WO2018110005A1 - 血液細胞に関するスキャッタグラムにおける分類境界線の決定方法、および当該方法を行うための処理部を有する血液分析装置 - Google Patents
血液細胞に関するスキャッタグラムにおける分類境界線の決定方法、および当該方法を行うための処理部を有する血液分析装置 Download PDFInfo
- Publication number
- WO2018110005A1 WO2018110005A1 PCT/JP2017/032821 JP2017032821W WO2018110005A1 WO 2018110005 A1 WO2018110005 A1 WO 2018110005A1 JP 2017032821 W JP2017032821 W JP 2017032821W WO 2018110005 A1 WO2018110005 A1 WO 2018110005A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- boundary line
- determination
- scattergram
- determination index
- initial
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 100
- 210000000601 blood cell Anatomy 0.000 title claims description 82
- 238000012545 processing Methods 0.000 title claims description 24
- 238000004159 blood analysis Methods 0.000 title claims description 15
- 238000006073 displacement reaction Methods 0.000 claims description 112
- 210000004369 blood Anatomy 0.000 claims description 32
- 239000008280 blood Substances 0.000 claims description 32
- 238000005259 measurement Methods 0.000 claims description 29
- 210000004698 lymphocyte Anatomy 0.000 claims description 22
- 238000004458 analytical method Methods 0.000 claims description 20
- 210000000440 neutrophil Anatomy 0.000 claims description 18
- 210000001616 monocyte Anatomy 0.000 claims description 16
- 210000004027 cell Anatomy 0.000 claims description 11
- 210000000265 leukocyte Anatomy 0.000 claims description 11
- 238000002835 absorbance Methods 0.000 claims description 10
- 239000011159 matrix material Substances 0.000 description 22
- 238000010586 diagram Methods 0.000 description 16
- 210000003979 eosinophil Anatomy 0.000 description 8
- 230000002159 abnormal effect Effects 0.000 description 7
- 210000003651 basophil Anatomy 0.000 description 4
- 210000001772 blood platelet Anatomy 0.000 description 4
- 238000010186 staining Methods 0.000 description 4
- 210000003743 erythrocyte Anatomy 0.000 description 3
- 210000003924 normoblast Anatomy 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 210000001995 reticulocyte Anatomy 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000004820 blood count Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- FVTCRASFADXXNN-SCRDCRAPSA-N flavin mononucleotide Chemical compound OP(=O)(O)OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O FVTCRASFADXXNN-SCRDCRAPSA-N 0.000 description 1
- 208000014951 hematologic disease Diseases 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 210000004005 intermediate erythroblast Anatomy 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/487—Physical analysis of biological material of liquid biological material
- G01N33/49—Blood
Definitions
- the present invention relates generally to analysis of blood cells, and in particular, a method for determining a boundary line that distinguishes two or more different types of blood cells in a scattergram showing the distribution of blood cells, and to perform the method
- the present invention relates to a blood analyzer having the processing section.
- Blood cells such as red blood cells, platelets, and white blood cells change in various ways reflecting the state of the living body. For this reason, the frequency distribution regarding the number, form, ratio, etc. of various blood cells is an important measurement item in diagnosis for medical treatment.
- the white blood cell classification display method using a scattergram such as the LMNE matrix can measure up to 5 white blood cells using various techniques such as staining, impedance, and optical techniques, and visually capture the classification results. Is an important technique for determining various diseases (eg, leukemia, malignant lymphoma, multiple myeloma, etc.) that reflect different blood cell counts, ratios, etc. Patent Document 1).
- various diseases eg, leukemia, malignant lymphoma, multiple myeloma, etc.
- the LMNE matrix is composed of four types of leukocytes stained using cell staining techniques such as fat staining and peroxidase staining, that is, lymphocytes (L: Lymphocyte), monocytes (M: Monocyte), and neutrophils (N: Neutrophil), a kind of scattergram for eosinophils (E).
- FIG. 5 is a diagram showing a typical display example of the LMNE matrix, in which the volume and absorbance of each blood cell in the sample in which the four types of blood cells are mixed are measured, and the measurement for each obtained blood cell is performed.
- Data is a graph plotted on an XY plane composed of an X axis (horizontal axis corresponding to volume) and a Y axis (vertical axis corresponding to absorbance). Even if the sample is a mixture of the above four types of blood cells, when the data pair (volume, absorbance) of each blood cell is plotted as an LMNE matrix, the plotted dots are clearly four types of blood cells as shown in FIG. Divided into four groups corresponding to. Therefore, various diseases can be determined from the distribution of each group.
- Patent Documents 2 to 5 Several devices and methods for automatically setting the position of the classification boundary line in blood cell analysis have been proposed (for example, Patent Documents 2 to 5). However, automatic setting of the classification boundary line according to the prior art has not been sufficient in terms of accuracy.
- JP 2000-329685 A Japanese Patent Laid-Open No. Sho 62-134559 JP-A-2-304361 JP-A-2-304363 JP-A-4-332847
- the present invention has been made in view of the above-described problems in the prior art, and determines a boundary line that distinguishes two or more different types of blood cells in a scattergram showing the distribution state of blood cells with excellent accuracy. It is an object to provide a blood analyzer having a method for performing the method and a processing unit for performing the method.
- the present inventor has conducted intensive studies to solve the above-mentioned problems.
- the initial boundary line empirically determined is translated and displaced (that is, the initial boundary line is not rotated). It has been found that by moving the boundary line parallel to the X axis and / or parallel to the Y axis, it is possible to search for a boundary line that can accurately distinguish two or more different types of blood cells of interest.
- the present inventor further selects a boundary line in which the number of dots existing in the entire region or in the vicinity of a specific portion of the initial boundary line and the moved boundary line is small in the search as a target boundary line candidate. Found that can be given as.
- the present inventor has further studied based on such findings and has completed the present invention.
- a blood analyzer which includes a boundary line determination unit that determines a boundary line that separates two or more different types of blood cells in a scattergram relating to blood cells
- the boundary line determination unit Scattergram S 0 is created based on the measurement data of the blood cells, and, the initial boundary line B 0 predetermined for distinguishing two or more different types of blood cells of interest in the scattergram S 0
- Initial setting part to accept, A set of displacement amounts ( ⁇ x i , ⁇ y i ) in the X-axis direction and Y-axis direction (i indicates a serial number of the translational displacement pattern) for translationally displacing the initial boundary line B 0 in one or more patterns.
- Displacement amount set setting section to be set, Using a predefined method for determining a reliability determination index as a target boundary line, the determination index I 0 regarding the initial boundary line B 0 and 1 received from the displacement set setting unit For each of the above displacement amounts ( ⁇ x i , ⁇ y i ), one or more boundary lines generated based on translational displacement of the initial boundary line B 0 by ⁇ x i in the X-axis direction and ⁇ y i in the Y-axis direction.
- a determination index determination unit that determines a determination index I i for B i , and Based on the determination index I 0 determined by the determination index determination unit and the one or more determination indexes I i , the initial boundary line B 0 and the one or more boundary lines B i as the target boundary line candidates
- the blood analyzer including a boundary line candidate specifying unit that specifies at least one of the above.
- the determination index determination unit is a dot counting unit, and the dot counting unit is the number Num of dots in the counting region R 0 defined as the whole or a part of a specific neighborhood region of the initial boundary line B 0.
- the boundary line candidate specifying unit uses the initial boundary line as a target boundary line candidate on the basis of the small value of the determination index I 0 determined by the dot counting unit and one or more determination index I i.
- the blood analyzer according to [1] above, which specifies at least one of B 0 and one or more boundary lines B i .
- the scattergram S 0 is composed of dots plotted on discrete coordinates
- the boundary line determination unit further includes a recalculation control unit, The recalculation control unit After the process by the determination index determination unit and before the process by the boundary line candidate specifying unit, determine whether recalculation using an additional scattergram is necessary, When it is determined that the recalculation is necessary, the boundary line determination unit is controlled to perform a series of processes again by the initial setting unit, the displacement amount setting setting setting unit, and the determination index determination unit, thereby Re-determining the determination index I 0 and one or more determination indices I i , This process is repeated until it is determined that the recalculation is not necessary.
- a different additional scattergram S 0 ′ is used for each recalculation, and the additional scattergram S 0 ′ is , And is generated by subtracting a predetermined number of dots at each position on the discrete coordinates of the scattergram S 0 ,
- the determination index as a target boundary line candidate based on the determination index I 0 determined in the last process by the determination index determination unit and one or more determination indexes I i
- At least one of the initial boundary line B 0 and the one or more boundary lines B i in the final processing by the determination unit is identified;
- the blood analyzer according to any one of [1] to [4] above.
- a method used to determine a boundary line that distinguishes two or more different types of blood cells in a scattergram relating to blood cells, Scattergram S 0 is created based on the measurement data of the blood cells, and, the initial boundary line B 0 predetermined for distinguishing two or more different types of blood cells of interest in the scattergram S 0
- Initial setting process to accept, A set of displacement amounts ( ⁇ x i , ⁇ y i ) in the X-axis direction and Y-axis direction (i indicates a serial number of the translational displacement pattern) for translationally displacing the initial boundary line B 0 in one or more patterns.
- Displacement set setting process to set, Using a predefined method for determining a reliability determination index as a target boundary line, the determination index I 0 related to the initial boundary line B 0 and 1 set in the displacement amount set setting step For each of the above displacement amounts ( ⁇ x i , ⁇ y i ), one or more boundary lines generated based on translational displacement of the initial boundary line B 0 by ⁇ x i in the X-axis direction and ⁇ y i in the Y-axis direction.
- a determination index determination step for determining a determination index I i for B i , and Based on the determination index I 0 determined in the determination index determination step and the one or more determination indexes I i , the initial boundary line B 0 and the one or more boundary lines B i as the target boundary line candidates
- the method including the boundary line candidate specifying step of specifying at least one of the above.
- the determination index determination step is a dot counting step, and in the dot counting step, the number Num of dots in the counting region R 0 defined as the whole or a part of a specific neighborhood region of the initial boundary line B 0.
- the scattergram S 0 is, has been constructed from the plotted dots on a discrete coordinates
- the method further includes a recalculation control step, In the recalculation control step, After the determination index determination step and before the boundary line candidate identification step, determine whether recalculation using an additional scattergram is necessary, When it is determined that the recalculation is necessary, the procedure of the method is controlled so as to perform a series of processes by the initial setting step, the displacement amount set setting step, and the determination index determination step again, thereby Re-determining the determination index I 0 and one or more determination indices I i , The above process is repeated until it is determined that the recalculation is not necessary.
- a different additional scattergram S 0 ′ is used for each recalculation, and the additional scattergram S 0 ′ is Generated by reducing the number of dots at each position on the discrete coordinates of the gram S 0 by a predetermined number;
- the final determination index is determined as a target boundary line candidate. At least one of an initial boundary line B 0 and one or more boundary lines B i in the determining step is identified; The method according to any one of [7] to [10] above.
- a method for determining a boundary line that distinguishes two or more different types of blood cells in a scattergram showing a distribution state of blood cells having excellent accuracy and a processing unit for performing the method.
- a blood analysis device is provided.
- FIG. 3 illustrates a typical LMNE matrix.
- translational displacement of the initial boundary lines B 0, illustrates the boundary line B i formed on the basis thereof.
- a counting region R 0 as defined with respect to the initial boundary line B 0, are defined with respect to the boundary line B i after movement is a diagram for explaining the count region R i corresponding to count region R 0.
- the counting region R 0 (b) corresponding to the initial boundary line B 0 , the boundary line B i (c) after translation, and the boundary line B i It is a figure explaining counting area
- FIG. 11A shows an example of the result of the LMNE calculation in the case of using the initial boundary line (Before ⁇ Data) and in the case of using the boundary line after movement according to the present invention (After Data) by the visual (standard) method. It is a figure shown with a result.
- LYM% lymphocyte%
- MON% monocyte%
- NEU% neutrophil%
- EOS% eosinophil%
- BAS% basophil%.
- FIG. 11B shows the scattergram (height: ⁇ 15) finally used for determining the boundary line.
- the “scattergram relating to blood cells” in the present invention refers to measurement data obtained by measuring blood cells to be analyzed with respect to two measurement items that are X-axis and Y-axis values ( FIG. 6 is a graph in which measurement data for X-axis items and measurement data for Y-axis items) are plotted in correspondence with the XY plane of a scattergram.
- the combination of the measurement item shown as one axis and the measurement item shown as the other axis is not particularly limited.
- blood cell volume examples include blood cell absorbance (or light transmittance), (blood cell volume, blood cell fluorescence), (forward scattered light, blood cell fluorescence), (side scattered light, blood cell fluorescence), and the like.
- blood cells to be displayed as a scattergram include, for example, red blood cells (pre-erythroblasts, basophil erythroblasts, polychromatic erythroblasts, positive erythroblasts, reticulocytes, and reticulocytes, which are pre-maturation stages of erythrocytes. , Including those with abnormal morphologies), platelets (including those with abnormal morphologies such as large platelets, giant platelets), leukocytes (neutrophils, eosinophils, basophils, lymphocytes, monocytes, atypical lymphocytes) Spheres, abnormal lymphocytes, large lymphocytes, immature cells, etc.).
- lymphocytes, monocytes, neutrophils and eosinophils displayed on the LMNE matrix are important blood cells in diagnosing infections and blood diseases.
- the combination of two or more different types of blood cells whose boundary line should be determined according to the present invention is not particularly limited, and may be any two or more different types of blood cells that can be displayed on the same scattergram.
- the combination comprises two or more different types of blood cells that are located in areas close to each other on the scattergram.
- the combination may be composed of, for example, two or more cell types belonging to leukocytes, specifically, neutrophils, eosinophils, basophils, lymphocytes, monocytes, atypical lymphocytes, abnormalities It may be composed of two or more types of cells selected from lymphocytes, large lymphocytes, and immature cells.
- Preferred combinations include, for example, combinations of (lymphocytes, monocytes, neutrophils).
- Measurement of the measurement items as described above can be performed in the same manner as a conventionally known blood analyzer.
- a set (set) of measurement data (measurement data for the X-axis item, measurement data for the Y-axis item) obtained for the blood cells to be analyzed is left as it is by an electrical and optical measurement device. Since this is a set of output numerical values, conversion processing corresponding to the scales of the X-axis and Y-axis is usually performed so that the target scattergram can be plotted on the XY plane.
- dot means a dot plotted at an arbitrary coordinate on the scattergram and indicating that a blood cell corresponding to the coordinate is detected in the measurement data.
- Each dot in the scattergram can be expressed by using two parameters (X coordinate value, Y coordinate value).
- the scattergram may be composed of dots plotted on discrete coordinates (hereinafter, such a scattergram is also referred to as a discrete scattergram).
- the discrete coordinates refer to a coordinate system in which the X coordinate value and the Y coordinate value are composed only of discrete numerical values (for example, integers).
- the discrete scattergram can be created by a process (for example, rounding down after the decimal point) that converts the X coordinate value and the Y coordinate value based on the measurement data into a discrete numerical value.
- the discrete scattergram can be used, for example, for display of the scattergram on a display device, in which a specific coordinate (a combination of X coordinate value and Y coordinate value) and a specific pixel correspond to each other. is doing.
- the present invention can be implemented assuming that a plurality of dots are plotted on one coordinate.
- One or more additional scattergrams can be created from one discrete scattergram.
- the additional scattergram may be generated by reducing the number of dots at each position on the discrete coordinates of the discrete scattergram by a predetermined number.
- an additional scattergram S 1 obtained by subtracting the number of dots by 1 from all the coordinates with respect to the discrete scattergram S 0 formed by plotting 0 to F max dots at each coordinate.
- An additional scattergram S 2 in which the number of dots is reduced by 2 at all coordinates,...,
- An additional scattergram S Fmax-1 in which the number of dots is reduced by (F max ⁇ 1) at all coordinates, and so on.
- a series (S 1 , S 2 ,..., S Fmax-1 ) consisting of (F max ⁇ 1) additional scattergrams can be generated.
- the number of dots at a certain coordinate is zero, it means that there is no dot.
- the number to be reduced is larger than the number of dots at a certain coordinate, the number of dots at that coordinate may be zero. Needless to say.
- the additional scattergram generated in this way can be used to additionally search for a target boundary line candidate by recalculation.
