[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018101691A1 - 유기 발광 소자 - Google Patents

유기 발광 소자 Download PDF

Info

Publication number
WO2018101691A1
WO2018101691A1 PCT/KR2017/013613 KR2017013613W WO2018101691A1 WO 2018101691 A1 WO2018101691 A1 WO 2018101691A1 KR 2017013613 W KR2017013613 W KR 2017013613W WO 2018101691 A1 WO2018101691 A1 WO 2018101691A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
light emitting
group
organic light
Prior art date
Application number
PCT/KR2017/013613
Other languages
English (en)
French (fr)
Inventor
조성미
이정하
이동훈
박태윤
문정욱
정민우
이주영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170154011A external-priority patent/KR102078302B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/079,544 priority Critical patent/US20190058131A1/en
Priority to EP17875864.5A priority patent/EP3415585B1/en
Priority to JP2018549309A priority patent/JP6682749B2/ja
Priority to CN201780016836.2A priority patent/CN108779392B/zh
Publication of WO2018101691A1 publication Critical patent/WO2018101691A1/ko

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene

Definitions

  • the present invention relates to an organic light emitting device having improved driving voltage, efficiency and lifetime.
  • organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material.
  • the organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, and fast response time. Many studies have been conducted because of excellent luminance, driving voltage, and stepping speed characteristics.
  • the organic light emitting device generally has a structure including an anode and a cathode and an organic layer between the anode and the cathode.
  • the organic layer is often formed of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device, for example, a hole injection layer, a hole transport layer, a light emitting layer. It may be composed of an electron transport layer, an electron injection layer and the like.
  • Patent Document 0001 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to an organic light emitting device having improved driving voltage, efficiency and lifetime.
  • the present invention provides the following organic light emitting device:
  • cathode anode; And at least one light emitting layer between the cathode and the anode,
  • the emission layer includes a first host compound represented by the following Chemical Formula 1 and a second host compound represented by the following Chemical Formula 2,
  • 3 ⁇ 4 is substituted or unsubstituted d-60 alkyl; Substituted or unsubstituted C 3 -60 cycloalkyl; Substituted or unsubstituted C 6 -60 aryl; Or substituted or unsubstituted 0, N.
  • C 2 -60 heteroaryl comprising at least one of Si and S,
  • R 3 ⁇ 4 and R 3 are each independently hydrogen; heavy hydrogen; halogen; Cyano; Substituted or unsubstituted alkyl; Or substituted or unsubstituted C 3 -60 cycloalkyl, n is an integer from 0 to 4,
  • n is an integer of 0 to 3
  • Y is 0, S, or CR 4 R 5 ,
  • R 4 and 3 ⁇ 4 are each independently hydrogen; heavy hydrogen; halogen; Cyano; substitution Or unsubstituted d-60 alkyl; Substituted or unsubstituted C 3 -60 cycloalkyl; Or substituted or unsubstituted C 6 -60 aryl,
  • Ar is represented by the following formula 1 ',
  • L is a single bond; A substituted or unsubstituted C 6 - 60 arylene; Or C 2 — 60 heteroarylene including one or more of 0, N, Si, and substituted or unsubstituted,
  • Xi to 3 ⁇ 4 are each independently N, or CR 6 , provided that at least one of 3 ⁇ 4 is N,
  • Each R 6 is independently hydrogen; heavy hydrogen; halogen; Cyano; Nitro; Amino; Substituted or unsubstituted d— 60 alkyl; Substituted or unsubstituted d-60 haloalkyl; Substituted or unsubstituted d-60 haloalkoxy; Substituted or unsubstituted C 3 -60 cycloalkyl; Substituted or unsubstituted C 2 -60 alkenyl; Substituted or unsubstituted C 6 — 60 aryl; Or ' substituted or unsubstituted 0, N.
  • C 2 -60 heteroaryl comprising at least one of Si and S,
  • An and Ar 2 are each independently substituted or unsubstituted C 6 -60 aryl; Or substituted or unsubstituted C 2 -60 heteroaryl including one or more of 0, N, Si, and S,
  • R 'r ⁇ substituted or unsubstituted C 6 -60 aryl, R ' 2 and R' 3 are each independently hydrogen; heavy hydrogen; halogen; Cyano; Substituted or unsubstituted d-60 alkyl; Substituted or unsubstituted C 3 -60 cycloalkyl; Substituted or unsubstituted C 6 -60 aryl; Or substituted or unsubstituted C 2 -60 heteroaryl including one or more of 0, N, Si, and S,
  • n 'and m' are each independently an integer of 0 to 4,
  • L ' is a single bond; And 60 arylene, substituted or unsubstituted C 6
  • Y ' is 0, S, NR', or CR'R "
  • R ′ and R ′′ are each independently substituted or unsubstituted d-eo alkyl; substituted or unsubstituted C 3 -60 cycloalkyl; substituted or unsubstituted C 6 -60 aryl; or substituted or unsubstituted 0, C 2 -60 heteroaryl comprising at least one of N, Si and S, or R 'and R''together form a substituted or unsubstituted C 6 -60 aromatic ring.
  • the organic light emitting device described above is excellent in driving voltage, efficiency and lifespan.
  • FIG. 1 shows an example of an organic light emitting element consisting of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4,
  • FIG. 2 shows a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, and a light emitting layer 7.
  • the example of the organic light emitting element which consists of the electron carrying layer 8 and the cathode 4 is shown.
  • the term "substituted or unsubstituted” is deuterium; Halogen group; Nitrile group; Nitro group; Hydroxyl group; Carbonyl group; Ester group; Imide group; Amino group; Phosphine oxide groups; An alkoxy group; Aryloxy group; Alkyl thioxy group; .Arylthioxy group; Alkyl sulfoxy groups; Aryl sulfoxy group; Silyl groups; Boron group; An alkyl group; Cycloalkyl group; Alkenyl groups; Aryl group; Aralkyl group; Ar alkenyl group; Alkyl aryl group; Alkylamine group; Aralkyl amine groups; Heteroarylamine group; Arylamine group; Aryl phosphine group; Or substituted or unsubstituted with one or more substituents selected from the group consisting of heterocyclic groups containing one or more of N,
  • a substituent to which two or more substituents are linked may be a biphenyl group. That is, the biphenyl group may be an aryl group, and can be interpreted as a substituent to which two sonyl groups are linked.
  • carbon number of a carbonyl group in this specification is not specifically limited, It is preferable that it is C1-C40. Specifically, it may be a compound having a structure as follows, but is not limited thereto.
  • the oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms. Specifically, it may be a compound of the following structural formula, but is not limited thereto.
  • the carbon number of the imide group is not particularly limited, It is preferable that it is C1-C25. Specifically, it may be a compound having a structure as follows, but is not limited thereto.
  • the silyl group is specifically trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group. Propyl dimethyl silyl group, triphenyl silyl group. Diphenylsilyl group, phenylsilyl group and the like, but is not limited thereto.
  • the boron group specifically includes trimethylboron group, triethylboron group, t-butyldimethylboron group, triphenylboron group, phenylboron group, etc. It is not limited to this. Examples of halogen groups in the present specification include fluorine, chlorine, bromine and iodine.
  • the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n ⁇ Pentyl, isopentyl, neopentyl, tert-pentyl, nuclear chamber, n-nuclear chamber, 1-methylpentyl. 2-methylpentyl, 4-methyl-2-pentyl, 3,3—dimethylbutyl, 2-ethylbutyl, heptyl, n-heptyl.
  • 1-methylnuclear chamber Cyclopentylmethyl, cyclonukylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylnuclear, 2-propylpentyl, n-nonyl, 2,2-dimethylheptyl, 1-ethyl-propyl ⁇ 1, 1-dimethyl-propyl, isonuclear chamber, 2'methylpentyl, 4-methylnuclear chamber, 5-methylnuclear chamber, and the like, but is not limited thereto.
  • the alkenyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms. Specific examples include vinyl, 1-propenyl and isopropenyl.
