110491A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021049433A1 (ja) * | 2019-09-12 | 2021-03-18 | パイオニア株式会社 | 発光装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004071570A (ja) * | 2002-08-07 | 2004-03-04 | Eastman Kodak Co | 有機発光デバイス装置及びその製造方法 |
JP2009211948A (ja) * | 2008-03-04 | 2009-09-17 | Fuji Electric Holdings Co Ltd | 有機elデバイスの制御方法および制御装置 |
US20110037054A1 (en) * | 2009-08-17 | 2011-02-17 | Chan-Long Shieh | Amoled with cascaded oled structures |
WO2012093671A1 (ja) * | 2011-01-07 | 2012-07-12 | 株式会社カネカ | 有機el装置及び有機el装置の製造方法 |
WO2013125436A1 (ja) * | 2012-02-20 | 2013-08-29 | 株式会社カネカ | 有機el装置及び有機el装置の製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3846819B2 (ja) | 1997-07-18 | 2006-11-15 | カシオ計算機株式会社 | 発光素子 |
US20110163337A1 (en) | 2010-01-06 | 2011-07-07 | General Electric Company | Architecture for organic electronic devices |
JP5925511B2 (ja) * | 2011-02-11 | 2016-05-25 | 株式会社半導体エネルギー研究所 | 発光ユニット、発光装置、照明装置 |
US8772795B2 (en) * | 2011-02-14 | 2014-07-08 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device and lighting device |
EP2819485A4 (en) | 2012-02-20 | 2016-01-06 | Kaneka Corp | ELECTROLUMINESCENT SYSTEM AND ORGANIC EL APPARATUS |
-
2017
- 2017-12-11 WO PCT/JP2017/044336 patent/WO2018110491A1/ja active Application Filing
- 2017-12-11 US US16/469,491 patent/US11094915B2/en active Active
- 2017-12-11 JP JP2018556660A patent/JP6701383B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004071570A (ja) * | 2002-08-07 | 2004-03-04 | Eastman Kodak Co | 有機発光デバイス装置及びその製造方法 |
JP2009211948A (ja) * | 2008-03-04 | 2009-09-17 | Fuji Electric Holdings Co Ltd | 有機elデバイスの制御方法および制御装置 |
US20110037054A1 (en) * | 2009-08-17 | 2011-02-17 | Chan-Long Shieh | Amoled with cascaded oled structures |
WO2012093671A1 (ja) * | 2011-01-07 | 2012-07-12 | 株式会社カネカ | 有機el装置及び有機el装置の製造方法 |
WO2013125436A1 (ja) * | 2012-02-20 | 2013-08-29 | 株式会社カネカ | 有機el装置及び有機el装置の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6701383B2 (ja) | 2020-05-27 |
US20200119308A1 (en) | 2020-04-16 |
JPWO2018110491A1 (ja) | 2019-10-24 |
US11094915B2 (en) | 2021-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180351127A1 (en) | Organic light emitting diode display and manufacturing method thereof | |
WO2020012611A1 (ja) | 表示デバイス | |
KR100813833B1 (ko) | 전자 발광 소자와 그 제조방법 | |
WO2020065963A1 (ja) | 表示装置及び表示装置の製造方法 | |
JP6701383B2 (ja) | 発光装置 | |
US20240163984A1 (en) | Light emitting device | |
JP2017182912A (ja) | 発光装置 | |
JP2022080093A (ja) | 表示装置 | |
JP6661373B2 (ja) | 発光装置 | |
JP6457065B2 (ja) | 発光装置 | |
JP6230627B2 (ja) | 発光装置 | |
JP6700309B2 (ja) | 発光装置 | |
JP2018133274A (ja) | 発光装置 | |
JP2018120691A (ja) | 発光装置 | |
JP6700013B2 (ja) | 発光装置 | |
WO2019054387A1 (ja) | 発光装置 | |
WO2020188768A1 (ja) | 表示装置 | |
JP2016157645A (ja) | 発光装置 | |
JP2023167954A (ja) | 表示装置 | |
WO2018062273A1 (ja) | 発光装置 | |
WO2016151718A1 (ja) | 発光装置 | |
WO2017094087A1 (ja) | 発光装置 | |
WO2017168581A1 (ja) | 発光装置 | |
JP2016149318A (ja) | 発光装置 | |
JP2019192662A (ja) | 発光装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17880761 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018556660 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17880761 Country of ref document: EP Kind code of ref document: A1 |