- the “boundary line” refers to a line that can demarcate the boundary between two or more types of blood cells to be classified in the scattergram.
- N A type that is an object of division (N A 2 or more integers.)
- Regions in the scattergram blood cells generally present in may be divided into N A number of compartments ( That is, each coordinate in the region may determine whether included in one any of the N a number of compartments).
- the boundary line may be one that does not divide an area in a scattergram that is considered to have no blood cells that are subject to classification.
- the boundary line may be formed from a single straight line or curve having no branch, or may be formed from a line having a branch (straight line and / or curve) (in the latter case, the boundary line is It can also be thought of as being formed from two or more lines connected to each other).
- the boundary line is usually formed from one line or two or more lines connected to each other, but may be formed from two or more lines not connected to each other as appropriate.
- the “initial boundary line B 0 ” refers to a boundary line that serves as a reference (that is, a start position) for searching for a target boundary line.
- the initial boundary line B 0 is, for example, a boundary line that is empirically known to be able to roughly classify two or more different types of blood cells of interest in a scattergram created based on measurement data from a normal specimen. There may be.
- the initial boundary line B 0 is determined by determining the validity of the result of measuring a large number (for example, several hundreds) of samples on the tentatively determined fraction line and correlating with the visual (standard method) case. It may be a thing.
- the boundary line B i generated based on translational displacement of the initial boundary line B 0 by ⁇ x i in the X-axis direction and ⁇ y i in the Y-axis direction is a line B 0 ′ after translational displacement by ⁇ x i in the X-axis direction and ⁇ y i in the Y-axis direction as defined above (FIG. 6A).
- FIG. 6B when the moved line B 0 ′ does not fit in the scattergram, only the portion of the line B 0 ′ that fits in the scattergram is defined as the boundary line B i. It is good.
- FIG. 6B when the moved line B 0 ′ does not fit in the scattergram, only the portion of the line B 0 ′ that fits in the scattergram is defined as the boundary line B i. It is good.
- FIG. 6B when the moved line B 0 ′ does not fit in the scattergram, only the portion of the line B 0 ′ that fits in the scattergram is defined as the boundary line
- the region U 3 the line B 0 which moves the initial boundary lines B 0 between the two regions U 1 and U 2 to be subjected to classification 'is not subject to classification when entering the may be a boundary line B i those omitted part that has entered the area U 3 of the line B 0 '.
- an additional line for example, a point P 4 in FIG. 6C and a point P 4 in FIG. 6C
- a line supplemented with a line connecting the point P 4 ′ may be used as the boundary line B i .
- a set of displacement amounts ( ⁇ x i , ⁇ y i ) indicates the movement amounts ( ⁇ x i and ⁇ y i, respectively) in the X-axis direction and the Y-axis direction for translationally displacing the initial boundary line B 0.
- the set of displacement amounts can be defined as, for example, a rectangular range, but is not limited to this.
- a set of displacements is defined as a rectangular range for a discrete scattergram, displacement is performed using a minimum displacement ⁇ x min and a maximum displacement ⁇ x max in the X-axis direction, and a minimum displacement ⁇ y min and a maximum displacement ⁇ y max in the Y-axis direction.
- the magnitudes of the displacement ⁇ x i in the X-axis direction and the displacement ⁇ y i in the Y-axis direction are not particularly limited, and may be appropriately determined in consideration of various factors such as the initial boundary line and the distribution of blood cells to be processed. it can.
- the displacement ⁇ x i in the X-axis direction and the displacement ⁇ y i in the Y-axis direction may be a positive value, a negative value, or 0, and the negative displacement is a negative direction of the X-axis or the Y-axis. Means moving to.
- the determination index of reliability as a target boundary line can be used to determine how reliable a given boundary line is as a target boundary line
- the determination index may be a numerical value, for example.
- a pre-defined method for determining a reliability determination index as a target boundary line can determine the above determination index for a given boundary line.
- the determination index is given as the number of dots. Details of a preferred embodiment for determining the number of dots for a given boundary will be described below.
- the “neighboring region” may be, for example, a set of coordinates whose distance from at least one point included in the entire initial boundary line B 0 or a specific portion is within a predetermined threshold.
- the counting region R 0 may be a one-dimensional region (ie, a set of points on a line), a two-dimensional region (ie, a region surrounded by a certain closed line), or a combination thereof.
- the counting region R0 may be composed of one section, or may be composed of two or more divided sections.
- the “counting region R i corresponding to the counting region R 0 ” defined with respect to the boundary line B i generally means that all points in the counting region R 0 are ⁇ x i in the X-axis direction. Further, it refers to a region R 0 ′ composed of a set of points obtained by translational displacement by ⁇ y i in the Y-axis direction.
- An example of the counting area R i corresponding to the counting area R 0 shown in FIG. 7A is shown in FIG. In the example of FIG.
- the counting area R i is obtained from a set of points obtained by translating all the points in the counting area R 0 by ⁇ x i in the X-axis direction and ⁇ y i in the Y-axis direction. This is the same as the region R 0 ′. However, as described above with respect to the boundary line B i , it may not be appropriate to set the area R 0 ′ after movement as the counting area R i (for example, the area R 0 ′ does not fit in the scattergram). The region R 0 ′ enters a region that is not considered, or the region R 0 ′ needs to be partially supplemented). In that case, in accordance with the above description of the border line B i, 'be omitted partial area of the region R 0' region R 0 compensate for additional areas can take processing such as appropriate, it Thus, the counting area R i can be appropriately defined.
- the blood analysis device of the present invention performs measurement and analysis on a predetermined analysis item for a given blood sample, and generates a scattergram indicating the analysis result. It is preferable to have also.
- the blood analysis data processing unit may be a conventional blood analysis data processing unit capable of measuring and analyzing a blood sample to generate a scattergram.
- FIG. 1 is a block diagram showing an example of the configuration of the boundary line determination unit in the blood analyzer of the present invention.
- the boundary line determination unit 10 is a functional unit for determining a boundary line that separates two or more different types of blood cells in a scattergram relating to blood cells, and includes an initial setting unit 11 and The displacement amount set setting unit 12, the determination index determination unit 13, and the boundary line candidate specifying unit 14 are configured.
- the initial setting unit 11 is a scattergram S 0 created based on blood cell measurement data, and a predetermined initial value for classifying two or more different types of blood cells as targets in the scattergram S 0 . accept the boundary line B 0.
- the displacement amount set setting unit 12 includes displacement amounts ( ⁇ x i , ⁇ y i ) (i is a serial number of a translational displacement pattern) for translationally displacing the initial boundary line B 0 in one or more patterns. Set).
- the determination index determination unit 13 uses a predetermined method for determining a reliability determination index as a target boundary line, and uses the determination index I 0 regarding the initial boundary line B 0 and the displacement amount set setting. 1 is generated based on translational displacement of the initial boundary line B 0 by ⁇ x i in the X-axis direction and ⁇ y i in the Y-axis direction for each of one or more displacement amounts ( ⁇ x i , ⁇ y i ) received from the unit.
- the boundary line candidate specifying unit 14 determines the initial boundary line B 0 and one or more boundaries as candidate boundary lines based on the determination index I 0 determined by the determination index determination unit and the one or more determination indexes I i. At least one of the lines B i is identified.
- the determination index determining unit 13 is functionally connected to the initial setting unit 11, the displacement amount setting setting unit 12, and the boundary line candidate specifying unit 14. based on the the scattergram S 0 and an initial boundary line B 0 accepted, a set amount of displacement of the displacement amount set setting section 12 has set, an initial determination indicator for border B 0 I 0 and the boundary line B i Are determined, and these determination indexes are transferred to the boundary line candidate specifying unit 14.
- the displacement amount set setting unit 12 may set a displacement amount independently of the initial setting unit 11, or the scattergram S 0 and the initial boundary line B received by the initial setting unit 11. A set of displacement amounts may be set using 0 or the result of a predetermined calculation using these. Therefore, in the block diagram of FIG. 1, the initial setting unit 11 and the displacement amount set setting unit 12 are connected by a broken line.
- each unit constituting the boundary line determination unit (the above-described initial setting unit, displacement amount setting unit, determination index determination unit, boundary line candidate specifying unit, recalculation control unit described later, blood cell calculation unit, etc.)
- an electronic circuit, an electric circuit, and an independent processing device may be combined, it is a preferred embodiment that each of these units is configured by a program executed by the computer using a computer.
- the example at the time of comprising the said boundary line determination part using a computer is given, and the preferable aspect of each part which comprises a boundary line determination part is demonstrated.
- the configuration of each unit described below can be implemented partially or entirely in combination with an electronic circuit, an electric circuit, an independent processing device, and the like instead of a computer.
- Initial setting unit 11 receives the scattergram S 0 and an initial border B 0.
- receiving the scattergram S 0 it is performed by accepting a scattergram generated by the data processing unit for blood analysis blood analysis device of the present invention via an electrical or electronic communications.
- reception of the scattergram S 0, for example, may be performed by reading the scattergram stored in a storage device such as a hard disk.
- the initial boundary line B 0 can be received, for example, by storing a parameter related to the initial boundary line empirically determined in advance in a storage device such as a hard disk and reading it out.
- the initial setting unit 11 may be configured to accept other classification boundary lines that are not targets of position determination according to the present invention, in addition to the initial boundary lines used for position determination by translational displacement.
- the displacement amount set setting unit 12 includes displacement amounts ( ⁇ x i , ⁇ y i ) (i is a serial number of a translational displacement pattern) for translationally displacing the initial boundary line B 0 in one or more patterns. Set).
- the displacement amount set setting unit 12 can be performed, for example, by reading a set of predefined displacement amounts ( ⁇ x i , ⁇ y i ) stored in a storage device such as a hard disk.
- the displacement amount set setting unit 12 may be configured to receive an input regarding a set of displacement amounts ( ⁇ x i , ⁇ y i ) from the user.
- the displacement amount set setting unit 12 is configured to set a set of displacement amounts ( ⁇ x i , ⁇ y i ) based on the scattergram S 0 and / or the initial boundary line B 0 received by the initial setting unit 11. It may be. For example, the displacement set setting unit 12 determines the abundance ratio of each type of blood cell based on the scattergram S 0 , the initial boundary line B 0 , and / or other classification boundary lines received by the initial setting unit 11.
- a blood cell calculation unit (not shown; for example, an LMNE calculation unit that calculates the abundance ratio of at least lymphocytes, monocytes, neutrophils, and eosinophils in the LMNE matrix), or
- the set of displacement ( ⁇ x i , ⁇ y i ) may be set using the calculated existence ratio of one or more kinds of blood cells, which may be functionally connected to the blood cell calculation unit. It may be configured. Specifically, for example, as shown in the examples described later, in the determination of the boundary line between lymphocytes, monocytes, and neutrophils in the LMNE matrix, for example, displacement based on the presence ratio of neutrophils A set of quantities ( ⁇ x i , ⁇ y i ) may be set.
- the determination index determination unit 13 is based on the scattergram S 0 and the initial boundary line B 0 received by the initial setting unit 11 and the set of displacement amounts ( ⁇ x i , ⁇ y i ) set by the displacement amount set setting unit 12. determining a judgment index I i for determination index I 0 and the boundary line B i of the initial boundary line B 0.
- the determination index is given as the number of dots, and the number of dots is determined by a dot counter described below. Therefore, preferably, the determination index determination unit 13 is a dot counting unit 13 ′.
- the dot counting unit 13 ′ counts the number of dots Num (R 0 ) in the above-described counting region R 0 and sets the number Num (R 0 ) as a determination index I 0 .
- the dot counting unit counts the number Num (R i ) of dots in the one or more counting regions R i described above, and uses the number Num (R i ) as a determination index I i .
- the order of these count processes is not particularly limited.
- the boundary line candidate specifying unit 14 Based on the determination index I 0 determined by the determination index determination unit 13 and one or more determination indexes I i , the boundary line candidate specifying unit 14 sets initial boundary lines B 0 and one or more target boundary lines as candidates. At least one of the boundary lines B i is specified.
- the boundary line candidate specifying unit 14 may determine one target boundary line based on the specified one or more boundary line candidates, or presents the specified one or more boundary line candidates to the user.
- the user may be configured to determine a target boundary line based on the candidate.
- the identified boundary line candidate or boundary line can be output to the user through an output device such as a display device.
- the boundary line determination unit 10 calculates a blood cell calculation that calculates the presence ratio of each type of blood cell based on the scattergram S 0 , the identified boundary line candidate or boundary line, and / or other classification boundary line. May include a unit (not shown; for example, the above-described LMNE calculation unit), or may be functionally connected to the blood cell calculation unit.
- the boundary line candidate specifying unit 14 determines the determination index I 0 determined by the dot counting unit 13 ′ and the values of one or more determination indexes I i (that is, the number Num (R 0 ) and a small number of one or more Num (R i )) as a reference, at least one of the initial boundary line B 0 and one or more boundary lines B i as a target boundary line candidate May be specified.
- the boundary line candidate specifying unit 14 determines a boundary line to which the determination index I 0 and one or more determination indices I i give a minimum value as a target boundary line.
- the boundary line candidate specifying unit 14 may be configured to select one boundary line according to a predefined criterion when there are two or more such boundary lines. Examples of the reference include selecting a boundary line having the smallest displacement distance (that is, (( ⁇ x i ) 2 + ( ⁇ y i ) 2 ) 1/2 ) from the initial boundary line B 0 .
- FIG. 2 is a flowchart showing an example of the boundary line determination method of the present invention.
- the embodiment shown in the flowchart of FIG. 2 can be executed using the boundary line determination unit 10 of the embodiment shown in the block diagram of FIG. Therefore, all the embodiments described above with respect to the boundary line determination unit 10 can be applied to the boundary line determination method of the embodiment shown in the flowchart of FIG.
- the initial setting step S1 accepts scattergram S 0 and an initial border B 0.
- the initial setting step S1 can be executed using the initial setting unit 11 described above.
- a set of displacement amounts ( ⁇ x i , ⁇ y i ) (i indicates a serial number of the translational displacement pattern) is set.
- the displacement amount set setting step S2 can be executed using the displacement amount set setting unit 12 described above. If you do not use the scattergram S 0 and an initial boundary line B 0 received in process S1 for setting the set amount of displacement, the order of performing step S1 and the step S2 are not limited.
- the determination index determination step S3 based on the set of the scattergram S 0 and the initial boundary line B 0 received in the initial setting step S1 and the displacement amounts ( ⁇ x i , ⁇ y i ) set in the displacement amount set setting step S2. determining a judgment index I i for determination index I 0 and the boundary line B i of the initial boundary line B 0.
- the determination index determination step S3 can be executed using the determination index determination unit 13 described above.
- the determination index determination step S3 is a dot counting step S3 ′.
- the dot counting step S3 ′ the number of dots Num (R 0 ) in the counting region R 0 described above is counted, the number Num (R 0 ) is set as the determination index I 0, and one or more counting regions described above are used. the number of dots in the R i Num of (R i) counting respectively, the number of the coefficients Num of (R i) and determination index I i.
- the dot counting step S3 ′ can be executed using the dot counting unit 13 ′ described above.
- the boundary line candidate specifying step S4 based on the determination index I 0 and the one or more determination indices I i determined in the determination index determination step S3, the initial boundary line B 0 and one or more of the initial boundary lines B 1 as the target boundary line candidates are used. At least one of the boundary lines B i is specified.
- the boundary line candidate specifying step S4 can be executed using the boundary line candidate specifying unit 14 described above.
- the boundary line candidate specifying step S4 is a value of the determination index I 0 determined in the dot counting step S3 ′ and one or more determination indexes I i (that is, the number Num (R 0 ) and a small number of one or more Num (R i )) as a reference, at least one of the initial boundary line B 0 and one or more boundary lines B i as a target boundary line candidate May be specified.
- the boundary line determination method of the embodiment shown in the flowchart of FIG. 2 includes various steps using other parts (for example, a blood cell calculation part) described above with respect to the boundary line determination part 10 of the embodiment shown in the block diagram of FIG. Further, it may be included.
- FIG. 3 is a block diagram showing another example of the configuration of the boundary line determination unit in the blood analyzer of the present invention.
- the boundary line determination unit 100 includes an initial setting unit 111, a displacement amount set setting unit 112, a determination index determination unit 113, a boundary line candidate specification unit 114, and a recalculation control unit 115.