  • the cycloalkyl group is not particularly limited, but is preferably 3 to 60 carbon atoms, and according to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms. Specifically cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl.
  • Cyclonuclear chamber 3-methylcyclonuclear chamber, 4 'methylcyclonuclear chamber, 2,3-dimethylcyclonuclear chamber, 3, 4, 5-trimethylcyclonuclear chamber, 4-tert-butylcyclonuclear chamber, cycloheptyl, cyclooctyl, etc. It is not limited to this.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the aryl group has 6 to 30 carbon atoms. Work According to the exemplary embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a monocyclic aryl group, but may be a phenyl group, a biphenyl group, a terphenyl group, etc., but is not limited thereto.
  • the polycyclic aryl group may be naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, perylenyl group, chrysenyl group, fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure. In the case of the fluorenyl group,
  • the heterocyclic group is a heterocyclic group containing one or more of 0, N, Si, and S as a dissimilar element, and the number of carbons is not particularly limited, but it is preferable that the number of carbon atoms? To 60.
  • the heterocyclic group are thiophene group, furan group, pyrrole group.
  • An oxazolyl group thiadiazolyl group, a phenothiazinyl group, a dibenzofuranyl group, etc. are mentioned, but it is not limited to these.
  • an aralkyl group and an aralkenyl group are mentioned, but it is not limited to these.
  • the aryl group in an alkylaryl group and an arylamine group is the same as the example of the aryl group mentioned above.
  • the alkyl group of the aralkyl group, alkylaryl group, alkylamine group of the alkyl group described above Same as the example.
  • the heteroaryl of the heteroarylamine may be applied to the description of the aforementioned heterocyclic group.
  • the alkenyl group in the aralkenyl group is the same as the example of the alkenyl group described above.
  • the description of the aryl group described above may be applied.
  • the heteroarylene is a divalent group
  • the description of the aforementioned heterocyclic group may be applied.
  • the hydrocarbon ring is not a monovalent group, and the description about the aryl group or cycloalkyl group described above may be applied except that two substituents are formed by bonding.
  • the heterocyclic group is not a monovalent group, and the description of the aforementioned heterocyclic group may be applied except that two substituents are formed by bonding.
  • the present invention provides the following organic light emitting device:
  • the anode and cathode used in the present invention means an electrode used in the organic light emitting device.
  • the anode material a material having a large work function is generally preferred to facilitate hole injection into the organic material layer.
  • the positive electrode material include metals such as vanadium, chromium, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, rhythm oxide, tin oxide ( ⁇ (), indium zinc oxide (IZ0); ⁇ : A1 or SN0 2 : A combination of a metal and an oxide such as Sb; Poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene KPED0T), polypy and Conductive polymers such as polyaniline, and the like, but are not limited thereto.
  • the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium yttrium, lithium, gadolinium, aluminum, silver, tin, and lead or alloys thereof; Multilayer structure materials such as LiF / Al or Li / Al, and the like, but are not limited thereto.
  • a hole injection layer may be further included on the anode.
  • the hole injection layer is made of a hole injection material, has a capability of transporting holes as a hole injection material has a hole injection effect at the anode, excellent hole injection effect to the light emitting layer or the light emitting material, and
  • the compound which prevents the movement to an electron injection layer or an electron injection material, and is excellent in thin film formation ability is preferable.
  • the highest occupied molecular orbital (HO) of the hole injection material is between the work function of the anode material and the HOMO of the surrounding organic layer.
  • hole injecting materials include metal porphyr, ligothiophene, arylamine-based organics, nucleonitrile-nuclear azatriphenylene-based organics, and quinacridone-based organics, perylene (perylene) organic materials, anthraquinone and polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
  • Light emitting layer includes metal porphyr, ligothiophene, arylamine-based organics, nucleonitrile-nuclear azatriphenylene-based organics, and quinacridone-based organics, perylene (perylene) organic materials, anthraquinone and polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
  • the light emitting layer according to the present invention includes a first host compound represented by Chemical Formula 1 and a second host compound represented by Chemical Formula 2.
  • a first host compound represented by Chemical Formula 1 and a second host compound represented by Chemical Formula 2.
  • Formula 1 is represented by the following Formula 1-1, -2, or 1-3 Is displayed:
  • 3 ⁇ 4 is phenyl; Or biphenylyl.
  • 3 ⁇ 4 and 3 ⁇ 4 are hydrogen.
  • Y is S or 0.
  • L is a single bond or phenylene.
  • a and Ar 2 are each independently phenyl, phenyl substituted with cyano, biphenylyl, dimethylfluorenyl. Naphthyl, phenanthrenyl, pyridinyl, dibenzofuranyl, or dibenzothiophenyl. Representative examples of the compound represented by Formula 1 are as follows.
  • the compound represented by Formula 1 may be prepared by, for example, the same method as in Banung Formula 1 below.
  • Scheme 1 is a Suzuki coupling reaction, where each reaction is palladium It is preferable to carry out in the presence of a catalyst and a base, and the reaction group for Suzuki coupling reaction can be changed as known in the art. The manufacturing method may be more specific in the production examples to be described later.
  • Chemical Formula 2 preferably,? Is phenyl, biphenylyl, terphenylyl, naphthyl, phenanthreryl, triphenylenyl, dimethylfluorenyl, pyridinyl, di-substituted with cyclonuclear chamber, phenyl, cyano Benzofuranyl, dibenzothiophenyl or 9-phenyl-carbazolyl.
  • n 'is 1 and R'2 is hydrogen or phenyl.
  • R'3 is hydrogen. Tert-butyl, cyano, phenyl, phenyl substituted by cyano, or pyridinyl.
  • Y 'is CR'R ", R' and R" are methyl, or R 'and R "together form a fluorene ring.
  • L' is a single bond, or phenylene
  • Representative examples of the compound represented by Formula 2 are as follows: 61
  • the reaction form 2 is a Suzuki coupling reaction, each reaction is preferably carried out in the presence of a paralysis catalyst and a base, the reaction group for the Suzuki coupling reaction can be changed as known in the art.
  • the manufacturing method may be more specific in the production examples to be described later.
  • the weight ratio of the first host compound and the second host compound is 1:99 to 99: 1.
  • the light emitting layer may include a dopant material in addition to the host compound.
  • the dopant material is not particularly limited as long as it is used in an organic light emitting device, and examples thereof include aromatic amine derivatives, styrylamine compounds, boron complexes, fluoranthene compounds, and metal complexes.
  • the aromatic amine derivatives include condensed aromatic ring derivatives having a substituted or unsubstituted arylamino group, and include pyrene, anthracene, chrysene and periplanthene having an arylamino group, and the styrylamine compound may be substituted or unsubstituted. At least one arylvinyl group is substituted in the substituted arylamine .
  • a substituent selected from the group consisting of an aryl group, silyl group, alkyl group, cycloalkyl group and arylamino group is substituted or unsubstituted.
  • a substituent selected from the group consisting of an aryl group, silyl group, alkyl group, cycloalkyl group and arylamino group is substituted or unsubstituted.
  • styryl amine, styryl diamine, styryl triamine, styryl tetraamine and the like but is not limited thereto.
  • the metal complex includes an rhythm complex and a platinum complex, but are not limited thereto.
  • the organic light emitting device may include a hole injection layer, a hole transport layer, an electron transport layer, and / or an electron transport layer, if necessary.
  • the hole injection layer is a layer for injecting holes from the electrode
  • the hole injection material has the ability to transport holes to have a hole injection effect at the anode, has an excellent hole injection effect to the light emitting layer or the light emitting material
  • the compound which prevents the excitons from moving to the electron injection layer or the electron injection material, and is excellent in thin film formation ability is preferable. It is preferable that the HOMOOiighest occupied molecular orbital) of the hole injection material is between the work function of the anode material and the HOMO of the surrounding organic layer.
  • hole injecting materials include metal porphyr (in), oligothiophene, arylamine-based organics, nucleonitrile-nucleated azatriphenylene-based organics, quinacridone-based organics, and perylene ) Organic materials, anthraquinone and polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the light emitting layer.
  • the hole transport layer is a material that can transport holes from an anode or a hole injection layer to a light emitting layer. This is suitable.
  • Specific examples include an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion, but are not limited thereto.
  • the electron transport layer is a layer that receives electrons from the electron injection layer or the cathode and transports the electrons to the light emitting layer
  • the electron transport material is a material that can inject electrons well from the cathode to the light emitting layer and has high mobility to the electrons.
  • the material is suitable. Specific examples include Al complexes of 8-hydroxyquinoline; Complexes including Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the electron transport layer can be used with any desired cathode material as used in accordance with the prior art.
  • suitable cathode materials are conventional materials having a low work function followed by an aluminum or silver layer.
  • the electron injection layer is a layer for injecting electrons from an electrode, has a capability of transporting electrons, has an electron injection effect from the cathode, an excellent electron injection effect to the light emitting layer or the light emitting material, and the hole injection of excitons generated in the light emitting layer
  • the compound which prevents the movement to a layer and is excellent in thin film formation ability is preferable.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole oxadiazole, triazole, • imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone and the derivatives thereof, metal Complex compounds, nitrogen-containing five-membered ring derivatives, and the like, but are not limited thereto.
  • Examples of the metal complex compound include 8-hydroxyquinolinatolium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8-hydroxyquinolinato) manganese, Tris (8-hydroxyquinolinato) aluminum, Tris (2-methyl-8-hydroxyquinolinato) aluminum, Tris (8-hydroxyquinolinato) gallium, bis (10-hydroxybenzo [h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( 0-cresolato) gallium, bis (2-methyl-8-quinolinato) (1-naphlato) aluminum, bis (2-methyl-8-quinolinato) (2-naphlato) gallium, etc.
  • the present invention is not limited thereto.
  • the organic light emitting device according to the present invention may be manufactured using materials and methods known in the art, except that the light emitting insect includes a first host and a second host.
  • the organic light emitting device according to the present invention may be manufactured by sequentially stacking an anode, an organic material layer, and a cathode on a substrate.
  • PVD physical vapor deposition
  • an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer and / or an electron transport layer thereon, it can be prepared by depositing a material that can be used as a cathode thereon.
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the first host compound and the second host compound may be formed as a light emitting layer by a solution coating method as well as a vacuum deposition method in the manufacture of the organic light emitting device.
  • the solution coating method means spin coating, dip coating, doctor blading ink ink printing, screen printing, spray method, coating coating, but is not limited to these.
  • an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material on a substrate from a cathode material (TO 2003/012890).
  • the manufacturing method is not limited thereto.
  • the organic light emitting device according to the present invention may be a top emission type, a bottom emission type or a double-sided emission type depending on the material used.
  • the aqueous layer was separated, the aqueous layer was separated, and the organic layer was concentrated under reduced pressure, and the concentrated compound was dissolved in ethyl acetate, washed twice with water, separated, anhydrous magnesium sulfate, filtered and concentrated. A small amount of ethyl acetate and excess nucleic acid are added to the concentrated residue.
  • 3-bromo-9H-carbazole (15 g, 61 ⁇ l ol) and (9-phenyl-9H-carbazol-3-yl) boronic acid (18.4 g, 64 ⁇ l ol) are dispersed in 150 iii L of tetrahydrofuran
  • 2 M aqueous carbonic acid aqueous potassium solution (aq. K 2 CO 3 ) (60 mL, 120 miio) was added and tetrakistriphenylphosphinopalladium [Pd (PPh 3 ) 4 ] (1.03 g. 1 mo) was added. The mixture was stirred at reflux for 8 hours.
  • a glass substrate coated with a thin film of I0 (indium t in oxide) having a thickness of 1, 300 A was placed in distilled water in which a detergent was dissolved and ultrasonically cleaned.
  • Fischer Co. product was used as a detergent, and distilled water was filtered secondly with a filter (Fi lter) of Millipore Co., Ltd. (MU l ipore Co.).
  • the ultrasonic cleaning was performed twice with distilled water for 10 minutes.
  • isopropyl alcohol, acetone, and methane were ultrasonically washed with a solvent, dried, and then transported to a plasma cleaner.
  • the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum evaporator.
  • the following HI-1 compound was thermally vacuum deposited to a thickness of 50 A on the ⁇ transparent electrode prepared as above to form a hole injection layer.
  • a hole transport layer is formed by thermal vacuum deposition of the following HT-—1 compound at a thickness of 250 A on the hole injection layer; and an electron blocking layer is formed by vacuum deposition of the following HT-2 compound at a thickness of 50 A on a HT-1 deposition film. It was.
  • the above-described compound 1-1 and the above-described compound 2-1 were deposited on the HT-2 deposited film by co-evaporation at the weight ratio of Table 1 below, wherein the weight ratio of Table 1 (1; Compound 1-1) , Compound 2-1, and YGD compound) were co-deposited as a phosphorescent dopant to form a light emitting layer having a thickness (400A) of Table 1 below.
  • the following ET-1 compound was vacuum deposited to a thickness of 250 A on the light emitting layer, and the following ET-2 compound was co-deposited with Li in a 2% weight ratio to a thickness of 100 A to form an electron transporting layer and an electron injection layer.
  • Aluminum was deposited to a thickness of 1000 A on the electron injection layer to form a cathode.
  • the organic light emitting device was manufactured by the same method as Experimental Example 1, except that the phosphorescent host material and the dopant content were changed as in Table 1 when forming the emission layer. Each was produced.
  • the host materials A to C used at this time are as follows.
  • T95 means the time required to reduce the luminance to 95% when the initial luminance at the current density of 50 niA / cm 2 is 100%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 구동 전압, 효율 및 수명이 개선된 유기발광 소자를 제공한다.

Description

【발명의 명칭】
유기 발광 소자
【기술분야】
관련 출원 (들)과의 상호 인용
본 출원은 2016년 11월 29일자 한국 특허 출원 제 10-2016-
01603기호 및 2017년 11월 17일자 한국 특허 출원 제 10-2017-0154011호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. 본 발명은 구동 전압, 효율 및 수명이 개선된 유기 발광 소자에 관한 것이다.
[배경기술】
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기 에너지를 빛 에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 웅답 시간을 가지며. 휘도, 구동 전압 및 웅답 속도 특성이 우수하여 많은 연구가 진행되고 있다. 유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입충, 정공수송층, 발광층. 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고ᅳ 주입된 정공과 전자가 만났을 때 엑시톤 (exc i ton)이 형성되며, 이 액시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. 상기와 같은 유기 발광 소자에서, 구동 전압, 효율 및 수명이 개선된 유기 발광 소자의 개발이 지속적으로 요구되고 있다.
【선행기술문헌】 [특허문헌]
(특허문헌 0001) 한국특허 공개번호 제 10-2000-0051826호
【발명의 내용】
【해결하려는 과제】
본 발명은 구동 전압, 효율 및 수명이 개선된 유기 발광 소자에 관한 것이다.
【과제의 해결 수단】
본 발명은 하기의 유기 발광 소자를 제공한다:
음극; 양극; 및 상기 음극과 양극 사이에 적어도 하나 이상의 발광층을 포함하고,
상기 발광층은 하기 화학식 1로 표시되는 제 1 호스트 화합물 및 하기 화학식 2로 표시되는 게 2 호스트 화합물을 포함하는,
유기 발광 소자:
Figure imgf000003_0001
상기 화학식 1에서,
¾은 치환 또는 비치환된 d-60 알킬 ; 치환 또는 비치환된 C3-60 사이클로알킬; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 0, N . Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고,
¾ 및 R3는 각각 독립적으로 수소; 중수소; 할로겐; 시아노; 치환 또는 비치환된 알킬 ; 또는 치환 또는 비치환된 C3-60사이클로알킬이고, n은 0 내지 4의 정수이고,
m은 0 내지 3의 정수이고,
Y는 0, S , 또는 CR4R5이고,
R4 및 ¾는 각각 독립적으로 수소; 중수소; 할로겐; 시아노; 치환 또는 비치환된 d-60 알킬 ; 치환 또는 비치환된 C3-60 사이클로알킬 ; 또는 치환 또는 비치환된 C6-60 아릴이고,
Ar은 하기 화학식 1 '로 표시되고,
Figure imgf000004_0001
L은 단일 결합; 치환 또는 비치환된 C6-60 아릴렌; 또는 치환 또는 비치환된 0, N, Si 및 S 중 1개 이상을 포함하는 C260 헤테로아릴렌이고,
Xi 내지 ¾은 각각 독립적으로 N , 또는 CR6이고, 단 내지 ¾ 중 적어도 하나는 N이고,
R6는 각각 독립적으로 수소; 중수소; 할로겐; 시아노; 니트로; 아미노; 치환 또는 비치환된 d— 60 알킬 ; 치환 또는 비치환된 d-60 할로알킬 ; 치환 또는 비치환된 d-60 할로알콕시 ; 치환 또는 비치환된 C3-60 사이클로알킬 ; 치환 또는 비치환된 C2-60 알케닐; 치환 또는 비치환된 C660 아릴 ; 또는'치환 또는 비치환된 0, N . Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고,
An 및 Ar2는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 0, N , Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고,
[화학식 2]
Figure imgf000004_0002
상기 화학식 2에서ᅳ
R' r^ 치환 또는 비치환된 C6-60 아릴이고, R'2 및 R'3은 각각 독립적으로, 수소; 중수소; 할로겐; 시아노; 치환 또는 비치환된 d-60 알킬 ; 치환 또는 비치환된 C3-60 사이클로알킬 ; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 0, N, Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고,
n' 및 m'은 각각 독립적으로 0 내지 4의 정수이고,
L'은 단일 결합; 치환 또는 비치환된 C6-60 아릴렌이고,
Y'는 0, S, NR' , 또는 CR'R"이고,
R' 및 R"는 각각 독립적으로 치환 또는 비치환된 d-eo 알킬; 치환 또는 비치환된 C3-60 사이클로알킬; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 0, N, Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고, 또는 R' 및 R"가 함께 치환 또는 비치환된 C6-60 방향족 고리를 형성한다.
[발명의 효과]
상술한 유기 발광 소자는, 구동 전압, 효율 및 수명이 우수하다.
【도면의 간단한 설명】
도 1은 기판 (1), 양극 (2), 발광층 (3), 음극 (4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다,
도 2는 기판 (1), 양극 (2), 정공주입층 (5), 정공수송층 (6), 발광층 (7). 전자수송층 (8) 및 음극 (4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.
【발명을 실시하기 위한 구체적인 내용】
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
본 명세서에서. 는 다른 치환기에 연결되는 결합을 의미한다. 본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; .아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N , 0 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나. 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대 , "2 이상의 치환기가 연결된 치환기 "는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 쩨닐기가 연결된 치환기로 해석될 수 있다. 본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure imgf000006_0001
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure imgf000006_0002
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure imgf000007_0001
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기. 프로필디메틸실릴기, 트리페닐실릴기. 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다. 본 명세서에 있어 할로겐기의 예로는 불소, 염소, 브롬 또 요오드가 있다. 본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, nᅳ펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 핵실, n-핵실, 1-메틸펜틸. 2-메틸펜틸, 4-메틸 -2-펜틸, 3,3—디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸. 1-메틸핵실, 사이클로펜틸메틸,사이클로핵틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸핵실, 2-프로필펜틸, n-노닐 , 2,2-디메틸헵틸 , 1-에틸-프로필ᅳ 1 , 1- 디메틸-프로필, 이소핵실, 2ᅳ메틸펜틸, 4-메틸핵실, 5-메틸핵실 등이 있으나, 이들에 한정되지 않는다. 본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐. 1-부테닐, 2ᅳ부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3ᅳ메틸—1-부테닐, 1, 3-부타디에닐, 알릴, 1-페닐비닐 -1-일 , 2—페닐비닐 -1-일 , 2 , 2-디페닐비닐 -1-일, 2-페닐一 .2- (나프틸 -1-일 )비닐 -1-일, 2, 2-비스 (디페닐 -1-일)비닐— 1-일 , 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다. 본 명세서에 있어서 ; 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3- 디메틸사이클로펜틸 . 사이클로핵실, 3-메틸사이클로핵실, 4ᅳ 메틸사이클로핵실, 2,3-디메틸사이클로핵실, 3 , 4 , 5-트리메틸사이클로핵실, 4-tert-부틸사이클로핵실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다. 본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나ᅳ 이에 한정되는 것은 아니다. 본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 경우,
Figure imgf000009_0001
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다. 본 명세서에 있어서, 헤테로고리기는 이종 원소로 0, N , Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서 , 탄소수는 특별히 한정되지 않으나, 탄소수 ?, 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기. 이미다졸기, 티아졸기, 옥사졸기ᅳ 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프괄라지닐기, 피리도 피리미디닐기 피리도 피라지닐기. 피라지노 피라지닐기 . 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기 벤조퓨라닐기 , 페난쓰를린기 (phenanthrol ine) , 이소옥사졸릴기 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다. 본 명세서에 있어서, 아르알킬기, 아르알케닐기. 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기 , 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 해테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 발명은 하기의 유기 발광 소자를 제공한다:
음극; 양극; 및 상기 음극과 양극 사이에 적어도 하나 이상의 발광층을 포함하고, 상기 발광층은 상기 화학식 1로 표시되는 제 1 호스트 화합물 및 상기 화학식 2로 표시되는 제 2 호스트 화합물을 포함하는, 유기 발광 소자. 이하, 각 구성 별로 본 발명올 상세히 설명한다. 음극 및 양극
본 발명에서 사용되는 양극 및 음극은, 유기 발광 소자에서 사용되는 전극을 의미한다. 상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듬 산화물, 인듭주석 산화물 ( ΠΌ) , 인듐아연 산화물 ( IZ0)과 같은 금속 산화물; ΖηΟ: Α1 또는 SN02 : Sb와 같은 금속과 산화물의 조합; 폴리 (3- 메틸티오펜) , 폴리 [3 , 4- (에틸렌 -1,2-디옥시)티오펜 KPED0T) , 폴리피를 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 Li /Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다. 또한, 상기 양극 상에는 정공 주입층이 추가로 포함될 수 있다. 상기 정공 주입층은 정공 주입 물질로 이루어져 있으며, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 H0M0( highest occupi ed molecular orbi tal )가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는, 금속 포피린 (porphyr in) , 을리고티오펜, 아릴아민 계열의 유기물, 핵사니트릴핵사아자트리페닐렌 계열의 유기물, 퀴나크리돈 (quinacr idone)계열의 유기물, 페릴렌 (perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다. 발광층
본 발명에 따른 발광층은 상기 화학식 1로 표시되는 제 1 호스트 화합물 및 상기 화학식 2로 표시되는 제 2 호스트 화합물을 포함한다. 바람직하게는, 상기 화학식 1은 하기 화학식 1-1, -2, 또는 1-3으로 표시된다:
Figure imgf000012_0001
바람직하게는, ¾은 페닐; 또는 비페닐릴이다. 바람직하게는, ¾ 및 ¾는 수소이다.
바람직하게는, Y는 S, 또는 0이다. 바람직하게는, L은 단일 결합, 또는 페닐렌이다. 바람직하게는, A 및 Ar2는 각각 독립적으로 페닐, 시아노로 치화된 페닐, 비페닐릴, 디메틸플루오레닐. 나프틸, 페난쓰레닐, 피리디닐, 디벤조퓨라닐, 또는 디벤조티오페닐이다. 상기 화학식 1로 표시되는 화합물의 대표적인 예는 다음과 같다.
Figure imgf000014_0001

Figure imgf000015_0001
Figure imgf000016_0001
Figure imgf000017_0001

Figure imgf000018_0001
상기 화학식 1로 표시되는 화합물은, 일례로 하기 반웅식 1과 같은 방법으로 제조할 수 있다.
Figure imgf000018_0002
(step 1-2) 반응식 1은 스즈키 커플링 반응으로서, 각 반웅은 팔라듐 촉매와 염기 존재하에 수행하는 것이 바람직하며, 스즈키 커플링 반웅을 위한 반웅기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다. 상기 화학식 2에서, 바람직하게는 !? 은 사이클로핵실, 페닐, 시아노로 치환된 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난쓰레릴, 트리페닐레닐, 디메틸플루오레닐, 피리디닐, 디벤조퓨라닐, 디벤조티오페닐 또는 9-페닐-카바졸릴이다. 바람직하게는, n'은 1이고, R'2는 수소, 또는 페닐이다. 바람직하게는, m'는 1이고. ,, R'3는 수소. 터트-부틸, 시아노, 페닐, 시아노로 치환된 페닐, 또는 피리디닐이다. 바람직하게는, γ'는 0, S, 또는 NR'이고, R'는 페닐, 또는 비페닐릴이다. 바람직하게는, Y'는 CR'R"이고, R' 및 R"는 메틸이거나, 또는 R' 및 R"가 함께 플루오렌 고리를 형성한다. 바람직하게는, L'은 단일 결합, 또는 페닐렌이다. 상기 화학식 2로 표시되는 화합물의 대표적인 예는 다음과 같다: 61
Figure imgf000020_0001
£19£10/ίΙΟΖ^Ά/13ά Ϊ69Ϊ0Ϊ/8Ϊ0Ζ OAV
Figure imgf000021_0001
Figure imgf000022_0001
상기 반웅식 2는 스즈키 커플링 반웅으로서, 각 반응은 팔라듬 촉매와 염기 존재하에 수행하는 것이 바람직하며, 스즈키 커플링 반응을 위한 반웅기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다. 바람직하게는, 상기 게 1 호스트 화합물과 제 2 호스트 화합물의 중량비는 1 : 99 내지 99 : 1로 사용한다. 또한, 상기 발광층은 상기 호스트 화합물 이외에 도편트 재료를 포함할 수 있다. 상기 도편트 재료로는 유기 발광 소자에 사용되는 것이면 특별히 제한되지 않으며, 일례로 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로, 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 .
화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듬 착체, 백금 착체 둥이 있으나, 이에 한정되지 않는다. 기타층
또한, 본 발명에 따른 유기 발광 소자는, 필요에 따라 정공주입층, 정공수송층, 전자수송층, 및 /또는 전자전달층을 포함할수 있다. 상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMOOiighest occupied molecular orbi tal )가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린 (porphyr in) , 올리고티오펜, 아릴아민 계열의 유기물, 핵사니트릴핵사아자트리페닐렌 계열의 유기물, 퀴나크리돈 (quinacr idone)계열의 유기물, 페릴렌 (perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다. 상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
22
SUBSTITUTE SHEET RULE 26 RO/KR .
상기 전자수송층은 전자주입층 또는 음극으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로, 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 A1 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본 -금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슴, 바륨, 칼슴ᅳ 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다. 상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다. 상기 금속 착체 화합물로서는 8—하이드록시퀴놀리나토 리륨, 비스 (8- 하이드록시퀴놀리나토)아연, 비스 (8-하이드록시퀴놀리나토)구리, 비스 (8- 하이드록시퀴놀리나토)망간, 트리스 ( 8-하이드록시퀴놀리나토)알루미늄, 트리스 (2-메틸 -8-하이드록시퀴놀리나토)알루미늄, 트리스 (8- 하이드록시퀴놀리나토)갈륨, 비스 ( 10-하이드톡시벤조 [h]퀴놀리나토)베릴륨, 비스 ( 10-하이드록시벤조 [h]퀴놀리나토)아연, 비스 (2-메틸 -8- 퀴놀리나토)클로로갈륨, 비스 (2-메틸 -8-퀴놀리나토) (0-크레졸라토)갈륨, 비스 (2-메틸 -8-퀴놀리나토 ) ( 1-나프를라토)알루미늄, 비스 (2-메틸 -8- 퀴놀리나토) (2-나프를라토)갈륨 등이 있으나, 이에 한정되지 않는다.
23
SUBSTITUTE SHEET RULE 26 RO/KR 유기 발광소자
본 발명에 따른 유기 발광 소자는, 상기 발광충에 제 1 호스트와 제 2 호스트를 포함하는 것을 제외하고는 당 기술분야에 알려져 았는 재료와 방법으로 제조될 수 있다. 예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 양극, 유기물층 및 음극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법 ( sput ter ing)이나 전자빔 증발법 (e-beam evaporat i on)과 같은 PVD(phys ical Vapor Depos i t ion)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고. 그 위에 정공 주입층, 정공 수송층, 발광층 및 /또는 전자 수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. 또한, 상기 제 1 호스트 화합물 및 제 2 호스트 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 발광층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩ᅳ 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 를 코팅 둥을 의미하지만, 이들만으로 한정되는 것은 아니다. 이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다 (TO 2003/012890) . 다만, 제조 방법이 이에 한정되는 것은 아니다. 본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형 , 후면 발광형 또는 양면 발광형일 수 있다. 이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다 . 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.
[제조예]
Figure imgf000026_0001
A-2 A-3 A
단계 1) 화합물 A-1의 제조
3一브로모벤젠 -1,2-디올 (100 g, 529 隱 ol)과 시클로핵사논 (54.5 g, 555 隱 ol)을 를루엔에 투입한 후 넁각하였다. 0°C에서 삼염화인 (PC13)(29 g, 211.7 mniol)을 천천히 투입하고, 실온에서 교반하였다. 반웅이 종결되면 과량의 물에 반응물을 투입하여 클로로포름으로 추출하고, 이를 포화 탄산수소나트륨 수용액으로 세척한 후 유기층을 분리하여 무수황산나트륨으로 슬러리하여 여과 후 감압 농축하였다. 농축한 화합물에 핵산을 투입하여 교반하고 생성된 고체를 여과하여 화합물 A-K92.6 g, 수율 65 %)을 제조하였다. 단계 2) 화합물 A-2의 제조
화합물 A-K100 g, 371 隱 ol)과 (2-클로로 -6ᅳ플루오로페닐)보론산 (68 g, 390 睡 ol)을 테트라하이드로퓨란 1000 mL에 투입한 후 넁각하였다. 2M 탄산칼륨수용액 (aq. K2C03)(370 mL, 743 隱 ol)을 첨가하고 테트라키스트리페닐포스피노팔라듐 [Pd(PPh3)4](4.3 g, 1 mol%)을 넣은 후 6시간 동안 환류 교반하였다. 반응 완결 후 상온으로 온도를 낮추고 물층을 제거하여 유기층을 감압 농축하고, 농축된 화합물을 클로로포름 500 mL에 녹여 물로 세척하여 분리하고, 유기층을 무수황산마그네슘으로 처리하여 여과하였다. 여액을 감압 농축하고, 과량의 핵산과 소량의 에틸아세테이트로 슬러리하여 화합물 A-2(86.5 g, 수율 73%)를 제조하였다. 단계 3) 화합물 A-3의 제조
화합물 A-2(60 g, 188 瞧 ol)를 N-메틸 -2-피를리돈 200 mL에 분산시키고. 염산 60 mL를 첨가하여 가온하였다. 2시간 정도 반응시킨 후 실온으로 냉각하고, 물 1 L에 부어서 에틸아세테이트로 추출하였다. 유기층을 포화 탄산수소나트륨으로 씻어준 후 다시 물로 1회 더 세척하였다. 유기충을 무수황산마그네슘으로 슬러리 한 후 여과하여 감압 농축하였다. 농축한 화합물을 과량의 핵산을 투입하여 고체를 생성하고 이를 여과하여 화합물 A-3(36ᅳ 4 g, 수율 81%)을 제조하였다. 단계 4) 화합물 A의 제조
질소 분위기에서 화합물 A-3(50 g, 210 隱 ol)을 N-메틸 -2-피를리돈 100 mL에 넣고 교반하였다. 이후 포타슘 카보네이트 (58 g, 420 誦 o!)를 투입한 후 80°C로 가온하여 교반하였다. 반웅이 완결 된 후 상은으로 은도를 낮추고 물 1 L에 반웅물을 부어 에틸아세테이트로 추출하였다. 추출한 흔합물을 무수황산마그네슘을 넣고 슬러라 후 여과하여 여액을 감압 농축하였다. 농축한 화합물을 핵산과 에틸아세테이트로 실리카 컬럼 크로마토그래피를 통해 정제하여 화합물 A(34.4 g, 수율 75 %)를 얻었다.
MS:[M+H]+=219 제조예 2: 중간체 B의 제조
Figure imgf000028_0001
Figure imgf000028_0002
B-3 a
화합물 A-l과 (5-클로로 -2-플루오로페닐)보론산을 사용하여 중간체 A의 제조예와 동일하게 실험을 수행하여 중간체 화합물 B를 제조하였다. 제조예 3 : 중간체 C의 제조
Figure imgf000028_0003
화합물 A-1과 (4-클로로 -2—플루오로페닐)보론산을 사용하여 중 A의 제조예와 동일하게 실험을 수행하여 중간체 화합물 C를 제조하였다. 제조예 4 : 중간체 D의 제조
Figure imgf000029_0001
D-3
단계 1) 화합물 D-l의 제조
(2, 4ᅳ디클로로페닐)보론산 (100 g, 524 隱 ol)과 2-브로모 -6- 아이오도아닐린 (234 g, 785.5 隱 ol)을 를루엔 1500 mL에 투입한 후 탄산칼륨 (217 g, 1517 瞧 ol)을 물 500 mL에 녹여 투입하고, 테트라키스트리페닐포스피노팔라듬 [Pd(PPh3)4](30.3 g, 5 mol¾>)을 넣은 후 가온하여 환류 교반하였다. 반응 완결 후 상온으로 온도를 낮추고 물충을 제거하여 유기충을 ᅵ감압 농축하고, 농축된 화합물을 클로로포름 500 mL에 녹이고 무수황산마그네슘:으로 처리하여 여과하였다. 여액을 감압.농축하고, 핵산과 에틸아세테이트로 실리카 컬럼크로마토그래피로 정제하여 화합물 D- 1(101.3 g, 수율 61%)를 제조하였다. 단계 2) 화합물 D-2의 제조
화합물 D— l(101g, 319.5 隱 ol)를 메탄을에 투입하고, 온도를 0°C로 낮춰 cone. HC1를 천천히 적가하였다. 냉각 상태에서 아질산나트륨 (NaN02)(22 g. 319.5 隱 ol)을 천천히 적가한 후 포타슴 티오시아네이트 (KSCNK99.3 g, 1022 瞧 ol)와 염화철 (FeCl3)(36.3 g, 223.6 mmol)을 투입하여 실온에서 교반하였다. 반응 완료 후 2 M NaOH 수용액으로 중화시켰다. 흔합물을 클로로포름으로 추출하여 분리하고 무수황산마그네슘으로 건조하고 농축한 후 실리카 컬럼을 통해 정제하여 화합물 D-2(79 g, 수율 69%)를 제조하였다. .
단계 3) 화합물 D-3의 제조
화합물 D-2(79 g, 220 隱 ol)를 테트라하이드로퓨란에 투입하고, 0°C로 냉각하여 수소화알루미늄리튬 (LiAlH4)(l M in THF)(240 mL, 240 mmol)을 천천히 적가하고 교반하였다. 반웅이 완료되면 물을 천천히 투입하여 교반한 후ᅳ 2 M HC1 수용액을 투입하고 에틸아세테이트로 추출하였다. 분리한 유기층을 무수황산마그네슘으로 건조하고 감압 농축하여 화합물 D-3(64 g, 수율 87%)를 제조하였다. 단계 4) 화합물 D의 제조
화합물 D-3(64 g, 191 mmol)을 아세토니트릴 용매에 투입하고, 세슘카보네이트 (93.7g, 287.6 mmol)를 첨가하여 microwave irradiat ion으로 130°C에서 교반하였다. 반응이 완료되면 물로 2회 세척하고 클로로포름으로 추출하여 유기층을 무수황산마그네슘으로 교반한 후 여과하여 감압 농축하였다. 농축한 화합물을 실리카 컬럼을 통해 정제하여 중간체 화합물 D(47 g, 수율 83%)를 제조하였다.
S:[ +H]+=296
Figure imgf000030_0001
29
SUBSTITUTE SHEET RULE 26 RO/KR .
단계 1) 화합물 1-1-1의 제조
화합물 A(21 g, 95 隱 ol)을 아세토니트릴 200 mL에 분산시키고, 포타슘카보네이트 (26.3 g, 190 mmol)와 물 40 mL를 투입하고, 노나플루오로부탄설포닐 플루오라이드 (43 g, 142.5 隱 ol)을 투입하여 80°C로 가온하였다. 6시간 동안 반웅시킨 후에 흔합물을 실온으로 냉각하고 용매를 감압 농축하여 제거하였다. 농축된 화합물을 에틸아세테이트에 다시 녹인 후 물로 1회 세척하고, 유기층을 분리하여 무수황산마그네슘으로 처리하여 여과 후 농축하여 화합물 1-1-1(35.1 g, 수율 73%)을 제조하였다. 단계 2) 화합물 1-1-2의 제조
화합물 1-1-1(27 g, 54 mmol), 비스 (피나콜라토)디보론 (Bis(pinacolato)diborone)(16.4 g, 64.7隱01), 포타슘아세테이트 (potassium acetate)(10.5 g, 107 mmol)를 1,4-다이옥산 150 mL에 투입하고, 환류 교반 상태에서 디벤질리덴아세톤팔라듐 (0.9 g, 3 mol%)과 트리시클로핵실포스핀 (0.9 g, 6 mol%)을 첨가하고 12시간 동안 환류 교반시켰다. 반응 종결 후 흔합물을 실온으로 냉각하고, 셀라이트를 통해 여과하였다. 여액을 감압 하에 농축한 후 잔류물에 클로로포름을 넣고 녹인 후 물로 세척하여 유기층을 분리한 후 무수황산마그네슴으로 건조하였다. 이를 여과하여 감압 증류하고, 에틸아세테이트와 에탄올로 교반하여 화합물 1-1ᅳ 2(15.2 g, 수율 86 «를 제조하였다. 단계 3) 화합물 1—1-3의 제조
화합물 1-1-2(25 g, 76 隱 ol)와 2-클로로 -4, 6-디페닐 -1,3, 5- 트리아진 (20.3 g, 76 mmol)을 테트라하이드로퓨란 200 mL에 분산시킨 후, 2 M 탄산칼륨수용액 (aq. K2C03)(57 mL, 114 隱 ol)을 첨가하고 테트라키스트리페닐포스피노팔라듐 [Pd(PPh3)4](0.88 g, 1 mol«을 넣은 후 6시간 동안 환류 교반하였다. 상은으로 온도를 낮추고 물층을 분리하고, 유기층을 감압 농축하였다. 농축된 화합물을 에틸아세테이트에 다시 녹인 후 물로 2회 세척하고 분리하여 무수황산마그네슘을 넣고 여과하여 농축하였다. 농축된 잔류물에 소량의 에틸아세테이트와 과량의 핵산을
30
SUBSTITUTE SHEET RULE 26 RO/KR .
투입하여 교반하여 고체로 석출시켜 1시간 동안 교반한 후 여과하여 화합물 1-1-3(26.7 g, 수율 81%)을 제조하였다. 단계 4) 화합물 1-1의 제조
화합물 1-1—3(22 g, 50纖 ol)과 (9-페닐 -9H-카바졸 -3-일)보론산 (15.2 g, 53 mmol)을 테트라하이드로퓨란 (200 mL)에 분산시킨 후, 2 M 탄산칼륨수용액 (aq. K2C03)(75 mL, 151 隱 ol)을 첨가하고 테트라키스트리페닐포스피노팔라듐 [Pd(PPh3)4](0.6 g, 1 mol%)을 넣은 후 6시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 물층을 제거하여 감압 농축하고, 에틸아세테이트를 투입하여 3시간 동안 교반하여 석출된 고체를 여과하였다. 얻어진 고체를 클로로포름에 다시 녹이고 물로 세척한 후 분리하여 무수황산마그네슘과 산성백토로 처리하여 여과하였다. 여액을 감압 농축하여 절반 정도 제거한 후 에틸아세테이트를 투입하여 재결정을 통해 화합물 .1-1(26.3 g, 수율 81 %)를 제조하였다.
MS:[M+H]+=641
Figure imgf000032_0001
화합물 B를 사용하여 화합물 1-1의 제조예와 동일하게 실험을 수행하여 화합물 1-2를 제조하였다.
MS:[M+H]+= 641
31
SUBSTITUTE SHEET RULE 26 RO/KR .
Figure imgf000033_0001
화합물 C를 사용하여 화합물 1-1의 제조예와 동일하게
수행하여 화합물 1-3을 제조하였다.
MS:[M+H]+= 641
Figure imgf000033_0002
화합물 D를 사용하여 실시예 1의 단계 1을 제외한 화합물 1-1의 제조예와 동일하게 실험을 수행하여 화합물 1-4를 제조하였다.
S:[M+H]+=657
32
SUBSTITUTE SHEET RULE 26 RO/KR
Figure imgf000034_0001
단계 1) 화합물 2— 1-1의 제조
3-브로모 -9H-카바졸 (15 g, 61 隱 ol)과 (9-페닐 -9H-카바졸 -3- 일)보론산 (18.4 g, 64 隱 ol)을 테트라하이드로퓨란 150 iiiL에 분산시킨 후, 2 M 탄산:칼륨수용액 (aq. K2C03)(60 mL, 120 miio )을 첨가하고 테트라키스트리페닐포스피노팔라듐 [Pd(PPh3)4](1.03 g. 1 mo )을 넣은 후 8시간 동안 환류 교반하였다. 반응이 완결되면 상온으로 온도를 낮추고 물충을 제거하여 유기충을 감압 농축하고, 에틸아세테이트를 투입하여 교반하였다. 생성된 고체를 여과하여 화합물 2-1-1(30 g, 수율 82%)을 제조하였다. 단계 2)'화합물 2-1의 제조
화합물 2-1-1(12 g, 30 画 ol)과 2-브로모—9-페닐 -9H-카바졸 (9.5 g, 30 mmol)을 를루엔 150 mL에 투입하여 녹이고, 나트륨 터셔리- 부록사이드 (5.6 g, 59 mmol)를 첨가하여 가온하였다. 비스 (트리 터셔리- 부틸포스핀)팔라듐 (0.15 g, 1 mol%)을 투입하여 12시간 동안 환류 교반시켰다. 반웅 완료 후 상온으로 온도를 낮춘 후 생성된 고체를 여과하였다. 엷은 노란색의 고체를 클로로포름으로 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘과 산성 백토를 넣고 교반한 후 여과하여 감압 농축하였다. 농축한 화합물을 클로로포름과 에틸아세테이트로 재결정하여 흰색의 고체 화합물인 화합물 2-1(14.5 g, 수율 76%)을 얻었다.
MS:[M+H]+=650
Figure imgf000035_0001
9-([1,1'-비페닐]-3—일)-3-브로모- -카바졸(16 g, 40 ol) 9- ([1,1'-비페닐]—3-일)-911—카바졸-3—일)보론산(14.6 g, 40 mmol)을 사용하여 화합물 2-1-1의 제조예와 동일한 방법으로 실험하여 화합물 2-2(19.7 g, 수율 77%)를 제조하였다.
MS:[M+H]+=637
Figure imgf000035_0002
화합물 2-1-1(20 g, 49 ol)과 2-브로모 [b,d]티오펜 (12.9 g, 49 mmol)을 사용하여 화합물 2-1의 제조예와 동일한 방법으로 실험을 실시하여 화합물 2-3(23.1 g, 수율 80%)올 제조하였다.
MS:[M+H]+=591 [실험예]
실험예 1
IT0( indium t in oxide)가 1 , 300 A의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사 (Fi scher Co . ) 제품을 사용하였으며, 증류수로는 밀리포어사 (MU l ipore Co . ) 제품의 필터 (Fi l ter )로 2차로 걸러진 증류수를 사용하였다. IT0를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄을의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다. 상기와 같이 준비된 ΠΌ 투명 전극 위에 하기 HI-1 화합물을 50 A의 두께로 열 진공 증착하여 정공 주입층을 형성하였다. 상기 정공 주입층 위에 하기 HT-—1 화합물을 250A의 두께로 열 진공 증착하여 정공 수송충을 형성하고ᅳ HT— 1 증착막 위에 하기 HT -2 화합물을 50 A 두께로 진공 증착하여 전자 저지층을 형성하였다. 이어서, 상기 HT-2 증착막 위에 앞서 제조한 화합물 1-1과 앞서 제조한 화합물 2-1을 하기 표 1의 중량비로 동시 증발에 의해 증착하고, 이때 하기 표 1의 중량비 ( 1 ; 화합물 1ᅳ 1, 화합물 2-1 , 및 YGD 총 중량 대비)로 인광 도펀트인 하기 YGD 화합물을 공증착하여 하기 표 1의 두께 (400A )로 발광층을 형성하였다. 상기 발광층 위에 하기 ET-1 화합물을 250 A의 두께로 진공 증착하고, 추가로 하기 ET— 2 화합물을 100 A 두께로 2% 중량비의 Li과 공증착하여 전자 수송층 및 전자 주입층을 형성하였다. 상기 전자 주입층 위에 1000A 두께로 알루미늄을 증착하여 음극을 형성하였다.
Figure imgf000037_0001
Figure imgf000037_0002
상기의 과정에서 유기물의 증착속도는 0.4 - 0.7 A/sec를: 유지하였고, 알루미늄은 2 A/sec의 증착 속도를 유지하였으며, 증착시 진공도는 1 X 10— 7 - 5X 10— 8 torr를 유지하였다. 실험예 2 내지 Ί
상기 실험예 1과 동일한 방법으로 제조하되. 발광층 형성시 인광 호스트 물질 및 도편트 함량을 하기 표 1과 같이 변경하였다는 점을 제외하고는, 상기 실험예 1과 동일한 방법을 이용하여 유기 발광 소자를 각각 제작하였다. 비교실험예 1 내지 10
상기 실험예 1과 동일한 방법으로 제조하되, 발광층 형성시 인광 호스트 물질 및 도편트 함량을 하기 표 1과 같이 변경하였다는 점을 제외하고는, 상기 실험예 1과 동일한 방법을 이용하여 유기 발광 소자를 각각 제작하였다. 이때 사용된 호스트 물질 A 내지 C는 하기와 같다.
Figure imgf000038_0001
Figure imgf000038_0002
상기 실험예 및 비교실험예에서 제조한 유기 발광 소자에 전류를 인가하여, 전압, 효율, 휘도, 색좌표 및 수명을 측정하고 그 결과를 하기 표 1에 나타내었다. 이때, T95은 전류 밀도 50 niA/cm2에서의 초기 휘도를 100%로 하였을 때 휘도가 95%로 감소되는데 소요되는 시간을 의미한다.,
【표 11
전압 효율 )1 A∑r
(V) (Cd/A)
(x.y)
(@10mA/cm2) (@10mA/cm2)
(화합물 1—1:화합물 2- 실험예 1 D/YGD 3.73 23.8 (0.470,0.522) 138
(200:200)/ 15%
(화합물 1—1:화합물 2ᅳ
실험예 2 3)/YGD 3.37 22.8 (0.469,0..523) 150
(120: 280)/ 12%
(화합물 1-2:화합물 2一
실험예 3 D/YGD 3.58 24.0 (0.464.0.527) 118
(200:200)/ 15%
(화합물 1-2:화합물 2- 실험예 4 3)/YGD 3.78 24.7 (0.455,0.537) 131
(280: 120)/ 12%
(화합물 1-3:화합물 2一
실험예 5 D/YGD 3.69 24.4 (0.460.0.532) 134
(200: 200)/ 12%
(화합물 1-3:화합물 2- 실험예 6 3.49 24.0 (0.462,0.529) 90
2)/YGD
Figure imgf000039_0001
【부호의 설명】
1: 기판 2: 이:그
ᄋ ᅳ ᄋ 그
3: 발광층 4: "α"
5: ^고 ^ 츠 처고 소 ᄋ Tᄇ 6:
7: ᄇ "츠
s 3 ᄋ 8: 전자수송층

Claims

【특허청구범위】
【청구항 1】
음극; 양극; 및 상기 음극과 양극 사이에 적어도 하나 이상의 발광충을 포함하고,
상기 발광층은 하기 화학식 1로 표시되는 제 1 호스트 화합물 및 하기 화학식 2로 표시되는 제 2 호스트 화합물을 포함하는,
유기 발광 소자:
Figure imgf000040_0001
상기 화학식 1에서,
¾은 치환 또는 비치환된 d-60 알킬 ; 치환 또는 비치환된 C3-60 사이클로알킬; 치환 또는 비치환된 C6 아릴; 또는 치환 또는 비치환된 0, N , Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고,
R2 및 R3는 각각 독립적으로 수소; 중수소; 할로겐; 시아노; 치환 또는 비치환된 d-eo 알킬 ; 또는 치환 또는 비치환된 C3-60 사이클로알킬이고, n은 0 내지 4의 정수이고,
m은 0 내지 3의 정수이고,
Y는 0, S , 또는 CR4R5이고,
R4 및 ¾는 각각 독립적으로 수소; 중수소; 할로겐; 시아노; 치환 또는 비치환된 d-so 알킬 ; 치환 또는 비치환된 C3-60 사이클로알킬 ; 또는 치환 또는 비치환된 C6-60 아릴이고,
Ar은 하기 화학식 1 '로 표시되고,
[화학식 Γ ]
Figure imgf000041_0001
L은 단일 결합; 치환 또는 비치환된 C660 아릴렌; 또는 치환 또는 비치환된 0, N , Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴렌이고,
Xi 내지 ¾은 각각 득립적으로 N , 또는 CR6이고, 단 d 내지 ¾ 중 적어도 하나는 N이고,
¾는 각각 독립적으로 수소; 중수소; 할로겐; 시아노; 니트로; 아미노; 치환 또는 비치환된 d-60 알킬 ; 치환 또는 비치환된 ( 60 할로알킬 ; 치환 또는 비치환된 d-60 할로알콕시; 치환 또는 비치환된 C3-60 사이클로알킬 ; 치환 또는 비치환된 C2-60 알케닐; 치.환 또는 비치환된 C6 아릴; 또는 치환 또는 비치환된 0, Ν , Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고,
An 및 Ar2는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는: 비치환된 0, N, Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고,
Figure imgf000041_0002
상기 화학식 2에서.
은 치환 또는 비치환된 C6-6o 아릴이고,
R' 2 및 R' 3은 각각 독립적으로, 수소; 중수소; 할로겐; 시아노; 치환 또는 비치환된 d-60 알킬; 치환 또는 비치환된 C3-60 사이클로알킬; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 0, N , Si 및 S 중 1개 이상을 포함하는 C2-60 해테로아릴이고 n' 및 m'은 각각 독립적으로 0 내지 4의 정수이고,
L'은 단일 결합; 치환 또는 비치환된 C6-60 아릴렌이고, Y'는 0, S, NR', 또는 CR'R"이고,
R' 및 R"는 각각 독립적으로 치환 또는 비치환된 d-60 알킬; 치환 또는 비치환된 C3-60 사이클로알킬; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 0, N, Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고, 또는 R' 및 R"가 함께 치환 또는 비치환된 C6-60 방향족 고리를 형성한다.
【청구항 2】
제 1항에 있어서,
상기 화학식 1은 하기 화학식 1—1, 1-2, 또는 1-3으로 표시되는, 유기 발광 소지":
Figure imgf000042_0001
[화학식 1-2]
Figure imgf000043_0001
【청구항 3】
제 1항에 있어서,
Ri은 페닐; 또는 비페닐릴인, 유기 발광 소자.
【청구항 4]
제 1항에 있어서,
2 및 R3는 수소^
유기 발광 소자.
【청구항 5]
저 U항에 있어서,
Y는 S, 또는 0인,
유기 발광 소자.
【청구항 6】 제 1항에 있어서,
L은 단일 결합, 또는 페닐렌인,
유기 발광 소자.
【청구항 7】
저 U항에 있어서,
An 및 Ar2는 각각 독립적으로 페닐, 시아노로 치화된 페닐, 비페닐릴, 디메틸플루오레닐 나프틸, 페난쓰레닐, 피리디닐, 디벤조퓨라닐 또는 디벤조티오페닐인,
유기 발광 소자.
【청구항 8】
제 1항에 있어서,
상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선텍되는 어느 하나인,
유기 발광 소자:
Figure imgf000045_0001
44
Figure imgf000046_0001
45
Figure imgf000047_0001
Figure imgf000048_0001
47
Figure imgf000049_0001
【청구항 9]
제 1항에 있어서,
R'r^ 사이클로핵실, 페닐, 시아노로 치환된 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난쓰레릴, 트리페닐레닐, 디메틸플루오레닐, 피리디닐 디벤조퓨라닐 , 디벤조티오페닐., 또는 9-페닐—카바졸릴인,
유기 발광 소자.
【청구항 10】
제 1항에 있어서,
n'은 1이고,
R'2는 수소, 또는 페닐인,
유기 발광 소자.
【청구항 11】
제 1항에 있어서,
m'는 1이고,
R'3는 수소, 터트-부틸, 시아노, 페닐, 시아노로 치환된 페닐, 또는 피리디닐인 유기 발광 소자.
【청구항 12]
제 1항에 있어서,
Y '는 0, S , 또는 NR'이고,
R'는 페닐, 또는 비페닐릴인,
유기 발광 소자.
【청구항 13】
제 1항에 있어서,
Y '는 CR ' R"이고,
R' 및 R"는 메틸이거나, 또는 R' 및 R"가 함께 플루오렌 고리를 형성하는,
유가 발광 소자.
【청구항 14]
저 U항에 있어서.
^은 단일 결합, 또는 페닐렌인
유기 발광 소자.
【청구항 15]
제 1항에 있어서,
상기 화학식 2로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
유기 발광 소자: 09
Figure imgf000051_0001
Ϊ69Ϊ0Ϊ/8Ϊ0Ζ OAV
Figure imgf000052_0001
PCT/KR2017/013613 2016-11-29 2017-11-27 유기 발광 소자 WO2018101691A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/079,544 US20190058131A1 (en) 2016-11-29 2017-11-27 Organic light emitting device
EP17875864.5A EP3415585B1 (en) 2016-11-29 2017-11-27 Organic light-emitting element
JP2018549309A JP6682749B2 (ja) 2016-11-29 2017-11-27 有機発光素子
CN201780016836.2A CN108779392B (zh) 2016-11-29 2017-11-27 有机发光器件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0160371 2016-11-29
KR20160160371 2016-11-29
KR1020170154011A KR102078302B1 (ko) 2016-11-29 2017-11-17 유기 발광 소자
KR10-2017-0154011 2017-11-17

Publications (1)

Publication Number Publication Date
WO2018101691A1 true WO2018101691A1 (ko) 2018-06-07

Family

ID=62241491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013613 WO2018101691A1 (ko) 2016-11-29 2017-11-27 유기 발광 소자

Country Status (1)

Country Link
WO (1) WO2018101691A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019007866A1 (de) * 2017-07-05 2019-01-10 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2019143223A1 (ko) * 2018-01-22 2019-07-25 주식회사 엘지화학 다환 화합물 및 이를 포함하는 유기 발광 소자
US11873297B2 (en) 2018-11-16 2024-01-16 Lg Chem, Ltd. Compound and organic light emitting device comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150003051A (ko) * 2013-06-28 2015-01-08 삼성전기주식회사 전원 공급 장치 및 그의 제어 회로
KR20150071624A (ko) * 2013-12-18 2015-06-26 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20160026744A (ko) * 2014-08-29 2016-03-09 삼성전자주식회사 유기 발광 소자
KR20160054582A (ko) * 2013-09-11 2016-05-16 메르크 파텐트 게엠베하 유기 전계발광 디바이스
WO2016129672A1 (ja) * 2015-02-13 2016-08-18 コニカミノルタ株式会社 芳香族複素環誘導体、それを用いた有機エレクトロルミネッセンス素子、照明装置及び表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150003051A (ko) * 2013-06-28 2015-01-08 삼성전기주식회사 전원 공급 장치 및 그의 제어 회로
KR20160054582A (ko) * 2013-09-11 2016-05-16 메르크 파텐트 게엠베하 유기 전계발광 디바이스
KR20150071624A (ko) * 2013-12-18 2015-06-26 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20160026744A (ko) * 2014-08-29 2016-03-09 삼성전자주식회사 유기 발광 소자
WO2016129672A1 (ja) * 2015-02-13 2016-08-18 コニカミノルタ株式会社 芳香族複素環誘導体、それを用いた有機エレクトロルミネッセンス素子、照明装置及び表示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019007866A1 (de) * 2017-07-05 2019-01-10 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
US11591320B2 (en) 2017-07-05 2023-02-28 Merck Patent Gmbh Composition for organic electronic devices
WO2019143223A1 (ko) * 2018-01-22 2019-07-25 주식회사 엘지화학 다환 화합물 및 이를 포함하는 유기 발광 소자
US11873297B2 (en) 2018-11-16 2024-01-16 Lg Chem, Ltd. Compound and organic light emitting device comprising the same

Similar Documents

Publication Publication Date Title
KR101856728B1 (ko) 유기 발광 소자
KR101953175B1 (ko) 함질소 다환 화합물 및 이를 이용하는 유기 발광 소자
WO2018016898A1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR102123015B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2019117440A1 (ko) 유기 발광 소자
KR102078302B1 (ko) 유기 발광 소자
KR102052710B1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
JP7124260B2 (ja) 有機金属化合物およびこれを含む有機発光素子
KR20170116983A (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2018190516A1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR102080289B1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
KR101891263B1 (ko) 신규한 헤테로고리 화합물 및 이를 포함하는 유기발광 소자
WO2018216887A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
US20200039971A1 (en) Novel heterocyclic compound and organic light emitting device comprising the same
WO2018216913A1 (ko) 신규한 헤테로고리 화합물 및 이를 이용한 유기발광 소자
CN112888683A (zh) 新的化合物和包含其的有机发光器件
KR102078301B1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
JP2021535915A (ja) 新規なヘテロ環化合物およびこれを利用した有機発光素子
WO2018093080A1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
WO2019208991A1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
KR20190123695A (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR102069310B1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
WO2018225943A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2018101691A1 (ko) 유기 발광 소자
CN112334472A (zh) 新型化合物及包含其的有机发光器件

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017875864

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018549309

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017875864

Country of ref document: EP

Effective date: 20180910

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE