WO2018107621A1 - 一种基于pfc反激全桥的智能型正弦波电压转换电路 - Google Patents
一种基于pfc反激全桥的智能型正弦波电压转换电路 Download PDFInfo
- Publication number
- WO2018107621A1 WO2018107621A1 PCT/CN2017/079187 CN2017079187W WO2018107621A1 WO 2018107621 A1 WO2018107621 A1 WO 2018107621A1 CN 2017079187 W CN2017079187 W CN 2017079187W WO 2018107621 A1 WO2018107621 A1 WO 2018107621A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- switching transistor
- flyback
- pfc
- conversion circuit
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 33
- 239000003990 capacitor Substances 0.000 claims abstract description 35
- 238000004804 winding Methods 0.000 claims abstract description 31
- 238000002955 isolation Methods 0.000 claims abstract description 18
- 238000005070 sampling Methods 0.000 claims description 34
- 230000001629 suppression Effects 0.000 claims description 7
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 230000007935 neutral effect Effects 0.000 claims description 2
- 238000001914 filtration Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
- H02M1/4208—Arrangements for improving power factor of AC input
- H02M1/4225—Arrangements for improving power factor of AC input using a non-isolated boost converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/12—Arrangements for reducing harmonics from AC input or output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/40—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC
- H02M5/42—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters
- H02M5/44—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC
- H02M5/453—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/458—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/539—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
- H02M7/5395—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
Definitions
- the invention relates to a voltage conversion circuit, in particular to an intelligent sine wave voltage conversion circuit based on a PFC flyback full bridge.
- the intelligent buck-boost conversion device from AC to AC is also called a travel plug.
- the sine wave voltage conversion circuit is a key circuit thereof, and is a circuit capable of realizing AC-AC conversion. It can realize the function of buck-boost and stabilize voltage and frequency in AC-AC conversion.
- most of the current AC-AC portable device market is a non-isolated topology circuit with low PF value, low output voltage quality, and poor safety and reliability.
- voltage conversion is usually achieved by means of PWM signals in conjunction with switching tube control, which results in certain high frequency harmonics in the circuit. The presence of these high frequency signals will affect the quality of the output voltage. Therefore, it is difficult to meet the conversion requirements.
- the technical problem to be solved by the present invention is to provide an intelligent sinusoidal voltage conversion circuit based on a PFC flyback full bridge for improving the PF value of the voltage conversion device and filtering out the circuit in the circuit. High frequency pulses to improve output voltage quality.
- the present invention adopts the following technical solutions.
- An intelligent sinusoidal voltage conversion circuit based on a PFC flyback full bridge includes: an input unit for outputting a DC voltage; a PFC boost unit connected to an output end of the input unit for the input unit The output voltage is boosted and converted; a flyback isolating converter unit includes a first switching transistor, a transformer, a first rectifying diode, a filter inductor and a first filter capacitor, and the first end of the transformer primary winding is connected to An output end of the PFC boosting unit, a second end of the primary winding of the transformer is connected to a drain of the first switching tube, a source of the first switching tube is connected to a front end, and a gate of the first switching tube
- the first end of the secondary winding of the transformer is connected to the anode of the first rectifier diode, the cathode of the first rectifier diode is connected to the front end of the filter inductor, and the back end of the filter inductor passes through the first
- the filter capacitor is connected to the back
- the flyback isolation converter unit further includes a first resistor, a first capacitor, and a second rectifier diode
- the first resistor is connected between the first end of the secondary winding of the transformer and the cathode of the second rectifier diode, and the anode of the second rectifier diode is connected to the second end of the secondary winding of the transformer, the first The capacitor is connected in parallel to the first resistor.
- the flyback isolation converter unit further includes a second resistor and a pull-down resistor, the second resistor is connected between the source and the front end of the first switch tube, and the pull-down resistor is connected to the first switch Between the gate and the source of the tube.
- the input unit comprises a socket, an insurance, a lightning protection resistor, a common mode suppression inductor, a safety capacitor and a rectifier bridge, wherein the fuse is connected to a neutral or a live line of the socket, and the common mode suppresses the inductance.
- the front end is connected in parallel to the socket, the lightning protection resistor is connected in parallel to the front end of the common mode suppression inductor, and the input terminals of the safety capacitor and the rectifier bridge are both connected in parallel with the rear end of the common mode suppression inductor, and the output ends of the rectifier bridge are connected in parallel
- the second filter capacitor is connected in parallel.
- the PFC boosting unit includes a boosting inductor, a third switching transistor, a first freewheeling diode, and a second electrolytic capacitor, and a front end of the boosting inductor is connected to an output end of the input unit, and the boosting The back end of the inductor is connected to the drain of the third switch tube, the source of the third switch tube is connected to the front end, and the gate of the third switch tube is used to access a PWM control signal, the third switch a drain of the tube is connected to the anode of the first freewheeling diode, a cathode of the first freewheeling diode is used as an output end of the PFC boosting unit, and a cathode of the first freewheeling diode is connected to a positive pole of the second electrolytic capacitor, and a second The negative electrode of the electrolytic capacitor is connected to the front end.
- the method further includes an MCU control unit, a gate of the first switch tube and a gate of the third switch tube are respectively connected to the MCU control unit, and the MCU control unit is configured to respectively output a PWM signal to the first switch tube And a third switching tube to control the on-off state of the first switching tube and the third switching tube.
- the MCU control unit includes a single chip microcomputer and peripheral circuits thereof.
- the method further includes an AC sampling unit connected between the input end of the input unit and the MCU control unit, wherein the AC sampling unit is configured to collect the voltage of the AC side of the input unit and feed back to the MCU control unit.
- a DC voltage sampling unit is further included, the DC voltage sampling unit includes a second sampling resistor and a third sampling resistor connected in series, and a front end of the second sampling resistor is connected to an output of the flyback isolation converter unit.