- the determination index determination unit 113 is a dot counting unit 113 '.
- the configurations of the initial setting unit 111, the displacement amount set setting unit 112, the determination index determination unit 113, and the dot counting unit 113 ′, the functional relevance between them, and additional functional units that may accompany them are shown in FIG.
- a remarkable feature of the boundary line determination unit 100 of the present embodiment compared with the boundary line determination unit 10 of the embodiment shown in the block diagram of FIG. 1 is the presence of the recalculation control unit 115.
- the recalculation control unit 115 needs to recalculate a series of processes by the initial setting unit 111, the displacement amount set setting unit 112, and the determination index determination unit 113 based on the determination index determination result by the determination index determination unit 113.
- the boundary line determination unit 100 is controlled to perform the recalculation, thereby causing the determination index I 0 and one or more determination indices I i to be determined again.
- the recalculation control unit 115 repeats this process until it is determined that the recalculation is not necessary.
- the recalculation control unit 115 can determine whether or not recalculation is necessary, for example, based on the determination index I 0 determined by the determination index determination unit 113 and one or more determination indexes I i . Therefore, the recalculation control unit 115 may be configured to check whether these determination indexes satisfy the set determination criterion. For example, when the determination index is given as a numerical value, the recalculation control unit 115 may determine whether or not recalculation is necessary by comparing a set threshold with these determination indexes.
- the determination as to whether recalculation is necessary is performed by determining the determination index I 0 and the value of one or more determination indexes I i (that is, the number Num (R 0 ) and 1 The above number Num (R i )) may be compared with a predetermined threshold value Thr.
- the threshold value Thr may be a value set in advance by the user in accordance with, for example, the distribution of blood cells to be processed and various analysis parameters.
- recalculation is necessary when all of the determination indexes I 0 and one or more determination indexes I i are greater than the threshold value Thr, while the re-calculation is performed when at least one of the determination indexes is equal to or less than the threshold value Thr. It can be determined that no operation is necessary. Further, as an additional or alternative determination criterion regarding the necessity of recalculation, an upper limit (for example, once) of the number of recalculations is set in advance, and the recalculation is performed when the number of recalculations exceeds the upper limit. May not be performed.
- the recalculation control unit 115 determines that the recalculation is necessary, the recalculation control unit 115 performs a series of processes by the initial setting unit 111, the displacement amount set setting unit 112, and the determination index determination unit 113 again. 100 is controlled. Each recalculation, the initial setting unit 111 receives a different additional scattergram S 0 ', which is generated based on the scattergram S 0. On the other hand, in the recalculation process, the initial boundary line received by the initial setting unit 111 and the displacement amount set by the displacement amount set setting unit 112 are the same as those used by the functional units in the previous processing. It may be different or different (therefore, the number of displacements used may be different between recalculations).
- a specimen that needs to be recalculated may be an abnormal specimen, and accordingly, a displacement amount set in a narrower range than the displacement amount set set for the initial processing by the displacement amount set setting unit 112 is set. May be used.
- the determination index determination method used by the determination index determination unit 113 or the dot count method used by the dot counting unit 113 ′ is the same as those used in the previous processing by these functional units.
- the scattergram S 0 is a discrete scattergram
- the additional scattergram S 0 ′ described above determines the number of dots at each position on the discrete coordinates of the discrete scattergram S 0. Is generated by subtracting the number of.
- the additional scattergram S 0 ′ the series (S 1 , S 2 ,..., S Fmax-1 ) of the above-described (F max ⁇ 1) additional scattergrams is used. Any of them can be used.
- an additional scattergram generation unit (not shown) for generating an additional scattergram based on the scattergram S 0 is provided in the boundary line determination unit 100, and the additional scattergram generation unit generates an additional scattergram when necessary. It may be generated.
- the recalculation control unit 115 performs the scattergram S 1 in the first recalculation and the second recalculation in the second recalculation.
- the scattergram S 2 may be configured so as to give additional scattergrams to the initial setting unit 111 sequentially from the smallest number.
- an additional scattergram used for recalculation may be determined in accordance with a predetermined procedure from the additional scattergrams of the series (S 1 , S 2 ,..., S Fmax-1 ). This method is particularly useful in an embodiment in which an upper limit (for example, once) of the number of recalculations is set.
- a provisional boundary line is determined based on a determination index determined before recalculation, and a predetermined condition is satisfied when the provisional boundary line is used.
- a predetermined condition is satisfied when the provisional boundary line is used.
- the determination index determination unit 113 is the dot counting unit 113 ′, when it is determined that recalculation is necessary, the determination index (that is, the number of dots) determined before the recalculation is minimized.
- the boundary line is determined as a temporary boundary line, and the number of dots (in the order of scattergrams S 1 , S 2 ,..., S Fmax-1 using the temporary boundary line and the count area before recalculation ( (Determination index) is counted, and a scattergram in which the number is initially less than a predetermined threshold value can be determined.
- the boundary line candidate specifying unit 114 uses the determination index determination unit 113 as a target boundary line candidate based on the determination index I 0 determined in the final process by the determination index determination unit 113 and one or more determination indexes I i. At least one of the initial boundary line B 0 and the one or more boundary lines B i in the last processing by 113 is specified.
- the boundary line candidate specifying method by the boundary line candidate specifying unit 114 is based on the initial boundary line B 0 and one or more boundary lines B i and the corresponding determination index I 0 and one or more of the last processing in the determination index determination unit 113. Except for using the determination index I i , it may be the same as the specifying method by the boundary line candidate specifying unit 14 of the embodiment shown in FIG.
- the boundary line determination unit 100 includes a blood cell calculation unit (not shown; for example, the above-described LMNE calculation unit) that calculates the existence ratio of each type of blood cell. Alternatively, it may be functionally connected to the blood cell calculation unit.
- a blood cell calculation unit (not shown; for example, the above-described LMNE calculation unit) that calculates the existence ratio of each type of blood cell. Alternatively, it may be functionally connected to the blood cell calculation unit.
- FIG. 4 is a flowchart showing another example of the boundary line determination method of the present invention.
- the embodiment shown in the flowchart of FIG. 4 can be executed using the boundary line determination unit 100 of the embodiment shown in the block diagram of FIG. Therefore, all the embodiments described above with respect to the boundary line determination unit 100 can be applied to the boundary line determination method of the embodiment shown in the flowchart of FIG.
- the initialization step S11 accepts a scattergram S 0 and an initial border B 0.
- the initial setting step S11 can be executed using the initial setting unit 111 described above.
- the initial setting step S11 may be the same as the initial setting step S1 described above with respect to the boundary line determination method shown in the flowchart of FIG.
- a set of displacement amounts ( ⁇ x i , ⁇ y i ) (i indicates a serial number of the translational displacement pattern) is set.
- the displacement amount set setting step S12 can be executed using the displacement amount set setting unit 112 described above.
- the displacement amount set setting step S12 may be the same as the displacement amount set setting step S2 described above with respect to the boundary line determination method shown in the flowchart of FIG. If you do not use the scattergram S 0 and an initial boundary line B 0 accepted in step S11 for setting the set amount of displacement, the order of performing steps S11 and step S12, no matter.
- decision index determination step S13 initialization step S11 scattergram S 0 and an initial boundary line B 0 accepted in, and the displacement amount set by the displacement amount set setting step S12 ( ⁇ x i, ⁇ y i) based on a set of, determining a judgment index I i for determination index I 0 and the boundary line B i of the initial boundary line B 0.
- the determination index determination step S13 can be executed using the determination index determination unit 113 described above.
- the determination index determination step S13 is a dot counting step S13 ′.
- the dot counting step S13 ′ the number of dots Num (R 0 ) in the counting region R 0 described above is counted, the number Num (R 0 ) is set as the determination index I 0, and one or more counting regions described above are used. the number of dots in the R i Num of (R i) counting respectively, the number of the coefficients Num of (R i) and determination index I i.
- the dot counting step S13 ′ can be performed using the dot counting unit 113 ′ described above.
- the recalculation control step S15 (1) it is determined whether recalculation using an additional scattergram is necessary, and (2) when it is determined that recalculation is necessary, the initial setting step S11, displacement amount set setting step S12, and controls the procedure of the method to perform a series of processing by the determination indicator determining step S13 again, thereby re-determining said determination index I 0 and 1 or more determination index I i The process is repeated until it is determined that the recalculation is not necessary.
- the recalculation control step S15 can be executed using the recalculation control unit 115 described above.
- boundary line candidate specifying step S14 based on the final determination index determining step of determining index I 0 and 1 or more determined in S13 determination index I i, as a candidate for a boundary line of interest, the final determination index determination at least one of the initial boundary lines B 0 and 1 or more boundary lines B i is identified in step S13.
- the boundary line candidate specifying step S14 can be executed using the above-described boundary line candidate specifying unit 114.
- the boundary line determination method of the embodiment shown in the flowchart of FIG. 4 is the same as the boundary line determination unit 10 of the embodiment shown in the block diagram of FIG. 1 or the boundary line determination unit 100 of the embodiment shown in the block diagram of FIG.
- the processing step using the above-mentioned part may be included.
- the present invention further provides a blood analysis method using the blood analyzer of the present invention.
- the blood analysis method of the present invention uses a step of measuring and analyzing a predetermined analysis item for a given blood sample to generate a scattergram indicating the analysis result, and the boundary line determination method of the present invention. Determining a boundary line that separates two or more different types of blood cells of interest.
- the blood analysis method of the present invention may further include a step of determining the abundance ratio of two or more different types of blood cells of interest after the determination of the boundary line.
- the boundary lines that distinguish lymphocytes, monocytes, and neutrophils in the LMNE matrix were determined according to the present invention.
- the X-axis used for the analysis was an electrical resistance (showing the blood cell volume), and the Y-axis used for the analysis was an LMNE matrix showing the absorbance.
- Each of the X axis and Y axis had coordinates of 0 to 127.
- information about the frequency of each dot is expressed using the height direction of the matrix (see Japanese Patent Application Laid-Open No. 2014-106161).
- An example of the matrix used for the analysis is shown in FIG.
- FIG. 8 shows an explanatory diagram of the boundary line of interest and its displacement.
- the thick line in FIG. 8A is the initial boundary line B 0 to which attention is paid.
- the initial boundary line B 0 is translated and displaced in the X-axis direction and / or the Y-axis direction.
- FIG. 8C schematically shows the boundary line B i after translational displacement. Change border B i is shown in the drawing, but generally is obtained by translating the initial boundary lines B 0, is omitted is a portion in the initial boundary line B 0, and are supplemented, also compartment noise region Has been.
- the number of dots in the counting area was calculated, and the boundary line corresponding to the counting area where the number of dots was minimized was recorded.
- the boundary was determined.
- the boundary line with the minimum number of dots is provisionally used, and the matrix height direction is lowered by ⁇ 1, so that the minimum number of dots is A matrix that was within 100 for the first time was used for re-search.
- FIG. 9 schematically shows how the number of dots in the matrix decreases as the height direction of the matrix is lowered stepwise.
- the search range was narrowed because of an abnormal specimen, and a rectangular range of x: 0 to 10 and y: 0 to 10 was set as the displacement amount set.
- the boundary line finally obtained by the above procedure was set as the target boundary line, and LMNE calculation was further performed using the boundary line.
- the overall procedure and the flowchart of the search function are shown in FIGS. 10A and 10B. As shown in FIG. 10B, when there are two or more movements giving the same number of dots in the search function, the boundary line that has the smallest movement from the initial boundary line is selected.
- FIG. 11A shows an example of the result of the LMNE calculation in the case of using the initial boundary line (Before Data) and in the case of using the boundary line after movement according to the present invention (After Data) by the visual (standard) method. Shown with results.
- FIG. 11B is a scattergram (height: ⁇ 15) finally used for determining the boundary line. It has been found that a more accurate boundary line can be determined by translating the boundary line according to the present invention.
- a method for determining a boundary line that distinguishes two or more different types of blood cells in a scattergram showing a distribution state of blood cells having excellent accuracy and a processing unit for performing the method.
