[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018105060A1 - 液式鉛蓄電池 - Google Patents

液式鉛蓄電池 Download PDF

Info

Publication number
WO2018105060A1
WO2018105060A1 PCT/JP2016/086395 JP2016086395W WO2018105060A1 WO 2018105060 A1 WO2018105060 A1 WO 2018105060A1 JP 2016086395 W JP2016086395 W JP 2016086395W WO 2018105060 A1 WO2018105060 A1 WO 2018105060A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
film body
negative electrode
hydrophilic
acid battery
Prior art date
Application number
PCT/JP2016/086395
Other languages
English (en)
French (fr)
Inventor
素子 原田
真吾 荒城
大越 哲郎
柴原 敏夫
本田 光利
隆之 木村
心 高橋
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2016/086395 priority Critical patent/WO2018105060A1/ja
Priority to JP2018555383A priority patent/JP6908052B2/ja
Priority to PCT/JP2017/005721 priority patent/WO2018105134A1/ja
Priority to JP2018554803A priority patent/JP6965892B2/ja
Publication of WO2018105060A1 publication Critical patent/WO2018105060A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a liquid lead-acid battery.
  • Lead storage batteries are widely used for industrial purposes, and are used, for example, for automobile batteries, backup power supplies, and main power supplies for electric vehicles.
  • an idling stop-and-start system (hereinafter referred to as “ISS”) that stops the engine during power generation control, waiting for a signal, or the like is employed for the purpose of carbon dioxide emission regulation measures, fuel efficiency reduction, and the like. It has become so.
  • stratification means that sulfate ions (SO 4 2 ⁇ ) and hydrogen sulfate ions (HSO 4 ⁇ ) (hereinafter collectively referred to as “sulfate ions”) in the electrolyte solution are precipitated by repeated charge and discharge.
  • SO 4 2 ⁇ sulfate ions
  • HSO 4 ⁇ hydrogen sulfate ions
  • suppression of stratification is an important issue because it is used in an intermediate charging state in which the effect of stirring the electrolyte is difficult to obtain.
  • Patent Document 1 describes a technique related to a separator for a liquid lead-acid battery, characterized in that an acid-resistant microporous resin film sheet and an acid-resistant nonwoven fabric sheet are laminated. Yes.
  • the acid-resistant nonwoven fabric sheet is characterized in that wool-like glass fibers having a fiber diameter of 2 to 4.5 ⁇ m are composed of 50% by mass or more, and the average pore diameter is 20 to 100 ⁇ m.
  • the acid-resistant non-woven sheet described in Patent Document 1 has an average pore diameter of 20 to 100 ⁇ m, and therefore, particularly when the battery size (width dimension) is large, sulfate ions generated in large quantities near the electrode plate during charging. May slip through the pores and settle, and the electrolyte may stratify.
  • an object of the present invention is to suppress stratification of the electrolytic solution and improve durability in a liquid lead acid battery having a predetermined size.
  • the present inventors have provided a film body having pores between the negative electrode and the separator in a liquid lead-acid battery having a predetermined width dimension, and the average pore diameter of the film body Has been found to be possible to suppress the stratification of the electrolytic solution and improve the durability when the porosity is 93 ⁇ m or less and the porosity is 93% or less.
  • the present invention provides a positive electrode plate, a negative electrode plate, a separator disposed between the positive electrode plate and the negative electrode plate, a film body disposed between the negative electrode plate and the separator, and an electrolytic solution.
  • a liquid-type lead-acid battery having a width dimension equal to or greater than D in a section defined in JIS D5301, and a battery body containing a positive electrode plate, a negative electrode plate, a separator, a membrane body, and an electrolytic solution Is a liquid lead-acid battery having pores with an average pore diameter of 15 ⁇ m or less and a membrane body porosity of 93% or less.
  • the present invention provides a positive electrode plate, a negative electrode plate, a separator disposed between the positive electrode plate and the negative electrode plate, a film body disposed between the negative electrode plate and the separator, and an electrolytic solution.
  • a liquid lead having a width dimension of LBN0 to 6 or LN0 to 6 according to the category defined in EN 50342-2.
  • the storage battery is a liquid lead storage battery in which the film body has pores having an average pore diameter of 15 ⁇ m or less, and the porosity of the film body is 93% or less.
  • the porosity of the film body is 80% or more.
  • the membrane body has a thickness of 0.3 mm or less and a basis weight of 30 g / m 2 to 50 g / m 2 .
  • the film body includes a base material and a hydrophilic film formed on the base material, and the base material is at least one selected from an organic woven fabric, an organic non-woven fabric, and a porous membrane.
  • the coating includes at least one hydrophilic material selected from alumina and silica, and at least one holding material selected from acrylamide, silica sol, and a silane coupling agent.
  • the hydrophilic material is composed of alumina alone, silica alone, or a mixture of alumina and silica.
  • the thickness of the hydrophilic coating is 10 nm to 1000 nm.
  • the film body includes an inorganic nonwoven fabric.
  • the surface of the separator on the negative electrode plate side includes at least one hydrophilic material selected from alumina and silica, and at least one holding material selected from acrylamide, silica sol, and a silane coupling agent.
  • a hydrophilic film is formed.
  • FIG. 3 is a schematic cross-sectional view showing a cross section taken along the line II in FIG. 2. It is a top view which shows the negative electrode plate which concerns on one Embodiment.
  • (A) is a principal part top view which shows a part P of the negative electrode plate of FIG. 4,
  • (b) is principal part sectional drawing of a film
  • FIG. 1 is a perspective view showing the overall configuration and internal structure of a liquid lead acid battery (hereinafter also simply referred to as “lead acid battery”) according to an embodiment.
  • the lead storage battery 1 includes a battery case 2 having an upper surface opened and a lid 3 for closing the opening of the battery case 2.
  • the battery case 2 and the lid 3 are made of, for example, polypropylene.
  • the lid 3 is provided with a negative electrode terminal 4, a positive electrode terminal 5, and a liquid port plug 6 that closes a liquid injection port provided in the lid 3.
  • an electrode group 7 Inside the battery case 2 are an electrode group 7, a negative pole 8 connecting the electrode group 7 to the negative terminal 4, a positive pole (not shown) connecting the electrode group 7 to the positive terminal 5, dilute sulfuric acid, etc.
  • the electrolyte solution is accommodated.
  • the lead-acid battery 1 has a width dimension equal to or greater than D in the category defined in JIS D5301.
  • the width dimension of the lead storage battery 1 may be D, E, F, G, or H, for example, as defined in JIS D5301.
  • the lead storage battery 1 has a width dimension of LBN0 or more or LN0 or more according to a category defined in EN 50342-2.
  • the width dimension of the lead storage battery 1 may be, for example, LBN 0 to 6 or LN 0 to 6 according to the classification defined in EN 50342-2.
  • the lead storage battery 1 has a width dimension of 170 mm or more in one embodiment.
  • the width dimension of the lead storage battery 1 may be, for example, 175 mm or more or 180 mm or more, or 280 mm or less or 225 mm or less.
  • FIG. 2 is a perspective view showing the electrode group 7.
  • the electrode group 7 includes a plate-like negative electrode plate 9 containing metallic lead (Pb) as an active material, a plate-like positive electrode plate 10 containing lead dioxide (PbO 2 ) as an active material, and a negative electrode A separator 11 disposed between the plate 9 and the positive electrode plate 10 is provided.
  • the electrode group 7 has a structure in which a plurality of negative electrode plates 9 and positive electrode plates 10 are alternately stacked in a direction substantially parallel to the opening surface of the battery case 2 via separators 11. That is, the negative electrode plate 9 and the positive electrode plate 10 are arranged so that their main surfaces extend in a direction perpendicular to the opening surface of the battery case 2.
  • the separator 11 is formed in a bag shape so as to accommodate the negative electrode plate 9.
  • the material forming the separator 11 include polyethylene (PE) and polypropylene (PP).
  • the separator 11 may be one in which inorganic particles such as SiO 2 and Al 2 O 3 are attached to a woven fabric, a nonwoven fabric, a porous film or the like formed of these materials.
  • the thickness of the separator 11 is preferably 0.1 mm to 0.5 mm, more preferably 0.2 mm to 0.3 mm.
  • the thickness of the separator 11 is 0.1 mm or more, the strength of the separator can be secured.
  • the thickness of the separator 11 is 0.5 mm or less, an increase in the internal resistance of the battery can be suppressed.
  • the average pore diameter of the separator 11 is preferably 10 nm to 500 nm, more preferably 30 nm to 200 nm.
  • the average pore diameter of the separator 11 is 10 nm or more, sulfate ions can be suitably passed, and the diffusion rate of sulfate ions can be ensured.
  • the average pore diameter of the separator 11 is 500 nm or less, the growth of lead dendrite is suppressed, and a short circuit hardly occurs.
  • the ear portions 9 a of the plurality of negative electrode plates 9 are collectively welded by the negative side strap 12.
  • the ears 10 a of the plurality of positive electrode plates 10 are collectively welded by the positive side strap 13.
  • the negative side strap 12 and the positive side strap 13 are connected to the negative terminal 4 and the positive terminal 5 through the negative pole 8 and the positive pole, respectively.
  • FIG. 3 is a schematic cross-sectional view showing a cross section taken along the line II in FIG.
  • a film body 14 is provided between the negative electrode plate 9 and the separator 11.
  • the film body 14 is provided in close contact with the negative electrode plate 9 so as to cover the surface of the negative electrode plate 9.
  • the film body 14 may be, for example, a sheet shape or a bag shape.
  • the film body 14 covers the surface of the negative electrode plate 9 so as to be wound around the negative electrode plate 9.
  • the film body 14 has a bag shape, the negative electrode plate 9 is accommodated in the film body 14.
  • FIG. 4 is a plan view showing the negative electrode plate 9.
  • the negative electrode plate 9 has a substantially rectangular planar shape, and has a lattice body 9b formed of a lead alloy and a substantially rectangular planar shape, and the negative electrode plate 9 is formed from one side of the lattice body 9b. Ears 9a projecting outward, an active material (not shown) filled in the lattice body 9b, and a film body 14 provided on the surface of the negative electrode plate 9 so as to cover the active material.
  • the width W of the negative electrode plate 9 (the length of the side where the ear 9a of the negative electrode plate 9 is provided) is preferably 120 mm or more, more preferably 130 mm or more, from the viewpoint of further suppressing stratification of the electrolyte. Preferably it is 140 mm or more.
  • the film body 14 preferably includes an inorganic nonwoven fabric, an organic woven fabric, an organic nonwoven fabric, or a membrane body having a pore of a porous membrane (porous membrane body).
  • the film body 14 preferably has hydrophilicity.
  • the material for forming the inorganic nonwoven fabric include materials capable of forming hydrophilic groups such as —OH groups in the electrolytic solution, and specifically include SiO 2 and the like. When such an inorganic nonwoven fabric is used, hydrophilic treatment is not necessary.
  • an organic woven fabric, an organic nonwoven fabric or a porous membrane When an organic woven fabric, an organic nonwoven fabric or a porous membrane is used, a hydrophilic film is preferably formed on these surfaces.
  • the material forming the organic woven fabric, the organic nonwoven fabric or the porous membrane include polypropylene, cellulose, polyethylene, nylon, aramid, polyester and the like.
  • the organic woven fabric, the organic nonwoven fabric or the porous membrane is subjected to a hydrophilic treatment (hydrophilic treatment different from the treatment for providing a hydrophilic film to be described later) even if it is untreated (no surface treatment).
  • a hydrophilic treatment hydrophilic treatment different from the treatment for providing a hydrophilic film to be described later
  • an untreated one is preferably used from the viewpoint of shortening the process.
  • FIG. 5A is a main part plan view showing a part P of the negative electrode plate 9 of FIG. 4, and shows a case where the film body 14 includes an organic nonwoven fabric.
  • the film body 14 has a configuration in which thread-like fibers are irregularly entangled, thereby forming pores.
  • FIG. 5B is a cross-sectional view of the main part of the film body 14 of FIG.
  • the film body 14 when the film body 14 includes an organic nonwoven fabric (or organic woven cloth or porous film), the film body 14 further includes a hydrophilic film 17 including a hydrophilic material 15 and a holding material 16.
  • the hydrophilic coating 17 is formed on a substrate 18 that is an organic nonwoven fabric (or organic woven fabric or porous membrane).
  • the mass ratio between the hydrophilic material 15 and the holding material 16 is preferably 90:10 to 70:30, more preferably in terms of solid content. Is from 86:14 to 74:26, more preferably from 82:18 to 78:22.
  • the mass ratio is preferably 96: 4 to 84:16, more preferably 93: 7 to 87:13, and still more preferably 91: 9. ⁇ 89: 11.
  • the hydrophilic film 17 is formed to increase the interaction with the sulfate ions and further suppress the stratification of the electrolytic solution, but can also be an obstacle to inhibit the behavior of the sulfate ions. Such an obstacle may reduce the diffusion rate of sulfate ions and increase the internal resistance of the lead acid battery.
  • the hydrophilic coating 17 supplies sulfate ions collected by adsorption to the electrode, and the supply efficiency of sulfate ions from the hydrophilic coating to the electrode is considered to affect battery performance such as high rate discharge performance and charge acceptance. . Therefore, in addition to the stratification of the electrolytic solution, it is preferable to select the configuration of the hydrophilic coating 17 as described later from the viewpoint of excellent other battery performance such as internal resistance of the lead storage battery.
  • the hydrophilic material 15 is preferably an inorganic material because it does not dissolve even when immersed in an acidic aqueous solution and can maintain hydrophilicity for a long period of time due to chemical interaction with sulfate ions.
  • examples of such an inorganic material include silica (SiO 2 ) such as hydrophilic silica particles (colloidal silica), alumina (Al 2 O 3 ) such as hydrophilic alumina sol, BaSO 4 , and TiO 2 .
  • the hydrophilic material 15 is preferably made of silica alone, alumina alone, or a mixture of silica and alumina. Since colloidal silica uses alcohol as a dispersion medium and alumina sol uses water as a dispersion medium, these can be mixed together to easily obtain a mixture. Specific examples of these inorganic materials include colloidal silica IPA-ST-UP, IPA-ST, ST-OXS, ST-K2 and LSS-35 manufactured by Nissan Chemical Industries, Ltd., manufactured by Nissan Chemical Industries, Ltd. Examples thereof include alumina sol AS-200.
  • colloidal silica particles having a specific surface area of 130 m 2 / g to 1000 m 2 / g are preferably used. Assuming that the colloidal silica has a spherical shape, the particle diameter is 2 nm to 20 nm.
  • the alumina sol, specific surface area is preferably used particles is 200m 2 / g ⁇ 400m 2 / g. Assuming that the shape of such alumina particles is plate-like, the dimensions (vertical, horizontal and height) are, for example, about 10 nm ⁇ 10 nm ⁇ 100 nm.
  • an organic material or an inorganic material can be used as the holder material 16.
  • the organic material include organic low molecular weight materials such as acrylamide, or organic polymer materials such as polyethylene glycol and polyvinyl alcohol.
  • the inorganic material include a material that can hold a hydrophilic material by heating, such as acrylamide, silica sol, or a silane coupling agent.
  • the support material is preferably acrylamide, silica sol, or a silane coupling agent.
  • the silane coupling agent is particularly preferably used because it has a high degree of freedom in selecting functional groups constituting the silane coupling agent and can easily control the orientation of the support material depending on the type of the functional group (details will be described later).
  • silica sol examples include Colcoat Co., Ltd. Colcoat PX.
  • the silane coupling agent may be a silane coupling agent commercially available from Shin-Etsu Chemical Co., Ltd.
  • silane coupling agents are actually many substances classified as organic materials, in this specification, they are described as inorganic materials because they are used to impart hydrophilic functional groups to the film body. .
  • the holder material 16 is selected, for example, as follows according to the type of functional group present on the surface of the substrate 18.
  • the base material 18 is untreated (not surface-treated), it is considered that many hydrophobic functional groups such as methyl groups and methylene groups exist on the surface of the base material 18.
  • a silane coupling agent (support material) having a functional group such as vinyl group, methacryloyl group, acryloyl group, or styryl group is selected, the base material is vinyl group, methacryloyl group, acryloyl group, styryl group, etc. It is considered that the silanol groups that are oriented on the surface side of 18 and generated by the hydrolysis reaction are oriented on the surface opposite to the substrate 18.
  • hydrophilic functional groups such as a hydroxyl group (—OH group), a carboxyl group, and an amino group are present on the surface of the substrate 18.
  • a silane coupling agent support material having an amino group, an epoxy group, or the like
  • the amino group, epoxy group, etc. react with the functional group on the surface of the substrate 18, resulting in hydrolysis.
  • the silanol group is oriented on the side opposite to the surface of the substrate 18.
  • the amino group is particularly preferably used because it easily forms a hydrogen bond with the hydroxyl group and easily orients the silanol group toward the outermost surface of the hydrophilic film.
  • the orientation of the functional group in the support material can be controlled, and the outermost surface of the hydrophilic film (in contact with the electrolyte) A silanol group can be arranged on the surface).
  • the amount of hydrophilic functional groups such as —OH groups present on the surface of the hydrophilic coating 17 is large, and the hydrophilicity of the hydrophilic coating 17 is increased. Therefore, the interaction between the hydrophilic coating 17 and sulfate ions works greatly. It becomes easier to eliminate the sulfuric acid concentration gradient in the battery case 2, and the supply rate of sulfate ions to the electrode can be improved.
  • the combination of the untreated substrate 18 and the silane coupling agent having a functional group such as a vinyl group, a methacryloyl group, an acryloyl group, or a styryl group does not require the hydrophilic treatment of the substrate 18. Therefore, the process can be shortened, so that it is particularly preferably used.
  • the contact angle of the hydrophilic film 17 with respect to water or sulfuric acid is, for example, 10 ° or less.
  • a hydrophilic material having a high sulfate ion adsorbing power such as Al 2 O 3
  • the contact angle is not necessarily 10 ° or less.
  • the hydrophilic coating 17 is obtained, for example, by applying a hydrophilic paint on the film body and heating and curing it.
  • the hydrophilic paint contains, for example, the above hydrophilic material, the above support material, and a solvent.
  • the hydrophilic material and the support material are present in a state where the solid components are dispersed in the dispersion medium at a constant concentration.
  • the hydrophilic ratio is such that the mass ratio of the solid component of the hydrophilic material to the solid component of the holder material (hydrophilic material: holder material) is 90:10 to 70:30. It is preferable to mix the dispersion liquid containing the material and the dispersion liquid containing the support material. Next, after the dispersion containing the hydrophilic material and the dispersion containing the holding material are mixed, the total concentration of the solid components of the hydrophilic material and the holding material is mixed to obtain a dispersion (mixed dispersion).
  • the mixed dispersion is diluted with a solvent so as to be 0.5% by mass to 5% by mass with respect to the total amount.
  • concentration of the solid component in the mixed dispersion is 0.5% by mass or more, the thickness of the hydrophilic film can be made uniform.
  • a hydrophilic film can be suitably formed as the density
  • concentration of the solid component in a mixed dispersion is 5 mass% or less.
  • the solvent used for diluting the mixed dispersion of the hydrophilic material and the support material is preferably good in dispersibility and compatibility of the hydrophilic material and the support material, and volatilizes during the heat curing. Easy solvent. Considering the heat resistance of the film body, the boiling point of the solvent is preferably 100 ° C. or lower. As the solvent satisfying these conditions, alcohol solvents, water and the like are preferable, and water, methanol, ethanol and isopropyl alcohol are more preferable.
  • the hydrophilic film 17 is formed by wet hydrophilic treatment to impart hydrophilicity to the membrane body 14.
  • the membrane body 14 is subjected to dry hydrophilic treatment such as sulfonation treatment and fluorine treatment. Hydrophilicity may be imparted.
  • the thickness of the hydrophilic film 17 is preferably 10 nm to 1000 nm, more preferably 10 nm to 500 nm, and still more preferably 100 nm to 400 nm.
  • the thickness of the hydrophilic film is 10 nm or more, the hydrophilic film is easily formed uniformly, and the effect of adsorbing and holding sulfate ions is further increased.
  • the thickness of the hydrophilic coating is 1000 nm or less, the internal resistance of the battery can be suppressed.
  • the thickness of the hydrophilic film is calculated by observing the cross section of the hydrophilic film with an SEM.
  • the thickness of the hydrophilic coating can be adjusted by adjusting the concentration of the hydrophilic coating, or by adjusting the pressure when removing the extra coating after applying the hydrophilic coating on the substrate.
  • the average pore diameter is 15 ⁇ m or less from the viewpoint of suppressing the stratification of the electrolytic solution.
  • the average pore diameter of the film body 14 is preferably 12 ⁇ m or less, 10 ⁇ m or less, 7 ⁇ m or less, 5 ⁇ m or less, 3 ⁇ m or less, or 2 ⁇ m or less from the viewpoint of further suppressing the stratification of the electrolytic solution.
  • the average pore diameter of the film body 14 may be, for example, 1 ⁇ m or more.
  • the average pore diameter of the membrane body is an X corresponding to an intermediate value between the minimum value and the maximum value on the Y axis (pore volume or pore specific surface area) of the distribution curve in the cumulative pore diameter distribution measured by the mercury intrusion method. It is calculated as the median diameter which is the value of the axis (pore diameter).
  • the average pore diameter of the membrane can be measured by, for example, Shimadzu Corporation Autopore IV 9500.
  • the porosity of the film body 14 is 93% or less, preferably 92% or less, more preferably 91% or less, and still more preferably 90% or less.
  • the porosity of the membrane body 14 is preferably 80% or more, more preferably 82% or more, and still more preferably 84% or more, from the viewpoint of ensuring the diffusibility of sulfate ions and increasing the space for holding sulfate ions. Especially preferably, it is 85% or more.
  • the porosity of the film body is calculated from the actual volume and the apparent volume according to the following formulas (1) to (3) for a sample cut from the film body into a rectangular parallelepiped having an appropriate size.
  • Porosity (%) ⁇ 1 ⁇ (actual volume / apparent volume) ⁇ ⁇ 100 (1)
  • Actual volume (cm 3 ) actual value of weight (g) / density (g / cm 3 ) (2)
  • Apparent volume (cm 3 ) length (cm) ⁇ width (cm) ⁇ thickness (cm) (3) Note that measured values are used for the length, width, and thickness of the sample when calculating the apparent volume.
  • the present inventors consider the reason why the stratification of the electrolytic solution is suppressed by providing the film body 14 as follows. That is, an aggregate of sulfate ions generated by the charging reaction is divided by the pores of the film body 14 to become high-concentration particles and slowly settles in the electrolytic solution. When the film body 14 having a specific average pore diameter and porosity is provided, the sedimentation rate of sulfate ions is reduced as compared with the case where the film body 14 is not provided, so that stratification can be suppressed.
  • the structure of the pores in the film body 14 may be a regular structure that occurs between fibers of an organic woven fabric, for example, or an irregular structure that occurs between fibers and fibers of an organic nonwoven fabric, for example. It may be a structure.
  • the fiber diameter of the fibers constituting them is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the fiber diameter is preferably 1 ⁇ m or more from the viewpoint of suppressing fiber breakage, tearing of the film body, etc., and ensuring durability.
  • the thickness of the film body 14 is preferably 0.3 mm or less, more preferably 0.25 mm or less, still more preferably 0.2 mm or less, and particularly preferably 0.15 mm or less from the viewpoint of suppressing an increase in internal resistance. .
  • the thickness of the film body 14 is, for example, 0.03 mm or more from the viewpoint of the ability to prevent the precipitation of sulfate ions, the influence on the battery reaction, the strength, and the like.
  • the thickness of the film body 14 is determined according to the thickness of the fiber which comprises them.
  • the thickness of the film body 14 includes a porous film, the thickness of the film body 14 is determined according to the pore diameter, material, and the like of the porous film.
  • the basis weight of the film body 14 is preferably 30 g / m 2 to 50 g / m 2 , more preferably 35 g / m 2 to 50 g / m 2 , and still more preferably from the viewpoint of coexistence of suppression of stratification and suppression of increase in internal resistance. Is 40 g / m 2 to 50 g / m 2 .
  • the basis weight is calculated as a mass per unit area of the film body 14.
  • the film body 14 is provided so as to cover all of the main surface (the surface facing the separator 11), the side surface, and the bottom surface of the negative electrode plate 9, and to be in contact with (in close contact with) the surfaces.
  • the film body may be provided between the negative electrode plate 9 and the separator 11 so as to be separated from the negative electrode plate 9.
  • the film body 14 may be provided on the surface of the separator 11 on the negative electrode side, for example.
  • the film body 14 is preferably provided so as to be in contact with (in close contact with) the surface of the negative electrode plate 9.
  • the film body 14 covers all of the main surface (the surface facing the separator 11), the side surface, and the bottom surface of the negative electrode plate 9. In other embodiments, the film body is the main surface of the negative electrode plate 9. It may be provided so as to cover only the surface (the surface facing the separator 11).
  • a hydrophilic film having the same configuration as the hydrophilic film 17 included in the film body 14 may be further formed on the surface of the separator 11 on the negative electrode plate 9 side.
  • Example 1 A paste type electrode plate in which a lead alloy lattice filled with a paste prepared by kneading lead powder mainly composed of lead monoxide with dilute sulfuric acid was used. Thereafter, an unformed electrode plate was obtained through aging and drying steps.
  • the unformed positive electrode plate and negative electrode plate are both composed of a mixture of divalent lead compounds such as lead monoxide (PbO) and tribasic dilute lead sulfate (3PbO ⁇ PbSO 4 ⁇ H 2 O). ing.
  • PbO lead monoxide
  • 3PbO ⁇ PbSO 4 ⁇ H 2 O tribasic dilute lead sulfate
  • the unformed material of the positive electrode plate is oxidized to lead dioxide (PbO 2 ), and the unformed material of the negative electrode plate is reduced to spongy lead (Pb) to obtain an already formed electrode plate (positive electrode plate, negative electrode plate). It was.
  • An inorganic non-woven fabric (main component: SiO 2 ) as shown in Table 1 was used as the film body and placed on the negative electrode plate.
  • a separator a separator having a thickness of 0.25 mm and an average pore diameter of 30 nm to 200 nm is used, and dilute sulfuric acid is used as an electrolyte, and D size (JIS D5301; width: 173 mm, box which is difficult to suppress stratification)
  • a lead-acid battery with a rated capacity of 60 (Ah) having a height of 204 mm, a negative electrode plate width of 145 mm, and a negative electrode plate height (including the upper frame) of 113 mm was produced.
  • the average pore diameter of the membrane was measured with Autopore IV 9500 manufactured by Shimadzu Corporation.
  • the average pore diameter of the membrane body is an X corresponding to an intermediate value between the minimum value and the maximum value on the Y axis (pore volume or pore specific surface area) of the distribution curve in the cumulative pore diameter distribution measured by the mercury intrusion method.
  • the median diameter was calculated as the value of the axis (pore diameter).
  • the internal resistance of the lead-acid battery that had been initially charged in advance was evaluated using a 1 kHz AC m ⁇ meter.
  • the specific evaluation criteria are indicated by the value of the internal resistance when the internal resistance of the lead storage battery when the film body is not provided (Comparative Example 1) is 100.
  • the value of the internal resistance is preferably less than 125, more preferably less than 120, and even more preferably less than 110.
  • the results are shown in Table 1.
  • DOD 17.5% life test (durability) The DOD 17.5% life performance was measured as follows. First, the lead-acid battery that had been fully charged was placed in a water tank whose hot water bath temperature was set to 25 ° C. ⁇ 2 ° C. In the life test of DOD 17.5%, the following cycle units (a) to (g) were performed in this order. In a 60 Ah lead-acid battery, the 20 hour rate current is 3 A. In addition, this test was a cycle test simulating the use of a lead storage battery in an ISS car, and it was determined that the life was reached when the voltage of the lead storage battery fell below 10.0V. The results are shown in Table 1. (A) Discharge for 2.5 hours at 12 A (corresponding to 4 times the 20-hour current).
  • the discharge lower limit voltage was greater than 10.0V.
  • B Charging for 40 minutes at 21A (equivalent to 7 times the 20-hour current). The charge upper limit voltage was 14.4 ⁇ 0.05V.
  • C Discharge for 30 minutes at 21 A (corresponding to 7 times the 20 hour current). The discharge lower limit voltage was greater than 10.0V.
  • D The above (b) and (c) are repeated 85 times alternately.
  • E Charged for 18 hours at 6A (equivalent to twice the 20 hour rate current). CC (constant current) -CV (constant voltage) charging was used, and the voltage during CV charging was 16.0 V ⁇ 0.05 V.
  • the vertical specific gravity difference was calculated as 100, and the vertical specific gravity difference was calculated.
  • the difference in specific gravity between the upper and lower sides is preferably less than 70, more preferably less than 50. When the difference in specific gravity between the upper and lower sides was less than 70, it was judged that stratification was suppressed.
  • Examples 2 to 6> A lead-acid battery was produced and evaluated in the same manner as in Example 1 except that the configuration of the film body was changed as shown in Table 1.
  • Example 7 A lead storage battery was prepared and evaluated in the same manner as in Example 1 except that the film body prepared as follows was used in place of the inorganic nonwoven fabric as the film body.
  • an organic nonwoven fabric made of untreated polypropylene (surface functional groups: —CH 2 groups and —CH 3 groups) was used as a base material for the film body.
  • Colloidal silica SiO 2 , IPA-ST-UP (manufactured by Nissan Chemical Industries, Ltd.)
  • alumina sol Al 2 O 3 , AS-200 (manufactured by Nissan Chemical Industries, Ltd.)
  • Silica sol Coldcoat PX (manufactured by Colcoat Co.) was used as the support material.
  • the mass ratio of alumina sol to colloidal silica in the hydrophilic material is 80:20 in terms of solid component (that is, 80 mass% of alumina sol (Al 2 O 3 ) is included in the hydrophilic material). 2)
  • the hydrophilic material and the support material were mixed.
  • a hydrophilic paint was prepared by diluting this mixed solution with ethanol so that the concentration of the solid component was 5% by mass.
  • the film body After immersing the film body in this hydrophilic paint, the film body was pulled up at a speed of 156 mm / min. After sandwiching the film body coated with a hydrophilic paint on Kim Towel (registered trademark) and rolling the roller while pressing with about 5 kg from above, the excess hydrophilic paint adhering to the film body is removed, and then the film body is heated to 60 ° C. The solvent was removed by placing in a heated thermostat for 1 hour. In this way, a hydrophilic film was formed on the film body. When the obtained hydrophilic film was observed by SEM, the film thickness was about 100 nm. Table 1 shows the average pore diameter, thickness, porosity and basis weight of the membrane.
  • Example 8 to 14> A lead-acid battery was produced and evaluated in the same manner as in Example 7 except that the configuration of the film body was changed as shown in Table 1.
  • Example 15 The inorganic non-woven fabric as shown in Table 1 is used as the film body, and the lead-acid battery size is LN1 size (EN 50342-2. Width: 175 mm, Box height: 190 mm. Negative electrode plate width: 143 mm, negative electrode) A lead storage battery was prepared and evaluated in the same manner as in Example 9 except that the height of the plate (including the upper frame portion: 100 mm) was changed.
  • Example 16 and 17 A lead-acid battery was prepared and evaluated in the same manner as in Example 15 except that the inorganic nonwoven fabric as shown in Table 1 was used as the film body.
  • Example 18 As the film body, a non-woven fabric (porous sheet, mixed fiber containing pulp, glass fiber, and silica powder) composed of mixed fibers whose surfaces (both sides) were treated with fluorine gas was used instead of the inorganic non-woven fabric. Produced and evaluated the lead storage battery in the same manner as in Example 1.
  • Example 15 A lead-acid battery was produced and evaluated in the same manner as in Example 15 except that the inorganic nonwoven fabric as shown in Table 2 was used as the film body.
  • the inorganic nonwoven fabric as shown in Table 2 is used as the film body, and the size of the lead storage battery is mainly B size for domestic use (JIS D5301. Width: 127 mm, Box height: 203 mm. The width of the negative electrode plate: 101 mm, A lead storage battery was produced and evaluated in the same manner as in Example 1 except that the height (including the upper frame portion: 103 mm) was changed.
  • SYMBOLS 1 Lead storage battery, 2 ... Battery case, 9 ... Negative electrode plate, 10 ... Positive electrode plate, 11 ... Separator, 14 ... Film body, 16 ... Hydrophilic material, 16 ... Holding body material, 17 ... Hydrophilic film, 18 ... Base material .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、所定の大きさを有する液式鉛蓄電池において、電解液の成層化を抑制し、耐久性を向上させることを目的とする。 本発明は、一態様において、正極板(10)と、負極板(9)と、正極板(10)と負極板(9)との間に配置されたセパレータ(11)と、負極板(9)とセパレータ(11)との間に配置された膜体(14)と、電解液と、正極板(10)、負極板(9)、セパレータ(11)、膜体(14)及び電解液を収容する電槽と、を備え、JIS D5301において規定される区分でD以上の幅寸法を有する液式鉛蓄電池であって、膜体(14)は平均細孔径が15μm以下の細孔を有し、かつ膜体(14)の空孔率が93%以下である、液式鉛蓄電池を提供する。

Description

液式鉛蓄電池
 本発明は、液式鉛蓄電池に関する。
 鉛蓄電池は、産業用に広く用いられており、例えば自動車のバッテリー、バックアップ用電源、及び電動車の主電源に用いられる。近年の自動車では、炭酸ガス排出規制対策、低燃費化等を目的として、発電制御、信号待ち等の際にエンジンを停止するアイドリングストップアンドスタートシステム(以下、「ISS」と称する。)が採用されるようになっている。
 アイドリングストップ中はオルタネータによる発電が行われないため、電動装備への電力は全て鉛蓄電池から供給され、鉛蓄電池では従来よりも深い充電が行われる。また、走行中もオルタネータの発電が制御されるため、充電不足の状態となる。
 鉛蓄電池において深い放電と充電不足とが繰り返される場合、電解液の成層化が生じ、鉛蓄電池の短寿命化の要因として顕在化してきている。ここで、成層化とは、充放電の繰り返しにより、電解液中の硫酸イオン(SO 2-)及び硫酸水素イオン(HSO )(以下、これらを「硫酸イオン」と総称する)が沈降して、電槽の上下で電解液の比重に差が生じる現象をいう。特にISS車用鉛蓄電池では、電解液の撹拌効果が得られにくい中間充電状態で使用されるため、成層化の抑制が重要な課題である。
 このような課題に対し、特許文献1には、耐酸性微多孔性樹脂フィルムシートと耐酸性不織布シートとを積層状態にしたことを特徴とする、液式鉛蓄電池のセパレータに関する技術が記載されている。耐酸性不織布シートは、繊維径2~4.5μmのウール状ガラス繊維が50質量%以上で構成され、平均孔径が20~100μmであることを特徴としている。
特開2013-206571号公報
 しかし、特許文献1に記載の耐酸性不織布シートでは、その平均孔径が20~100μmであるために、特に電池サイズ(幅寸法)が大きい場合には充電時に電極板近傍で大量に発生した硫酸イオンが孔をすり抜けて沈降し、電解液が成層化するおそれがある。
 そこで、本発明は、所定の大きさを有する液式鉛蓄電池において、電解液の成層化を抑制し、耐久性を向上させることを目的とする。
 本発明者らの検討によれば、正極近傍では、放電時に発生した水が電解液の混合を促進するため、成層化の影響は小さい一方、負極近傍では、そのような作用がないために、成層化が起こりやすい。また、成層化は、鉛蓄電池の寸法が大きいほど顕著に生じる。そこで、本発明者らは、更なる検討を重ねた結果、所定の幅寸法を有する液式鉛蓄電池において、負極とセパレータとの間に細孔を有する膜体を設け、膜体の平均細孔径が15μm以下であり、かつ空孔率が93%以下である場合に、電解液の成層化を抑制し、耐久性を向上させることが可能になることを見出した。
 すなわち、本発明は、一態様において、正極板と、負極板と、正極板と負極板との間に配置されたセパレータと、負極板とセパレータとの間に配置された膜体と、電解液と、正極板、負極板、セパレータ、膜体及び電解液を収容する電槽と、を備え、JIS D5301において規定される区分でD以上の幅寸法を有する液式鉛蓄電池であって、膜体は平均細孔径が15μm以下の細孔を有し、かつ膜体の空孔率が93%以下である、液式鉛蓄電池である。
 本発明は、他の一態様において、正極板と、負極板と、正極板と負極板との間に配置されたセパレータと、負極板とセパレータとの間に配置された膜体と、電解液と、正極板、負極板、セパレータ、膜体及び電解液を収容する電槽と、を備え、EN 50342-2において規定される区分でLBN0~6又はLN0~6の幅寸法を有する液式鉛蓄電池であって、膜体は平均細孔径が15μm以下の細孔を有し、かつ膜体の空孔率が93%以下である、液式鉛蓄電池である。
 一態様において、膜体の空孔率は、80%以上である。
 一態様において、膜体は、0.3mm以下の厚さ及び30g/m~50g/mの目付けを有する。
 一態様において、膜体は、基材と、該基材上に形成された親水被膜とを含み、基材は、有機織布、有機不織布及び多孔質膜から選ばれる少なくとも1種であり、親水被膜は、アルミナ及びシリカから選ばれる少なくとも1種の親水性材料と、アクリルアミド、シリカゾル及びシランカップリング剤から選ばれる少なくとも1種の保持体材料とを含む。
 一態様において、親水性材料は、アルミナ単体、シリカ単体又はアルミナとシリカとの混合物からなる。
 一態様において、親水被膜の厚さは、10nm~1000nmである。
 一態様において、膜体は、無機不織布を含む。
 一態様において、セパレータの負極板側の表面には、アルミナ及びシリカから選ばれる少なくとも1種の親水性材料と、アクリルアミド、シリカゾル及びシランカップリング剤から選ばれる少なくとも1種の保持体材料とを含む親水被膜が形成されている。
 本発明によれば、所定の大きさを有する液式鉛蓄電池において、電解液の成層化を抑制し、耐久性を向上させることができる。
一実施形態に係る鉛蓄電池の全体構成及び内部構造を示す斜視図である。 一実施形態に係る鉛蓄電池の電極群を示す斜視図である。 図2におけるI-I線に沿った矢視断面を示す模式断面図である。 一実施形態に係る負極板を示す平面図である。 (a)は図4の負極板の一部分Pを示す要部平面図であり、(b)は膜体の要部断面図である。
 以下、図面を適宜参照しながら、本発明の実施形態について詳細に説明する。
 図1は、一実施形態に係る液式鉛蓄電池(以下、単に「鉛蓄電池」ともいう)の全体構成及び内部構造を示す斜視図である。図1に示すように、本実施形態に係る鉛蓄電池1は、上面が開口している電槽2と、電槽2の開口を閉じる蓋3とを備えている。電槽2及び蓋3は、例えばポリプロピレンで形成されている。蓋3には、負極端子4と、正極端子5と、蓋3に設けられた注液口を閉塞する液口栓6とが設けられている。
 電槽2の内部には、電極群7と、電極群7を負極端子4に接続する負極柱8と、電極群7を正極端子5に接続する正極柱(図示せず)と、希硫酸等の電解液とが収容されている。
 鉛蓄電池1は、一実施形態において、JIS D5301において規定される区分でD以上の幅寸法を有する。鉛蓄電池1の幅寸法は、例えば、JIS D5301において規定される区分でD、E、F、G又はHであってよい。
 鉛蓄電池1は、一実施形態において、EN 50342-2において規定される区分でLBN0以上又はLN0以上の幅寸法を有する。鉛蓄電池1の幅寸法は、例えば、EN 50342-2において規定される区分でLBN0~6又はLN0~6であってよい。
 鉛蓄電池1は、一実施形態において、170mm以上の幅寸法を有する。鉛蓄電池1の幅寸法は、例えば、175mm以上又は180mm以上であってもよく、280mm以下又は225mm以下であってもよい。
 図2は、電極群7を示す斜視図である。図2に示すように、電極群7は、金属鉛(Pb)を活物質として含む板状の負極板9と、二酸化鉛(PbO)を活物質として含む板状の正極板10と、負極板9と正極板10との間に配置されたセパレータ11とを備えている。電極群7は、複数の負極板9と正極板10とが、セパレータ11を介して、電槽2の開口面と略平行方向に交互に積層された構造を有している。すなわち、負極板9及び正極板10は、それらの主面が電槽2の開口面と垂直方向に広がるように配置されている。
 セパレータ11は、例えば、負極板9を収容可能なように袋状に形成されている。セパレータ11を形成する材料の例としては、ポリエチレン(PE)、ポリプロピレン(PP)等が挙げられる。セパレータ11は、これらの材料で形成された織布、不織布、多孔質膜等にSiO、Al等の無機系粒子を付着させたものであってよい。
 セパレータ11の厚さは、好ましくは0.1mm~0.5mm、より好ましくは0.2mm~0.3mmである。セパレータ11の厚さが0.1mm以上であると、セパレータの強度を確保できる。セパレータ11の厚さが0.5mm以下であると、電池の内部抵抗の上昇を抑制できる。
 セパレータ11の平均孔径は、好ましくは10nm~500nm、より好ましくは30nm~200nmである。セパレータ11の平均孔径が10nm以上であると、硫酸イオンを好適に通過させ、硫酸イオンの拡散速度を確保できる。セパレータ11の平均孔径が500nm以下であると、鉛のデンドライトの成長が抑制され、短絡が生じにくくなる。
 複数の負極板9の耳部9a同士は、負極側ストラップ12で集合溶接されている。同様に、複数の正極板10の耳部10a同士は、正極側ストラップ13で集合溶接されている。そして、負極側ストラップ12及び正極側ストラップ13のが、それぞれ負極柱8及び正極柱を介して負極端子4及び正極端子5に接続される。
 図3は、図2におけるI-I線に沿った矢視断面を示す模式断面図である。図3に示すように、負極板9とセパレータ11との間には膜体14が設けられている。本実施形態では、膜体14は、負極板9の表面を覆うように負極板9に密着した状態で設けられている。
 膜体14は、例えばシート状又は袋状であってよい。膜体14がシート状である場合、膜体14は負極板9に巻きつけられるようにして負極板9の表面を覆っている。膜体14が袋状である場合、負極板9は膜体14内に収容されている。
 図4は、負極板9を示す平面図である。図4に示すように、負極板9は、略長方形の平面形状を有し、鉛合金で形成された格子体9bと、略長方形の平面形状を有し、格子体9bの一辺から負極板9の外側へ突出する耳部9aと、格子体9bに充填された活物質(図示せず)と、活物質を覆うように負極板9の表面に設けられた膜体14とを備えている。
 負極板9の幅W(負極板9の耳部9aが設けられている辺の長さ)は、電解液の成層化を更に抑制できる観点から、好ましくは120mm以上、より好ましくは130mm以上、更に好ましくは140mm以上である。
 膜体14としては、好ましくは、無機不織布、有機織布、有機不織布又は多孔質膜の細孔を有する膜体(多孔性膜体)を含む。膜体14は、好ましくは親水性を有している。無機不織布を形成する材料の例としては、電解液中で-OH基等の親水性基を形成可能な材料が挙げられ、具体的にはSiO等が挙げられる。このような無機不織布を用いる場合、親水処理は不要となる。
 有機織布、有機不織布又は多孔質膜が用いられる場合、これらの表面には、好ましくは親水被膜が形成されている。有機織布、有機不織布又は多孔質膜を形成する材料の例としては、ポリプロピレン、セルロース、ポリエチレン、ナイロン、アラミド、ポリエステル等が挙げられる。有機織布、有機不織布又は多孔質膜としては、無処理のもの(表面処理がなされていないもの)であっても親水処理(後述する親水被膜を設ける処理とは別の親水処理)がなされているものであってもよいが、工程短縮の観点から無処理のものが好ましく用いられる。
 図5(a)は、図4の負極板9の一部分Pを示す要部平面図であり、膜体14が有機不織布を含む場合を示している。この場合、図5(a)に示すように、膜体14では、糸状の繊維が不規則に絡み合った構成となっており、これにより細孔が形成されている。
 図5(b)は、図5(a)の膜体14の要部断面図である。図5(b)に示すように、膜体14が有機不織布(又は有機織布若しくは多孔質膜)を含む場合、膜体14は親水性材料15及び保持体材料16を含む親水被膜17を更に含んでおり、親水被膜17は有機不織布(又は有機織布若しくは多孔質膜)である基材18上に形成されている。
 親水性材料15と保持体材料16との質量比(親水性材料:保持体材料)は、親水性材料15がシリカの場合、固形分換算で、好ましくは90:10~70:30、より好ましくは86:14~74:26、更に好ましくは82:18~78:22である。親水性材料15がアルミナの場合、当該質量比(親水性材料:保持耐材料)は、好ましくは96:4~84:16、より好ましくは93:7~87:13、更に好ましくは91:9~89:11である。
 ここで、親水被膜17は、硫酸イオンとの相互作用を大きくし、電解液の成層化を更に抑制するために形成されるが、硫酸イオンの挙動を阻害する障害物ともなり得る。そのような障害物は、硫酸イオンの拡散速度を低下させ、鉛蓄電池の内部抵抗を上昇させるおそれがある。また、親水被膜17は、吸着して集めた硫酸イオンを電極へ供給し、親水被膜から電極への硫酸イオンの供給効率が、高率放電性能、充電受入性等の電池性能に影響すると考えられる。したがって、電解液の成層化に加えて、鉛蓄電池の内部抵抗等の他の電池性能にも優れる観点から、親水被膜17の構成を後述のように選択することが好ましい。
 親水性材料15は、酸性水溶液に浸漬されても溶解せず、硫酸イオンとの間に働く化学的相互作用によって親水性を長期間保てることから、好ましくは無機材料である。このような無機材料としては、親水性シリカ粒子(コロイダルシリカ)等のシリカ(SiO)、親水性アルミナゾル等のアルミナ(Al)、BaSO、TiOなどが挙げられる。
 親水性材料15は、好ましくは、シリカ単体、アルミナ単体、又はシリカとアルミナとの混合物からなる。コロイダルシリカはアルコールを分散媒とし、アルミナゾルは水を分散媒としているため、これらは混ぜ合わせて容易に混合物を得ることができる。これらの無機材料のより具体な例としては、日産化学工業(株)製コロイダルシリカIPA-ST-UP、IPA-ST、ST-OXS、ST-K2及びLSS-35、日産化学工業(株)製アルミナゾルAS-200等が挙げられる。
 コロイダルシリカとしては、比表面積が130m/g~1000m/gである粒子を用いることが好ましい。このようなコロイダルシリカの形状が球形であると仮定すると、その粒子径は2nm~20nmである。アルミナゾルとしては、比表面積が200m/g~400m/gである粒子を用いることが好ましい。このようなアルミナ粒子の形状が板状であると仮定すると、その寸法(縦、横及び高さ)は例えば10nm×10nm×100nm程度である。
 保持体材料16としては、有機材料又は無機材料を用いることができる。有機材料の例としては、アクリルアミド等の有機低分子材料、又は、ポリエチレングリコール、ポリビニルアルコール等の有機高分子材料が挙げられる。無機材料の例としては、アクリルアミド、シリカゾル又はシランカップリング剤のように、加熱により親水性材料を保持し得る材料が挙げられる。
 これらの中でも、酸性水溶液中での長期安定性に優れる観点から、保持体材料は、好ましくは、アクリルアミド、シリカゾル又はシランカップリング剤である。シランカップリング剤は、シランカップリング剤を構成する官能基の選択の自由度が高く、官能基の種類によって保持体材料の配向性を制御しやすいため(詳細は後述)、特に好ましく用いられる。
 シリカゾルの具体例としては、コルコート(株)コルコートPX等が挙げられる。シランカップリング剤は、信越化学工業(株)等で市販されているシランカップリング剤であってよい。なお、シランカップリング剤は、実際には有機材料に分類される物質が多いが、本明細書においては、膜体に親水性官能基を付与するために用いるため、無機材料として記載している。
 保持体材料16は、基材18の表面に存在する官能基の種類に合わせて、例えば以下のように選択される。基材18が無処理である(表面処理されていない)場合は、基材18の表面にはメチル基、メチレン基等の疎水性官能基が多く存在していると考えられる。その場合には、ビニル基、メタクリロイル基、アクリロイル基、スチリル基等の官能基を有するシランカップリング剤(保持体材料)を選択すると、ビニル基、メタクリロイル基、アクリロイル基、スチリル基等が基材18の表面側に配向し、加水分解反応で生じたシラノール基は基材18と反対側の表面に配向すると考えられる。
 一方、基材18が親水処理されている場合は、基材18の表面には水酸基(-OH基)、カルボキシル基、アミノ基等の親水性官能基が多く存在していると考えられる。その場合には、アミノ基、エポキシ基等を有するシランカップリング剤(保持体材料)を選択すると、アミノ基、エポキシ基等が基材18の表面の官能基と反応するため、加水分解で生じたシラノール基は基材18の表面と反対側に配向すると考えられる。アミノ基は、水酸基と水素結合を形成しやすく、シラノール基を親水被膜の最表面側に配向させやすいことから、特に好ましく用いられる。
 このように基材18の表面の官能基の種類に合わせて保持体材料16を選択することで、保持体材料中の官能基の配向性を制御でき、親水被膜の最表面(電解液に接する面)にシラノール基を配置することができる。
 これにより、親水被膜17の表面に存在する-OH基等の親水性官能基の量が多く、親水被膜17の親水性が高くなるため、親水被膜17と硫酸イオンとの相互作用が大きく働き、電槽2内における硫酸の濃度勾配が生じることを更に解消しやすくなると共に、電極への硫酸イオンの供給速度を向上させることも可能になる。
 上記のような組合せの中でも、無処理の基材18と、ビニル基、メタクリロイル基、アクリロイル基、スチリル基等の官能基を有するシランカップリング剤との組合せは、基材18の親水処理が不要であるために工程を短縮できることから、特に好ましく用いられる。
 親水被膜17の水又は硫酸に対する接触角は、例えば10°以下である。ただし、例えばAlのように硫酸イオンの吸着力が高い親水性材料を用いる場合には、接触角が30°程度であるレベルの親水性が得られていれば、硫酸イオンの吸着との相乗効果が得られるため、接触角は必ずしも10°以下でなくてもよい。
 親水被膜17は、例えば、親水塗料を膜体上に塗布し、加熱して熱硬化させることで得られる。親水塗料は、例えば、上記の親水性材料、上記の保持体材料、及び溶媒を含有する。
 親水性材料及び保持体材料は、それぞれ、固形成分が一定の濃度で分散媒中に分散した状態で存在している。親水塗料を好適に作製できる観点から、親水性材料の固形成分と保持体材料の固形成分の質量比(親水性材料:保持体材料)が90:10~70:30となるように、親水性材料が含まれる分散液と保持体材料が含まれる分散液とを混合することが好ましい。次いで、親水性材料が含まれる分散液と保持体材料が含まれる分散液とを混合した後、親水性材料及び保持体材料の固形成分の合計濃度が、混合して得た分散液(混合分散液)全量に対して0.5質量%~5質量%となるように、混合分散液を溶媒で希釈する。混合分散液における固形成分の濃度が0.5質量%以上であると、親水被膜の厚さを均一にすることができる。混合分散液における固形成分の濃度が5質量%以下であると、親水被膜を好適に形成できる。
 親水性材料と保持体材料との混合分散液を希釈するために用いられる溶媒は、好ましくは、親水性材料及び保持体材料の分散性及び相溶性が良好であり、熱硬化の際に揮発しやすい溶媒である。膜体の耐熱性を考慮すると、溶媒の沸点は好ましくは100℃以下である。これらの条件を満たす溶媒としては、好ましくは、アルコール系の溶媒、水等が挙げられ、より好ましくは、水、メタノール、エタノール及びイソプロピルアルコールが挙げられる。
 以上の実施形態では、湿式親水処理により親水被膜17を形成して膜体14に親水性を付与したが、他の実施形態では、スルホン化処理、フッ素処理等の乾式親水処理により膜体14に親水性を付与してもよい。膜体14の親水性を持続させる観点からは、無機不織布を用いるか、又は、湿式親水処理により親水性を付与された有機織布、有機不織布又は多孔質膜を用いることが好ましい。
 親水被膜17の厚さは、好ましくは10nm~1000nm、より好ましくは10nm~500nm、更に好ましくは100nm~400nmである。親水被膜の厚さが10nm以上であると、親水被膜が一様に形成されやすく、硫酸イオンを吸着して保持する効果が更に大きくなる。親水被膜の厚さが1000nm以下であると、電池の内部抵抗を抑制できる。親水被膜の厚さは、親水被膜の断面をSEM観察することにより算出される。親水被膜の厚さは、親水塗料の濃度を調整する、あるいは、基材上に親水塗料を塗布した後に余分な塗料を除去する際の圧力を調整することにより、調整可能である。
 以上説明したような細孔を有する膜体14では、電解液の成層化を抑制する観点から、平均細孔径が15μm以下である。膜体14の平均細孔径は、電解液の成層化を更に抑制する観点から、好ましくは、12μm以下、10μm以下、7μm以下、5μm以下、3μm以下又は2μm以下である。膜体14の平均細孔径は、例えば1μm以上であってよい。
 膜体の平均細孔径は、水銀圧入法により測定される積算細孔径分布において、分布曲線のY軸(細孔容積又は細孔比表面積)における最小値と最大値との中間値に対応するX軸(細孔径)の値であるメディアン径として算出される。膜体の平均細孔径は、例えば、株式会社島津製作所製、オートポアIV 9500で測定できる。
 膜体14の空孔率は、成層化を抑制する観点から、93%以下であり、好ましくは92%以下、より好ましくは91%以下、更に好ましくは90%以下である。膜体14の空孔率は、硫酸イオンの拡散性を確保すると共に、硫酸イオンを保持する空間を大きくする観点から、好ましくは80%以上、より好ましくは82%以上、更に好ましくは84%以上、特に好ましくは85%以上である。膜体の空孔率は、膜体から適当な大きさの直方体状に切り取った試料について、下記式(1)~(3)に従い実際の体積と見かけの体積とから算出される。
 空孔率(%)={1-(実際の体積/見かけの体積)}×100 …(1)
 実際の体積(cm)=重量の実測値(g)/密度(g/cm) …(2)
 見かけの体積(cm)=縦(cm)×横(cm)×厚さ(cm) …(3)
なお、見かけの体積を算出する際の試料の縦、横及び厚さはいずれも実測値を用いる。
 上述のような膜体14を負極板9とセパレータ11との間に設けることにより、電槽2下部における硫酸イオンの蓄積を抑制し、電解液の成層化を抑制することができる。言い換えると、膜体14を設けることにより、電槽2内部の硫酸イオンの濃度を均一に保持することができる。このような膜体14をセパレータ11と別にセパレータ11よりも負極板9の近傍に設けることにより、例えばセパレータ11に成層化抑制のための処理を施した場合に比べて、より高い成層化の抑制効果が得られる。
 膜体14を設けることにより電解液の成層化が抑制される理由を、本発明者らは以下のように考えている。すなわち、充電反応で生成した硫酸イオンの集合体は膜体14の細孔によって分断されながら高濃度粒子となってゆっくりと電解液中を沈降する。特定の平均細孔径及び空孔率を有する膜体14を設ける場合、膜体14を設けない場合に比べて、硫酸イオンの沈降速度が低減されるため、成層化の抑制が可能となる。
 膜体14における細孔の構造は、例えば有機織布の繊維と繊維との間に生じるような規則的な構造でもよいし、例えば有機不織布の繊維と繊維との間に生じるような不規則な構造でもよい。
 ISS車用途のように大電流で充電する際には、電極板から硫酸イオンが大量に放出されるため、膜体14の硫酸イオンの保持能力は高いほど好ましい。膜体14が無機不織布、有機織布又は有機不織布を含む場合、それらを構成する繊維の繊維径は、好ましくは10μm以下、より好ましくは5μm以下である。繊維径が10μm以下であると、膜体14の比表面積が大きくなると共に、硫酸イオンを保持する空間を増やすことが可能となるため、膜体14の硫酸イオンの保持能力を更に向上させることができる。繊維径は、繊維の切れ、膜体の破れ等を抑制し、耐久性を確保する観点から、好ましくは1μm以上である。
 膜体14の厚さは、内部抵抗の上昇を抑制する観点から、好ましくは0.3mm以下、より好ましくは0.25mm以下、更に好ましくは0.2mm以下、特に好ましくは0.15mm以下である。膜体14の厚さは、硫酸イオンの沈降の防止能力、電池反応への影響、強度等の観点から、例えば0.03mm以上である。膜体14が無機不織布、有機織布又は有機不織布を含む場合には、それらを構成する繊維の太さ等に応じて膜体14の厚さが決定される。膜体14が多孔質膜を含む場合には、多孔質膜の孔径、材料等に応じて膜体14の厚さが決定される。
 膜体14の目付けは、成層化抑制と内部抵抗上昇の抑制との両立の観点から、好ましくは30g/m~50g/m、より好ましくは35g/m~50g/m、更に好ましくは40g/m~50g/mである。目付けは、膜体14の単位面積あたりの質量として算出される。
 上記実施形態では、膜体14は負極板9の主面(セパレータ11に対向する面)、側面及び底面のすべてを覆い、それらの表面に接触するように(密着した状態で)設けられていたが、他の実施形態では、膜体は、負極板9から離間するように、負極板9とセパレータ11との間に設けられていてもよい。この場合、膜体14は、例えばセパレータ11の負極側の面上に設けられていてよい。電解液の成層化をより抑制する観点からは、膜体14は、負極板9の表面に接触するように(密着した状態で)設けられていることが好ましい。
 上記実施形態では、膜体14は負極板9の主面(セパレータ11に対向する面)、側面及び底面のすべてを覆っていたが、他の実施形態では、膜体は、負極板9の主面(セパレータ11に対向する面)のみを覆うように設けられていてもよい。
 一実施形態においては、セパレータ11の負極板9側の表面上に、膜体14に含まれている親水被膜17と同様の構成を有する親水被膜が更に形成されていてもよい。
<実施例1>
 一酸化鉛を主成分とする鉛粉を希硫酸で練って調製したペーストを鉛合金格子に充填したペースト式極板を用いた。その後、熟成と乾燥工程とを経て未化成極板が得られた。なお、未化成の正極板及び負極板は、いずれも2価の鉛化合物である一酸化鉛(PbO)、三塩基性希硫酸鉛(3PbO・PbSO・HO)等の混合物で構成されている。化成により、正極板の未化成物質は二酸化鉛(PbO)に酸化され、負極板の未化成物質は海綿状鉛(Pb)に還元され、既化極板(正極板、負極板)が得られた。
 膜体として表1に示すとおりの無機不織布(主成分:SiO)を用い、負極板上に配置した。セパレータとしては、厚さが0.25mm、平均孔径が30nm~200nmであるセパレータを用い、電解液としては希硫酸を用いて、成層化抑制が困難なDサイズ(JIS D5301。幅:173mm、箱高さ:204mm。負極板の幅:145mm、負極板の高さ(上枠部込み):113mm。)の定格容量60(Ah)の鉛蓄電池を作製した。
(平均細孔径の算出)
 膜体の平均細孔径は、株式会社島津製作所製、オートポアIV 9500で測定した。膜体の平均細孔径は、水銀圧入法により測定された積算細孔径分布において、分布曲線のY軸(細孔容積又は細孔比表面積)における最小値と最大値との中間値に対応するX軸(細孔径)の値であるメディアン径として算出した。
(内部抵抗の評価)
 予め初充電が完了した鉛蓄電池の内部抵抗を、1kHz交流mΩメータを用いて評価した。具体的な評価基準は、膜体を設けない場合(比較例1)の鉛蓄電池の内部抵抗を100としたときの内部抵抗の値で示した。内部抵抗の値は、好ましくは125未満であり、より好ましくは120未満であり、更に好ましくは110未満である。結果を表1に示す。
(DOD17.5%寿命試験(耐久性))
 DOD17.5%寿命性能は次のように測定した。まず始めに、充電が完了した鉛蓄電池を、湯浴温度が25℃±2℃に設定された水槽中に配置した。DOD17.5%の寿命試験では、以下のサイクルユニット(a)~(g)の順に実施した。なお、60Ahの鉛蓄電池では、20時間率電流は3Aである。また、この試験は、ISS車での鉛蓄電池の使われ方を模擬したサイクル試験であり、鉛蓄電池の電圧が10.0Vを下回った時点で寿命に達したと判断した。結果を表1に示す。
(a)12A(20時間率電流の4倍に相当)で2.5時間放電。
   放電下限電圧は10.0Vよりも大きいものとした。
(b)21A(20時間率電流の7倍に相当)で40分間充電。
   充電上限電圧は14.4±0.05Vであった。
(c)21A(20時間率電流の7倍に相当)で30分間放電。
   放電下限電圧は10.0Vよりも大きいものとした。
(d)上記(b)及び(c)を交互に85回繰り返す。
(e)6A(20時間率電流の2倍に相当)で18時間充電。
   CC(定電流)-CV(定電圧)充電とし、CV充電時の電圧は16.0V±0.05Vとした。
(f)3A(20時間率電流±1.0%)で放電終止電圧10.5±0.1Vに到達するまで放電させて鉛蓄電池の容量を確認し、容量低下率が5%よりも小さいことを確認した。
(g)15A(20時間率電流の5倍)で24時間充電。
   CC-CV充電とし、CV充電時の電圧は16.0V±0.05Vとした。
(成層化抑制効果の評価)
 電解液の成層化を抑制する効果を評価した。DOD17.5%寿命試験と同様に充放電を繰り返し、255サイクル目における電槽内の上部と下部での電解液の上下比重差を成層化の指標とした。具体的には、電極群の上端(セパレータの上端)から1cm上までの領域を電槽内の上部とし、電極群の下端から1cm下までの領域を電槽内の下部とした。なお、電極群の高さ(電極群の下端からセパレータの上端までの長さ)は、116mmであった。そして、膜体を設けない場合(比較例1)の上下比重差を100として、上下比重差を算出した。上下比重差は、好ましくは70未満であり、より好ましくは50未満である。上下比重差が70未満であれば、成層化が抑制されたと判断した。
<実施例2~6>
 膜体の構成を表1に示すとおりに変更した以外は、実施例1と同様にして鉛蓄電池の作製及び評価を行った。
<実施例7>
 膜体として、無機不織布に代えて、以下のとおり作製した膜体を用いた以外は、実施例1と同様にして鉛蓄電池の作製及び評価を行った。
 まず、膜体の基材として、未処理のポリプロピレン(表面官能基:-CH基及び-CH基)からなる有機不織布を用いた。親水性材料として、コロイダルシリカ(SiO、IPA-ST-UP(日産化学工業(株)製))及びアルミナゾル(Al、AS-200(日産化学工業(株)製))を用い、保持体材料としてシリカゾル(コルコートPX(コルコート(株)製))を用いた。
 次に、親水性材料におけるアルミナゾルとコロイダルシリカとの質量比が固形成分換算で80:20となるように(すなわち、親水性材料中に80質量%のアルミナゾル(Al)が含まれるように)、親水性材料と保持体材料とを混合した。この混合液を、固形成分の濃度が5質量%になるようにエタノールで希釈することで、親水塗料を調製した。
 この親水塗料に膜体を浸漬させた後、速度156mm/分にて膜体を引き上げた。キムタオル(登録商標)に親水塗料を塗布した膜体を挟んで、上から約5kgで加圧しながらローラーを転がすことで膜体に付着した余分な親水塗料を除去した後、膜体を60℃に加温した恒温槽内に1時間置いて溶媒を除去した。このようにして、膜体上に親水被膜を形成した。得られた親水被膜をSEMにより観察したところ、その膜厚は約100nmであった。膜体の平均細孔径、厚さ、空孔率及び目付けを表1に示す。
<実施例8~14>
 膜体の構成を表1に示すとおりに変更した以外は、実施例7と同様にして鉛蓄電池の作製及び評価を行った。
<実施例15>
 膜体として表1に示すとおりの無機不織布を用い、鉛蓄電池のサイズを欧州で一般的なLN1サイズ(EN 50342-2。幅:175mm、箱高さ:190mm。負極板の幅:143mm、負極板の高さ(上枠部込み):100mm。)に変更した以外は、実施例9と同様にして鉛蓄電池の作製及び評価を行った。
<実施例16,17>
 膜体として表1に示すとおりの無機不織布を用いた以外は、実施例15と同様にして鉛蓄電池の作製及び評価を行った。
<実施例18>
 膜体として、無機不織布に代えて、表面(両面)にフッ素ガス処理が施された混合繊維から構成される不織布(多孔シート。パルプ、ガラス繊維及びシリカ粉末を含む混合繊維。)を用いた以外は、実施例1と同様にして鉛蓄電池の作製及び評価を行った。
<比較例1>
 負極板上に膜体を設けなかった以外は、実施例1と同様にして鉛蓄電池の作製及び評価を行った。
<比較例2,3>
 膜体として表2に示すとおりの無機不織布を用いた以外は、実施例9と同様にして鉛蓄電池の作製及び評価を行った。
<比較例4,5>
 膜体として表2に示すとおりの無機不織布を用いた以外は、実施例15と同様にして鉛蓄電池の作製及び評価を行った。
<参考例1~3>
 膜体として表2に示すとおりの無機不織布を用い、鉛蓄電池のサイズを主に国内向けのBサイズ(JIS D5301。幅:127mm、箱高さ:203mm。負極板の幅:101mm、負極板の高さ(上枠部込み):103mm。)に変更した以外は、実施例1と同様にして鉛蓄電池の作製及び評価を行った。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 以上の結果から、所定の幅寸法を有する鉛蓄電池において、実施例では成層化が抑制されているのに対し、比較例では成層化が抑制されないことが分かった。一方、Bサイズの鉛蓄電池(参考例1~3)においては、膜体の空孔率による成層化抑制の程度に顕著な差は見られなかった。
 なお、本発明は、上記の実施例に限定されるものではなく、様々な変形例を含む。例えば、上記の実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、本発明は、必ずしも説明した全ての構成を備える態様に限定されるものではない。
 1…鉛蓄電池、2…電槽、9…負極板、10…正極板、11…セパレータ、14…膜体、15…親水性材料、16…保持体材料、17…親水被膜、18…基材。

Claims (9)

  1.  正極板と、
     負極板と、
     前記正極板と前記負極板との間に配置されたセパレータと、
     前記負極板と前記セパレータとの間に配置された膜体と、
     電解液と、
     前記正極板、前記負極板、前記セパレータ、前記膜体及び前記電解液を収容する電槽と、
    を備え、JIS D5301において規定される区分でD以上の幅寸法を有する液式鉛蓄電池であって、
     前記膜体は平均細孔径が15μm以下の細孔を有し、かつ前記膜体の空孔率が93%以下である、液式鉛蓄電池。
  2.  正極板と、
     負極板と、
     前記正極板と前記負極板との間に配置されたセパレータと、
     前記負極板と前記セパレータとの間に配置された膜体と、
     電解液と、
     前記正極板、前記負極板、前記セパレータ、前記膜体及び前記電解液を収容する電槽と、
    を備え、EN 50342-2において規定される区分でLBN0~6又はLN0~6の幅寸法を有する液式鉛蓄電池であって、
     前記膜体は平均細孔径が15μm以下の細孔を有し、かつ前記膜体の空孔率が93%以下である、液式鉛蓄電池。
  3.  前記膜体の空孔率が80%以上である、請求項1又は2に記載の液式鉛蓄電池。
  4.  前記膜体が、0.3mm以下の厚さ及び30g/m~50g/mの目付けを有する、請求項1~3のいずれか一項に記載の液式鉛蓄電池。
  5.  前記膜体が、基材と、該基材上に形成された親水被膜とを含み、
     前記基材は、有機織布、有機不織布及び多孔質膜から選ばれる少なくとも1種であり、
     前記親水被膜は、アルミナ及びシリカから選ばれる少なくとも1種の親水性材料と、アクリルアミド、シリカゾル及びシランカップリング剤から選ばれる少なくとも1種の保持体材料とを含む、請求項1~4のいずれか一項に記載の液式鉛蓄電池。
  6.  前記親水性材料が、アルミナ単体、シリカ単体又はアルミナとシリカとの混合物からなる、請求項5に記載の液式鉛蓄電池。
  7.  前記親水被膜の厚さが10nm~1000nmである、請求項5又は6に記載の液式鉛蓄電池。
  8.  前記膜体が無機不織布を含む、請求項1~4のいずれか一項に記載の液式鉛蓄電池。
  9.  前記セパレータの前記負極板側の表面に、アルミナ及びシリカから選ばれる少なくとも1種の親水性材料と、アクリルアミド、シリカゾル及びシランカップリング剤から選ばれる少なくとも1種の保持体材料とを含む親水被膜が形成されている、請求項1~8のいずれか一項に記載の液式鉛蓄電池。
PCT/JP2016/086395 2016-12-07 2016-12-07 液式鉛蓄電池 WO2018105060A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2016/086395 WO2018105060A1 (ja) 2016-12-07 2016-12-07 液式鉛蓄電池
JP2018555383A JP6908052B2 (ja) 2016-12-07 2016-12-07 液式鉛蓄電池
PCT/JP2017/005721 WO2018105134A1 (ja) 2016-12-07 2017-02-16 液式鉛蓄電池、液式鉛蓄電池の充放電方法、及び電源システム
JP2018554803A JP6965892B2 (ja) 2016-12-07 2017-02-16 液式鉛蓄電池、液式鉛蓄電池の充放電方法、及び電源システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/086395 WO2018105060A1 (ja) 2016-12-07 2016-12-07 液式鉛蓄電池

Publications (1)

Publication Number Publication Date
WO2018105060A1 true WO2018105060A1 (ja) 2018-06-14

Family

ID=62491431

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/086395 WO2018105060A1 (ja) 2016-12-07 2016-12-07 液式鉛蓄電池
PCT/JP2017/005721 WO2018105134A1 (ja) 2016-12-07 2017-02-16 液式鉛蓄電池、液式鉛蓄電池の充放電方法、及び電源システム

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005721 WO2018105134A1 (ja) 2016-12-07 2017-02-16 液式鉛蓄電池、液式鉛蓄電池の充放電方法、及び電源システム

Country Status (2)

Country Link
JP (2) JP6908052B2 (ja)
WO (2) WO2018105060A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7274830B2 (ja) * 2018-07-09 2023-05-17 エナジーウィズ株式会社 鉛蓄電池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077445A (ja) * 2001-08-31 2003-03-14 Yuasa Corp 鉛蓄電池
WO2012157311A1 (ja) * 2011-05-13 2012-11-22 新神戸電機株式会社 鉛蓄電池
JP2016177872A (ja) * 2015-03-18 2016-10-06 日立化成株式会社 鉛蓄電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2921332B2 (ja) * 1993-05-24 1999-07-19 新神戸電機株式会社 鉛蓄電池用ガラスマット
JP2005108538A (ja) * 2003-09-29 2005-04-21 Nippon Sheet Glass Co Ltd 密閉型鉛蓄電池用セパレータおよび密閉型鉛蓄電池
KR20190103481A (ko) * 2010-09-22 2019-09-04 다라믹 엘엘씨 개선된 납산 배터리 분리기, 배터리 및 그와 관련된 방법
WO2017033497A1 (ja) * 2015-08-24 2017-03-02 日立化成株式会社 鉛蓄電池用セパレータ、鉛蓄電池及びこれらの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077445A (ja) * 2001-08-31 2003-03-14 Yuasa Corp 鉛蓄電池
WO2012157311A1 (ja) * 2011-05-13 2012-11-22 新神戸電機株式会社 鉛蓄電池
JP2016177872A (ja) * 2015-03-18 2016-10-06 日立化成株式会社 鉛蓄電池

Also Published As

Publication number Publication date
JPWO2018105060A1 (ja) 2019-10-24
JP6908052B2 (ja) 2021-07-21
JPWO2018105134A1 (ja) 2019-10-24
WO2018105134A1 (ja) 2018-06-14
JP6965892B2 (ja) 2021-11-10

Similar Documents

Publication Publication Date Title
JP6197945B2 (ja) 鉛蓄電池
JP5798962B2 (ja) 液式鉛蓄電池用セパレータ及び液式鉛蓄電池
KR101276906B1 (ko) 취급 용이성이 향상된 세퍼레이터
JP4490267B2 (ja) 高エネルギーバッテリー中で使用するためのセパレータ並びにその製造方法
JP5994714B2 (ja) 鉛蓄電池
US20050255769A1 (en) Electrical separator,method for making same and use thereof in high-power lithium cells
WO2012157311A1 (ja) 鉛蓄電池
JP6620579B2 (ja) 鉛蓄電池
JP2005521991A (ja) 吸収性セパレータの濾過作用により形成されたゲル化電解質を有する鉛酸電池、その電解質、及びその吸収性セパレータ
JP2017068920A (ja) 鉛蓄電池
JP6237922B2 (ja) 鉛蓄電池
WO2018105060A1 (ja) 液式鉛蓄電池
JP4556506B2 (ja) 鉛蓄電池
JP2016177872A (ja) 鉛蓄電池
JP2005537622A (ja) セパレーター、セパレーターを有した電池及びセパレーターの製造方法
JP6953821B2 (ja) 液式鉛蓄電池
JP7314405B2 (ja) 鉛蓄電池
JP2001089967A (ja) 不織布およびその製造方法、ならびにそれを用いた電池セパレータおよびアルカリ二次電池
JP6996264B2 (ja) 鉛蓄電池
JP7152831B2 (ja) 鉛蓄電池
JP3705146B2 (ja) 鉛蓄電池用セパレータ及び鉛蓄電池
JP6436092B2 (ja) 鉛蓄電池用セパレータ及び鉛蓄電池
JP7274830B2 (ja) 鉛蓄電池
JP4239510B2 (ja) 鉛蓄電池およびその製造方法
JP2003308818A (ja) 密閉型鉛蓄電池用セパレータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923247

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018555383

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923247

Country of ref document: EP

Kind code of ref document: A1