- the back end of the third sampling resistor is connected to the MCU control unit, and the MCU control unit collects the electrical signal outputted by the flyback isolation converter unit by the second sampling resistor and the third sampling resistor.
- the inverter inverter unit comprises an inverter bridge composed of a fourth switch tube, a fifth switch tube, a sixth switch tube and a seventh switch tube, and a gate and a fifth switch of the fourth switch tube a gate of the tube, a gate of the sixth switch tube, and a gate of the seventh switch tube are respectively connected to the MCU control unit, and the fourth switch tube, the fifth switch tube, and the sixth switch tube are controlled by the MCU control unit And the seventh switch tube is turned on or off to enable the inverter inverting unit to output an alternating voltage.
- the invention discloses an intelligent sinusoidal voltage conversion circuit based on PFC flyback full bridge, which utilizes input rectification filter
- the wave unit rectifies and filters the grid voltage to output a pulsating DC voltage, and then uses a PFC boosting unit to boost the pulsating DC voltage.
- the PWM signal is applied to the gate of the first switching transistor. pole.
- the primary winding of the transformer is discharged by the magnetic core to the secondary winding, and then rectified by the first rectifier diode and then transmitted to the filter inductor, and the high-frequency harmonics in the circuit are filtered by the filter inductor to obtain a half-wave pulsating direct current.
- the first CBB capacitor is used for filtering, and the filtered DC power is output to the inverter inverting unit, and the inverter is inverted by the inverter inverting unit to output AC power.
- the present invention realizes the isolated transmission of voltage. Effectively improve the PF value of the boost/buck converter. At the same time, by filtering out the high-frequency harmonics in the circuit, the output voltage quality is greatly improved, making the voltage conversion process more secure and reliable.
- FIG. 1 is a circuit schematic diagram of a sinusoidal voltage conversion circuit of the present invention.
- FIG. 2 is a circuit schematic diagram of an AC sampling unit in a preferred embodiment of the present invention.
- FIG. 3 is a circuit schematic diagram of an MCU control unit in a preferred embodiment of the present invention.
- the invention discloses an intelligent sinusoidal voltage conversion circuit based on a PFC flyback full bridge, which is combined with FIG. 1 to FIG. 3 and includes:
- a PFC boosting unit 20 is connected to the output end of the input unit 10 for boosting the output voltage of the input unit 10;
- a flyback isolating converter unit 30 includes a first switching transistor Q6, a transformer T1, a first rectifier diode D5, a filter inductor L3, and a first filter capacitor C3. The first end of the primary winding of the transformer T1 is connected to the PFC.
- the output end of the boosting unit 20 the second end of the primary winding of the transformer T1 is connected to the drain of the first switching transistor Q6, the source of the first switching transistor Q6 is connected to the front end, and the first switching tube
- the gate of Q6 is used to access the PWM signal
- the first end of the secondary winding of the transformer T1 is connected to the anode of the first rectifier diode D5
- the cathode of the first rectifier diode D5 is connected to the front end of the filter inductor L3.
- the rear end of the filter inductor L3 is connected to the back end through a first filter capacitor C3, the second end of the transformer T1 secondary winding is connected to the back end, and the rear end of the filter inductor L3 is used as the flyback isolation converter unit 30.
- An inverter inverting unit 60 is connected to the output end of the flyback isolating converter unit 30 for inverting and converting the output voltage of the flyback isolating converter unit 30 to output an alternating current.
- the input rectification and filtering unit 10 rectifies and filters the grid voltage to output a pulsating DC voltage, and then uses the PFC boosting unit 20 to boost the pulsating DC voltage in the flyback isolation converter unit.
- the PWM signal is applied to the gate of the first switching transistor Q6.
- the first switching transistor Q6 When the first switching transistor Q6 is turned on, the primary winding of the transformer T1 and the first switching transistor Q6 form a loop to the front end and generate a current.
- the primary winding of the transformer T1 is turned on and starts to store energy, when the first switch When the tube Q6 is turned off, the primary winding of the transformer T1 is discharged by the magnetic core to the secondary winding, and then rectified by the first rectifier diode D5 and transmitted to the filter inductor L3, and the high frequency in the circuit is filtered by the filter inductor L3. Harmonic, obtaining half-wave pulsating direct current, then filtering by using the first CBB capacitor C3, and outputting the filtered half-wave pulsating direct current to the inverter inverting unit 60, and performing inverter inversion by the inverter inverting unit 60 After outputting AC power.
- the present invention realizes voltage isolation transmission, which can effectively improve the rise.
- the PF value of the voltage/buck converter device at the same time, by filtering out the high frequency harmonics in the circuit, the output voltage quality is greatly improved, and the voltage conversion process is more safe and reliable.
- the flyback isolation converter unit 30 further includes a first resistor R26, a first capacitor C5 and a second rectifier diode D6.
- the first resistor R26 is connected to the first winding of the transformer T1.
- the anode of the second rectifier diode D6 is connected to the second end of the secondary winding of the transformer T1, and the first capacitor C5 is connected in parallel to the first resistor R26.
- C5, R26 and D6 form a spike absorption circuit for absorbing the spike voltage generated by the leakage inductance.
- the flyback isolation converter unit 30 further includes a second resistor R2B and a pull-down resistor R25.
- the second resistor R2B is connected between the source and the front end of the first switch transistor Q6.
- the pull-down resistor R25 is connected between the gate and the source of the first switching transistor Q6.
- R25 is a pull-down resistor of the first switching transistor Q6 for preventing mis-conduction.
- the input unit 10 includes a socket, a fuse F2, a lightning protection resistor RV1, a common mode suppression inductor L1, a safety capacitor CX1, and a rectifier bridge DB1.
- the fuse F2 is connected in series with the socket.
- the front end of the common mode suppression inductor L1 is connected in parallel to the socket
- the lightning protection resistor RV1 is connected in parallel to the front end of the common mode rejection inductor L1
- the input terminals of the safety capacitor CX1 and the rectifier bridge DB1 are connected in parallel
- the common mode suppresses the rear end of the inductor L1, and the output terminal of the rectifier bridge DB1 has a filter capacitor C1 connected in parallel.
- the PFC boosting unit 20 includes a boosting inductor L2, a third switching transistor Q5, and a first continuation. a current diode D1 and a second electrolytic capacitor C2, the front end of the boosting inductor L2 is connected to the output end of the input unit 10, and the rear end of the boosting inductor L2 is connected to the drain of the third switching transistor Q5.
- the source of the third switching transistor Q5 is connected to the front end, the gate of the third switching transistor Q5 is used to connect a PWM control signal, and the drain of the third switching transistor Q5 is connected to the anode of the first freewheeling diode D1.
- the cathode of the first freewheeling diode D1 serves as an output end of the PFC boosting unit 20, and the cathode of the first freewheeling diode D1 is connected to the anode of the second electrolytic capacitor C2, and the cathode of the second electrolytic capacitor C2 is connected to the front end.
- the PFC enters the boost mode when the AC input voltage is sampled to the AC voltage to increase the PF value of the AC-to-AC intelligent buck conversion topology circuit.
- the specific boosting principle is as follows: When Q5 is turned on, the current on C1 forms a loop through the boost inductors L2 and Q5 to GND, and the boost inductor L2 stores energy; when Q5 is turned off, the boost inductor forms a specific input voltage. The much higher induced electromotive force, the induced electromotive force is rectified by the freewheeling tube D1 to form a unidirectional pulse voltage and then sent to the C2 capacitor for filtering and energy storage.
- And Q5 is to increase or decrease the on-time of Q5 according to the input AC sine wave change taken by the control chip, so that the current and voltage phases are consistent to increase the PF value.
- the control chip U1 detects that the input voltage is equal to or higher than the 230V grid voltage, the high frequency modulation circuit Q5MOS is turned off, and the rectified and filtered voltage is directly filtered and stored by the C2 capacitor through L2 and D1.
- the embodiment further includes an MCU control unit 80.
- the gates of the first switch tube Q6 and the gate of the third switch tube Q5 are respectively connected to the MCU control unit 80, and the MCU control unit 80 is used.
- the PWM signal is respectively output to the first switching transistor Q6 and the third switching transistor Q5 to control the on-off state of the first switching transistor Q6 and the third switching transistor Q5.
- the MCU control unit 80 includes a single chip U1 and its peripheral circuits.
- the embodiment further includes an AC sampling unit 70, which is connected between the input end of the input unit 10 and the MCU control unit 80, and the AC sampling unit 70 is used for The voltage on the AC side of the input unit 10 is collected and fed back to the MCU control unit 80.
- the AC sampling unit 70 includes an operational amplifier U9B. The two input ends of the operational amplifier U9B are respectively connected to the input end of the input unit 10 through a current limiting resistor, and the output end of the operational amplifier U9B is connected to MCU control unit 80.
- a first sampling resistor R2A is connected between the source and the front end of the third switching transistor Q5, and the source of the third switching transistor Q5 is connected to the MCU control unit 80.
- the first sampling resistor R2A causes the MCU control unit 80 to collect an electrical signal of the source of the third switching transistor Q5.
- the embodiment further includes a DC voltage sampling unit 40, and the DC voltage sampling unit 40 includes a second sampling resistor R13 and a third sampling resistor R15 connected in series.
- the front end of the second sampling resistor R13 is connected to the output end of the flyback isolation converter unit 30, and the rear end of the third sampling resistor R15 is connected to the MCU control unit 80 by the second sampling resistor R13 and Third sampling resistor R15 causes the MCU control unit 80 to acquire the electrical signal output by the flyback isolation converter unit 30.
- the inverter inverting unit 60 includes an inverter bridge composed of a fourth switching transistor Q1, a fifth switching transistor Q2, a sixth switching transistor Q3, and a seventh switching transistor Q4, and the fourth switching transistor
- the gate of Q1, the gate of the fifth switching transistor Q2, the gate of the sixth switching transistor Q3, and the gate of the seventh switching transistor Q4 are respectively connected to the MCU control unit 80, and are controlled by the MCU control unit 80.
- the four switching transistors Q1, the fifth switching transistor Q2, the sixth switching transistor Q3, and the seventh switching transistor Q4 are turned on or off to cause the inverter inverting unit 60 to output an alternating voltage.
- the C3 filtered half-wave pulsating DC voltage is supplied to the load via Q1, load, and Q4 to form a first sinusoidal half-cycle power frequency level; the second sinusoidal half-cycle power frequency
- the level forms a loop through Q2, load, and Q3, thus forming a complete power frequency sine wave AC voltage on the load.
- the PWM signal outputted by the control chip U1 is sent to the GATE poles of Q1, Q2, Q3, and Q4 by the PWM1H, PWM1L, PWM2H, and PWM2L through the driving circuit.
- the phase and frequency in the inverter inverter circuit operate in accordance with the mode set in the control chip.
- the present invention firstly has a high PF value, realizes isolation between the power grid and the output end, and has high safety.
- the output voltage can be automatically adjusted in the input full voltage range, and the output is fixed.
- Frequency again, the output voltage is pure sine wave output, and has an automatic shaping function for the AC voltage.
- the present invention can also filter high frequency pulses in the circuit, thereby improving the quality of the output voltage.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Rectifiers (AREA)
- Dc-Dc Converters (AREA)
Abstract
一种基于PFC反激全桥的智能型正弦波电压转换电路,其包括有:输入单元(10);PFC升压单元(20);反激隔离变换器单元(30),包括有第一开关管(Q6)、变压器(T1)、第一整流二极管(D5)、滤波电感(L3)和第一滤波电容(C3),所述变压器(T1)原边绕组的第一端连接于PFC升压单元(20)的输出端,所述变压器(T1)原边绕组的第二端连接于第一开关管(Q6)的漏极,所述第一开关管(Q6)的源极接前端地,所述第一开关管(Q6)的栅极用于接入PWM信号,所述变压器(T1)副边绕组的第一端连接于第一整流二极管(D5)的阳极,所述第一整流二极管(D5)的阴极连接滤波电感(L3)的前端,所述滤波电感(L3)的后端作为反激隔离变换器单元(30)的输出端;逆变倒相单元(60)用于进行逆变转换后输出交流电。所述转换电路可提高PF值以及提高输出电压质量。
Description
本发明涉及电压转换电路,尤其涉及一种基于PFC反激全桥的智能型正弦波电压转换电路。
现有技术中,由AC转AC的智能升降压转换装置又被称为旅行插排,该装置中,正弦波电压转换电路是其关键电路,是一种能实现AC-AC变换的电路,可以在AC-AC变换中实现升降压并稳定电压与频率的功能。然而目前的AC-AC便隽式设备市场大多数为非隔离型的拓扑电路,且PF值低、输出电压质量低、安全可靠性差。但是目前的电压转换电路中,通常要借助PWM信号配合开关管的控制来实现电压转换,这就导致电路中会产生一定的高频谐波,这些高频信号的存在,将影响输出电压的质量,因而难以满足转换要求。
发明内容
本发明要解决的技术问题在于,针对现有技术的不足,提供一种基于PFC反激全桥的智能型正弦波电压转换电路,用以提高电压转换装置的PF值,同时滤除电路中的高频脉冲,进而提高输出电压质量。
为解决上述技术问题,本发明采用如下技术方案。
一种基于PFC反激全桥的智能型正弦波电压转换电路,其包括有:一输入单元,用于输出直流电压;一PFC升压单元,连接于输入单元的输出端,用于对输入单元的输出电压进行升压转换;一反激隔离变换器单元,包括有第一开关管、变压器、第一整流二极管、滤波电感和第一滤波电容,所述变压器原边绕组的第一端连接于PFC升压单元的输出端,所述变压器原边绕组的第二端连接于第一开关管的漏极,所述第一开关管的源极接前端地,所述第一开关管的栅极用于接入PWM信号,所述变压器副边绕组的第一端连接于第一整流二极管的阳极,所述第一整流二极管的阴极连接滤波电感的前端,所述滤波电感的后端通过第一滤波电容接后端地,所述变压器副边绕组的第二端接后端地,所述滤波电感的后端作为反激隔离变换器单元的输出端;一逆变倒相单元,连接于反激隔离变换器单元的输出端,所述逆变倒相单元用于对反激隔离变换器单元的输出电压进行逆变转换后输出交流电。
优选地,所述反激隔离变换器单元还包括有第一电阻、第一电容和第二整流二极
管,所述第一电阻连接于变压器副边绕组的第一端与第二整流二极管的阴极之间,所述第二整流二极管的阳极连接于变压器副边绕组的第二端,所述第一电容并联于第一电阻。
优选地,所述反激隔离变换器单元还包括有第二电阻和下拉电阻,所述第二电阻连接于第一开关管的源极与前端地之间,所述下拉电阻连接于第一开关管的栅极与源极之间。
优选地,所述输入单元包括有插座、保险、防雷电阻、共模抑制电感、安规电容和整流桥,所述保险串接于插座的零线或火线上,所述共模抑制电感的前端并联于插座,所述防雷电阻并联于共模抑制电感的前端,所述安规电容和整流桥的输入端均并联于共模抑制电感的后端,所述整流桥的输出端并联有第二滤波电容。
优选地,所述PFC升压单元包括有升压电感、第三开关管、第一续流二极管和第二电解电容,所述升压电感的前端连接于输入单元的输出端,所述升压电感的后端连接于第三开关管的漏极,所述第三开关管的源极接前端地,所述第三开关管的栅极用于接入一路PWM控制信号,所述第三开关管的漏极连接第一续流二极管的阳极,所述第一续流二极管的阴极作为PFC升压单元的输出端,且该第一续流二极管的阴极连接第二电解电容的正极,第二电解电容的负极接前端地。
优选地,还包括有一MCU控制单元,所述第一开关管的栅极和第三开关管的栅极分别连接于MCU控制单元,所述MCU控制单元用于分别输出PWM信号至第一开关管和第三开关管,以控制第一开关管和第三开关管通断状态。
优选地,所述MCU控制单元包括有单片机及其外围电路。
优选地,还包括有一交流采样单元,所述交流采样单元连接于输入单元的输入端与MCU控制单元之间,所述交流采样单元用于采集输入单元交流侧的电压并反馈至MCU控制单元。
优选地,还包括有一DC电压采样单元,所述DC电压采样单元包括有依次串联的第二采样电阻和第三采样电阻,所述第二采样电阻的前端连接于反激隔离变换器单元的输出端,所述第三采样电阻的后端连接于MCU控制单元,藉由所述第二采样电阻和第三采样电阻而令MCU控制单元采集反激隔离变换器单元输出的电信号。
优选地,所述逆变倒相单元包括有第四开关管、第五开关管、第六开关管和第七开关管组成的逆变桥,所述第四开关管的栅极、第五开关管的栅极、第六开关管的栅极和第七开关管的栅极分别连接于MCU控制单元,藉由所述MCU控制单元而控制第四开关管、第五开关管、第六开关管和第七开关管导通或截止,以令所述逆变倒相单元输出交流电压。
本发明公开的基于PFC反激全桥的智能型正弦波电压转换电路中,利用输入整流滤
波单元对电网电压进行整流和滤波后输出脉动直流电压,之后利用PFC升压单元对脉动直流电压进行升压处理,在反激隔离变换器单元中,将PWM信号加载于第一开关管的栅极。当第一开关管导通时,变压器的原边绕组、第一开关管到前端地形成回路并产生电流,此时变压器的原边绕组导通并开始储能,当第一开关管关断时,变压器的原边绕组通过磁芯藕合给副边绕组进行放电,然后经过第一整流二极管整流后传输至滤波电感,利用滤波电感滤除电路中的高频谐波,得到半波脉动直流电,之后利用第一CBB电容进行滤波,并将滤波后的直流电输出至逆变倒相单元,且由逆变倒相单元进行逆变转换后输出交流电。上述电路中,通过调整变压器原副边绕组的匝数可以使副边电压低于或高于原边输入电压,从而达到升降压目的,基于上述电路,本发明实现了电压的隔离传输,可有效提高升压/降压转换装置的PF值,同时,通过滤除电路中的高频谐波,还大大提高了输出电压质量,使得电压转换过程更加安全可靠。
图1为本发明正弦波电压转换电路的电路原理图。
图2为本发明优选实施例中交流采样单元的电路原理图。
图3为本发明优选实施例中MCU控制单元的电路原理图。
下面结合附图和实施例对本发明作更加详细的描述。
本发明公开了一种基于PFC反激全桥的智能型正弦波电压转换电路,结合图1至图3所示,其包括有:
一输入单元10,用于输出直流电压;
一PFC升压单元20,连接于输入单元10的输出端,用于对输入单元10的输出电压进行升压转换;
一反激隔离变换器单元30,包括有第一开关管Q6、变压器T1、第一整流二极管D5、滤波电感L3和第一滤波电容C3,所述变压器T1原边绕组的第一端连接于PFC升压单元20的输出端,所述变压器T1原边绕组的第二端连接于第一开关管Q6的漏极,所述第一开关管Q6的源极接前端地,所述第一开关管Q6的栅极用于接入PWM信号,所述变压器T1副边绕组的第一端连接于第一整流二极管D5的阳极,所述第一整流二极管D5的阴极连接滤波电感L3的前端,所述滤波电感L3的后端通过第一滤波电容C3接后端地,所述变压器T1副边绕组的第二端接后端地,所述滤波电感L3的后端作为反激隔离变换器单元30的输出
端;
一逆变倒相单元60,连接于反激隔离变换器单元30的输出端,所述逆变倒相单元60用于对反激隔离变换器单元30的输出电压进行逆变转换后输出交流电。
上述正弦波电压转换电路中,利用输入整流滤波单元10对电网电压进行整流和滤波后输出脉动直流电压,之后利用PFC升压单元20对脉动直流电压进行升压处理,在反激隔离变换器单元30中,将PWM信号加载于第一开关管Q6的栅极。当第一开关管Q6导通时,变压器T1的原边绕组、第一开关管Q6到前端地形成回路并产生电流,此时变压器T1的原边绕组导通并开始储能,当第一开关管Q6关断时,变压器T1的原边绕组通过磁芯藕合给副边绕组进行放电,然后经过第一整流二极管D5整流后传输至滤波电感L3,利用滤波电感L3滤除电路中的高频谐波,得到半波脉动直流电,之后利用第一CBB电容C3进行滤波,并将滤波后的半波脉动直流电输出至逆变倒相单元60,且由逆变倒相单元60进行逆变倒相后输出交流电。上述电路中,通过调整变压器T1原副边绕组的匝数可以使副边电压低于原边输入电压,从而达到降压目的,基于上述电路,本发明实现了电压的隔离传输,可有效提高升压/降压转换装置的PF值,同时,通过滤除电路中的高频谐波,还大大提高了输出电压质量,使得电压转换过程更加安全可靠。
作为一种优选方式,所述反激隔离变换器单元30还包括有第一电阻R26、第一电容C5和第二整流二极管D6,所述第一电阻R26连接于变压器T1副边绕组的第一端与第二整流二极管D6的阴极之间,所述第二整流二极管D6的阳极连接于变压器T1副边绕组的第二端,所述第一电容C5并联于第一电阻R26。其中的C5、R26、D6构成尖峰吸收电路,用于吸收漏感所产生的尖峰电压。
本实施例中,所述反激隔离变换器单元30还包括有第二电阻R2B和下拉电阻R25,所述第二电阻R2B连接于第一开关管Q6的源极与前端地之间,所述下拉电阻R25连接于第一开关管Q6的栅极与源极之间。其中,R25是第一开关管Q6的下拉电阻,用于防止误导通。
作为一种优选的电路结构,所述输入单元10包括有插座、保险F2、防雷电阻RV1、共模抑制电感L1、安规电容CX1和整流桥DB1,所述保险F2串接于插座的零线或火线上,所述共模抑制电感L1的前端并联于插座,所述防雷电阻RV1并联于共模抑制电感L1的前端,所述安规电容CX1和整流桥DB1的输入端均并联于共模抑制电感L1的后端,所述整流桥DB1的输出端并联有滤波电容C1。
关于升压部分,所述PFC升压单元20包括有升压电感L2、第三开关管Q5、第一续
流二极管D1和第二电解电容C2,所述升压电感L2的前端连接于输入单元10的输出端,所述升压电感L2的后端连接于第三开关管Q5的漏极,所述第三开关管Q5的源极接前端地,所述第三开关管Q5的栅极用于接入一路PWM控制信号,所述第三开关管Q5的漏极连接第一续流二极管D1的阳极,所述第一续流二极管D1的阴极作为PFC升压单元20的输出端,且该第一续流二极管D1的阴极连接第二电解电容C2的正极,第二电解电容C2的负极接前端地。
上述PFC升压单元20中,当交流输入电压采样到AC电压时PFC进入升压模式,以提高AC转AC智能降压转换拓扑电路的PF值。具体的升压原理如下:Q5导通时,C1上的电流经升压电感L2、Q5到GND形成回路,升压电感L2储存能量;当Q5关断时,升压电感上会形成比输入电压高得多的感应电动势,感应电动势经续流管D1进行整流后形成单向脉冲电压再送给C2电容进滤及储能。并且Q5是根据控制芯片采到的输入交流正弦波变化来加大或减少Q5的导通时间,以使电流与电压相位变一致来提高PF值。当控制芯片U1检测到输入电压等于或高于230V电网电压时,将高频调制电路Q5MOS关闭,整流滤波后的电压直接经L2、D1给C2电容进滤及储能。
为了实现PWM控制,本实施例还包括有一MCU控制单元80,所述第一开关管Q6的栅极和第三开关管Q5的栅极分别连接于MCU控制单元80,所述MCU控制单元80用于分别输出PWM信号至第一开关管Q6和第三开关管Q5,以控制第一开关管Q6和第三开关管Q5通断状态。进一步地,所述MCU控制单元80包括有单片机U1及其外围电路。
为了便于监测交流侧的电信号,本实施例还包括有一交流采样单元70,所述交流采样单元70连接于输入单元10的输入端与MCU控制单元80之间,所述交流采样单元70用于采集输入单元10交流侧的电压并反馈至MCU控制单元80。进一步地,所述交流采样单元70包括有运放U9B,所述运放U9B的两个输入端分别通过限流电阻而连接于输入单元10的输入端,所述运放U9B的输出端连接于MCU控制单元80。
为了便于对电流进行实时采集,所述第三开关管Q5的源极与前端地之间连接有第一采样电阻R2A,所述第三开关管Q5的源极连接于MCU控制单元80,藉由所述第一采样电阻R2A而令MCU控制单元80采集第三开关管Q5源极的电信号。
作为一种优选方式,为了对直流侧电信号进行采集,本实施例还包括有一DC电压采样单元40,所述DC电压采样单元40包括有依次串联的第二采样电阻R13和第三采样电阻R15,所述第二采样电阻R13的前端连接于反激隔离变换器单元30的输出端,所述第三采样电阻R15的后端连接于MCU控制单元80,藉由所述第二采样电阻R13和第三采样电阻
R15而令MCU控制单元80采集反激隔离变换器单元30输出的电信号。
关于逆变部分,所述逆变倒相单元60包括有第四开关管Q1、第五开关管Q2、第六开关管Q3和第七开关管Q4组成的逆变桥,所述第四开关管Q1的栅极、第五开关管Q2的栅极、第六开关管Q3的栅极和第七开关管Q4的栅极分别连接于MCU控制单元80,藉由所述MCU控制单元80而控制第四开关管Q1、第五开关管Q2、第六开关管Q3和第七开关管Q4导通或截止,以令所述逆变倒相单元60输出交流电压。
上述逆变倒相单元60中,经过C3滤波后的半波脉动直流电压经Q1、负载、Q4形成回路给负载供电形成第一个正弦半周期工频电平;第二个正弦半周期工频电平通过Q2、负载、Q3形成回路,这样在负载上就形成了一个完整的工频正弦波交流电压。控制芯片U1输出的PWM信号经驱动电路后分别送出PWM1H、PWM1L、PWM2H、PWM2L给Q1、Q2、Q3、Q4的GATE极。逆变倒相电路中的相位与频率按照控制芯片内部设定的模式进行工作。
本发明相比现有技术而言,首先,本发明具有高PF值,实现了电网与输出端隔离,安全性非常高,同时,在输入全电压范围内能够能自动调节输出电压,并且固定输出频率,再次,输出电压是以纯正弦波输出,对交流电压有自动整形功能,此外,本发明还可以滤除电路中的高频脉冲,从而提高输出电压的质量。
以上所述只是本发明较佳的实施例,并不用于限制本发明,凡在本发明的技术范围内所做的修改、等同替换或者改进等,均应包含在本发明所保护的范围内。
Claims (10)
- 一种基于PFC反激全桥的智能型正弦波电压转换电路,其特征在于,包括有:一输入单元,用于输出直流电压;一PFC升压单元,连接于输入单元的输出端,用于对输入单元的输出电压进行升压转换;一反激隔离变换器单元,包括有第一开关管、变压器、第一整流二极管、滤波电感和第一滤波电容,所述变压器原边绕组的第一端连接于PFC升压单元的输出端,所述变压器原边绕组的第二端连接于第一开关管的漏极,所述第一开关管的源极接前端地,所述第一开关管的栅极用于接入PWM信号,所述变压器副边绕组的第一端连接于第一整流二极管的阳极,所述第一整流二极管的阴极连接滤波电感的前端,所述滤波电感的后端通过第一滤波电容接后端地,所述变压器副边绕组的第二端接后端地,所述滤波电感的后端作为反激隔离变换器单元的输出端;一逆变倒相单元,连接于反激隔离变换器单元的输出端,所述逆变倒相单元用于对反激隔离变换器单元的输出电压进行逆变转换后输出交流电。
- 如权利要求1所述的基于PFC反激全桥的智能型正弦波电压转换电路,其特征在于,所述反激隔离变换器单元还包括有第一电阻、第一电容和第二整流二极管,所述第一电阻连接于变压器副边绕组的第一端与第二整流二极管的阴极之间,所述第二整流二极管的阳极连接于变压器副边绕组的第二端,所述第一电容并联于第一电阻。
- 如权利要求1所述的基于PFC反激全桥的智能型正弦波电压转换电路,其特征在于,所述反激隔离变换器单元还包括有第二电阻和下拉电阻,所述第二电阻连接于第一开关管的源极与前端地之间,所述下拉电阻连接于第一开关管的栅极与源极之间。
- 如权利要求1所述的基于PFC反激全桥的智能型正弦波电压转换电路,其特征在于,所述输入单元包括有插座、保险、防雷电阻、共模抑制电感、安规电容和整流桥,所述保险串接于插座的零线或火线上,所述共模抑制电感的前端并联于插座,所述防雷电阻并联于共模抑制电感的前端,所述安规电容和整流桥的输入端均并联于共模抑制电感的后端,所述整流桥的输出端并联有第二滤波电容。
- 如权利要求1所述的基于PFC反激全桥的智能型正弦波电压转换电路,其特征在于,所述PFC升压单元包括有升压电感、第三开关管、第一续流二极管和第二电解电容,所述升压电感的前端连接于输入单元的输出端,所述升压电感的后端连接于第三开关管的漏极,所述第三开关管的源极接前端地,所述第三开关管的栅极用于接入一路PWM控制信号,所述第三开关管的漏极连接第一续流二极管的阳极,所述第一续流二极管的阴极作为PFC升压单元的输出端,且该第一续流二极管的阴极连接第二电解电容的正极,第二电解电容的负极 接前端地。
- 如权利要求5所述的基于PFC反激全桥的智能型正弦波电压转换电路,其特征在于,还包括有一MCU控制单元,所述第一开关管的栅极和第三开关管的栅极分别连接于MCU控制单元,所述MCU控制单元用于分别输出PWM信号至第一开关管和第三开关管,以控制第一开关管和第三开关管通断状态。
- 如权利要求6所述的基于PFC反激全桥的智能型正弦波电压转换电路,其特征在于,所述MCU控制单元包括有单片机及其外围电路。
- 如权利要求6所述的基于PFC反激全桥的智能型正弦波电压转换电路,其特征在于,还包括有一交流采样单元,所述交流采样单元连接于输入单元的输入端与MCU控制单元之间,所述交流采样单元用于采集输入单元交流侧的电压并反馈至MCU控制单元。
- 如权利要求6所述的基于PFC反激全桥的智能型正弦波电压转换电路,其特征在于,还包括有一DC电压采样单元,所述DC电压采样单元包括有依次串联的第二采样电阻和第三采样电阻,所述第二采样电阻的前端连接于反激隔离变换器单元的输出端,所述第三采样电阻的后端连接于MCU控制单元,藉由所述第二采样电阻和第三采样电阻而令MCU控制单元采集反激隔离变换器单元输出的电信号。
- 如权利要求6所述的基于PFC反激全桥的智能型正弦波电压转换电路,其特征在于,所述逆变倒相单元包括有第四开关管、第五开关管、第六开关管和第七开关管组成的逆变桥,所述第四开关管的栅极、第五开关管的栅极、第六开关管的栅极和第七开关管的栅极分别连接于MCU控制单元,藉由所述MCU控制单元而控制第四开关管、第五开关管、第六开关管和第七开关管导通或截止,以令所述逆变倒相单元输出交流电压。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611159566.4A CN106787792A (zh) | 2016-12-15 | 2016-12-15 | 一种基于pfc反激全桥的智能型正弦波电压转换电路 |
CN201611159566.4 | 2016-12-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018107621A1 true WO2018107621A1 (zh) | 2018-06-21 |
Family
ID=58889174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/079187 WO2018107621A1 (zh) | 2016-12-15 | 2017-04-01 | 一种基于pfc反激全桥的智能型正弦波电压转换电路 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106787792A (zh) |
WO (1) | WO2018107621A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108880289A (zh) * | 2018-08-14 | 2018-11-23 | 广州易达包装设备有限公司 | 一种可调高压电场发生装置 |
CN109245515A (zh) * | 2018-09-05 | 2019-01-18 | 广西师范大学 | 一种无桥pfc充电电路及其控制算法 |
CN110350809A (zh) * | 2019-07-31 | 2019-10-18 | 清正源华(北京)科技有限公司 | 一种用于高速电主轴驱动器的隔离ac-dc电源 |
CN111830423A (zh) * | 2020-06-24 | 2020-10-27 | 东风电驱动系统有限公司 | 一种隔离式高压采样电路 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107875508A (zh) * | 2017-11-02 | 2018-04-06 | 彭得保 | 一种智能理疗系统及其方法 |
CN108988666A (zh) * | 2018-07-16 | 2018-12-11 | 黄奕奋 | 一种多周期分段接通电源电路 |
CN109245568B (zh) * | 2018-09-12 | 2024-05-24 | 杭州海兴电力科技股份有限公司 | 一种交流转直流隔离开关电源电路 |
CN109362159B (zh) * | 2018-12-25 | 2020-09-01 | 福州大学 | 一种具有漏感能量回收的低纹波led驱动电源 |
CN114884368A (zh) * | 2022-05-23 | 2022-08-09 | 广州市因博电子科技有限公司 | 一种基于高压输入的开关电源电路 |
CN117674612B (zh) * | 2024-02-01 | 2024-05-31 | 深圳市力生美半导体股份有限公司 | 一种电源电路及开关电源 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6970364B2 (en) * | 2002-03-08 | 2005-11-29 | University Of Central Florida | Low cost AC/DC converter with power factor correction |
CN102064712A (zh) * | 2010-12-24 | 2011-05-18 | 东南大学 | 一种基于简易pfc的电力电子变压器 |
CN102573213A (zh) * | 2011-11-28 | 2012-07-11 | 宁波凯耀电器制造有限公司 | 一种led调光系统 |
CN103296904A (zh) * | 2012-02-29 | 2013-09-11 | 黄煜梅 | 功率因数校正恒流控制器及控制方法 |
CN103716952A (zh) * | 2013-09-17 | 2014-04-09 | 宁波凯耀电器制造有限公司 | 一种led开关电源及其控制方法 |
CN106208638A (zh) * | 2015-04-30 | 2016-12-07 | 神华集团有限责任公司 | 电能转换装置及相应的电能管理连接系统 |
CN106787794A (zh) * | 2016-12-15 | 2017-05-31 | 广东百事泰电子商务股份有限公司 | 一种基于pfc反激全桥的智能型修正波电压转换电路 |
CN206332617U (zh) * | 2016-12-15 | 2017-07-14 | 广东百事泰电子商务股份有限公司 | 一种基于pfc反激全桥的智能型修正波电压转换电路 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6724152B2 (en) * | 2002-07-19 | 2004-04-20 | Donald K. Gladding | Lighting control system with variable arc control including start-up circuit for providing a bias voltage supply |
JP5481939B2 (ja) * | 2009-05-29 | 2014-04-23 | ソニー株式会社 | 電源装置 |
CN105006957A (zh) * | 2015-08-14 | 2015-10-28 | 南京理工大学 | 一种单相交错反激逆变器输入电流脉动抑制的装置及方法 |
-
2016
- 2016-12-15 CN CN201611159566.4A patent/CN106787792A/zh active Pending
-
2017
- 2017-04-01 WO PCT/CN2017/079187 patent/WO2018107621A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6970364B2 (en) * | 2002-03-08 | 2005-11-29 | University Of Central Florida | Low cost AC/DC converter with power factor correction |
CN102064712A (zh) * | 2010-12-24 | 2011-05-18 | 东南大学 | 一种基于简易pfc的电力电子变压器 |
CN102573213A (zh) * | 2011-11-28 | 2012-07-11 | 宁波凯耀电器制造有限公司 | 一种led调光系统 |
CN103296904A (zh) * | 2012-02-29 | 2013-09-11 | 黄煜梅 | 功率因数校正恒流控制器及控制方法 |
CN103716952A (zh) * | 2013-09-17 | 2014-04-09 | 宁波凯耀电器制造有限公司 | 一种led开关电源及其控制方法 |
CN106208638A (zh) * | 2015-04-30 | 2016-12-07 | 神华集团有限责任公司 | 电能转换装置及相应的电能管理连接系统 |
CN106787794A (zh) * | 2016-12-15 | 2017-05-31 | 广东百事泰电子商务股份有限公司 | 一种基于pfc反激全桥的智能型修正波电压转换电路 |
CN206332617U (zh) * | 2016-12-15 | 2017-07-14 | 广东百事泰电子商务股份有限公司 | 一种基于pfc反激全桥的智能型修正波电压转换电路 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108880289A (zh) * | 2018-08-14 | 2018-11-23 | 广州易达包装设备有限公司 | 一种可调高压电场发生装置 |
CN108880289B (zh) * | 2018-08-14 | 2024-06-07 | 广州易达包装设备有限公司 | 一种可调高压电场发生装置 |
CN109245515A (zh) * | 2018-09-05 | 2019-01-18 | 广西师范大学 | 一种无桥pfc充电电路及其控制算法 |
CN109245515B (zh) * | 2018-09-05 | 2023-09-26 | 深圳美盈达科技有限公司 | 一种无桥pfc充电电路及其控制算法 |
CN110350809A (zh) * | 2019-07-31 | 2019-10-18 | 清正源华(北京)科技有限公司 | 一种用于高速电主轴驱动器的隔离ac-dc电源 |
CN110350809B (zh) * | 2019-07-31 | 2024-06-04 | 清正源华(北京)科技有限公司 | 一种用于高速电主轴驱动器的隔离ac-dc电源 |
CN111830423A (zh) * | 2020-06-24 | 2020-10-27 | 东风电驱动系统有限公司 | 一种隔离式高压采样电路 |
Also Published As
Publication number | Publication date |
---|---|
CN106787792A (zh) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018107623A1 (zh) | 一种基于pfc双全桥的智能型正弦波电压转换电路 | |
WO2018107619A1 (zh) | 基于pfc与llc谐振的智能全桥正弦波电压转换电路 | |
WO2018107621A1 (zh) | 一种基于pfc反激全桥的智能型正弦波电压转换电路 | |
WO2018129825A1 (zh) | 基于pfc交错反激的智能型半桥正弦波电压转换电路 | |
WO2018107600A1 (zh) | 一种基于pfc正激全桥的智能型修正波电压转换电路 | |
WO2018120483A1 (zh) | 基于pfc交错反激全桥的智能型正弦波电压转换电路 | |
WO2018107599A1 (zh) | 一种基于pfc正激全桥的智能型正弦波电压转换电路 | |
WO2018107620A1 (zh) | 一种基于pfc反激全桥的智能型修正波电压转换电路 | |
WO2018126557A1 (zh) | 基于pfc与llc谐振的智能半桥正弦波电压转换电路 | |
WO2018120523A1 (zh) | 一种基于pfc正激半桥的智能型正弦波电压转换电路 | |
WO2018126554A1 (zh) | 基于pfc、全桥和半桥的智能型修正波电压转换电路 | |
WO2018107622A1 (zh) | 一种基于pfc双全桥的智能型修正波电压转换电路 | |
WO2018129824A1 (zh) | 基于pfc交错反激的智能型半桥修正波电压转换电路 | |
CN206422704U (zh) | 基于pfc交错反激的智能型半桥正弦波电压转换电路 | |
WO2018120482A1 (zh) | 基于pfc交错反激全桥的智能型修正波电压转换电路 | |
WO2018126555A1 (zh) | 基于pfc、全桥和半桥的智能型正弦波电压转换电路 | |
CN206364711U (zh) | 基于pfc、全桥和半桥的智能型正弦波电压转换电路 | |
WO2018126556A1 (zh) | 基于pfc与llc谐振的智能半桥修正波电压转换电路 | |
CN206364708U (zh) | 基于pfc交错反激全桥的智能型修正波电压转换电路 | |
WO2018120522A1 (zh) | 一种基于pfc正激半桥的智能型修正波电压转换电路 | |
CN206620058U (zh) | 基于pfc与llc谐振的智能半桥正弦波电压转换电路 | |
CN206332617U (zh) | 一种基于pfc反激全桥的智能型修正波电压转换电路 | |
WO2018129832A1 (zh) | 一种基于维也纳pfc的智能型半桥修正波电压转换电路 | |
CN206364710U (zh) | 基于pfc与llc谐振的智能半桥修正波电压转换电路 | |
CN206332624U (zh) | 一种基于pfc双全桥的智能型修正波电压转换电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17881587 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17881587 Country of ref document: EP Kind code of ref document: A1 |