- a blood analysis device is provided.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Ecology (AREA)
- Dispersion Chemistry (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
予め定められた初期境界線およびそれを並進変位させて得られる1以上の境界線のそれぞれについて、目的とする境界線としての信頼性の判定指標を決定し、該判定指標に基づいて、目的とする境界線を決定する。
Description
本発明は、概しては血液細胞の分析に関し、詳細には、血液細胞の分布状態を示すスキャッタグラムにおいて2以上の異なる種類の血液細胞を区分する境界線を決定する方法、および当該方法を行うための処理部を有する血液分析装置に関する。
赤血球、血小板、白血球などの血液細胞は、生体の状態を反映して様々に変化する。このため、各種の血液細胞の数、形態、比率などに関する度数分布は、医療などのための診断における重要な測定項目となっている。
上記のような血液細胞に関する分析手法の1つとして白血球分類がある。なかでもLMNEマトリクスなどのスキャッタグラムによる白血球分類表示の手法は、染色技術、インピーダンス法、光学的手法などの種々の技術を用いて白血球を5分類まで測定し得、分類結果を視覚的に捉えることが可能なように表示し得、検体ごとに異なる血球数、比率などが反映する各種疾患(例、白血病、悪性リンパ腫、多発性骨髄腫など)を判断する上で重要な手法である(例えば、特許文献1)。
LMNEマトリクスは、脂肪染色やペルオキシダーゼ染色などの細胞染色技術を利用して染色された4種類の白血球、即ち、リンパ球(L:Lymphocyte)、単球(M:Monocyte)、好中球(N:Neutrophil)、好酸球(E:Eosinophil)に関するスキャッタグラムの一種である。
図5は、LMNEマトリクスの典型的な表示例を示した図であって、前記4種類の血球が混在した試料中の各血球の容積と吸光度を測定し、得られた個々の血球ごとの測定データ(容積、吸光度)を、X軸(容積に対応する横軸)とY軸(吸光度に対応する縦軸)とからなるX-Y平面上にプロットしたグラフとなっている。
上記4種類の血球が混在した試料であっても、個々の血球のデータ対(容積、吸光度)をLMNEマトリクスとしてプロットすると、図5に示すように、プロットされたドットは明らかに4種類の血球に対応した4つの集団に分かれて分布する。よって、それぞれの集団の分布の様子から、各種疾患を判断することが可能になる。
図5は、LMNEマトリクスの典型的な表示例を示した図であって、前記4種類の血球が混在した試料中の各血球の容積と吸光度を測定し、得られた個々の血球ごとの測定データ(容積、吸光度)を、X軸(容積に対応する横軸)とY軸(吸光度に対応する縦軸)とからなるX-Y平面上にプロットしたグラフとなっている。
上記4種類の血球が混在した試料であっても、個々の血球のデータ対(容積、吸光度)をLMNEマトリクスとしてプロットすると、図5に示すように、プロットされたドットは明らかに4種類の血球に対応した4つの集団に分かれて分布する。よって、それぞれの集団の分布の様子から、各種疾患を判断することが可能になる。
同一の測定およびプロット条件により作成されたスキャッタグラムにおいて、特定の種類の血液細胞は概ね特定の領域に分布することが知られている。例えば、図5に示すようなLMNEマトリクスにおいて、リンパ球、単球、好中球、および好酸球のそれぞれが分布する領域は概ね定まっているので、これらの細胞を区分する分類境界線を経験的に画定することができる。しかしながら、正常検体に基づいて経験的に画定された分類境界線は異常検体には適用できないことが多い。このため、異常な細胞信号が検出された時に、分析者は分類境界線の位置を変化させなければならない。
血液細胞の分析において分類境界線の位置を自動で設定するいくつかの装置および方法が提案されている(例えば、特許文献2~5)。しかしながら、従来技術による分類境界線の自動設定は正確性の点で十分なものではなかった。
本発明は先行技術における上述の問題点に鑑み為されたものであり、正確性に優れた、血液細胞の分布状態を示すスキャッタグラムにおいて2以上の異なる種類の血液細胞を区分する境界線を決定する方法、および当該方法を行うための処理部を有する血液分析装置を提供することを課題とする。
本発明者は上記の課題を解決するために鋭意検討を行ったところ、分析の対象とするスキャッタグラムにおいて、経験的に予め定められた初期境界線を並進変位させる(即ち、回転させることなく初期境界線をX軸に平行におよび/またはY軸に平行に移動させる)ことにより、対象とする2以上の異なる種類の血液細胞を正確に区分できる境界線を探索できることを見出した。本発明者は更に、当該探索において、初期境界線および移動後の境界線のうち、その全体または特定部分の近傍領域に存在するドットの個数が小さくなる境界線を、目的とする境界線の候補として与え得ることを見出した。本発明者はかかる発見に基づいて更に検討を進め、本発明を完成させるに至った。
本発明は即ち、以下を提供する。
[1]血液分析装置であって、当該血液分析装置は、血液細胞に関するスキャッタグラムにおいて2以上の異なる種類の血液細胞を区分する境界線を決定する境界線決定部を含み、
該境界線決定部は、
血液細胞の測定データに基づいて作成されたスキャッタグラムS0、および、前記スキャッタグラムS0において対象とする2以上の異なる種類の血液細胞を区分するための予め定められた初期境界線B0を受け付ける初期設定部、
前記初期境界線B0を1以上のパターンで並進変位させるためのX軸方向およびY軸方向の変位量(Δxi,Δyi)(iは並進変位のパターンの通し番号を示す。)のセットを設定する変位量セット設定部、
目的とする境界線としての信頼性の判定指標を決定するための予め定義された方法を用いて、前記初期境界線B0に関する判定指標I0、および、前記変位量セット設定部より受け付けた1以上の変位量(Δxi,Δyi)のそれぞれについてX軸方向にΔxiかつY軸方向にΔyiだけ前記初期境界線B0を並進変位させることに基づいて生成される1以上の境界線Biに関する判定指標Iiをそれぞれ決定する判定指標決定部、および、
前記判定指標決定部により決定された判定指標I0および1以上の判定指標Iiに基づいて、目的とする境界線の候補として前記の初期境界線B0および1以上の境界線Biのうちの少なくとも1つを特定する境界線候補特定部
を含む、前記血液分析装置。
[2]前記判定指標決定部がドット計数部であり、該ドット計数部は、前記初期境界線B0の特定の近傍領域の全体または部分として定められた計数領域R0内のドットの個数Num(R0)をカウントし、該個数Num(R0)を前記判定指標I0とし、かつ、前記1以上の境界線Biのそれぞれに関して前記計数領域R0に対応する計数領域Riを定義し、前記計数領域Ri内のドットの個数Num(Ri)をカウントし、該個数Num(Ri)を前記判定指標Iiとするものであり、かつ、
前記境界線候補特定部が、前記ドット計数部により決定された判定指標I0および1以上の判定指標Iiの値の小ささを基準として、目的とする境界線の候補として前記の初期境界線B0および1以上の境界線Biのうちの少なくとも1つを特定するものである、上記[1]に記載の血液分析装置。
[3]前記血液細胞が白血球であり、かつ前記境界線が、リンパ球、単球、および好中球を区分するものである、上記[1]または[2]に記載の血液分析装置。
[4]前記スキャッタグラムS0の一つの軸が容積を示し、他方の軸が吸光度を示す、上記[1]~[3]のいずれかに記載の血液分析装置。
[5]前記スキャッタグラムS0が、離散座標上にプロットされたドットから構成されたものであり、
前記境界線決定部が、再演算制御部を更に含み、
該再演算制御部は、
前記判定指標決定部による処理の後かつ前記境界線候補特定部による処理の前において、追加のスキャッタグラムを用いた再演算が必要であるか否かを判定し、
前記再演算が必要であると判定した時に、前記初期設定部、前記変位量セット設定部、および前記判定指標決定部による一連の処理を再度行うように前記境界線決定部を制御し、それにより前記の判定指標I0および1以上の判定指標Iiを再決定させる、
という処理を、前記再演算が必要でないと判定されるまで繰り返し行うものであり、ここで、前記再演算毎に異なる追加のスキャッタグラムS0’が用いられ、前記追加のスキャッタグラムS0’は、前記スキャッタグラムS0の離散座標上の各位置にあるドットの個数を所定の数だけ減じることにより生成されるものであり、
前記境界線候補特定部において、前記判定指標決定部による最後の処理において決定された判定指標I0および1以上の判定指標Iiとに基づいて、目的とする境界線の候補として、前記判定指標決定部による最後の処理における初期境界線B0および1以上の境界線Biのうちの少なくとも1つが特定される、
上記[1]~[4]のいずれかに記載の血液分析装置。
[6]与えられた血液検体に対して所定の分析項目に関する測定と分析を行い、分析結果を示すスキャッタグラムを生成する血液分析用データ処理部
を更に有する、上記[1]~[5]のいずれかに記載の血液分析装置。
[7]血液細胞に関するスキャッタグラムにおいて2以上の異なる種類の血液細胞を区分する境界線の決定に用いる方法であって、
血液細胞の測定データに基づいて作成されたスキャッタグラムS0、および、前記スキャッタグラムS0において対象とする2以上の異なる種類の血液細胞を区分するための予め定められた初期境界線B0を受け付ける初期設定工程、
前記初期境界線B0を1以上のパターンで並進変位させるためのX軸方向およびY軸方向の変位量(Δxi,Δyi)(iは並進変位のパターンの通し番号を示す。)のセットを設定する変位量セット設定工程、
目的とする境界線としての信頼性の判定指標を決定するための予め定義された方法を用いて、前記初期境界線B0に関する判定指標I0、および、前記変位量セット設定工程において設定した1以上の変位量(Δxi,Δyi)のそれぞれについてX軸方向にΔxiかつY軸方向にΔyiだけ前記初期境界線B0を並進変位させることに基づいて生成される1以上の境界線Biに関する判定指標Iiをそれぞれ決定する判定指標決定工程、および、
前記判定指標決定工程において決定された判定指標I0および1以上の判定指標Iiに基づいて、目的とする境界線の候補として前記の初期境界線B0および1以上の境界線Biのうちの少なくとも1つを特定する境界線候補特定工程
を含む、前記方法。
[8]前記判定指標決定工程がドット計数工程であり、該ドット計数工程において、前記初期境界線B0の特定の近傍領域の全体または部分として定められた計数領域R0内のドットの個数Num(R0)をカウントし、該個数Num(R0)を前記判定指標I0とし、かつ、前記1以上の境界線Biのそれぞれに関して前記計数領域R0に対応する計数領域Riを定義し、前記計数領域Ri内のドットの個数Num(Ri)をカウントし、該個数Num(Ri)を前記判定指標Iiとし、かつ、
前記境界線候補特定工程において、前記ドット計数工程において決定された判定指標I0および1以上の判定指標Iiの値の小ささを基準として、目的とする境界線の候補として前記の初期境界線B0および1以上の境界線Biのうちの少なくとも1つを特定する、上記[7]に記載の方法。
[9]前記血液細胞が白血球であり、かつ前記境界線が、リンパ球、単球、および好中球を区分するものである、上記[7]または[8]に記載の方法。
[10]前記スキャッタグラムSの一つの軸が容積を示し、他方の軸が吸光度を示す、上記[7]~[9]のいずれかに記載の方法。
[11]前記スキャッタグラムS0が、離散座標上にプロットされたドットから構成されたものであり、
当該方法が、再演算制御工程を更に含み、
該再演算制御工程において、
前記判定指標決定工程の後かつ前記境界線候補特定工程の前において、追加のスキャッタグラムを用いた再演算が必要であるか否かを判定し、
前記再演算が必要であると判定した時に、前記初期設定工程、前記変位量セット設定工程、および前記判定指標決定工程による一連の処理を再度行うように当該方法の手順を制御し、それにより前記の判定指標I0および1以上の判定指標Iiを再決定する、
という処理を、前記再演算が必要でないと判定されるまで繰り返し行い、ここで、前記再演算毎に異なる追加のスキャッタグラムS0’が用いられ、前記追加のスキャッタグラムS0’は、前記スキャッタグラムS0の離散座標上の各位置にあるドットの個数を所定の数だけ減じることにより生成されるものであり、
前記境界線候補特定工程において、最後の前記判定指標決定工程において決定された判定指標I0および1以上の判定指標Iiとに基づいて、目的とする境界線の候補として、最後の前記判定指標決定工程における初期境界線B0および1以上の境界線Biのうちの少なくとも1つが特定される、
上記[7]~[10]のいずれかに記載の方法。
[1]血液分析装置であって、当該血液分析装置は、血液細胞に関するスキャッタグラムにおいて2以上の異なる種類の血液細胞を区分する境界線を決定する境界線決定部を含み、
該境界線決定部は、
血液細胞の測定データに基づいて作成されたスキャッタグラムS0、および、前記スキャッタグラムS0において対象とする2以上の異なる種類の血液細胞を区分するための予め定められた初期境界線B0を受け付ける初期設定部、
前記初期境界線B0を1以上のパターンで並進変位させるためのX軸方向およびY軸方向の変位量(Δxi,Δyi)(iは並進変位のパターンの通し番号を示す。)のセットを設定する変位量セット設定部、
目的とする境界線としての信頼性の判定指標を決定するための予め定義された方法を用いて、前記初期境界線B0に関する判定指標I0、および、前記変位量セット設定部より受け付けた1以上の変位量(Δxi,Δyi)のそれぞれについてX軸方向にΔxiかつY軸方向にΔyiだけ前記初期境界線B0を並進変位させることに基づいて生成される1以上の境界線Biに関する判定指標Iiをそれぞれ決定する判定指標決定部、および、
前記判定指標決定部により決定された判定指標I0および1以上の判定指標Iiに基づいて、目的とする境界線の候補として前記の初期境界線B0および1以上の境界線Biのうちの少なくとも1つを特定する境界線候補特定部
を含む、前記血液分析装置。
[2]前記判定指標決定部がドット計数部であり、該ドット計数部は、前記初期境界線B0の特定の近傍領域の全体または部分として定められた計数領域R0内のドットの個数Num(R0)をカウントし、該個数Num(R0)を前記判定指標I0とし、かつ、前記1以上の境界線Biのそれぞれに関して前記計数領域R0に対応する計数領域Riを定義し、前記計数領域Ri内のドットの個数Num(Ri)をカウントし、該個数Num(Ri)を前記判定指標Iiとするものであり、かつ、
前記境界線候補特定部が、前記ドット計数部により決定された判定指標I0および1以上の判定指標Iiの値の小ささを基準として、目的とする境界線の候補として前記の初期境界線B0および1以上の境界線Biのうちの少なくとも1つを特定するものである、上記[1]に記載の血液分析装置。
[3]前記血液細胞が白血球であり、かつ前記境界線が、リンパ球、単球、および好中球を区分するものである、上記[1]または[2]に記載の血液分析装置。
[4]前記スキャッタグラムS0の一つの軸が容積を示し、他方の軸が吸光度を示す、上記[1]~[3]のいずれかに記載の血液分析装置。
[5]前記スキャッタグラムS0が、離散座標上にプロットされたドットから構成されたものであり、
前記境界線決定部が、再演算制御部を更に含み、
該再演算制御部は、
前記判定指標決定部による処理の後かつ前記境界線候補特定部による処理の前において、追加のスキャッタグラムを用いた再演算が必要であるか否かを判定し、
前記再演算が必要であると判定した時に、前記初期設定部、前記変位量セット設定部、および前記判定指標決定部による一連の処理を再度行うように前記境界線決定部を制御し、それにより前記の判定指標I0および1以上の判定指標Iiを再決定させる、
という処理を、前記再演算が必要でないと判定されるまで繰り返し行うものであり、ここで、前記再演算毎に異なる追加のスキャッタグラムS0’が用いられ、前記追加のスキャッタグラムS0’は、前記スキャッタグラムS0の離散座標上の各位置にあるドットの個数を所定の数だけ減じることにより生成されるものであり、
前記境界線候補特定部において、前記判定指標決定部による最後の処理において決定された判定指標I0および1以上の判定指標Iiとに基づいて、目的とする境界線の候補として、前記判定指標決定部による最後の処理における初期境界線B0および1以上の境界線Biのうちの少なくとも1つが特定される、
上記[1]~[4]のいずれかに記載の血液分析装置。
[6]与えられた血液検体に対して所定の分析項目に関する測定と分析を行い、分析結果を示すスキャッタグラムを生成する血液分析用データ処理部
を更に有する、上記[1]~[5]のいずれかに記載の血液分析装置。
[7]血液細胞に関するスキャッタグラムにおいて2以上の異なる種類の血液細胞を区分する境界線の決定に用いる方法であって、
血液細胞の測定データに基づいて作成されたスキャッタグラムS0、および、前記スキャッタグラムS0において対象とする2以上の異なる種類の血液細胞を区分するための予め定められた初期境界線B0を受け付ける初期設定工程、
前記初期境界線B0を1以上のパターンで並進変位させるためのX軸方向およびY軸方向の変位量(Δxi,Δyi)(iは並進変位のパターンの通し番号を示す。)のセットを設定する変位量セット設定工程、
目的とする境界線としての信頼性の判定指標を決定するための予め定義された方法を用いて、前記初期境界線B0に関する判定指標I0、および、前記変位量セット設定工程において設定した1以上の変位量(Δxi,Δyi)のそれぞれについてX軸方向にΔxiかつY軸方向にΔyiだけ前記初期境界線B0を並進変位させることに基づいて生成される1以上の境界線Biに関する判定指標Iiをそれぞれ決定する判定指標決定工程、および、
前記判定指標決定工程において決定された判定指標I0および1以上の判定指標Iiに基づいて、目的とする境界線の候補として前記の初期境界線B0および1以上の境界線Biのうちの少なくとも1つを特定する境界線候補特定工程
を含む、前記方法。
[8]前記判定指標決定工程がドット計数工程であり、該ドット計数工程において、前記初期境界線B0の特定の近傍領域の全体または部分として定められた計数領域R0内のドットの個数Num(R0)をカウントし、該個数Num(R0)を前記判定指標I0とし、かつ、前記1以上の境界線Biのそれぞれに関して前記計数領域R0に対応する計数領域Riを定義し、前記計数領域Ri内のドットの個数Num(Ri)をカウントし、該個数Num(Ri)を前記判定指標Iiとし、かつ、
前記境界線候補特定工程において、前記ドット計数工程において決定された判定指標I0および1以上の判定指標Iiの値の小ささを基準として、目的とする境界線の候補として前記の初期境界線B0および1以上の境界線Biのうちの少なくとも1つを特定する、上記[7]に記載の方法。
[9]前記血液細胞が白血球であり、かつ前記境界線が、リンパ球、単球、および好中球を区分するものである、上記[7]または[8]に記載の方法。
[10]前記スキャッタグラムSの一つの軸が容積を示し、他方の軸が吸光度を示す、上記[7]~[9]のいずれかに記載の方法。
[11]前記スキャッタグラムS0が、離散座標上にプロットされたドットから構成されたものであり、
当該方法が、再演算制御工程を更に含み、
該再演算制御工程において、
前記判定指標決定工程の後かつ前記境界線候補特定工程の前において、追加のスキャッタグラムを用いた再演算が必要であるか否かを判定し、
前記再演算が必要であると判定した時に、前記初期設定工程、前記変位量セット設定工程、および前記判定指標決定工程による一連の処理を再度行うように当該方法の手順を制御し、それにより前記の判定指標I0および1以上の判定指標Iiを再決定する、
という処理を、前記再演算が必要でないと判定されるまで繰り返し行い、ここで、前記再演算毎に異なる追加のスキャッタグラムS0’が用いられ、前記追加のスキャッタグラムS0’は、前記スキャッタグラムS0の離散座標上の各位置にあるドットの個数を所定の数だけ減じることにより生成されるものであり、
前記境界線候補特定工程において、最後の前記判定指標決定工程において決定された判定指標I0および1以上の判定指標Iiとに基づいて、目的とする境界線の候補として、最後の前記判定指標決定工程における初期境界線B0および1以上の境界線Biのうちの少なくとも1つが特定される、
上記[7]~[10]のいずれかに記載の方法。
本発明によれば、正確性に優れた、血液細胞の分布状態を示すスキャッタグラムにおいて2以上の異なる種類の血液細胞を区分する境界線を決定する方法、および当該方法を行うための処理部を有する血液分析装置が提供される。
以下に、本発明による血液分析装置および境界線決定方法を、実施例を示しながらより具体的に説明する。
本発明でいう「血液細胞に関するスキャッタグラム」とは、分析対象とする血液細胞を、X軸、Y軸の値となる2つの測定項目について測定し、個々の血液細胞について得られた測定データ(X軸の項目についての測定データ、Y軸の項目についての測定データ)を、スキャッタグラムのX-Y平面上に対応させてプロットしたグラフである。
スキャッタグラムにおいて、一方の軸として示す測定項目と、他方の軸として示す測定項目の組み合わせ(X軸の測定項目、Y軸の測定項目)は、特に限定はされず、例えば、(血球の容積、血球の吸光度(または光透過度))、(血球の容積、血球の蛍光)、(前方散乱光、血球の蛍光)、(側方散乱光、血球の蛍光)などが有用なものとして挙げられる。
スキャッタグラムとして表示すべき血液細胞としては、例えば、赤血球(赤血球の成熟前段階である前赤芽球、好塩基性赤芽球、多染性赤芽球、正染性赤芽球、網赤血球、これらの形態異常のものを含む)、血小板(大血小板、巨大血小板などの形態異常のものを含む)、白血球(好中球、好酸球、好塩基球、リンパ球、単球、異型リンパ球、異常リンパ球、大型リンパ球、幼若細胞などを含む)が挙げられる。これらのなかでも、LMNEマトリクスに表示される、リンパ球、単球、好中球、好酸球は、感染症や血液疾患を診断する点では重要な血液細胞である。
本発明に従って境界線を決定すべき2以上の異なる種類の血液細胞の組み合わせは特に限定されず、同一のスキャッタグラム上に表示され得る任意の2以上の異なる種類の血液細胞であってよい。好ましくは、該組み合わせは、スキャッタグラム上で互いに近接する領域に位置する2以上の異なる種類の血液細胞を含む。該組み合わせは、例えば、白血球に属する2以上の細胞種から構成されていてもよく、具体的には、好中球、好酸球、好塩基球、リンパ球、単球、異型リンパ球、異常リンパ球、大型リンパ球、および幼若細胞から選択される2種以上の細胞から構成されていてもよい。好ましい組み合わせとして、例えば、(リンパ球、単球、好中球)の組み合わせなどが挙げられる。
上述したような測定項目についての測定自体は、従来公知の血液分析装置と同様に行うことができる。分析対象とする血液細胞について得られた測定データ(X軸の項目についての測定データ、Y軸の項目についての測定データ)のセット(集合)は、そのままでは、電気的、光学的な測定装置によって出力された数値のセットであるため、目的とするスキャッタグラムのX-Y平面上にプロットし得るよう、X軸、Y軸のスケールに対応させて変換する処理が通常施される。
本明細書において「ドット」とは、スキャッタグラム上の任意の座標にプロットされたドットであって、測定データ中に当該座標に該当する血液細胞が検出されたことを示すものをいう。スキャッタグラム中の各ドットは、(X座標の値、Y座標の値)の2つのパラメータを用いて表すことができる。
スキャッタグラムは、離散座標上にプロットされたドットから構成されていてもよい(以下、そのようなスキャッタグラムを離散的スキャッタグラムともいう。)。離散座標とは、X座標の値およびY座標の値が離散的な数値(例えば整数)のみからなる座標系をいう。離散的スキャッタグラムは、測定データに基づくX座標の値およびY座標の値を離散的な数値に変換する処理(例えば、小数点以下の切り捨て等)により作成することができる。離散的スキャッタグラムは、例えば、表示装置上へのスキャッタグラムの表示のために用いられ得、この場合、特定の座標(X座標の値およびY座標の値の組み合わせ)と特定の画素とが対応している。
離散的スキャッタグラムにおいては、要求される血球測定精度を達成するために測定される分析データの数に対して、スキャッタグラムの座標の解像度が低いこと等に起因して、同一の最小区画に複数の血球が入ることになる結果、互いに近似した血球のデータが1つの座標上に重なり合うことが起こり得る。このような場合、1つの座標上に複数のドットがプロットされているとみなして本発明を実施することができる。
1つの離散的スキャッタグラムから、1以上の追加のスキャッタグラムを作成することができる。例えば、追加のスキャッタグラムは、離散的スキャッタグラムの離散座標上の各位置にあるドットの個数を所定の数だけ減じることにより生成されるものであってよい。具体的には、各座標に0~Fmax個のドットがプロットされて構成された離散的スキャッタグラムS0に対し、全ての座標においてドットの個数を1個減じた追加のスキャッタグラムS1、全ての座標においてドットの個数を2個減じた追加のスキャッタグラムS2、・・・、全ての座標においてドットの個数を(Fmax-1)個減じた追加のスキャッタグラムSFmax-1というように、(Fmax-1)個の追加のスキャッタグラムからなるシリーズ(S1、S2、・・・、SFmax-1)を生成することができる。ここで、ある座標においてドットの個数が0個とはドットがないことを意味し、また、ある座標におけるドットの個数よりも上記減じる数が大きい場合は当該座標のドットを0個とすればよいことは言うまでもない。後述の通り、このようにして生成される追加のスキャッタグラムは、再演算により目的とする境界線の候補を追加的に検索するために用い得る。
本明細書において、「境界線」とは、スキャッタグラムにおいて、区分の対象としている2以上の種類の血液細胞の境目を画定できる線をいう。従って、当該境界線により、区分の対象としているNA種類(NAは2以上の整数である。)の血液細胞が概ね存在するスキャッタグラム中の領域はNA個の区画に分割され得る(即ち、当該領域中の各座標は、NA個の区画のうちのいずれの一つに含まれるかを確定し得る)。境界線は、区分の対象としている血液細胞が存在しないと考えられるスキャッタグラム中の領域は分割しないものであってもよい。境界線は、分岐を持たない1本の直線または曲線から形成されていてもよいし、分岐を有する線(直線および/または曲線)から形成されていてもよい(後者の場合、境界線は、互いに連結した2以上の線から形成されていると考えることもできる)。境界線は、通常、1本の線または互いに連結した2以上の線から形成されているが、適切である限り、互いに連結していない2以上の線から形成されていてもよい。
本明細書において、「初期境界線B0」とは、目的とする境界線を探索するための基準(即ち、開始位置)となる境界線をいう。初期境界線B0は、例えば、正常検体からの測定データに基づいて作成されたスキャッタグラムにおいて、対象とする2以上の異なる種類の血液細胞を概ね区分できることが経験的に分かっている境界線であってもよい。初期境界線B0は、仮決めした分画線について、多数(例えば数百)の検体を測定した結果を目視(標準法)の場合との相関をとって妥当性を判断することにより確定したものであってもよい。
本明細書において、「X軸方向にΔxiかつY軸方向にΔyiだけ初期境界線B0を並進変位させる」とは、図6(a)に示すように、スキャッタグラム中で、回転させることなく初期境界線B0をX軸に平行にΔxi座標分だけ、およびY軸に平行にΔyi座標分だけ移動させることをいう。当該並進変位により、初期境界線B0上の任意の点P0(その座標を(x0,y0)とする。)は、移動後の線B0’上の点P0’(x0+Δxi,y0+Δyi)に移動する。
本明細書において、「X軸方向にΔxiかつY軸方向にΔyiだけ初期境界線B0を並進変位させることに基づいて生成される境界線Bi」とは、一般的には、初期境界線B0を、上に定義したようにX軸方向にΔxiかつY軸方向にΔyiだけ並進変位した後の線B0’をいう(図6(a))。
但し、図6(b)に示すように、移動後の線B0’がスキャッタグラム内に収まらない場合には、線B0’のうちのスキャッタグラム内に収まった部分のみを境界線Biとしてもよい。同様に、図6(c)に示すように、区分の対象とする2つの領域U1およびU2の間の初期境界線B0を移動した線B0’が区分の対象としない領域U3に入り込む場合、線B0’のうちの領域U3に入り込んだ部分を割愛したものを境界線Biとしてもよい。また、図6(c)に示すように、境界線Biが明確な区画を確定できるように、移動後の線B0’に追加の線(例えば、図6(c)において点P4と点P4’とを結ぶ線)を補ったものを境界線Biとしてもよい。追加的におよび/または代替的には、対象としていない他の分類境界線(例えば、図6(c)におけるU3とU1,U2との境界線、U4とU1,U2との境界線)を適宜移動させてもよい。境界線Biの取り方に関する上記の実施形態はあくまでも例示であって、解析の目的や対象、各種のパラメータなどを考慮して当業者は適切な処理を決定することができる。
但し、図6(b)に示すように、移動後の線B0’がスキャッタグラム内に収まらない場合には、線B0’のうちのスキャッタグラム内に収まった部分のみを境界線Biとしてもよい。同様に、図6(c)に示すように、区分の対象とする2つの領域U1およびU2の間の初期境界線B0を移動した線B0’が区分の対象としない領域U3に入り込む場合、線B0’のうちの領域U3に入り込んだ部分を割愛したものを境界線Biとしてもよい。また、図6(c)に示すように、境界線Biが明確な区画を確定できるように、移動後の線B0’に追加の線(例えば、図6(c)において点P4と点P4’とを結ぶ線)を補ったものを境界線Biとしてもよい。追加的におよび/または代替的には、対象としていない他の分類境界線(例えば、図6(c)におけるU3とU1,U2との境界線、U4とU1,U2との境界線)を適宜移動させてもよい。境界線Biの取り方に関する上記の実施形態はあくまでも例示であって、解析の目的や対象、各種のパラメータなどを考慮して当業者は適切な処理を決定することができる。
本明細書において、「変位量(Δxi,Δyi)のセット」は、初期境界線B0を並進変位させるためのX軸方向およびY軸方向の移動量(それぞれΔxiおよびΔyi)を定義するパラメータのセットである。変位量のセットは、例えば、矩形範囲として定義することができるが、これに限定されるものではない。例えば離散的スキャッタグラムに関して変位量のセットを矩形範囲として定義した場合、X軸方向の最小変位Δxminと最大変位Δxmax、およびY軸方向の最小変位Δyminと最大変位Δymaxを用いて変位量のセットを表すことができ、該セットには、
(Δxmin、Δymin)、(Δxmin+1、Δymin)、・・・、(Δxmax、Δymin)、
(Δxmin、Δymin+1)、(Δxmin+1、Δymin+1)、・・・、(Δxmax、Δymin+1)、
・・・
(Δxmin、Δymax)、(Δxmin+1、Δymax)、・・・、(Δxmax、Δymax)
からなるパターン数N=(Δxmax-Δxmin+1)×(Δymax-Δymin+1)通りの変位量が含まれ得る。
X軸方向の変位ΔxiおよびY軸方向の変位Δyiの大きさは特に限定されず、初期境界線や、対象とする血液細胞の分布などの様々な要素を考慮して適宜決定することができる。
なお、本明細書において、X軸方向の変位ΔxiおよびY軸方向の変位Δyiは正の値、負の値、または0であってよく、負の変位はX軸またはY軸のマイナス方向への移動を意味する。
(Δxmin、Δymin)、(Δxmin+1、Δymin)、・・・、(Δxmax、Δymin)、
(Δxmin、Δymin+1)、(Δxmin+1、Δymin+1)、・・・、(Δxmax、Δymin+1)、
・・・
(Δxmin、Δymax)、(Δxmin+1、Δymax)、・・・、(Δxmax、Δymax)
からなるパターン数N=(Δxmax-Δxmin+1)×(Δymax-Δymin+1)通りの変位量が含まれ得る。
X軸方向の変位ΔxiおよびY軸方向の変位Δyiの大きさは特に限定されず、初期境界線や、対象とする血液細胞の分布などの様々な要素を考慮して適宜決定することができる。
なお、本明細書において、X軸方向の変位ΔxiおよびY軸方向の変位Δyiは正の値、負の値、または0であってよく、負の変位はX軸またはY軸のマイナス方向への移動を意味する。
本明細書において、「目的とする境界線としての信頼性の判定指標」は、所与の境界線が、目的とする境界線としてどの程度信頼できるのかを判定するために用い得るものである限り、特に限定されない。該判定指標は、例えば、数値であってよい。また、本明細書において、「目的とする境界線としての信頼性の判定指標を決定するための予め定義された方法」は、所与の境界線に対して上記の判定指標を決定できるように定義されたものである限り、特に限定されない。好ましい実施形態において、該判定指標はドットの個数として与えられる。所与の境界線に対して該ドットの個数を決定するための好ましい実施形態についての詳細は後述する。
本明細書において、「初期境界線B0の特定の近傍領域の全体または部分として予め定められた計数領域R0」の取り方は特に限定されず、スキャッタグラム中での血液細胞の分布などを考慮して定義することができる。「近傍領域」は、例えば、初期境界線B0の全体または特定部分に含まれる少なくとも1点との距離が所定の閾値以内である座標の集合であってもよい。計数領域R0は、1次元の領域(即ち、線上の点の集合)、2次元の領域(即ち、ある閉じた線で囲まれた領域)、またはこれらの組み合わせであってよい。計数領域R0は、1つの区画からなるものであってもよいし、2以上の分かれた区画からなるものであってもよい。初期境界線B0に関する計数領域R0の一例を図7(a)に示す。図7(a)の例では、計数領域R0は、初期境界線B0の特定の一部分の近傍領域として定義されている。
本明細書において、境界線Biに関して定義される「計数領域R0に対応する計数領域Ri」とは、一般的には、計数領域R0内の全ての点をX軸方向にΔxiかつY軸方向にΔyiだけ並進変位させることで得られる点の集合からなる領域R0’をいう。図7(a)に示す計数領域R0に対応する計数領域Riの一例を図7(b)に示す。図7(b)の例では、計数領域Riは、計数領域R0内の全ての点をX軸方向にΔxiかつY軸方向にΔyiだけ並進変位させることで得られる点の集合からなる領域R0’と同じである。但し、境界線Biに関して上述したのと同様に、移動後の領域R0’を計数領域Riとすることが適切でない場合があり得る(例えば、領域R0’がスキャッタグラム内に収まらない場合、領域R0’が考慮の対象としない領域に入り込む場合、領域R0’に一部の領域を補う必要がある場合、など)。その場合、境界線Biに関する上述の説明に準じて、領域R0’の一部の領域を割愛する、領域R0’に追加の領域を補う、などの処理を適宜採ることができ、それにより計数領域Riを適切に定義することができる。
本発明の血液分析装置は、境界線決定部に加えて、与えられた血液検体に対して所定の分析項目に関する測定と分析を行い、分析結果を示すスキャッタグラムを生成する血液分析用データ処理部も有することが好ましい。血液分析用データ処理部は、血液検体を測定および分析してスキャッタグラムを生成できる従来の血液分析用データ処理部であってよい。以下では、本発明の境界線決定方法、および本発明の装置において当該方法を行うための境界線決定部について、図面を参照しながら詳細に説明する。
図1は、本発明の血液分析装置における境界線決定部の構成の一例を示すブロック図である。図1に示すように、当該境界線決定部10は、血液細胞に関するスキャッタグラムにおいて2以上の異なる種類の血液細胞を区分する境界線を決定するための機能部であって、初期設定部11と、変位量セット設定部12と、判定指標決定部13と、境界線候補特定部14とを少なくとも有して構成される。初期設定部11は、血液細胞の測定データに基づいて作成されたスキャッタグラムS0、および、スキャッタグラムS0において対象とする2以上の異なる種類の血液細胞を区分するための予め定められた初期境界線B0を受け付ける。変位量セット設定部12は、初期境界線B0を1以上のパターンで並進変位させるためのX軸方向およびY軸方向の変位量(Δxi,Δyi)(iは並進変位のパターンの通し番号を示す。)のセットを設定する。判定指標決定部13は、目的とする境界線としての信頼性の判定指標を決定するための予め定義された方法を用いて、初期境界線B0に関する判定指標I0、および、変位量セット設定部より受け付けた1以上の変位量(Δxi,Δyi)のそれぞれについてX軸方向にΔxiかつY軸方向にΔyiだけ初期境界線B0を並進変位させることに基づいて生成される1以上の境界線Biに関する判定指標Iiをそれぞれ決定する。境界線候補特定部14は、判定指標決定部により決定された判定指標I0および1以上の判定指標Iiに基づいて、目的とする境界線の候補として初期境界線B0および1以上の境界線Biのうちの少なくとも1つを特定する。
