WO2018103196A1 - 显示模组及其使用方法 - Google Patents
显示模组及其使用方法 Download PDFInfo
- Publication number
- WO2018103196A1 WO2018103196A1 PCT/CN2017/073617 CN2017073617W WO2018103196A1 WO 2018103196 A1 WO2018103196 A1 WO 2018103196A1 CN 2017073617 W CN2017073617 W CN 2017073617W WO 2018103196 A1 WO2018103196 A1 WO 2018103196A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- substrate
- self
- backlight
- fingerprint sensor
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 239000000758 substrate Substances 0.000 claims abstract description 179
- 230000003287 optical effect Effects 0.000 claims abstract description 122
- 239000010410 layer Substances 0.000 claims description 93
- 239000003292 glue Substances 0.000 claims description 20
- 239000011241 protective layer Substances 0.000 claims description 18
- 239000000853 adhesive Substances 0.000 description 14
- 230000001070 adhesive effect Effects 0.000 description 14
- 238000003384 imaging method Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000007789 sealing Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0412—Digitisers structurally integrated in a display
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/30—Authentication, i.e. establishing the identity or authorisation of security principals
- G06F21/31—User authentication
- G06F21/32—User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
Definitions
- the present invention relates to the field of optical fingerprint recognition, and in particular, to a display module and a method for using the same.
- the fingerprint imaging recognition technology is a technique of acquiring a fingerprint image of a human body through a fingerprint sensor and then comparing it with existing fingerprint imaging information in the system to determine whether it is correct or not, thereby realizing the identity recognition technology. Due to its ease of use and the uniqueness of human fingerprints, fingerprint recognition technology has been widely used in various fields. For example, the public security bureau, customs and other security inspection areas, building access control systems, and consumer goods such as personal computers and mobile phones.
- Fingerprint imaging recognition technology can be realized by various techniques such as optical imaging, capacitive imaging, and ultrasonic imaging. Relatively speaking, optical fingerprint imaging technology has relatively good imaging effect and relatively low equipment cost.
- OLED display module is one of the hot spots in the field of flat panel display.
- OLED display modules have the advantages of low power consumption, wide color gamut, self-illumination, wide viewing angle and fast response. They are currently used in electronic products such as mobile phones, computers and digital cameras.
- capacitive fingerprint imaging technology is often used to integrate with a display module of an organic light emitting diode.
- capacitive fingerprint imaging technology is often used to integrate with a display module of an organic light emitting diode.
- a display module of an organic light emitting diode For more information about the integrated fingerprint recognition function in the display module, refer to the Chinese invention patent application with the publication number CN106024833A.
- the display module structure of the existing integrated fingerprint recognition function needs to be improved, and the performance needs to be improved.
- the problem to be solved by the present invention is to provide a display module for integrating the optical fingerprint recognition function into the display module, so that the display module has a good fingerprint recognition function.
- the present invention provides a display module, including: a self-luminous display panel, the self-luminous display panel includes a first substrate, a second substrate, and a self-luminous circuit layer, wherein the self-luminous circuit layer is located at Between the first substrate and the second substrate, the self-illuminating circuit layer includes a plurality of display pixel units; each of the display pixel units includes at least one non-transmissive region and at least one light transmissive region;
- An optical fingerprint sensor the optical fingerprint sensor is located under the second substrate, the optical fingerprint sensor includes a fingerprint sensing circuit layer and a substrate, and the fingerprint sensing circuit layer is located on the second substrate and the lining Between the bottom substrates; a dot backlight, the dot backlight is located under the second substrate, the dot backlight is located at a side of the optical fingerprint sensor, and the light emitted by the dot backlight is obliquely upward The angle enters the second substrate.
- the display module further includes a protective layer, the protective layer being located above the first substrate.
- a light-transmitting glue is disposed between the dot-shaped backlight and the second substrate, and light emitted by the dot-shaped backlight enters the transparent adhesive from a light-emitting surface of the dot-shaped backlight, and then The light transmissive glue enters the second substrate.
- the dot backlight has a space between the optical fingerprint sensor and the optical fingerprint sensor.
- the light-emitting surface of the dot-shaped backlight has a collecting lens on the front side, and the collecting lens can convert the light of the point-shaped backlight into parallel light or near-parallel light, and the point backlight The light enters the collecting lens first and then enters the second substrate.
- the area of the lower surface of the second substrate adjacent to the point backlight further includes a light anti-reflection layer, wherein the light anti-reflection layer is capable of increasing light of the point backlight into the second substrate. proportion.
- an optical glue is disposed between the self-luminous display panel and the optical fingerprint sensor.
- an optical glue is disposed between the self-luminous display panel and the protective layer.
- the point backlight is an LED light, and the light of the LED light is near ultraviolet light, purple light, blue light, green light, yellow light, red light, near infrared light or white light; or
- the dot backlight is two or more LED lamps, and the two or more LED lamps are evenly distributed under the second substrate, and the light of the LED lamp is near ultraviolet light, purple light, blue light, green light. , yellow, red, near-infrared or white.
- the present invention further provides a method for using a display module, wherein the display module includes: a self-luminous display panel, the self-luminous display panel includes a first substrate, a second substrate, and a self-luminous a circuit layer, the self-luminous circuit layer is located between the first substrate and the second substrate, the self-luminous circuit layer includes a plurality of display pixel units, each of the display pixel units including at least one non-transparent And an optical fingerprint sensor, the optical fingerprint sensor is located under the second substrate, the optical fingerprint sensor comprises a fingerprint sensing circuit layer and a substrate, and the fingerprint sensing circuit layer is located at the Between the second substrate and the substrate; a dot backlight, the dot backlight is located under the second substrate, and the dot backlight is located at a side of the optical fingerprint sensor, the dot Light emitted by the backlight enters the second substrate at an obliquely upward angle; the method of using includes: opposing the optical fingerprint sensor in the self-luminous display panel A first display region is
- the using method further includes: when the optical fingerprint sensor performs a fingerprint image collecting operation, controlling the second display area to display information associated with the fingerprint image collecting work.
- the optical fingerprint sensor and the dot backlight are both disposed under the second substrate of the self-luminous display panel, and the point backlight is disposed on the side of the optical fingerprint sensor, and the self-luminous display
- the panel is provided with a light transmitting area, so that the light emitted by the point backlight can be passed back and forth through the self-luminous display panel, thereby enabling display
- the module realizes the collection of the finger fingerprint image, and the collected fingerprint image is clear, so that the display module integrates a good fingerprint recognition function.
- the first display area corresponding to the optical fingerprint sensor is controlled to stop working when the optical fingerprint sensor performs the fingerprint image collecting operation, and the second display area display and the fingerprint image collection are controlled. Work-related information, so that the display function and fingerprint recognition function work together to achieve a better user experience.
- FIG. 2 is a schematic cross-sectional view of a display module according to another embodiment of the present invention.
- the prior art mostly uses capacitive fingerprint imaging technology to integrate with a display module of an organic light emitting diode.
- the present invention provides a display module in which an optical fingerprint sensor and a self-luminous display panel are integrated, so that a fingerprint recognition function can be realized while realizing display, and a display module is enabled by a corresponding structural design.
- the group can collect clear fingerprint images, and enables the display function and the fingerprint recognition function to cooperate with each other, so that the user has a better use experience for the display module.
- the embodiment of the invention provides a display module. Please refer to FIG. 1 .
- the display module includes a self-luminous display panel (not labeled), an optical fingerprint sensor (not labeled), and a dot backlight 130.
- the self-luminous display panel includes a first substrate 111 and a second substrate. 112 and self-illuminating circuit layer 113.
- the self-luminous circuit layer 113 is located between the first substrate 111 and the second substrate 112.
- the self-luminous display panel also includes a sealing structure 114.
- the sealing structure 114 is also located between the first substrate 111 and the second substrate 112. The sealing structure 114, together with the first substrate 111 and the second substrate 112, seals the self-luminous circuit layer 113 between the first substrate 111 and the second substrate 112.
- the material of the first substrate 111 and the second substrate 112 may be a transparent material, and the specific material may be inorganic glass or organic glass, or may be other organic transparent resin than organic glass.
- the self-luminous circuit layer 113 includes a plurality of display pixel units 1131 (the display pixel unit 1131 is illustrated by a broken line in FIG. 1 and the adjacent display pixel units 1131 are adjacent to each other. Note that although the dotted frame is A portion of the first substrate 111 and the second substrate 112 are included, but this is only for convenience of display, and the display pixel unit 1131 does not include the first substrate 111 and the second substrate 112).
- Each display pixel unit 1131 includes at least one non-transmissive region and at least one light transmissive region 11311, and a light transmissive region 11311 is illustrated in FIG. 1 (ie, one of the light transmissive regions 11311 is surrounded by a minimum dotted line frame as shown in FIG. The range shown).
- the light transmissive area 11311 of one display pixel unit 1131 may be connected to the light transmissive area 11311 of the other display pixel unit 1131 to form a wider transparent area.
- the two display pixel units 1131 are generally adjacent, and the area between the adjacent two display pixel units 1131 is also a light transmitting area, so that the three light transmitting areas can be connected as one large light transmitting area.
- the self-luminous display panel is an OLED display panel
- the display pixel unit 1131 of the self-luminous circuit layer 113 may include an anode layer, a hole injection layer (HIL), an emission layer (EML), and an electron injection layer (EIL).
- a cathode layer or the like which may further have a hole transport layer (HTL) and an electron transport layer (ETL), and may further include a TFT that drives the OLED, a driving metal line, a storage capacitor, and the like.
- the luminescence principle of the OLED display panel is: under a certain voltage driving, electrons and holes migrate from the cathode layer and the anode layer to the luminescent layer, respectively, and meet in the luminescent layer to form excitons and excite the luminescent molecules, and the luminescent molecules undergo radiation. Relaxation Emit visible light (or other light).
- the structure of the above-mentioned light-emitting layer or the like is located in the corresponding non-light-transmitting region.
- the display pixel unit 1131 of the present embodiment has a corresponding light transmissive area 11311 around the non-transparent area.
- the self-luminous circuit layer 113 is formed on the second substrate 112, and the self-luminous circuit layer 113 and the first substrate 111 have a gap layer therebetween. And the void layer is filled with an inert gas such as nitrogen or argon to protect the self-luminous circuit layer 113 from being crushed by the first substrate 111.
- an inert gas such as nitrogen or argon
- the height of the light-transmitting region 11311 is set to be equal to the height of the self-light-emitting circuit layer 113, as shown in FIG. 1, so as to ensure that light can pass through the self-light-emitting circuit layer 113 from the light-transmitting region (it is required to explain that the self-light-emitting circuit layer
- the heights of the respective positions of 113 may be slightly different, but the height of the self-illuminating circuit layer 113 at least a portion of the position is equal to the height of the light-transmitting region 11311).
- the light can pass through the self-illuminating circuit layer 113 from the light transmitting area, thereby ensuring that the display module can perform fingerprint image collection. It can be seen from the above content of the void layer that the light passes through the self-luminous display panel, and generally includes the second substrate 112, the light transmitting region 11311, the void layer and the first substrate 111.
- a non-transmissive region of one display pixel unit 1131 has a corresponding semiconductor layer structure such as a light-emitting layer (the semiconductor layer structure needs to be protected from light, and thus is formed in a non-transparent region), and other positions can be set.
- the semiconductor layer structure needs to be protected from light, and thus is formed in a non-transparent region
- other structures of the display pixel unit 1131 can be fabricated by using a light-transmitting structure as much as possible.
- the structure between the adjacent display pixel units 1131 can also be fabricated by using a light-transmitting structure as much as possible.
- a corresponding light transmitting area may be disposed, so that more light can pass through the OLED.
- a display panel this pass generally refers to passing through the height of the display pixel unit 1131, and the height is also generally referred to as thickness).
- the optical fingerprint sensor is located below the second substrate 112 . That is, the optical fingerprint sensor is located below the self-luminous display panel.
- the optical fingerprint sensor includes a fingerprint sensing circuit layer 121 and a lining.
- the base substrate 122 has a fingerprint sensing circuit layer 121 between the second substrate 112 and the substrate substrate 122.
- the fingerprint sensing circuit layer 121 of the optical fingerprint sensor includes a plurality of photosensitive pixel units (not shown).
- each of the photosensitive pixel units may include a light transmitting region and a non-light transmitting region (distinguish from the light transmitting region and the non-light transmitting region in the display pixel unit 1131).
- the photosensitive element of the photosensitive pixel unit (the photosensitive element may be a structure such as a photodiode) is located in the non-transparent area.
- the photosensitive pixel unit may also not require a light-transmitting region at all, but only a non-transmissive region, but It is ensured that light can enter the corresponding photosensitive element obliquely downward from the second substrate 112.
- the optical fingerprint sensor may be an image sensor fabricated by a CMOS (Complementary Metal Oxide Semiconductor) process based on a silicon wafer, or may be a TFT based on a glass substrate (Thin Film Transistor). , thin film transistor) process image sensor.
- CMOS Complementary Metal Oxide Semiconductor
- TFT Thin Film Transistor
- thin film transistor thin film transistor
- the dot backlight 130 is located below the second substrate 112, and the dot backlight 130 is located at the side of the optical fingerprint sensor.
- the light emitted by the dot backlight 130 enters the second substrate 112 at an obliquely upward angle. .
- the point backlight 130 is disposed on the side of the optical fingerprint sensor, so that the light emitted by the point backlight 130 for fingerprint image acquisition must enter the second substrate 112 at an oblique incident angle. .
- These rays will continue to pass through the self-illuminating circuit layer 113 at an oblique incident angle, thereby obliquely incident into the first substrate 111.
- the light rays cause an optical phenomenon such as reflection and refraction at the interface formed by the finger fingerprint and the upper surface of the first substrate 111 to generate corresponding reflected light. It is known from the principle of optical propagation that the reflected light will generally return obliquely downward to the first substrate 111 at an obliquely incident angle.
- These reflected rays will continue to pass obliquely downward through the self-illuminating circuit layer 113 at an obliquely incident angle, thereby obliquely incident into the second substrate 112.
- the oblique incident angle is then continued obliquely down to the optical fingerprint sensor (ie, obliquely downward into the optical fingerprint sensor) and received by the photosensitive pixel unit in the optical fingerprint sensor.
- this The arrangement of the dot-shaped backlight 130 enables the light to be substantially shifted in the same direction (while the light of the light guide plate is disordered in various directions, and the offset direction is different), thereby avoiding mutual interference and mutual influence between the light rays (
- the light of the light guide plate interferes with each other and affects each other, and the light offset from the position of the point backlight 130 is similar, so that a clear fingerprint image can be obtained, and the fingerprint recognition performance of the module is improved.
- the dot backlight 130 can be an LED lamp.
- the light of the LED lamp may be near ultraviolet light, purple light, blue light, green light, yellow light, red light, near infrared light or white light.
- a light-transmitting glue 140 is disposed between the dot-shaped backlight 130 and the second substrate 112 , and the light emitted by the dot-shaped backlight 130 enters from the light-emitting surface of the dot-shaped backlight 130 .
- the light transmissive glue 140 enters the second substrate 112 from the light transmissive glue 140.
- the light-transmitting adhesive 140 is disposed such that the light emitted by the dot-shaped backlight 130 is more incidentally incident on the second substrate 112 to reduce the interface reflection.
- the refractive index of the transparent adhesive 140 is greater than 1, and the light entering the second substrate 112 is reduced. The extent of the refraction of light.
- the light-transmitting glue is not provided, the light emitted by the point-like backlight needs to pass through the vacuum or the air, and then enters the second substrate 112, and the light is easily reflected and scattered in the process, and the light is easily in the vacuum or the air.
- An unfavorable situation such as reflection occurs at the interface formed with the second substrate 112, and the air may cause some light to be scattered and the like.
- the light-transmitting adhesive 140 can also function as a fixed-point backlight 130, that is, the light-transmitting adhesive 140 can adhere to the dot-shaped backlight 130.
- the material of the light-transmitting adhesive 140 can be selected from materials having good light-transmitting properties.
- all the light emitted by the point backlight 130 passes through the transparent adhesive 140 and then enters the second substrate 112, thereby avoiding other propagation paths of the light.
- the dot backlight 130 there is a gap (not labeled) between the dot backlight 130 and the optical fingerprint sensor.
- the presence of the spacing can ensure that there is no direct contact between the point backlight 130 and the optical fingerprint sensor.
- the specific size of the interval can be determined according to design needs. For example, in one example, the spacing may be greater than or equal to the width of the point backlight 130.
- the dot backlight 130 may be in direct contact with the side surface of the optical fingerprint sensor.
- an optical glue may be disposed between the self-luminous display panel and the optical fingerprint sensor.
- the material of the optical adhesive layer may specifically be a thermosensitive optical adhesive layer, a photosensitive optical adhesive layer or an optical double-sided adhesive tape. The presence of the optical glue minimizes the presence of air between the self-luminous display panel and the optical fingerprint sensor, further improving the optical performance of the module.
- the optical fingerprint sensor and the self-luminous display panel may be directly stacked, and “direct lamination” means that the optical fingerprint sensor and the self-luminous display panel are at least partially in contact, when both are generally flat. It may just be a stacked form as shown in FIG.
- the distance between the photosensitive pixel unit of the optical fingerprint sensor and the upper surface of the first substrate 111 is small to ensure the distance.
- the fingerprint image quality obtained by fingerprint acquisition meets the required requirements.
- the area of the display pixel unit 1131 in the OLED display panel is less than or equal to the area of the photosensitive pixel unit in the optical fingerprint sensor.
- one of the optical fingerprint sensors and the upper and lower positions of one display pixel unit 1131 of the OLED display panel can be associated, thereby better ensuring subsequent fingerprint images. collection.
- one photosensitive pixel unit may be directly opposite to one display pixel unit 1131, and the area of the photosensitive pixel unit is equal to the area of the display pixel unit 1131.
- the light transmitting region 11311 of the display pixel unit 1131 corresponds at least to the photosensitive element of the photosensitive pixel unit. Since the two areas are equal in area, the two can also be aligned one by one, and there can be some misalignment between them. From a macroscopic point of view, the alignment relationship of each of the photosensitive pixel units and the display pixel unit 1131 is uniform, so that it is ensured that the received emission (reflection) light signals of the respective photosensitive pixel units are uniform.
- a plurality of display pixel units 1131 may correspond to one of the photosensitive pixel units. That is to say, one of the photosensitive pixel units may correspond to two or more display pixel units 1131 (ie, the area of the photosensitive pixel unit is smaller than the area of the display pixel unit 1131). From a macroscopic point of view, the alignment relationship of each photosensitive pixel unit and two or more display pixel units 1131 is uniform, so that the received transmitted (reflected) optical signals of the respective photosensitive pixel units can be ensured to be uniform.
- the principle of the display module provided by the present embodiment is that the light emitted by the dot backlight 130 passes through the transparent adhesive 140, enters the second substrate 112 obliquely upward, and enters the self-luminous from the second substrate 112.
- the light-transmitting region 11311 of the circuit layer 113 passes through the self-light-emitting circuit layer 113 obliquely upward from the light-transmitting region 11311 to enter the first substrate 111.
- the first substrate 111 is directly used for contact or pressing of a finger fingerprint.
- light rays may be refracted, reflected, and absorbed at the interface formed by the upper surface of the first substrate 111 and the fingerprint, and correspondingly, a part of the reflected light is generated; the reflected light is returned to the first substrate 111, and then A substrate obliquely enters the light-transmitting region 11311 of the self-illuminating circuit layer 113 and passes obliquely downward from the light-transmitting region 11311 through the self-light-emitting circuit layer 113 to enter the second substrate 112, and then enters the fingerprint from the second substrate 112.
- the circuit layer 121 is received by each photosensitive pixel unit in the fingerprint sensing circuit 121 (specifically absorbed by the photosensitive element of the photosensitive pixel unit), and subjected to signal processing to realize acquisition of the corresponding fingerprint image.
- the above process can simultaneously refer to the black arrow (not labeled) in FIG. 1, the black arrow represents the light, but the corresponding refraction process indicating the light is omitted.
- the dot backlight 130 is located on the side of the fingerprint sensing circuit layer 121, it is easy to know that the incident angle of the corresponding light on the lower surface of the second substrate 112 is an acute angle, and after the light is finally reflected back, the reflected light is in the sense of fingerprint.
- the incident angle of the upper surface of the circuit layer 121 is also an acute angle. Therefore, at this time, the light emitted by the dot backlight 130 can generate a corresponding fingerprint image according to the corresponding offset. Therefore, the entire optical fingerprint sensor module can realize the fingerprint image without using a structure such as a light guide plate and a collecting lens.
- the identification of the fingerprint image is more clear than that of the light source using the light guide plate structure.
- the optical fingerprint sensor and the dot backlight 130 are both located under the second substrate 112 in the self-luminous display panel, and the dot backlight 130 is located on the side of the optical fingerprint sensor.
- the self-luminous display panel has a light-transmitting area, so that the light emitted by the point-like backlight 130 can be passed back and forth through the self-illuminating display panel, thereby enabling the collection of the finger fingerprint image, and the collected fingerprint image is clear, so that The display module integrates good fingerprint recognition.
- an optical fingerprint sensor is placed under the self-luminous display panel (OLED display panel), and the fingerprint image is collected in the display area of the display module by using the corresponding use method.
- the utility model can reduce the appearance size of the electronic product to which the display panel is applied, improve the screen ratio of the electronic product, and improve the appearance and appearance of the electronic product (for example, the screen ratio of the mobile phone product can be improved, and the appearance and appearance of the mobile phone product can be improved).
- the embodiment of the present invention further provides a method for using a display module.
- the display module is provided by the foregoing embodiment. Therefore, reference may be made to FIG. 1 .
- the display module includes a self-luminous display panel, an optical fingerprint sensor, and a dot backlight 130.
- the self-luminous display panel includes a first substrate 111, a second substrate 112, and a self-luminous circuit layer 113.
- the self-luminous circuit layer 113 is located between the first substrate 111 and the second substrate 112.
- the self-luminous circuit layer 113 includes a plurality of display pixel units.
- each display pixel unit 1131 includes at least one non-transmissive region and at least one light transmissive region, and the height of the light transmissive region is equal to the height of the self-illuminating circuit layer 113.
- the optical fingerprint sensor is located under the second substrate 112.
- the optical fingerprint sensor includes a fingerprint sensing circuit layer 121 and a substrate substrate 122.
- the fingerprint sensing circuit layer 121 is located between the second substrate 112 and the substrate substrate 122.
- the dot backlight 130 is located below the second substrate 112, and the dot backlight 130 is located at the side of the optical fingerprint sensor, and the light emitted by the dot backlight 130 enters the second substrate 112 at an obliquely upward angle.
- the usage method provided in this embodiment includes: defining a display area opposite to the optical fingerprint sensor in the self-luminous display panel as the first display area, and displaying the display area of the other part as the second display area; when the optical fingerprint sensor performs the fingerprint image When collecting work, Controlling the first display area stops displaying work.
- the first display area is provided to prevent the light from the self-luminous display panel from interfering with the light emitted by the point backlight 130.
- the embodiment can make the fingerprint image acquisition not affected by the self-luminous display panel.
- the method for using the embodiment further includes: when the optical fingerprint sensor performs the fingerprint image collection operation, controlling the second display area to display information associated with the fingerprint image collection work. For example, in the second display area, "Please enter a fingerprint in the non-display area" is displayed. During the fingerprint entry process, information such as “enter correct” or “please re-enter” is displayed. When the correct fingerprint is collected, “valid” can be displayed. “Fingerprint” and other information, or according to the fingerprint operation, display “operational success” and other messages. This method of use enables the display function and the fingerprint recognition function to work together to achieve a better user experience.
- the usage method may further develop an application scenario of the fingerprint recognition function. For example, before the optical fingerprint sensor is not working, the first display area is displayed with a corresponding display icon, and the user is instructed to put a finger into the icon. After the user puts the finger into the area where the icon is displayed, the existing display panel itself or the external touch function can be used to sense that the user has placed the finger in the first display area, thereby controlling the optical fingerprint sensor to enter the working state. At this time, the fingerprint image of the pressed fingerprint is collected by the optical fingerprint sensor below the first display area, and the fingerprint image collecting function is completed, and can be further applied to identify the existing fingerprint image stored internally, and further used for encryption/ Unlock and other functions.
- Another embodiment of the present invention provides another display module. Please refer to FIG. 2 .
- the display module includes a protective layer 210, a self-luminous display panel (not labeled), an optical fingerprint sensor 230, and a point backlight 240.
- the self-luminous display panel includes a first substrate 221, a second substrate 222, and a self-luminous circuit layer 223.
- the self-luminous circuit layer 223 is located between the first substrate 221 and the second substrate 222.
- the self-luminous display panel also includes a sealing structure 224. Sealing structure 224 It is also located between the first substrate 221 and the second substrate 222. The sealing structure 224, together with the first substrate 221 and the second substrate 222, seals the self-luminous circuit layer 223 between the first substrate 221 and the second substrate 222.
- the protection layer 210 is located above the first substrate 221 .
- the protective layer 210 is used as a finger contact structure, and the protective layer 210 can simultaneously protect the self-luminous display panel and the optical fingerprint sensor 230. And the structure of the dot backlight 240 and the like.
- the protective layer 210 is a single layer structure, that is, the protective layer 210 may be a substrate, as shown in FIG. 2 . In other embodiments, the protective layer may also be a multilayer structure.
- the materials of the first substrate 221 and the second substrate 222 may be transparent materials.
- the self-luminous circuit layer 223 includes a plurality of display pixel units 2231 (the adjacent relationship of the display pixel units 2231 is illustrated by a broken line in FIG. 2).
- Each display pixel unit 2231 includes at least one non-transmissive region and at least one light transmissive region 22311, and a light transmissive region 22311 is illustrated in FIG. 2 (ie, one of the light transmissive regions 22311 is surrounded by the smallest dotted frame in FIG. 2 The range shown).
- the self-luminous display panel is an OLED display panel, and the corresponding content of the corresponding embodiment of FIG. 1 can be referred to.
- the height of the light-transmitting region 22311 is set to be equal to the height of the self-light-emitting circuit layer 223, as shown in FIG. 2, thereby ensuring that light can pass through the self-light-emitting circuit layer 223 from the light-transmitting region.
- the light can pass through the self-illuminating circuit layer 223 from the light transmitting area, thereby ensuring that the display module can perform fingerprint image collection.
- the optical fingerprint sensor 230 is located below the second substrate 222. That is, the optical fingerprint sensor 230 is located below the self-luminous display panel.
- the optical fingerprint sensor 230 includes a fingerprint sensing circuit layer (not shown) and a substrate substrate (not shown), the fingerprint sensing circuit layer being located between the second substrate 222 and the substrate substrate, Reference may be made to the corresponding content of the corresponding embodiment of FIG. 1.
- the fingerprint sensing circuit layer of the optical fingerprint sensor 230 includes a plurality of photosensitive pixel units (not shown). For more structures, reference may be made to the corresponding content of the corresponding embodiment of FIG. 1.
- the dot backlight 240 is located below the second substrate 222, and the dot backlight 240 is located at the side of the optical fingerprint sensor 230.
- the light emitted by the dot backlight 240 enters the second substrate 222 at an obliquely upward angle.
- the point backlight 240 is disposed on the side of the optical fingerprint sensor 230, and the reflected light for collecting the fingerprint image can be ensured, and the optical fingerprint sensor 230 must be entered at an oblique incident angle (ie, obliquely downwardly incidentally enters).
- the optical fingerprint sensor 230 the detailed process may refer to the corresponding content of the corresponding embodiment of FIG. 1).
- the arrangement of the dot backlight 240 enables the light to be substantially shifted in the same direction (while the light of the light guide plate is disordered in various directions, and the offset direction is different).
- the mutual interference and mutual influence between the light rays are avoided (the light of the light guide plate interferes with each other and affects each other), and the light offsets close to the position of the point backlight 240 are similar, so that a clear fingerprint image can be obtained. Improve the fingerprint recognition performance of the module.
- the dot backlight 240 can be an LED lamp.
- the light of the LED lamp may be near ultraviolet light, purple light, blue light, green light, yellow light, red light, near infrared light or white light.
- the dot backlight may be two or more LED lamps, and two or more LED lamps are evenly distributed under the second substrate, and the LED lamps are near ultraviolet light, purple light, and blue light. , green, yellow, red, near-infrared or white.
- the point backlight may be four LED lamps, the four LED lamps are evenly distributed under the second substrate, and are evenly distributed on the side of the optical fingerprint sensor 230, or four lamps are uniformly distributed on the optical fingerprint sensor at the same time. The four corners of 230. At this time, although the light emitted by the four LED lamps may each be non-parallel light, the image distortion of the non-parallel light can be corrected by using the four LED lamps at the same time.
- the four LED lights can take the method of taking pictures in turn (the four pictures of the rotating pictures are taken separately according to the time series), and then the image processing is used to correct the distortion, improve the quality of the fingerprint image, and improve the accuracy of fingerprint recognition.
- the point backlight is a plurality of LED lights
- the light of any one of the LED lights can be selected as the imaging light of the fingerprint image.
- the embodiment corresponds to the embodiment of FIG.
- the imaging effect is similar.
- a light-transmitting paste 250 is disposed between the dot-shaped backlight 240 and the second substrate 222 , and the light emitted by the dot-shaped backlight 240 enters from the light-emitting surface of the dot-shaped backlight 240 .
- the light transmissive glue 250 enters the second substrate 222 from the light transmissive glue 250.
- the light-transmitting adhesive 250 is disposed such that the light emitted by the dot-shaped backlight 240 is more incidentally incident on the second substrate 222 to reduce the interface reflection.
- the refractive index of the transparent adhesive 250 is greater than 1, and the entering of the second substrate 222 is reduced. The extent of the refraction of light.
- the light-transmitting glue is not disposed, the light emitted by the dot-shaped backlight needs to pass through the vacuum or the air, and then enters the second substrate, and the light is more likely to be reflected at the interface formed by the vacuum or the air and the surface of the second substrate, and Air can also cause some light to scatter and other adverse effects.
- the display module there is a space (not labeled) between the dot backlight 240 and the optical fingerprint sensor 230.
- the corresponding content of the corresponding embodiment of FIG. 1 can be referred to.
- the self-luminous display panel and the optical fingerprint sensor 230 may have an optical glue, and the corresponding content of the corresponding embodiment of FIG. 1 may be referred to.
- the self-luminous display panel and the protective layer 210 may have an optical glue, and the presence of the optical glue avoids the self-luminous display. There is a possibility of air between the panel and the protective layer 210, so that the optical performance of the display module is better.
- the distance between the photosensitive pixel unit of the optical fingerprint sensor 230 and the upper surface of the first substrate 221 is smaller. To ensure that the quality of the fingerprint image obtained by fingerprint acquisition meets the required requirements.
- the photosensitive pixel unit in the optical fingerprint sensor 230 and the upper and lower positions of the display pixel unit 2231 in the OLED display panel may be associated to better ensure subsequent fingerprint image collection.
- One photosensitive pixel unit may be corresponding to the four display pixel units 2231, and the area of the photosensitive pixel unit is equal to the area of the four display pixel units 2231.
- the principle of the display module provided in this embodiment is the same as that of the corresponding embodiment of FIG. 1 except that the light in the embodiment does not reach the finger fingerprint.
- a substrate 221 is obliquely propagated upward to the protective layer 210, and an optical phenomenon such as refraction and reflection occurs at an interface formed by the upper surface of the protective layer 210 and the finger fingerprint, and then the reflected light which is obliquely returned to the protective layer 210 is generated.
- the above process can simultaneously refer to the black arrow (not labeled) in FIG. 2, the black arrow represents the light, but the corresponding refraction process indicating the light is omitted.
- the light transmissive layer 260 is further disposed on the lower surface of the transparent adhesive 250 and the second substrate 222.
- the light anti-reflection layer 260 can increase the proportion of the light of the point backlight 240 into the second substrate 222.
- the light-emitting surface of the dot-shaped backlight may have a collecting lens in front of the light-collecting lens, and the collecting lens can convert the light of the point-like backlight into parallel light or near-parallel light (the near-parallel light finger).
- the difference in angle between the lights is less than 10 degrees.
- the light from the point backlight enters the condenser lens and then enters the second substrate.
- the setting of the concentrating lens can further avoid the problem that the fingerprint image is distorted.
- Another embodiment of the present invention further provides a method for using another display module.
- the display module is provided in the previous embodiment. Therefore, reference may be made to FIG. 2 .
- the display module includes a protective layer 210, the self-luminous display panel, the optical fingerprint sensor 230, and the dot backlight 240.
- the self-luminous display panel includes a first substrate 221 and a second The substrate 222 and the self-lighting circuit layer 223 are located between the first substrate 221 and the second substrate 222.
- the self-lighting circuit layer 223 includes a plurality of display pixel units 2231, and each of the display pixel units 2231 includes at least one non- The light transmissive area and the at least one light transmissive area have a height equal to the height of the self-illuminating circuit layer 223.
- the optical fingerprint sensor 230 is located under the second substrate 222.
- the optical fingerprint sensor 230 includes the fingerprint sensing circuit layer and the base substrate 222.
- the fingerprint sensing circuit layer is located between the second substrate 222 and the substrate 222.
- the dot backlight 240 is located below the second substrate 222, and the dot backlight 240 is located at the side of the optical fingerprint sensor 230.
- the light emitted by the dot backlight 240 enters the second substrate 222 at an obliquely upward angle.
- the usage method provided by this embodiment includes: defining a display area of the self-luminous display panel opposite to the optical fingerprint sensor 230 as a first display area, and displaying a display area of other parts as a second display area; when the optical fingerprint sensor 230 performs When the fingerprint image is collected, the first display area is controlled to stop displaying work.
- the embodiment can make the fingerprint image acquisition not affected by the self-luminous display panel.
- the usage method provided in this embodiment further includes: when the optical fingerprint sensor 230 performs a fingerprint image collection operation, controlling the second display area to display information associated with the fingerprint image collection work. For example, in the second display area, "Please enter a fingerprint in the non-display area" is displayed. During the fingerprint entry process, information such as “enter correct” or “please re-enter” is displayed. When the correct fingerprint is collected, “valid” can be displayed. “Fingerprint” and other information, or according to the fingerprint operation, display “operational success” and other messages. This method of use enables the display function and the fingerprint recognition function to work together to achieve a better user experience.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Security & Cryptography (AREA)
- Human Computer Interaction (AREA)
- Computer Hardware Design (AREA)
- Software Systems (AREA)
- Image Input (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
一种显示模组及其使用方法。显示模组包括自发光显示面板,自发光显示面板包括第一基板(111)、第二基板(112)和自发光电路层(113),自发光电路层(113)位于第一基板(111)和第二基板(112)之间,自发光电路层(113)包括多个显示像素单元(1131);每个显示像素单元(1131)包括至少一个非透光区和至少一个透光区(11311);还包括:光学指纹传感器,光学指纹传感器位于第二基板(112)下方,光学指纹传感器包括指纹感测电路层(121)和衬底基板(122),指纹感测电路层(121)位于第二基板(112)和衬底基板(122)之间;点状背光源(130),点状背光源(130)位于第二基板(112)下方,点状背光源(130)位于光学指纹传感器的侧边,点状背光源(130)发出的光线以斜向上的角度进入第二基板(112)。显示模组能够很好的集成光学指纹识别功能。
Description
本申请要求于2016年12月09日提交中国专利局、申请号为201611131880.1、发明名称为“显示模组及其使用方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及光学指纹识别领域,尤其涉及一种显示模组及其使用方法。
指纹成像识别技术,是通过指纹传感器采集到人体的指纹图像,然后与系统里的已有指纹成像信息进行比对,来判断正确与否,进而实现身份识别的技术。由于其使用的方便性,以及人体指纹的唯一性,指纹识别技术已经大量应用于各个领域。比如公安局、海关等安检领域,楼宇的门禁系统,以及个人电脑和手机等消费品领域等等。
指纹成像识别技术的实现方式有光学成像、电容成像、超声成像等多种技术。相对来说,光学指纹成像技术,其成像效果相对较好,设备成本相对较低。
有机发光二极管(Organic Light Emitting Diode,OLED)显示模组是平板显示领域的热点之一。OLED显示模组具有低能耗、宽色域、自发光、宽视角和快速响应等优点,目前已运用于在手机、电脑和数码相机等电子产品。
现有技术中,多采用电容式指纹成像技术与有机发光二极管的显示模组进行集成。更多有关显示模组中集成指纹识别功能的内容可参考公开号为CN106024833A的中国发明专利申请。
现有集成指纹识别功能的显示模组结构有待改进,性能有待提高。
发明内容
本发明解决的问题是提供一种显示模组,以实现将光学指纹识别功能集成在显示模组中,使显示模组具有良好的指纹识别功能。
为解决上述问题,本发明提供了一种显示模组,包括:自发光显示面板,所述自发光显示面板包括第一基板、第二基板和自发光电路层,所述自发光电路层位于所述第一基板和所述第二基板之间,所述自发光电路层包括多个显示像素单元;每个所述显示像素单元包括至少一个非透光区和至少一个透光区;还包括:光学指纹传感器,所述光学指纹传感器位于所述第二基板下方,所述光学指纹传感器包括指纹感测电路层和衬底基板,所述指纹感测电路层位于所述第二基板和所述衬底基板之间;点状背光源,所述点状背光源位于第二基板下方,所述点状背光源位于所述光学指纹传感器的侧边,所述点状背光源发出的光线以斜向上的角度进入所述第二基板。
可选的,所述显示模组还包括保护层,所述保护层位于所述第一基板上方。
可选的,所述点状背光源与所述第二基板之间具有透光胶,所述点状背光源发出的光线从所述点状背光源的出光面进入所述透光胶,再从所述透光胶进入所述第二基板。
可选的,所述点状背光源与所述光学指纹传感器之间具有间隔。
可选的,所述点状背光源的出光面前面具有聚光透镜,所述聚光透镜能够使所述点状背光源的光线转换为平行光或近平行光,所述点状背光源的光线先进入所述聚光透镜,再进入所述第二基板。
可选的,所述第二基板下表面靠近所述点状背光源的区域还包括光增透层,所述光增透层能够增加所述点状背光源的光线进入所述第二基板的比例。
可选的,所述自发光显示面板与所述光学指纹传感器之间具有光学胶。
可选的,所述自发光显示面板与所述保护层之间具有光学胶。
可选的,所述点状背光源为一个LED灯,所述LED灯的光为近紫外光、紫色光、蓝色光、绿色光、黄色光、红色光、近红外光或白色光;或者,所述点状背光源为两个以上LED灯,所述两个以上LED灯均匀分布在所述第二基板的下方,所述LED灯的光为近紫外光、紫色光、蓝色光、绿色光、黄色光、红色光、近红外光或白色光。
为解决上述问题,本发明还提供了一种显示模组的使用方法,其中,所述显示模组包括:自发光显示面板,所述自发光显示面板包括第一基板、第二基板和自发光电路层,所述自发光电路层位于所述第一基板和所述第二基板之间,所述自发光电路层包括多个显示像素单元,每个所述显示像素单元包括至少一个非透光区和至少一个透光区;光学指纹传感器,所述光学指纹传感器位于所述第二基板下方,所述光学指纹传感器包括指纹感测电路层和衬底基板,所述指纹感测电路层位于所述第二基板和所述衬底基板之间;点状背光源,所述点状背光源位于第二基板下方,所述点状背光源位于所述光学指纹传感器的侧边,所述点状背光源发出的光线以斜向上的角度进入所述第二基板;所述使用方法包括:将所述自发光显示面板中与所述光学指纹传感器相对的显示区域定义为第一显示区域,其它部分的显示区域定义为第二显示区域;当所述光学指纹传感器进行指纹图像采集工作时,控制所述第一显示区域停止显示工作。
可选的,所述使用方法还包括:当所述光学指纹传感器进行指纹图像采集工作时,控制所述第二显示区域显示与指纹图像采集工作相关联的信息。
与现有技术相比,本发明的技术方案具有以下优点:
本发明的技术方案中,将所述光学指纹传感器和点状背光源均设置于自发光显示面板的第二基板下方,所述点状背光源设置于所述光学指纹传感器侧边,自发光显示面板设置有透光区,因此,可以使得点状背光源发出的光线来回穿过自发光显示面板,从而能够利用显示
模组实现对手指指纹图像的采集,并且,采集到的指纹图像清晰,使显示模组集成有良好的指纹识别功能。
本发明的技术方案中,在使用显示模组时,控制与光学指纹传感器对应的第一显示区域在光学指纹传感器进行指纹图像采集工作时,停止工作,并且控制第二显示区域显示与指纹图像采集工作相关联的信息,从而使得显示功能和指纹识别功能相互配合起来,实现更好的用户使用体验。
图1是本发明实施例所提供的显示模组剖面结构示意图;
图2是本发明另一实施例所提供的显示模组剖面结构示意图。
正如背景技术所述,现有技术多采用电容式指纹成像技术与有机发光二极管的显示模组进行集成。
为此,本发明提供一种显示模组中,将光学指纹传感器与自发光显示面板集成在一起,从而在实现显示的同时,能够实现指纹识别功能,并且,通过相应的结构设计,使得显示模组能够采集到清晰的指纹图像,并且使得显示功能和指纹识别功能能够相互配合,使得用户对显示模组具有更好的使用体验。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
本发明实施例提供一种显示模组,请参考图1。
所述显示模组包括自发光显示面板(未标注)、光学指纹传感器(未标注)和点状背光源130。
所述显示模组中,自发光显示面板包括第一基板111、第二基板
112和自发光电路层113。自发光电路层113位于第一基板111和第二基板112之间。自发光显示面板还包括密封结构114。密封结构114也位于第一基板111和第二基板112之间。密封结构114与第一基板111和第二基板112一起,将自发光电路层113密封在第一基板111和第二基板112之间。
本实施例中,第一基板111和第二基板112的材料可以为透明材料,具体材料可以为无机玻璃或者有机玻璃,也可以是有机玻璃以外的其它有机透明树脂。
所述自发光显示面板中,自发光电路层113包括多个显示像素单元1131(图1中用虚线框示意出显示像素单元1131,及各个显示像素单元1131相邻关系。需要注意,虽然虚线框包括了部分第一基板111和第二基板112,但这只是为了便于显示,显示像素单元1131并不包括第一基板111和第二基板112)。每个显示像素单元1131包括至少一个非透光区和至少一个透光区11311,图1中示意出一个透光区11311(即其中一个透光区11311所在范围如图1中最小的虚线框包围的范围所示)。
需要说明的是,其它实施例中,一个显示像素单元1131的透光区11311还可以与另一个显示像素单元1131的透光区11311连接在一起,形成一个范围更大的透光区,此时,这两个显示像素单元1131通常是相邻的,并且,两个显示像素单元1131相邻之间的区域也是透光区,从而能够使得三个透光区连接为一个大的透光区。
本实施例中,所述自发光显示面板为OLED显示面板,自发光电路层113的显示像素单元1131可以包括阳极层、空穴注入层(HIL)、发光层(EML)、电子注入层(EIL)和阴极层等,还可以具有空穴传输层(HTL)和电子传输层(ETL),还可以包括驱动OLED的TFT、驱动金属线和存储电容等。OLED显示面板的发光原理为:在一定电压驱动下,电子和空穴分别从阴极层和阳极层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,发光分子经过辐射弛豫而
发出可见光(或其它光线)。其中,上述发光层等结构位于相应的非透光区中。而在非透光区周边,本实施例的显示像素单元1131具有相应的透光区11311。
本实施例中自发光电路层113制作在第二基板112上,所述自发光电路层113与所述第一基板111之间具有空隙层。并且在所述空隙层填充氮气或氩气等惰性气体,以便保护所述自发光电路层113不会被第一基板111压坏。
本实施例设置透光区11311的高度等于自发光电路层113的高度,如图1所示,从而保证光线能够从透光区穿过自发光电路层113(需要说明的是,自发光电路层113的各位置高度可能略有差别,但是至少部分位置的自发光电路层113的高度与透光区11311的高度相等)。而光线能够从透光区穿过自发光电路层113,保证了显示模组能够进行指纹图像采集。由上述的空隙层内容可知,光线在穿过所述自发光显示面板,通常包含穿过第二基板112、透光区11311、空隙层和第一基板111。
具体的,一个显示像素单元1131的非透光区中具有相应的发光层等半导体层结构(这些半导体层结构是需要避光的,因此,制作在非透光区),而其它位置均可以设置为透光区,即在保证相应结构和功能的实现的基础上,显示像素单元1131的其它结构都可以尽量采用透光结构制作。并且,相邻显示像素单元1131之间的结构,也可以尽量采用透光结构制作。同时,在这些显示像素单元1131所在的显示区域以外,例如在在驱动电路和绑定引脚等结构的制作位置,也可以设置成相应的透光区,从而使得更多的光线能够穿过OLED显示面板(此穿过通常指从显示像素单元1131的高度穿过,高度通常也可称为厚度)。
如图1所示,所述光学指纹传感器位于第二基板112下方。也就是说,所述光学指纹传感器位于所述自发光显示面板下方。
如图1所示,所述光学指纹传感器包括指纹感测电路层121和衬
底基板122,指纹感测电路层121位于第二基板112和衬底基板122之间。
所述光学指纹传感器的指纹感测电路层121包括多个感光像素单元(未示出)。在其中一种情况下,每个所述感光像素单元可以包括透光区域和非透光区域(与显示像素单元1131中的透光区和非透光区相区分)。所述感光像素单元的感光元件(所述感光元件可以为感光二极管等结构)位于所述非透光区域。在另一种情况下,由于指纹感测电路层121位于第二基板112和衬底基板122之间,因此,感光像素单元也可以完全不需要透光区域,而只有非透光区域,但需要保证光线能够从第二基板112斜向下进入相应的感光元件。
本实施例中,所述光学指纹传感器可以为基于硅晶圆的以CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)工艺制作的图像传感器,也可以是基于玻璃基板的以TFT(Thin Film Transistor,薄膜晶体管)工艺制作的图像传感器。
本实施例中,点状背光源130位于第二基板112下方,点状背光源130位于所述光学指纹传感器的侧边,点状背光源130发出的光线以斜向上的角度进入第二基板112。
本实施例将点状背光源130设置于所述光学指纹传感器的侧边,从而使点状背光源130发出的、用于指纹图像采集的光线,一定是以斜入射的角度进入第二基板112。这些光线会继续以斜入射的角度穿过自发光电路层113,从而斜入射进入第一基板111。并且,这些光线会在手指指纹与第一基板111上表面所形成的界面处发生反射和折射等光学现象,产生相应的反射光线。由光学传播的原理可知,反射光线通常将同样以斜入射的角度斜向下返回第一基板111。这些反射光线会继续以斜入射的角度斜向下穿过自发光电路层113,从而斜入射进入第二基板112。然后继续斜入射的角度斜向下到达所述光学指纹传感器(即斜向下入射进入所述光学指纹传感器),并被光学指纹传感器中的感光像素单元接收。相比于采用导光板的面光源而言,这
种点状背光源130的设置能够使得光线基本沿同一个方向偏移(而导光板的光线是各个方向杂乱的,偏移方向不一),避免了光线之间的相互干扰和相互影响(而导光板的光线之间会相互干扰和影响),并且,距离点状背光源130位置相近的光线偏移量相近,从而能够得到清晰的指纹图像,提高模组的指纹识别性能。
本实施例中,点状背光源130可以为一个LED灯。所述LED灯的光可以为近紫外光、紫色光、蓝色光、绿色光、黄色光、红色光、近红外光或白色光。
如图1所示,所述显示模组中,在点状背光源130与第二基板112之间具有透光胶140,点状背光源130发出的光线从点状背光源130的出光面进入透光胶140,再从透光胶140进入第二基板112。透光胶140的设置可以使点状背光源130发出的光线更多更好地入射至第二基板112,减少界面反射,透光胶140的折射率大于1,减小进入第二基板112的光线的折射幅度。而如果不设置透光胶,点状背光源发出的光线需要经过真空或者空气后,再进入第二基板112,而光线容易在这个过程中发生反射和散射等不利情况(光线容易在真空或空气与第二基板112所形成的界面处发生反射等不利情况,并且空气还会使得一些光线发生散射等不利情况)。
本实施例中,透光胶140还能够起到固定点状背光源130的作用,即透光胶140能够粘接住点状背光源130。透光胶140的材料可以选择透光性能好的材料。并且,可以通过控制透光胶140的体积,使得点状背光源130发出的光线全部经过透光胶140再进入第二基板112,避免光线的其它传播途径。
所述显示模组中,点状背光源130与所述光学指纹传感器之间具有间隔(未标注)。所述间隔的存在可以保证点状背光源130与所述光学指纹传感器之间不直接接触。所述间隔的具体大小可以根据设计需要而定。例如在一个例子中,所述间隔的大小可以大于或等于所述点状背光源130的宽度。
其它实施例中,点状背光源130与所述光学指纹传感器之间也可以没有间隔,即点状背光源130与所述光学指纹传感器的侧面直接接触。
本实施例中,图1中虽未显示,但所述显示模组中,所述自发光显示面板与所述光学指纹传感器之间可以具有光学胶。所述光学胶层的材料具体可以是热敏光学胶层、光敏光学胶层或光学双面胶带。所述光学胶的存在使所述自发光显示面板与所述光学指纹传感器之间尽量避免存在空气,进一步提高了模组的光学性能。
其它实施例中,所述光学指纹传感器和所述自发光显示面板可以是直接层叠,“直接层叠”指光学指纹传感器和自发光显示面板至少有部分接触,当两者均总体呈扁平结构时,可以恰好是如图1中所示层叠形态。
需要说明的是,在OLED显示面板与光学指纹传感器直接层叠或者与光学胶粘合的情况下,本实施例设置光学指纹传感器的感光像素单元到第一基板111上表面的距离较小,以确保使得指纹采集得到的指纹图像质量满足所需要求。
本实施例中,OLED显示面板中的显示像素单元1131的面积小于或等于光学指纹传感器中的感光像素单元的面积。
在上述面积对比基础上,第一种情况下,可以将光学指纹传感器中的一个感光像素单元和OLED显示面板中的一个显示像素单元1131的上下位置对应起来,从而更好地保证后续的指纹图像采集。具体的,可以将一个感光像素单元正对一个显示像素单元1131,并令感光像素单元的面积与显示像素单元1131的面积相等。显示像素单元1131的透光区11311至少对应于感光像素单元的感光元件。由于两者面积相等,所以两者也可以不用一一正对齐,相互间也可以有一定的错位。从宏观上来看,各个所述感光像素单元和显示像素单元1131的对齐关系是一致的,所以可以保证各个感光像素单元的接收到的发射(反射)光信号是均匀的。
在上述面积对比基础上,第二种情况下,也可以是多个显示像素单元1131对应一个所述感光像素单元。也就是说,可以是一个所述感光像素单元对应两个或者两个以上显示像素单元1131(即感光像素单元的面积小于显示像素单元1131的面积)。从宏观上来看,各个感光像素单元和两个或者两个以上显示像素单元1131的对齐关系是一致的,所以可以保证各个感光像素单元的接收到的发射(反射)光信号是均匀的。
本实施例所提供的显示模组在进行指纹采集时的原理为:点状背光源130发出的光线通过透光胶140后,斜向上进入第二基板112,并从第二基板112进入自发光电路层113的透光区11311,再从透光区11311斜向上穿过自发光电路层113而进入第一基板111;而本实施例中,第一基板111直接用于手指指纹的接触或按压,因此,光线会在第一基板111上表面和指纹形成的界面处发生折射、反射和吸收等各种光学现象,相应会有部分反射光线产生;反射光线返回第一基板111中,再从第一基板斜向下进入自发光电路层113的透光区11311,并从透光区11311斜向下穿过自发光电路层113,从而进入第二基板112,再从第二基板112进入指纹感测电路层121,被指纹感测电路121中的各个感光像素单元所接收(具体被感光像素单元的感光元件吸收),经过信号处理,实现相应指纹图像的采集。具体上述过程可以同时参考图1中的黑色箭头(未标注),黑色箭头代表光线,但省略表示光线的相应折射过程。
上述过程中,由于点状背光源130位于指纹感测电路层121侧边,易知,相应的光线在第二基板112下表面的入射角为锐角,光线最终反射回来后,反射光线在指纹感测电路层121上表面的入射角也为锐角。因此,此时,点状背光源130发出的光线能够按相应的偏移量产生相应的指纹图像,因此,整个光学指纹传感器模组不需要导光板和聚光透镜等结构,就能够实现指纹图像的识别,并且,形成的指纹图像比采用导光板结构的光源更加清晰。
本实施例所提供的显示模组中,所述光学指纹传感器和点状背光源130均位于自发光显示面板中第二基板112下方,点状背光源130又位于所述光学指纹传感器侧边,同时自发光显示面板具有透光区,因此,可以使得点状背光源130发出的光线来回穿过自发光显示面板,从而能够实现对手指指纹图像的采集,并且,采集到的指纹图像清晰,使显示模组集成有良好的指纹识别功能。
本发明实施例所提供的显示模组中,在自发光显示面板(OLED显示面板)下放置光学指纹传感器,并通过相应的使用方法,能够实现在显示模组的显示区域内采集指纹图像,从而能够减小应用这种显示面板的电子产品外观尺寸,提高电子产品的屏占比,提高电子产品的外观美观度(例如可以提高手机产品的屏占比,提高手机产品的外观美观度)。
本发明实施例还提供一种显示模组的使用方法,所述显示模组为前述实施例所提供,因此,可以参考图1。由前述实施例可知,所述显示模组包括自发光显示面板、光学指纹传感器和点状背光源130。自发光显示面板包括第一基板111、第二基板112和自发光电路层113,自发光电路层113位于第一基板111和第二基板112之间,自发光电路层113包括多个显示像素单元1131,每个显示像素单元1131包括至少一个非透光区和至少一个透光区,透光区的高度等于自发光电路层113的高度。光学指纹传感器位于第二基板112下方,光学指纹传感器包括指纹感测电路层121和衬底基板122,指纹感测电路层121位于第二基板112和衬底基板122之间。点状背光源130位于第二基板112下方,点状背光源130位于光学指纹传感器的侧边,点状背光源130发出的光线以斜向上的角度进入第二基板112。更多有关所述显示模组的结构及性质可参考前述实施例相应内容。
本实施例所提供的使用方法包括:将自发光显示面板中与光学指纹传感器相对的显示区域定义为第一显示区域,其它部分的显示区域定义为第二显示区域;当光学指纹传感器进行指纹图像采集工作时,
控制第一显示区域停止显示工作。
本实施例中,设置第一显示区域,是为了防止自发光显示面板的光线与点状背光源130发出的光线相互干扰。通过控制第一显示区域停止显示工作,本实施例可以使得进行指纹图像采集时,不受自发光显示面板的影响。
本实施例所提供的使用方法还包括:当光学指纹传感器进行指纹图像采集工作时,控制第二显示区域显示与指纹图像采集工作相关联的信息。例如,在第二显示区域显示“请在非显示区域录入指纹”,在指纹录入过程中,显示“录入正确”或者“请再次录入”等信息,在采集到正确的指纹时,可以显示“有效指纹”等信息,或者根据指纹操作显示“操作成功”等消息。这种使用方法能够使得显示功能和指纹识别功能相互配合起来,实现更好的用户使用体验。
所述使用方法还可以进一步开拓指纹识别功能的应用场景,例如,在光学指纹传感器未进行工作之前,令所述第一显示区域显示相应的显示图标,指示用户将手指放入图标内。当用户将手指放入显示图标的区域后,可利用现有的显示面板自身或外带的触控功能,感知用户已经将手指放入了第一显示区域,从而可以控制光学指纹传感器进入工作状态,此时,按压指纹的指纹图像会被第一显示区域下方的光学指纹传感器采集,完成指纹图像采集功能,并且,可以进一步运用于与内部储存的已有指纹图像进行识别,进一步运用进行加密/解锁等功能。
本发明另一实施例提供另一种显示模组,请参考图2。
所述显示模组包括保护层210、自发光显示面板(未标注)、光学指纹传感器230和点状背光源240。
所述显示模组中,自发光显示面板包括第一基板221、第二基板222和自发光电路层223。自发光电路层223位于第一基板221和第二基板222之间。自发光显示面板还包括密封结构224。密封结构224
也位于第一基板221和第二基板222之间。密封结构224与第一基板221和第二基板222一起,将自发光电路层223密封在第一基板221和第二基板222之间。
所述显示模组中,保护层210位于所述第一基板221上方。与图1中直接采用第一基板111作为手指接触的结构不同,本实施例中,采用保护层210作为手指接触的结构,并且保护层210可以同时起到保护自发光显示面板、光学指纹传感器230和点状背光源240等结构的作用。
本实施例中,保护层210为单层结构,即保护层210可以为一个基板,如图2所示。其它实施例中,保护层也可以为多层结构。
本实施例中,第一基板221和第二基板222的材料可以为透明材料。
所述自发光显示面板中,自发光电路层223包括多个显示像素单元2231(图2中用虚线框示意出显示像素单元2231的相邻关系)。每个显示像素单元2231包括至少一个非透光区和至少一个透光区22311,图2中示意出一个透光区22311(即其中一个透光区22311所在范围如图2中最小的虚线框包围的范围所示)。
本实施例中,所述自发光显示面板为OLED显示面板,可参考图1对应实施例相应内容。
本实施例设置透光区22311的高度等于自发光电路层223的高度,如图2所示,从而保证光线能够从透光区穿过自发光电路层223。而光线能够从透光区穿过自发光电路层223,保证了显示模组能够进行指纹图像采集。
显示像素单元2231的具体结构可参考图1对应实施例相应内容。
如图2所示,光学指纹传感器230位于第二基板222下方。也就是说,光学指纹传感器230位于所述自发光显示面板下方。
如图2所示,光学指纹传感器230包括指纹感测电路层(未示出)和衬底基板(未示出),所述指纹感测电路层位于第二基板222和衬底基板之间,可参考图1对应实施例相应内容。
光学指纹传感器230的所述指纹感测电路层包括多个感光像素单元(未示出),更多结构可参考图1对应实施例相应内容。
本实施例中,点状背光源240位于第二基板222下方,点状背光源240位于光学指纹传感器230的侧边,点状背光源240发出的光线以斜向上的角度进入第二基板222。
本实施例将点状背光源240设置于光学指纹传感器230的侧边,能够保证用于采集指纹图像的反射光线,一定是以斜入射的角度进入光学指纹传感器230的(即斜向下入射进入光学指纹传感器230,详细过程可参考图1对应实施例相应内容)。相比于采用导光板的面光源而言,这种点状背光源240的设置能够使得光线基本沿同一个方向偏移(而导光板的光线是各个方向杂乱的,偏移方向不一),避免了光线之间的相互干扰和相互影响(而导光板的光线之间会相互干扰和影响),并且,距离点状背光源240位置相近的光线偏移量相近,从而能够得到清晰的指纹图像,提高模组的指纹识别性能。
本实施例中,点状背光源240可以为一个LED灯。所述LED灯的光可以为近紫外光、紫色光、蓝色光、绿色光、黄色光、红色光、近红外光或白色光。
需要说明的是,其它实施例中,点状背光源可以为两个以上LED灯,两个以上LED灯均匀分布在第二基板的下方,LED灯的光为近紫外光、紫色光、蓝色光、绿色光、黄色光、红色光、近红外光或白色光。例如,所述点状背光源可以为四个LED灯,四个LED灯均匀分布在第二基板的下方,同时均匀分布在光学指纹传感器230侧边,或者四个灯同时均匀分布在光学指纹传感器230的四个角。此时,四个LED灯发出的光线虽然各自都可能是非平行光,但是同时利用这四个LED灯,可以实现对非平行光时的图像畸变的矫正。具体的,
四个LED灯可以采取轮流采图(轮流采图指四个灯按时序先后分别进行采图)的方式,然后通过图像处理,做畸变校正,提高指纹图像质量,提高指纹识别准确性。当然,当点状背光源为多个LED灯的情况下,在进行指纹图像采集时,可以选择任意一个LED灯的光线作为指纹图像的成像光线,此时本实施例与图1对应实施例的成像效果类似。
如图2所示,所述显示模组中,在点状背光源240与第二基板222之间具有透光胶250,点状背光源240发出的光线从点状背光源240的出光面进入透光胶250,再从透光胶250进入第二基板222。透光胶250的设置可以使点状背光源240发出的光线更多更好地入射至第二基板222,减少界面反射,透光胶250的折射率大于1,减小进入第二基板222的光线的折射幅度。而如果不设置透光胶,点状背光源发出的光线需要经过真空或者空气后,再进入第二基板,而光线在真空或空气与第二基板表面形成的界面较易发生反射的情况,并且空气还会使得一些光线发生散射等不利影响。
所述显示模组中,点状背光源240与光学指纹传感器230之间具有间隔(未标注),可以参考图1对应实施例相应内容。
本实施例中,图2中虽未显示,但所述显示模组中,所述自发光显示面板与光学指纹传感器230之间可以具有光学胶,可以参考图1对应实施例相应内容。
本实施例中,图2中虽未显示,但所述显示模组中,所述自发光显示面板与保护层210之间可以具有光学胶,所述光学胶的存在避免了所述自发光显示面板与保护层210之间存在空气的可能,从而使得显示模组的光学性能更好。
需要说明的是,在OLED显示面板与光学指纹传感器230直接层叠或者与光学胶粘合的情况下,本实施例设置光学指纹传感器230的感光像素单元到第一基板221上表面的距离较小,以确保使得指纹采集得到的指纹图像质量满足所需要求。
本实施例中,图中虽未显示,但可以将光学指纹传感器230中的感光像素单元和OLED显示面板中的显示像素单元2231的上下位置对应起来,从而更好地保证后续的指纹图像采集。可以将一个感光像素单元对应四个显示像素单元2231,并令感光像素单元的面积等于四个显示像素单元2231的面积。
本实施例所提供的显示模组在进行指纹采集时,其原理大部分与图1对应实施例的原理相同,不同之处在于,本实施例中光线在未到达手指指纹之前,会继续从第一基板221斜向上传播至保护层210,并在保护层210上表面与手指指纹形成的界面发生折射和反射等光学现象,然后再产生斜向下返回保护层210的反射光线。具体上述过程可以同时参考图2中的黑色箭头(未标注),黑色箭头代表光线,但省略表示光线的相应折射过程。
本实施例中,在透光胶250和第二基板222下表面还具有光增透层260,光增透层260能够增加点状背光源240的光线进入第二基板222的比例,因此,在进行指纹图像采集时,能够利用更多光线进行指纹图像的采集,从而得到清晰度和准确度更高的指纹图像,进一步提高显示模组的性能。
需要说明的是,其它实施例中,点状背光源的出光面前面可以具有聚光透镜,聚光透镜能够使点状背光源的光线转换为平行光或近平行光(所述近平行光指光线之间的角度差异小于10度),点状背光源的光线先进入聚光透镜,再进入第二基板。聚光透镜的设置可以进一步避免指纹图像发生畸变的问题。
更多本实施例所提供的显示模组的结构和优点可以参考图1对应实施例相应内容。
本发明另一实施例还提供另一种显示模组的使用方法,所述显示模组为前一实施例所提供,因此,可以参考图2。由前一实施例可知,所述显示模组包括保护层210、所述自发光显示面板、光学指纹传感器230和点状背光源240。自发光显示面板包括第一基板221、第二
基板222和自发光电路层223,自发光电路层223位于第一基板221和第二基板222之间,自发光电路层223包括多个显示像素单元2231,每个显示像素单元2231包括至少一个非透光区和至少一个透光区,透光区的高度等于自发光电路层223的高度。光学指纹传感器230位于第二基板222下方,光学指纹传感器230包括所述指纹感测电路层和衬底基板222,所述指纹感测电路层位于第二基板222和衬底基板222之间。点状背光源240位于第二基板222下方,点状背光源240位于光学指纹传感器230的侧边,点状背光源240发出的光线以斜向上的角度进入第二基板222。更多有关所述显示模组的结构及性质可参考前一实施例相应内容。
本实施例所提供的使用方法包括:将自发光显示面板中与光学指纹传感器230相对的显示区域定义为第一显示区域,其它部分的显示区域定义为第二显示区域;当光学指纹传感器230进行指纹图像采集工作时,控制第一显示区域停止显示工作。
通过控制第一显示区域停止显示工作,本实施例可以使得进行指纹图像采集时,不受自发光显示面板的影响。
本实施例所提供的使用方法还包括:当光学指纹传感器230进行指纹图像采集工作时,控制第二显示区域显示与指纹图像采集工作相关联的信息。例如,在第二显示区域显示“请在非显示区域录入指纹”,在指纹录入过程中,显示“录入正确”或者“请再次录入”等信息,在采集到正确的指纹时,可以显示“有效指纹”等信息,或者根据指纹操作显示“操作成功”等消息。这种使用方法能够使得显示功能和指纹识别功能相互配合起来,实现更好的用户使用体验。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。
Claims (10)
- 一种显示模组,包括:自发光显示面板,所述自发光显示面板包括第一基板、第二基板和自发光电路层,所述自发光电路层位于所述第一基板和所述第二基板之间,所述自发光电路层包括多个显示像素单元;其特征在于,每个所述显示像素单元包括至少一个非透光区和至少一个透光区;还包括:光学指纹传感器,所述光学指纹传感器位于所述第二基板下方,所述光学指纹传感器包括指纹感测电路层和衬底基板,所述指纹感测电路层位于所述第二基板和所述衬底基板之间;点状背光源,所述点状背光源位于第二基板下方,所述点状背光源位于所述光学指纹传感器的侧边,所述点状背光源发出的光线以斜向上的角度进入所述第二基板。
- 如权利要求1所述的显示模组,其特征在于,还包括保护层,所述保护层位于所述第一基板上方。
- 如权利要求1或2所述的显示模组,其特征在于,所述点状背光源与所述第二基板之间具有透光胶,所述点状背光源发出的光线从所述点状背光源的出光面进入所述透光胶,再从所述透光胶进入所述 第二基板。
- 如权利要求1或2所述的显示模组,其特征在于,所述点状背光源与所述光学指纹传感器之间具有间隔。
- 如权利要求1或2所述的显示模组,其特征在于,所述点状背光源的出光面前面具有聚光透镜,所述聚光透镜能够使所述点状背光源的光线转换为平行光或近平行光,所述点状背光源的光线先进入所述聚光透镜,再进入所述第二基板。
- 如权利要求1或2所述的显示模组,其特征在于,所述第二基板下表面靠近所述点状背光源的区域还包括光增透层,所述光增透层能够增加所述点状背光源的光线进入所述第二基板的比例。
- 如权利要求2所述的显示模组,其特征在于,所述自发光显示面板与所述光学指纹传感器之间具有光学胶;所述自发光显示面板与所述保护层之间具有光学胶。
- 如权利要求1或2所述的显示模组,其特征在于,所述点状背光源为一个LED灯,所述LED灯的光为近紫外光、紫色光、蓝色光、绿色光、黄色光、红色光、近红外光或白色光;或者,所述点状背光源为两个以上LED灯,所述两个以上LED灯均匀分布在所述第二基板的下方,所述LED灯的光为近紫外光、紫色光、蓝色光、绿色光、黄色光、红色光、近红外光或白色光。
- 一种显示模组的使用方法,其特征在于,所述显示模组包括:自发光显示面板,所述自发光显示面板包括第一基板、第二基板和自发光电路层,所述自发光电路层位于所述第一基板和所述第二基板之间,所述自发光电路层包括多个显示像素单元,每个所述显示像素单元包括至少一个非透光区和至少一个透光区;光学指纹传感器,所述光学指纹传感器位于所述第二基板下方,所述光学指纹传感器包括指纹感测电路层和衬底基板,所述指纹感测电路层位于所述第二基板和所述衬底基板之间;点状背光源,所述点状背光源位于第二基板下方,所述点状背光源位于所述光学指纹传感器的侧边,所述点状背光源发出的光线以斜向上的角度进入所述第二基板;所述使用方法包括:将所述自发光显示面板中与所述光学指纹传感器相对的显示区域定义为第一显示区域,其它部分的显示区域定义为第二显示区域;当所述光学指纹传感器进行指纹图像采集工作时,控制所述第一显示区域停止显示工作。
- 如权利要求9所述的使用方法,其特征在于,还包括:当所述光学指纹传感器进行指纹图像采集工作时,控制所述第二显示区域显示与指纹图像采集工作相关联的信息。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611131880.1A CN108227973A (zh) | 2016-12-09 | 2016-12-09 | 显示模组及其使用方法 |
CN201611131880.1 | 2016-12-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018103196A1 true WO2018103196A1 (zh) | 2018-06-14 |
Family
ID=62491764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/073617 WO2018103196A1 (zh) | 2016-12-09 | 2017-02-15 | 显示模组及其使用方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108227973A (zh) |
WO (1) | WO2018103196A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109299708A (zh) * | 2018-11-30 | 2019-02-01 | 上海箩箕技术有限公司 | 光学指纹传感器模组及其形成方法 |
CN109564629A (zh) * | 2018-10-15 | 2019-04-02 | 深圳市汇顶科技股份有限公司 | 指纹检测装置及具有指纹识别功能的终端设备 |
CN110785771A (zh) * | 2019-01-22 | 2020-02-11 | 深圳市汇顶科技股份有限公司 | 屏下光学指纹识别系统、指纹识别显示装置及电子设备 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110458124B (zh) * | 2019-08-16 | 2024-09-20 | 深圳阜时科技有限公司 | 光学检测装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014198259A1 (de) * | 2013-06-12 | 2014-12-18 | Dan Hossu | Verfahren zur optischen erfassung eines fingerabdrucks oder eines gegenstandes und vorrichtung mit mindestens einem bildschirm |
CN104318199A (zh) * | 2014-06-23 | 2015-01-28 | 上海箩箕技术有限公司 | 复合式光学传感器及其制作方法和使用方法 |
CN105184282A (zh) * | 2015-10-14 | 2015-12-23 | 京东方科技集团股份有限公司 | 光学指纹检测装置及显示设备 |
CN105844233A (zh) * | 2016-03-21 | 2016-08-10 | 京东方科技集团股份有限公司 | 一种指纹识别模组、指纹识别装置及显示装置 |
CN106022325A (zh) * | 2016-08-05 | 2016-10-12 | 上海箩箕技术有限公司 | 光学指纹传感器模组 |
CN106203408A (zh) * | 2016-08-31 | 2016-12-07 | 上海箩箕技术有限公司 | 光学指纹传感器模组 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103699884A (zh) * | 2013-12-18 | 2014-04-02 | 格科微电子(上海)有限公司 | 光学指纹采集方法、光学指纹采集装置及便携式电子装置 |
CN104898314B (zh) * | 2014-03-07 | 2018-01-05 | 敦泰电子有限公司 | 显示装置及其驱动电路和驱动方法、电子设备 |
-
2016
- 2016-12-09 CN CN201611131880.1A patent/CN108227973A/zh active Pending
-
2017
- 2017-02-15 WO PCT/CN2017/073617 patent/WO2018103196A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014198259A1 (de) * | 2013-06-12 | 2014-12-18 | Dan Hossu | Verfahren zur optischen erfassung eines fingerabdrucks oder eines gegenstandes und vorrichtung mit mindestens einem bildschirm |
CN104318199A (zh) * | 2014-06-23 | 2015-01-28 | 上海箩箕技术有限公司 | 复合式光学传感器及其制作方法和使用方法 |
CN105184282A (zh) * | 2015-10-14 | 2015-12-23 | 京东方科技集团股份有限公司 | 光学指纹检测装置及显示设备 |
CN105844233A (zh) * | 2016-03-21 | 2016-08-10 | 京东方科技集团股份有限公司 | 一种指纹识别模组、指纹识别装置及显示装置 |
CN106022325A (zh) * | 2016-08-05 | 2016-10-12 | 上海箩箕技术有限公司 | 光学指纹传感器模组 |
CN106203408A (zh) * | 2016-08-31 | 2016-12-07 | 上海箩箕技术有限公司 | 光学指纹传感器模组 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109564629A (zh) * | 2018-10-15 | 2019-04-02 | 深圳市汇顶科技股份有限公司 | 指纹检测装置及具有指纹识别功能的终端设备 |
CN109564629B (zh) * | 2018-10-15 | 2023-07-11 | 深圳市汇顶科技股份有限公司 | 指纹检测装置及具有指纹识别功能的终端设备 |
CN109299708A (zh) * | 2018-11-30 | 2019-02-01 | 上海箩箕技术有限公司 | 光学指纹传感器模组及其形成方法 |
CN109299708B (zh) * | 2018-11-30 | 2024-05-14 | 上海箩箕技术有限公司 | 光学指纹传感器模组及其形成方法 |
CN110785771A (zh) * | 2019-01-22 | 2020-02-11 | 深圳市汇顶科技股份有限公司 | 屏下光学指纹识别系统、指纹识别显示装置及电子设备 |
CN110785771B (zh) * | 2019-01-22 | 2023-09-08 | 深圳市汇顶科技股份有限公司 | 屏下光学指纹识别系统、指纹识别显示装置及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN108227973A (zh) | 2018-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018103194A1 (zh) | 显示模组及其使用方法 | |
WO2018103195A1 (zh) | 显示模组及其使用方法 | |
WO2018103193A1 (zh) | 显示模组及其使用方法 | |
WO2017166581A1 (zh) | 光学指纹传感器模组 | |
WO2017166580A1 (zh) | 光学指纹传感器模组 | |
US10763315B2 (en) | Display apparatus including light receiving pixel area | |
US8717337B2 (en) | Photo sensing touch sensing liquid crystal display device | |
WO2017219677A1 (zh) | 一种指纹识别显示面板及显示装置 | |
WO2018023722A1 (zh) | 显示模组 | |
WO2018120655A1 (zh) | 自发光显示面板、显示模组和显示模组的使用方法 | |
CN107145868A (zh) | 显示模组 | |
KR20180070785A (ko) | 표시패널 및 이를 포함하는 표시장치 | |
WO2018103196A1 (zh) | 显示模组及其使用方法 | |
US10929640B2 (en) | Flat panel display with optical image sensor embedded therein | |
WO2019019045A1 (zh) | 光学指纹传感器模组 | |
WO2019148805A1 (zh) | 显示组件及其制备方法、显示装置 | |
CN109308431A (zh) | 光学指纹传感器模组 | |
KR20210022229A (ko) | 전자 패널 및 이를 포함하는 전자 장치 | |
KR102242652B1 (ko) | 포토 센싱 화소를 갖는 표시 장치 | |
WO2021136140A1 (zh) | 显示模组及电子设备 | |
WO2018029442A1 (en) | Touch screen display | |
TWI764608B (zh) | 一種顯示裝置及其影像感測方法 | |
WO2018205121A1 (zh) | 显示模组 | |
KR102505333B1 (ko) | 전자장치 및 이에 구비된 표시모듈 | |
WO2018205124A1 (zh) | 显示模组 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17877720 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/09/2019) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17877720 Country of ref document: EP Kind code of ref document: A1 |