[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018103385A1 - 形成具有稳定蒸汽浓度的气液混合物的装置和方法 - Google Patents

形成具有稳定蒸汽浓度的气液混合物的装置和方法 Download PDF

Info

Publication number
WO2018103385A1
WO2018103385A1 PCT/CN2017/099607 CN2017099607W WO2018103385A1 WO 2018103385 A1 WO2018103385 A1 WO 2018103385A1 CN 2017099607 W CN2017099607 W CN 2017099607W WO 2018103385 A1 WO2018103385 A1 WO 2018103385A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
vapor concentration
liquid mixture
forming
Prior art date
Application number
PCT/CN2017/099607
Other languages
English (en)
French (fr)
Inventor
莫吉利尼科夫康斯坦丁
许开东
Original Assignee
江苏鲁汶仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏鲁汶仪器有限公司 filed Critical 江苏鲁汶仪器有限公司
Publication of WO2018103385A1 publication Critical patent/WO2018103385A1/zh
Priority to US16/427,422 priority Critical patent/US20190282974A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • B01F23/213Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/80After-treatment of the mixture
    • B01F23/806Evaporating a carrier, e.g. liquid carbon dioxide used to dissolve, disperse, emulsify or other components that are difficult to be mixed; Evaporating liquid components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/23Mixing by intersecting jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/211Measuring of the operational parameters
    • B01F35/2111Flow rate
    • B01F35/21111Mass flow rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/93Arrangements, nature or configuration of flow guiding elements
    • B01F2025/932Nature of the flow guiding elements
    • B01F2025/9321Surface characteristics, e.g. coated or rough
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F2035/99Heating

Definitions

  • the present invention relates to apparatus and methods for forming a gas-liquid mixture, and more particularly to an apparatus and method for forming a gas-liquid mixture having a stable vapor concentration.
  • Patent Document 1 US 6161398 A;
  • Patent Document 2 US 6311959 B1;
  • Patent Document 3 US 5431736 A
  • Patent Document 1 and Patent Document 2 uses a bubbler.
  • a carrier gas is introduced into a liquid that needs to be evaporated.
  • the carrier gas gas causes bubbles in the liquid to form a mixture of gas and vapor in the enclosed space above the surface of the liquid.
  • the mixture is then output and can be used in a chemical deposition or adsorption process.
  • this method has the disadvantage that the gas-liquid mixture is poor in continuity and stability, and the gas flow is often intermittent or interrupted from time to time. This disadvantage is particularly pronounced in the case of operation with a small gas flow (for example a mass flow range of 10 to 500 g/h).
  • the present invention provides an apparatus for forming a gas-liquid mixture having a stable vapor concentration, comprising: a mixing unit that directly injects a liquid stream to a gas stream to form a mixture; and an introduction unit that guides the mixture into an evaporation chamber And an evaporation chamber having a rough inner surface on which the liquid is spread, forming a gas-liquid mixture having a stable vapor concentration.
  • the rough inner surface is a mechanically treated stainless steel surface, a metal or non-metal surface formed by wet etching, or plasma etching. Metal or non-metallic surface.
  • the rough inner surface is an electrochemically treated titanium surface.
  • the surface of the electrochemically treated titanium is a porous titania layer.
  • the titanium dioxide layer has a thickness of from 1 to 5 ⁇ m.
  • the mechanical treatment is sanding.
  • the electrochemical treatment uses a bipolar battery in a voltage range of 10 to 15 V, and the electrolytic solution dissolves 0.25% of ammonium fluoride in an ethylene glycol solution.
  • the processing time is 1 to 10 minutes.
  • the liquid is one of heptane, isopropanol, toluene, acetone, carbon tetrachloride, cyanide or a combination thereof.
  • the present invention also provides a method of forming a gas-liquid mixture having a stable vapor concentration, comprising the steps of: mixing a step of injecting a liquid stream directly into a gas stream to form a mixture; introducing a step of introducing the mixture into an evaporation chamber; and evaporating, The liquid is spread over the rough inner surface of the evaporation chamber to form a gas-liquid mixture having a stable vapor concentration.
  • the liquid is one of heptane, isopropanol, toluene, acetone, carbon tetrachloride, cyanide or a combination thereof.
  • the apparatus and method of the present invention for forming a gas-liquid mixture having a stable vapor concentration can be applied to adsorption measurements using ellipsometry, as well as other research and products that require the use of very low velocity and stable fluids.
  • Figure 1 is a functional block diagram of an apparatus for forming a gas-liquid mixture having a stable vapor concentration.
  • Figure 2 is a functional block diagram of a mixing unit.
  • Figure 3 is a schematic illustration of droplets forming different structures on different wettable surfaces.
  • Figure 4 is a plot of contact angle on different roughness surfaces versus contact angle on a smooth surface.
  • Figure 5 is a flow chart of a method of forming a gas-liquid mixture having a stable vapor concentration.
  • connection and “connected” are to be understood broadly, and may be, for example, a fixed connection, a detachable connection, or an integral, unless otherwise explicitly defined and defined.
  • Ground connection it can be a mechanical connection or an electrical connection; it can be directly connected or Indirectly connected through an intermediate medium, it can be the internal communication between two components.
  • the specific meaning of the above terms in the present invention can be understood in a specific case by those skilled in the art.
  • the apparatus for forming a gas-liquid mixture having a stable vapor concentration includes a mixing unit 1, an introduction unit 2, and an evaporation chamber 3.
  • the mixing unit 1 injects a liquid stream directly into the gas stream to form a mixture
  • the introduction unit 2 directs the mixture into the evaporation chamber 3.
  • the liquid is an organic solution such as heptane, isopropanol, toluene, acetone, carbon tetrachloride, cyanomethane or the like.
  • the gas is a carrier gas, such as an inert gas such as nitrogen, argon or helium.
  • an inert gas such as nitrogen, argon or helium.
  • the mixing unit 1 has an intake port 11 and a liquid injection port 12, the intake port 11 is connected to the mass flow controller 4, and the liquid injection port 12 is connected to the liquid ejecting device 5.
  • the gas flow enters the mixing unit 1 through the mass flow controller 4 through the gas inlet port 11, and the liquid ejecting device 5 ejects the liquid through the liquid ejecting port 12 into the gas stream to form a mixture.
  • the arrows in the figure show the flow of liquids, gases and mixtures.
  • the present invention is not limited thereto, and the introduction unit may have a plurality of intake ports and a liquid ejection port.
  • the evaporation chamber 3 is connected to the introduction unit 2, in which a gas-liquid mixture is formed.
  • the present invention enhances the wettability of certain specific adsorbates relative to the surface by treating the inner surface of the evaporation chamber.
  • the inventors analyzed the instability of the vapor concentration in the effluent mixture. By measuring the adsorbate that is completely wetted on the surface of the evaporator and spread on the surface, it is found that the complex evaporation process in the evaporation chamber determines the concentration of vapor in the effluent mixture.
  • liquid is injected into the gas stream to form droplets of different shapes. These droplets drip on the evaporation surface of the evaporation chamber, forming a variety of different shapes of construction, as shown in Figure 3. In the case where the droplet is less wettable with respect to the surface of the evaporation chamber, if the contact angle is 180 degrees, the droplet is almost standing on the surface of the evaporation chamber.
  • t is time and K is a coefficient which depends on liquid properties, atmospheric pressure, temperature, and other parameters, and r is the droplet radius.
  • the relationship will change and there will be no analytical solution, but the characteristic time of evaporation will remain the same. Usually, this time is about tens of seconds.
  • the evaporation time of droplets having a size of 100 to 300 microns can vary from 10 seconds to 100 seconds. During this time, more droplets evaporate quickly if they fall into the evaporation chamber, or can fuse with the already fixed droplets, further delaying their evaporation. This complicated process results in an unstable vapor concentration of the adsorbate in the effluent mixture having a stable inflowing gas and liquid flow.
  • ⁇ r is the contact angle of the rough surface
  • ⁇ s is the contact angle of the smooth surface
  • R is the ratio of the actual rough surface below the droplet to the ideal flat surface.
  • Figure 4 shows a plot of contact angle on a rough surface at different initial contact angles versus contact angle on a smooth surface calculated according to the Wenzel equation. The curves show the contact angles on the surfaces with different roughness. The contact angle of the infiltrating liquid is saturated at 0 degrees, which means that the liquid spreads over the surface having the roughness R. Thus, we can obtain the roughness of the surface.
  • the surface of the evaporation chamber is treated by a mechanical method, an electrochemical method, a wet etching, a plasma etching or the like to obtain the above-mentioned predetermined roughness, so that the liquid can be completely spread on the surface of the evaporation chamber to form A gas-liquid mixture that stabilizes the vapor concentration.
  • a mechanical method an electrochemical method, a wet etching, a plasma etching or the like to obtain the above-mentioned predetermined roughness, so that the liquid can be completely spread on the surface of the evaporation chamber to form A gas-liquid mixture that stabilizes the vapor concentration.
  • a method of producing a surface of a specific roughness by a mechanical method specifically, for example, for a stainless steel surface, mechanically grinding the stainless steel with a medium-sized sandpaper to form a surface of a predetermined roughness. Thereafter, the wettability of the different adsorbates relative to the substrate was examined. As a result, it was found that all of the adsorbate was spread on the treated surface of the treated stainless steel.
  • the mechanically treated stainless steel surface can be used as a vaporization chamber surface to produce a gas-liquid mixture having a stable vapor concentration of the adsorbate.
  • the adsorbate is, for example, heptane, isopropanol, toluene, acetone, carbon tetrachloride, or cyanomethane.
  • a method for producing a specific roughness surface by a chemical method specifically, taking a titanium surface as an example, by examining the wettability of different adsorbents with respect to the titanium surface, it is found that the contact angle on the surface of the smooth titanium is 10 to 40 degree.
  • the surface was electrochemically treated using a bipolar battery having a voltage range of 10 to 15 V, and the electrolyte used was a solution of 0.25% ammonium fluoride dissolved in an ethylene glycol solution.
  • the processing time is 1 to 10 minutes. This treatment results in a porous titanium dioxide layer having a thickness of 1 to 5 ⁇ m on the surface of the titanium. As a result, all of the adsorbate is spread on the surface of the electrochemically treated titanium.
  • the surface can be used as the inner surface of the evaporation chamber, producing a gas-liquid mixture with a stable vapor concentration of the adsorbate.
  • the adsorbate is, for example, heptane, isopropanol, toluene, acetone, carbon tetrachloride, or cyanomethane.
  • the present invention is not limited thereto, and the material of the evaporation chamber may be various, and the surface treatment method may be various, for example, a metal or non-metal surface formed by wet etching, or a metal or non-form formed by plasma etching.
  • the wet etching can utilize any acid or alkali, for example, a single acid, a base or a mixed solution having a pH between 3 and 11, or a solution directly reacting with a metal or a non-metal such as hydrogen peroxide.
  • An organic solvent or the like can be used.
  • the plasma etching may be a plasma formed using a fluorine-based gas, a chlorine-based gas, a bromine-based gas, an inert gas, an oxygen gas, a nitrogen gas, or a mixed gas thereof.
  • the plasma etching can be performed on a reactive ion etching machine or an ion beam etching machine.
  • the liquid stream is directly sprayed into the gas stream forming mixture in the mixing unit 1.
  • the mixture is introduced into the steam by the introduction unit 2.
  • Hair chamber 3 the evaporation step S3 is carried out to spread the liquid on the rough inner surface of the evaporation chamber 3 to form a gas-liquid mixture having a stable vapor concentration.
  • the liquid is an organic solution such as heptane, isopropanol, toluene, acetone, carbon tetrachloride, cyanomethane or the like.
  • the gas is a carrier gas such as nitrogen and an inert gas such as argon or helium.
  • the evaporation chamber may be made of a material such as stainless steel or titanium, and the inner surface thereof may be subjected to mechanical, chemical, or the like to form a predetermined roughness.
  • a material such as stainless steel or titanium
  • stainless steel is mechanically sanded using medium sandpaper to form a surface of predetermined roughness.
  • the titanium surface the surface can be electrochemically treated with a bipolar battery having a voltage range of 10 to 15 V.
  • the electrolyte used is 0.25% ammonia fluoride dissolved in the ethylene glycol solution for a treatment time of 1 to 10 minutes. This treatment results in a porous layer of titanium dioxide on the surface of the titanium.
  • the thickness is 1 to 5 microns.
  • the present invention is not limited thereto, and the material of the evaporation chamber may be various, and the surface treatment method may be various, for example, a metal or non-metal surface formed by wet etching, or a metal or non-form formed by plasma etching. Metal surface.
  • the liquid can be formed on the surface of the evaporation chamber in a spread structure as a standard, and is obtained by the Winzer equation.
  • the liquid selected for the different material surfaces, that is, the adsorbate, may be different.
  • the apparatus and method of the present invention for forming a gas-liquid mixture having a stable vapor concentration can be applied to adsorption measurements using ellipsometry, as well as other research and products that require the use of very low velocity and stable fluids.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

一种形成具有稳定蒸汽浓度的气液混合物的装置和方法,该装置包括:混合单元(1),用于将液体流直接喷射到气体流形成混合物;导入单元(2),用于将该混合物引导至蒸发室(3)中;以及蒸发室(3),具有使液体铺展在其上的粗糙内表面,形成具有稳定蒸汽浓度的气液混合物。该方法包括相应的混合步骤、导入步骤以及蒸发步骤。

Description

形成具有稳定蒸汽浓度的气液混合物的装置和方法 技术领域
本发明涉及形成气液混合物的装置和方法,具体来说,涉及一种形成具有稳定蒸汽浓度的气液混合物的装置和方法。
背景技术
形成被管理且被控制的各种有机液体的蒸汽流对于研究化学产品以及多孔材料的吸附过程都极为重要。非常小的蒸汽流(质量流量小于1g/h)被用于吸附研究。在以下专利文献1~3中专利中记载了形成蒸汽流的装置和方法。
专利文献1 US 6161398 A;
专利文献2 US 6311959 B1;
专利文献3 US 5431736 A;
专利文献1和专利文献2中的装置使用了起泡器。在该方法中,将载气导入到需要被蒸发的液体中。该载气气体在液体中引起气泡从而在所述液体表面上方的封闭空间形成气体和蒸汽的混合物。所述混合物随即被输出,并能够被用于化学沉积或吸附过程。但是,该方法具有如下缺点:气液混合物连续性和稳定性较差,气流经常是间断性的或者时不时出现中断。该缺点在以较小气流(例如质量流量范围为10~500g/h)进行工作的情况下尤其明显。
专利文献3所记载的装置中,将液体流直接喷射到气体流里,并且将其混合物引导到特定的蒸汽室中。该方法中,流出的气体流和液体流的不稳定性远远小于起泡器方法中流出的气体流的不稳定性。然而,该方法的缺点在于流出的混合物中蒸汽浓度的不稳定性,特别是在非常小的流体中,例如小于1g/h中,尤其不稳定。该不稳定性导致不允许利用这个装置在现代的椭偏孔径仪系统中来测定吸附过程。
发明内容
为了解决上述问题,本发明提供一种形成具有稳定蒸汽浓度的气液混合物的装置,包括:混合单元,将液体流直接喷射到气体流形成混合物;导入单元,将所述混合物引导至蒸发室中;以及蒸发室,具有使所述液体铺展在其上的粗糙内表面,形成具有稳定蒸汽浓度的气液混合物。
本发明的形成具有稳定蒸汽浓度的气液混合物的装置中,优选为,所述粗糙内表面为机械性处理后的不锈钢表面、湿法刻蚀形成的金属或非金属表面、或者等离子刻蚀形成的金属或非金属表面。
本发明的形成具有稳定蒸汽浓度的气液混合物的装置中,优选为,所述粗糙内表面为电化学处理后的钛表面。
本发明的形成具有稳定蒸汽浓度的气液混合物的装置中,优选为,所述电化学处理后的钛表面为多孔二氧化钛层。
本发明的形成具有稳定蒸汽浓度的气液混合物的装置中,优选为,所述二氧化钛层厚度为1~5微米。
本发明的形成具有稳定蒸汽浓度的气液混合物的装置中,优选为,所述机械处理为砂纸打磨。
本发明的形成具有稳定蒸汽浓度的气液混合物的装置中,优选为,所述电化学处理采用10~15V电压范围的双极电池,电解液为乙二醇溶液中溶解0.25%的氟化氨,处理时间为1~10分钟。
本发明的形成具有稳定蒸汽浓度的气液混合物的装置中,优选为,所述液体为庚烷、异丙醇、甲苯、丙酮、四氯化碳、氰甲烷中的一种或其组合。
本发明还提供一种形成具有稳定蒸汽浓度的气液混合物的方法包括以下步骤:混合步骤,将液体流直接喷射到气体流形成混合物;导入步骤,将所述混合物导入蒸发室;以及蒸发步骤,使所述液体铺展在蒸发室的粗糙内表面上,形成具有稳定蒸汽浓度的气液混合物。
本发明的形成具有稳定蒸汽浓度的气液混合物的方法中,优选为,所述液体为庚烷、异丙醇、甲苯、丙酮、四氯化碳、氰甲烷中的一种或其组合。
本发明的形成具有稳定蒸汽浓度的气液混合物的装置和方法可以应用于利用椭偏孔径测量仪的吸附测量,以及其他需要利用非常低速和稳定的流体的研究和产品中。
附图说明
图1是形成具有稳定蒸汽浓度的气液混合物的装置的功能框图。
图2是混合单元的功能框图。
图3是液滴在不同浸润性的表面形成不同的结构的示意图。
图4是不同粗糙度表面上的接触角相对于光滑表面上的接触角的曲线。
图5是形成具有稳定蒸汽浓度的气液混合物的方法的流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可 以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
如图1所示,形成具有稳定蒸汽浓度的气液混合物的装置包括混合单元1、导入单元2和蒸发室3。混合单元1将液体流直接喷射到气体流形成混合物,导入单元2引导所述混合物进入蒸发室3中。其中,液体为有机溶液,例如为庚烷、异丙醇、甲苯、丙酮、四氯化碳、氰甲烷等。气体为载气,例如为氮气及氩气、氦气等惰性气体。在具体的一例中,如图2所示,混合单元1具有进气口11和液体喷射口12,进气口11与质量流量控制器4相连接,液体喷射口12与液体喷射装置5相连接,气体流经由质量流量控制器4通过进气口11进入混合单元1,液体喷射装置5将液体经液体喷射口12喷射到气体流中,形成混合物。图中的箭头示出了液体、气体及混合物的流向。但是,本发明不限定于此,导入单元也可以具有多个进气口和液体喷射口。
蒸发室3与导入单元2相连接,在其中形成气液混合物。为了避免流出混合物中的蒸汽浓度不稳定,本发明通过对蒸发室的内表面进行处理,从而提高某些特定的被吸附物相对于该表面的浸润性。
本发明人对流出混合物中的蒸汽浓度的不稳定性进行了分析。通过对完全浸润在蒸发器表面并铺展于该表面的被吸附物进行测量,发现蒸发室中复杂的蒸发过程决定了流出混合物中的蒸汽浓度。在该装置中,液体喷射到气体流中形成不同形状的液滴。这些液滴滴落在蒸发室的蒸发表面,形成了各种不同形状的构造,如图3所示。在液滴相对于蒸发室的表面浸润性不太强的情况下,如接触角度为180度的情况,液滴几乎立于蒸发室的表面。
自由液滴的蒸发时间与尺寸的关系,如下式所示:
t=Kr2
其中,t为时间,K为系数,其依赖于液体性质、气氛压力、温度以及其他参数,r为液滴半径。
对于固着液滴(sessile droplet),该关系式将发生变化,并且没有解析解,但是蒸发的特征时间保持不变。通常,该时间大约是几十秒。例如,尺寸在100至300微米的液滴的蒸发时间能够在10秒至100秒的范围内变化。在该时间内,若更多的液滴落入蒸发室内则很快蒸发,或者能够与已经固着的液滴融合,进一步延迟其蒸发。这一复杂的过程导致具有稳定的流入气体和液体流的流出混合物中被吸附物的蒸汽浓度不稳定。
但是,当液滴铺展于蒸发室的表面时,也就是接触角度为0度时,情况发生根本性的改变,落下的液滴在蒸发室的表面留下液体薄层,液体薄层的蒸发速度是同等体积的接触角为90度的液滴的蒸发速度的近百倍。紧接着液滴的落下,引起浸润面积的增加而非局部干燥,从而使得蒸发速度和蒸发浓度保持为常数。
接下来,我们通过特殊处理改变蒸发室内表面的浸润性,从而使液滴均以铺展的结构形成在蒸发室表面上。
众所周知,粗糙表面的浸润性相对于同样材料的光滑表面的浸润性发生变化。粗糙表面上的接触角可以通过温策尔方程(Wenzel equation)求得。
cos(θr)=R cos(θs)
其中,θr是粗糙表面的接触角,θs是光滑表面的接触角,R是液滴下方实际粗糙表面相对于理想平坦表面的比率。图4示出了根据温策尔方程算出的不同初始接触角下的粗糙表面上的接触角相对于光滑表面上的接触角的曲线。曲线示出了具有不同粗糙度的表面上的接触角。浸润性液体的接触角在0度饱和,这意味着该液体铺展于具有粗糙度R的表面。由此,我们可以取得表面的粗糙度。
由此,通过机械方法、电化学方法、湿法刻蚀、等离子体刻蚀等对蒸发室内表面进行处理,获得上述预设的粗糙度,从而使液体能够完全铺展在蒸发室内表面上,形成具有稳定蒸汽浓度的气液混合物。以下通过两个具体的实施例进行说明。
通过机械方法制作特定粗糙度的表面的方法,具体来说,例如对于不锈钢表面,利用中号砂纸对不锈钢进行机械打磨,从而形成预设粗糙度的表面。此后,对不同被吸附物相对于基底的浸润性进行检验。结果发现所有吸附物都铺展在处理后的不锈钢的被处理表面。这意味着被机械处理后的不锈钢表面能够被用作蒸发室内表面从而产生具有稳定的该被吸附物蒸汽浓度的气液混合物。被吸附物例如为庚烷、异丙醇、甲苯、丙酮、四氯化碳、氰甲烷。
通过化学方法来制作特定粗糙度表面的方法,具体来说,以钛表面为例,通过对不同吸附物相对于钛表面的浸润性进行检验,发现光滑钛表面上的接触角为10度~40度。利用具有10~15V电压范围的双极电池对表面进行电化学处理,所用电解液为乙二醇溶液中溶解0.25%的氟化氨。处理时间为1~10分钟。该处理使得在钛表面产生多孔的二氧化钛层,厚度为1~5微米。结果为,所有被吸附物铺展在被电化学处理后的钛的表面。这意味着该表面能够用作蒸发室的内表面,产生具有稳定的被吸附物蒸汽浓度的气液混合物。被吸附物例如为庚烷、异丙醇、甲苯、丙酮、四氯化碳、氰甲烷。
但是,本发明不限定于此,蒸发室的材料可以是多种,表面处理方法也可以多样,例如也可以是湿法刻蚀形成的金属或非金属表面、或者等离子刻蚀形成的金属或非金属表面。其中,湿法刻蚀可以利用任何酸、碱,例如可以是pH值介于3~11之间的单一酸、碱或者混合液,也可以利用双氧水等直接和金属及非金属反应的溶液,还可以采用有机溶剂等。等离子体刻蚀可以采用氟基气体、氯基气体、溴基气体、惰性气体、氧气、氮气中的一种或其混合气体形成的等离子体。等离子体刻蚀可以在反应离子刻蚀机或者离子束刻蚀机上进行。
以下,结合图5针对形成具有稳定蒸汽浓度的气液混合物的方法进行说明。
首先,在混合步骤S1中,在混合单元1中将液体流直接喷射到气体流形成混合物。接下来,在导入步骤S2中,通过导入单元2将所述混合物导入蒸 发室3。最后,进入蒸发步骤S3,使所述液体铺展在蒸发室3的粗糙内表面上,形成具有稳定蒸汽浓度的气液混合物。其中,液体为有机溶液,例如为庚烷、异丙醇、甲苯、丙酮、四氯化碳、氰甲烷等。气体为载气,例如为氮气以及氩气、氦气等惰性气体。
蒸发室可以由不锈钢、钛等材料构成,其内表面可以通过机械、化学等处理形成预定粗糙度。例如对于不锈钢表面,利用中号砂纸对不锈钢进行机械打磨,从而形成预设粗糙度的表面。对于钛表面,可以利用具有10~15V电压范围的双极电池对表面进行电化学处理,所用电解液为乙二醇溶液中溶解0.25%的氟化氨,处理时间为1~10分钟。该处理使得在钛表面产生多孔的二氧化钛层。厚度为1~5微米。但是,本发明不限定于此,蒸发室的材料可以是多种,表面处理方法也可以多样,例如也可以是湿法刻蚀形成的金属或非金属表面、或者等离子刻蚀形成的金属或非金属表面。
关于粗糙度的设定以上述液体能够以铺展的结构形成在蒸发室表面为标准,通过温策尔方程求得。对于不同的材料表面所选择的液体也即被吸附物可以不同。
本发明的形成具有稳定蒸汽浓度的气液混合物的装置和方法可以应用于利用椭偏孔径测量仪的吸附测量,以及其他需要利用非常低速和稳定的流体的研究和产品中。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种形成具有稳定蒸汽浓度的气液混合物的装置,其特征在于,
    包括:
    混合单元,将液体流直接喷射到气体流形成混合物;
    导入单元,将所述混合物引导至蒸发室中;以及
    蒸发室,具有使所述液体铺展在其上的粗糙内表面,形成具有稳定蒸汽浓度的气液混合物。
  2. 根据权利要求1所述的形成具有稳定蒸汽浓度的气液混合物的装置,其特征在于,
    所述粗糙内表面为机械性处理后的不锈钢表面、湿法刻蚀形成的金属或非金属表面、或者等离子刻蚀形成的金属或非金属表面。
  3. 根据权利要求1所述的形成具有稳定蒸汽浓度的气液混合物的装置,其特征在于,
    所述粗糙内表面为电化学处理后的钛表面。
  4. 根据权利要求3所述的形成具有稳定蒸汽浓度的气液混合物的装置,其特征在于,
    所述电化学处理后的钛表面为多孔二氧化钛层。
  5. 根据权利要求4所述的形成具有稳定蒸汽浓度的气液混合物的装置,其特征在于,
    所述二氧化钛层厚度为1~5微米。
  6. 根据权利要求2所述的形成具有稳定蒸汽浓度的气液混合物的装置,其特征在于,
    所述机械处理为砂纸打磨。
  7. 根据权利要求3所述的形成具有稳定蒸汽浓度的气液混合物的装置,其特征在于,
    所述电化学处理采用10~15V电压范围的双极电池,电解液为乙二醇溶液中溶解0.25%的氟化氨,处理时间为1~10分钟。
  8. 根据权利要求1~7中任一项所述的形成具有稳定蒸汽浓度的气液混合物的装置,其特征在于,
    所述液体为庚烷、异丙醇、甲苯、丙酮、四氯化碳、氰甲烷中的一种或其组合。
  9. 一种形成具有稳定蒸汽浓度的气液混合物的方法,其特征在于,
    包括以下步骤:
    混合步骤,将液体流直接喷射到气体流形成混合物;
    导入步骤,将所述混合物导入蒸发室;以及
    蒸发步骤,使所述液体铺展在蒸发室的粗糙内表面上,形成具有稳定蒸汽浓度的气液混合物。
  10. 根据权利要求9所述的形成具有稳定蒸汽浓度的气液混合物的方法,其特征在于,
    所述液体为庚烷、异丙醇、甲苯、丙酮、四氯化碳、氰甲烷中的一种或其组合。
PCT/CN2017/099607 2016-12-07 2017-08-30 形成具有稳定蒸汽浓度的气液混合物的装置和方法 WO2018103385A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/427,422 US20190282974A1 (en) 2016-12-07 2019-05-31 Apparatus and method for forming a gas-liquid mixture having a stable vapor concentration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611114997.9A CN106693738B (zh) 2016-12-07 2016-12-07 形成具有稳定蒸汽浓度的气液混合物的装置和方法
CN201611114997.9 2016-12-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/427,422 Continuation US20190282974A1 (en) 2016-12-07 2019-05-31 Apparatus and method for forming a gas-liquid mixture having a stable vapor concentration

Publications (1)

Publication Number Publication Date
WO2018103385A1 true WO2018103385A1 (zh) 2018-06-14

Family

ID=58936140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099607 WO2018103385A1 (zh) 2016-12-07 2017-08-30 形成具有稳定蒸汽浓度的气液混合物的装置和方法

Country Status (3)

Country Link
US (1) US20190282974A1 (zh)
CN (1) CN106693738B (zh)
WO (1) WO2018103385A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106693738B (zh) * 2016-12-07 2019-10-25 江苏鲁汶仪器有限公司 形成具有稳定蒸汽浓度的气液混合物的装置和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101802258A (zh) * 2007-09-25 2010-08-11 P2I有限公司 蒸汽传输系统
CN102414339A (zh) * 2009-04-24 2012-04-11 东京毅力科创株式会社 蒸镀处理装置和蒸镀处理方法
CN104093879A (zh) * 2011-10-17 2014-10-08 布鲁克斯仪器有限公司 集成的多头雾化器与蒸发系统及方法
CN104117833A (zh) * 2014-07-01 2014-10-29 北京全四维动力科技有限公司 一种多孔亲水不锈钢换热管及其表面处理方法
CN106693738A (zh) * 2016-12-07 2017-05-24 江苏鲁汶仪器有限公司 形成具有稳定蒸汽浓度的气液混合物的装置和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060207503A1 (en) * 2005-03-18 2006-09-21 Paul Meneghini Vaporizer and method of vaporizing a liquid for thin film delivery
JP2014004521A (ja) * 2012-06-25 2014-01-16 Ube Ind Ltd 高圧乾燥ガス製造システム
CN205517306U (zh) * 2016-04-18 2016-08-31 车传江 多种气液混合射流装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101802258A (zh) * 2007-09-25 2010-08-11 P2I有限公司 蒸汽传输系统
CN102414339A (zh) * 2009-04-24 2012-04-11 东京毅力科创株式会社 蒸镀处理装置和蒸镀处理方法
CN104093879A (zh) * 2011-10-17 2014-10-08 布鲁克斯仪器有限公司 集成的多头雾化器与蒸发系统及方法
CN104117833A (zh) * 2014-07-01 2014-10-29 北京全四维动力科技有限公司 一种多孔亲水不锈钢换热管及其表面处理方法
CN106693738A (zh) * 2016-12-07 2017-05-24 江苏鲁汶仪器有限公司 形成具有稳定蒸汽浓度的气液混合物的装置和方法

Also Published As

Publication number Publication date
CN106693738B (zh) 2019-10-25
CN106693738A (zh) 2017-05-24
US20190282974A1 (en) 2019-09-19

Similar Documents

Publication Publication Date Title
CA1275376C (en) Gaseous process and apparatus for removing films from substrates
US20100009098A1 (en) Atmospheric pressure plasma electrode
US5282925A (en) Device and method for accurate etching and removal of thin film
US8348248B2 (en) Bubbling supply system for stable precursor supply
US20080047934A1 (en) Silicon wafer etching method and apparatus, and impurity analysis method
KR101505354B1 (ko) 산화막 성막 방법 및 산화막 성막 장치
WO2002058141A1 (fr) Carburateur, dispositifs de divers types utilisant ce carburateur et procede de vaporisation
TWI311513B (en) System and methods for polishing a wafer
CN104995721B (zh) 基板的蚀刻装置及基板的分析方法
KR20010075663A (ko) 액체 용해 가스의 농도 조절 방법 및 시스템
WO2018103385A1 (zh) 形成具有稳定蒸汽浓度的气液混合物的装置和方法
JP2007308774A (ja) 薄膜形成装置、及び薄膜形成方法
US10062586B2 (en) Chemical fluid processing apparatus and chemical fluid processing method
US20090133622A1 (en) Plasma assisted apparatus for organic film deposition
Petsi et al. Stokes flow inside an evaporating liquid line for any contact angle
Gallyamov et al. Formation of superhydrophobic surfaces by the deposition of coatings from supercritical carbon dioxide
US20030183338A1 (en) Membrane dryer
JP2005011827A (ja) 常圧プラズマエッチング用ガス供給方法および供給装置
Volkov et al. Modification of polysulfone porous hollow fiber membranes by air plasma treatment
US20170252782A1 (en) Metal contamination preventing method and apparatus and substrate processing method and apparatus using the same
US6686297B1 (en) Method of manufacturing a semiconductor device and apparatus to be used therefore
Soboleva et al. The kinetics of dewetting of hydrophobic surfaces during the evaporation of surfactant solution drops
JPH07150359A (ja) 液体原料cvd装置
US20010040144A1 (en) Methods of cleaning vaporization surfaces
US20080083427A1 (en) Post etch residue removal from substrates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17879083

Country of ref document: EP

Kind code of ref document: A1