図1のブロック図に示す実施形態において、判定指標決定部13は、初期設定部11、変位量セット設定部12、および境界線候補特定部14と機能的に接続されており、初期設定部11が受け付けたスキャッタグラムS0および初期境界線B0と、変位量セット設定部12が設定した変位量のセットとに基づいて、初期境界線B0についての判定指標I0および各境界線Biについての判定指標Iiを決定し、これらの判定指標を境界線候補特定部14に引き渡す。後述の通り、変位量セット設定部12は、初期設定部11とは独立して変位量のセットを設定してもよいし、あるいは初期設定部11が受け付けたスキャッタグラムS0および初期境界線B0、またはこれらを用いた所定の演算の結果などを利用して変位量のセットを設定してもよい。従って、図1のブロック図においては、初期設定部11と変位量セット設定部12とを破線により繋いでいる。
境界線決定部を構成する各部(上記した、初期設定部、変位量セット設定部、判定指標決定部、境界線候補特定部、後述する再演算制御部、血液細胞演算部など)は、それぞれに、電子回路、電気回路、独立した処理装置を組み合わせて構築してもよいが、これらの各部を、コンピュータを用い、該コンピュータで実行されるプログラムによって構成するのが好ましい実施態様である。
以下に、当該境界線決定部をコンピュータを用いて構成した場合の実施例を挙げて、境界線決定部を構成する各部の好ましい態様を説明する。以下に示す各部の構成は、部分的にまたは全体的に、電子回路、電気回路、独立した処理装置などを組み合わせて、コンピュータに替えて実施することができる。
以下に、当該境界線決定部をコンピュータを用いて構成した場合の実施例を挙げて、境界線決定部を構成する各部の好ましい態様を説明する。以下に示す各部の構成は、部分的にまたは全体的に、電子回路、電気回路、独立した処理装置などを組み合わせて、コンピュータに替えて実施することができる。
初期設定部11は、スキャッタグラムS0および初期境界線B0を受け付ける。
好ましい実施形態において、スキャッタグラムS0の受け付けは、本発明の血液分析装置が有する血液分析用データ処理部が生成したスキャッタグラムを電気的または電子的な通信を介して受け付けることにより行われる。あるいは、スキャッタグラムS0の受け付けは、例えば、ハードディスクなどの記憶装置内に格納されたスキャッタグラムを読み出すことにより行ってもよい。
初期境界線B0の受け付けは、例えば、経験的に事前に確定された初期境界線に関するパラメータをハードディスクなどの記憶装置内に格納しておき、それを読み出すことにより行うことができる。また、初期設定部11は、並進変位による位置決定に利用される初期境界線以外に、本発明による位置決定の対象ではない他の分類境界線も受け付けるように構成されていてもよい。
好ましい実施形態において、スキャッタグラムS0の受け付けは、本発明の血液分析装置が有する血液分析用データ処理部が生成したスキャッタグラムを電気的または電子的な通信を介して受け付けることにより行われる。あるいは、スキャッタグラムS0の受け付けは、例えば、ハードディスクなどの記憶装置内に格納されたスキャッタグラムを読み出すことにより行ってもよい。
初期境界線B0の受け付けは、例えば、経験的に事前に確定された初期境界線に関するパラメータをハードディスクなどの記憶装置内に格納しておき、それを読み出すことにより行うことができる。また、初期設定部11は、並進変位による位置決定に利用される初期境界線以外に、本発明による位置決定の対象ではない他の分類境界線も受け付けるように構成されていてもよい。
変位量セット設定部12は、初期境界線B0を1以上のパターンで並進変位させるためのX軸方向およびY軸方向の変位量(Δxi,Δyi)(iは並進変位のパターンの通し番号を示す。)のセットを設定する。変位量セット設定部12は、例えば、ハードディスクなどの記憶装置内に格納された事前に定義された変位量(Δxi,Δyi)のセットを読み出すことにより行うことができる。あるいは、変位量セット設定部12は、ユーザからの変位量(Δxi,Δyi)のセットに関する入力を受け付けるように構成されていてもよい。
また、変位量セット設定部12は、初期設定部11が受け付けたスキャッタグラムS0および/または初期境界線B0に基づいて変位量(Δxi,Δyi)のセットを設定するように構成されていてもよい。例えば、変位量セット設定部12は、初期設定部11が受け付けたスキャッタグラムS0、初期境界線B0、および/またはそれ以外の分類境界線に基づいて、各種類の血液細胞の存在割合を算出する血液細胞演算部(図示せず;例えば、LMNEマトリクスにおいて少なくともリンパ球、単球、好中球、および好酸球の存在割合を算出するLMNE演算部)を有していてもよく、あるいは該血液細胞演算部と機能的に接続されていてもよく、算出された任意の1以上の種類の血液細胞の存在割合を利用して変位量(Δxi,Δyi)のセットを設定するように構成されていてもよい。具体的には、例えば、後述の実施例に示されるように、LMNEマトリクスにおけるリンパ球、単球、および好中球の間の境界線の決定において、例えば好中球の存在割合に基づいて変位量(Δxi,Δyi)のセットを設定してもよい。
また、変位量セット設定部12は、初期設定部11が受け付けたスキャッタグラムS0および/または初期境界線B0に基づいて変位量(Δxi,Δyi)のセットを設定するように構成されていてもよい。例えば、変位量セット設定部12は、初期設定部11が受け付けたスキャッタグラムS0、初期境界線B0、および/またはそれ以外の分類境界線に基づいて、各種類の血液細胞の存在割合を算出する血液細胞演算部(図示せず;例えば、LMNEマトリクスにおいて少なくともリンパ球、単球、好中球、および好酸球の存在割合を算出するLMNE演算部)を有していてもよく、あるいは該血液細胞演算部と機能的に接続されていてもよく、算出された任意の1以上の種類の血液細胞の存在割合を利用して変位量(Δxi,Δyi)のセットを設定するように構成されていてもよい。具体的には、例えば、後述の実施例に示されるように、LMNEマトリクスにおけるリンパ球、単球、および好中球の間の境界線の決定において、例えば好中球の存在割合に基づいて変位量(Δxi,Δyi)のセットを設定してもよい。
判定指標決定部13は、初期設定部11が受け付けたスキャッタグラムS0および初期境界線B0、ならびに変位量セット設定部12が設定した変位量(Δxi,Δyi)のセットに基づいて、初期境界線B0についての判定指標I0および各境界線Biについての判定指標Iiを決定する。好ましい実施形態において、該判定指標はドットの個数として与えられ、該ドットの個数は以下に説明するドット計数部により決定される。よって、好ましくは、該判定指標決定部13はドット計数部13’である。
ドット計数部13’は、上述した計数領域R0内のドットの個数Num(R0)をカウントし、該個数Num(R0)を判定指標I0とする。また、ドット計数部は、上述した1以上の計数領域Ri内のドットの個数Num(Ri)をそれぞれカウントし、該個数Num(Ri)を判定指標Iiとする。これらのカウント処理の順序は特に限定されない。
境界線候補特定部14は、判定指標決定部13により決定された判定指標I0および1以上の判定指標Iiに基づいて、目的とする境界線の候補として初期境界線B0および1以上の境界線Biのうちの少なくとも1つを特定する。境界線候補特定部14は、特定した1以上の境界線の候補に基づいて目的とする1つの境界線を決定してもよいし、あるいは、特定した1以上の境界線の候補をユーザに提示し、ユーザが当該候補に基づいて目的とする境界線を決定できるように構成されていてもよい。特定された境界線候補または境界線は、表示装置などの出力装置を通じてユーザに出力され得る。
また、境界線決定部10は、スキャッタグラムS0、特定された境界線候補または境界線、および/または他の分類境界線に基づいて、各種類の血液細胞の存在割合を算出する血液細胞演算部(図示せず;例えば、上述のLMNE演算部)を有していてもよく、あるいは該血液細胞演算部と機能的に接続されていてもよい。
また、境界線決定部10は、スキャッタグラムS0、特定された境界線候補または境界線、および/または他の分類境界線に基づいて、各種類の血液細胞の存在割合を算出する血液細胞演算部(図示せず;例えば、上述のLMNE演算部)を有していてもよく、あるいは該血液細胞演算部と機能的に接続されていてもよい。
判定指標決定部13がドット計数部13’である場合、境界線候補特定部14は、ドット計数部13’により決定された判定指標I0および1以上の判定指標Iiの値(即ち、個数Num(R0)および1以上の個数Num(Ri))の小ささを基準として、目的とする境界線の候補として初期境界線B0および1以上の境界線Biのうちの少なくとも1つを特定してもよい。一つの実施形態において、境界線候補特定部14は、判定指標I0および1以上の判定指標Iiが最小値を与える境界線を目的とする境界線として決定する。境界線候補特定部14は、そのような境界線が2つ以上ある場合には、予め定義された基準に従って一つの境界線を選択するように構成されていてもよい。該基準としては、例えば、初期境界線B0からの変位距離(即ち、((Δxi)2+(Δyi)2)1/2)が最も小さい境界線を選択することが挙げられる。
図2は、本発明の境界線決定方法の一例を示すフローチャートである。図2のフローチャートに示す実施形態は、図1のブロック図に示す実施形態の境界線決定部10を用いて実行することができる。従って、境界線決定部10に関して上述した全ての実施形態は、図2のフローチャートに示す実施形態の境界線決定方法に適用することができる。
図2のフローチャートに示す通り、初期設定工程S1では、スキャッタグラムS0および初期境界線B0を受け付ける。初期設定工程S1は、上述した初期設定部11を用いて実行することができる。
変位量セット設定工程S2では、変位量(Δxi,Δyi)(iは並進変位のパターンの通し番号を示す。)のセットを設定する。変位量セット設定工程S2は、上述した変位量セット設定部12を用いて実行することができる。変位量のセットの設定のために工程S1で受け付けたスキャッタグラムS0および初期境界線B0を利用しない場合、工程S1と工程S2を行う順序は問わない。
判定指標決定工程S3では、初期設定工程S1で受け付けたスキャッタグラムS0および初期境界線B0、ならびに変位量セット設定工程S2で設定した変位量(Δxi,Δyi)のセットに基づいて、初期境界線B0についての判定指標I0および各境界線Biについての判定指標Iiを決定する。判定指標決定工程S3は、上述した判定指標決定部13を用いて実行することができる。好ましい実施形態において、判定指標決定工程S3はドット計数工程S3’である。ドット計数工程S3’では、上述した計数領域R0内のドットの個数Num(R0)をカウントし、該個数Num(R0)を判定指標I0とし、また、上述した1以上の計数領域Ri内のドットの個数Num(Ri)をそれぞれカウントし、該個数Num(Ri)を判定指標Iiとする。ドット計数工程S3’は、上述したドット計数部13’を用いて実行することができる。
境界線候補特定工程S4では、判定指標決定工程S3において決定された判定指標I0および1以上の判定指標Iiに基づいて、目的とする境界線の候補として初期境界線B0および1以上の境界線Biのうちの少なくとも1つを特定する。境界線候補特定工程S4は、上述した境界線候補特定部14を用いて実行することができる。判定指標決定工程S3がドット計数工程S3’である場合、境界線候補特定工程S4は、ドット計数工程S3’において決定された判定指標I0および1以上の判定指標Iiの値(即ち、個数Num(R0)および1以上の個数Num(Ri))の小ささを基準として、目的とする境界線の候補として初期境界線B0および1以上の境界線Biのうちの少なくとも1つを特定してもよい。
変位量セット設定工程S2では、変位量(Δxi,Δyi)(iは並進変位のパターンの通し番号を示す。)のセットを設定する。変位量セット設定工程S2は、上述した変位量セット設定部12を用いて実行することができる。変位量のセットの設定のために工程S1で受け付けたスキャッタグラムS0および初期境界線B0を利用しない場合、工程S1と工程S2を行う順序は問わない。
判定指標決定工程S3では、初期設定工程S1で受け付けたスキャッタグラムS0および初期境界線B0、ならびに変位量セット設定工程S2で設定した変位量(Δxi,Δyi)のセットに基づいて、初期境界線B0についての判定指標I0および各境界線Biについての判定指標Iiを決定する。判定指標決定工程S3は、上述した判定指標決定部13を用いて実行することができる。好ましい実施形態において、判定指標決定工程S3はドット計数工程S3’である。ドット計数工程S3’では、上述した計数領域R0内のドットの個数Num(R0)をカウントし、該個数Num(R0)を判定指標I0とし、また、上述した1以上の計数領域Ri内のドットの個数Num(Ri)をそれぞれカウントし、該個数Num(Ri)を判定指標Iiとする。ドット計数工程S3’は、上述したドット計数部13’を用いて実行することができる。
境界線候補特定工程S4では、判定指標決定工程S3において決定された判定指標I0および1以上の判定指標Iiに基づいて、目的とする境界線の候補として初期境界線B0および1以上の境界線Biのうちの少なくとも1つを特定する。境界線候補特定工程S4は、上述した境界線候補特定部14を用いて実行することができる。判定指標決定工程S3がドット計数工程S3’である場合、境界線候補特定工程S4は、ドット計数工程S3’において決定された判定指標I0および1以上の判定指標Iiの値(即ち、個数Num(R0)および1以上の個数Num(Ri))の小ささを基準として、目的とする境界線の候補として初期境界線B0および1以上の境界線Biのうちの少なくとも1つを特定してもよい。
図2のフローチャートに示す実施形態の境界線決定方法は、図1のブロック図に示す実施形態の境界線決定部10に関して上述したその他の部(例えば、血液細胞演算部など)を用いる各種工程を更に含んでいてもよい。
図3は、本発明の血液分析装置における境界線決定部の構成の他の一例を示すブロック図である。図3に示すように、当該境界線決定部100は、初期設定部111と、変位量セット設定部112と、判定指標決定部113と、境界線候補特定部114と、再演算制御部115とを少なくとも有して構成される。好ましい実施形態において、判定指標決定部113は、ドット計数部113’である。初期設定部111、変位量セット設定部112、判定指標決定部113、およびドット計数部113’の構成、それらの間の機能的関連性、それらに付随してもよい追加的機能部は、図1のブロック図の境界線決定部10における初期設定部11、変位量セット設定部12、判定指標決定部13、ドット計数部13’の構成、それらの間の機能的関連性、それらに付随してもよい追加的機能部と同じであってよいので、説明は割愛する。
図1のブロック図に示す実施形態の境界線決定部10と対比した本実施形態の境界線決定部100の顕著な特徴は、再演算制御部115の存在である。再演算制御部115は、判定指標決定部113による判定指標決定の結果に基づいて、初期設定部111、変位量セット設定部112、および判定指標決定部113による一連の処理の再演算の必要性を判定し、その必要があると判定した時には当該再演算を行うように境界線決定部100を制御し、それにより判定指標I0および1以上の判定指標Iiを再決定させる。再演算制御部115は、この処理を、前記の再演算が必要でないと判定するまで繰り返し行う。ここで、前記再演算毎に、スキャッタグラムS0に基づいて生成される異なる追加のスキャッタグラムS0’が用いられる。
再演算制御部115による、再演算要否の判定は、例えば、判定指標決定部113により決定された判定指標I0および1以上の判定指標Iiに基づいて行うことができる。そのために、再演算制御部115は、設定された判定基準をこれらの判定指標が満たしているかチェックするように構成されていてもよい。例えば、判定指標が数値として与えられる場合、再演算制御部115は、設定された閾値とこれらの判定指標とを比較することにより再演算の要否を判定してもよい。
判定指標決定部113がドット計数部113’である実施形態において、再演算要否の判定は、判定指標I0および1以上の判定指標Iiの値(即ち、個数Num(R0)および1以上の個数Num(Ri))と所定の閾値Thrとを比較することにより行われてもよい。閾値Thrは、例えば、対象とする血液細胞の分布や各種の解析パラメータに応じてユーザにより事前に設定された値であってもよい。例えば、判定指標I0および1以上の判定指標Iiの全てが閾値Thrよりも大きい場合に再演算が必要であると判定し、一方、前記判定指標の少なくとも1つが閾値Thr以下の場合に再演算は必要でないと判定することができる。
また、再演算の要否に関する追加的または代替的な判定基準としては、予め再演算の回数の上限(例えば、1回)を設定しておき、再演算の回数が当該上限を上回ったら再演算を行わないようにしてもよい。
判定指標決定部113がドット計数部113’である実施形態において、再演算要否の判定は、判定指標I0および1以上の判定指標Iiの値(即ち、個数Num(R0)および1以上の個数Num(Ri))と所定の閾値Thrとを比較することにより行われてもよい。閾値Thrは、例えば、対象とする血液細胞の分布や各種の解析パラメータに応じてユーザにより事前に設定された値であってもよい。例えば、判定指標I0および1以上の判定指標Iiの全てが閾値Thrよりも大きい場合に再演算が必要であると判定し、一方、前記判定指標の少なくとも1つが閾値Thr以下の場合に再演算は必要でないと判定することができる。
また、再演算の要否に関する追加的または代替的な判定基準としては、予め再演算の回数の上限(例えば、1回)を設定しておき、再演算の回数が当該上限を上回ったら再演算を行わないようにしてもよい。
再演算制御部115は、前記再演算が必要であると判定した時に、初期設定部111、変位量セット設定部112、および判定指標決定部113による一連の処理を再度行うように境界線決定部100を制御する。
再演算毎に、初期設定部111は、スキャッタグラムS0に基づいて生成される異なる追加のスキャッタグラムS0’を受け付ける。一方、再演算の処理において、初期設定部111が受け付ける初期境界線、および、変位量セット設定部112が設定する変位量のセットは、これらの機能部が以前の処理において用いたものと同じであってもよいし、異なっていてもよい(従って、用いる変位量の個数は再演算間で異なっていてもよい。)。一般に、再演算を行う必要がある検体は異常検体である可能性があり得、従って変位量セット設定部112が最初の処理のために設定した変位量のセットよりも狭い範囲の変位量のセットが用いられてもよい。また、判定指標決定部113が用いる判定指標の決定方法、または、ドット計数部113’が用いるドットカウント方法は、これらの機能部が以前の処理において用いたものと同じであることが好ましい。
再演算毎に、初期設定部111は、スキャッタグラムS0に基づいて生成される異なる追加のスキャッタグラムS0’を受け付ける。一方、再演算の処理において、初期設定部111が受け付ける初期境界線、および、変位量セット設定部112が設定する変位量のセットは、これらの機能部が以前の処理において用いたものと同じであってもよいし、異なっていてもよい(従って、用いる変位量の個数は再演算間で異なっていてもよい。)。一般に、再演算を行う必要がある検体は異常検体である可能性があり得、従って変位量セット設定部112が最初の処理のために設定した変位量のセットよりも狭い範囲の変位量のセットが用いられてもよい。また、判定指標決定部113が用いる判定指標の決定方法、または、ドット計数部113’が用いるドットカウント方法は、これらの機能部が以前の処理において用いたものと同じであることが好ましい。
好ましい実施形態において、スキャッタグラムS0は離散的スキャッタグラムであり、かつ、上記の追加のスキャッタグラムS0’は、離散的スキャッタグラムS0の離散座標上の各位置にあるドットの個数を所定の数だけ減じることにより生成されるものである。具体的には、例えば、追加のスキャッタグラムS0’として、上述した(Fmax-1)個の追加のスキャッタグラムからなるシリーズ(S1、S2、・・・、SFmax-1)のうちのいずれかを用いることができる。このような追加のスキャッタグラムは、スキャッタグラムS0に基づいて追加のスキャッタグラムを生成する追加スキャッタグラム生成部(図示せず)を境界線決定部100に設け、追加スキャッタグラム生成部により必要時に生成されるようにしてもよい。
再演算制御部115は、上記シリーズ(S1、S2、・・・、SFmax-1)の追加のスキャッタグラムのうち、1回目の再演算ではスキャッタグラムS1、2回目の再演算ではスキャッタグラムS2、・・・というように番号の小さいものから順次、初期設定部111に追加のスキャッタグラムを与えるように構成されていてもよい。
あるいは、上記シリーズ(S1、S2、・・・、SFmax-1)の追加のスキャッタグラムの中から、再演算に用いる追加のスキャッタグラムを所定の手順に従って決定してもよい。この方式は、再演算の回数の上限(例えば、1回)が設定されている実施形態において特に有用である。上記所定の手順としては、例えば、再演算前に決定された判定指標に基づいて1つの暫定的な境界線を決定し、該暫定的な境界線を用いた時に、予め設定した条件を満たすものをスキャッタグラムS1、S2、・・・、SFmax-1の順に探索することが挙げられる。例えば、判定指標決定部113がドット計数部113’である実施形態において、再演算が必要であると判定された時に、再演算前に決定された判定指標(即ちドットの個数)が最小となる境界線を暫定的な境界線として決定し、該暫定的な境界線および再演算前の計数領域を用いてスキャッタグラムS1、S2、・・・、SFmax-1の順にドットの個数(判定指標)をカウントしていき、該個数が最初に所定の閾値未満となるスキャッタグラムに確定することができる。
再演算制御部115は、上記シリーズ(S1、S2、・・・、SFmax-1)の追加のスキャッタグラムのうち、1回目の再演算ではスキャッタグラムS1、2回目の再演算ではスキャッタグラムS2、・・・というように番号の小さいものから順次、初期設定部111に追加のスキャッタグラムを与えるように構成されていてもよい。
あるいは、上記シリーズ(S1、S2、・・・、SFmax-1)の追加のスキャッタグラムの中から、再演算に用いる追加のスキャッタグラムを所定の手順に従って決定してもよい。この方式は、再演算の回数の上限(例えば、1回)が設定されている実施形態において特に有用である。上記所定の手順としては、例えば、再演算前に決定された判定指標に基づいて1つの暫定的な境界線を決定し、該暫定的な境界線を用いた時に、予め設定した条件を満たすものをスキャッタグラムS1、S2、・・・、SFmax-1の順に探索することが挙げられる。例えば、判定指標決定部113がドット計数部113’である実施形態において、再演算が必要であると判定された時に、再演算前に決定された判定指標(即ちドットの個数)が最小となる境界線を暫定的な境界線として決定し、該暫定的な境界線および再演算前の計数領域を用いてスキャッタグラムS1、S2、・・・、SFmax-1の順にドットの個数(判定指標)をカウントしていき、該個数が最初に所定の閾値未満となるスキャッタグラムに確定することができる。
境界線候補特定部114は、判定指標決定部113による最後の処理において決定された判定指標I0および1以上の判定指標Iiに基づいて、目的とする境界線の候補として、判定指標決定部113による最後の処理における初期境界線B0および1以上の境界線Biのうちの少なくとも1つを特定とする。境界線候補特定部114による境界線候補の特定方法は、判定指標決定部113による最後の処理における初期境界線B0および1以上の境界線Biならびにそれに対応する判定指標I0および1以上の判定指標Iiを用いることを除いて、図1に示す実施形態の境界線候補特定部14による特定方法と同じであってよい。
また、境界線決定部100は、境界線決定部10と同様に、各種類の血液細胞の存在割合を算出する血液細胞演算部(図示せず;例えば上述のLMNE演算部)を有していてもよく、あるいは該血液細胞演算部と機能的に接続されていてもよい。
また、境界線決定部100は、境界線決定部10と同様に、各種類の血液細胞の存在割合を算出する血液細胞演算部(図示せず;例えば上述のLMNE演算部)を有していてもよく、あるいは該血液細胞演算部と機能的に接続されていてもよい。
図4は、本発明の境界線決定方法の他の一例を示すフローチャートである。図4のフローチャートに示す実施形態は、図3のブロック図に示す実施形態の境界線決定部100を用いて実行することができる。従って、境界線決定部100に関して上述した全ての実施形態は、図4のフローチャートに示す実施形態の境界線決定方法に適用することができる。
図4のフローチャートに示す通り、初期設定工程S11では、スキャッタグラムS0および初期境界線B0を受け付ける。初期設定工程S11は、上述した初期設定部111を用いて実行することができる。初期設定工程S11は、図2のフローチャートに示す境界線決定方法に関して上述した初期設定工程S1と同じものであってもよい。
変位量セット設定工程S12では、変位量(Δxi,Δyi)(iは並進変位のパターンの通し番号を示す。)のセットを設定する。変位量セット設定工程S12は、上述した変位量セット設定部112を用いて実行することができる。変位量セット設定工程S12は、図2のフローチャートに示す境界線決定方法に関して上述した変位量セット設定工程S2と同じものであってもよい。変位量のセットの設定のために工程S11で受け付けたスキャッタグラムS0および初期境界線B0を利用しない場合、工程S11と工程S12を行う順序は問わない。
判定指標決定工程S13では、初期設定工程S11で受け付けたスキャッタグラムS0および初期境界線B0、ならびに変位量セット設定工程S12で設定した変位量(Δxi,Δyi)のセットに基づいて、初期境界線B0についての判定指標I0および各境界線Biについての判定指標Iiを決定する。判定指標決定工程S13は、上述した判定指標決定部113を用いて実行することができる。好ましい実施形態において、判定指標決定工程S13はドット計数工程S13’である。ドット計数工程S13’では、上述した計数領域R0内のドットの個数Num(R0)をカウントし、該個数Num(R0)を判定指標I0とし、また、上述した1以上の計数領域Ri内のドットの個数Num(Ri)をそれぞれカウントし、該個数Num(Ri)を判定指標Iiとする。ドット計数工程S13’は、上述したドット計数部113’を用いて実行することができる。
再演算制御工程S15では、(1)追加のスキャッタグラムを用いた再演算が必要であるか否かを判定し、(2)前記再演算が必要であると判定した時に、初期設定工程S11、変位量セット設定工程S12、および判定指標決定工程S13による一連の処理を再度行うように当該方法の手順を制御し、それにより前記の判定指標I0および1以上の判定指標Iiを再決定する、という処理を、前記再演算が必要でないと判定されるまで繰り返し行う。再演算制御工程S15は、上述した再演算制御部115を用いて実行することができる。
境界線候補特定工程S14では、最後の判定指標決定工程S13において決定された判定指標I0および1以上の判定指標Iiとに基づいて、目的とする境界線の候補として、最後の判定指標決定工程S13における初期境界線B0および1以上の境界線Biのうちの少なくとも1つが特定される。境界線候補特定工程S14は、上述した境界線候補特定部114を用いて実行することができる。
変位量セット設定工程S12では、変位量(Δxi,Δyi)(iは並進変位のパターンの通し番号を示す。)のセットを設定する。変位量セット設定工程S12は、上述した変位量セット設定部112を用いて実行することができる。変位量セット設定工程S12は、図2のフローチャートに示す境界線決定方法に関して上述した変位量セット設定工程S2と同じものであってもよい。変位量のセットの設定のために工程S11で受け付けたスキャッタグラムS0および初期境界線B0を利用しない場合、工程S11と工程S12を行う順序は問わない。
判定指標決定工程S13では、初期設定工程S11で受け付けたスキャッタグラムS0および初期境界線B0、ならびに変位量セット設定工程S12で設定した変位量(Δxi,Δyi)のセットに基づいて、初期境界線B0についての判定指標I0および各境界線Biについての判定指標Iiを決定する。判定指標決定工程S13は、上述した判定指標決定部113を用いて実行することができる。好ましい実施形態において、判定指標決定工程S13はドット計数工程S13’である。ドット計数工程S13’では、上述した計数領域R0内のドットの個数Num(R0)をカウントし、該個数Num(R0)を判定指標I0とし、また、上述した1以上の計数領域Ri内のドットの個数Num(Ri)をそれぞれカウントし、該個数Num(Ri)を判定指標Iiとする。ドット計数工程S13’は、上述したドット計数部113’を用いて実行することができる。
再演算制御工程S15では、(1)追加のスキャッタグラムを用いた再演算が必要であるか否かを判定し、(2)前記再演算が必要であると判定した時に、初期設定工程S11、変位量セット設定工程S12、および判定指標決定工程S13による一連の処理を再度行うように当該方法の手順を制御し、それにより前記の判定指標I0および1以上の判定指標Iiを再決定する、という処理を、前記再演算が必要でないと判定されるまで繰り返し行う。再演算制御工程S15は、上述した再演算制御部115を用いて実行することができる。
境界線候補特定工程S14では、最後の判定指標決定工程S13において決定された判定指標I0および1以上の判定指標Iiとに基づいて、目的とする境界線の候補として、最後の判定指標決定工程S13における初期境界線B0および1以上の境界線Biのうちの少なくとも1つが特定される。境界線候補特定工程S14は、上述した境界線候補特定部114を用いて実行することができる。
図4のフローチャートに示す実施形態の境界線決定方法は、図1のブロック図に示す実施形態の境界線決定部10または図3のブロック図に示す実施形態の境界線決定部100に関して上述したその他の部(例えば、追加スキャッタグラム生成部、血液細胞演算部など)を用いた処理工程を含んでいてもよい。
本発明は更に、本発明の血液分析装置を用いる血液分析方法を提供する。本発明の血液分析方法は、与えられた血液検体に対して所定の分析項目に関する測定と分析を行い、分析結果を示すスキャッタグラムを生成する工程、および、本発明の境界線決定方法を用いて対象とする2以上の異なる種類の血液細胞を区分する境界線を決定する工程を含む。本発明の血液分析方法は、上記境界線の決定後に、対象とする2以上の異なる種類の血液細胞の存在割合を決定する工程を更に含んでもよい。
以下により具体的な実施例を挙げて本発明を説明するが、本発明は以下の実施例により限定されるものではない。
以下の実施例では、LMNEマトリクスにおいてリンパ球、単球、および好中球を区分する境界線を本発明に従って決定した。
(LMNEマトリクスの作成)
X軸は電気抵抗(血球の容積を示す)、Y軸は吸光度を示すLMNEマトリクスを解析に用いた。X軸およびY軸はそれぞれ0~127の座標を有していた。また、マトリクスの高さ方向を用いて各ドットの頻度(即ち、同一の座標にあるドットの個数)に関する情報を表した(特開2014-106161号公報を参照)。解析に用いたマトリクスの一例を図11に示す。
X軸は電気抵抗(血球の容積を示す)、Y軸は吸光度を示すLMNEマトリクスを解析に用いた。X軸およびY軸はそれぞれ0~127の座標を有していた。また、マトリクスの高さ方向を用いて各ドットの頻度(即ち、同一の座標にあるドットの個数)に関する情報を表した(特開2014-106161号公報を参照)。解析に用いたマトリクスの一例を図11に示す。
(境界線決定手順)
着目する境界線とその変位の説明図を図8に示す。図8(a)中の太線が着目する初期境界線B0である。この初期境界線B0をX軸方向および/またはY軸方向に並進変位させる。図8(c)は、並進変位後の境界線Biを模式的に示す。該図に示す境界線Biは、概しては初期境界線B0を並進移動したものであるが、初期境界線B0において一部分が割愛され、かつ補足されており、またノイズ領域の区画も変更されている。
開始時の境界線を用いてリンパ球、単球、好中球、および好酸球の割合を算出(LMNE演算)し、20%の好中球パーセンテージ(NEU%)を閾値として異なる範囲の変位量セットを与えた。即ち、NEU%<20についてはx:-15~10,y:0~10の矩形範囲とし、NEU%>=20についてはx:0~10,y:-5~10の矩形範囲とした。
初期境界線B0に関してドット数をカウントする計数領域、および移動後の境界線Biに関してドット数をカウントする計数領域の概要を図8(b)および(d)にそれぞれ示す。図8(b)に概要を示すように、(NoN,NL)、(LMN,NL)、(LMN,NL+2)、(NoN,NL+2)の4点で定義される矩形領域FLNと、初期境界線B0中の単球-好中球分離スロープs1とスロープs1をY軸方向に+2だけ移動したスロープs2とによって囲まれる領域FMNとをあわせたものを計数領域R0とした。移動後の境界線Biに関する計数領域Riも同様に定義した(図8(d))。
初期境界線B0と移動後の境界線Biのそれぞれについて、計数領域内のドットの個数を計算し、ドットの個数が最小になる計数領域に対応する境界線を記録した。最小の個数が100を超えていないときには、その境界線で確定した。
一方、最小の個数が100を超えている場合は、ドットの個数が最小になった境界線を暫定的に用い、マトリクスの高さ方向を-1ずつ下降していき、最小のドットの個数が初めて100以内になったマトリクスを再検索のために用いた。図9に、マトリクスの高さ方向を段階的に下降させることにより、マトリクス中のドットの個数が少なくなっていく様子を模式的に示す。再検索においては、異常検体のため検索範囲を狭くし、x:0~10,y:0~10の矩形範囲を変位量のセットとした。
以上の手順により最後に得られた境界線を目的とする境界線とし、更に当該境界線を用いてLMNE演算を行った。
以上の手順の全体および検索関数のフローチャートを図10Aおよび図10Bにそれぞれ示す。図10Bに示す通り、検索関数において同じドットの個数を与える移動が2つ以上あった場合には、初期境界線からの移動が最も小さい境界線を選択した。
着目する境界線とその変位の説明図を図8に示す。図8(a)中の太線が着目する初期境界線B0である。この初期境界線B0をX軸方向および/またはY軸方向に並進変位させる。図8(c)は、並進変位後の境界線Biを模式的に示す。該図に示す境界線Biは、概しては初期境界線B0を並進移動したものであるが、初期境界線B0において一部分が割愛され、かつ補足されており、またノイズ領域の区画も変更されている。
開始時の境界線を用いてリンパ球、単球、好中球、および好酸球の割合を算出(LMNE演算)し、20%の好中球パーセンテージ(NEU%)を閾値として異なる範囲の変位量セットを与えた。即ち、NEU%<20についてはx:-15~10,y:0~10の矩形範囲とし、NEU%>=20についてはx:0~10,y:-5~10の矩形範囲とした。
初期境界線B0に関してドット数をカウントする計数領域、および移動後の境界線Biに関してドット数をカウントする計数領域の概要を図8(b)および(d)にそれぞれ示す。図8(b)に概要を示すように、(NoN,NL)、(LMN,NL)、(LMN,NL+2)、(NoN,NL+2)の4点で定義される矩形領域FLNと、初期境界線B0中の単球-好中球分離スロープs1とスロープs1をY軸方向に+2だけ移動したスロープs2とによって囲まれる領域FMNとをあわせたものを計数領域R0とした。移動後の境界線Biに関する計数領域Riも同様に定義した(図8(d))。
初期境界線B0と移動後の境界線Biのそれぞれについて、計数領域内のドットの個数を計算し、ドットの個数が最小になる計数領域に対応する境界線を記録した。最小の個数が100を超えていないときには、その境界線で確定した。
一方、最小の個数が100を超えている場合は、ドットの個数が最小になった境界線を暫定的に用い、マトリクスの高さ方向を-1ずつ下降していき、最小のドットの個数が初めて100以内になったマトリクスを再検索のために用いた。図9に、マトリクスの高さ方向を段階的に下降させることにより、マトリクス中のドットの個数が少なくなっていく様子を模式的に示す。再検索においては、異常検体のため検索範囲を狭くし、x:0~10,y:0~10の矩形範囲を変位量のセットとした。
以上の手順により最後に得られた境界線を目的とする境界線とし、更に当該境界線を用いてLMNE演算を行った。
以上の手順の全体および検索関数のフローチャートを図10Aおよび図10Bにそれぞれ示す。図10Bに示す通り、検索関数において同じドットの個数を与える移動が2つ以上あった場合には、初期境界線からの移動が最も小さい境界線を選択した。
図11(a)に、初期境界線を用いた場合(Before Data)および本発明による移動後の境界線を用いた場合(After Data)のLMNE演算の結果の一例を、目視(標準)法による結果と共に示す。図11(b)は、境界線決定のために最終的に用いたスキャッタグラム(高さ:-15)である。本発明に従って境界線を並進変位させることにより、より正確な境界線を決定できることが分かった。
本発明によれば、正確性に優れた、血液細胞の分布状態を示すスキャッタグラムにおいて2以上の異なる種類の血液細胞を区分する境界線を決定する方法、および当該方法を行うための処理部を有する血液分析装置が提供される。
本出願は、日本で出願された特願2016-243795(出願日:2016年12月15日)を基礎としており、その内容は本明細書に全て包含される。
Claims (11)
- 血液分析装置であって、当該血液分析装置は、血液細胞に関するスキャッタグラムにおいて2以上の異なる種類の血液細胞を区分する境界線を決定する境界線決定部を含み、
該境界線決定部は、
血液細胞の測定データに基づいて作成されたスキャッタグラムS0、および、前記スキャッタグラムS0において対象とする2以上の異なる種類の血液細胞を区分するための予め定められた初期境界線B0を受け付ける初期設定部、
前記初期境界線B0を1以上のパターンで並進変位させるためのX軸方向およびY軸方向の変位量(Δxi,Δyi)(iは並進変位のパターンの通し番号を示す。)のセットを設定する変位量セット設定部、
目的とする境界線としての信頼性の判定指標を決定するための予め定義された方法を用いて、前記初期境界線B0に関する判定指標I0、および、前記変位量セット設定部より受け付けた1以上の変位量(Δxi,Δyi)のそれぞれについてX軸方向にΔxiかつY軸方向にΔyiだけ前記初期境界線B0を並進変位させることに基づいて生成される1以上の境界線Biに関する判定指標Iiをそれぞれ決定する判定指標決定部、および、
前記判定指標決定部により決定された判定指標I0および1以上の判定指標Iiに基づいて、目的とする境界線の候補として前記の初期境界線B0および1以上の境界線Biのうちの少なくとも1つを特定する境界線候補特定部
を含む、前記血液分析装置。 - 前記判定指標決定部がドット計数部であり、該ドット計数部は、前記初期境界線B0の特定の近傍領域の全体または部分として定められた計数領域R0内のドットの個数Num(R0)をカウントし、該個数Num(R0)を前記判定指標I0とし、かつ、前記1以上の境界線Biのそれぞれに関して前記計数領域R0に対応する計数領域Riを定義し、前記計数領域Ri内のドットの個数Num(Ri)をカウントし、該個数Num(Ri)を前記判定指標Iiとするものであり、かつ、
前記境界線候補特定部が、前記ドット計数部により決定された判定指標I0および1以上の判定指標Iiの値の小ささを基準として、目的とする境界線の候補として前記の初期境界線B0および1以上の境界線Biのうちの少なくとも1つを特定するものである、
請求項1に記載の血液分析装置。 - 前記血液細胞が白血球であり、かつ前記境界線が、リンパ球、単球、および好中球を区分するものである、請求項1または2に記載の血液分析装置。
- 前記スキャッタグラムS0の一つの軸が容積を示し、他方の軸が吸光度を示す、請求項1~3のいずれか1項に記載の血液分析装置。
- 前記スキャッタグラムS0が、離散座標上にプロットされたドットから構成されたものであり、
前記境界線決定部が、再演算制御部を更に含み、
該再演算制御部は、
前記判定指標決定部による処理の後かつ前記境界線候補特定部による処理の前において、追加のスキャッタグラムを用いた再演算が必要であるか否かを判定し、
前記再演算が必要であると判定した時に、前記初期設定部、前記変位量セット設定部、および前記判定指標決定部による一連の処理を再度行うように前記境界線決定部を制御し、それにより前記の判定指標I0および1以上の判定指標Iiを再決定させる、
という処理を、前記再演算が必要でないと判定されるまで繰り返し行うものであり、ここで、前記再演算毎に異なる追加のスキャッタグラムS0’が用いられ、前記追加のスキャッタグラムS0’は、前記スキャッタグラムS0の離散座標上の各位置にあるドットの個数を所定の数だけ減じることにより生成されるものであり、
前記境界線候補特定部において、前記判定指標決定部による最後の処理において決定された判定指標I0および1以上の判定指標Iiとに基づいて、目的とする境界線の候補として、前記判定指標決定部による最後の処理における初期境界線B0および1以上の境界線Biのうちの少なくとも1つが特定される、
請求項1~4のいずれか1項に記載の血液分析装置。 - 与えられた血液検体に対して所定の分析項目に関する測定と分析を行い、分析結果を示すスキャッタグラムを生成する血液分析用データ処理部
を更に有する、請求項1~5のいずれか1項に記載の血液分析装置。 - 血液細胞に関するスキャッタグラムにおいて2以上の異なる種類の血液細胞を区分する境界線の決定に用いる方法であって、
血液細胞の測定データに基づいて作成されたスキャッタグラムS0、および、前記スキャッタグラムS0において対象とする2以上の異なる種類の血液細胞を区分するための予め定められた初期境界線B0を受け付ける初期設定工程、
前記初期境界線B0を1以上のパターンで並進変位させるためのX軸方向およびY軸方向の変位量(Δxi,Δyi)(iは並進変位のパターンの通し番号を示す。)のセットを設定する変位量セット設定工程、
目的とする境界線としての信頼性の判定指標を決定するための予め定義された方法を用いて、前記初期境界線B0に関する判定指標I0、および、前記変位量セット設定工程において設定した1以上の変位量(Δxi,Δyi)のそれぞれについてX軸方向にΔxiかつY軸方向にΔyiだけ前記初期境界線B0を並進変位させることに基づいて生成される1以上の境界線Biに関する判定指標Iiをそれぞれ決定する判定指標決定工程、および、
前記判定指標決定工程において決定された判定指標I0および1以上の判定指標Iiに基づいて、目的とする境界線の候補として前記の初期境界線B0および1以上の境界線Biのうちの少なくとも1つを特定する境界線候補特定工程
を含む、前記方法。 - 前記判定指標決定工程がドット計数工程であり、該ドット計数工程において、前記初期境界線B0の特定の近傍領域の全体または部分として定められた計数領域R0内のドットの個数Num(R0)をカウントし、該個数Num(R0)を前記判定指標I0とし、かつ、前記1以上の境界線Biのそれぞれに関して前記計数領域R0に対応する計数領域Riを定義し、前記計数領域Ri内のドットの個数Num(Ri)をカウントし、該個数Num(Ri)を前記判定指標Iiとし、かつ、
前記境界線候補特定工程において、前記ドット計数工程において決定された判定指標I0および1以上の判定指標Iiの値の小ささを基準として、目的とする境界線の候補として前記の初期境界線B0および1以上の境界線Biのうちの少なくとも1つを特定する、請求項7に記載の方法。 - 前記血液細胞が白血球であり、かつ前記境界線が、リンパ球、単球、および好中球を区分するものである、請求項7または8に記載の方法。
- 前記スキャッタグラムSの一つの軸が容積を示し、他方の軸が吸光度を示す、請求項7~9のいずれか1項に記載の方法。
- 前記スキャッタグラムS0が、離散座標上にプロットされたドットから構成されたものであり、
当該方法が、再演算制御工程を更に含み、
該再演算制御工程において、
前記判定指標決定工程の後かつ前記境界線候補特定工程の前において、追加のスキャッタグラムを用いた再演算が必要であるか否かを判定し、
前記再演算が必要であると判定した時に、前記初期設定工程、前記変位量セット設定工程、および前記判定指標決定工程による一連の処理を再度行うように当該方法の手順を制御し、それにより前記の判定指標I0および1以上の判定指標Iiを再決定する、
という処理を、前記再演算が必要でないと判定されるまで繰り返し行い、ここで、前記再演算毎に異なる追加のスキャッタグラムS0’が用いられ、前記追加のスキャッタグラムS0’は、前記スキャッタグラムS0の離散座標上の各位置にあるドットの個数を所定の数だけ減じることにより生成されるものであり、
前記境界線候補特定工程において、最後の前記判定指標決定工程において決定された判定指標I0および1以上の判定指標Iiとに基づいて、目的とする境界線の候補として、最後の前記判定指標決定工程における初期境界線B0および1以上の境界線Biのうちの少なくとも1つが特定される、
請求項7~10のいずれか1項に記載の方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016243795 | 2016-12-15 | ||
JP2016-243795 | 2016-12-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018110005A1 true WO2018110005A1 (ja) | 2018-06-21 |
Family
ID=62558353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/032821 WO2018110005A1 (ja) | 2016-12-15 | 2017-09-12 | 血液細胞に関するスキャッタグラムにおける分類境界線の決定方法、および当該方法を行うための処理部を有する血液分析装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018110005A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62134559A (ja) * | 1985-12-07 | 1987-06-17 | Japan Spectroscopic Co | 血液細胞自動分析方法および装置 |
JPH0222537A (ja) * | 1988-07-11 | 1990-01-25 | Omron Tateisi Electron Co | 細胞分折装置 |
JPH0534263A (ja) * | 1991-07-26 | 1993-02-09 | Omron Corp | 細胞分析装置 |
JPH05149863A (ja) * | 1991-11-27 | 1993-06-15 | Toa Medical Electronics Co Ltd | 粒子計数方法 |
JPH10260127A (ja) * | 1997-03-17 | 1998-09-29 | Toa Medical Electronics Co Ltd | スキャッタグラムの表示方法 |
US20120036175A1 (en) * | 2010-02-18 | 2012-02-09 | Becton, Dickinson And Company | Determining population boundaries using radial density histograms |
JP2014106161A (ja) * | 2012-11-28 | 2014-06-09 | Horiba Ltd | 血液細胞に関するスキャッターグラムの表示装置、表示方法、および、該表示装置を有する血液分析装置 |
-
2017
- 2017-09-12 WO PCT/JP2017/032821 patent/WO2018110005A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62134559A (ja) * | 1985-12-07 | 1987-06-17 | Japan Spectroscopic Co | 血液細胞自動分析方法および装置 |
JPH0222537A (ja) * | 1988-07-11 | 1990-01-25 | Omron Tateisi Electron Co | 細胞分折装置 |
JPH0534263A (ja) * | 1991-07-26 | 1993-02-09 | Omron Corp | 細胞分析装置 |
JPH05149863A (ja) * | 1991-11-27 | 1993-06-15 | Toa Medical Electronics Co Ltd | 粒子計数方法 |
JPH10260127A (ja) * | 1997-03-17 | 1998-09-29 | Toa Medical Electronics Co Ltd | スキャッタグラムの表示方法 |
US20120036175A1 (en) * | 2010-02-18 | 2012-02-09 | Becton, Dickinson And Company | Determining population boundaries using radial density histograms |
JP2014106161A (ja) * | 2012-11-28 | 2014-06-09 | Horiba Ltd | 血液細胞に関するスキャッターグラムの表示装置、表示方法、および、該表示装置を有する血液分析装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7796797B2 (en) | Apparatus for obtaining an image of a blood cell and method for obtaining an image of a blood cell | |
US11105742B2 (en) | Nucleated red blood cell warning method and device, and flow cytometer using the same | |
CN110023759B (zh) | 用于使用多维分析检测异常细胞的系统、方法和制品 | |
US7936456B2 (en) | Particle analyzer and particle analyzing method | |
US12019009B2 (en) | Measurement method, measuring device, and measurement program | |
EP2738541A2 (en) | Display device and display method for scattergram relating to blood cells, and blood analyzer having said display device | |
Winkelman et al. | A novel automated slide-based technology for visualization, counting, and characterization of the formed elements of blood: A proof of concept study | |
CN116046643A (zh) | 辅助诊断信息提供装置及血液分析系统 | |
EP3882601A1 (en) | Cell classification method, classification device, and program | |
WO2018110005A1 (ja) | 血液細胞に関するスキャッタグラムにおける分類境界線の決定方法、および当該方法を行うための処理部を有する血液分析装置 | |
US20110167029A1 (en) | Method and device for classifying, displaying and exploring biological data | |
Yoon et al. | Analytical performance of the digital morphology analyzer Sysmex DI-60 for body fluid cell differential counts | |
EP4060320A1 (en) | Analysis method and analyzer | |
CN113056792B (zh) | 系统、程序及方法 | |
Lee et al. | Performance Evaluation of the Mindray BC-6200 Hematology Analyzer; Comparison with Sysmex XE-2100 and Manual Microscopy | |
KR20200030959A (ko) | 고속 촬상 장치 및 방법 | |
EP4050343A1 (en) | Display method | |
CN114544469B (zh) | 粒子分类方法及血细胞分析仪 | |
JP2006010630A (ja) | 異常細胞の検出装置およびその検出方法 | |
EP4439571A1 (en) | Analysis method, specimen analyzer, and program | |
US20230338953A1 (en) | Specimen analyzer, specimen analysis method, and program | |
Chaturvedi | Original study | |
JP2022140144A (ja) | 分析方法および分析装置 | |
JP2022140145A (ja) | 分析方法および分析装置 | |
JP2022140146A (ja) | 分析方法および分析装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17880432 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17880432 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |