[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018101252A1 - 光硬化性組成物、粘着シート、粘着シート積層体、硬化物、画像表示装置構成用積層体及び画像表示装置 - Google Patents

光硬化性組成物、粘着シート、粘着シート積層体、硬化物、画像表示装置構成用積層体及び画像表示装置 Download PDF

Info

Publication number
WO2018101252A1
WO2018101252A1 PCT/JP2017/042596 JP2017042596W WO2018101252A1 WO 2018101252 A1 WO2018101252 A1 WO 2018101252A1 JP 2017042596 W JP2017042596 W JP 2017042596W WO 2018101252 A1 WO2018101252 A1 WO 2018101252A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
photocurable composition
adhesive sheet
image display
Prior art date
Application number
PCT/JP2017/042596
Other languages
English (en)
French (fr)
Inventor
かほる 石井
誠 稲永
絵理 増田
中村 淳一
弘子 品田
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN202210166287.XA priority Critical patent/CN114410231A/zh
Priority to JP2018554155A priority patent/JP7024726B2/ja
Priority to CN201780074699.8A priority patent/CN110023357A/zh
Priority to KR1020197018916A priority patent/KR102407621B1/ko
Publication of WO2018101252A1 publication Critical patent/WO2018101252A1/ja
Priority to JP2021183866A priority patent/JP7259916B2/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • C09J4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/40Adhesives in the form of films or foils characterised by release liners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature

Definitions

  • the present invention relates to a photocurable composition using a (meth) acrylic copolymer containing a macromonomer as a structural unit, and an adhesive sheet, an adhesive sheet laminate, a cured product, and an image display device configuration using the same.
  • the present invention relates to a laminate for an image and an image display device.
  • Macromonomer is a high molecular weight monomer having a functional group capable of bonding.
  • the macromonomer can easily synthesize a graft copolymer by addition or copolymerization with another monomer. And when synthesizing a graft copolymer using a macromonomer, since resins having different physical properties can be separately incorporated into the branch component and the trunk component, respectively, and easily and with high purity, Various pressure-sensitive adhesive compositions using this type of macromonomer have been proposed.
  • Patent Document 1 discloses a macromonomer having a number average molecular weight of 1,000 to 100,000 and a glass transition temperature of ⁇ 20 ° C. or less as a resin composition for a pressure-sensitive adhesive having good pressure-sensitive adhesive properties such as tack, adhesive strength and cohesive strength. It consists of a radically polymerizable monomer having a hydroxyl group or a carboxyl group and a graft copolymer obtained by radical polymerization of other monomers, and the glass transition temperature of the trunk polymer is higher than the glass transition temperature of the branch polymer.
  • a resin composition for an adhesive is disclosed.
  • Patent Document 2 discloses a (meth) acryloyl group-containing macromonomer having a glass transition temperature of 40 ° C. or higher and a number average molecular weight of 2000 to 20000 as a method for improving durability and removability under high temperature and high humidity conditions. 2 to 3 parts by mass, 57 to 98.8 parts by mass of alkyl (meth) acrylate, 1 to 20 parts by mass of a functional group-containing monomer, and 0 to other monomers copolymerizable with at least the alkyl (meth) acrylate An adhesive using a copolymer (weight average molecular weight of 500,000 to 2,000,000) with 20 parts by mass is disclosed.
  • Patent Document 3 it can be easily bonded to various adherends, and can be cured after bonding to exert adhesive strength similar to that of an adhesive.
  • an adhesive composition that hardly causes sticking of the adhesive and adhesion between cut surfaces an alkyl (meth) acrylate monomer and a number average molecular weight Mn occupying 1 to 30% by mass in all monomer components are 1,000 to 200,000, glass Curable adhesive composition comprising an acrylic adhesive polymer obtained by copolymerizing a macromonomer having a transition point Tg of 30 to 150 ° C., a photocationic polymerizable compound, and a photocationic photopolymerization initiator. Is disclosed.
  • Patent Document 4 even if the adhesive layer of the adhesive tape contains a high content of filler, it has excellent adhesiveness and maintains the adhesiveness even when exposed to high temperatures.
  • a pressure adhesive a (meth) acrylic copolymer having a (meth) acrylic copolymer as a backbone polymer and a (meth) acrylic macromonomer as a branch polymer, a (meth) acrylic graft copolymer, a crosslinking agent, and a filler are contained.
  • a pressure sensitive adhesive characterized by the following has been proposed.
  • Patent Document 5 in a normal state, that is, in a room temperature state, it can be provided with a peelable adhesiveness (referred to as “tackiness”), and has fluidity when heated to a temperature capable of hot melting.
  • tackiness a peelable adhesiveness
  • an acrylic copolymer (A) A pressure-sensitive adhesive resin composition containing 100 parts by mass, a crosslinking agent (B) 0.5 to 20 parts by mass, and a crosslinking initiator (C) 0.1 to 5 parts by mass, wherein the acrylic resin
  • the copolymer (A) is a graft copolymer having a weight average molecular weight of 5.0 ⁇ 10 4 to 5.0 ⁇ 10 5 , and is derived from (meth) acrylic acid ester as a trunk component of the graft copolymer.
  • the graft copolymer Containing a repeating unit derived from a macromonomer having a number average molecular weight of 5.0 ⁇ 10 2 or more and less than 6.0 ⁇ 10 3 as a branch component of the acrylic copolymer (A)
  • an adhesive resin composition characterized by containing 0.1 to 3 mol% in the composition.
  • Patent Document 6 discloses that a weight average molecular weight obtained by polymerizing a monomer mixture containing a macromonomer (a) having a number average molecular weight of 500 or more and less than 6000 and a vinyl monomer (b) is 50,000. There are disclosed a pressure-sensitive adhesive composition containing (meth) acrylic copolymer (A) in a range of ⁇ 1 million, and a pressure-sensitive adhesive sheet using this pressure-sensitive adhesive composition.
  • the sheet-like shape can be maintained at room temperature, and can be provided with a sticking property that can be peeled off.
  • a new method for producing a laminate for constituting an image display device that can be cross-linked and firmly bonded to each other is disclosed.
  • Patent Document 8 discloses a photo-curing property that can be cured even if there is a place where light is difficult to reach, such as a print concealing portion, and can be cured even if the pressure-sensitive adhesive sheet has a certain thickness.
  • An adhesive sheet is disclosed.
  • Patent Document 9 two optical device constituent members are separated from an optical device constituent laminate formed by pasting two optical device constituent members once through a transparent adhesive material, thereby forming an optical device constituent member.
  • a method for recycling a member is disclosed.
  • the present invention further provides a photocurable composition as disclosed above, that is, a photocurable composition having a (meth) acrylic copolymer containing a macromonomer as a structural unit and a crosslinking agent.
  • a photocurable composition as disclosed above, that is, a photocurable composition having a (meth) acrylic copolymer containing a macromonomer as a structural unit and a crosslinking agent.
  • the present invention is a photocurable composition containing a (meth) acrylic copolymer (A) containing a macromonomer as a structural unit, a crosslinking agent (B), and a crosslinking initiator (C), and a small-angle X-ray
  • a photocurable composition is proposed in which the half-value width X1 (nm ⁇ 1 ) of a one-dimensional scattering profile in scattering measurement is 0.05 ⁇ X1 ⁇ 0.30.
  • the photocurable composition proposed by the present invention it is possible to exhibit self-adhesiveness (referred to as “tackiness”) while maintaining a sheet shape at room temperature, and when heated in an uncrosslinked state, it softens or flows. For example, it can be softened or flowed by being heated to a temperature higher than the glass transition temperature of the macromonomer, and can be filled up to every corner following the uneven portion of the bonding surface. Furthermore, since excellent cohesive force can be exhibited by photocuring, adherends can be firmly bonded to each other.
  • the composition according to an example of the embodiment of the present invention includes a (meth) acrylic copolymer (A) containing a macromonomer as a structural unit, and a crosslinking agent (B). And a cross-linking initiator (C), wherein the half-value width X1 (nm ⁇ 1 ) of the one-dimensional scattering profile in the small-angle X-ray scattering measurement is 0.05 ⁇ X1 ⁇ 0.30 It is a photocurable composition characterized by these.
  • the above-mentioned “contains a macromonomer as a structural unit” means that a (meth) acrylic copolymer (A) is included in addition to a case where a macromonomer is included as a copolymer component of the (meth) acrylic copolymer (A). This includes the case where it is contained as a structural unit other than the copolymer component, such as when it is contained as an additional bond component.
  • This photocurable composition has a structure in which at least one of the crosslinking agent (B) and the crosslinking initiator (C) is bonded to the (meth) acrylic copolymer (A). Is preferred. If at least one of the crosslinking agent (B) and the crosslinking initiator (C) is bonded to the (meth) acrylic copolymer (A), the bonded crosslinking agent (B) or crosslinking initiator (C) Bleed-out can be suppressed.
  • the reaction efficiency of the photocrosslinking reaction is promoted, A photocured product with higher cohesion can be obtained. Furthermore, if at least one of the crosslinking agent (B) and the crosslinking initiator (C) is bonded to the (meth) acrylic copolymer (A), the (meth) acrylic copolymer (A) is crosslinked. Since it is possible to intentionally design the location to be performed, it becomes easy to control the half width of the one-dimensional scattering profile in the small-angle X-ray scattering measurement defined in the present invention.
  • the term “bonded to the (meth) acrylic copolymer (A)” means that the crosslinking agent (B) or the crosslinking initiator (C) and the (meth) acrylic copolymer (A) Refers to a state in which is bound by a chemical bond including a covalent bond, an ionic bond and a metal bond.
  • this photocurable composition is characterized in that the half width X1 (nm ⁇ 1 ) of the one-dimensional scattering profile in the small-angle X-ray scattering measurement is 0.05 ⁇ X1 ⁇ 0.30.
  • the small-angle X-ray scattering measurement is a technique for obtaining nanoscale (1 to 100 nm) structural information by observing scattered X-rays having a scattering angle of several degrees or less (specifically, for example, 10 ° or less). Therefore, a composition in which a one-dimensional scattering profile can be observed in small-angle X-ray scattering measurement means that the composition is not in a state where a one-dimensional scattering profile is not observed in small-angle X-ray scattering measurement.
  • the shape and state of the present photocurable composition are not limited.
  • the (meth) acrylic copolymer (A) in the present photocurable composition is a copolymer containing a macromonomer as a structural unit.
  • a copolymer having a macromonomer as a structural unit forms a graft copolymer or a block copolymer.
  • the graft copolymer is usually formed by addition, condensation or copolymerization with another monomer.
  • the block monomer is usually formed by addition, condensation or copolymerization with other monomers.
  • a graft copolymer or a block copolymer forms a (micro) phase separation structure.
  • the half width of the one-dimensional scattering profile in the small-angle X-ray scattering measurement for the present photocurable composition is defined by the composition containing the (meth) acrylic copolymer (A) as described above (micro). It can be considered as a measure of the “phase separation state” of the phase separation structure. That is, for example, the trunk component and the branch component in the graft copolymer, or the individual block components in the block copolymer form a microscopically separated state as different “phases”.
  • the half-value width of the one-dimensional scattering profile in the small-angle X-ray scattering measurement is large (wide), it means that the peak is broad, and each phase separated as compared with the case where the half-value width is small. This means that the density difference between phases is small or the phase separation structure is not uniform.
  • the smaller (narrower) the half-value width means that the peak is sharper.
  • the density difference of each phase that is phase-separated is clearer or the phase separation structure is It means more uniform. Therefore, in the present photocurable composition, by controlling the half width within a specific range, each phase phase-separated microscopically can separately bear different adhesive properties. Therefore, it can be considered that it has become possible to combine characteristics that are generally difficult to achieve.
  • each block component (for example, “block component”).
  • Component A ”and“ Block component B ”) may be read.
  • the half-value width X1 of the one-dimensional scattering profile in the small-angle X-ray scattering measurement is such that the branching component composed of the macromonomer in the copolymer containing the macromonomer as a constituent unit
  • the (micro) phase separation structure formed with the trunk component can be used as an indicator of the state after changing depending on the crosslinking agent or photoinitiator to be formulated.
  • the conventionally disclosed photocurable composition as described above that is, a macromonomer is included as a structural unit (meta )
  • a macromonomer is included as a structural unit (meta )
  • the conventional photocurable composition having an acrylic copolymer and a cross-linking agent it is possible to achieve a higher level of tackiness and shape stability, both of which are contradictory properties, and to improve handling properties. An effect can be obtained.
  • the half width X1 of the one-dimensional scattering profile in the small-angle X-ray scattering measurement is preferably 0.05 ⁇ X1 ⁇ 0.30, and in particular, 0.06 ⁇ X1 or X1. ⁇ 0.27, more preferably 0.08 ⁇ X1 or X1 ⁇ 0.25, and even more preferably 0.11 ⁇ X1 or X1 ⁇ 0.23.
  • the half width X1 is any of 0.05 ⁇ X1 ⁇ 0.30, 0.05 ⁇ X1 ⁇ 0.27, 0.05 ⁇ X1 ⁇ 0.25 or 0.05 ⁇ X1 ⁇ 0.23.
  • 0.06 ⁇ X1 ⁇ 0.30, 0.06 ⁇ X1 ⁇ 0.27, 0.06 ⁇ X1 ⁇ 0.25, or 0.06 ⁇ X1 ⁇ 0.23 It is more preferable that any one of 0.08 ⁇ X1 ⁇ 0.30, 0.08 ⁇ X1 ⁇ 0.27, 0.08 ⁇ X1 ⁇ 0.25, or 0.08 ⁇ X1 ⁇ 0.23.
  • the structure of the (meth) acrylic copolymer (A) as the base polymer examples include means for adjusting the composition, molecular weight, etc., and adjusting and selecting the type and amount of the crosslinking agent (B) and the crosslinking initiator (C). However, it is not limited to such means.
  • the “base polymer” refers to a main component contained in the photocurable composition, and the “main component” refers to a component contained in excess of 40% by mass of the photocurable composition.
  • the selection of the structure of the (meth) acrylic copolymer (A) can be, for example, selection of whether it is a graft copolymer or a block copolymer.
  • Examples of the adjustment of the composition of the (meth) acrylic copolymer (A) include adjustment of the composition of the trunk component and the branch component (each block component in the case of a block copolymer). Specifically, the glass transition temperature (Tg) of the phase based on the branch component and the phase based on the trunk component of the (meth) acrylic copolymer (A) is adjusted, or the compatibility parameter of the branch component and the trunk component is set.
  • the half width can also be controlled by optimizing the balance or optimizing the balance between the hydrophilicity and hydrophobicity of the branch component and the trunk component.
  • the half-width can be controlled by forming a phase having a high Tg as a branch component and a phase having a low Tg as a trunk component.
  • the graft polymer is used to optimize the balance of the compatibility between the branch component and the trunk component, thereby controlling the half width and forming the optimum phase separation state, thereby improving the tack and hot melt properties. Can be combined.
  • Examples of the adjustment of the types of the crosslinking agent (B) and the crosslinking initiator (C) include adjusting the compatibility with the hydrophilic component constituting the (meth) acrylic copolymer (A).
  • the crosslinking agent (B) and the crosslinking initiator (C) are either a trunk component and a branch component (each block component in the case of a block copolymer) formed by the (meth) acrylic copolymer (A) or By making the component highly compatible with both phases and adjusting the addition amount, the trunk component and branch component (in the case of a block copolymer, each of the (meth) acrylic copolymer (A))
  • the compatibility of the block component can be adjusted to control the phase separation state, that is, the half width of the one-dimensional scattering profile.
  • the type and content ratio of the functional group of the monomer constituting the trunk component and the branch component is optimized, It is effective to optimize the (meth) acrylic copolymer (A) by optimizing the molecular weight and to adjust the type and amount of the crosslinking agent (B) and the crosslinking initiator (C).
  • this photocurable composition in order to adjust the said half value width X1 to a preferable range, it becomes the main of (1) (meth) acrylic-type copolymer (A), for example so that it may mention in detail later.
  • the copolymer component (main component) it is preferable to use a (meth) acrylic monomer or vinyl monomer having 5 or more carbon atoms, especially 8 or more, of which 9 or more, particularly 10 or more. Specifically, it is preferable to select from the examples of monomers contained in the stem component of the acrylic copolymer (A1) described later.
  • a hydrophilic component as the copolymerizable component (trunk component) other than the (meth) acrylic monomer or vinyl monomer. Specifically, it is preferable to select from the examples of hydrophilic monomers contained in the trunk component of the acrylic copolymer (A1) described later. In addition, it is more preferable to increase the hydrophilicity of the trunk component by adding (2b) the hydrophilic component in a mass ratio of 0.1 to 20 with respect to the copolymer component (trunk component) 100.
  • a (meth) acrylic monomer or vinyl monomer component having 4 or less carbon atoms as a branch component of the (meth) acrylic copolymer (A) is 1 to 100% by mass with respect to the trunk component 100. It is preferable to adjust the microphase separation state formed by the trunk component phase and the branch component phase.
  • a (meth) acrylic monomer or vinyl monomer component having a cyclic structure is added in a mass ratio of 1 to 100 with respect to the trunk component 100. It is preferable to adjust the microphase separation state formed by the trunk component phase and the branch component phase.
  • a hydroxyl group-containing compound having high compatibility with the hydrophilic component is used as (4a) the crosslinking agent (B). Specifically, it is preferable to select from the examples of the crosslinking agent (B) described later.
  • (4b) 0.05 to 30 parts by mass of the crosslinking agent (B) is added to 100 parts by mass of the (meth) acrylic copolymer to appropriately adjust the polarity of the phase composed of the trunk component. More preferably.
  • the phase separation structure formed by the trunk component and the branch component can be adjusted.
  • (1) and (2a) and / or (2b) are combined, or (1) and (3a) and / or (3b) are combined. It is preferable to combine (1) with (3a) and / or (3b) with (4a) and / or (4b), and adopt all methods (1) to (4b). Is most preferred. However, it is not limited to this method.
  • an optimal phase separation state may be formed by using the graft polymer and optimizing the compatibility balance between the branch component and the trunk component, other than the above, for example,
  • a hydrophobic component as the main copolymerizable component (trunk component) of the polymer (A) and using a hydrophilic component as the branch component of the copolymer (B)
  • the half width X1 is It can also be controlled.
  • This photocurable composition has a half-value width X2 (nm ⁇ 1 ) of a one-dimensional scattering profile in a small-angle X-ray scattering measurement of 0.05 ⁇ X2 ⁇ when a light of 4000 mJ / m 2 is irradiated as an integrated light irradiation amount. More preferably, it is 0.25.
  • the one-dimensional scattering profile of the photocurable composition after irradiation with light of 4000 mJ / m 2 as an integrated light irradiation amount that is, the one-dimensional scattering profile of the present photocurable composition after irradiation with light.
  • the wavelength of the irradiation light is preferably a wavelength to which a crosslinking initiator (C) described later is sensitive.
  • the half-value width X2 (nm ⁇ 1 ) of the one-dimensional scattering profile in the small-angle X-ray scattering measurement when the accumulated light irradiation amount is 4000 mJ / m 2 is 0. 05 ⁇ X2 ⁇ 0.25, preferably 0.06 ⁇ X2 or X2 ⁇ 0.24, of which 0.08 ⁇ X2 or X2 ⁇ 0.22, and of which 0.10 ⁇ X2 or X2 It is even more preferable that it is ⁇ 0.20.
  • the half width X2 is any of 0.05 ⁇ X2 ⁇ 0.25, 0.05 ⁇ X2 ⁇ 0.24, 0.05 ⁇ X2 ⁇ 0.22 or 0.05 ⁇ X2 ⁇ 0.20.
  • a means for adjusting the half-value width X2 (nm ⁇ 1 ) of the one-dimensional scattering profile in the small-angle X-ray scattering measurement when irradiating light of 4000 mJ / m 2 as the integrated light irradiation amount This is the same as the means for adjusting the half width X1.
  • the structure, composition, molecular weight, etc. of the (meth) acrylic copolymer (A) as the base polymer are adjusted, and the type and amount of the crosslinking agent (B) and crosslinking initiator (C) are adjusted or selected.
  • the means to do can be mentioned. However, it is not limited to such means.
  • the main copolymer of the (meth) acrylic copolymer (A) in order to adjust the half width X2 to a preferable range, as will be described in detail later, (1) the main copolymer of the (meth) acrylic copolymer (A).
  • the polymerization component (main component) it is preferable to use a (meth) acrylic monomer or vinyl monomer having 5 or more carbon atoms, particularly 8 or more, of which 9 or more, particularly 10 or more.
  • a hydrophilic component as the copolymer component (trunk component) other than the (meth) acrylic monomer or vinyl monomer. Specifically, it is preferable to select from the examples of hydrophilic monomers contained in the trunk component of the acrylic copolymer (A1) described later. In addition, it is more preferable to increase the hydrophilicity of the trunk component by adding (2b) the hydrophilic component in a mass ratio of 0.1 to 20 with respect to the copolymer component (trunk component) 100.
  • a (meth) acrylic monomer or vinyl monomer component having 4 or less carbon atoms as a branch component of the (meth) acrylic copolymer (A) is 1 to 100% by mass with respect to the trunk component 100. It is preferable to adjust the microphase separation state formed by the trunk component phase and the branch component phase.
  • a (meth) acrylic monomer or vinyl monomer component having a cyclic structure is added in a mass ratio of 1 to 100 with respect to the trunk component 100. It is preferable to adjust the microphase separation state formed by the trunk component phase and the branch component phase.
  • a hydroxyl group-containing compound having high compatibility with the hydrophilic component is used as (4a) the crosslinking agent (B). Specifically, it is preferable to select from the examples of the crosslinking agent (B) described later.
  • (4b) 0.05 to 30 parts by mass of the crosslinking agent (B) is added to 100 parts by mass of the (meth) acrylic copolymer to appropriately adjust the polarity of the phase composed of the trunk component. More preferably.
  • the phase separation structure formed by the trunk component and the branch component can be adjusted.
  • (1) and (2a) and / or (2b) are combined, or (1) and (3a) and / or (3b) are combined. It is preferable to combine (1) with (3a) and / or (3b) with (4a) and / or (4b), and adopt all methods (1) to (4b). Is most preferred. However, it is not limited to this method.
  • an optimal phase separation state may be formed by using the graft polymer and optimizing the compatibility balance between the branch component and the trunk component, other than the above, for example,
  • a hydrophobic component as the main copolymerizable component (trunk component) of the polymer (A) and using a hydrophilic component as the branch component of the copolymer (B)
  • the half width X2 is reduced. It can also be controlled.
  • this photocurable composition are not limited.
  • the photocurable composition is formed into a sheet having a thickness of 150 ⁇ m as a reference (measurement target). That's fine.
  • the photocurable composition preferably has a property of exhibiting adhesiveness at 20 ° C. and softening or fluidizing at 50 to 100 ° C.
  • the present photocurable composition can have such properties by using the (meth) acrylic copolymer (A1) described later as the base resin.
  • a (meth) acrylic copolymer (A) containing a macromonomer as a structural unit a (meth) acrylic copolymer (A1) comprising a graft copolymer having a macromonomer as a branch component is taken as an example. Can do. Since the present photocurable composition is crosslinked by the action of the crosslinking agent (B) and the crosslinking initiator (C), from the viewpoint of its efficiency, the (meth) acrylic copolymer (A) is a graft copolymer. Is preferred.
  • this photocurable composition is produced using the (meth) acrylic copolymer (A1) as a base resin, the half-value width of the one-dimensional scattering profile in the small-angle X-ray scattering measurement defined in the present invention can be controlled. It becomes easy. That is, it is one mode of an achievement means that makes the half width within the range. For this reason, this photocurable composition can exhibit self-adhesiveness (self-adhesiveness) while maintaining a predetermined shape, for example, a sheet shape, at room temperature, and is softened or fluidized when heated in an uncrosslinked state. It has melt properties and can be photocured, and after photocuring, it can be bonded by exhibiting excellent cohesive force.
  • a predetermined shape for example, a sheet shape, at room temperature
  • the (meth) acrylic copolymer (A1) is used as the base polymer of the present photocurable composition, it exhibits adhesiveness at room temperature (20 ° C.) even in an uncrosslinked state, and 50 It can have a property of softening or fluidizing when heated to a temperature of ⁇ 90 ° C., more preferably 60 ° C. or higher or 80 ° C. or lower.
  • the glass transition temperature of the (co) polymer constituting the trunk component of the (meth) acrylic copolymer (A1) is preferably ⁇ 70 to 0 ° C.
  • the glass transition temperature of the (co) polymer component constituting the trunk component is a polymer glass obtained by polymerizing only the monomer component constituting the trunk component of the (meth) acrylic copolymer (A1).
  • the transition temperature Specifically, it means a value calculated by the Fox formula from the glass transition temperature and the composition ratio of the polymer obtained from the homopolymer of each component of the (co) polymer.
  • the polymer composed only of the trunk component may be either a homopolymer or a copolymer.
  • the glass transition temperature of the (co) polymer constituting the main component of the (meth) acrylic copolymer (A1) is the flexibility of the present photocurable composition at room temperature, and the glass transition temperature to the adherend. Since the wettability of the photocurable composition, that is, the adhesiveness is affected, the glass transition temperature of the present photocurable composition is ⁇ 70 ° C. in order to obtain appropriate adhesiveness (tackiness) at room temperature. It is preferably ⁇ 0 ° C., more preferably ⁇ 65 ° C. or more and ⁇ 5 ° C. or less, and particularly preferably ⁇ 60 ° C. or more or ⁇ 10 ° C. or less. However, even if the glass transition temperature of the (co) polymer is the same temperature, the viscoelasticity can be adjusted by adjusting the molecular weight. For example, it can be made more flexible by reducing the molecular weight of the trunk component.
  • Examples of the monomer contained in the trunk component of the (meth) acrylic copolymer (A1) include (meth) acrylic acid ester monomers, such as methyl (meth) acrylate, ethyl (meth) acrylate, and propyl.
  • (Meth) acrylate isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, isopentyl (meta ) Acrylate, neopentyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, heptyl (meth) acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, isooctyl acrylate, noni (Meth) acrylate, isononyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, decyl (meth) acrylate, isodecyl (
  • Hydroxyl-containing (meth) such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, glycerol (meth) acrylate, etc., in which a hydrophilic group is bonded to these (meth) acrylic acid ester monomers Acrylate or the like can also be used.
  • acid anhydride group-containing monomers such as maleic anhydride and itaconic anhydride
  • epoxy group-containing monomers such as glycidyl (meth) acrylate, glycidyl ⁇ -ethyl acrylate, and 3,4-epoxybutyl (meth) acrylate
  • Amino group-containing (meth) acrylic acid ester monomers such as dimethylaminoethyl (meth) acrylate and diethylaminoethyl (meth) acrylate;
  • An isocyanate group such as 2- (0- [1′-methylpropylideneamino] carboxyamino) ethyl, 2-[(3,5-dimethylpyrazolyl) carbonylamino] ethyl (meth) acrylate,
  • the Monomers containing a polyisocyanate group; monomers containing an ultraviolet absorbing group such as 2- [2-hydroxy-5- [2-((meth) acryloyloxy) ethyl] phenyl] -2H-benzotriazole are used.
  • styrene t-butylstyrene, ⁇ -methylstyrene, vinyltoluene, acrylonitrile, methacrylonitrile, vinyl acetate, vinyl propionate, alkyl vinyl ether, hydroxyalkyl vinyl ether, alkyl, which can be copolymerized with the above acrylic monomers and methacrylic monomers.
  • vinyl monomers such as vinyl monomers can also be used as appropriate.
  • the trunk component of the (meth) acrylic copolymer (A1) preferably contains a hydrophobic monomer and a hydrophilic monomer as structural units.
  • the trunk component of the (meth) acrylic copolymer (A1) is composed only of a hydrophobic monomer, a tendency to wet-heat whitening is observed, and thus hydrophilic monomers are also introduced into the trunk component to prevent wet-heat whitening. Is preferred.
  • a hydrophobic (meth) acrylate monomer a hydrophilic (meth) acrylate monomer, and a polymerizable functional group at the end of the macromonomer.
  • a copolymer component formed by random copolymerization with a group can be exemplified.
  • examples of the hydrophobic (meth) acrylate monomer include ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate.
  • hydrophobic vinyl monomer examples include alkyl vinyl esters such as vinyl acetate, styrene, t-butyl styrene, ⁇ -methyl styrene, vinyl toluene, and alkyl vinyl monomers.
  • the number of carbon atoms is 5 or more from the viewpoint of easily forming an appropriate phase separation structure with a phase formed by a branch component, which will be described later, and imparting appropriate adhesiveness (tackiness) to the present photocurable composition. It is preferably 8 or more, more preferably 9 or more, and particularly preferably 10 or more alkyl (meth) acrylates.
  • a photocurable composition having a low relative dielectric constant is used to absorb the change in touch detection sensitivity and suppress the generation of noise in the detection signal. It may be required.
  • the hydrophobic monomer has 5 or more carbon atoms, especially 8 Above all, it is preferable to use 9 or more, particularly 10 or more alkyl (meth) acrylates.
  • alkyl (meth) acrylate having 8 or more carbon atoms for example, 2-ethylhexyl acrylate, n-octyl acrylate, isooctyl acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, t-butylcyclohexyl ( (Meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, undecyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, behenyl (meth) ) Acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate and the like
  • hydrophilic monomer examples include methyl acrylate, tetrahydrofurfuryl (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, and glycerol (meth) acrylate.
  • hydrophilic monomer a hydroxyl group-containing monomer, a carboxyl group-containing monomer, an acid It is preferable to use an anhydride group-containing monomer or a (meth) acrylamide monomer.
  • this photocurable composition when used for a corrosive member such as a metal or metal oxide, a cured product obtained by photocuring the photocurable composition and / or the photocurable composition.
  • a hydrophilic component that does not contain a highly acidic carboxyl group or acid anhydride.
  • hydrophilic monomer for example, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, hydroxyl-containing (meth) acrylate such as glycerol (meth) acrylate, (Meth) acrylamide, dimethyl (meth) acrylamide, diethyl (meth) acrylamide, (meth) acryloylmorpholine, hydroxyethyl (meth) acrylamide, isopropyl (meth) acrylamide, dimethylaminopropyl (meth) acrylamide, phenyl (meth) acrylamide, Nt-butyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-butoxymethyl (meth) acrylic Bromide, diacetone (meth) acrylamide, (meth) preferably used
  • the (meth) acrylic copolymer (A1) preferably contains a macromonomer as a structural unit by introducing a macromonomer as a branch component of the graft copolymer.
  • the macromonomer is a polymer monomer having a terminal polymerizable functional group and a high molecular weight skeleton component.
  • the glass transition temperature (Tg) of the macromonomer is preferably higher than the glass transition temperature of the copolymer component constituting the (meth) acrylic copolymer (A1). Specifically, the glass transition temperature (Tg) of the macromonomer affects the heating and melting temperature (hot melt temperature) of the present photocurable composition, and is preferably 30 ° C. to 120 ° C., and more preferably 40 ° C. Above or 110 ° C. or less, more preferably 50 ° C. or more or 100 ° C. or less.
  • the macromonomer is such a glass transition temperature (Tg), it is possible to maintain excellent processability and storage stability by adjusting the molecular weight, and to adjust so as to hot-melt in the vicinity of 50 ° C to 80 ° C. be able to.
  • the glass transition temperature of the macromonomer means the glass transition temperature of the macromonomer itself and can be measured with a differential scanning calorimeter (DSC).
  • the branch components are attracted to each other and can maintain a state where they are physically cross-linked as a pressure-sensitive adhesive composition, and the physical cross-linking is released by heating to an appropriate temperature.
  • the macromonomer is preferably contained in the (meth) acrylic copolymer (A1) at a ratio of 5% by mass to 30% by mass, especially 6% by mass or more and 25% by mass or less. It is preferably 8% by mass or more or 20% by mass or less.
  • the number average molecular weight of the macromonomer is preferably 500 to 100,000, more preferably less than 8000, particularly 800 or more and less than 7500, and particularly preferably 1000 or more and less than 7000.
  • a generally produced monomer for example, a macromonomer manufactured by Toa Gosei Co., Ltd.
  • a macromonomer manufactured by Toa Gosei Co., Ltd. can be used as appropriate.
  • the high molecular weight skeleton component of the macromonomer is preferably composed of an acrylic polymer or a vinyl polymer.
  • the high molecular weight skeleton component of the macromonomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, isopentyl (meth) acrylate, neopentyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, heptyl (meth) Acrylate, 2-ethylhexyl acrylate, n-octyl
  • the macromonomer has a radically polymerizable group or a polymerizable functional group such as a hydroxyl group, an isocyanate group, an epoxy group, a carboxyl group, an amino group, an amide group, or a thiol group.
  • a radically polymerizable group or a polymerizable functional group such as a hydroxyl group, an isocyanate group, an epoxy group, a carboxyl group, an amino group, an amide group, or a thiol group.
  • a radical polymerizable group copolymerizable with other monomers are preferable.
  • One or two or more radically polymerizable groups may be contained, and one of them is particularly preferred.
  • the macromonomer has a functional group, one or two or more functional groups may be contained, and one of them is particularly preferable. Further, either one of the radical polymerizable group and the functional group may be contained.
  • a functional group other than any one of a functional group to be added to a polymer unit composed of another monomer, or a radical polymerizable group copolymerized with another monomer, or Two or more radically polymerizable groups may be used. Therefore, as the terminal functional group of the macromonomer, for example, a radical polymerizable group such as methacryloyl group, acryloyl group, vinyl group, hydroxyl group, isocyanate group, epoxy group, carboxyl group, amino group, amide group, thiol group And the like.
  • the terminal functional group of the macromonomer is preferably one having a radical polymerizable group copolymerizable with other monomers.
  • one or two or more radically polymerizable groups may be contained, and one is particularly preferable.
  • the macromonomer has a functional group
  • one or two or more functional groups may be contained, and one of them is particularly preferable.
  • the radical polymerizable group and the functional group may contain either one or both.
  • a functional group other than any one of a functional group to be added to a polymer unit composed of another monomer, or a radical polymerizable group copolymerized with another monomer, or Two or more radically polymerizable groups may be used.
  • Macromonomer can be produced by a known method.
  • Macromonomer production methods include, for example, a method using a cobalt chain transfer agent, a method using an ⁇ -substituted unsaturated compound such as ⁇ -methylstyrene dimer as a chain transfer agent, and chemically bonding a polymerizable group. And a method by thermal decomposition.
  • a method for producing a macromonomer a method using a cobalt chain transfer agent is preferable because it uses a catalyst having a small number of production steps and a high chain transfer constant.
  • the acrylic copolymer (A1) can be obtained, for example, by adding a specific macromonomer (a) to a polymer composed of a vinyl monomer (b), and also with a specific macromonomer (a) and It can also be obtained by polymerizing a monomer mixture containing the vinyl monomer (b).
  • the crosslinking agent (B) in the present photocurable composition is a control agent for the (micro) phase separation structure formed by the composition containing the (meth) acrylic copolymer (A), in other words, the present photocurable composition. It has a role as a control agent that adjusts the flexibility and cohesive strength of objects.
  • crosslinking agent (B) examples include (meth) acryloyl group, epoxy group, isocyanate group, carboxyl group, hydroxyl group, carbodiimide group, oxazoline group, aziridine group, vinyl group, amino group, imino group, amide group, N-
  • the crosslinking agent which has at least 1 sort (s) of crosslinkable functional group chosen from a substituted (meth) acrylamide group and an alkoxy silyl group can be mentioned, You may use 1 type or in combination of 2 or more types.
  • the crosslinkable functional group may be protected with a deprotectable protecting group.
  • polyfunctional (meth) acrylate is preferable from the viewpoint of easy control of the crosslinking reaction.
  • polyfunctional (meth) acrylates include 1,4-butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, glycerin di (meth) acrylate, glycerin glycidyl ether di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, bisphenol A polyethoxydi (meth) acrylate, bisphenol A polyalkoxydi (meth) ) Acrylate, bisphenol F polyalkoxy di (meth) acrylate, polyalkylene glycol di (meth) acrylate, trimethylolpropane trioxyethyl (meth)
  • polyfunctional (meth) acrylic acid ester monomers among the above-mentioned polyfunctional (meth) acrylic acid ester monomers, such as hydroxyl group, carboxyl group, amino group, amide group, etc.
  • Polyfunctional monomers or oligomers containing polar functional groups are preferred.
  • a polyfunctional (meth) acrylic acid ester having a hydroxyl group as the crosslinking agent (B).
  • crosslinking agent having two or more types of crosslinkable functional groups examples include glycidyl (meth) acrylate, glycidyl ⁇ -ethyl acrylate, 3,4-epoxybutyl (meth) acrylate, 4-hydroxybutyl (methacrylate).
  • Epoxy group-containing monomers such as acrylate glycidyl ether, 2-isocyanatoethyl (meth) acrylate, 2- (2- (meth) acryloyloxyethyloxy) ethyl isocyanate, (meth) acrylic acid 2- (0- [ In addition to monomers containing isocyanate groups or blocked isocyanate groups such as 1′-methylpropylideneamino] carboxyamino) ethyl, 2-[(3,5-dimethylpyrazolyl) carbonylamino] ethyl (meth) acrylate, vinyltrimethoxy Silane, vinyltriethoxysilane, 3-g Sidoxypropyltrimethoxysilane, 3- (meth) acryloxypropylmethyldiethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimeth
  • the crosslinking agent having two or more kinds of crosslinkable functional groups is a structure in which one crosslinkable functional group is reacted with a (meth) acrylic copolymer and bonded to the (meth) acrylic copolymer (A). You may take By binding the crosslinking agent (B) to the (meth) acrylic copolymer (A), bleeding out of the crosslinking agent (B) and unexpected plasticization of the pressure-sensitive adhesive composition can be suppressed. Moreover, since the reaction efficiency of a photocrosslinking reaction is accelerated
  • the content of the crosslinking agent (B) is such that the half-value width of the one-dimensional scattering profile in the small-angle X-ray scattering measurement is adjusted to an appropriate range to maintain an appropriate phase separation structure, and the flexibility and aggregation of the present photocurable composition
  • the present photocurable composition may further contain a monofunctional monomer that reacts with the crosslinkable functional group of the crosslinker (B).
  • a monofunctional monomer By containing a monofunctional monomer, the half-value width X1 of the one-dimensional scattering profile in the small-angle X-ray scattering measurement of the present photocurable composition is increased, the fluidity during hot melt is increased, It is possible to improve the adhesion to the body and the effect of suppressing wet heat whitening.
  • Such monofunctional monomers include, for example, alkyl (meth) acrylates such as methyl acrylate, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, glycerol (meth) acrylate, poly Hydroxyl group-containing (meth) acrylates such as alkylene glycol (meth) acrylate; (meth) acrylic acid, 2- (meth) acryloyloxyethylhexahydrophthalic acid, 2- (meth) acryloyloxypropylhexahydrophthalic acid, 2- ( (Meth) acryloyloxyethyl phthalic acid, 2- (meth) acryloyloxypropyl phthalic acid, 2- (meth) acryloyloxyethyl maleic acid, 2- (meth) acryloyloxypropyl maleic acid, 2- (meth) Carboxyl group-containing mono
  • a hydroxyl group-containing (meth) acrylate or a (meth) acrylamide monomer it is preferable to use a hydroxyl group-containing (meth) acrylate or a (meth) acrylamide monomer.
  • the crosslinking initiator (C) used in the present photocurable composition serves as a reaction initiation assistant in the crosslinking reaction of the crosslinking agent (B).
  • crosslinking initiator a currently known initiator can be used as appropriate.
  • a photopolymerization initiator that is sensitive to ultraviolet rays having a wavelength of 380 nm or less is preferable from the viewpoint of easy control of the crosslinking reaction.
  • a photopolymerization initiator that is sensitive to light having a wavelength longer than 380 nm can obtain a high photoreactivity, and when the sensitive light forms the photocurable composition into a sheet shape, It is preferable in that it can easily reach the deep part.
  • Photopolymerization initiators are roughly classified into two types depending on the radical generation mechanism, a cleavage-type photopolymerization initiator that can cleave and decompose a single bond of the photopolymerization initiator itself to generate a radical, and a photoexcited initiator. It is roughly classified into a hydrogen abstraction type photopolymerization initiator which can form an exciplex with a hydrogen donor in the system and transfer hydrogen of the hydrogen donor.
  • the cleavage type photopolymerization initiator decomposes to generate another compound when generating radicals by light irradiation, and once excited, it does not function as a crosslinking initiator. For this reason, it does not remain as an active species in the pressure-sensitive adhesive after the crosslinking reaction is completed, and it is not likely to cause unexpected light degradation or the like in the pressure-sensitive adhesive, which is preferable.
  • a hydrogen abstraction type photopolymerization initiator does not generate a decomposition product like a cleavage type photopolymerization initiator during radical generation reaction by irradiation with active energy rays such as ultraviolet rays, so it is difficult to become a volatile component after the reaction is completed. This is useful in that damage to the body can be reduced.
  • cleavage type photopolymerization initiator examples include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl phenyl ketone, and 2-hydroxy-2-methyl-1-phenyl-propane-1.
  • Examples of the hydrogen abstraction type photopolymerization initiator include benzophenone, 4-methyl-benzophenone, 2,4,6-trimethylbenzophenone, 4-phenylbenzophenone, 3,3′-dimethyl-4-methoxybenzophenone, 4- (meta ) Acryloyloxybenzophenone, 4- [2-((meth) acryloyloxy) ethoxy] benzophenone, 4- (meth) acryloyloxy-4′-methoxybenzophenone, methyl 2-benzoylbenzoate, methyl benzoylformate, bis (2- Phenyl-2-oxoacetic acid) oxybisethylene, 4- (1,3-acryloyl-1,4,7,10,13-pentaoxotridecyl) benzophenone, thioxanthone, 2-chlorothioxanthone, 3-methylthioxanthone, 2 , 4-Dimethylthioxanthate , Anthraquinone
  • the photopolymerization initiator is not limited to the substances listed above. Any one of the photo-opening polymerization initiators listed above or a derivative thereof may be used, or two or more thereof may be used in combination.
  • bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide and 2,4,6-trimethylbenzoyldiphenylphosphine are highly sensitive to light and dissociate as a decomposition product after reaction.
  • Acylphosphine oxide photopolymerization initiators such as oxide, (2,4,6-trimethylbenzoyl) ethoxyphenylphosphine oxide, bis (2,6-dimethoxybenzoyl) 2,4,4-trimethylpentylphosphine oxide are preferred.
  • benzophenone 4-methyl-benzophenone as a crosslinking initiator (C), 2,4,6-trimethylbenzophenone, 4-phenylbenzophenone, 3,3′-dimethyl-4-methoxybenzophenone, 4- (meth) acryloyloxybenzophenone, 4- [2-((meth) acryloyloxy) ethoxy] benzophenone 4- (meth) acryloyloxy-4′-methoxybenzophenone, methyl 2-benzoylbenzoate, methyl benzoylformate and the like are preferably used.
  • the content of the crosslinking initiator (C) is not particularly limited. As a guideline, 0.1 to 10 parts by weight, particularly 0.5 parts by weight or more and 5 parts by weight or less, and 1 part by weight or more or 3 parts by weight or less based on 100 parts by weight of the acrylic copolymer (A). It is preferable to contain in the ratio. By setting the content of the crosslinking initiator (C) in the above range, an appropriate reaction sensitivity with respect to the active energy ray can be obtained.
  • sensitizer in addition to the crosslinking initiator (C) component.
  • the sensitizer is not particularly limited, and any sensitizer that can be used as a photopolymerization initiator can be used without any problem. Examples include aromatic amines, anthracene derivatives, anthraquinone derivatives, coumarin derivatives, thioxanthone derivatives, phthalocyanine derivatives, aromatic ketones such as benzophenone, xanthone, thioxanthone, Michler ketone, 9,10-phenanthraquinone, and derivatives thereof. be able to.
  • This photocurable composition may contain the well-known component mix
  • tackifier resins antioxidants, light stabilizers, metal deactivators, rust inhibitors, anti-aging agents, hygroscopic agents, hydrolysis inhibitors, antistatic agents, antifoaming agents, inorganic particles, etc.
  • Various additives can be appropriately contained.
  • An adhesive sheet (referred to as “present adhesive sheet”) can be prepared from the photocurable composition.
  • the pressure-sensitive adhesive sheet may be a single-layer sheet or a multilayer sheet in which two or more layers are laminated.
  • this pressure-sensitive adhesive sheet is a pressure-sensitive adhesive sheet having three or more layers, for example, when forming a pressure-sensitive adhesive sheet having a laminated structure including an intermediate layer and an outermost layer, the outermost layer is formed from the present photocurable composition. It is preferable to do.
  • the ratio of the thickness of each outermost layer to the thickness of the intermediate layer is 1: 1 to 1:20. Among these, a ratio of 1: 2 to 1:10 is more preferable. If the thickness of the intermediate layer is within the above range, the contribution of the thickness of the pressure-sensitive adhesive layer in the laminate is not too large, and it is preferable that the workability relating to cutting and handling is not deteriorated because it is too flexible. In addition, if the outermost layer is in the above range, it is preferable because the adhesion to the adherend and the wettability can be maintained without being inferior in conformity to unevenness and a bent surface.
  • the thickness of this adhesive sheet is preferably 20 ⁇ m to 500 ⁇ m, more preferably 25 ⁇ m or more and 350 ⁇ m or less, and particularly preferably 50 ⁇ m or more and 250 ⁇ m or less.
  • This pressure-sensitive adhesive sheet is attached to glass and has a 180 ° peel strength against the glass when irradiated with light of 4000 mJ / m 2 as an integrated light irradiation amount, that is, the 180 ° peel of the pressure-sensitive adhesive sheet after irradiation with light.
  • the strength is preferably 3 N / cm or more. If the 180 ° peel strength with respect to glass is 3 N / cm or more, an excellent cohesive force can be exhibited, so that adherends can be firmly bonded to each other. Therefore, image display constituent members to be described later can be adhered more firmly.
  • the pressure-sensitive adhesive sheet preferably has a 180 ° peel strength of 3 N / cm or more when irradiated with light as described above, more preferably 5 N / cm or more, and more preferably 10 N / cm or more. Is more preferable.
  • This pressure-sensitive adhesive sheet can be used alone as it is. Moreover, it is also possible to use it by laminating with other members.
  • this adhesive sheet laminated body is a laminated body which includes this adhesive sheet in a layer structure
  • the structure is arbitrary.
  • a pressure-sensitive adhesive sheet laminate can be formed by laminating a release film on one side or both sides of the pressure-sensitive adhesive sheet.
  • the thickness of the release film is not particularly limited. Among them, for example, from the viewpoint of processability and handling properties, it is preferably 25 ⁇ m to 500 ⁇ m, more preferably 38 ⁇ m or more and 250 ⁇ m or less, and particularly preferably 50 ⁇ m or more or 200 ⁇ m or less.
  • the photocurable composition is cured by irradiating with light (referred to as “photocuring”), so that the half-value width X3 (nm ⁇ 1 ) of the one-dimensional scattering profile in the small-angle X-ray scattering measurement is 0.
  • a cured product (referred to as “main cured product”) characterized in that 05 ⁇ X3 ⁇ 0.25 can be obtained.
  • the cured product means a product obtained by irradiating the photocurable composition with light and cured, and its form is arbitrary. Therefore, even if it is a sheet form, it does not need to be a sheet form.
  • the half-value width X3 (nm ⁇ 1 ) of the one-dimensional scattering profile in the small-angle X-ray scattering measurement is 0.05 ⁇ X3 ⁇ 0.25, a highly cured product with high cohesive force can be obtained. Obtainable.
  • the half-value width X3 (nm ⁇ 1 ) of the one-dimensional scattering profile in the small-angle X-ray scattering measurement is 0.05 ⁇ X3 ⁇ 0 from the same viewpoint as in the present photocurable composition. .25, preferably 0.06 ⁇ X3 or X3 ⁇ 0.24, especially 0.08 ⁇ X3 or X3 ⁇ 0.22, and more preferably 0.10 ⁇ X3 or X3 ⁇ 0.20. Even more preferably.
  • the half width X3 is any of 0.05 ⁇ X3 ⁇ 0.25, 0.05 ⁇ X3 ⁇ 0.24, 0.05 ⁇ X3 ⁇ 0.22 or 0.05 ⁇ X3 ⁇ 0.20.
  • the main means for adjusting the full width at half maximum X3 in the cured product is the same as the means for adjusting the full width at half maximum X1 (nm ⁇ 1 ).
  • the structure, composition, molecular weight, etc. of the (meth) acrylic copolymer (A) as the base polymer are adjusted, and the type and amount of the crosslinking agent (B) and crosslinking initiator (C) are adjusted or selected.
  • the means to do can be mentioned. However, it is not limited to these means.
  • the copolymer component (main component) which becomes the main of a (meth) acrylic-type copolymer as mentioned above. It is preferable to use a (meth) acrylic monomer or vinyl monomer having 5 or more carbon atoms, especially 8 or more, of which 9 or more, and particularly 10 or more. Specifically, it is preferable to select from the examples of monomers contained in the trunk component of the acrylic copolymer (A1) described above.
  • a hydrophilic component as the copolymerizable component (trunk component) other than the (meth) acrylic monomer or vinyl monomer. Specifically, it is preferable to select from the examples of hydrophilic monomers contained in the trunk component of the acrylic copolymer (A1) described later. In addition, it is more preferable to increase the hydrophilicity of the trunk component by adding (2b) the hydrophilic component in a mass ratio of 0.1 to 20 with respect to the copolymer component (trunk component) 100.
  • a (meth) acrylic monomer or vinyl monomer component having 4 or less carbon atoms is used as a branch component of the (meth) acrylic copolymer (A) in a mass ratio of 1 to 100 with respect to the trunk component 100. It is preferable to adjust the microphase separation state formed by the trunk component phase and the branch component phase.
  • a (meth) acrylic monomer or vinyl monomer component having a cyclic structure is added in a mass ratio of 1 to 100 with respect to the trunk component 100. It is preferable to adjust the microphase separation state formed by the trunk component phase and the branch component phase.
  • a hydroxyl group-containing compound having high compatibility with the hydrophilic component as (4a) the crosslinking agent (B).
  • the crosslinking agent (B) it is preferable to select from the examples of the crosslinking agent (B) described above.
  • (4b) 0.05 to 30 parts by mass of the crosslinking agent (B) is added to 100 parts by mass of the (meth) acrylic copolymer to appropriately adjust the polarity of the trunk component. .
  • the phase separation structure formed by the trunk component and the branch component can be adjusted by appropriately selecting the above (1) to (4) independently.
  • (1) and (2a) and / or (2b) are combined, or (1) and (3a) and / or (3b) are combined. It is preferable to combine (1) with (3a) and / or (3b) with (4a) and / or (4b), and adopt all methods (1) to (4b). Is most preferred. However, it is not limited to this method.
  • an optimal phase separation state may be formed by using the graft polymer and optimizing the compatibility balance between the branch component and the trunk component, other than the above, for example,
  • a hydrophobic component as the main copolymerizable component (trunk component) of the polymer (A) and using a hydrophilic component as the branch component of the copolymer (B)
  • the half width X3 is It can also be controlled.
  • ⁇ Laminated body for configuring the present image display device> Two component members for an image display device are laminated through the photocurable composition, the pressure-sensitive adhesive sheet, or the cured product, and the laminate for the configuration of the image display device (“the laminate for the configuration of the image display device”). Can be configured).
  • examples of the two constituent members for the image display device include any one of a group consisting of a touch sensor, an image display panel, a surface protection panel, and a polarizing film, or a combination of two or more kinds.
  • the laminate for constituting the image display device include, for example, a release sheet / the present photocurable composition or the present adhesive sheet or the present cured product / touch panel, a release sheet / the present photocurable composition, or the above.
  • Structures such as a compound / touch panel, a polarizing film / the present photocurable composition or the present adhesive sheet or the present cured product / touch panel / the present photocurable composition or the present adhesive sheet or the present cured product / protective panel be able to.
  • the touch panel includes a structure in which a touch panel function is included in a protective panel and a structure in which a touch panel function is included in an image display panel.
  • An image display device (referred to as “the present image display device”) can be configured using the laminate for constituting the image display device as described above.
  • image display apparatuses such as a liquid crystal display, an organic EL display, an inorganic EL display, electronic paper, a plasma display, and a micro electro mechanical system (MEMS) display, can be comprised, for example.
  • MEMS micro electro mechanical system
  • the boundary between the sheet and the film is not clear, and it is not necessary to distinguish the two in terms of the wording in the present invention. Therefore, in the present invention, even when the term “film” is used, the term “sheet” is included. Even when referring to it, “film” is included.
  • Example 1 As the (meth) acrylic copolymer (A), an acrylic polymer obtained by random copolymerization of 15 parts by mass of a polymethyl methacrylate macromonomer having a number average molecular weight of 2500, 81 parts by mass of butyl acrylate, and 4 parts by mass of acrylic acid.
  • the said photocurable composition 1 was shape
  • the polyethylene terephthalate film the Mitsubishi resin company make, Diafoil MRV, thickness 100 micrometers
  • a polyethylene terephthalate film (Made by Mitsubishi Plastics, Diafoil MRQ, thickness 75 ⁇ m) whose surface was peeled was coated to prepare an adhesive sheet laminate 1.
  • Example 2 As the (meth) acrylic copolymer (A), 15 parts by mass of a polymethyl methacrylate macromonomer (number average molecular weight 3000) whose terminal functional group is a methacryloyl group, 81 parts by mass of butyl acrylate, and 4 parts by mass of acrylic acid Propoxylated pentaerythritol triacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., NK ester) as a crosslinking agent (B) for 1 kg of an acrylic copolymer (A-2, mass average molecular weight: 150,000) obtained by random copolymerization of parts
  • a photocurable composition 2 was obtained by adding 110 g of ATM-4PL) (B-1) and 15 g of Ezacure TZT (manufactured by IGM) (C-1) as a photoinitiator (C) and mixing them uniformly.
  • the photocurable composition 2 produced an adhesive sheet laminate 2 in the same manner as in Example
  • Example 3 As the (meth) acrylic copolymer (A), 15 parts by mass of a polymethyl methacrylate macromonomer (number average molecular weight 6700) whose terminal functional group is a methacryloyl group, 81 parts by mass of butyl acrylate, and 4 parts by mass of acrylic acid A nonanediol diacrylate (manufactured by Osaka Organic Industry Co., Ltd., Viscoat 260) is used as a crosslinking agent (B) for 1 kg of an acrylic copolymer (A-3, mass average molecular weight: 46,000) obtained by random copolymerization of parts.
  • a nonanediol diacrylate manufactured by Osaka Organic Industry Co., Ltd., Viscoat 260
  • the photocurable composition 3 produced an adhesive sheet laminate 3 in the same manner as in Example 1.
  • Example 4 As the (meth) acrylic copolymer (A), 30 parts by mass of a polymethyl methacrylate macromonomer (number average molecular weight 2500) whose terminal functional group is a methacryloyl group, 66 parts by mass of butyl acrylate, and 4 parts by mass of acrylic acid 2-isocyanaethyl methacrylate (produced by Showa Denko KK, Karenz MOI) as a crosslinking agent (B) for 1 kg of an acrylic copolymer (A-4, mass average molecular weight: 110,000) obtained by random copolymerization of parts 27 g of (B-3) was mixed. The mixture was heated at 80 ° C.
  • a polymethyl methacrylate macromonomer number average molecular weight 2500
  • butyl acrylate 66 parts by mass of butyl acrylate
  • acrylic acid 2-isocyanaethyl methacrylate produced by Showa Denko KK, Karenz MOI
  • Example 5 As the (meth) acrylic copolymer (A), 1 kg of the acrylic copolymer (A-2, mass average molecular weight: 150,000) used in Example 2 was used as the crosslinking agent (B). 36 g of naethyl methacrylate (Showen Denko, Karenz MOI) (B-3) was mixed. The mixture was heated at 80 ° C. for 4 hours to react the carboxyl group of the (meth) acrylic copolymer (A-4) with the isocyanate group of the crosslinking agent (B-3).
  • the photocurable composition 5 produced an adhesive sheet laminate 5 in the same manner as in Example 1.
  • Example 6 11 parts by weight of a polymethyl methacrylate macromonomer (number average molecular weight 2500) having a terminal functional group having a number average molecular weight of 2500 as the (meth) acrylic copolymer (A) is methacryloyl group, 86 parts by weight of 2-ethylhexyl acrylate, And 1 kg of an acrylic copolymer (A-5, mass average molecular weight: 74,000) obtained by random copolymerization of 3 parts by weight of acrylic acid, propoxylated pentaerythritol triacrylate (new) as a crosslinking agent (B) Nakamura Chemical Co., Ltd., NK Ester ATM-4PL) (B-1) 90 g, Ezacure TZT (IGM Co., Ltd.) (C-1) 15 g as a photoinitiator (C) was added, mixed uniformly, and photocured. Composition 6 was obtained.
  • the photocurable composition 6 produced an adhesive sheet laminate 6 in
  • the (meth) acrylic copolymer (A-10) is a copolymer containing no macromonomer component.
  • the photocurable composition 11 produced an adhesive sheet laminate 11 in the same manner as in Example 1.
  • Small-angle X-ray scattering measurement was performed at BL03XU (Frontier Soft Matter Development Industry-Academia Beamline) of SPring-8, a large synchrotron radiation facility.
  • BL03XU Frontier Soft Matter Development Industry-Academia Beamline
  • the release film of both surfaces was peeled and the adhesive sheet was installed in the jig for samples.
  • the X-ray beam shape was adjusted to be 120 ⁇ m in length and 120 ⁇ m in width.
  • the X-ray wavelength was 1 mm, and a CCD (Hamamatsu Photonics V7739P + ORCA R2) was used as the detector.
  • the camera length was set to about 4 m, and correction was performed using a standard sample (collagen).
  • the type, thickness, and exposure time of the attenuator (attenuation plate) were adjusted so that the detector was not damaged by strong X-rays, and the sample was irradiated with X-rays to obtain a two-dimensional scattered image of the sample.
  • the half width X and peak position Y of the peak were obtained.
  • the baseline correction the minimum value of the scattering intensity in the analysis target region was obtained, and the baseline correction was performed by subtracting the minimum value over the entire region.
  • the obtained one-dimensional scattering profile after correction was fitted with a Gaussian function and a Lorentz function, and the half width of the resultant composite function was set to X1 and the peak position was set to Y1.
  • waveform separation software Frak
  • ND what was not detected from the obtained one-dimensional scattering profile.
  • the adhesive sheet laminated body produced by the Example and the comparative example it irradiated with light so that the integrated light quantity of wavelength 365nm might be set to 4000 mJ / cm ⁇ 2 > from the one release film side using a high pressure mercury lamp, and photocurable composition
  • the object was cured.
  • the photocurable composition after photocuring that is, the cured product, in the same manner as the photocurable composition before photocuring described above, the peak half width (X2) and peak position of the one-dimensional scattering profile in the small-angle X-ray scattering measurement (Y2) was determined, and the interdomain distance (Z2) was calculated from the peak position (Y2).
  • An autoclave treatment 70 ° C., gauge pressure 0.2 MPa, 20 minutes was applied and finished and a glass adhesive strength measurement sample before photocuring was prepared. While pulling the backing film at an angle of 180 ° at a peeling speed of 60 mm / min, the adhesive sheet is peeled from the glass, the tensile strength is measured with a load cell, and the 180 ° peel strength (N / Cm) was measured.
  • ITO indium oxide
  • One release film of the pressure-sensitive adhesive sheets prepared in Examples and Comparative Examples was peeled off, and a PET film (Toyobo Co., Ltd., Cosmo Shine A4100, 125 ⁇ m) was attached to the exposed surface with a hand roller.
  • a PET film Toyobo Co., Ltd., Cosmo Shine A4100, 125 ⁇ m
  • the remaining release film is peeled off, and the pressure-sensitive adhesive sheet is handed to the ITO glass substrate for metal corrosion resistance evaluation so as to cover the five reciprocating wires of ITO. Sticking with a roller.
  • the resistance value at room temperature was measured for each of the five ITO wirings in this metal corrosion resistance evaluation sample (ITO wiring with adhesive sheet), and the average value ( ⁇ 0) of the initial wiring resistance values was obtained.
  • the corrosion resistance reliability evaluation sample (ITO wiring with adhesive sheet) was stored in a 65 ° C. 90% RH environment for 800 hours. After storage, the resistance value of the ITO wiring in the metal corrosion resistance evaluation sample (ITO wiring with adhesive sheet) was measured in the same manner, and the average value ( ⁇ ) of the wiring resistance value after the environmental test was obtained. Then, the rate of change (%) [(( ⁇ / ⁇ 0) -1) ⁇ 100] of the ITO resistance value, that is, the resistance value between line ends was calculated and indicated as “resistance value change” in the table. A change in resistance value of less than 5% was judged as “ ⁇ (very good)”, 5% or more but less than 10% as “ ⁇ (good)”, and 10% or more as “x (poor)”.
  • the other release film (Mitsubishi resin company make, Diafoil MRV from the one release film (Made by Mitsubishi resin company, Diafoil MRQ, thickness 75 micrometers) side)
  • the pressure-sensitive adhesive sheet was half-cut into a 30 mm ⁇ 30 mm square shape so as not to penetrate a thickness of 100 ⁇ m.
  • One of the cut release films (Mitsubishi Resin, Diafoil MRQ, thickness 75 ⁇ m) is peeled off, and the polyethylene terephthalate film (Mitsubishi Resin, Diafoil MRT, thickness) is peeled on the exposed adhesive surface. 50 ⁇ m).
  • the release films on both sides were cut into 50 mm ⁇ 50 mm, and samples for shape stability evaluation before photocuring were prepared.
  • the sample for shape stability evaluation was cured for 300 hours in an environment of a temperature of 40 ° C. and a humidity of 90%, and the amount of protrusion of the adhesive material on the end face of the adhesive sheet after curing was observed.
  • the protruding distance of the adhesive material at the center of each side was measured, and the average distance of the four sides was defined as the protruding amount (mm) of the adhesive material.
  • Step absorbency 58mm x 110mm x 0.8mm thick glass edge plate (3mm long side, 15mm short side) with 40-50 ⁇ m thickness printing and 52mm x 80mm central recessed glass plate Prepared.
  • One release film of the pressure-sensitive adhesive sheet laminate produced in Examples and Comparative Examples was peeled off and roll-bonded to the entire surface of soda lime glass (54 mm ⁇ 82 mm ⁇ thickness 0.5 mm). The remaining release film is peeled off, and pressure bonding is performed using a vacuum press so that an adhesive sheet is applied to the frame-shaped printing step of the glass plate with printing steps (absolute pressure 5 kPa, temperature 70 ° C., pressing pressure 0.04 MPa). An evaluation sample was prepared.
  • level difference absorbability of the evaluation sample after autoclaving for 30 minutes under the conditions of 60 ° C. and 0.3 MPa, the appearance of the bonded evaluation sample was confirmed, and bubbles were observed in the vicinity of the printing level difference. “ ⁇ (poor)”, and those where no bubbles were observed were judged as “good”.
  • a polarizing plate with an adhesive layer (manufactured by Sanlitz, VLC2-1518AGD2SF4, size 54 mm ⁇ 82 mm) is attached to a soda lime glass of 54 mm ⁇ 82 mm ⁇ thickness 0.5 mm with a hand roller, and autoclaved (25 ° C., gauge)
  • a polarizing plate substrate was prepared by applying a pressure of 0.2 MPa for 20 minutes.
  • the release film on one side of the pressure-sensitive adhesive sheet laminate produced in Examples and Comparative Examples was peeled off, and 54 mm ⁇ 82 mm ⁇ 0.5 mm thick soda lime glass was attached to the exposed surface with a hand roller.
  • the release film on which the pressure-sensitive adhesive sheet laminate remained was peeled off, and the polarizing plate surface of the polarizing plate substrate was attached to the exposed surface with a hand roll.
  • the integrated light intensity at a wavelength of 365 nm is 4000 mJ / cm 2.
  • the sheet was irradiated with light to prepare a foam resistance reliability evaluation sample.
  • the evaluation sample was cured under an environment of 95 ° C. for 100 hours, and “ ⁇ (good)” indicates that the appearance was not changed without foaming, and “ ⁇ (poor)” indicates that foaming or peeling was observed. Judged.
  • the photocurable compositions prepared in the examples have both a suitable cohesive force and adhesiveness because the half-value width of the photocurable composition obtained by small-angle X-ray scattering measurement is within a predetermined range. It was also excellent in storage stability and bonding reliability. As for the photocurable composition before and after photocuring, the half width of 0.08 or more resulted in particularly high holding power.
  • the photocurable compositions 6 to 9 using a hydrophobic monomer having 5 or more carbon atoms as the main copolymer component of the (meth) acrylic copolymer (A) the relative dielectric constant at a frequency of 100 kHz is used. The rate was as low as 3.5 or less, and it was more suitably used for touch sensors.
  • the photo-curable compositions 7 to 9 are particularly excellent in metal corrosion resistance and can be suitably used for adherends having corrosive properties such as metals and metal oxides.
  • the photocurable composition prepared in Comparative Example 1 has a half-value width X1 of the photocurable composition obtained by small-angle X-ray scattering measurement of less than 0.05 and is outside the scope of the present invention.
  • a half-value width X1 of the photocurable composition obtained by small-angle X-ray scattering measurement of less than 0.05 and is outside the scope of the present invention.
  • no one-dimensional scattering profile was observed by small angle X-ray scattering measurement. For this reason, the photocurable composition has poor cohesive force, and has poor storage stability before photocuring and poor foaming reliability after bonding.
  • the photocurable composition produced in Comparative Example 3 uses a (meth) acrylic polymer containing a macromonomer as a structural unit, but becomes a viscous liquid at room temperature, and the photocurable composition is a small-angle X-ray. A one-dimensional scattering profile in the scattering measurement was not observed. For this reason, the photocurable composition has poor cohesive force, and is inferior in storage stability before photocuring and antifoaming reliability after bonding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Laminated Bodies (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

ホットメルト可能な温度に加熱すると、貼合面の凹凸部に追従して隅々まで充填することができ、光硬化後は、被着物同士をより一層強固に接着させることができる新たな光硬化性組成物を提供せんとする。 マクロモノマーを共重合性成分とする(メタ)アクリル系共重合体(A)、架橋剤(B)及び架橋開始剤(C)を含む光硬化性組成物であって、小角X線散乱測定における1次元散乱プロファイルの半値幅X1(nm-1)が0.05<X1<0.30であることを特徴とする光硬化性組成物を提案する。

Description

光硬化性組成物、粘着シート、粘着シート積層体、硬化物、画像表示装置構成用積層体及び画像表示装置
 本発明は、マクロモノマーを構成単位として含有する(メタ)アクリル系共重合体を用いた光硬化性組成物、並びに、それを用いた粘着シート、粘着シート積層体、硬化物、画像表示装置構成用積層体及び画像表示装置に関する。
 マクロモノマーは、結合可能な官能基を持つ高分子量モノマーである。マクロモノマーは、他のモノマーと付加又は共重合することにより、グラフト共重合体を容易に合成することができる。そして、マクロモノマーを用いてグラフト共重合体を合成すると、物性の異なる樹脂を枝成分と幹成分とにそれぞれ別々に、しかも簡便且つ純度良く組み込むことができるため、粘接着剤分野においても、この種のマクロモノマーを用いた粘着剤組成物が種々提案されている。
 例えば特許文献1には、タック、接着力、凝集力などの粘着物性が良好な粘着剤用樹脂組成物として、数平均分子量が1000~100000でかつガラス転移温度が-20℃以下のマクロモノマー、ヒドロキシル基またはカルボキシル基を有するラジカル重合性単量体および他の単量体をラジカル重合させることによって得られるグラフト共重合体からなり、幹ポリマーのガラス転移温度が枝ポリマーのガラス転移温度よりも高い粘着剤用樹脂組成物が開示されている。
 特許文献2には、高温・高湿条件における耐久性と再剥離性を向上させる方法として、ガラス転移温度が40℃以上でかつ数平均分子量が2000~20000の(メタ)アクリロイル基含有マクロモノマー0.2~3質量部と、アルキル(メタ)アクリレート57~98.8質量部と、官能基含有モノマー1~20質量部と、少なくとも該アルキル(メタ)アクリレートと共重合可能な他のモノマー0~20質量部との共重合体(重量平均分子量50万~200万)を用いた接着剤が開示されている。
 特許文献3には、種々の被着体に容易に接合することができ、接合後に硬化させて接着剤なみの接着力を発揮させることができ、かつ切断加工した際の切断面からの粘接着剤のはみ出しや切断面同士の接着が生じ難い粘接着剤組成物として、アルキル(メタ)アクリレートモノマーと、全モノマー成分中1~30質量%を占める数平均分子量Mnが1000~200000、ガラス転移点Tgが30~150℃のマクロモノマーと、を共重合してなるアクリル系粘着性ポリマーと、光カチオン重合性化合物と、光カチオン光重合開始剤とを含む硬化型粘接着剤組成物が開示されている。
 特許文献4には、粘着テープの粘着層に、高含有量で充填剤が含有された場合であっても、粘着性に優れ、高温に曝された場合であっても粘着性を維持する感圧接着剤として、(メタ)アクリル系共重合体を幹ポリマーとし、(メタ)アクリル系マクロモノマーを枝ポリマーとする(メタ)アクリル系グラフト共重合体と架橋剤と充填剤とを含有することを特徴とする感圧接着剤が提案されている。
 特許文献5には、通常状態、すなわち、室温状態では、剥離可能な程度の接着性(“タック性”と称する)を備えることができると共に、ホットメルト可能な温度に加熱すると、流動性を持つようになり、貼合面の段差部に追従して隅々まで充填することができ、最終的には被着物同士を強固に接着させることができる粘着剤樹脂組成物として、アクリル系共重合体(A)100質量部と、架橋剤(B)0.5~20質量部と、架橋開始剤(C)0.1~5質量部とを含有する粘着剤樹脂組成物であって、アクリル系共重合体(A)は、重量平均分子量が5.0×10~5.0×10であるグラフト共重合体であり、当該グラフト共重合体の幹成分として(メタ)アクリル酸エステル由来の繰り返し単位を含有し、当該グラフト共重合体の枝成分として数平均分子量5.0×10以上6.0×10未満のマクロモノマー由来の繰り返し単位を含有し、且つ、当該マクロモノマー由来の繰り返し単位をアクリル系共重合体(A)中に0.1~3mol%の割合で含有することを特徴とする粘着樹脂組成物が開示されている。
 また、特許文献6には、数量平均分子量が500以上6000未満のマクロモノマー(a)およびビニル単量体(b)を含有する単量体混合物を重合して得られる、重量平均分子量が5万~100万である(メタ)アクリル系共重合体(A)を含む粘着剤組成物、並びに、この粘着剤組成物を用いた粘着シートが開示されている。
 特許文献7には、室温状態では、シート状の形状を保持することができ、剥離可能な程度の貼着性を備えることができ、ホットメルトによって流動性を持つようになり、最終的には架橋して画像表示装置構成部材同士を強固に接着することができる新たな画像表示装置構成用積層体の製造方法が開示されている。
 特許文献8には、印刷隠蔽部など光が届き難い箇所があっても光硬化させることができ、ある程度の厚さを有する粘着シートであってもシート全体を硬化させることができる、光硬化性の粘着シートが開示されている。
 特許文献9には、透明粘着材を介して、2つの光学装置構成用部材を一旦貼合してなる光学装置構成用積層体から、2つの光学装置構成用部材を引き離して、光学装置構成用部材をリサイクルする方法が開示されている。
 特許文献10には、画像表示装置構成部材の貼合において、粘着層と離型層との界面における異物混入や、粘着層への離型剤の移行転写を抑えることができ、貼合後の耐久性にも優れた、粘着シート積層体が開示されている。
特開平1-203412号公報 特開平8-209095号公報 特開平11-158450号公報 特開2011-219582号公報 特開2015-105296号公報 国際公開第2015/080244A1 国際公開第2015/137178A1 国際公開第2016/024618A1 国際公開第2016/002763A1 国際公開第2016/088697A1
 本発明は、上述のような従来開示されていた光硬化性組成物、すなわち、マクロモノマーを構成単位として含有する(メタ)アクリル系共重合体と架橋剤とを有する光硬化性組成物をさらに改良することにより、ホットメルト可能な温度に加熱すると、貼合面の凹凸部に追従して隅々まで充填することができ、光硬化後は、被着物同士をより一層強固に接着させることができる新たな光硬化性組成物を提供せんとするものである。
 本発明は、マクロモノマーを構成単位として含有する(メタ)アクリル系共重合体(A)、架橋剤(B)及び架橋開始剤(C)を含む光硬化性組成物であって、小角X線散乱測定における1次元散乱プロファイルの半値幅X1(nm-1)が0.05<X1<0.30であることを特徴とする光硬化性組成物を提案する。
 本発明が提案する光硬化性組成物によれば、室温状態でシート状を保持しつつ自着性(“タック性”と称する)を示すことができ、未架橋状態において加熱すると、軟化乃至流動し、例えばマクロモノマーのガラス転移温度以上に加熱することにより軟化乃至流動し、貼合面の凹凸部に追従して隅々まで充填することができる。さらに、光硬化することにより、優れた凝集力を発揮することができるから、被着物同士を強固に貼着することができる。
 以下に本発明の実施形態の一例について説明する。ただし、本発明が下記実施形態に制限されるものではない。
[本光硬化性組成物]
 本発明の実施形態の一例に係る組成物(「本光硬化性組成物」と称する)は、マクロモノマーを構成単位として含有する(メタ)アクリル系共重合体(A)、架橋剤(B)及び架橋開始剤(C)を含む光硬化性組成物であって、小角X線散乱測定における1次元散乱プロファイルの半値幅X1(nm-1)が0.05<X1<0.30であることを特徴とする光硬化性組成物である。
 上記「マクロモノマーを構成単位として含有する」とは、(メタ)アクリル系共重合体(A)の共重合体成分としてマクロモノマーを含む場合のほか、(メタ)アクリル系共重合体(A)の付加結合成分として含む場合など、当該共重合体成分以外の構成単位として含有する場合を包含する意味である。
 本光硬化性組成物は、少なくとも架橋剤(B)及び架橋開始剤(C)の何れかが、(メタ)アクリル系共重合体(A)に結合されてなる構成を備えたものであるのが好ましい。
 少なくとも架橋剤(B)及び架橋開始剤(C)の何れかが、(メタ)アクリル系共重合体(A)に結合されていれば、結合した架橋剤(B)や架橋開始剤(C)のブリードアウトを抑制することができる。また、少なくとも架橋剤(B)及び架橋開始剤(C)の何れかが(メタ)アクリル系共重合体(A)に結合されることで、光架橋反応の反応効率が促進されることから、より凝集力の高い光硬化物を得ることができる。
 さらに、少なくとも架橋剤(B)及び架橋開始剤(C)の何れかが(メタ)アクリル系共重合体(A)に結合されていれば、(メタ)アクリル系共重合体(A)が架橋される箇所を意図的に設計することが可能となるため、本発明で規定する小角X線散乱測定における1次元散乱プロファイルの半値幅を制御することが容易となる。
 ここで、上記「(メタ)アクリル系共重合体(A)に結合されている」とは、架橋剤(B)又は架橋開始剤(C)と(メタ)アクリル系共重合体(A)とが共有結合、イオン結合及び金属結合を包含する化学結合で結合した状態を指す。
 本光硬化性組成物は、上記したように、小角X線散乱測定における1次元散乱プロファイルの半値幅X1(nm-1)が0.05<X1<0.30であることを特徴とする。
 小角X線散乱測定とは、散乱角が数度以下(具体的には例えば10°以下)の散乱X線を観察することにより、ナノスケール(1~100nm)の構造情報を得る手法である。
 したがって、小角X線散乱測定において1次元散乱プロファイルが観測可能な組成物であるということは、小角X線散乱測定において1次元散乱プロファイルが観測されない状態の組成物ではないことを意味している。なお、小角X線散乱測定において1次元散乱プロファイルが観測可能であれば、本光硬化性組成物の形状や状態を限定するものではない。
 本光硬化性組成物における(メタ)アクリル系共重合体(A)は、マクロモノマーを構成単位として含有する共重合体である。一般にマクロモノマーを構成単位とする共重合体は、グラフト共重合体或いはブロック共重合体を形成する。マクロモノマーの重合性基が1つである場合は、通常、他のモノマーとの付加、縮合又は共重合によってグラフト共重合体となる。また、マクロモノマーの重合性基が2つである場合は、通常、他のモノマーとの付加、縮合又は共重合によってブロック共重合体となる。一般に、グラフト共重合体やブロック共重合体は、(ミクロ)相分離構造を形成することが知られている。
 本光硬化性組成物についての小角X線散乱測定における1次元散乱プロファイルの半値幅の規定は、上記のような(メタ)アクリル系共重合体(A)を含む組成物が形成する(ミクロ)相分離構造の“相分離状態”の尺度として考えることができる。すなわち、例えばグラフト共重合体における幹成分と枝成分、或いはブロック共重合体における個々のブロック成分は、異なる“相”としてミクロに分離した状態を形成している。
 ここで、小角X線散乱測定における1次元散乱プロファイルの半値幅が大きい(広い)場合は、ピークがブロードであることを意味し、半値幅が小さい場合と比較して、相分離している各相の密度差が小さい場合や相分離構造が不均一であることを意味している。
 一方、半値幅が小さい(狭い)ほど、ピークがシャープであることを意味し、半値幅が大きい場合と比較して、相分離した各相の密度差がより明確である場合や相分離構造がより均一であることを意味している。
 よって、本光硬化性組成物では、上記半値幅を特定の範囲内に制御することにより、ミクロに相分離した各々の相が、異なる粘着特性を別個に担うことが可能となる。
 そのため、一般的には両立させることが困難な特性を兼備することが可能となったものと考えることができる。
 以下の説明では「枝成分」、「幹成分」という語を用いてグラフト共重合体を例に説明する場合があるが、ブロック共重合体においては、これを「各ブロック成分」(例えば「ブロック成分A」、「ブロック成分B」)と読み替えればよい。
 上記のような観点から、本光硬化性組成物において、小角X線散乱測定における1次元散乱プロファイルの半値幅X1は、マクロモノマーを構成単位として含む共重合ポリマーにおいて、マクロモノマーから成る枝成分と、幹成分とが成す(ミクロ)相分離構造が、処方する架橋剤や光開始剤によって変化した後の状態の指標とすることができる。
 よって、本光硬化性組成物において、0.05<X1<0.30であることにより、上述のような従来開示されていた光硬化性組成物、すなわち、マクロモノマーを構成単位として含む(メタ)アクリル系共重合体と、架橋剤とを有する従来の光硬化性組成物に比べて、背反物性である粘着性と形状安定性とをより高い水準で両立することができ、ハンドリング性向上の効果を得ることができる。
 かかる観点から、本光硬化性組成物において、小角X線散乱測定における1次元散乱プロファイルの半値幅X1は0.05<X1<0.30であるのが好ましく、中でも0.06<X1或いはX1<0.27、その中でも0.08<X1或いはX1<0.25、さらにその中でも0.11<X1或いはX1≦0.23であるのがより一層好ましい。
 以上から、前記半値幅X1は、0.05<X1<0.30、0.05<X1<0.27、0.05<X1<0.25又は0.05<X1≦0.23のいずれかであることが好ましく、中でも0.06<X1<0.30、0.06<X1<0.27、0.06<X1<0.25又は0.06<X1≦0.23のいずれかであることがより好ましく、その中でも0.08<X1<0.30、0.08<X1<0.27、0.08<X1<0.25又は0.08<X1≦0.23のいずれかであることがさらに好ましく、さらにその中でも0.11<X1<0.30、0.11<X1<0.27、0.11<X1<0.25又は0.11<X1≦0.23のいずれかであることがもっとも好ましい。
 本光硬化性組成物において、小角X線散乱測定における1次元散乱プロファイルの半値幅X1を調整するための主な手段として、ベースポリマーである(メタ)アクリル系共重合体(A)の構造や組成、分子量などを調整すると共に、架橋剤(B)や架橋開始剤(C)の種類と量を調整したり選択したりする手段を挙げることができる。但し、このような手段に限定するものではない。なお、「ベースポリマー」とは、光硬化性組成物中に含まれる主成分をいい、また、「主成分」とは、光硬化性組成物の40質量%を超えて含まれる成分をいう。
 ここで、(メタ)アクリル系共重合体(A)の構造の選択としては、例えばグラフト共重合体であるかブロック共重合体であるかの選択を挙げることができる。
 (メタ)アクリル系共重合体(A)の組成の調整としては、幹成分と枝成分(ブロック共重合体の場合は各ブロック成分)の組成の調整を挙げることができる。
 具体的には、(メタ)アクリル系共重合体(A)の枝成分に基づく相及び幹成分に基づく相のガラス転移温度(Tg)を調整したり、枝成分及び幹成分の相溶性パラメータのバランスを最適化したり、枝成分及び幹成分の親水性・疎水性のバランスを最適化することによっても、上記半値幅を制御することができる。例えば、枝成分でTgの高い相を、幹成分でTgの低い相を形成し、上記半値幅を制御することができる。
 以上のように、グラフトポリマーを使用し、枝成分と幹成分の相溶性のバランスを最適化することで半値幅を制御して最適な相分離状態を形成して、タック性とホットメルト性を兼備することができる。
 架橋剤(B)や架橋開始剤(C)の種類の調整としては、例えば(メタ)アクリル系共重合体(A)を構成する親水性成分との相溶性を調整することを挙げることができる。架橋剤(B)や架橋開始剤(C)を、(メタ)アクリル系共重合体(A)の成す幹成分と枝成分(ブロック共重合体の場合は各ブロック成分)のうち、いずれか若しくは両方の相への相溶性が高い成分としたり、添加量を調整したりすることにより、(メタ)アクリル系共重合体(A)の成す幹成分と枝成分(ブロック共重合体の場合は各ブロック成分)の相溶性を調整して、相分離状態、すなわち、1次元散乱プロファイルの半値幅を制御することができる。
 中でも、本光硬化性組成物の上記半値幅X1の調整方法としては、後述するように、幹成分と枝成分を構成するモノマーが有する官能基の種類や含有割合の最適化や、枝成分の分子量の最適化などで(メタ)アクリル系共重合体(A)を最適化すると共に、架橋剤(B)や架橋開始剤(C)の種類と量の調整を行うことが有効である。
 さらに、本光硬化性組成物において、上記半値幅X1を好ましい範囲に調整するためには、詳しくは後述するように、例えば(1)(メタ)アクリル系共重合体(A)の主となる共重合成分(幹成分)として、炭素数が5以上、中でも8以上、その中でも9以上、特に10以上の(メタ)アクリル系モノマー又はビニルモノマーを用いることが好ましい。具体的には、後述するアクリル系共重合体(A1)の幹成分が含有するモノマーの例示から選択することが好ましい。
 また、(2a)前記(メタ)アクリル系モノマー又はビニルモノマー以外の前記共重合性成分(幹成分)として、親水性成分を用いることが好ましい。具体的には、後述するアクリル系共重合体(A1)の幹成分が含有する親水性モノマーの例示から選択することが好ましい。加えて、(2b)当該親水性成分を、前記共重合成分(幹成分)100に対して0.1~20の質量割合で含有させて幹成分の親水性を高めることがさらに好ましい。
 さらに、(3a)(メタ)アクリル系共重合体(A)の枝成分として、炭素数4以下の(メタ)アクリル系モノマー又はビニルモノマー成分を、幹成分100に対して1~100の質量割合となるように配合させて、幹成分の相と枝成分の相とが成すミクロ相分離状態を調整することが好ましい。また、(3b)(メタ)アクリル系共重合体(A)の枝成分として、環状構造を有する(メタ)アクリル系モノマー又はビニルモノマー成分を、幹成分100に対して1~100の質量割合となるように配合させて、幹成分の相と枝成分の相とが成すミクロ相分離状態を調整することが好ましい。
 さらに、(4a)架橋剤(B)として親水性成分との相溶性の高い水酸基含有化合物等を用いることが好ましい。具体的には、後述する架橋剤(B)の例示から選択することが好ましい。加えて、(4b)前記架橋剤(B)を、(メタ)アクリル系共重合体100質量部に対して0.05~30質量部添加せしめて、幹成分からなる相の極性を適宜調整することがさらに好ましい。
 以上のように、上記(1)~(4b)を、それぞれ独立して適宜選択することで、幹成分と枝成分とが成す相分離構造を調整することができる。中でも、上記(1)~(4b)の方法のうち、(1)と(2a)及び/又は(2b)とを組み合わせることや、(1)と(3a)及び/又は(3b)とを組み合わせることが好ましく、(1)と(3a)及び/又は(3b)と(4a)及び/又は(4b)とを組み合わせることがより好ましく、(1)~(4b)の全ての方法を採用することが最も好ましい。但し、この方法に限定するものではない。
 上述したとおり、グラフトポリマーを使用し、枝成分と幹成分の相溶性のバランスを最適化することによって、最適な相分離状態を形成すればよいことから、上記の他にも、例えば、上記共重合体(A)の主となる共重合性成分(幹成分)として疎水性成分を用い、かつ、上記共重合体(B)の枝成分として親水性成分を用いることによって、上記半値幅X1を制御することもできる。
 本光硬化性組成物は、積算光照射量として4000mJ/mの光を照射した際の小角X線散乱測定における1次元散乱プロファイルの半値幅X2(nm-1)が0.05<X2<0.25であることがより一層好ましい。
 本光硬化性組成物において、積算光照射量として4000mJ/mの光を照射した際の該1次元散乱プロファイル、すなわち光を照射した後の本光硬化性組成物の該1次元散乱プロファイルの半値幅X2(nm-1)が0.05<X2<0.25であることにより、X1が所定範囲にある場合の効果に加えて、さらに光硬化後の組成物において高い凝集力を得る効果を得ることができる。照射光の波長は、後述する架橋開始剤(C)が感応する波長であるのが好ましい。
 かかる観点から、本光硬化性組成物において、積算光照射量として4000mJ/mの光を照射した際の小角X線散乱測定における1次元散乱プロファイルの半値幅X2(nm-1)は0.05<X2<0.25であるのが好ましく、中でも0.06<X2或いはX2<0.24、その中でも0.08<X2或いはX2<0.22、さらにその中でも0.10<X2或いはX2<0.20であるのがより一層好ましい。
 以上から、前記半値幅X2は、0.05<X2<0.25、0.05<X2<0.24、0.05<X2<0.22又は0.05<X2<0.20のいずれかであることが好ましく、中でも0.06<X2<0.25、0.06<X2<0.24、0.06<X2<0.22又は0.06<X2<0.20のいずれかであることがより好ましく、その中でも0.08<X2<0.25、0.08<X2<0.24、0.08<X2<0.22又は0.08<X2<0.20のいずれかであることがさらに好ましく、さらにその中でも0.10<X2<0.25、0.10<X2<0.24、0.10<X2<0.22又は0.10<X2<0.20のいずれかであることがもっとも好ましい。
 本光硬化性組成物において、積算光照射量として4000mJ/mの光を照射した際の小角X線散乱測定における1次元散乱プロファイルの半値幅X2(nm-1)を調整するため手段は、上記半値幅X1を調整するための手段と同様である。例えば、ベースポリマーである(メタ)アクリル系共重合体(A)の構造や組成、分子量などを調整すると共に、架橋剤(B)や架橋開始剤(C)の種類と量を調整したり選択したりする手段を挙げることができる。但し、このような手段に限定するものではない。
 さらに、本光硬化性組成物において、上記半値幅X2を好ましい範囲に調整するためには、詳しくは後述するように、(1)(メタ)アクリル系共重合体(A)の主となる共重合成分(幹成分)として、炭素数が5以上、中でも8以上、その中でも9以上、特に10以上の(メタ)アクリル系モノマー又はビニルモノマーを用いることが好ましい。具体的には、後述するアクリル系共重合体(A1)の幹成分が含有するモノマーの例示から選択することが好ましい。
 また、(2a)前記(メタ)アクリル系モノマー又はビニルモノマー以外の前記共重合成分(幹成分)として、親水性成分を用いることが好ましい。具体的には、後述するアクリル系共重合体(A1)の幹成分が含有する親水性モノマーの例示から選択することが好ましい。加えて、(2b)当該親水性成分を、前記共重合成分(幹成分)100に対して0.1~20の質量割合で含有させて幹成分の親水性を高めることがさらに好ましい。
 さらに、(3a)(メタ)アクリル系共重合体(A)の枝成分として、炭素数4以下の(メタ)アクリル系モノマー又はビニルモノマー成分を、幹成分100に対して1~100の質量割合となるように配合させて、幹成分の相と枝成分の相とが成すミクロ相分離状態を調整することが好ましい。また、(3b)(メタ)アクリル系共重合体(A)の枝成分として、環状構造を有する(メタ)アクリル系モノマー又はビニルモノマー成分を、幹成分100に対して1~100の質量割合となるように配合させて、幹成分の相と枝成分の相とが成すミクロ相分離状態を調整することが好ましい。
 さらに、(4a)架橋剤(B)として親水性成分との相溶性の高い水酸基含有化合物等を用いることが好ましい。具体的には、後述する架橋剤(B)の例示から選択することが好ましい。加えて、(4b)前記架橋剤(B)を、(メタ)アクリル系共重合体100質量部に対して0.05~30質量部添加せしめて、幹成分からなる相の極性を適宜調整することがさらに好ましい。
 以上のように、上記(1)~(4b)を、それぞれ独立して適宜選択することで、幹成分と枝成分とが成す相分離構造を調整することができる。中でも、上記(1)~(4b)の方法のうち、(1)と(2a)及び/又は(2b)とを組み合わせることや、(1)と(3a)及び/又は(3b)とを組み合わせることが好ましく、(1)と(3a)及び/又は(3b)と(4a)及び/又は(4b)とを組み合わせることがより好ましく、(1)~(4b)の全ての方法を採用することが最も好ましい。但し、この方法に限定するものではない。
 上述したとおり、グラフトポリマーを使用し、枝成分と幹成分の相溶性のバランスを最適化することによって、最適な相分離状態を形成すればよいことから、上記の他にも、例えば、上記共重合体(A)の主となる共重合性成分(幹成分)として疎水性成分を用い、かつ、上記共重合体(B)の枝成分として親水性成分を用いることによって、上記半値幅X2を制御することもできる。
 なお、前述のとおり、本光硬化性組成物の形状や状態は限定されない。上記の4000mJ/mの光が光硬化性組成物に対して均一に照射されない場合は、当該光硬化性組成物を厚さ150μmのシート状に成形したものを基準(測定対象)として判断すればよい。
 本光硬化性組成物は、20℃において粘着性を示し、且つ、50~100℃において軟化又は流動化する性質を有することが好ましい。
 上述のように、本光硬化性組成物において、後述する(メタ)アクリル系共重合体(A1)をベース樹脂として用いることにより、このような性質を有することができる。
<(メタ)アクリル系共重合体(A)>
 マクロモノマーを構成単位として含む(メタ)アクリル系共重合体(A)として、枝成分としてマクロモノマーを備えたグラフト共重合体からなる(メタ)アクリル系共重合体(A1)を一例として挙げることができる。
 本光硬化性組成物は、架橋剤(B)及び架橋開始剤(C)の作用によって架橋するため、その効率の点から、(メタ)アクリル系共重合体(A)はグラフト共重合体が好適である。
 上記(メタ)アクリル系共重合体(A1)をベース樹脂として本光硬化性組成物を作製すれば、本発明で規定する小角X線散乱測定における1次元散乱プロファイルの半値幅を制御することが容易となる。すなわち、当該半値幅を範囲内とする達成手段の一態様である。このため、本光硬化性組成物は、室温状態で所定の形状、例えばシート状を保持しつつ自着性(自己粘着性)を示すことができ、未架橋状態において加熱すると軟化乃至流動するホットメルト性を有し、さらには光硬化させることができ、光硬化後は優れた凝集力を発揮させて接着させることができる。
 よって、本光硬化性組成物のベースポリマーとして(メタ)アクリル系共重合体(A1)を使用すれば、未架橋状態であっても、室温(20℃)において粘着性を示し、且つ、50~90℃、より好ましくは60℃以上或いは80℃以下の温度に加熱すると軟化乃至流動化する性質を備えることができる。
(幹成分)
 前記(メタ)アクリル系共重合体(A1)の幹成分を構成する(共)重合体のガラス転移温度は-70~0℃であるのが好ましい。
 この際、幹成分を構成する(共)重合体成分のガラス転移温度とは、(メタ)アクリル系共重合体(A1)の幹成分を組成するモノマー成分のみを重合して得られるポリマーのガラス転移温度を指す。具体的には、当該(共)重合体各成分のホモポリマーから得られるポリマーのガラス転移温度と構成比率から、Foxの計算式によって算出される値を意味する。なお、幹成分のみからなるポリマーは、単独重合体(ホモポリマー)、共重合体の何れの場合もある。
 なお、Foxの計算式とは、以下の式であり、ポリマーハンドブック〔PolymerHandBook,J.Brandrup,Interscience,1989〕に記載されている値を用いて求めることができる。
   1/(273+Tg)=Σ(Wi/(273+Tgi))
 [式中、Wiはモノマーiの重量分率、TgiはモノマーiのホモポリマーのTg(℃)を示す。]
 前記(メタ)アクリル系共重合体(A1)の幹成分を構成する(共)重合体のガラス転移温度は、室温状態での本光硬化性組成物の柔軟性や、被着体への本光硬化性組成物の濡れ性、すなわち接着性に影響するため、本光硬化性組成物が室温状態で適度な接着性(タック性)を得るためには、当該ガラス転移温度は、-70℃~0℃であるのが好ましく、中でも-65℃以上或いは-5℃以下、その中でも-60℃以上或いは-10℃以下であるのが特に好ましい。
 但し、当該(共)重合体のガラス転移温度が同じ温度であったとしても、分子量を調整することにより粘弾性を調整することができる。例えば幹成分の分子量を小さくすることにより、より柔軟化させることができる。
 前記(メタ)アクリル系共重合体(A1)の幹成分が含有するモノマーとしては、(メタ)アクリル酸エステルモノマーを挙ることができ、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、ネオペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、2-エチルヘキシルアクリレート、n-オクチルアクリート、イソオクチルアクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、3,5,5-トリメチルシクロヘキサンアクリレート、p-クミルフェノールエチレンオキシド変性(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート等を挙げることができる。
 また、これらの(メタ)アクリル酸エステルモノマーに親水基を結合したヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、グリセロール(メタ)アクリレート等の水酸基含有(メタ)アクリレート等を用いることもできる。
 また、(メタ)アクリル酸、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイルオキシプロピルヘキサヒドロフタル酸、2-(メタ)アクリロイルオキシエチルフタル酸、2-(メタ)アクリロイルオキシプロピルフタル酸、2-(メタ)アクリロイルオキシエチルマレイン酸、2-(メタ)アクリロイルオキシプロピルマレイン酸、2-(メタ)アクリロイルオキシエチルコハク酸、2-(メタ)アクリロイルオキシプロピルコハク酸、クロトン酸、フマル酸、マレイン酸、イタコン酸、マレイン酸モノメチル、イタコン酸モノメチル等のカルボキシル基含有モノマーを用いることもできる。
 更には、無水マレイン酸、無水イタコン酸等の酸無水物基含有モノマー;(メタ)アクリル酸グリシジル、α-エチルアクリル酸グリシジル、(メタ)アクリル酸3,4-エポキシブチル等のエポキシ基含有モノマー、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート等のアミノ基含有(メタ)アクリル酸エステル系モノマー;(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、ジエチル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ヒドロキシエチル(メタ)アクリルアミド、イソプロピル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド・塩化メチル塩、(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、ダイアセトン(メタ)アクリルアミド等のアクリルアミド系モノマー;マレイン酸アミド、マレイミド等のアミド基を含有するモノマー;ビニルピロリドン、ビニルピリジン、ビニルカルバゾール等の複素環系塩基性モノマー;2-イソシアナトエチル(メタ)アクリレート、2-(2-(メタ)アクリロイルオキシエチルオキシ)エチルイソシアナート、(メタ)アクリル酸2-(0-[1'-メチルプロピリデンアミノ]カルボキシアミノ)エチル、2-[(3,5-ジメチルピラゾリル)カルボニルアミノ]エチル(メタ)アクリレート等のイソシアネート基またはブロックイソシアネート基を含有するモノマー;2-[2-ヒドロキシ-5-[2-((メタ)アクリロイルオキシ)エチル]フェニル]-2H-ベンゾトリアゾール等の紫外線吸収性基を含有するモノマーなどを用いることもできる。
 また、上記アクリルモノマーやメタクリルモノマーと共重合可能な、スチレン、t-ブチルスチレン、α-メチルスチレン、ビニルトルエン、アクリロニトリル、メタクリロニトニル、酢酸ビニル、プロピオン酸ビニル、アルキルビニルエーテル、ヒドロキシアルキルビニルエーテル、アルキルビニルモノマー等の各種ビニルモノマーも適宜用いることができる。
 また、(メタ)アクリル系共重合体(A1)の幹成分は、疎水性のモノマーと、親水性のモノマーとを構成単位として含有するのが好ましい。
 (メタ)アクリル系共重合体(A1)の幹成分が、疎水性モノマーのみから構成されると、湿熱白化する傾向が認められるため、親水性モノマーも幹成分に導入して湿熱白化を防止するのが好ましい。
 具体的には、上記(メタ)アクリル系共重合体(A1)の幹成分として、疎水性の(メタ)アクリレートモノマーと、親水性の(メタ)アクリレートモノマーと、マクロモノマーの末端の重合性官能基とがランダム共重合してなる共重合体成分を挙げることができる。
 ここで、上記の疎水性の(メタ)アクリレートモノマーとしては、例えばエチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、ネオペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、2-エチルヘキシルアクリレート、n-オクチルアクリート、イソオクチルアクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレ-ト、メチルメタクリレートを挙げることができる。
 また、疎水性のビニルモノマーとしては酢酸ビニル等のアルキルビニルエステル、スチレン、t-ブチルスチレン、α-メチルスチレン、ビニルトルエン、アルキルビニルモノマーなどを挙げることができる。
 中でも、後述する枝成分が成す相と適度な相分離構造を形成しやすい点と、本光硬化性組成物に適度な接着性(タック性)を付与する観点から、炭素数が5以上、中でも8以上、その中でも9以上、特に10以上のアルキル(メタ)アクリレ-トであるのが好ましい。
 例えばタッチセンサー機能をもつ部材に、本光硬化性組成物が用いられる場合、タッチ検出感度の変化を吸収して検出信号のノイズ発生を抑えるために、比誘電率の低い光硬化性組成物が求められる場合がある。このとき、本光硬化性組成物及び/又は本光硬化性組成物を光硬化させてなる硬化物の比誘電率を低く調整する観点から、疎水性モノマーとして、炭素数が5以上、中でも8以上、その中でも9以上、特に10以上のアルキル(メタ)アクリレ-トを用いるのが好ましい。
 ここで、炭素数8以上のアルキル(メタ)アクリレ-トとしては、例えば2-エチルヘキシルアクリレート、n-オクチルアクリート、イソオクチルアクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレ-ト等を挙げることができる。
 上記の親水性のモノマーとしては、例えばメチルアクリレート、テトラヒドロフルフリル(メタ)アクリレートや、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、グリセロール(メタ)アクリレート等の水酸基含有(メタ)アクリレートや、(メタ)アクリル酸、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイルオキシプロピルヘキサヒドロフタル酸、2-(メタ)アクリロイルオキシエチルフタル酸、2-(メタ)アクリロイルオキシプロピルフタル酸、2-(メタ)アクリロイルオキシエチルマレイン酸、2-(メタ)アクリロイルオキシプロピルマレイン酸、2-(メタ)アクリロイルオキシエチルコハク酸、2-(メタ)アクリロイルオキシプロピルコハク酸、クロトン酸、フマル酸、マレイン酸、イタコン酸、マレイン酸モノメチル、イタコン酸モノメチル等のカルボキシル基含有モノマー、無水マレイン酸、無水イタコン酸等の酸無水物基含有モノマー、(メタ)アクリル酸グリシジル、α-エチルアクリル酸グリシジル、(メタ)アクリル酸3,4-エポキシブチル等のエポキシ基含有モノマー、メトキシポリエチレングリコール(メタ)アクリレート等のアルコキシポリアルキレングリコール(メタ)アクリレートの他、(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、ジエチル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ヒドロキシエチル(メタ)アクリルアミド、イソプロピル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド、フェニル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、ダイアセトン(メタ)アクリルアミド等の(メタ)アクリルアミド系モノマーを用いることができる。
 上記の中でも、本光硬化性組成物の湿熱白化を防止しつつ、被着体への密着性を向上させる観点から、上記の親水性のモノマーとして、水酸基含有モノマーや、カルボキシル基含有モノマー、酸無水物基含有モノマー、(メタ)アクリルアミド系モノマーを用いるのが好ましい。
 他方、本光硬化性組成物が金属若しくは金属酸化物等の腐食性を有する部材に用いられる場合は、本光硬化性組成物及び/又は本光硬化性組成物を光硬化させてなる硬化物による被着体の腐食劣化を防ぐために、酸性度の高いカルボキシル基や酸無水物を含有しない親水性成分を用いるのが好ましい。かかる観点からは、上記の親水性のモノマーとして、例えばヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、グリセロール(メタ)アクリレート等の水酸基含有(メタ)アクリレートや、(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、ジエチル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ヒドロキシエチル(メタ)アクリルアミド、イソプロピル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド、フェニル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、ダイアセトン(メタ)アクリルアミド等の(メタ)アクリルアミド系モノマーを用いるのが好ましい。
(枝成分:マクロモノマー)
 (メタ)アクリル系共重合体(A1)は、グラフト共重合体の枝成分として、マクロモノマーを導入し、マクロモノマーを構成単位として含むことが好ましい。
 マクロモノマーとは、末端の重合性官能基と高分子量骨格成分とを有する高分子単量体である。
 マクロモノマーのガラス転移温度(Tg)は、上記(メタ)アクリル系共重合体(A1)を構成する共重合体成分のガラス転移温度よりも高いことが好ましい。
 具体的には、マクロモノマーのガラス転移温度(Tg)は、本光硬化性組成物の加熱溶融温度(ホットメルト温度)に影響するため、30℃~120℃であるのが好ましく、中でも40℃以上或いは110℃以下、その中でも50℃以上或いは100℃以下であるのがさらに好ましい。
 マクロモノマーがこのようなガラス転移温度(Tg)であれば、分子量を調整することにより、優れた加工性や保管安定性を保持できると共に、50℃から80℃付近でホットメルトするように調整することができる。
 マクロモノマーのガラス転移温度とは、当該マクロモノマー自体のガラス転移温度を意味し、示差走査熱量計(DSC)で測定することができる。
 また、室温状態では、枝成分同士が引き寄せ合って粘着剤組成物として物理的架橋をしたような状態を維持することができ、しかも、適度な温度に加熱することで前記物理的架橋が解れて流動性を得ることができるようにするためには、マクロモノマーの分子量や含有量を調整することも好ましい。
 かかる観点から、マクロモノマーは、(メタ)アクリル系共重合体(A1)中に5質量%~30質量%の割合で含有することが好ましく、中でも6質量%以上或いは25質量%以下、その中でも8質量%以上或いは20質量%以下であるのが好ましい。
 また、マクロモノマーの数平均分子量は、500~10万であるのが好ましく、中でも8000未満であることが好ましく、中でも800以上或いは7500未満、その中でも1000以上或いは7000未満であるのが好ましい。
 マクロモノマーは、一般に製造されているもの(例えば、東亜合成社製マクロモノマーなど)を適宜使用することができる。
 マクロモノマーの高分子量骨格成分は、アクリル系重合体またはビニル系重合体から構成されるのが好ましい。
 前記マクロモノマーの高分子量骨格成分としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、ネオペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、2-エチルヘキシルアクリレート、n-オクチルアクリート、イソオクチルアクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、3,5,5-トリメチルシクロヘキサンアクリレート、p-クミルフェノールエチレンオキシド変性(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、(メタ)アクリル酸、グリシジル(メタ)アクリレート、アルコキシアルキル(メタ)アクリレート、アルコキシポリアルキレングリコール(メタ)アクリレート等の(メタ)アクリレートモノマーや、スチレン、t-ブチルスチレン、α-メチルスチレン、ビニルトルエン、アルキルビニルモノマー、アルキルビニルエステル、アルキルビニルエーテル、ヒドロキシアルキルビニルエーテル、(メタ)アクリロニトリル、(メタ)アクリルアミド、N-置換(メタ)アクリルアミド等の各種ビニルモノマーが挙げられ、これらは単独で又は2種類以上を組み合わせて使用することができる。
 マクロモノマーは、ラジカル重合性基、またはヒドロキシル基、イソシアネート基、エポキシ基、カルボキシル基、アミノ基、アミド基、チオール基等の重合性官能基を有するものである。マクロモノマーとしては、他のモノマーと共重合可能なラジカル重合性基を有するものが好ましい。ラジカル重合性基は一つ或いは二つ以上含有していてもよく、中でも一つであるものが特に好ましい。マクロモノマーが官能基を有する場合も官能基は一つ或いは二つ以上含有していてもよく、中でも一つであるものが特に好ましい。また、ラジカル重合性基と官能基はどちらか一方でも、両方含有していてもよい。ラジカル重合性基と官能基を両方含有する場合は、他のモノマーからなる重合物ユニットとの付加する官能基、または他のモノマーと共重合するラジカル重合性基の何れか以外の官能基、もしくはラジカル重合性基は二つ以上であってもよい。
 よって、前記マクロモノマーの末端官能基としては、例えばメタクリロイル基、アクリロイル基、ビニル基などのラジカル性重合基のほか、ヒドロキシル基、イソシアネート基、エポキシ基、カルボキシル基、アミノ基、アミド基、チオール基等の官能基を挙げることができる。
 中でも、前記マクロモノマーの末端官能基としては、他のモノマーと共重合可能なラジカル重合性基を有するものが好ましい。この際、該ラジカル重合性基は一つ或いは二つ以上含有していてもよく、中でも一つであるものが特に好ましい。
 マクロモノマーが官能基を有する場合においても、官能基は一つ或いは二つ以上含有していてもよく、中でも一つであるものが特に好ましい。
 また、ラジカル重合性基と官能基は、どちらか一方でも、両方含有していてもよい。ラジカル重合性基と官能基を両方含有する場合は、他のモノマーからなる重合物ユニットとの付加する官能基、または他のモノマーと共重合するラジカル重合性基の何れか以外の官能基、もしくはラジカル重合性基は二つ以上であってもよい。
 マクロモノマーは、公知の方法で製造できる。マクロモノマーの製造方法としては、例えば、コバルト連鎖移動剤を用いて製造する方法、α-メチルスチレンダイマー等のα置換不飽和化合物を連鎖移動剤として用いる方法、重合性基を化学的に結合させる方、及び熱分解による方法が挙げることができる。これらの中で、マクロモノマーの製造方法としては、製造工程数が少なく、連鎖移動定数の高い触媒を使用する点でコバルト連鎖移動剤を用いて製造する方法が好ましい。
(製造方法)
 アクリル系共重合体(A1)は、例えば特定のマクロモノマー(a)をビニル単量体(b)からなる重合物に付加して得ることもできるし、また、特定のマクロモノマー(a)とビニル単量体(b)を含有する単量体混合物を重合して得ることもできる。
<架橋剤(B)>
 本光硬化性組成物における架橋剤(B)は、(メタ)アクリル系共重合体(A)を含む組成物が形成する(ミクロ)相分離構造の制御剤、言い換えれば、本光硬化性組成物の柔軟性と凝集力を調整する制御剤としての役割を有している。
 架橋剤(B)としては、例えば(メタ)アクリロイル基、エポキシ基、イソシアネート基、カルボキシル基、ヒドロキシル基、カルボジイミド基、オキサゾリン基、アジリジン基、ビニル基、アミノ基、イミノ基、アミド基、N-置換(メタ)アクリルアミド基、アルコキシシリル基から選ばれる少なくとも1種の架橋性官能基を有する架橋剤を挙げることができ、1種又は2種以上を組み合わせて使用してもよい。
 なお、上記架橋性官能基は、脱保護可能な保護基で保護されていてもよい。
 中でも、架橋反応の制御のし易さの観点からは、多官能(メタ)アクリレートが好ましい。
 このような多官能(メタ)アクリレートとしては、例えば1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、グリセリングリシジルエーテルジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ビスフェノールAポリエトキシジ(メタ)アクリレート、ビスフェノールAポリアルコキシジ(メタ)アクリレート、ビスフェノールFポリアルコキシジ(メタ)アクリレート、ポリアルキレングリコールジ(メタ)アクリレート、トリメチロールプロパントリオキシエチル(メタ)アクリレート、ε-カプロラクトン変性トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールペンタ(メタ)アクリレート、ヒドロキシビバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ヒドロキシビバリン酸ネオペングリコールのε-カプロラクトン付加物のジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、アルコキシ化トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート等の紫外線硬化型の多官能モノマー類のほか、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエーテル(メタ)アクリレート等の多官能アクリルオリゴマー類の他、多官能アクリルアミド等を挙げることができる。
 上記に挙げた中でも、被着体への密着性や湿熱白化抑制の効果を向上させる観点から、上記多官能(メタ)アクリル酸エステルモノマーの中でも、水酸基やカルボキシル基、アミノ基、アミド基等の極性官能基を含有する多官能モノマーもしくはオリゴマーが好ましい。その中でも、水酸基又はアミド基を有する多官能(メタ)アクリル酸エステルを用いるのが好ましい。
 湿熱白化を防止する観点からは、前記(メタ)アクリル酸エステル共重合体(A1)、すなわちグラフト共重合体の幹成分として、疎水性のアクリレートモノマーと、親水性のアクリレートモノマーとを含有するのが好ましく、さらには、架橋剤(B)として、水酸基を有する多官能(メタ)アクリル酸エステルを用いるのが好ましい。
 また、密着性や耐湿熱性、耐熱性等の効果を調整するために、架橋剤(B)と反応する、単官能又は多官能の(メタ)アクリル酸エステルを、更に加えてもよい。
 また、2種以上の架橋性官能基を有する架橋剤としては、例えば(メタ)アクリル酸グリシジル、α-エチルアクリル酸グリシジル、(メタ)アクリル酸3,4-エポキシブチル、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル等のエポキシ基含有モノマーや、2-イソシアナトエチル(メタ)アクリレート、2-(2-(メタ)アクリロイルオキシエチルオキシ)エチルイソシアナート、(メタ)アクリル酸2-(0-[1’-メチルプロピリデンアミノ]カルボキシアミノ)エチル、2-[(3,5-ジメチルピラゾリル)カルボニルアミノ]エチル(メタ)アクリレート等のイソシアネート基またはブロックイソシアネート基を含有するモノマーの他、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等の各種シランカップリング剤を挙げることができる。
 2種以上の架橋性官能基を有する架橋剤は、一方の架橋性官能基を(メタ)アクリル系共重合体と反応させ、(メタ)アクリル系共重合体(A)に結合されてなる構造をとってもよい。
 架橋剤(B)が(メタ)アクリル系共重合体(A)に結合されることで、架橋剤(B)のブリードアウトや粘着剤組成物の予期せぬ可塑化を抑制することができる。また、架橋剤(B)が(メタ)アクリル系共重合体(A)に結合されることで、光架橋反応の反応効率が促進されるから、より凝集力の高い硬化物を得ることができる。
 架橋剤(B)の含有量は、小角X線散乱測定における1次元散乱プロファイルの半値幅を適正範囲に調整して適度な相分離構造を維持し、本光硬化性組成物の柔軟性と凝集力をバランスさせる観点から、前記(メタ)アクリル系共重合体(A)100質量部に対して、0.05質量部或いは30質量部の割合で含有するのが好ましく、中でも0.1質量部或いは20質量部の割合で含有するのが好ましく、その中でも0.5質量部以上或いは15質量部以下、特に1質量部以上或いは13質量部以下の割合であるのが特に好ましい。
 本光硬化性組成物は、架橋剤(B)の架橋性官能基と反応する単官能モノマーをさらに含有してもよい。単官能モノマーを含有することにより、本光硬化性組成物の小角X線散乱測定における1次元散乱プロファイルの半値幅X1の値を増大させたり、ホットメルト時の流動性を高めたりする他、被着体への密着性向上や、湿熱白化抑制の効果を向上させることができる。
 このような単官能モノマーとしては、例えばメチルアクリレート等のアルキル(メタ)アクリレートの他、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリアルキレングリコール(メタ)アクリレート等の水酸基含有(メタ)アクリレート;(メタ)アクリル酸、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイルオキシプロピルヘキサヒドロフタル酸、2-(メタ)アクリロイルオキシエチルフタル酸、2-(メタ)アクリロイルオキシプロピルフタル酸、2-(メタ)アクリロイルオキシエチルマレイン酸、2-(メタ)アクリロイルオキシプロピルマレイン酸、2-(メタ)アクリロイルオキシエチルコハク酸、2-(メタ)アクリロイルオキシプロピルコハク酸、クロトン酸、フマル酸、マレイン酸、イタコン酸、マレイン酸モノメチル、イタコン酸モノメチル等のカルボキシル基含有モノマー;無水マレイン酸、無水イタコン酸等の酸無水物基含有モノマー;テトラヒドロフルフリル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート等のエーテル基含有(メタ)アクリレート;(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、ジエチル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ヒドロキシエチル(メタ)アクリルアミド、イソプロピル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド、フェニル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、ダイアセトン(メタ)アクリルアミド等の(メタ)アクリルアミド系モノマー等を挙げることができる。
 中でも被着体への密着性や湿熱白化抑制の効果を向上させる観点から、水酸基含有(メタ)アクリレートや、(メタ)アクリルアミド系モノマーを用いるのが好ましい。
<架橋開始剤(C)>
 本光硬化性組成物に用いられる架橋開始剤(C)は、架橋剤(B)の架橋反応における反応開始助剤としての機能を果たすものである。
 架橋開始剤は、現在公知のものを適宜使用することができる。中でも、波長380nm以下の紫外線に感応する光重合開始剤が、架橋反応の制御のしやすさの観点から好ましい。
 一方、波長380nmより長波長の光に感応する光重合開始剤は、高い光反応性を得られる点及び、感応する光が、本光硬化性組成物をシート状に賦形した場合に、シートの深部まで到達しやすい点で好ましい。
 光重合開始剤は、ラジカル発生機構によって大きく2つに分類され、光重合開始剤自身の単結合を開裂分解してラジカルを発生させることができる開裂型光重合開始剤と、光励起した開始剤と系中の水素供与体とが励起錯体を形成し、水素供与体の水素を転移させることができる水素引抜型光重合開始剤と、に大別される。
 これらのうちの開裂型光重合開始剤は、光照射によってラジカルを発生する際に分解して別の化合物となり、一度励起されると架橋開始剤としての機能をもたなくなる。このため、架橋反応が終了した後の粘着材中に活性種として残存することがなく、粘着材に予期せぬ光劣化等をもたらす可能性がないため、好ましい。
 他方、水素引抜型光重合開始剤は、紫外線などの活性エネルギー線照射によるラジカル発生反応時に、開裂型光重合開始剤のような分解物を生じないので、反応終了後に揮発成分となりにくく、被着体へのダメージを低減させることができる点で有用である。
 前記開裂型光重合開始剤としては、例えば2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-(4-(2-ヒドロキシエトキシ)フェニル)-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒロドキシ-1-[4-{4-(2-ヒドロキシ-2-メチル-プロピオニル)ベンジル}フェニル]-2-メチル-プロパン-1-オン、オリゴ(2-ヒドロキシ-2-メチル-1-(4-(1-メチルビニル)フェニル)プロパノン)、フェニルグリオキシリック酸メチル、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタン-1-オン、2-(4-メチルベンジル)-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、1,2-オクタンジオン,1-(4-(フェニルチオ),2-(o-ベンゾイルオキシム))、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-エタノン1-(O-アセチルオキシム)、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、(2,4,6-トリメチルベンゾイル)エトキシフェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)2,4,4-トリメチルペンチルフォスフィンオキサイドや、それらの誘導体などを挙げることができる。
 前記水素引抜型光重合開始剤としては、例えばベンゾフェノン、4-メチル-ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-フェニルベンゾフェノン、3,3‘-ジメチル-4-メトキシベンゾフェノン、4-(メタ)アクリロイルオキシベンゾフェノン、4-[2-((メタ)アクリロイルオキシ)エトキシ]ベンゾフェノン、4-(メタ)アクリロイルオキシ-4’-メトキシベンゾフェノン、2-ベンゾイル安息香酸メチル、ベンゾイルギ酸メチル、ビス(2‐フェニル‐2‐オキソ酢酸)オキシビスエチレン、4-(1,3-アクリロイル-1,4,7,10,13-ペンタオキソトリデシル)ベンゾフェノン、チオキサントン、2-クロロチオキサントン、3-メチルチオキサントン、2,4-ジメチルチオキサントン、アントラキノン、2-メチルアントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、2-アミノアントラキノン、カンファーキノンやその誘導体などを挙げることができる。
 但し、光重合開始剤として前記に挙げた物質に限定するものではない。上記に挙げた開光重合開始剤のうちのいずれか一種またはその誘導体を使用してもよいし、二種以上を組み合わせて使用してもよい。
 この中でも、光に対する感応性が高く、かつ反応後に分解物となり消色する点では、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、(2,4,6-トリメチルベンゾイル)エトキシフェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)2,4,4-トリメチルペンチルフォスフィンオキサイド等のアシルホスフィンオキサイド系光重合開始剤が好ましい。
 また、反応制御のし易さ及び、枝成分としてマクロモノマーを備えたグラフト共重合体からなるアクリル系共重合体との相性からは、架橋開始剤(C)としてベンゾフェノン、4-メチル-ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-フェニルベンゾフェノン、3,3‘-ジメチル-4-メトキシベンゾフェノン、4-(メタ)アクリロイルオキシベンゾフェノン、4-[2-((メタ)アクリロイルオキシ)エトキシ]ベンゾフェノン、4-(メタ)アクリロイルオキシ-4’-メトキシベンゾフェノン、2-ベンゾイル安息香酸メチル、ベンゾイルギ酸メチルなどを用いるのが好ましい。
 架橋開始剤(C)の含有量は特に制限されるものではない。目安としては、アクリル系共重合体(A)100質量部に対して0.1~10質量部、中でも0.5質量部以上或いは5質量部以下、その中でも1質量部以上或いは3質量部以下の割合で含有するのが好ましい。
 架橋開始剤(C)の含有量を上記範囲とすることで、活性エネルギー線に対する適度な反応感度を得ることができる。
 さらに、架橋開始剤(C)成分に加えて増感剤を使用することも可能である。
 増感剤としては、特に限定はなく、光重合開始剤に用いられる増感剤であれば問題なく使用できる。例えば芳香族アミンやアントラセン誘導体、アントラキノン誘導体、クマリン誘導体、チオキサントン誘導体、フタロシアニン誘導体等や、ベンゾフェノン、キサントン、チオキサントン、ミヒラーケトン、9,10-フェナントラキノンなどの芳香族ケトン及びこれらの誘導体などを挙げることができる。
<その他の成分>
 本光硬化性組成物は、上記以外の成分として、通常の粘着組成物に配合されている公知の成分を含有してもよい。例えば、粘着付与樹脂や、酸化防止剤、光安定化剤、金属不活性化剤、防錆剤、老化防止剤、吸湿剤、加水分解防止剤、帯電防止剤、消泡剤、無機粒子などの各種の添加剤を適宜含有させることが可能である。
 また、必要に応じて反応触媒(三級アミン系化合物、四級アンモニウム系化合物、ラウリル酸スズ化合物など)を、必要に応じて適宜含有してもよい。
<本粘着シート>
 本光硬化性組成物から粘着シート(「本粘着シート」と称する)を作製することができる。
 本粘着シートは、単一層からなるシートであっても、2層以上が積層してなる多層シートであってもよい。
 本粘着シートを3層以上の粘着シートとする場合、例えば、中間層と最外層とを備えた積層構成の粘着シートを形成する場合には、その最外層を、本光硬化性組成物から形成することが好ましい。
 本粘着シートを中間層と最外層とを備えた積層構成の粘着シートを形成する場合には、各最外層の厚さと中間層の厚さの比率は1:1~1:20であるのが好ましく、中でも1:2~1:10であるのがさらに好ましい。
 中間層の厚みが、上記範囲であれば、積層体における粘着材層の厚みの寄与が大きくなりすぎず、柔軟すぎて裁断や取回しに係る作業性が劣るようになることがなく好ましい。
 また、最外層が上記範囲であれば、凹凸や屈曲した面への追随性に劣ることがなく、被着体への接着力や濡れ性を維持することができて、好ましい。
(本粘着シートの厚み)
 本粘着シートの厚みについては、シート厚を薄くすることで、薄肉化要求に応えることができる一方、シート厚を薄くし過ぎると、たとえば被着面に凹凸部あった場合に充分に凹凸に追従できなかったり、十分な接着力を発揮できなかったりする可能性がある。
 かかる観点から、本粘着シートの厚みは20μm~500μmであるのが好ましく、中でも25μm以上或いは350μm以下、その中でも50μm以上或いは250μm以下であるのが特に好ましい。
(本粘着シートの粘着力)
 本粘着シートは、ガラスに貼着し、積算光照射量として4000mJ/mの光を照射した際の、ガラスに対する180°剥離強度、すなわち光を照射した後の本粘着シートの該180°剥離強度が3N/cm以上であるのが好ましい。
 ガラスに対する当該180°剥離強度が3N/cm以上であれば、優れた凝集力を発揮することができるから、被着物同士を強固に貼着することができる。よって、後述する画像表示構成部材同士をより強固に貼着することができる。
 かかる観点から、本粘着シートは、上記のように光照射した際のガラスに対する180°剥離強度が3N/cm以上であるのが好ましく、中でも5N/cm以上、その中でも10N/cm以上であるのがさらに好ましい。
(本粘着シートの使用方法)
 本粘着シートは、そのまま単独で使用することも可能である。また、他の部材と積層して使用することも可能である。
<本粘着シート積層体>
 本粘着シート積層体とは、本粘着シートを層構成に含む積層体であれば、その構成は任意である。例えば、本粘着シートの一側又は両側に離型フィルムを積層して粘着シート積層体を構成することが可能である。
 離型フィルムとしては、現在公知のものを任意に使用することができる。
 上記離型フィルムの厚みは特に制限されない。中でも、例えば加工性及びハンドリング性の観点からは、25μm~500μmであるのが好ましく、その中でも38μm以上或いは250μm以下、その中でも50μm以上或いは200μm以下であるのがさらに好ましい。
<本硬化物>
 上記本光硬化性組成物を、光を照射して硬化させる(「光硬化」と称する)させることにより、小角X線散乱測定における1次元散乱プロファイルの半値幅X3(nm-1)が0.05<X3<0.25であることを特徴とする硬化物(「本硬化物」と称する)を得ることができる。
 ここで、硬化物とは、本光硬化性組成物に光を照射して硬化させたものを意味し、その形態は任意である。よってシート状であっても、シート状でなくてもよい。
 本硬化物において、小角X線散乱測定における1次元散乱プロファイルの半値幅X3(nm-1)が0.05<X3<0.25であることにより、高凝集力で信頼性の高い硬化物を得ることができる。
 かかる観点から、本硬化物において、小角X線散乱測定における1次元散乱プロファイルの半値幅X3(nm-1)は、上記本光硬化性組成物と同様の観点から、0.05<X3<0.25であるのが好ましく、中でも0.06<X3或いはX3<0.24、その中でも0.08<X3或いはX3<0.22、さらにその中でも0.10<X3或いはX3<0.20であるのがより一層好ましい。
 以上から、前記半値幅X3は、0.05<X3<0.25、0.05<X3<0.24、0.05<X3<0.22又は0.05<X3<0.20のいずれかであることが好ましく、中でも0.06<X3<0.25、0.06<X3<0.24、0.06<X3<0.22又は0.06<X3<0.20のいずれかであることがより好ましく、その中でも0.08<X3<0.25、0.08<X3<0.24、0.08<X3<0.22又は0.08<X3<0.20のいずれかであることがさらに好ましく、さらにその中でも0.10<X3<0.25、0.10<X3<0.24、0.10<X3<0.22又は0.10<X3<0.20のいずれかであることが最も好ましい。
 本硬化物において上記半値幅X3を調整するための主な手段としては、上記半値幅X1(nm-1)を調整するための手段と同様である。例えば、ベースポリマーである(メタ)アクリル系共重合体(A)の構造や組成、分子量などを調整すると共に、架橋剤(B)や架橋開始剤(C)の種類と量を調整したり選択したりする手段を挙げることができる。但し、これらの手段に限定するものではない。
 さらに、本硬化物において、上記半値幅X3を好ましい範囲に調整するためには、詳しくは前述したように、(1)(メタ)アクリル系共重合体の主となる共重合成分(幹成分)として、炭素数が5以上、中でも8以上、その中でも9以上、特に10以上の(メタ)アクリル系モノマー又はビニルモノマーを用いることが好ましい。具体的には、前述したアクリル系共重合体(A1)の幹成分が含有するモノマーの例示から選択することが好ましい。
 また、(2a)前記(メタ)アクリル系モノマー又はビニルモノマー以外の前記共重合性成分(幹成分)として、親水性成分を用いることが好ましい。具体的には、後述するアクリル系共重合体(A1)の幹成分が含有する親水性モノマーの例示から選択することが好ましい。加えて、(2b)当該親水性成分を、前記共重合成分(幹成分)100に対して0.1~20の質量割合で含有させて幹成分の親水性を高めることがさらに好ましい。
 さらに、(3)(メタ)アクリル系共重合体(A)の枝成分として、炭素数4以下の(メタ)アクリル系モノマー又はビニルモノマー成分を、幹成分100に対して1~100の質量割合となるように配合させて、幹成分の相と枝成分の相とが成すミクロ相分離状態を調整することが好ましい。また、(3b)(メタ)アクリル系共重合体(A)の枝成分として、環状構造を有する(メタ)アクリル系モノマー又はビニルモノマー成分を、幹成分100に対して1~100の質量割合となるように配合させて、幹成分の相と枝成分の相とが成すミクロ相分離状態を調整することが好ましい。
 さらに、(4a)架橋剤(B)として親水性成分との相溶性の高い水酸基含有化合物等を用いることが好ましい。具体的には、前述した架橋剤(B)の例示から選択することが好ましい。加えて、(4b)前記架橋剤(B)を、(メタ)アクリル系共重合体100質量部に対して0.05~30質量部含有せしめて幹成分の極性を適宜調整することがさらに好ましい。
 以上のように、上記(1)~(4)を、それぞれ独立して適宜選択することで、幹成分と枝成分とが成す相分離構造を調整することができる。中でも、上記(1)~(4b)の方法のうち、(1)と(2a)及び/又は(2b)とを組み合わせることや、(1)と(3a)及び/又は(3b)とを組み合わせることが好ましく、(1)と(3a)及び/又は(3b)と(4a)及び/又は(4b)とを組み合わせることがより好ましく、(1)~(4b)の全ての方法を採用することがもっとも好ましい。但し、この方法に限定するものではない。
 上述したとおり、グラフトポリマーを使用し、枝成分と幹成分の相溶性のバランスを最適化することによって、最適な相分離状態を形成すればよいことから、上記の他にも、例えば、上記共重合体(A)の主となる共重合性成分(幹成分)として疎水性成分を用い、かつ、上記共重合体(B)の枝成分として親水性成分を用いることによって、上記半値幅X3を制御することもできる。
<本画像表示装置構成用積層体>
 2つの画像表示装置用構成部材を、上記本光硬化性組成物又は上記本粘着シート又は上記本硬化物を介して積層して画像表示装置構成用積層体(「本画像表示装置構成用積層体」と称する)を構成することが可能である。
 この際、2つの画像表示装置用構成部材としては、例えばタッチセンサー、画像表示パネル、表面保護パネル及び偏光フィルムからなる群のうちの何れか、或いは2種類以上の組み合わせを挙げることができる。
 本画像表示装置構成用積層体の具体例としては、例えば離型シート/本光硬化性組成物又は上記本粘着シート又は上記本硬化物/タッチパネル、離型シート/本光硬化性組成物又は上記本粘着シート又は上記本硬化物/保護パネル、離型シート/本光硬化性組成物又は上記本粘着シート又は上記本硬化物/画像表示パネル、画像表示パネル/本光硬化性組成物又は上記本粘着シート又は上記本硬化物/タッチパネル、画像表示パネル/本光硬化性組成物又は上記本粘着シート又は上記本硬化物/保護パネル、画像表示パネル/本光硬化性組成物又は上記本粘着シート又は上記本硬化物/タッチパネル/本光硬化性組成物又は上記本粘着シート又は上記本硬化物/保護パネル、偏光フィルム/本光硬化性組成物又は上記本粘着シート又は上記本硬化物/タッチパネル、偏光フィルム/本光硬化性組成物又は上記本粘着シート又は上記本硬化物/タッチパネル/本光硬化性組成物又は上記本粘着シート又は上記本硬化物/保護パネルなどの構成を挙げることができる。但し、これらの積層例に限定されるものではない。
 上記タッチパネルは、保護パネルにタッチパネル機能を内在させた構造体や、画像表示パネルにタッチパネル機能を内在させた構造体も含む。
<本画像表示装置>
 上記のような本画像表示装置構成用積層体を用いて、画像表示装置(「本画像表示装置」と称する)を構成することができる。
 本画像表示装置としては、例えば液晶ディスプレイ、有機ELディスプレイ、無機ELディスプレイ、電子ペーパー、プラズマディスプレイ及びマイクロエレクトロメカニカルシステム(MEMS)ディスプレイなどの画像表示装置を構成することができる。
<語句の説明>
 本明細書において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
 また、「X以上」又は「X≦」(Xは任意の数字)と表現した場合、「Xより大きいことが好ましい」旨の意図も包含する。
 また、「Y以下」又は「Y≧」(Yは任意の数字)と表現した場合、「Y未満であることが好ましい」旨の意図も包含する。
 一般的にシートとフィルムの境界は定かでなく、本発明において文言上両者を区別する必要がないので、本発明においては、「フィルム」と称する場合でも「シート」を含むものとし、「シート」と称する場合でも「フィルム」を含むものとする。
 以下、実施例によって本発明を更に具体的に説明する。但し、本発明が実施例に限定されるものではない。
[実施例1]
 (メタ)アクリル系共重合体(A)として、数平均分子量2500のポリメタクリル酸メチルマクロモノマー15質量部、ブチルアクリレート81質量部、及び、アクリル酸4質量部をランダム共重合してなるアクリル系共重合体(A-1、質量平均分子量:20万)1kgに対し、架橋剤(B)としてプロポキシ化ペンタエリスリトールトリアクリレート(新中村化学社製、NKエステルATM-4PL)(B-1)50g、光開始剤(C)としてエザキュアTZT(IGM社製)(C-1)15gを添加し、均一混合して、光硬化性組成物1を得た。
 次に、前記光硬化性組成物1を、表面が剥離処理されているポリエチレンテレフタレートフィルム(三菱樹脂社製、ダイアホイルMRV、厚さ100μm)上に、厚さ150μmとなるようシート状に成形した後、表面が剥離処理されているポリエチレンテレフタレートフィルム(三菱樹脂社製、ダイアホイルMRQ、厚さ75μm)を被覆し、粘着シート積層体1を作製した。
[実施例2]
 (メタ)アクリル系共重合体(A)として、末端官能基がメタクリロイル基であるポリメタクリル酸メチルマクロモノマー(数平均分子量3000)を15質量部、ブチルアクリレート81質量部、及び、アクリル酸4質量部をランダム共重合してなるアクリル系共重合体(A-2、質量平均分子量:15万)1kgに対し、架橋剤(B)としてプロポキシ化ペンタエリスリトールトリアクリレート(新中村化学社製、NKエステルATM-4PL)(B-1)110g、光開始剤(C)としてエザキュアTZT(IGM社製)(C-1)15gを添加し、均一混合して、光硬化性組成物2を得た。
 前記光硬化性組成物2は、実施例1と同様の方法で粘着シート積層体2を作製した。
[実施例3]
 (メタ)アクリル系共重合体(A)として、末端官能基がメタクリロイル基であるポリメタクリル酸メチルマクロモノマー(数平均分子量6700)を15質量部、ブチルアクリレート81質量部、及び、アクリル酸4質量部をランダム共重合してなるアクリル系共重合体(A-3、質量平均分子量:4.6万)1kgに対し、架橋剤(B)としてノナンジオールジアクリレート(大阪有機工業社製、ビスコート260)(B-2)5g、光開始剤(C)としてエザキュアTZT(IGM社製)(C-1)15gを添加し、均一混合して、光硬化性組成物3を得た。
 前記光硬化性組成物3は、実施例1と同様の方法で粘着シート積層体3を作製した。
[実施例4]
 (メタ)アクリル系共重合体(A)として、末端官能基がメタクリロイル基であるポリメタクリル酸メチルマクロモノマー(数平均分子量2500)を30質量部、ブチルアクリレート66質量部、及び、アクリル酸4質量部をランダム共重合してなるアクリル系共重合体(A-4、質量平均分子量:11万)1kgに対し、架橋剤(B)として、2-イソシアナエチルメタクリレート(昭和電工社製、カレンズMOI)(B-3)を27g混合した。80℃で4時間加熱して(メタ)アクリル系共重合体(A-4)のカルボキシル基と架橋剤(B-3)のイソシアネート基とを反応させた。その後、光開始剤(C)としてエザキュアTZT(IGM社製)(C-1)15g及び、ヒドロキシブチルアクリレートを100g添加し、均一混合して、光硬化性組成物4を得た。
 前記光硬化性組成物4は、実施例1と同様の方法で粘着シート積層体4を作製した。
[実施例5]
 (メタ)アクリル系共重合体(A)として、実施例2で用いたアクリル系共重合体(A-2、質量平均分子量:15万)1kgに対し、架橋剤(B)として、2-イソシアナエチルメタクリレート(昭和電工社製、カレンズMOI)(B-3)を36g混合した。80℃で4時間加熱して(メタ)アクリル系共重合体(A-4)のカルボキシル基と架橋剤(B-3)のイソシアネート基とを反応させた。その後、光開始剤(C)としてエザキュアKTO46(IGM社製)(C-2)15gを添加し、均一混合して、光硬化性組成物5を得た。
 前記光硬化性組成物5は、実施例1と同様の方法で粘着シート積層体5を作製した。
[実施例6]
 (メタ)アクリル系共重合体(A)として数平均分子量2500の末端官能基がメタクリロイル基であるポリメタクリル酸メチルマクロモノマー(数平均分子量2500)を11質量部、2-エチルヘキシルアクリレート86質量部、及びアクリル酸3質量部をランダム共重合してなるアクリル系共重合体(A-5、質量平均分子量:7.4万)1kgに対し、架橋剤(B)としてプロポキシ化ペンタエリスリトールトリアクリレート(新中村化学社製、NKエステルATM-4PL)(B-1)90g、光開始剤(C)としてエザキュアTZT(IGM社製)(C-1)15gを添加し、均一混合して、光硬化性組成物6を得た。
 前記光硬化性組成物6は、実施例1と同様の方法で粘着シート積層体6を作製した。
[実施例7]
 (メタ)アクリル系共重合体(A)として、イソボルニルメタクリレート:メタクリル酸メチル=1:1からなる、末端官能基がメタクリロイル基のマクロモノマー(数平均分子量3000)を13.5質量部、ラウリルアクリレートを43.7質量部、2-エチルヘキシルアクリレートを40質量部、及びアクリルアミド2.8質量部をランダム共重合してなるアクリル系グラフト共重合体(A-6、質量平均分子量:16万)1kgに対し、架橋剤(B)としてプロポキシ化ペンタエリスリトールトリアクリレート(新中村化学社製、NKエステルATM-4PL)(B-1)50g、光開始剤(C)としてメチルベンゾイルフォーメート(Lambson社製、スピードキュアMBF)(C-3)15gを添加し、均一混合して、光硬化性組成物7を得た。
 前記光硬化性組成物7は、実施例1と同様の方法で粘着シート積層体7を作製した。
[実施例8]
 (メタ)アクリル系共重合体(A)として、イソボルニルメタクリレート:メタクリル酸メチル=1:1からなる、末端官能基がメタクリロイル基のマクロモノマー(数平均分子量3000)を30質量部、ラウリルアクリレートを33質量部、2-エチルヘキシルアクリレートを34質量部、及びアクリルアミド3質量部をランダム共重合してなるアクリル系グラフト共重合体(A-7、質量平均分子量:7.9万)1kgに対し、架橋剤(B)としてトリシクロデカンジメタノールジメタクリレート(新中村化学社製、DCP)(B-4)200g、光開始剤(C)としてエザキュアTZT(IGM社製)(C-1)15gを添加し、均一混合して、光硬化性組成物8を得た。
 前記光硬化性組成物8は、実施例1と同様の方法で粘着シート積層体8を作製した。
[実施例9]
 (メタ)アクリル系共重合体(A)として、イソボルニルメタクリレート:メタクリル酸メチル=1:1からなる、末端官能基がメタクリロイル基のマクロモノマー(数平均分子量8800)を13.5質量部、ラウリルアクリレートを43.7質量部、2-エチルヘキシルアクリレートを40質量部、及びアクリルアミド2.8質量部をランダム共重合してなるアクリル系グラフト共重合体(A-8、質量平均分子量:11万)1kgに対し、架橋剤(B)としてプロポキシ化ペンタエリスリトールトリアクリレート(新中村化学社製、NKエステルATM-4PL)(B-1)90g、光開始剤(C)としてエザキュアTZT(IGM社製)(C-1)15gを添加し、均一混合して、光硬化性組成物9を得た。
 前記光硬化性組成物9は、実施例1と同様の方法で粘着シート積層体9を作製した。
[比較例1]
 (メタ)アクリル系共重合体(A)として、ブチルアクリレートとメチルメタクリレートからなるMMA-BA-MMAトリブロック型共重合体(クラレ社製、クラリティLA2140e)(A-9、質量平均分子量:7.4万)1kgに対し、架橋剤(B)としてプロポキシ化ペンタエリスリトールトリアクリレート(新中村化学社製、NKエステルATM-4PL)(B-1)110g、光開始剤(C)としてエザキュアTZT(IGM社製)(C-1)15gを添加し、均一混合して、光硬化性組成物10を得た。
 前記光硬化性組成物10は、実施例1と同様の方法で粘着シート積層体10を作製した。
[比較例2]
 (メタ)アクリル系共重合体(A)として、2-エチルヘキシルアクリレート24質量部、ブチルアクリレート74質量部、及び、アクリル酸2質量部からなるアクリル系共重合体(A-10、質量平均分子量:50万)1kgに対し、架橋剤(B)として、ノナンジオールジアクリレート(大阪有機工業社製、ビスコート260)(B-2)5.5g、光架橋開始剤(C)として、エザキュアTZT(C-1)(IGM社製)9.5gを添加し、均一混合して、光硬化性組成物11を得た。なお、前記(メタ)アクリル系共重合体(A-10)はマクロモノマー成分を含まない共重合体である。
 前記光硬化性組成物11は、実施例1と同様の方法で粘着シート積層体11を作製した。
[比較例3]
 (メタ)アクリル系共重合体(A)として、イソボルニルメタクリレート:メタクリル酸メチル=1:1からなる、末端官能基がメタクリロイル基のマクロモノマー(数平均分子量3000)を13.5質量部、ラウリルアクリレートを43.7質量部、2-エチルヘキシルアクリレートを40質量部、及びアクリルアミド2.8質量部をランダム共重合してなるアクリル系グラフト共重合体(A-11、質量平均分子量:4.9万)1kgに対し、架橋剤(B)としてプロポキシ化ペンタエリスリトールトリアクリレート(新中村化学社製、NKエステルATM-4PL)(B-1)90g、光開始剤(C)としてエザキュアTZT(C-1)(IGM社製)15gを添加し、均一混合して、光硬化性組成物12を得た。
 前記光硬化性組成物12は、実施例1と同様の方法で粘着シート積層体12を作製した。
 なお、前記(メタ)アクリル系重合体(A-11)は分子量が低く流動性が高いため、光硬化性組成物12は室温において粘ちょう液体状となった。
<評価>
 次に、上記実施例及び比較例で得た光硬化性組成物、粘着シート又は粘着シート積層体についての評価方法について説明する。
[小角X線散乱]
 小角X線散乱測定は大型放射光施設であるSPring-8のBL03XU(フロンティアソフトマター開発産学連合ビームライン)にて行った。
 実施例及び比較例で作製した粘着シート積層体すなわち光硬化前の光硬化性組成物について、両面の離型フィルムを剥がして粘着シートを試料用治具に設置した。
 X線のビーム形状は縦長を120μmとして横長を120μmに調整した。X線波長は1Åとし、検出器はCCD(Hamamatsu Photonics V7739P+ORCA R2)を用いた。カメラ長は約4mにセットして、標準試料(コラーゲン)を用いて補正を行った。アッテネータ(減衰板)の種類や厚み、露光時間を調整して、強力なX線で検出器が損傷しないよう設定したうえでサンプルにX線を照射してサンプルの2次元散乱像を得た。
 前記の手順で得られたサンプルの2次元散乱像からバックグランドの補正を行った。具体的には、サンプルが無い状態で前記手順と同じ操作を行ったバックグランドの2次元散乱像を取得して、画像処理ソフト(Image-J)を用いてサンプルの2次元散乱像からバックグランドの2次元散乱像を差し引いて、解析用の2次元散乱像を得た。解析用の2次元散乱像にはリング状の散乱が確認された。次に、解析用の2次元散乱像から1次元散乱プロファイルに変換した。具体的には、解析用の2次元散乱像をX線データ処理ソフト(Fit2d)に読み込ませて、全方位角にわたって、且つq=0.04~0.4の範囲において積分することで、横軸をq[nm-1]、縦軸を散乱強度とした1次元散乱プロファイルを得た。
 得られた1次元散乱プロファイルから、ピークの半値幅Xやピーク位置Yを求めた。1次元散乱プロファイルにはq=0.1付近で極小値をとって原点に向かって散乱強度が高くなる場合と、q=0.1付近で変曲点を経たあと原点に向かって散乱強度が小さくなる場合があった。q=0.1付近で極小値をとって原点に向かって散乱強度が高くなる場合は、極小値のqより大きい領域を解析対象とした。またq=0.1付近で変曲点を経たあと原点に向かって散乱強度が小さくなる場合は、変曲点のqより大きい領域を解析対象とした。次にベースライン補正として、解析対象領域の散乱強度の最小値を求めて、全領域にわたって最小値を差し引いてベースライン補正を行った。得られた補正後の1次元散乱プロファイルをガウス関数とローレンツ関数でフィッティングを行い、得られた合成関数の半値幅をX1、ピーク位置をY1とした。フィッティングには波形分離ソフト(Fityk)を用いた。
 また、本光硬化性組成物が成す相分離構造のドメイン間距離Z1を、Z1=2π/Y1として算出した。なお、得られた1次元散乱プロファイルからピークが検出されなかったものについては、表中に(ND)と表記した。
 実施例及び比較例で作製した粘着シート積層体について、一方の離型フィルム側から、高圧水銀ランプを用いて、波長365nmの積算光量が4000mJ/cmとなるよう光照射し、光硬化性組成物を硬化した。光硬化後の光硬化性組成物すなわち硬化物について、上述した光硬化前の光硬化性組成物と同様にして、小角X線散乱測定における1次元散乱プロファイルのピーク半値幅(X2)及びピーク位置(Y2)を求め、ピーク位置(Y2)からドメイン間距離(Z2)を算出した。
[保持力]
 実施例及び比較例で作製した粘着シート積層体を40mm×50mmに裁断して片面の離型フィルムを剥がし、裏打用のポリエチレンテレフタレートフィルム(三菱樹脂製 ダイアホイルS-100、厚さ38μm)をハンドローラーで背貼りした後、これを幅25mm×長さ100mmの短冊状に裁断して試験片とした。
 次に、残る離型フィルムを剥がして、SUS板(120mm×50mm×厚さ1.2mm)に対して、貼着面積が25mm×20mmとなるようハンドローラーで貼着した。
 その後、試験片を40℃の雰囲気下で15分養生させた後、試験片に500gf(4.9N)の錘を垂直方向に取り付けて掛けて静置した後、錘の落下時間(分)を測定した。30分以内に落下しなかったものについては、SUSと試験片との貼着位置が下方にズレた長さ(mm)、すなわちズレ量を測定した。
 なお、表中の「<0.2mm」はズレ量が0.2mm未満で、ほとんどズレのない状態の意味である。
[ガラス接着力]
<硬化前接着力の測定>
 実施例及び比較例で作製した粘着シート積層体について、一方の離型フィルムを剥がし、裏打ちフィルムとしてポリエチレンテレフタレートフィルム(東洋紡績社製;商品名「コスモシャインA4300」、厚み100μm)をハンドローラーにてロール圧着した。これを10mm幅×100mm長の短冊状に裁断し、残る離型フィルムを剥がして露出した粘着面を、ソーダライムガラスにハンドローラーを用いてロール貼着した。オートクレーブ処理(70℃、ゲージ圧0.2MPa、20分)を施して仕上貼着し、光硬化前のガラス接着力測定サンプルを作製した。裏打ちフィルムを180°をなす角度に剥離速度60mm/分にて引っ張りながらガラスから粘着シートを剥離し、ロードセルで引張強度を測定して、光硬化前における粘着シートのガラスに対する180°剥離強度(N/cm)を測定した。
<硬化後接着力の測定>
 実施例及び比較例で作製した粘着シート積層体について、一方の離型フィルムを剥がし、裏打ちフィルムとしてポリエチレンテレフタレートフィルム(東洋紡績社製;商品名「コスモシャインA4300」、厚み100μm)をハンドローラーにてロール圧着した。これを10mm幅×100mm長の短冊状に裁断し、残る離型フィルムを剥がして露出した粘着面を、ソーダライムガラスにハンドローラーを用いてロール貼着した。オートクレーブ処理(70℃、ゲージ圧0.2MPa、20分)を施して仕上貼着した後、裏打ちフィルム側から、高圧水銀ランプを用いて、波長365nmの積算光量が4000mJ/cmとなるよう粘着シートに光照射し、光硬化後のガラス接着力測定サンプルを作製した。裏打ちフィルムを180°をなす角度に剥離速度60mm/分にて引っ張りながらガラスから粘着シートを剥離し、ロードセルで引張強度を測定して、光硬化後における粘着シートのガラスに対する180°剥離強度(N/cm)を測定した。
 なお、表中の「<0.5」は、剥離強度が小さすぎて測定不能であった状態を示す。
[比誘電率]
 実施例及び比較例で作製した粘着シート積層体について、一方の離型フィルム側から、高圧水銀ランプを用いて、波長365nmの積算光量が4000mJ/cmとなるよう光照射し、光硬化性組成物を硬化した。その後、離型フィルムを順次剥がし、電極(キーコム社製、DPT-009)に貼着した。LCRメータ(アジレントテクノロジー社製、E4980A)にてJIS K6911に準拠して23℃50%RH、周波数100kHzにおける比誘電率を測定した。
 周波数100kHzにおける比誘電率が3.5以上の場合を「×(poor)」と評価し、3.5未満の場合を「○(good)」と評価した。
[耐金属腐食性]
 ガラス基板(60mm×45mm)上に、線巾70μm、線長さ46mm、線間隔30μmで10.5往復するように、厚さ100~150Åの酸化インジウム(ITO)の往復線を5本形成すると共に、該往復線の両末端にITOからなる2mm角の正方形を形成してITOパターン(長さ約97cm)を形成し、耐金属腐食性評価用ITOガラス基板を作製した。
 実施例及び比較例で作製した粘着シートの一方の離型フィルムを剥がし、その露出面にPETフィルム(東洋紡績製、コスモシャインA4100、125μm)をハンドローラーにて貼着した。次に、前記粘着シートを52mm×45mmに切り出した後、残る離型フィルムを剥がして、ITOの5本の往復線を被覆するように、耐金属腐食性評価用ITOガラス基板に粘着シートをハンドローラーにて貼着した。オートクレーブ処理(70℃、ゲージ圧0.2MPa、20分)を施して仕上貼着した後、PETフィルム側から、高圧水銀ランプを用いて、波長365nmの積算光量が4000mJ/cmとなるよう粘着シートに光照射し、耐金属腐食性評価用サンプル(粘着シート付ITO配線)を作製した。
 この耐金属腐食信頼性評価用サンプル(粘着シート付ITO配線)における5本のITO配線についてそれぞれ、室温での抵抗値を測定し、初期の配線抵抗値の平均値(Ω0)を求めた。
 当該耐腐食信頼性評価用サンプル(粘着シート付ITO配線)を、65℃90%RH環境下で800時間保管した。保管後、耐金属腐食性評価用サンプル(粘着シート付ITO配線)におけるITO配線の抵抗値を同様に測定し、環境試験後の配線抵抗値の平均値(Ω)を求めた。
 そして、ITO抵抗値すなわち線末端間抵抗値の変化率(%)[((Ω/Ω0)-1)×100]を算出し、表に「抵抗値変化」として示した。
 抵抗値の変化が5%未満のものを「◎(very good)」、5%以上10%未満を「○(good)」、10%以上のものを「×(poor)」と判定した。
[形状安定性]
 実施例及び比較例で作製した粘着シート積層体について、一方の離型フィルム(三菱樹脂社製、ダイアホイルMRQ、厚さ75μm)側から、他方の離型フィルム(三菱樹脂社製、ダイアホイルMRV、厚さ100μm)を貫通しないように、粘着シートを30mm×30mmの正方形状にハーフカットした。
 裁断された一方の離型フィルム(三菱樹脂社製、ダイアホイルMRQ、厚さ75μm)を剥離して、露出した粘着面に、剥離処理したポリエチレンテレフタレートフィルム(三菱樹脂社製、ダイアホイルMRT、厚さ50μm)を被覆した。両側の剥離フィルムを50mm×50mmに裁断し、光硬化前の形状安定性評価用サンプルを作製した。
 前記形状安定性評価用サンプルを温度40℃、湿度90%の環境下で300時間養生し、養生後の粘着シートの端面の粘着材のはみ出し量を観察した。粘着材のはみ出しの量は、裁断した養生後の粘着シートについて、各辺の中央部における粘着材のはみ出し距離を測定し、4辺の平均距離を粘着材のはみ出し量(mm)とした。
 養生後に粘着シートがつぶれ、粘着材のはみ出し量が2mm以上であったものを「×(poor)」、粘着材のはみだしが見られたが、1mm以上2mm未満であったものを「○(good)」、1mm未満であったものを「◎(very good)」と判定した。
 なお、表中の「<0.1mm」は、粘着材のはみ出し量が0.1mm未満で、ほとんど粘着材のはみ出しのない状態の意味であり、「>2.0mm」は粘着材のはみ出しがより顕著で、はみ出し量が2.0mmより大きかった状態を指す。
[段差吸収性]
 58mm×110mm×厚さ0.8mmのガラスの周縁部(長辺側3mm、短辺側15mm)に、厚さ40~50μmの印刷を施し、中央の凹部が52mm×80mmの印刷段差付きガラス板を準備した。
 実施例及び比較例で作製した粘着シート積層体の一方の離型フィルムを剥がし、ソーダライムガラス(54mm×82mm×厚さ0.5mm)の全面にロール貼合した。残る離型フィルムを剥がし、前記印刷段差付きガラス板の額縁状の印刷段差に、粘着シートがかかるようにして真空プレスを用いてプレス圧着(絶対圧5kPa、温度70℃、プレス圧0.04MPa)して評価サンプルを作製した。
 前記評価サンプルの段差吸収性について、60℃、0.3MPaの条件下で30分間オートクレーブ処理を施した後、貼り合せた評価サンプルの外観を確認し、印刷段差近傍に気泡がみられたものを「×(poor)」、気泡がみられないものを「○(good)」と判定した。
[耐発泡信頼性]
 54mm×82mm×厚さ0.5mmのソーダライムガラスに、粘着層付き偏光板(サンリッツ社製、VLC2-1518AGD2SF4、寸法54mm×82mm)をハンドローラーにて貼着し、オートクレーブ処理(25℃、ゲージ圧0.2MPa、20分)を施して、偏光板基材を作製した。
 実施例及び比較例で作製した粘着シート積層体の片面の離型フィルムを剥がし、その露出面に54mm×82mm×厚さ0.5mmのソーダライムガラスをハンドローラーにて貼着した。次に、粘着シート積層体の残る離型フィルムを剥がし、その露出面に前述の偏光板基材の偏光板面をハンドロールにて貼着した。オートクレーブ処理(温度60℃、気圧0.4MPa、30分)を施して仕上げ貼着した後、ソーダライムガラス面から高圧水銀ランプを用いて、波長365nmの積算光量が4000mJ/cmとなるよう粘着シートに光照射し、耐発泡信頼性評価サンプルを作製した。
 前記評価サンプルを95℃環境下で100時間養生し、発泡等なく外観に変化がみられなかったものを「○(good)」、発泡や剥離がみられたものを「×(poor)」と判定した。
Figure JPOXMLDOC01-appb-T000001
 実施例で作製した光硬化性組成物は、小角X線散乱測定で求められる光硬化性組成物の半値幅が所定の範囲にあることから、適度な凝集力と粘着性を両立しており、保管安定性や貼合信頼性にも優れるものであった。
 光硬化前後の光硬化性組成物の半値幅が0.08以上のものについては、特に保持力が高い結果となった。
 また、(メタ)アクリル系共重合体(A)の主となる共重合成分として、炭素数5以上の疎水性モノマーを用いている光硬化性組成物6~9については、周波数100kHzにおける比誘電率が3.5以下と低く、タッチセンサーに対し、より好適に用いられるものであった。
 さらに、光硬化性組成物7~9については、(メタ)アクリル系共重合体(A)の共重合成分として、酸性度の高いカルボキシル基含有モノマーや酸無水物基含有モノマーを用いず、親水性成分としてアクリルアミドを用いている。このため、光硬化性組成物7~9は耐金属腐食性に特に優れ、金属及び金属酸化物等の腐食性を有する被着体にも好適に用いられるものであった。
 一方、比較例1で作製した光硬化性組成物は、小角X線散乱測定で求められる光硬化性組成物の半値幅X1が0.05未満であり本発明の規定外であるため、凝集力が強すぎて粘着性に乏しく、段差吸収性に劣るものであった。
 比較例2で作製した光硬化性組成物は、小角X線散乱測定による1次元散乱プロファイルが観測されなかった。このため光硬化性組成物は凝集力に乏しく、光硬化前における保管安定性や、貼合後の耐発泡信頼性に劣るものであった。
 比較例3で作製した光硬化性組成物は、マクロモノマーを構成単位として含む(メタ)アクリル系重合体を用いているが、室温において粘ちょう液体状となり、光硬化性組成物は小角X線散乱測定における1次元散乱プロファイルが観測されなかった。このため光硬化性組成物は凝集力に乏しく、光硬化前における保管安定性や貼合後の耐発泡信頼性に劣るものであった。

Claims (15)

  1.  マクロモノマーを構成単位として含有する(メタ)アクリル系共重合体(A)、架橋剤(B)、及び架橋開始剤(C)を含む光硬化性組成物であって、
     小角X線散乱測定における1次元散乱プロファイルの半値幅X1(nm-1)が0.05<X1<0.30であることを特徴とする光硬化性組成物。
  2.  積算光照射量として4000mJ/mの光を照射した際の小角X線散乱測定における1次元散乱プロファイルの半値幅X2(nm-1)が0.05<X2<0.25であることを特徴とする請求項1に記載の光硬化性組成物。
  3.  (メタ)アクリル系共重合体(A)は、マクロモノマー(a)及びビニル単量体(b)を含有する単量体を重合して得られたものである請求項1又は2に記載の光硬化性組成物。
  4.  マクロモノマー(a)の数平均分子量が500~10万であることを特徴とする請求項3に記載の光硬化性組成物。
  5.  少なくとも架橋剤(B)及び架橋開始剤(C)の何れかが、(メタ)アクリル系共重合体(A)に結合されていることを特徴とする請求項1~4の何れかに記載の光硬化性組成物。
  6.  20℃において粘着性を示し、かつ、50~100℃において軟化又は流動化する性質を有することを特徴とする請求項1~5の何れかに記載の光硬化性組成物。
  7.  請求項1~6の何れかに記載の光硬化性組成物からなる粘着シート。
  8.  粘着シートをガラスに貼着し、積算光照射量として4000mJ/mの光を照射した際の、ガラスに対する180°剥離強度が3N/cm以上であることを特徴とする請求項7に記載の粘着シート。
  9.  請求項7又は8に記載の粘着シートと離型フィルムとを積層してなる構成を備えた粘着シート積層体。
  10.  請求項1~6の何れかに記載の光硬化性組成物が、2つの画像表示装置用構成部材の間に介在してなる構成を備えた画像表示装置用積層体。
  11.  マクロモノマーを構成単位として含有する(メタ)アクリル系共重合体(A)、架橋剤(B)、及び架橋開始剤(C)を含む光硬化性組成物を光硬化させてなる硬化物であって、
     小角X線散乱測定における1次元散乱プロファイルの半値幅X3(nm-1)が0.05<X3<0.25であることを特徴とする硬化物。
  12.  (メタ)アクリル系共重合体(A)は、マクロモノマー(a)及びビニル単量体(b)を含有する単量体を重合して得られたものである請求項11に記載の硬化物。
  13.  請求項11又は12に記載の硬化物が、2つの画像表示装置用構成部材の間に介在してなる構成を備えた画像表示装置用積層体。
  14.  前記画像表示装置構成部材が、タッチセンサー、画像表示パネル、表面保護パネル及び偏光フィルム、位相差フィルムからなる群のうちの何れか2種類以上の組み合わせからなる積層体であることを特徴とする請求項10又は13に記載の画像表示装置用積層体。
  15.  請求項10、13又は14に記載の画像表示装置構成用積層体を備えた画像表示装置。
     
PCT/JP2017/042596 2016-12-02 2017-11-28 光硬化性組成物、粘着シート、粘着シート積層体、硬化物、画像表示装置構成用積層体及び画像表示装置 WO2018101252A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202210166287.XA CN114410231A (zh) 2016-12-02 2017-11-28 光固化性组合物、粘合片、粘合片层叠体、图像显示装置构成用层叠体及图像显示装置
JP2018554155A JP7024726B2 (ja) 2016-12-02 2017-11-28 光硬化性組成物、粘着シート、粘着シート積層体、硬化物、画像表示装置構成用積層体及び画像表示装置
CN201780074699.8A CN110023357A (zh) 2016-12-02 2017-11-28 光固化性组合物、粘合片、粘合片层叠体、固化物、图像显示装置构成用层叠体及图像显示装置
KR1020197018916A KR102407621B1 (ko) 2016-12-02 2017-11-28 광경화성 조성물, 점착 시트, 점착 시트 적층체, 경화물, 화상 표시 장치 구성용 적층체 및 화상 표시 장치
JP2021183866A JP7259916B2 (ja) 2016-12-02 2021-11-11 光硬化性組成物、粘着シート、粘着シート積層体、硬化物、画像表示装置構成用積層体及び画像表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016234672 2016-12-02
JP2016-234672 2016-12-02

Publications (1)

Publication Number Publication Date
WO2018101252A1 true WO2018101252A1 (ja) 2018-06-07

Family

ID=62242188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042596 WO2018101252A1 (ja) 2016-12-02 2017-11-28 光硬化性組成物、粘着シート、粘着シート積層体、硬化物、画像表示装置構成用積層体及び画像表示装置

Country Status (5)

Country Link
JP (2) JP7024726B2 (ja)
KR (1) KR102407621B1 (ja)
CN (2) CN114410231A (ja)
TW (1) TWI752127B (ja)
WO (1) WO2018101252A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031426A1 (ja) * 2017-08-08 2019-02-14 三菱ケミカル株式会社 光硬化性粘着シート、光硬化性粘着シート積層体、光硬化性粘着シート積層体の製造方法及び画像表示パネル積層体の製造方法
JP2020012098A (ja) * 2018-07-10 2020-01-23 三菱ケミカル株式会社 粘着剤組成物、及びそれを用いてなる粘着剤、偏光板用粘着剤、ならびに画像表示装置
JP2020023695A (ja) * 2018-08-06 2020-02-13 三菱ケミカル株式会社 光硬化性粘着シート、粘着シート積層体、画像表示装置用積層体及び画像表示装置
WO2020066602A1 (ja) * 2018-09-27 2020-04-02 パナソニックIpマネジメント株式会社 有機el素子封止用紫外線硬化性樹脂組成物、有機el発光装置の製造方法、有機el発光装置、及びタッチパネル
WO2020262340A1 (ja) * 2019-06-28 2020-12-30 日東電工株式会社 粘着シートおよびその利用
WO2021065923A1 (ja) * 2019-10-01 2021-04-08 三菱ケミカル株式会社 粘着剤層付き偏光フィルム、粘着シート、積層部材及び画像表示装置
JP2022515643A (ja) * 2018-12-28 2022-02-21 サン-ゴバン パフォーマンス プラスティックス コーポレイション 接着剤組成物およびそれを形成する方法
WO2022211333A1 (ko) * 2021-04-02 2022-10-06 솔루스첨단소재 주식회사 유기발광소자 봉지용 조성물 및 이를 포함하는 유기발광 표시장치
JP7563081B2 (ja) 2019-10-01 2024-10-08 三菱ケミカル株式会社 粘着剤層付き偏光フィルム、粘着シート、積層部材及び画像表示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102473023B1 (ko) * 2019-11-01 2022-12-01 코제노벨머티얼리스코리아 주식회사 점착 필름
CN115109524A (zh) * 2021-03-18 2022-09-27 安佐化学有限公司 一种隐形车衣用光固化粘着剂及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09501732A (ja) * 1994-01-21 1997-02-18 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー 水性分枝ポリマー分散物
JP2000355605A (ja) * 1992-05-01 2000-12-26 E I Du Pont De Nemours & Co マクロモノマー連鎖移動剤を用いる重合方法、およびその方法により得られる重合体
JP2003002934A (ja) * 2001-06-25 2003-01-08 Toagosei Co Ltd 水性樹脂分散体及びその製造方法並びに用途
JP2015105296A (ja) * 2013-11-29 2015-06-08 三菱樹脂株式会社 粘着剤樹脂組成物
WO2015137178A1 (ja) * 2014-03-10 2015-09-17 三菱樹脂株式会社 画像表示装置構成用積層体の製造方法
WO2016002763A1 (ja) * 2014-07-01 2016-01-07 三菱樹脂株式会社 光学装置構成用部材のリサイクル方法および光学装置構成用積層体のリワーク性評価方法
WO2016024618A1 (ja) * 2014-08-12 2016-02-18 三菱樹脂株式会社 透明粘着シート
WO2016088697A1 (ja) * 2014-12-03 2016-06-09 三菱樹脂株式会社 粘着シート積層体及び画像表示装置構成部材積層体

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61283645A (ja) * 1985-06-10 1986-12-13 Canon Inc 活性エネルギ−線硬化型樹脂組成物
JPH0686505B2 (ja) * 1986-03-10 1994-11-02 キヤノン株式会社 活性エネルギ−線硬化型樹脂組成物
JPH01203412A (ja) 1988-02-08 1989-08-16 Toagosei Chem Ind Co Ltd 粘着剤用樹脂組成物
JPH0527432A (ja) * 1991-07-08 1993-02-05 Canon Inc 光重合性組成物
JP3557429B2 (ja) 1995-02-06 2004-08-25 綜研化学株式会社 液晶素子用感圧接着剤および液晶素子
JPH10204326A (ja) * 1997-01-21 1998-08-04 Kansai Paint Co Ltd 活性エネルギー線硬化型樹脂組成物及びそれを使用した被膜形成方法
JPH11158450A (ja) 1997-11-27 1999-06-15 Sekisui Chem Co Ltd 硬化型粘接着剤組成物及び硬化型粘接着シート
JP5513225B2 (ja) 2010-04-07 2014-06-04 株式会社日本触媒 感圧接着剤
EP3075753A1 (en) 2013-11-29 2016-10-05 Mitsubishi Rayon Co., Ltd. (meth)acrylic copolymer, adhesive composition containing same, and adhesive sheet
KR20160134681A (ko) * 2014-03-18 2016-11-23 소켄 케미칼 앤드 엔지니어링 캄파니, 리미티드 편광판용 점착제 조성물, 점착제층, 점착 시트 및 점착제층 부착 편광판
JP6351385B2 (ja) * 2014-06-03 2018-07-04 株式会社メニコン コンタクトレンズの製造方法
US10479855B2 (en) * 2015-06-02 2019-11-19 Mitsubishi Chemical Corporation (Meth)acrylic copolymer, adhesive composition and adhesive sheet containing same, and coating material and coated product using same
JP6737585B2 (ja) * 2015-11-27 2020-08-12 三星エスディアイ株式会社SAMSUNG SDI Co., LTD. 粘着剤組成物、粘着シートおよび画像表示装置
CN110023443A (zh) * 2016-12-02 2019-07-16 三菱化学株式会社 粘着剂用树脂组合物及粘着片

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355605A (ja) * 1992-05-01 2000-12-26 E I Du Pont De Nemours & Co マクロモノマー連鎖移動剤を用いる重合方法、およびその方法により得られる重合体
JPH09501732A (ja) * 1994-01-21 1997-02-18 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー 水性分枝ポリマー分散物
JP2003002934A (ja) * 2001-06-25 2003-01-08 Toagosei Co Ltd 水性樹脂分散体及びその製造方法並びに用途
JP2015105296A (ja) * 2013-11-29 2015-06-08 三菱樹脂株式会社 粘着剤樹脂組成物
WO2015137178A1 (ja) * 2014-03-10 2015-09-17 三菱樹脂株式会社 画像表示装置構成用積層体の製造方法
WO2016002763A1 (ja) * 2014-07-01 2016-01-07 三菱樹脂株式会社 光学装置構成用部材のリサイクル方法および光学装置構成用積層体のリワーク性評価方法
WO2016024618A1 (ja) * 2014-08-12 2016-02-18 三菱樹脂株式会社 透明粘着シート
WO2016088697A1 (ja) * 2014-12-03 2016-06-09 三菱樹脂株式会社 粘着シート積層体及び画像表示装置構成部材積層体

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031426A1 (ja) * 2017-08-08 2019-02-14 三菱ケミカル株式会社 光硬化性粘着シート、光硬化性粘着シート積層体、光硬化性粘着シート積層体の製造方法及び画像表示パネル積層体の製造方法
JP2020012098A (ja) * 2018-07-10 2020-01-23 三菱ケミカル株式会社 粘着剤組成物、及びそれを用いてなる粘着剤、偏光板用粘着剤、ならびに画像表示装置
JP2020023695A (ja) * 2018-08-06 2020-02-13 三菱ケミカル株式会社 光硬化性粘着シート、粘着シート積層体、画像表示装置用積層体及び画像表示装置
JP7415366B2 (ja) 2018-08-06 2024-01-17 三菱ケミカル株式会社 光硬化性粘着シート、粘着シート積層体、画像表示装置用積層体及び画像表示装置
WO2020066602A1 (ja) * 2018-09-27 2020-04-02 パナソニックIpマネジメント株式会社 有機el素子封止用紫外線硬化性樹脂組成物、有機el発光装置の製造方法、有機el発光装置、及びタッチパネル
JP2020057580A (ja) * 2018-09-27 2020-04-09 パナソニックIpマネジメント株式会社 有機el素子封止用紫外線硬化性樹脂組成物、有機el発光装置の製造方法、有機el発光装置、及びタッチパネル
JP2020076052A (ja) * 2018-09-27 2020-05-21 パナソニックIpマネジメント株式会社 紫外線硬化性樹脂組成物、有機el発光装置の製造方法、有機el発光装置、及びタッチパネル
JP7275283B2 (ja) 2018-12-28 2023-05-17 サン-ゴバン パフォーマンス プラスティックス コーポレイション 接着剤組成物およびそれを形成する方法
JP2022515643A (ja) * 2018-12-28 2022-02-21 サン-ゴバン パフォーマンス プラスティックス コーポレイション 接着剤組成物およびそれを形成する方法
CN114051521A (zh) * 2019-06-28 2022-02-15 日东电工株式会社 粘合片及其利用
WO2020262340A1 (ja) * 2019-06-28 2020-12-30 日東電工株式会社 粘着シートおよびその利用
KR20220069928A (ko) 2019-10-01 2022-05-27 미쯔비시 케미컬 주식회사 점착성 편광 적층 필름, 점착 시트, 적층 부재 및 화상 표시 장치
WO2021065923A1 (ja) * 2019-10-01 2021-04-08 三菱ケミカル株式会社 粘着剤層付き偏光フィルム、粘着シート、積層部材及び画像表示装置
JP7563081B2 (ja) 2019-10-01 2024-10-08 三菱ケミカル株式会社 粘着剤層付き偏光フィルム、粘着シート、積層部材及び画像表示装置
WO2022211333A1 (ko) * 2021-04-02 2022-10-06 솔루스첨단소재 주식회사 유기발광소자 봉지용 조성물 및 이를 포함하는 유기발광 표시장치
JP2023523377A (ja) * 2021-04-02 2023-06-05 ソリュース先端素材株式会社 有機発光素子封止用組成物、及びそれを含む有機発光表示装置
JP7483871B2 (ja) 2021-04-02 2024-05-15 ソリュース先端素材株式会社 有機発光素子封止用組成物、及びそれを含む有機発光表示装置
US12012520B2 (en) 2021-04-02 2024-06-18 Solus Advanced Materials Co., Ltd. Composition for encapsulating organic light emitting diodes and organic light emitting display device comprising the same

Also Published As

Publication number Publication date
TW201833283A (zh) 2018-09-16
CN110023357A (zh) 2019-07-16
CN114410231A (zh) 2022-04-29
TWI752127B (zh) 2022-01-11
KR20190089049A (ko) 2019-07-29
JP2022033767A (ja) 2022-03-02
JP7259916B2 (ja) 2023-04-18
JPWO2018101252A1 (ja) 2019-10-24
KR102407621B1 (ko) 2022-06-10
JP7024726B2 (ja) 2022-02-24

Similar Documents

Publication Publication Date Title
JP7259916B2 (ja) 光硬化性組成物、粘着シート、粘着シート積層体、硬化物、画像表示装置構成用積層体及び画像表示装置
JP7156453B2 (ja) 透明両面粘着シート及び粘着シート積層体
JP6866956B2 (ja) 光硬化性粘着シート積層体、光硬化性粘着シート積層体の製造方法及び画像表示パネル積層体の製造方法
CN111876091B (zh) 带脱模薄膜的光固化性粘合片
JP6558287B2 (ja) 画像表示装置構成用積層体及び画像表示装置の製造方法
JP7318674B2 (ja) 光硬化型粘着シートの製造方法
JP6866880B2 (ja) 光硬化性粘着シート
WO2017138544A1 (ja) 透明両面粘着シート及び粘着シート積層体
WO2018105413A1 (ja) 粘着シート及びその製造方法
JP6885247B2 (ja) 粘着シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876136

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018554155

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197018916

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17876136

Country of ref document: EP

Kind code of ref document: A1