WO2018101031A1 - 塗膜形成方法および塗膜形成装置 - Google Patents
塗膜形成方法および塗膜形成装置 Download PDFInfo
- Publication number
- WO2018101031A1 WO2018101031A1 PCT/JP2017/040982 JP2017040982W WO2018101031A1 WO 2018101031 A1 WO2018101031 A1 WO 2018101031A1 JP 2017040982 W JP2017040982 W JP 2017040982W WO 2018101031 A1 WO2018101031 A1 WO 2018101031A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coating
- blade
- processing object
- coating blade
- wafer
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C—APPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C11/00—Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
- B05C11/02—Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface
- B05C11/04—Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface with blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C—APPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C11/00—Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
- B05C11/02—Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface
- B05C11/08—Spreading liquid or other fluent material by manipulating the work, e.g. tilting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/40—Distributing applied liquids or other fluent materials by members moving relatively to surface
Definitions
- the present invention relates to a coating film forming method and a coating film forming apparatus, and more particularly to a coating film forming method and a coating film forming apparatus for forming a liquid coating material supplied on the surface of a processing object into a film shape by a coating blade. .
- a coating film forming apparatus that forms a liquid coating material supplied on the surface of an object to be processed into a film shape with a coating blade.
- Such a coating film forming apparatus is disclosed in, for example, Japanese Patent Application Laid-Open No. 2006-150233.
- JP-A-2006-150233 discloses a coating liquid supply nozzle for supplying a coating liquid such as a resist liquid to the surface of a substrate (processing object) such as a semiconductor substrate or a glass substrate, and a coating liquid supplied to the substrate surface.
- a coating liquid such as a resist liquid
- An applicator provided with an applicator (applying blade) that spreads the surface is disclosed.
- the applicator has a linear shape longer than the diameter of the substrate, and moves linearly from one side of the substrate to the other side with a gap formed between the applicator and the surface of the substrate. In the process where the applicator passes over the surface of the substrate, the coating liquid is spread on the surface of the substrate to form a coating film.
- a method of forming a coating film on a flat processing object includes a method using a coating blade (applicator) as described in JP-A-2006-150233, and a method of rotating a processing object at a high speed on the surface.
- a spin coating method in which a coating material is spread by centrifugal force.
- the coating film thickness can be increased, but coating unevenness is likely to occur, and it is difficult to obtain a uniform film thickness. There is a point.
- the spin coating method has a problem that while the film thickness can be made uniform, the coating film thickness is determined by the number of rotations, and it is difficult to obtain a film thickness of a certain level or more.
- the upper limit of the film thickness that can be formed with a uniform film thickness by spin coating is generally about several ⁇ m to 10 ⁇ m. For example, it is difficult to form a film thickness of 20 ⁇ m or more.
- thermosetting resin film is formed on the surface of a substrate (object to be processed) in which a fine space is formed, and the thermosetting resin is filled with the thermosetting resin in the fine space and baked. May solidify.
- the volume of the thermosetting resin decreases with the firing (solvent evaporates), and thus a sufficiently large film thickness (volume) is desired to suppress poor filling in the fine space.
- the removal process becomes difficult, so a uniform film thickness is desired. In such a case, it is difficult to achieve both a sufficiently large film thickness and film thickness uniformity in the coating film formation by the conventional method. Therefore, it is desired to form a coating film having a sufficiently large film thickness and a uniform film thickness with little coating unevenness.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to form a coating film having a large film thickness and a uniform film thickness with little coating unevenness.
- a coating film forming method and a coating film forming apparatus are provided.
- a coating film forming method supplies a coating blade disposed at a predetermined distance from the surface of a flat processing object on the surface of the processing object.
- the process object is rotated about the rotation center axis in the vertical direction in a state where it is in contact with the liquid reservoir of the liquid application material, and the liquid reservoir of the application material is applied to the application blade as the process object rotates.
- the inclination of the coating blade with respect to the rotation direction in the plane along the processing object is changed so that the coating material moves on the surface of the processing object so as to move between one end and the other end of the coating blade along the surface.
- the flat processing target is a concept including a semiconductor substrate such as a silicon substrate or a glass substrate.
- a coating film having a sufficiently large film thickness can be formed by adjusting the size of the predetermined interval between the surface of the object to be processed and the coating blade. It becomes possible. Further, in the present invention, the in-plane along the processing object is arranged such that the liquid pool of the coating material moves between the one end and the other end of the coating blade along the coating blade as the processing target rotates.
- the step of forming a coating material on the surface of the object to be processed is provided by changing the inclination of the coating blade with respect to the rotation direction in FIG. Thereby, the coating material can be spread on the surface of the processing object by utilizing the movement (flow) of the coating material on the surface of the rotating processing object.
- the portion of the coating material that passes through the gap between the coating blade and the object to be processed becomes a coating film having a predetermined film thickness.
- the portion of the liquid pool that cannot pass through the gap is held in such a manner that the movement in the rotational direction is blocked by the coating blade.
- the liquid reservoir held by the coating blade can be moved along the coating blade, so that the coating material can be moved and the coating range can be expanded without largely moving the coating blade. .
- a force toward the one end side of the coating blade is applied to the liquid pool of the coating material as the processing object rotates.
- the inclination of the coating blade is changed between the first angle and the second angle that causes a force toward the other end of the coating blade to act on the liquid reservoir of the coating material as the processing object rotates.
- the first angle is an angle at which the intersection angle between the tangent of the circle and the application blade at the intersection of the circle around the rotation center axis and the application blade becomes an acute angle toward the one end side
- the angle is an angle at which the intersection angle between the tangent of the circle at the intersection of the circle around the rotation center axis and the coating blade and the coating blade becomes an acute angle toward the other end side.
- the tangential direction of the circle at the intersection point is a direction in which the liquid pool in the vicinity of the intersection point is pressed toward the coating blade with the rotation of the object to be processed. Therefore, at the first angle, the liquid reservoir can be moved to one end side, or the liquid pool can be prevented from moving to the other end side.
- the liquid pool can be moved to the other end side, or the liquid pool can be prevented from moving to the one end side.
- the coating material can be freely moved from one end portion to the other end portion of the coating blade, and a coating film can be formed under more suitable coating conditions.
- the inclination of the coating blade is changed between the first angle and the second angle, preferably, in the step of forming the coating material, the inclination of the coating blade is changed to the first angle while rotating the processing object. And the second angle continuously. If comprised in this way, unlike the case where the inclination of an application
- the coating blade disposed above the processing object is rotated on the radially outer side of the processing object. Rotate around the central axis to change the inclination of the coating blade. If comprised in this way, it can avoid that drive parts, such as a shaft and a gear for rotating an application
- a linear coating blade having a length equal to or longer than the radius of the processing object is positioned at one end near the center of the processing object and the other end is
- the coating blade is rotated so that one end of the coating blade passes across the center of the processing target in the process of depositing the coating material. Change the slope. If comprised in this way, the center part of a process target object can be apply
- the coating material is supplied to the region including the center of the processing object and the coating material is formed in the step of forming the coating material.
- the liquid reservoir is moved along the coating blade from the center side of the object to be processed toward the outer peripheral side. If comprised in this way, a coating-film formation can be completed only by moving the liquid reservoir of the coating material supplied to the center of a process target object to the outer peripheral side. Therefore, for example, the processing time can be shortened as compared with a configuration in which the liquid reservoir is reciprocated between the one end side and the other end side.
- the coating blade is disposed at a position where one end of the coating blade is in contact with the coating material. If comprised in this way, the coating-film formation of the coating material supplied to the center part of a process target object can be started at the time of arrange
- the liquid reservoir of the coating material is moved along the coating blade to a predetermined position on the other end side of the coating blade disposed inside. According to this configuration, the liquid reservoir is not pushed out from the outer peripheral portion of the processing object to the outside of the processing target, but at a predetermined position inside the outer peripheral portion of the processing object in the coating blade (the outer edge of the coating film formation region). Part) can be moved to complete the film formation of the coating material.
- the spin coating method generally, about 80 to 90% of the coating material is scattered outside the object to be processed, and a coating film can be formed without wasting the supplied coating material as much as possible. At the same time, the amount of maintenance work such as cleaning after film formation can be suppressed.
- the method further includes a step of separating the coating blade from the surface of the processing object.
- the step of separating from the surface while the rotation of the processing object is continued, at least the processing object is moved from the position where the coating blade contacts the coating film of the coating material to the position where it does not contact the coating film.
- the coating blade is moved relatively away from the object to be processed so that it rotates once.
- separation means that an object is spatially separated from a target (another object or position).
- the distance between the coating blade and the processing target is gradually increased while the processing target is further rotated one or more times.
- the coating blade can be separated from the surface of the coating film in a state where the liquid pool completely disappears (in a state where the film thickness becomes uniform) while leveling the liquid pool remaining on the coating film and flattening it. As a result, it is possible to suppress the occurrence of coating unevenness (blade marks) when the coating blade is separated.
- the predetermined interval is 20 ⁇ m or more.
- the upper limit of the film thickness that can be formed with a uniform film thickness by spin coating is generally about several ⁇ m to 10 ⁇ m, and it is difficult to form a film thickness of 20 ⁇ m or more. Therefore, the present invention can be suitably applied when forming a uniform coating film having a film thickness of 20 ⁇ m or more, which is difficult with the spin coating method.
- the processing object is rotated at a rotation speed of 1 rpm or more and 100 rpm or less.
- the spin coating method since film formation is generally performed at a rotational speed of about several hundred rpm to several thousand rpm, most of the coating material (about 80% to 90%) is scattered.
- the present invention by performing film formation at a low rotation speed of 1 rpm or more and 100 rpm or less, scattering of the coating material can be avoided and the amount of material used can be reduced.
- the coating film forming apparatus supplies a liquid coating material onto the surface of the processing object, a mounting portion that holds the flat processing object and rotates it around the vertical rotation center axis.
- the liquid pool of coating material is moved along the coating blade as the processing object rotates by the driving means.
- a control unit that performs control to change the inclination of the coating blade with respect to the rotation direction so as to move between one end and the other end of the coating blade.
- a coating film having a sufficiently large film thickness can be formed by adjusting the size of the predetermined interval between the surface of the object to be processed and the coating blade. It becomes possible. Further, in the present invention, the liquid reservoir of the coating material is rotated by the driving means in accordance with the rotation of the processing object in a state where the coating blade is in contact with the liquid coating material reservoir supplied on the surface of the processing object. Is provided with a control unit that performs control to change the inclination of the coating blade with respect to the rotation direction so that the blade moves between one end and the other end of the coating blade along the coating blade.
- the coating material can be spread on the surface of the processing object using the movement (flow) of the coating material on the surface of the rotating processing object, the coating blade is not moved greatly.
- the coating range can be expanded.
- the coating film forming method and the coating film forming apparatus 100 according to the present embodiment will be described with reference to FIGS.
- the coating film forming method according to the present embodiment relates to a method of forming a coating film (film formation) with a coating blade 30 on a liquid coating material supplied on the surface of a processing object.
- the coating film forming apparatus 100 according to the present embodiment is an apparatus that performs the coating film forming method of the present embodiment to form a coating film of a coating material on the surface of a processing object.
- the object to be treated is not particularly limited as long as the object has a flat shape and a coating film of the coating material is formed on the surface.
- the processing object usually has a flat surface, but a fine space opening on the surface may be formed. In this case, the coating material may be filled in the fine space by forming a coating film of the coating material.
- the planar shape of the processing object is not limited.
- the processing object is, for example, a wafer formed of silicon or glass.
- the wafer is a semiconductor substrate on which semiconductor elements, MEMS (Micro Electro Mechanical Systems) devices, and the like are formed.
- the coating material is not particularly limited as long as it is a liquid substance having a predetermined viscosity.
- the coating film forming method of the present embodiment can be used for forming various coating materials.
- the coating material is, for example, a liquid resin material in addition to a resist solution, a conductive paste, an adhesive, and the like used for a semiconductor substrate.
- the coating material is a thermosetting resin and is used as an insulating material.
- thermosetting resin 3 is formed on the surface 1a of the wafer 1 on which a plurality of fine spaces 2 (see FIG. 3) are formed, thereby forming the thermosetting resin 3 in the fine spaces 2.
- An example of filling will be described.
- the wafer 1 is an example of the “processing object” in the claims.
- the thermosetting resin 3 is an example of the “coating material” in the claims.
- the wafer 1 has a substantially circular shape having a radius R when seen in a plan view, and a plurality of chips can be cut out.
- the coating film forming apparatus 100 includes a placement unit 10, a supply unit 20, a coating blade 30, a moving mechanism 40, and a control unit 50.
- the placement unit 10, the supply unit 20, the coating blade 30, and the moving mechanism 40 are arranged in a chamber 60 that can control the internal atmosphere.
- the moving mechanism 40 is an example of the “driving means” in the claims.
- the mounting unit 10 is configured to hold the flat wafer 1 and rotate it around the rotation center axis 11 in the vertical direction.
- the placement unit 10 has a flat placement surface 12 and holds the wafer 1 placed on the placement surface 12.
- the placement unit 10 can rotate the placement surface 12 around the rotation center axis 11 in the vertical direction by a rotation mechanism 13 (see FIG. 2) including a motor or the like.
- the placement unit 10 is electrically connected to the control unit 50, and is configured such that the rotation of the wafer 1 is controlled by the control unit 50. Below, the example which rotates the wafer 1 clockwise in planar view (refer FIG. 1) at the time of coating-film formation is demonstrated.
- the supply unit 20 is configured to supply a liquid coating material (thermosetting resin 3) onto the surface 1a of the wafer 1.
- the supply unit 20 is disposed at a position spaced above the placement unit 10, and includes a nozzle 21 at the lower part.
- the nozzle 21 is fluidly connected to a material reservoir (not shown) and can discharge the thermosetting resin 3 supplied from the material reservoir.
- the supply unit 20 can supply the thermosetting resin 3 on the surface 1 a of the wafer 1 held by the mounting unit 10 from a position above the mounting unit 10.
- a liquid pool K (a puddle portion formed by collecting the liquid thermosetting resin 3) is formed on the wafer 1.
- the coating blade 30 is a member for extending the thermosetting resin 3 supplied on the surface 1a of the wafer 1 to form a coating film.
- the coating blade 30 is a plate-like member having a linear shape in plan view. That is, the coating blade 30 has one end portion 31 and the other end portion 32, and a space between the one end portion 31 and the other end portion 32 is formed in a straight line.
- the coating blade 30 has a length L2 that is equal to or greater than the radius R of the wafer 1.
- the coating blade 30 is disposed along the surface 1a of the wafer 1 at a position spaced apart from the surface 1a of the wafer 1 by a predetermined distance D when the coating film is formed. That is, the coating blade 30 is disposed substantially parallel to the surface 1a of the wafer 1 and at a position above the surface 1a by a predetermined distance D.
- the predetermined interval D is set according to the film thickness t1 of the coating film to be formed. Note that the predetermined distance D between the coating blade 30 and the surface 1a of the wafer 1 and the film thickness t1 of the coating film to be formed do not necessarily match, and the film thickness t1 tends to be slightly smaller.
- the predetermined interval D is set to be equal to or slightly larger than the design value of the film thickness t1.
- the coating blade 30 has an inclined surface 33 at the lower end in the vertical cross section.
- the inclined surface 33 is formed as a flat surface that is inclined from one side (front surface side) in the thickness direction of the coating blade 30 toward the other side (back surface side) and decreases in thickness toward the lower end.
- the inclined surface 33 is provided toward the upstream side in the rotation direction of the wafer 1 and has a function of contacting the liquid reservoir K of the thermosetting resin 3 and guiding the thermosetting resin 3 toward the lower end portion.
- the moving mechanism 40 holds the coating blade 30 at a position above the wafer 1.
- the moving mechanism 40 can hold the coating blade 30 along the surface 1 a of the wafer 1 at a position spaced a predetermined distance D from the surface 1 a of the wafer 1.
- the moving mechanism 40 has a function of rotating the coating blade 30 in a plane along the wafer 1. Thereby, the moving mechanism 40 can change the inclination of the coating blade 30 with respect to the rotation direction of the wafer 1.
- the plane along the wafer 1 is typically a horizontal plane, and preferably the mounting surface 12 of the mounting unit 10, the surface 1a of the wafer 1, and the coating blade 30 are arranged substantially horizontally. Adjusted.
- the moving mechanism 40 includes an arm portion 42 that holds the coating blade 30.
- the arm portion 42 extends in the horizontal direction, holds the coating blade 30 at the tip portion, and a root portion is supported by the moving mechanism 40.
- the moving mechanism 40 includes a rotation drive unit 43 (see FIG. 2) such as a motor, and can rotate the arm unit 42 around the rotation center axis 41.
- the rotation center axis 41 of the moving mechanism 40 is disposed on the outer side in the radial direction with respect to the placement unit 10. Thereby, the moving mechanism 40 is configured to rotate (turn) the coating blade 30 around the rotation center axis 41 disposed on the radially outer side of the wafer 1 (mounting unit 10). The inclination of the coating blade 30 with respect to the rotation direction of the wafer 1 can be changed by the rotation around the rotation center axis 41.
- the moving mechanism 40 is configured to be able to move the arm part 42 in the vertical direction by an elevating drive part 44 (see FIG. 2). Thereby, the moving mechanism 40 moves the coating blade 30 so as to approach or separate from the surface 1a of the wafer 1 (mounting unit 10).
- the moving mechanism 40 moves the coating blade 30 to a position spaced a predetermined distance D from the surface 1a of the wafer 1, and after the coating process, the coating blade 30 is separated from the surface 1a of the wafer 1. .
- the arm unit 42 is provided with a supply unit 20 in addition to the coating blade 30.
- the moving mechanism 40 can move the coating blade 30 and the supply unit 20 integrally.
- the supply unit 20 is attached to the arm unit 42 so that the nozzle 21 moves along a trajectory that passes almost directly above the rotation center axis 11 of the mounting unit 10.
- the moving mechanism 40 is electrically connected to the control unit 50, and the movement of the coating blade 30 and the supply unit 20 is controlled by the control unit 50.
- the chamber 60 accommodates the upper part of the mounting part 10 including the mounting surface 12, the arm part 42 that holds the supply part 20 and the coating blade 30, and is configured to be able to form a sealed space.
- the chamber 60 is configured to be openable and closable, and the wafer 1 on the placement unit 10 can be taken in and out by a robot arm (not shown).
- the control unit 50 includes a processor such as a CPU and a computer including a volatile and / or nonvolatile memory, and controls each unit of the coating film forming apparatus 100.
- the control unit 50 is configured to perform rotation control of the mounting unit 10, movement control of the coating blade 30 and the supply unit 20 by the moving mechanism 40, and supply control of the thermosetting resin 3 by the supply unit 20. .
- the control unit 50 in the coating process of the thermosetting resin 3, the control unit 50 is in a state where the coating blade 30 is brought into contact with the liquid reservoir K of the liquid thermosetting resin 3 supplied onto the surface 1 a of the wafer 1.
- the liquid mechanism K of the thermosetting resin 3 moves between the one end portion 31 and the other end portion 32 of the coating blade 30 along the coating blade 30 by the moving mechanism 40 as the wafer 1 rotates.
- the control is performed so as to change the inclination of the coating blade 30 with respect to the rotation direction.
- the coating film forming method of this embodiment is a series of insulating layers for filling a thermosetting resin 3 in a minute space 2 and forming it as an insulating layer of a through electrode (not shown) formed by a subsequent process. Implemented as part of the forming process (coating film forming step).
- the fine space 2 is formed so as to open on the surface 1 a of the wafer 1.
- the minute space 2 is, for example, a hole that does not penetrate the wafer 1 and opens on the surface 1a of the wafer 1 and does not open on the opposite surface 1b opposite to the surface 1a.
- the fine space 2 shown in FIG. 3 is an annular groove having an opening 2a, an inner side surface 2b, and a bottom portion 2c.
- the fine space 2 has an annular shape that surrounds the columnar portion in plan view.
- the minute space 2 is formed in a circular shape having a predetermined diameter.
- the minute space 2 has a width W in the horizontal direction orthogonal to the thickness direction and a depth L1 in the thickness direction.
- the outer diameter of the fine space 2 is, for example, about 250 ⁇ m or less, preferably 10 ⁇ m or less.
- the width W of the fine space 2 is, for example, about 100 ⁇ m or less.
- thermosetting resin 3 The coating film of the thermosetting resin 3 is formed on the surface 1a of the wafer 1 by the coating film forming method according to the present embodiment. At this time, the thermosetting resin 3 is also filled in the minute space 2.
- a resin (binder) that is solidified at a processing temperature higher than normal temperature and about 250 ° C. or lower is used as an insulating material.
- the thermosetting resin 3 include a fluororesin, a polyimide resin, a phenol resin, a silicon resin, and an epoxy resin.
- AL-X2000 series such as AL-X2003 and AL-X2010 manufactured by Asahi Glass Co., Ltd. are applicable as the fluororesin.
- PIMEL registered trademark
- BM302 and BL301 manufactured by Asahi Kasei E-material Co., Ltd. are applicable as the polyimide resin.
- ELPAC registered trademark
- WPR1201 and WPR5100 manufactured by JSR Corporation are applicable.
- the thermosetting resin 3 functions as an insulating layer of a through electrode (not shown) formed by a subsequent process.
- the through electrode is formed, for example, as an electrode (silicon through electrode) for electrical connection between upper and lower chips in three-dimensional mounting in which a plurality of chips are stacked and mounted.
- an outline of a flow of a series of insulating layer forming processes will be described.
- a wafer 1 in which a minute space 2 is formed is prepared.
- the fine space 2 is formed on the wafer 1 by, for example, etching, and the resist mask formed when the fine space 2 is formed is removed from the surface 1 a of the wafer 1.
- thermosetting resin 3 is supplied to the surface 1 a of the wafer 1 to form a coating film of the thermosetting resin 3.
- the fine space 2 is filled with the thermosetting resin 3.
- a coating film having a film thickness t1 is formed on the surface 1a of the wafer 1.
- the thermosetting resin 3 to be formed and filled is a mixture of a resin material and a solvent before solidification.
- a pre-baking process is performed after the coating film forming process.
- the wafer 1 is heated and the solvent contained in the thermosetting resin 3 filled in the fine space 2 evaporates.
- a baking process (curing) is performed.
- the baking step is a step of heating the wafer 1 to solidify the thermosetting resin 3.
- the heating temperature in the firing process is higher than the heating temperature in the prebaking process.
- the thermosetting resin 3 is solidified by the heat applied in the firing step.
- the type of hatching of the thermosetting resin 3 is changed before and after solidification.
- the volume of the thermosetting resin 3 decreases due to the evaporation of the solvent from the coating film formed in the coating film forming process and the thermosetting resin 3 in the fine space 2.
- the volume decrease of the thermosetting resin 3 in the fine space 2 is compensated by the coating film of the thermosetting resin 3 on the surface 1 a of the wafer 1.
- the volume of the thermosetting resin 3 itself constituting the coating film is reduced by firing. Therefore, the film thickness of the solidified coating film remaining on the surface 1a of the wafer 1 after the pre-baking process and the baking process is smaller than the film thickness t1 when the coating film is formed.
- the residue removing step is a step of removing the residue of the solidified thermosetting resin 3 remaining on the surface 1 a of the wafer 1.
- the residue removing step is performed by mechanical polishing such as CMP (Chemical Mechanical Polishing) or polisher. Thereby, the wafer 1 in which the minute space 2 is filled with the thermosetting resin 3 as the insulating layer is obtained.
- the coating film formed on the surface 1a of the wafer 1 in the coating film forming process has a function of compensating for the volume reduction in the prebaking process and the baking process.
- the thermosetting resin 3 on the surface 1a of the wafer 1 is too small relative to the opening area of the wafer surface, there is a high possibility that a filling failure in the fine space 2 will occur.
- the surface 1 a of the wafer 1 is supplied with a larger amount of the thermosetting resin 3 than the filling amount of the fine space 2.
- the supply amount of the thermosetting resin 3 (that is, the film thickness t1) is set in consideration of the volume reduction in the prebaking process and the baking process.
- the film thickness t1 of the coating film is equal to or greater than the depth L1 of the fine space 2.
- the film thickness t1 of the coating film is about 20 ⁇ m or more.
- the film thickness t1 of the coating film is more preferably about 30 ⁇ m or more.
- the coating film formed in the coating film forming process is removed by the residue removing process after firing (after solidification).
- the solidified coating is removed by mechanical polishing, if the film thickness varies, the amount of residue removed varies, and a portion of the solidified coating remains unremoved or is removed too much. There is a possibility of scraping the surface 1a. Therefore, it is desirable that the film thickness t1 of the coating film be as uniform as possible and have no coating unevenness at the time of the coating film forming step before solidification. Therefore, in the present embodiment, a sufficient film thickness t1 and uniformity with suppressed coating unevenness are realized by a coating film forming method described below.
- the coating film forming method is performed by the coating film forming apparatus 100. Operation control of the coating film forming apparatus 100 is performed by the control unit 50.
- the coating film forming method of the present embodiment the process of rotating the wafer 1 around the rotation center axis 11 in the vertical direction (process of rotating the wafer) and forming the thermosetting resin 3 on the surface 1a of the wafer 1 are formed.
- a process film formation process.
- the coating film forming method of the present embodiment further includes a step of separating the coating blade 30 from the surface 1a of the wafer 1 (blade separation step).
- blade separation step As shown in FIG. 1, a description will be given from a state in which the wafer 1 is placed on the placement unit 10 of the coating film forming apparatus 100 by a transfer device (not shown) such as a robot arm.
- a primer process may be implemented with respect to the wafer 1 prior to these each process.
- a coating blade 30 disposed at a position spaced apart from the surface 1 a of the flat wafer 1 by a predetermined distance D is applied to the liquid thermosetting resin 3 supplied on the surface 1 a of the wafer 1.
- a step of rotating the wafer 1 around the rotation center axis 11 in the vertical direction while being in contact with the liquid reservoir K is performed.
- the process of rotating the wafer 1 includes (1) a process of supplying the liquid thermosetting resin 3 onto the surface 1a of the wafer 1 and (2) a predetermined distance D from the surface 1a of the flat wafer 1. And (3) a step of rotating the wafer 1 around the rotation center axis 11.
- Each of these steps (1) to (3) needs to be performed simultaneously at the stage of moving to the next film forming step, but the order of starting each step (1) to (3) is not necessarily limited.
- Each step (1) to (3) may be started at the same time, or may be started in any order.
- an example in which each process is started in the order of (3), (1), and (2) will be described.
- the control unit 50 controls the placement unit 10 to rotate the wafer 1 held by the placement unit 10 around the rotation center axis 11.
- the wafer 1 is preferably rotated at a rotation speed of 1 rpm or more and 100 rpm or less.
- the rotation speed an optimum value is selected in consideration of the viscosity of the thermosetting resin 3.
- the wafer 1 is rotated at a constant constant speed.
- the rotation speed is 10 rpm, for example.
- the rotation of the wafer 1 is continued until the film formation process and the blade separation process are completed.
- thermosetting resin 3 is supplied to a region including the center of the wafer 1. That is, the moving mechanism 40 rotates the supply unit 20 via the arm unit 42 and arranges the nozzle 21 above the center of the wafer 1 (on the rotation center axis 11). Under the control of the control unit 50, the supply unit 20 supplies the thermosetting resin 3 from the nozzle 21 to the center of the surface 1 a of the wafer 1.
- the supply amount of the thermosetting resin 3 is set to a predetermined amount considering the volume of the coating film calculated from the film thickness t1 of the coating film and the amount adhering to the coating blade 30, and is controlled by the control unit 50.
- the control unit 50 controls the moving mechanism 40 to place the coating blade 30 at a predetermined position above the wafer 1. Move.
- the controller 50 controls the moving mechanism 40 so that the coating blade 30 is positioned at a predetermined distance D (height position) from the surface 1a of the wafer 1 with respect to the vertical position.
- the predetermined interval D is 20 ⁇ m or more, more preferably about 30 ⁇ m or more. With respect to the horizontal position, in this embodiment, as shown in FIG.
- the linear coating blade 30 is configured such that one end 31 is positioned near the center of the wafer 1 and the other end 32 is the outer peripheral portion of the wafer 1. Arrange them so that they are in the vicinity. Preferably, the coating blade 30 is disposed at a position where one end 31 of the coating blade 30 is in contact with the thermosetting resin 3.
- the control unit 50 rotates the coating blade 30 to a position spaced apart above the liquid reservoir K of the thermosetting resin 3 supplied to the center of the wafer 1 in advance (a position having a larger interval than the predetermined interval D). Then, the coating blade 30 is lowered from the surface 1a of the wafer 1 to a position where the predetermined distance D is reached. Thereby, the coating blade 30 is moved from above the liquid reservoir K so that the lower end is immersed in the liquid reservoir K. As a result, the one end portion 31 of the coating blade 30 is disposed at a position in contact with the thermosetting resin 3.
- thermosetting resin 3 On the surface 1 a of the wafer 1 (film forming step), the controller 50 controls the moving mechanism 40, so that the thermosetting resin 3 is rotated along with the rotation of the wafer 1.
- the inclination of the coating blade 30 with respect to the rotation direction in the plane along the wafer 1 is changed so that the liquid reservoir K moves between the one end portion 31 and the other end portion 32 of the coating blade 30 along the coating blade 30.
- thermosetting resin 3 a first force is applied to the liquid reservoir K of the thermosetting resin 3 toward the one end 31 side of the coating blade 30 as the wafer 1 rotates.
- FIG. 5 shows a state where the coating blade 30 is held at the first angle Ag1.
- the first angle Ag ⁇ b> 1 is an acute angle when the intersection angle ⁇ between the tangent to the circle at the intersection P between the circle around the rotation center axis 11 and the coating blade 30 and the coating blade 30 is directed toward the one end 31.
- the predetermined angle is (less than 90 degrees).
- the second angle Ag2 is such that the intersection angle ⁇ between the tangent to the circle at the intersection P between the circle around the rotation center axis 11 and the coating blade 30 and the coating blade 30 is directed toward the other end 32 side.
- the predetermined angle is an acute angle.
- a concentric circle (broken line portion) centering on the rotation center axis 11 shown in FIGS. 5 to 10 is an auxiliary line for reference.
- the liquid reservoir K of the thermosetting resin 3 rotates around the rotation center axis 11 as the wafer 1 rotates, the liquid reservoir K and the coating blade 30 come into contact with each other, and the liquid reservoir K rotates.
- a rotational force around the rotation center axis 11 acts on the liquid reservoir K at the contact portion. That is, the rotational force F directed in the tangential direction of the circle at the intersection P between the coating blade 30 and the circle around the rotation center axis 11 passing through the contact portion between the liquid reservoir K and the coating blade 30 acts.
- the crossing angle ⁇ becomes an acute angle toward the one end portion 31, so that the rotational direction force F is the coating blade at the first angle Ag1. It can be decomposed into a component force F0 perpendicular to 30 and a component force F1 toward the one end 31 of the coating blade 30. Therefore, at the first angle Ag1, the component force F1 toward the one end portion 31 of the coating blade 30 is pooled with respect to the pool K that is in contact with the coating blade 30 by the component force F0 (damped by the coating blade 30). Acts on K.
- the magnitude of the first angle Ag1 (the magnitude of the crossing angle ⁇ )
- the magnitude of the component force F1 toward the one end 31 can be adjusted.
- the size of the first angle Ag1 the liquid reservoir K is moved to the one end 31 side, or the liquid reservoir K is prevented from moving to the other end 32 side. Can do.
- the crossing angle ⁇ becomes an acute angle toward the other end 32, so that the rotational force F is applied at the second angle Ag2. It can be broken down into a component force F0 perpendicular to the blade 30 and a component force F2 toward the other end 32 of the coating blade 30. Therefore, at the second angle Ag2, the component force F2 toward the other end 32 of the coating blade 30 is applied to the liquid reservoir K that is in contact with the coating blade 30 by the component force F0 (damped by the coating blade 30). It acts on the reservoir K.
- the magnitude of the second angle Ag2 the magnitude of the crossing angle ⁇
- the magnitude of the component force F2 toward the other end 32 can be adjusted. As a result, by appropriately setting the magnitude of the second angle Ag2, the liquid reservoir K is moved to the other end 32 side, or the liquid reservoir K is prevented from moving to the one end 31 side. Can do.
- the crossing angle ⁇ is 90 degrees when the coating blade 30 or the extended line of the coating blade 30 passes on the rotation center axis 11 as shown in FIG. 8 (when the coating blade 30 coincides with the radial direction of the circle). If the coating blade 30 is tilted from this state to one side (see FIG. 6), the crossing angle ⁇ becomes an acute angle toward the one end 31 and a component force F1 is generated toward the one end 31.
- the first angle Ag1 is a predetermined inclination angle selected from an angle range in which the coating blade 30 (or the extension line) is inclined from the rotation center axis 11 to one side. When the coating blade 30 is tilted to the other side (see FIG.
- the crossing angle ⁇ becomes an acute angle on the other end 32 side, and a component force F2 toward the other end 32 is generated.
- the second angle Ag2 is a predetermined inclination angle selected from an angle range in which the coating blade 30 (or extension line) is inclined from the rotation center axis 11 to the other side.
- the first angle Ag1 and the second angle Ag2 are appropriate values mainly considering the rotation speed of the wafer 1, the physical properties such as the viscosity of the coating material (thermosetting resin 3), the film thickness t1 of the coating film to be formed, and the like.
- the inclination of the coating blade 30 is continuously changed between the first angle Ag1 and the second angle Ag2 while rotating the wafer 1.
- the coating blade 30 disposed above the wafer 1 is rotated around the rotation center axis 41 disposed on the outer side in the radial direction of the wafer 1 to thereby apply the coating blade 30.
- one end 31 of the coating blade 30 is positioned near the center of the wafer 1 and the other end 32 of the coating blade 30 is positioned at the wafer. It arrange
- the starting position of the film forming process is set to a position where the coating blade 30 becomes the first angle Ag1.
- the coating blade 30 is rotated so that the one end 31 side of the coating blade 30 arranged in this way passes over the center of the wafer 1 to change the inclination of the coating blade 30.
- control unit 50 controls the moving mechanism 40 to rotate the arm unit 42 so that the one end 31 side of the coating blade 30 passes through the center upper position (rotation center axis 11) of the wafer 1.
- the entire coating blade 30 is rotated about the rotation center axis 41 in the clockwise direction so as to draw a curved track. That is, the coating blade 30 is continuously rotated from the position at which the first angle Ag1 illustrated in FIG. 5 is reached toward the position at which the second angle Ag2 is illustrated (FIG. 10).
- the liquid reservoir K of the thermosetting resin 3 is moved along the coating blade 30 from the center side of the wafer 1 toward the outer peripheral side. .
- the liquid reservoir K of the thermosetting resin 3 is applied up to a predetermined position Pf (see FIG. 10) on the other end 32 side of the coating blade 30 disposed inside the outer peripheral portion of the wafer 1. Move along the blade 30.
- the predetermined position Pf on the other end portion 32 side of the coating blade 30 is on the inner side of the outer peripheral portion of the wafer 1 and is an outer edge of the coating film formation region (region where the thermosetting resin 3 is applied) on the wafer 1.
- the liquid reservoir K tends to spread toward both ends of the coating blade 30 when the liquid pool K is pressed against the coating blade 30 by the component force F0 perpendicular to the coating blade 30. Therefore, in the initial state where the amount (volume) of the liquid reservoir K is large, the liquid reservoir K expands toward the other end 32 even at the first angle Ag1. At this time, the speed at which the liquid pool K expands toward the other end 32 side and the position at which the liquid pool K reaches the balanced state can be controlled by the size of the first angle Ag1. When the amount (volume) of the liquid reservoir K decreases, the liquid reservoir K becomes difficult to spread toward both ends of the coating blade 30 by the vertical component force F0.
- the liquid reservoir K can be urged to move to the other end 32 side.
- the final arrival position (predetermined position Pf on the outer peripheral side) of the liquid reservoir K that becomes difficult to move with a decrease in volume can be controlled by the magnitude of the second angle Ag2.
- the liquid reservoir K moves to the other end 32 side, and along with the movement of the liquid reservoir K, A coating film is spread from the center side of the wafer 1 toward the outer peripheral side. Since the wafer 1 rotates around the rotation center axis 11, the position (the other end of the liquid pool K) farthest from the center (rotation center axis 11) of the wafer 1 among the liquid pool K held along the coating blade 30. A circular coating film having a radius between the end of the portion 32 and the center of the wafer 1 is formed. In each of FIGS. 8 to 10, the coating film of the circular thermosetting resin 3 is indicated by hatching different from the liquid reservoir K. The portion of the liquid reservoir K that is farthest from the rotation center axis 11 is always the end of the liquid reservoir K on the other end 32 side within the movement range of the coating blade 30 in this embodiment.
- the liquid pool K stays on the one end 31 side of the coating blade 30 due to the rotational force F of the wafer 1. Be energized by. At this time, the first angle Ag1 is set so that the liquid pool K does not flow out from the one end 31 side of the coating blade 30 to the outside (in the direction of the extension line of the coating blade 30).
- the liquid pool K is generally on the coating blade 30 side. And is extended to the other end 32 side.
- the component force F1 acts in a direction to suppress the movement of the liquid reservoir K extending toward the other end 32 side.
- the crossing angle ⁇ that becomes an acute angle toward the one end portion 31 side approaches a right angle.
- the coating blade 30 reaches the center (rotation center axis 11) of the wafer 1
- the coating blade 30 coincides with the radial direction of the wafer 1, so that the crossing angle ⁇ becomes a right angle.
- the rotational direction force F acting on the liquid reservoir K is only in the direction perpendicular to the coating blade 30 at the first angle Ag1.
- the component force F1 toward the one end portion 31 decreases with the rotation of the coating blade 30, so that the liquid reservoir K gradually moves toward the other end portion 32 side.
- the formation range of the circular coating film (thermosetting resin 3) is expanded by the amount of the liquid reservoir K that is away from the center of the wafer 1 (rotation center axis 11).
- the crossing angle ⁇ becomes an acute angle toward the other end 32 side. Due to the rotational force F of the wafer 1, the liquid reservoir K is urged in the direction of moving toward the other end 32 of the coating blade 30. The amount of the liquid reservoir K held by the coating blade 30 decreases as the coating film formation range is expanded. For this reason, the liquid reservoir K becomes difficult to move to the other end portion 32 side as it moves to the other end portion 32 side. Therefore, the liquid reservoir K is further increased by rotating the coating blade 30 so as to approach the second angle Ag2 and relatively increasing the component force F2 toward the other end 32 of the coating blade 30. Move to the side.
- the coating blade 30 is rotated to the second angle Ag2 by appropriately setting the second angle Ag2 corresponding to the coating film forming region of the thermosetting resin 3 on the wafer 1.
- the liquid reservoir K reaches the predetermined position Pf (the outer edge of the coating film forming region) on the other end 32 side of the coating blade 30, and the movement is completed. Thereby, the film-forming process is completed.
- the moving mechanism 40 rotates the arm portion 42 by an angle ⁇ . In the example of FIG. 10, the angle ⁇ is about 12 degrees.
- thermosetting resin 3 to the wafer 1 is such that the liquid pool K held by the coating blade 30 at the stage where the coating film is formed up to the outer edge of the coating film formation area is almost eliminated (almost all of the liquid pool K Is consumed for film formation). For this reason, when the film forming process is completed, the excess liquid reservoir K held by the coating blade 30 becomes very small.
- ⁇ Blade separation process After the film forming process, a process of separating the coating blade 30 from the surface 1a of the wafer 1 (blade separating process) is performed. As described above, when the film forming process is completed, the excessive liquid reservoir K held by the coating blade 30 is very small, but the excessive liquid reservoir K is in contact with the coating blade 30 and the coating blade 30 is moved. When raised, straight blade marks may be formed.
- the control unit 50 in the blade separation step, is not in contact with the coating film from the position where the coating blade 30 is in contact with the coating film of the thermosetting resin 3 while continuing to rotate the wafer 1.
- the movement of the coating blade 30 relative to the wafer 1 is controlled so that the wafer 1 makes at least one rotation before moving to the position.
- the coating blade 30 is moved in a direction (upward) away from the wafer 1 at a low speed while continuing to rotate the wafer 1.
- the rising speed of the coating blade 30 is at least the wafer 1 until the coating blade 30 moves from a position where the coating blade 30 is in contact with the coating film of the thermosetting resin 3 (position where the deposition process is completed) to a position where it is not in contact with the coating film. Is the speed of one rotation.
- the rising speed of the coating blade 30 is set to about 0.1 mm / second.
- the coating blade 30 is raised about 0.6 mm while the wafer 1 is rotated once (about 6 seconds).
- the coating blade 30 rises, the distance D between the wafer 1 and the coating blade 30 gradually increases. As the distance D increases, the excess liquid reservoir Kr is flattened (or leveled) as a part of the coating film. Then, as shown in FIG. 11B, while the wafer 1 rotates once, the excess liquid reservoir Kr is consumed and the liquid reservoir Kr disappears.
- FIG. 11 (C) Thereafter, as shown in FIG. 11 (C), the coating blade 30 is further lifted to be separated from the coating film. This suppresses the formation of blade marks.
- 11A and 11B show a state where the coating blade 30 is in contact with the coating film
- FIG. 11C is in a position where the coating blade 30 is not in contact with the coating film. Indicates the state.
- the increase (e) in the film thickness caused by the excess liquid reservoir Kr is an error. It is possible to be within the tolerance level.
- the position at which the coating blade 30 is not in contact with the coating film may take into account the height h of a small amount of the liquid reservoir K remaining at the time of completion of the process of forming the thermosetting resin 3,
- the height position at which no blade trace is simply formed may be obtained experimentally.
- the control unit 50 quickly retracts the application blade 30 by the moving mechanism 40.
- the blade separation process is completed and the coating film forming process is completed.
- the coating film having a sufficiently large film thickness t1 is formed by adjusting the size of the predetermined distance D between the surface 1a of the wafer 1 and the coating blade 30. It becomes possible. Furthermore, in the present embodiment, the liquid reservoir K of the thermosetting resin 3 moves between the one end 31 and the other end 32 of the coating blade 30 along the coating blade 30 as the wafer 1 rotates. A process (film forming process) for forming the thermosetting resin 3 on the surface 1a of the wafer 1 by changing the inclination of the coating blade 30 with respect to the rotation direction in the plane along the wafer 1 is provided.
- thermosetting resin 3 can be spread on the surface 1 a of the wafer 1 by utilizing the movement (flow) of the thermosetting resin 3 on the surface 1 a of the rotating wafer 1.
- the liquid reservoir K held by the coating blade 30 can be moved along the coating blade 30, so that the thermosetting resin 3 can be moved without moving the coating blade 30 greatly.
- the application range can be expanded. As a result, it is possible to suppress the occurrence of streaky coating unevenness associated with the movement of the coating blade 30 and form a coating film having a more uniform film thickness t1.
- the coating film forming method and the coating film forming apparatus 100 of the present embodiment it is possible to form a coating film having a large film thickness t1 and a uniform film thickness t1 with little coating unevenness.
- the application blade 30 is placed in the liquid reservoir K of the thermosetting resin 3 as the wafer 1 rotates.
- the inclination of the coating blade 30 is changed between the second angle Ag2 at which (component force F2) is applied.
- thermosetting resin 3 is held in the vicinity of the one end portion 31 and the other end portion 32, for example. It is possible to suppress the movement to the side, or to gradually move the liquid reservoir K from the one end portion 31 toward the other end portion 32. That is, the position and moving speed of the liquid reservoir K in the direction along the coating blade 30 can be controlled. As a result, it is possible to control the thermosetting resin 3 that can form a more uniform and less uneven coating film according to the material such as the viscosity of the thermosetting resin 3.
- the first angle Ag1 is such that the intersection angle between the tangent of the circle at the intersection P between the circle around the rotation center axis 11 and the coating blade 30 and the coating blade 30 is the one end 31 side.
- the second angle Ag2 is such that the intersection angle between the tangent of the circle at the intersection P between the circle around the rotation center axis 11 and the coating blade 30 and the coating blade 30 is directed toward the other end 32 side. And an acute angle. Accordingly, at the first angle Ag1, the liquid reservoir K can be moved to the one end portion 31 side, or the liquid reservoir K can be suppressed from moving to the other end portion 32 side.
- the liquid reservoir K can be moved to the other end portion 32 side, or the liquid reservoir K can be prevented from moving to the one end portion 31 side.
- the thermosetting resin 3 it is possible to freely move the thermosetting resin 3 from one end portion 31 to the other end portion 32 of the coating blade 30 to realize coating film formation under more suitable coating conditions.
- the inclination of the coating blade 30 is changed between the first angle Ag1 and the second angle while the wafer 1 is rotated. Change continuously with Ag2.
- the liquid reservoir K can be gradually moved. As a result, it is possible to prevent the liquid reservoir K from moving too fast and forming an unapplied region, so that the occurrence of coating unevenness can be effectively suppressed.
- the coating blade 30 disposed above the wafer 1 is disposed outside in the radial direction of the wafer 1.
- the inclination of the coating blade 30 is changed by turning around the rotation center axis 41.
- the linear coating blade 30 having a length equal to or larger than the radius R of the wafer 1 is positioned at one end 31 near the center of the wafer 1. Then, the other end portion 32 is disposed in the vicinity of the outer peripheral portion of the wafer 1. Then, in the process of forming the thermosetting resin 3 (film forming process), the one end 31 side of the coating blade 30 is rotated so as to pass across the center of the wafer 1 to change the inclination of the coating blade 30. Let Thereby, the center part of the wafer 1 can be reliably apply
- thermosetting resin 3 in the step of rotating the wafer 1, the thermosetting resin 3 is supplied to a region including the center of the wafer 1. Then, in the step of forming the thermosetting resin 3 (film forming step), the liquid reservoir K of the thermosetting resin 3 is moved along the coating blade 30 from the center side of the wafer 1 toward the outer peripheral side. Thereby, the coating film formation can be completed only by moving the liquid reservoir K of the thermosetting resin 3 supplied to the center of the wafer 1 to the outer peripheral side. Therefore, for example, the processing time can be shortened as compared with a configuration in which the liquid reservoir K is reciprocated between the one end portion 31 side and the other end portion 32 side.
- the coating blade 30 in the step of rotating the wafer 1, the coating blade 30 is disposed at a position where the one end portion 31 of the coating blade 30 is in contact with the thermosetting resin 3.
- the coating blade 30 at the time when the coating blade 30 is disposed at a position above the wafer 1 at a predetermined distance D, the formation of the coating film of the thermosetting resin 3 supplied to the central portion of the wafer 1 can be started. Therefore, for example, compared with the case where the liquid reservoir K supplied to the intermediate position between the center portion and the outer peripheral portion of the wafer 1 is moved to the center portion, the coating film formation can be started quickly, so that the processing time can be further increased. It can be shortened.
- thermosetting resin 3 in the step of forming the thermosetting resin 3 (film forming step), the other end 32 side of the coating blade 30 disposed on the inner side of the outer peripheral portion of the wafer 1.
- the liquid reservoir K of the thermosetting resin 3 is moved along the coating blade 30 to the predetermined position Pf.
- the liquid reservoir K is not pushed out from the outer peripheral portion of the wafer 1 but to the predetermined position Pf (outer edge portion of the coating film forming region) inside the outer peripheral portion of the wafer 1 in the coating blade 30.
- the liquid reservoir K can be moved to complete the film formation of the thermosetting resin 3.
- thermosetting resin 3 in the spin coating method, generally, about 80 to 90% of the thermosetting resin 3 is scattered outside the wafer 1, and the coated film can be formed without wasting the supplied thermosetting resin 3 as much as possible. It can be formed, and the amount of maintenance work such as cleaning after the film forming process can be suppressed.
- the coating blade 30 is not in contact with the coating film from the position where the coating blade 30 contacts the coating film of the thermosetting resin 3 while continuing the rotation of the wafer 1.
- the coating blade 30 is relatively separated from the wafer 1 so that the wafer 1 rotates at least once.
- the gap between the coating blade 30 and the wafer 1 is gradually increased while the wafer 1 is further rotated one or more times, whereby a liquid pool remaining very slightly on the coating film.
- the coating blade 30 is separated from the surface of the coating film in a state where the liquid pool K is completely eliminated (the film thickness t1 is uniform) while leveling Kr (see FIG. 11) on the coating film and flattening it. Can do.
- it is possible to suppress the occurrence of coating unevenness (blade marks) when the coating blade 30 is separated.
- the predetermined interval D is set to 20 ⁇ m or more. Thereby, it can be suitably applied when forming a uniform coating film having a film thickness t1 of 20 ⁇ m or more, which is difficult by the spin coating method.
- the wafer 1 in the step of rotating the wafer 1, the wafer 1 is rotated at a rotation speed of 1 rpm to 100 rpm.
- the thermosetting resin 3 is scattered by performing film formation at a low rotational speed of 1 rpm to 100 rpm.
- the amount of material used can be reduced.
- the present invention is not limited to this.
- the object to be processed other than the wafer 1 may be used.
- thermosetting resin 3 is used as the coating material, but the present invention is not limited to this.
- a coating material other than the thermosetting resin 3 may be used as long as it is a liquid substance having a predetermined viscosity.
- thermosetting resin 3 in the fine space 2 formed in the wafer 1 by forming the coating film of the thermosetting resin 3 in the wafer 1 this book
- the invention is not limited to this. In the present invention, it is only necessary to form a coating film of the coating material, and it is not necessary to fill the fine space. Therefore, the fine space may not be formed in the processing object.
- the coating blade 30 may be curved or may have a convex part or a concave part.
- the coating blade 30 has a length equal to or greater than the radius R of the wafer 1 is shown, but the present invention is not limited to this. In the present invention, the coating blade 30 may be less than the radius R of the wafer 1.
- a rotation shaft may be provided at a predetermined position between the one end portion 31 and the other end portion 32 of the coating blade 30, and the coating blade 30 may be rotated around the rotation shaft.
- thermosetting resin 3 is supplied to the region including the center of the wafer 1
- the present invention is not limited to this.
- the thermosetting resin (coating material) may be supplied to any position on the wafer (processing object). Further, the coating blade 30 does not have to be disposed at a position in contact with the liquid reservoir K.
- the present invention is not limited thereto. I can't.
- the liquid reservoir K may be moved from the outer peripheral side toward the inner peripheral side to form the coating film.
- the liquid reservoir K is moved from the intermediate position of the coating blade 30 to one of the outer peripheral side or the inner peripheral side, it is moved to the other of the outer peripheral side or the inner peripheral side to reciprocate the liquid reservoir K. It may be moved.
- the liquid reservoir K may be moved so that a coating film can be formed in the entire coating film formation region, and the liquid reservoir K may be moved in any manner. For this reason, the initial position of the coating blade 30 in the film forming process may not be the position where the first angle Ag1 is reached, or the final position of the coating blade 30 may not be the position where the second angle Ag2.
- the present invention is not limited to this. I can't.
- the first angle Ag ⁇ b> 1 and the second angle Ag ⁇ b> 2 may be divided into a plurality of angles, and the inclination of the coating blade 30 may be changed stepwise so that the plurality of angles are applied.
- the predetermined distance D between the surface 1a of the wafer 1 and the coating blade 30 is 20 ⁇ m or more is shown, but the present invention is not limited to this.
- the predetermined distance D may be less than 20 ⁇ m, but as described above, it is particularly suitable when the predetermined distance D is 20 ⁇ m or more.
- the wafer 1 may be rotated at a rotational speed greater than 100 rpm, but as described above, it is particularly suitable when the rotational speed is from 1 rpm to 100 rpm.
- the rotation speed of the wafer 1 does not need to be constant, and the rotation speed may be changed during the film forming process.
- the rotation speed of the wafer 1 may be changed with the movement (angle change) of the coating blade 30.
- the coating blade 30 is applied so that at least one rotation of the wafer 1 is performed before the coating blade 30 moves from the position in contact with the coating film to the position in which the coating blade is not in contact with the coating film.
- the coating blade 30 may be separated (raised) immediately after completion of the film forming step.
- the approach and separation between the coating blade 30 and the wafer 1 do not have to move the coating blade 30 side by the moving mechanism 40, and the mounting unit 10 may be moved up and down.
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
- Coating Apparatus (AREA)
Abstract
この塗膜形成方法は、処理対象物(1)の回転に伴って塗布材料(3)の液溜まり(K)が塗布ブレード(30)に沿って塗布ブレードの一端部(31)と他端部(32)との間を移動するように、処理対象物に沿う面内における回転方向に対する塗布ブレードの傾きを変化させて、処理対象物の表面(1a)上に塗布材料を成膜する工程を備える。
Description
この発明は、塗膜形成方法および塗膜形成装置に関し、特に、処理対象物の表面上に供給された液状の塗布材料を塗布ブレードにより膜状に形成する塗膜形成方法および塗膜形成装置に関する。
従来、処理対象物の表面上に供給された液状の塗布材料を塗布ブレードにより膜状に形成する塗膜形成装置が知られている。このような塗膜形成装置は、たとえば、特開2006-150233号公報に開示されている。
上記特開2006-150233号公報には、半導体基板やガラス基板などの基板(処理対象物)の表面にレジスト液などの塗布液を供給する塗布液供給ノズルと、基板表面に供給された塗布液を押し拡げるアプリケータ(塗布ブレード)とを備えた塗布装置が開示されている。アプリケータは、基板の直径よりも長い直線形状を有し、基板の表面との間に隙間を形成した状態で、基板の一方側から他方側へ直線移動する。アプリケータが基板の表面上方を通り抜ける過程で、塗布液が基板の表面上に押し拡げられて塗膜が形成される。
一般に、平板状の処理対象物に塗膜を形成する方法は、上記特開2006-150233号公報のような塗布ブレード(アプリケータ)を用いる方法と、処理対象物を高速回転させて表面上の塗布材料を遠心力により塗り拡げるスピン塗布法とがある。上記特開2006-150233号公報のような塗布ブレード(アプリケータ)を用いる方法では、塗膜の膜厚を大きくできる一方で、塗布ムラが生じ易く、均一な膜厚を得ることが難しいという問題点がある。スピン塗布法では、膜厚を均一にできる一方で、回転数によって塗布膜厚が決定されてしまい、ある程度以上の膜厚を得ることが困難であるという問題点がある。スピン塗布法によって均一な膜厚で形成可能な膜厚の上限は、一般に、数μm~10μm程度とされ、たとえば20μm以上の膜厚を成膜するのは困難である。
たとえば、微細空間が形成された基板(処理対象物)の表面上に熱硬化性樹脂の塗膜を形成し、微細空間内に熱硬化性樹脂を充填しつつ、焼成を行って熱硬化性樹脂を固化させる場合がある。このような場合には、焼成に伴って熱硬化性樹脂の体積が減少する(溶剤が蒸発する)ので、微細空間内への充填不良を抑制するために十分大きな膜厚(体積)が望まれる。一方、焼成後に余分な樹脂膜を除去する際に、膜厚が均一でないと除去処理が難しくなるため、均一な膜厚が望まれる。このような場合に、従来手法による塗膜形成では、十分大きな膜厚と、膜厚の均一性との両立を図ることが困難である。そのため、十分大きな膜厚で、かつ、塗布ムラの少ない均一な膜厚の塗膜を形成することが望まれている。
この発明は、上記のような課題を解決するためになされたものであり、この発明の目的は、大きな膜厚で、かつ、塗布ムラの少ない均一な膜厚の塗膜を形成することが可能な塗膜形成方法および塗膜形成装置を提供することである。
上記目的を達成するために、第1の発明による塗膜形成方法は、平板状の処理対象物の表面から所定間隔を隔てた位置に配置された塗布ブレードを、処理対象物の表面上に供給された液状の塗布材料の液溜まりに接触させた状態で、処理対象物を鉛直方向の回転中心軸回りに回転させる工程と、処理対象物の回転に伴って塗布材料の液溜まりが塗布ブレードに沿って塗布ブレードの一端部と他端部との間を移動するように、処理対象物に沿う面内における回転方向に対する塗布ブレードの傾きを変化させて、処理対象物の表面上に塗布材料を成膜する工程と、を備える。平板状の処理対象物は、たとえばシリコン基板やガラス基板などの半導体用基板を含む概念である。
この第1の発明による塗膜形成方法では、上記構成により、処理対象物の表面と塗布ブレードとの所定間隔の大きさを調節することによって、十分に大きな膜厚の塗膜を形成することが可能となる。さらに、本発明では、処理対象物の回転に伴って塗布材料の液溜まりが塗布ブレードに沿って塗布ブレードの一端部と他端部との間を移動するように、処理対象物に沿う面内における回転方向に対する塗布ブレードの傾きを変化させて、処理対象物の表面上に塗布材料を成膜する工程を設ける。これにより、回転する処理対象物の表面上での塗布材料の移動(流動)を利用して、処理対象物の表面上に塗布材料を塗り拡げることができる。すなわち、回転する表面上で、塗布材料のうち塗布ブレードと処理対象物との間の隙間を通過する部分は、所定の膜厚の塗膜となる。一方、隙間を通過できない液溜まりの部分は、塗布ブレードによって回転方向への移動が遮られる形で保持される。塗布ブレードの傾きを制御すると、塗布ブレードにより保持された液溜まりを塗布ブレードに沿って移動させることができるので、塗布ブレードを大きく移動させることなく塗布材料を移動させて塗布範囲を拡げることができる。その結果、塗布ブレードの移動に伴う筋状の塗布ムラなどの発生を抑制して、より均一な膜厚の塗膜を形成することができる。以上の結果、本発明によれば、大きな膜厚で、かつ、塗布ムラの少ない均一な膜厚の塗膜を形成することができる。
上記第1の発明による塗膜形成方法において、好ましくは、塗布材料を成膜する工程において、処理対象物の回転に伴って塗布材料の液溜まりに塗布ブレードの一端部側に向かう力を作用させる第1角度と、処理対象物の回転に伴って塗布材料の液溜まりに塗布ブレードの他端部側に向かう力を作用させる第2角度と、の間で塗布ブレードの傾きを変化させる。このように構成すれば、第1角度と第2角度との間で塗布ブレードの傾きを調整することによって、たとえば塗布材料の液溜まりを一端部近傍に保持して他端部側へ移動するのを抑制したり、液溜まりを一端部から他端部に向けて徐々に移動させたりすることができる。つまり、塗布ブレードに沿う方向の液溜まりの位置および移動速度を制御することができる。その結果、塗布材料の粘度などの材質に応じて、より均一でムラの少ない塗膜を形成可能な液溜まりの制御が可能となる。
この場合、好ましくは、第1角度は、回転中心軸回りの円と塗布ブレードとの交点における円の接線と塗布ブレードとの交差角が一端部側に向けて鋭角となる角度であり、第2角度は、回転中心軸回りの円と塗布ブレードとの交点における円の接線と塗布ブレードとの交差角が他端部側に向けて鋭角となる角度である。ここで、上記交点における円の接線方向は、交点近傍の液溜まりが、処理対象物の回転に伴って塗布ブレードに向けて押し付けられる方向である。そのため、第1角度では、液溜まりを一端部側に移動させたり、液溜まりが他端部側に移動することを抑制したりできる。第2角度では、液溜まりを他端部側に移動させたり、液溜まりが一端部側に移動することを抑制したりできる。その結果、塗布ブレードの一端部から他端部まで自由に塗布材料を移動させて、より好適な塗布条件での塗膜形成を実現することができる。
上記第1角度と第2角度との間で塗布ブレードの傾きを変化させる構成において、好ましくは、塗布材料を成膜する工程において、処理対象物を回転させながら、塗布ブレードの傾きを第1角度と第2角度との間で連続的に変化させる。このように構成すれば、塗布ブレードの傾きを段階的に変化させる場合と異なり、徐々に液溜まりを移動させることができる。その結果、液溜まりが速く移動しすぎて未塗布領域が形成されるのを防ぐことができるので、塗布ムラの発生を効果的に抑制することができる。
上記第1の発明による塗膜形成方法において、好ましくは、塗布材料を成膜する工程において、処理対象物の上方に配置された塗布ブレードを、処理対象物の径方向外側に配置された回動中心軸回りに回動させて、塗布ブレードの傾きを変化させる。このように構成すれば、処理対象物の上方(上下にオーバラップする位置)に、塗布ブレードを回動させるための軸やギヤなどの駆動部分が配置されることを回避できる。その結果、たとえば半導体ウェハなどの処理対象物に対して、駆動部分の摩擦に伴う微粉末や異物が落下することを抑制できるので、高品位な塗膜が形成できる。
この場合、好ましくは、処理対象物を回転させる工程において、処理対象物の半径以上の長さを有する直線状の塗布ブレードを、一端部が処理対象物の中心近傍に位置し、他端部が処理対象物の外周部近傍に位置するように配置し、塗布材料を成膜する工程において、塗布ブレードの一端部側が処理対象物の中心を跨いで通過するように回動させて、塗布ブレードの傾きを変化させる。このように構成すれば、塗布材料の液溜まりを一端部側に移動させることにより、処理対象物の中心部を確実に塗布することができる。また、液溜まりを一端部から他端部、または他端部から一端部まで移動させるだけで、処理対象物の中心から外周部近傍まで確実に、塗布ムラの少ない均一な塗膜を形成することができる。
上記第1の発明による塗膜形成方法において、好ましくは、処理対象物を回転させる工程において、処理対象物の中心を含む領域に塗布材料を供給し、塗布材料を成膜する工程において、塗布材料の液溜まりを塗布ブレードに沿って処理対象物の中心側から外周側に向けて移動させる。このように構成すれば、処理対象物の中心に供給した塗布材料の液溜まりを外周側まで移動させるだけで、塗膜形成を完了させることができる。そのため、たとえば液溜まりを一端部側と他端部側との間で往復させるような構成と比較して、処理時間を短縮することができる。
この場合、好ましくは、処理対象物を回転させる工程において、塗布ブレードを、塗布ブレードの一端部が塗布材料と接する位置に配置する。このように構成すれば、塗布ブレードを処理対象物の上方の所定間隔を隔てた位置に配置する時点で、処理対象物の中心部に供給された塗布材料の塗膜形成を開始することができる。したがって、たとえば処理対象物の中心部と外周部との中間位置に供給した液溜まりを中心部まで移動させる場合と比較して、速やかに塗膜形成を開始することができるので、処理時間をさらに短縮することができる。
上記処理対象物の中心を含む領域に供給した塗布材料の液溜まりを中心側から外周側に向けて移動させる構成において、好ましくは、塗布材料を成膜する工程において、処理対象物の外周部よりも内側に配置された塗布ブレードの他端部側の所定位置まで、塗布材料の液溜まりを塗布ブレードに沿って移動させる。このように構成すれば、液溜まりを処理対象物の外周部から処理対象物の外部に押し出すのではなく、塗布ブレードにおける処理対象物の外周部よりも内側の所定位置(塗膜形成領域の外縁部)まで液溜まりを移動させて、塗布材料の成膜を完了させることができる。これにより、たとえばスピン塗布法では一般に80~90%程度の塗布材料が処理対象物の外部に飛び散ってしまうのと異なり、供給した塗布材料を極力無駄にすることなく塗膜を形成することができるとともに、成膜処理後の清掃などのメンテナンス作業量を抑制することができる。
上記第1の発明による塗膜形成方法において、好ましくは、塗布材料を成膜する工程の後、塗布ブレードを処理対象物の表面に対して離間させる工程をさらに備え、塗布ブレードを処理対象物の表面に対して離間させる工程において、処理対象物の回転を継続しながら、塗布ブレードが塗布材料の塗膜と接触する位置から塗膜と非接触となる位置へ移動するまでに、少なくとも処理対象物が1回転するように、塗布ブレードを処理対象物に対して相対的に離間させる。なお、本明細書において「離間」とは、物体を、対象(別の物体あるいは位置)から空間的に離れさせることを意味する。このように構成すれば、成膜工程が完了した後、処理対象物をさらに1回転以上させる間に、塗布ブレードと処理対象物との間隔が徐々に拡大することによって、塗膜上にごく僅かに残留する液溜まりを塗膜上にならして平坦にしつつ、液溜まりが完全になくなった状態(膜厚が均一になった状態)で塗布ブレードを塗膜表面から離間させることができる。その結果、塗布ブレードを離間させる際に塗布ムラ(ブレード痕)が発生するのを抑制することができる。
上記第1の発明による塗膜形成方法において、好ましくは、所定間隔は、20μm以上である。ここで、スピン塗布法によって均一な膜厚で形成可能な膜厚の上限は、一般に、数μm~10μm程度とされ、20μm以上の膜厚を成膜するのは困難である。そのため、本発明では、スピン塗布法では困難な20μm以上の膜厚の均一な塗膜を成膜する際に好適に適用できる。
上記発明による塗膜形成方法において、好ましくは、処理対象物を回転させる工程では、1rpm以上100rpm以下の回転速度で処理対象物を回転させる。ここで、スピン塗布法では、一般に、数百rpm~数千rpm程度の回転速度で成膜を行うので、塗布材料の大部分(80%~90%程度)が飛散する。これに対して、本発明では、1rpm以上100rpm以下の低い回転速度で成膜を行うことにより、塗布材料の飛散を回避して材料使用量を低減することができる。
第2の発明による塗膜形成装置は、平板状の処理対象物を保持して鉛直方向の回転中心軸回りに回転させる載置部と、処理対象物の表面上に液状の塗布材料を供給する供給部と、処理対象物の表面から所定間隔を隔てた位置に処理対象物の表面に沿って配置される塗布ブレードと、処理対象物に沿う面内において塗布ブレードを回動させる駆動手段と、塗布ブレードを処理対象物の表面上に供給された液状の塗布材料の液溜まりに接触させた状態で、駆動手段により、処理対象物の回転に伴って塗布材料の液溜まりが塗布ブレードに沿って塗布ブレードの一端部と他端部との間を移動するように、回転方向に対する塗布ブレードの傾きを変化させる制御を行う制御部と、を備える。
この第2の発明による塗膜形成装置では、上記構成により、処理対象物の表面と塗布ブレードとの所定間隔の大きさを調節することによって、十分に大きな膜厚の塗膜を形成することが可能となる。さらに、本発明では、塗布ブレードを処理対象物の表面上に供給された液状の塗布材料の液溜まりに接触させた状態で、駆動手段により、処理対象物の回転に伴って塗布材料の液溜まりが塗布ブレードに沿って塗布ブレードの一端部と他端部との間を移動するように、回転方向に対する塗布ブレードの傾きを変化させる制御を行う制御部を設ける。これにより、回転する処理対象物の表面上での塗布材料の移動(流動)を利用して、処理対象物の表面上に塗布材料を塗り拡げることができるので、塗布ブレードを大きく移動させることなく塗布材料を移動させて塗布範囲を拡げることができる。その結果、塗布ブレードの移動に伴う筋状の塗布ムラなどの発生を抑制して、より均一な膜厚の塗膜を形成することができる。以上の結果、本発明によれば、大きな膜厚で、かつ、塗布ムラの少ない均一な膜厚の塗膜を形成することができる。
本発明によれば、上記のように、大きな膜厚で、かつ、塗布ムラの少ない均一な膜厚の塗膜を形成することができる。
以下、本発明の実施形態を図面に基づいて説明する。
図1~図11を参照して、本実施形態による塗膜形成方法および塗膜形成装置100について説明する。
本実施形態による塗膜形成方法は、処理対象物の表面上に供給された液状の塗布材料を塗布ブレード30により塗膜を形成(成膜)する方法に関する。また、本実施形態による塗膜形成装置100は、本実施形態の塗膜形成方法を実施して処理対象物の表面上に塗布材料の塗膜を形成する装置である。
(処理対象物および塗布材料)
処理対象物は、平板状の形状を有し、表面に塗布材料の塗膜が形成される物体であれば特に限定されない。処理対象物は、通常、平坦な表面を有するが、表面に開口する微細空間が形成されていてもよい。この場合、塗布材料の塗膜形成により、微細空間内に塗布材料が充填されてもよい。処理対象物の平面的な形状は問わない。処理対象物は、たとえば、シリコンやガラスなどにより形成されたウェハである。ウェハは、半導体素子やMEMS(Micro Electro Mechanical Systems)デバイスなどが形成される半導体基板である。
処理対象物は、平板状の形状を有し、表面に塗布材料の塗膜が形成される物体であれば特に限定されない。処理対象物は、通常、平坦な表面を有するが、表面に開口する微細空間が形成されていてもよい。この場合、塗布材料の塗膜形成により、微細空間内に塗布材料が充填されてもよい。処理対象物の平面的な形状は問わない。処理対象物は、たとえば、シリコンやガラスなどにより形成されたウェハである。ウェハは、半導体素子やMEMS(Micro Electro Mechanical Systems)デバイスなどが形成される半導体基板である。
塗布材料は、液状で所定の粘性を有する物質であれば、特に限定されない。本実施形態の塗膜形成方法は、様々な塗布材料の成膜に用いることができる。塗布材料は、たとえば、半導体基板に用いられるレジスト液、導電性ペースト、接着剤などのほか、液状の樹脂材料である。たとえば、塗布材料は、熱硬化性樹脂であり、絶縁材料として用いられる。
以下では、一例として、シリコンなどの半導体材料から構成されるウェハ1に、熱硬化性樹脂3からなる塗布材料の塗膜を成膜する例について説明する。また、以下では、複数の微細空間2(図3参照)が形成されたウェハ1の表面1a上に、熱硬化性樹脂3を成膜することにより、微細空間2内に熱硬化性樹脂3を充填する例について説明する。ウェハ1は、請求の範囲の「処理対象物」の一例である。熱硬化性樹脂3は、請求の範囲の「塗布材料」の一例である。図1の例では、ウェハ1は、平面的に見て、半径Rを有する略円形状であり、複数のチップを切り出すことが可能である。
(塗膜形成装置)
図1および図2に示すように、塗膜形成装置100は、載置部10と、供給部20と、塗布ブレード30と、移動機構40と、制御部50と、を備える。載置部10、供給部20、塗布ブレード30および移動機構40は、内部雰囲気を制御可能なチャンバ60内に配置されている。なお、移動機構40は、請求の範囲の「駆動手段」の一例である。
図1および図2に示すように、塗膜形成装置100は、載置部10と、供給部20と、塗布ブレード30と、移動機構40と、制御部50と、を備える。載置部10、供給部20、塗布ブレード30および移動機構40は、内部雰囲気を制御可能なチャンバ60内に配置されている。なお、移動機構40は、請求の範囲の「駆動手段」の一例である。
載置部10は、平板状のウェハ1を保持して鉛直方向の回転中心軸11回りに回転させるように構成されている。載置部10は、平坦な載置面12を有し、載置面12上に載置されたウェハ1を保持する。載置部10は、モータなどを含む回転機構13(図2参照)により、載置面12を鉛直方向の回転中心軸11回りに回転させることができる。載置部10は、制御部50と電気的に接続されており、制御部50によってウェハ1の回転が制御されるように構成されている。以下では、塗膜形成時に、平面視(図1参照)においてウェハ1を時計回りに回転させる例について説明する。
供給部20は、ウェハ1の表面1a上に液状の塗布材料(熱硬化性樹脂3)を供給するように構成されている。供給部20は、載置部10の上方に離間した位置に配置されており、下部にノズル21を備えている。ノズル21は、図示しない材料貯留部と流体的に接続されており、材料貯留部から供給される熱硬化性樹脂3を吐出することができる。供給部20は、載置部10の上方位置から、載置部10に保持されたウェハ1の表面1a上に熱硬化性樹脂3を供給することができる。供給部20によりウェハ1の表面1a上に熱硬化性樹脂3が供給されると、ウェハ1上には液溜まりK(液状の熱硬化性樹脂3が集まってできる水たまり部分)が形成される。
塗布ブレード30は、ウェハ1の表面1a上に供給された熱硬化性樹脂3を延ばして塗膜を形成するための部材である。図1に示すように、塗布ブレード30は、平面視で直線状形状を有する板状部材である。すなわち、塗布ブレード30は、一端部31と他端部32とを有し、一端部31と他端部32との間が直線状に形成されている。本実施形態では、塗布ブレード30は、ウェハ1の半径R以上の長さL2を有する。
図4に示すように、塗布ブレード30は、塗膜形成時には、ウェハ1の表面1aから所定間隔Dを隔てた位置にウェハ1の表面1aに沿って配置される。つまり、塗布ブレード30は、ウェハ1の表面1aと略平行で、表面1aから所定間隔Dだけ上方の位置に配置される。所定間隔Dは、形成される塗膜の膜厚t1に応じて設定される。なお、塗布ブレード30とウェハ1の表面1aとの間の所定間隔Dと、形成される塗膜の膜厚t1とは、必ずしも一致せず、膜厚t1の方が若干小さくなる傾向にある。所定間隔Dは、膜厚t1の設計値と等しいか設計値よりも僅かに大きくなるように設定される。
塗布ブレード30は、垂直断面において、下端部に傾斜面33を有する。傾斜面33は、塗布ブレード30の厚み方向の一方側(表面側)から他方側(裏面側)に向けて傾斜し、下端部に向かうほど厚みが小さくなる平坦面として形成されている。傾斜面33は、ウェハ1の回転方向の上流側に向けて設けられ、熱硬化性樹脂3の液溜まりKと接触して熱硬化性樹脂3を下端部に向けて案内する機能を有する。
図1および図2に示すように、移動機構40は、ウェハ1よりも上方の位置で塗布ブレード30を保持している。移動機構40は、塗布ブレード30をウェハ1の表面1aから所定間隔Dを隔てた位置に、ウェハ1の表面1aに沿って保持することができる。本実施形態では、移動機構40は、ウェハ1に沿う面内において塗布ブレード30を回動させる機能を有する。これにより、移動機構40は、ウェハ1の回転方向に対する塗布ブレード30の傾きを変化させることができる。なお、ウェハ1に沿う面内は、典型的には水平面内であり、好ましくは載置部10の載置面12、ウェハ1の表面1a、塗布ブレード30は、略水平に配置されるように調整される。
移動機構40は、塗布ブレード30を保持するアーム部42を備える。アーム部42は、水平方向に延びるとともに、先端部で塗布ブレード30を保持し、根元部が移動機構40に支持されている。移動機構40は、モータなどの回動駆動部43(図2参照)を備え、回動中心軸41を中心にアーム部42を回動させることが可能である。移動機構40の回動中心軸41は、載置部10に対して径方向外側に配置されている。これにより、移動機構40は、塗布ブレード30を、ウェハ1(載置部10)の径方向外側に配置された回動中心軸41回りに回動(旋回)させるように構成されている。回動中心軸41回りの回動によって、ウェハ1の回転方向に対する塗布ブレード30の傾きを変化させることが可能である。
また、移動機構40は、昇降駆動部44(図2参照)により、アーム部42を上下方向に移動させることが可能に構成されている。これにより、移動機構40は、塗布ブレード30を、ウェハ1(載置部10)の表面1aに対して接近または離間させるように移動させる。移動機構40は、塗布工程を開始する際、ウェハ1の表面1aから所定間隔Dを隔てた位置に塗布ブレード30を移動させ、塗布工程の後、塗布ブレード30をウェハ1の表面1aから離間させる。
なお、アーム部42には、塗布ブレード30に加えて供給部20が設けられている。移動機構40は、塗布ブレード30と供給部20とを一体的に移動させることが可能である。供給部20は、ノズル21が載置部10の回転中心軸11の概ね直上を通る軌道で移動するようにアーム部42に取り付けられている。移動機構40は、制御部50と電気的に接続されており、制御部50によって塗布ブレード30および供給部20の移動が制御される。
チャンバ60は、載置面12を含む載置部10の上部、供給部20および塗布ブレード30を保持するアーム部42を収容し、密閉された空間を形成可能に構成されている。チャンバ60は開閉可能に構成されており、図示しないロボットアームなどにより載置部10上のウェハ1の出し入れが行える。
制御部50は、CPUなどのプロセッサと、揮発性および/または不揮発性メモリとを備えたコンピュータなどから構成され、塗膜形成装置100の各部を制御する。制御部50は、載置部10の回転制御、移動機構40による塗布ブレード30および供給部20の移動制御、および、供給部20による熱硬化性樹脂3の供給制御を行うように構成されている。
本実施形態では、熱硬化性樹脂3の塗布工程において、制御部50は、塗布ブレード30をウェハ1の表面1a上に供給された液状の熱硬化性樹脂3の液溜まりKに接触させた状態で、移動機構40により、ウェハ1の回転に伴って熱硬化性樹脂3の液溜まりKが塗布ブレード30に沿って塗布ブレード30の一端部31と他端部32との間を移動するように、回転方向に対する塗布ブレード30の傾きを変化させる制御を行うように構成されている。
(絶縁層形成処理)
本実施形態では、図3に示すように、ウェハ1には、エッチング処理などの前工程により、複数の微細空間2が形成されている。たとえば、ウェハ1には、おおよそ100万個の微細空間2が形成されている。本実施形態の塗膜形成方法は、微細空間2内に熱硬化性樹脂3を充填して、後工程によって形成される貫通電極(図示せず)の絶縁層として形成するための一連の絶縁層形成処理の一部(塗膜形成工程)として実施される。
本実施形態では、図3に示すように、ウェハ1には、エッチング処理などの前工程により、複数の微細空間2が形成されている。たとえば、ウェハ1には、おおよそ100万個の微細空間2が形成されている。本実施形態の塗膜形成方法は、微細空間2内に熱硬化性樹脂3を充填して、後工程によって形成される貫通電極(図示せず)の絶縁層として形成するための一連の絶縁層形成処理の一部(塗膜形成工程)として実施される。
微細空間2は、ウェハ1の表面1aに開口するように形成されている。微細空間2は、たとえばウェハ1を貫通しない穴部であり、ウェハ1の表面1aに開口するとともに、表面1aとは反対の反対面1bには開口しない。図3に示す微細空間2は、開口2a、内側面2bおよび底部2cを有する環状溝である。微細空間2は、平面視において柱状部分を取り囲む円環形状を有する。微細空間2は、所定の直径を有する円形状に形成されている。微細空間2は、厚み方向に直交する水平方向における幅W、厚み方向の深さL1を有する。
微細空間2の外径は、たとえば約250μm以下であり、好ましくは10μm以下である。微細空間2の幅Wはたとえば約100μm以下である。微細空間2の厚み方向の深さL1は、微細空間2の深さL1と幅Wとのアスペクト比(L1/W)が約2以上、約20以下を満たすように、幅Wに応じて決められるのが好ましい。一例として、たとえば微細空間2の幅Wは約2μmであり、深さL1はたとえば約20μmである(アスペクト比(L1/W)=約10)。
本実施形態による塗膜形成方法によって、ウェハ1の表面1a上に熱硬化性樹脂3の塗膜が形成される。この際、微細空間2内にも、熱硬化性樹脂3が充填される。熱硬化性樹脂3は、たとえば絶縁性材料として、常温より高くかつ約250℃以下の処理温度で固化する樹脂(結合剤)が用いられる。熱硬化性樹脂3としては、フッ素樹脂、ポリイミド樹脂、フェノール樹脂、シリコン樹脂、および、エポキシ樹脂がある。具体的には、フッ素樹脂として、旭硝子株式会社製のAL-X2003やAL-X2010などのAL-X2000シリーズが該当する。また、ポリイミド樹脂として、旭化成イーマテリアル株式会社製のPIMEL(登録商標)BM302やBL301が該当する。また、フェノール樹脂として、JSR株式会社製のELPAC(登録商標)WPR1201やWPR5100が該当する。
熱硬化性樹脂3は、後工程によって形成される貫通電極(図示せず)の絶縁層として機能する。貫通電極は、たとえば、複数のチップを積み重ねて実装する3次元実装における、上下のチップ間での電気的接続を行うための電極(シリコン貫通電極)として形成されるものである。以下、一連の絶縁層形成処理の流れについて概要を説明する。
まず、図3に示すように、微細空間2が形成されたウェハ1が準備される。微細空間2はたとえばエッチングによりウェハ1に形成され、微細空間2の形成時に成膜されるレジストマスクはウェハ1の表面1aから除去されている。
準備されたウェハ1に対して、本実施形態の塗膜形成方法を用いた塗膜形成工程が行われる。塗膜形成工程では、ウェハ1の表面1aに熱硬化性樹脂3が供給され、熱硬化性樹脂3の塗膜が形成される。この際、微細空間2に熱硬化性樹脂3が充填される。ウェハ1の表面1aには、膜厚t1の塗膜が形成される。成膜および充填される熱硬化性樹脂3は、固化前の樹脂材料と溶剤との混合物である。
塗膜形成工程の後に、プリベーク工程が行われる。プリベーク工程では、ウェハ1が加熱され、微細空間2に充填された熱硬化性樹脂3に含まれる溶剤が蒸発する。プリベーク工程の後、焼成工程(キュア)が行われる。焼成工程は、ウェハ1を加熱して熱硬化性樹脂3を固化させる工程である。焼成工程の加熱温度は、プリベーク工程の加熱温度よりも高い。熱硬化性樹脂3は、焼成工程において加えられた熱によって固化する。なお、説明の便宜のため、固化前と固化後とで熱硬化性樹脂3のハッチングの種類を変更して示している。
プリベーク工程および焼成工程では、塗膜形成工程によって形成された塗膜および微細空間2内の熱硬化性樹脂3から溶剤が蒸発することにより、熱硬化性樹脂3は体積が減少する。微細空間2内の熱硬化性樹脂3の体積減少分は、ウェハ1の表面1a上の熱硬化性樹脂3の塗膜によって補われる。また、塗膜を構成する熱硬化性樹脂3自体も焼成によって体積が減少する。したがって、プリベーク工程および焼成工程の後でウェハ1の表面1a上に残留する固化済み塗膜の膜厚は、塗膜形成時の膜厚t1よりも小さくなる。
焼成工程の後、残渣除去工程が行われる。残渣除去工程は、ウェハ1の表面1a上に残存する固化済みの熱硬化性樹脂3の残渣を取り除く工程である。残渣除去工程は、たとえばCMP(化学機械研磨)やポリッシャーなどの機械研磨により行われる。これにより、微細空間2に絶縁層としての熱硬化性樹脂3が充填されたウェハ1が得られる。
上記のように、塗膜形成工程でウェハ1の表面1a上に形成された塗膜は、プリベーク工程および焼成工程における体積減少分を補う機能を有する。ウェハ1の表面1a上の熱硬化性樹脂3が、ウェハ表面の開口面積に対して少なすぎる場合、微細空間2の内部への充填不良が発生する可能性が高まる。このため、塗膜形成工程では、ウェハ1の表面1aには、微細空間2への充填量よりも多い量の熱硬化性樹脂3が供給される。熱硬化性樹脂3の供給量(すなわち膜厚t1)は、プリベーク工程および焼成工程における体積減少分を考慮して設定される。たとえば、塗膜の膜厚t1は、微細空間2の深さL1と同等か、深さL1よりも大きいことが望ましい。深さL1がたとえば約20μmである場合、塗膜の膜厚t1は、約20μm以上である。塗膜の膜厚t1は、より好ましくは約30μ以上である。
このように十分な膜厚t1の塗膜が形成された場合、プリベーク工程および焼成工程における体積減少分を補い充填不良を抑制することが可能な一方、焼成後には一定程度の膜厚の残渣が残存する。そのため、塗膜形成工程で形成された塗膜は、焼成後(固化後)に残渣除去工程によって除去される。固化した塗膜が機械研磨により除去される場合に膜厚にばらつきがあると、残渣の除去量がばらついて、固化した塗膜の一部が除去しきれずに残ったり、除去しすぎてウェハ1の表面1aを削ってしまう可能性がある。そのため、固化前の塗膜形成工程の時点で、塗膜の膜厚t1は、極力均一で塗布ムラがないことが望まれる。そこで、本実施形態では、以下に説明する塗膜形成方法により、十分な膜厚t1と塗布ムラを抑制した均一性とを実現する。
(塗膜形成方法)
次に、図5~11を参照して、本実施形態の塗膜形成方法について説明する。塗膜形成方法は、塗膜形成装置100によって実施される。塗膜形成装置100の動作制御は、制御部50により行われる。
次に、図5~11を参照して、本実施形態の塗膜形成方法について説明する。塗膜形成方法は、塗膜形成装置100によって実施される。塗膜形成装置100の動作制御は、制御部50により行われる。
本実施形態の塗膜形成方法は、ウェハ1を鉛直方向の回転中心軸11回りに回転させる工程(ウェハを回転させる工程)と、ウェハ1の表面1a上に熱硬化性樹脂3を成膜する工程(成膜工程)と、を備える。本実施形態の塗膜形成方法は、さらに、塗布ブレード30をウェハ1の表面1aに対して離間させる工程(ブレード離間工程)を備える。ここでは、図1に示したように、ロボットアームなどの搬送装置(図示せず)により、塗膜形成装置100の載置部10上にウェハ1が載置された状態から説明する。なお、ウェハ1と熱硬化性樹脂3との塗布状態をより改善するために、これらの各工程に先立って事前にプライマー処理をウェハ1に対して実施してもよい。
〈ウェハを回転させる工程〉
本実施形態では、まず、平板状のウェハ1の表面1aから所定間隔Dを隔てた位置に配置された塗布ブレード30を、ウェハ1の表面1a上に供給された液状の熱硬化性樹脂3の液溜まりKに接触させた状態で、ウェハ1を鉛直方向の回転中心軸11回りに回転させる工程が実施される。
本実施形態では、まず、平板状のウェハ1の表面1aから所定間隔Dを隔てた位置に配置された塗布ブレード30を、ウェハ1の表面1a上に供給された液状の熱硬化性樹脂3の液溜まりKに接触させた状態で、ウェハ1を鉛直方向の回転中心軸11回りに回転させる工程が実施される。
すなわち、ウェハ1を回転させる工程は、(1)ウェハ1の表面1a上に液状の熱硬化性樹脂3を供給する工程と、(2)平板状のウェハ1の表面1aから所定間隔Dを隔てた位置に塗布ブレード30を配置する工程と、(3)ウェハ1を回転中心軸11回りに回転させる工程とを含んでいる。これらの各工程(1)~(3)は、次の成膜工程に移る段階で同時に実施されている必要があるが、各工程(1)~(3)を開始する順序は必ずしも限定されない。各工程(1)~(3)を同時に開始してもよいし、任意の順序で順番に開始してもよい。ここでは一例として、(3)、(1)、(2)の順番で各工程を開始する例について説明する。
(3)ウェハ1を回転中心軸11回りに回転させる工程では、制御部50が載置部10を制御することにより、載置部10に保持されたウェハ1を回転中心軸11回りに回転させる。ウェハ1を回転させる工程では、好ましくは、1rpm以上100rpm以下の回転速度でウェハ1を回転させる。回転速度は、熱硬化性樹脂3の粘度を考慮して最適な値が選択される。また、本実施形態では、ウェハ1は、一定の等速で回転される。本実施形態では、回転速度はたとえば10rpmである。本実施形態では、ウェハ1の回転は、成膜工程およびブレード離間工程が完了するまでの間、継続させる。
(1)ウェハ1の表面1a上に液状の熱硬化性樹脂3を供給する工程では、制御部50が移動機構40および供給部20を制御することにより、熱硬化性樹脂3をウェハ1の表面1a上に供給する。本実施形態では、ウェハ1の中心を含む領域に熱硬化性樹脂3が供給される。すなわち、移動機構40がアーム部42を介して供給部20を回動させ、ウェハ1の中心(回転中心軸11上)の上方にノズル21を配置する。そして、制御部50による制御の下、供給部20がノズル21から熱硬化性樹脂3をウェハ1の表面1aの中心に供給する。熱硬化性樹脂3の供給量は、塗膜の膜厚t1から算出される塗膜の体積分と、塗布ブレード30に付着する量とを考慮した所定量に設定され、制御部50により制御される。これにより、図5に示すように、ウェハ1の表面1a上の、ウェハ1の中心を含む領域には、熱硬化性樹脂3の液溜まりKが形成される。ウェハ1の回転と共に、液溜まりKも回転中心軸11を中心に回転する。
(2)ウェハ1の表面1aから所定間隔Dを隔てた位置に塗布ブレード30を配置する工程では、制御部50が移動機構40を制御することにより、塗布ブレード30をウェハ1上方の所定位置に移動させる。制御部50は、上下方向の位置については、塗布ブレード30がウェハ1の表面1aから所定間隔Dを隔てた位置(高さ位置)となるように移動機構40を制御する。本実施形態において、所定間隔Dは、20μm以上、より好ましくは約30μ以上である。水平方向の位置については、本実施形態では、図5に示すように、直線状の塗布ブレード30を、一端部31がウェハ1の中心近傍に位置し、他端部32がウェハ1の外周部近傍に位置するように配置する。好ましくは、塗布ブレード30を、塗布ブレード30の一端部31が熱硬化性樹脂3と接する位置に配置する。
すなわち、制御部50は、予めウェハ1の中心に供給された熱硬化性樹脂3の液溜まりKの上方に離間した位置(所定間隔Dよりもさらに間隔が大きい位置)に塗布ブレード30を回動させた後、ウェハ1の表面1aから所定間隔Dとなる位置まで塗布ブレード30を下降させる。これにより、塗布ブレード30は、液溜まりKの上方から下端部を液溜まりKに浸漬するように移動される。その結果、塗布ブレード30の一端部31が熱硬化性樹脂3と接する位置に配置される。
〈成膜工程〉
ウェハ1の表面1a上に熱硬化性樹脂3を成膜する工程(成膜工程)では、制御部50が移動機構40を制御することにより、ウェハ1の回転に伴って熱硬化性樹脂3の液溜まりKが塗布ブレード30に沿って塗布ブレード30の一端部31と他端部32との間を移動するように、ウェハ1に沿う面内における回転方向に対する塗布ブレード30の傾きを変化させる。
ウェハ1の表面1a上に熱硬化性樹脂3を成膜する工程(成膜工程)では、制御部50が移動機構40を制御することにより、ウェハ1の回転に伴って熱硬化性樹脂3の液溜まりKが塗布ブレード30に沿って塗布ブレード30の一端部31と他端部32との間を移動するように、ウェハ1に沿う面内における回転方向に対する塗布ブレード30の傾きを変化させる。
具体的には、熱硬化性樹脂3を成膜する工程では、ウェハ1の回転に伴って熱硬化性樹脂3の液溜まりKに塗布ブレード30の一端部31側に向かう力を作用させる第1角度Ag1と、ウェハ1の回転に伴って熱硬化性樹脂3の液溜まりKに塗布ブレード30の他端部32側に向かう力を作用させる第2角度Ag2と、の間で塗布ブレード30の傾きを変化させる。図5は、塗布ブレード30を第1角度Ag1に保持した状態を示している。
図6に示すように、第1角度Ag1は、回転中心軸11回りの円と塗布ブレード30との交点Pにおける円の接線と塗布ブレード30との交差角θが一端部31側に向けて鋭角(90度未満)となる所定角度である。第2角度Ag2は、図7に示すように、回転中心軸11回りの円と塗布ブレード30との交点Pにおける円の接線と塗布ブレード30との交差角θが他端部32側に向けて鋭角となる所定角度である。図5~図10において示した回転中心軸11を中心とする同心円(破線部)は、参考のための補助線である。
ここで、熱硬化性樹脂3の液溜まりKは、ウェハ1の回転に伴って回転中心軸11回りに回転するので、液溜まりKと塗布ブレード30とが接触して液溜まりKの回転移動が塗布ブレード30により遮られる状態では、接触部分において液溜まりKに回転中心軸11回りの回転方向の力が作用する。つまり、液溜まりKと塗布ブレード30との接触部分を通る回転中心軸11回りの円と、塗布ブレード30との交点Pにおける、円の接線方向に向いた回転方向力Fが作用する。
このため、図6に示す塗布ブレード30が第1角度Ag1の状態では、上記の交差角θが一端部31側に向けて鋭角となるので、回転方向力Fは、第1角度Ag1の塗布ブレード30に垂直な分力F0と、塗布ブレード30の一端部31側に向かう分力F1とに分解できる。したがって、第1角度Ag1では、分力F0により塗布ブレード30と接触する(塗布ブレード30により堰き止められる)液溜まりKに対して、塗布ブレード30の一端部31側に向かう分力F1が液溜まりKに作用する。第1角度Ag1の大きさ(交差角θの大きさ)を調整することにより、一端部31側に向かう分力F1の大きさを調整できる。この結果、第1角度Ag1の大きさを適切に設定することにより、液溜まりKを一端部31側に移動させたり、液溜まりKが他端部32側に移動するのを抑制したりすることができる。
反対に、図7に示す塗布ブレード30が第2角度Ag2の状態では、上記の交差角θが他端部32側に向けて鋭角となるので、回転方向力Fは、第2角度Ag2の塗布ブレード30に垂直な分力F0と、塗布ブレード30の他端部32側に向かう分力F2とに分解できる。したがって、第2角度Ag2では、分力F0により塗布ブレード30と接触する(塗布ブレード30により堰き止められる)液溜まりKに対して、塗布ブレード30の他端部32側に向かう分力F2が液溜まりKに作用する。第2角度Ag2の大きさ(交差角θの大きさ)を調整することにより、他端部32側に向かう分力F2の大きさを調整できる。この結果、第2角度Ag2の大きさを適切に設定することにより、液溜まりKを他端部32側に移動させたり、液溜まりKが一端部31側に移動するのを抑制したりすることができる。
交差角θは、図8に示すように塗布ブレード30または塗布ブレード30の延長線が回転中心軸11上を通るとき(塗布ブレード30が円の半径方向に一致するとき)に90度となる。この状態から塗布ブレード30が一方側(図6参照)に傾けば、交差角θが一端部31側に鋭角となって一端部31側に向かう分力F1が発生する。第1角度Ag1は、塗布ブレード30(または延長線)が回転中心軸11上から一方側に傾く角度範囲から選択された所定の傾斜角度である。塗布ブレード30が他方側(図7参照)に傾けば、交差角θが他端部32側に鋭角となって他端部32側に向かう分力F2が発生する。第2角度Ag2は、塗布ブレード30(または延長線)が回転中心軸11上から他方側に傾く角度範囲から選択された所定の傾斜角度である。第1角度Ag1および第2角度Ag2は、主としてウェハ1の回転速度、塗布材料(熱硬化性樹脂3)の粘度などの物性、形成する塗膜の膜厚t1、などを考慮して適切な値に設定される。
本実施形態では、熱硬化性樹脂3を成膜する工程において、ウェハ1を回転させながら、塗布ブレード30の傾きを第1角度Ag1と第2角度Ag2との間で連続的に変化させる。具体的な塗布動作として、本実施形態では、ウェハ1の上方に配置された塗布ブレード30を、ウェハ1の径方向外側に配置された回動中心軸41回りに回動させて、塗布ブレード30の傾きを変化させる。すなわち、制御部50は、塗布ブレード30を回動中心軸41回りに回動させ、塗布ブレード30の傾きが継続的に変化するように移動機構40を制御する。
図5に示したように、成膜工程の開始時には、ウェハ1を回転させる工程よって、塗布ブレード30の一端部31がウェハ1の中心近傍に位置し、塗布ブレード30の他端部32がウェハ1の外周部近傍に位置するように配置されている。本実施形態では、この成膜工程の開始位置が、塗布ブレード30が第1角度Ag1となる位置に設定されている。成膜工程では、このように配置された塗布ブレード30の一端部31側がウェハ1の中心を跨いで通過するように回動させて、塗布ブレード30の傾きを変化させる。
すなわち、制御部50が、移動機構40を制御してアーム部42を回動させることにより、塗布ブレード30の一端部31側が、ウェハ1の中心上方位置(回転中心軸11)を通過するような湾曲した軌道を描くように、塗布ブレード30全体が回動中心軸41回りに時計回転方向に回動される。つまり、塗布ブレード30は、図5に示した第1角度Ag1となる位置から、第2角度Ag2となる位置(図10)に向けて、連続的に回動される。
この結果、成膜工程では、図5、図8~図10に示すように、熱硬化性樹脂3の液溜まりKを塗布ブレード30に沿ってウェハ1の中心側から外周側に向けて移動させる。
また、成膜工程では、ウェハ1の外周部よりも内側に配置された塗布ブレード30の他端部32側の所定位置Pf(図10参照)まで、熱硬化性樹脂3の液溜まりKを塗布ブレード30に沿って移動させる。塗布ブレード30の他端部32側の所定位置Pfは、ウェハ1の外周部よりも内側であって、ウェハ1上の塗膜形成領域(熱硬化性樹脂3を塗布する領域)の外縁となる位置である。
なお、液溜まりKは、塗布ブレード30に垂直な分力F0によって液溜まりKが塗布ブレード30に押し付けられることによって、塗布ブレード30の両端に向けて拡がろうとする。そのため、液溜まりKの量(体積)が多い初期状態では、第1角度Ag1にしても液溜まりKは他端部32側に向けて拡がっていく。このとき第1角度Ag1の大きさによって、液溜まりKが他端部32側に向けて拡がる速度や、釣り合い状態に達する位置を制御できる。液溜まりKの量(体積)が減少してくると、垂直な分力F0によって液溜まりKが塗布ブレード30の両端に向けて拡がりにくくなる。その場合に、第2角度Ag2の大きさによって、液溜まりKがより他端部32側に移動するように付勢することができる。その結果、体積の減少に伴って移動しにくくなる液溜まりKの最終到達位置(外周側の所定位置Pf)を、第2角度Ag2の大きさによって制御することができる。
第1角度Ag1から第2角度Ag2になるまで塗布ブレード30を回動中心軸41回りに回動させると、液溜まりKが他端部32側に移動し、液溜まりKの移動に伴って、ウェハ1の中心側から外周側に向けて塗膜が塗り拡げられる。ウェハ1が回転中心軸11回りに回転するため、塗布ブレード30に沿って保持される液溜まりKのうち、ウェハ1の中心(回転中心軸11)から最も離れた位置(液溜まりKの他端部32側の端部)と、ウェハ1の中心と間の距離を半径とする円形状の塗膜が形成される。図8~図10の各図では、円形状の熱硬化性樹脂3の塗膜を、液溜まりKとは異なるハッチングを付して示している。液溜まりKの回転中心軸11から最も離れた部分は、本実施形態における塗布ブレード30の移動範囲内では、常に液溜まりKの他端部32側の端部となる。
図10に示すように、液溜まりKの端部が塗布ブレード30の他端部32側の所定位置Pfまで到達すると、ウェハ1の回転に伴って他端部32が配置された所定位置Pfを外縁とする円形状の塗膜が形成される。図10の時点では、液溜まりKの大部分が塗膜形成に消費されて無くなる。
〈塗膜形成動作の詳細説明〉
ここで、第1角度Ag1から第2角度Ag2に到達するまでの塗布ブレード30の回動と、液溜まりKの移動とについて、詳細に説明する。
ここで、第1角度Ag1から第2角度Ag2に到達するまでの塗布ブレード30の回動と、液溜まりKの移動とについて、詳細に説明する。
図5に示すように、液溜まりKがウェハ1の中心近傍にある塗布工程の初期段階では、ウェハ1の回転方向力Fにより、液溜まりKは、塗布ブレード30の一端部31側に留まる方向に付勢される。この際、塗布ブレード30の一端部31側から液溜まりKが外側(塗布ブレード30の延長線方向)に流出しないように、第1角度Ag1が設定される。また、塗布工程の初期段階では液溜まりKの量が多く、塗布ブレード30に垂直な分力F0によって液溜まりKが塗布ブレード30に押し付けられるため、液溜まりKは、全体としては塗布ブレード30側に押しつけられて他端部32側にも延びていく。分力F1は、液溜まりKが他端部32側に延びていく移動を抑制する方向に働く。
塗布工程の初期段階では、第1角度Ag1の塗布ブレード30により液溜まりKがウェハ1の中心近傍に保持されるので、ウェハ1の回転に伴ってウェハ1の中心部近傍の塗膜形成が確実に行われる。
塗布ブレード30が回動中心軸41回りに回動されるに従って、一端部31側に向けて鋭角となる交差角θは直角に近づく。図8に示すように、塗布ブレード30がウェハ1の中心(回転中心軸11)上に到達するとき、塗布ブレード30がウェハ1の半径方向に一致するため、交差角θが直角となる。このとき、液溜まりKに作用する回転方向力Fは、第1角度Ag1の塗布ブレード30に垂直な方向のみとなる。このように塗布ブレード30の回動に伴って一端部31側に向かう分力F1が減少するので、液溜まりKは他端部32側に徐々に移動する。液溜まりKがウェハ1の中心(回転中心軸11)から離れた分だけ、円形状の塗膜(熱硬化性樹脂3)の形成範囲が拡がる。
図9に示すように、塗布ブレード30がウェハ1の中心(回転中心軸11)上を超えると、交差角θが他端部32側に向けて鋭角となる。ウェハ1の回転方向力Fにより、液溜まりKは、塗布ブレード30の他端部32側に移動する方向に付勢される。塗布ブレード30に保持される液溜まりKの量は、塗膜の形成範囲が拡がるにつれて減少する。このため、液溜まりKは、他端部32側に移動するに従って、他端部32側へ移動しにくくなる。そこで、塗布ブレード30を第2角度Ag2に近づけるように回動させ、塗布ブレード30の他端部32側に向かう分力F2を相対的に大きくすることにより、液溜まりKがさらに他端部32側に移動する。
図10に示すように、第2角度Ag2をウェハ1における熱硬化性樹脂3の塗膜形成領域に対応させて適切に設定することにより、塗布ブレード30を第2角度Ag2まで回動させた状態で、液溜まりKが塗布ブレード30の他端部32側の所定位置Pf(塗膜形成領域の外縁)まで到達して移動が終了する。これにより、成膜工程が完了する。第1角度Ag1から第2角度Ag2になるまでに、移動機構40は角度φだけアーム部42を回動させる。図10の例では、角度φは約12度である。
なお、ウェハ1への熱硬化性樹脂3の供給量は、塗膜形成領域の外縁まで塗膜を形成した段階で塗布ブレード30に保持される液溜まりKが概ね無くなる(液溜まりKのほぼ全部が塗膜形成に消費される)ように調整することができる。このため、成膜工程が完了すると、塗布ブレード30に保持される余剰の液溜まりKは、ごく僅かとなる。
〈ブレード離間工程〉
成膜工程の後、塗布ブレード30をウェハ1の表面1aに対して離間させる工程(ブレード離間工程)が実施される。上記の通り、成膜工程が完了した段階で、塗布ブレード30に保持される余剰の液溜まりKはごく僅かとなるが、余剰の液溜まりKが塗布ブレード30に接触した状態で塗布ブレード30を上昇させると、直線状のブレード痕が形成される可能性がある。
成膜工程の後、塗布ブレード30をウェハ1の表面1aに対して離間させる工程(ブレード離間工程)が実施される。上記の通り、成膜工程が完了した段階で、塗布ブレード30に保持される余剰の液溜まりKはごく僅かとなるが、余剰の液溜まりKが塗布ブレード30に接触した状態で塗布ブレード30を上昇させると、直線状のブレード痕が形成される可能性がある。
そこで、本実施形態では、ブレード離間工程では、制御部50が、ウェハ1の回転を継続しながら、塗布ブレード30が熱硬化性樹脂3の塗膜と接触する位置から塗膜と非接触となる位置へ移動するまでに、少なくともウェハ1が1回転するように、塗布ブレード30をウェハ1に対して相対的に離間させる制御を行う。
すなわち、図11(A)に示すように、成膜工程が完了した時点で、膜厚t1の塗膜が形成され、塗布ブレード30と接触する微少量の液溜まりKrが残存しているとする。この状態から、ウェハ1の回転を継続しながら、塗布ブレード30を低速でウェハ1から離間する方向(上方)に移動させる。塗布ブレード30の上昇速度は、塗布ブレード30が熱硬化性樹脂3の塗膜と接触する位置(成膜工程の完了位置)から塗膜と非接触となる位置へ移動するまでに、少なくともウェハ1が1回転する速度である。たとえば、ウェハ1の回転速度が約10rpmの場合に、塗布ブレード30の上昇速度を約0.1mm/秒とする。この場合、ウェハ1が1回転する間(約6秒間)に、塗布ブレード30が約0.6mm上昇する。
これにより、塗布ブレード30の上昇に伴って、ウェハ1と塗布ブレード30との間隔Dが徐々に増大する。間隔Dの増大に伴って、余剰の液溜まりKrが塗膜の一部として平坦化される(ならされる)。そして、図11(B)に示すように、ウェハ1が1回転する間には余剰の液溜まりKrが消費され尽くして液溜まりKrが消滅する。
その後、図11(C)に示すように、塗布ブレード30がさらに上昇を継続することによって塗膜から離間する。これにより、ブレード痕が形成されることが抑制される。図11(A)および図11(B)は、塗布ブレード30が塗膜と接触する位置にある状態を示し、図11(C)は、塗布ブレード30が塗膜と非接触となる位置にある状態を示している。図11では、説明のために誇張して図示しているが、余剰の液溜まりKrの量はごく僅かであるため、余剰の液溜まりKrに起因する膜厚の増大分(e)は、誤差レベルの許容範囲内に収めることが可能である。
なお、塗布ブレード30が塗膜と非接触となる位置は、熱硬化性樹脂3を成膜する工程の完了時点で残存する微少量の液溜まりKの高さhを考慮してもよいし、単純にブレード痕が形成されなくなる高さ位置を実験的に求めてもよい。
塗布ブレード30が塗膜と非接触となる位置まで低速で上昇した後は、制御部50は、移動機構40により速やかに塗布ブレード30を退避させる。以上により、ブレード離間工程が完了すると共に、塗膜形成工程が完了する。
(本実施形態の効果)
本実施形態では、以下のような効果を得ることができる。
本実施形態では、以下のような効果を得ることができる。
本実施形態の塗膜形成方法では、上記のように、ウェハ1の表面1aと塗布ブレード30との所定間隔Dの大きさを調節することによって、十分に大きな膜厚t1の塗膜を形成することが可能となる。さらに、本実施形態では、ウェハ1の回転に伴って熱硬化性樹脂3の液溜まりKが塗布ブレード30に沿って塗布ブレード30の一端部31と他端部32との間を移動するように、ウェハ1に沿う面内における回転方向に対する塗布ブレード30の傾きを変化させて、ウェハ1の表面1a上に熱硬化性樹脂3を成膜する工程(成膜工程)を設ける。これにより、回転するウェハ1の表面1a上での熱硬化性樹脂3の移動(流動)を利用して、ウェハ1の表面1a上に熱硬化性樹脂3を塗り拡げることができる。塗布ブレード30の傾きを制御すると、塗布ブレード30により保持された液溜まりKを塗布ブレード30に沿って移動させることができるので、塗布ブレード30を大きく移動させることなく熱硬化性樹脂3を移動させて塗布範囲を拡げることができる。その結果、塗布ブレード30の移動に伴う筋状の塗布ムラなどの発生を抑制して、より均一な膜厚t1の塗膜を形成することができる。以上の結果、本実施形態の塗膜形成方法および塗膜形成装置100によれば、大きな膜厚t1で、かつ、塗布ムラの少ない均一な膜厚t1の塗膜を形成することができる。
また、本実施形態では、上記のように、熱硬化性樹脂3を成膜する工程(成膜工程)において、ウェハ1の回転に伴って熱硬化性樹脂3の液溜まりKに塗布ブレード30の一端部31側に向かう力(分力F1)を作用させる第1角度Ag1と、ウェハ1の回転に伴って熱硬化性樹脂3の液溜まりKに塗布ブレード30の他端部32側に向かう力(分力F2)を作用させる第2角度Ag2と、の間で塗布ブレード30の傾きを変化させる。これにより、第1角度Ag1と第2角度Ag2との間で塗布ブレード30の傾きを調整することによって、たとえば熱硬化性樹脂3の液溜まりKを一端部31近傍に保持して他端部32側へ移動するのを抑制したり、液溜まりKを一端部31から他端部32に向けて徐々に移動させたりすることができる。つまり、塗布ブレード30に沿う方向の液溜まりKの位置および移動速度を制御することができる。その結果、熱硬化性樹脂3の粘度などの材質に応じて、より均一でムラの少ない塗膜を形成可能な熱硬化性樹脂3の制御が可能となる。
また、本実施形態では、上記のように、第1角度Ag1は、回転中心軸11回りの円と塗布ブレード30との交点Pにおける円の接線と塗布ブレード30との交差角が一端部31側に向けて鋭角となる角度とし、第2角度Ag2は、回転中心軸11回りの円と塗布ブレード30との交点Pにおける円の接線と塗布ブレード30との交差角が他端部32側に向けて鋭角となる角度とする。これにより、第1角度Ag1では、液溜まりKを一端部31側に移動させたり、液溜まりKが他端部32側に移動することを抑制したりできる。第2角度Ag2では、液溜まりKを他端部32側に移動させたり、液溜まりKが一端部31側に移動することを抑制したりできる。その結果、塗布ブレード30の一端部31から他端部32まで自由に熱硬化性樹脂3を移動させて、より好適な塗布条件での塗膜形成を実現することができる。
また、本実施形態では、上記のように、熱硬化性樹脂3を成膜する工程(成膜工程)において、ウェハ1を回転させながら、塗布ブレード30の傾きを第1角度Ag1と第2角度Ag2との間で連続的に変化させる。これにより、塗布ブレード30の傾きを段階的に変化させる場合と異なり、徐々に液溜まりKを移動させることができる。その結果、液溜まりKが速く移動しすぎて未塗布領域が形成されるのを防ぐことができるので、塗布ムラの発生を効果的に抑制することができる。
また、本実施形態では、上記のように、熱硬化性樹脂3を成膜する工程(成膜工程)において、ウェハ1の上方に配置された塗布ブレード30を、ウェハ1の径方向外側に配置された回動中心軸41回りに回動させて、塗布ブレード30の傾きを変化させる。これにより、ウェハ1の上方(上下にオーバラップする位置)に、塗布ブレード30を回動させるための軸やギヤなどの駆動部分が配置されることを回避できる。その結果、たとえば半導体ウェハなどのウェハ1に対して、駆動部分の摩擦に伴う微粉末や異物が落下することを抑制できるので、高品位な塗膜が形成できる。
また、本実施形態では、上記のように、ウェハ1を回転させる工程において、ウェハ1の半径R以上の長さを有する直線状の塗布ブレード30を、一端部31がウェハ1の中心近傍に位置し、他端部32がウェハ1の外周部近傍に位置するように配置する。そして、熱硬化性樹脂3を成膜する工程(成膜工程)において、塗布ブレード30の一端部31側がウェハ1の中心を跨いで通過するように回動させて、塗布ブレード30の傾きを変化させる。これにより、熱硬化性樹脂3の液溜まりKを一端部31側に移動させることにより、ウェハ1の中心部を確実に塗布することができる。また、液溜まりKを一端部31から他端部32、または他端部32から一端部31まで移動させるだけで、ウェハ1の中心から外周部近傍まで確実に、塗布ムラの少ない均一な塗膜を形成することができる。
また、本実施形態では、上記のように、ウェハ1を回転させる工程において、ウェハ1の中心を含む領域に熱硬化性樹脂3を供給する。そして、熱硬化性樹脂3を成膜する工程(成膜工程)において、熱硬化性樹脂3の液溜まりKを塗布ブレード30に沿ってウェハ1の中心側から外周側に向けて移動させる。これにより、ウェハ1の中心に供給した熱硬化性樹脂3の液溜まりKを外周側まで移動させるだけで、塗膜形成を完了させることができる。そのため、たとえば液溜まりKを一端部31側と他端部32側との間で往復させるような構成と比較して、処理時間を短縮することができる。
また、本実施形態では、上記のように、ウェハ1を回転させる工程において、塗布ブレード30を、塗布ブレード30の一端部31が熱硬化性樹脂3と接する位置に配置する。これにより、塗布ブレード30をウェハ1の上方の所定間隔Dを隔てた位置に配置する時点で、ウェハ1の中心部に供給された熱硬化性樹脂3の塗膜形成を開始することができる。したがって、たとえばウェハ1の中心部と外周部との中間位置に供給した液溜まりKを中心部まで移動させる場合と比較して、速やかに塗膜形成を開始することができるので、処理時間をさらに短縮することができる。
また、本実施形態では、上記のように、熱硬化性樹脂3を成膜する工程(成膜工程)において、ウェハ1の外周部よりも内側に配置された塗布ブレード30の他端部32側の所定位置Pfまで、熱硬化性樹脂3の液溜まりKを塗布ブレード30に沿って移動させる。このように構成すれば、液溜まりKをウェハ1の外周部から外部に押し出すのではなく、塗布ブレード30におけるウェハ1の外周部よりも内側の所定位置Pf(塗膜形成領域の外縁部)まで液溜まりKを移動させて、熱硬化性樹脂3の成膜を完了させることができる。これにより、たとえばスピン塗布法では一般に80~90%程度の熱硬化性樹脂3がウェハ1の外部に飛び散ってしまうのと異なり、供給した熱硬化性樹脂3を極力無駄にすることなく塗膜を形成することができるとともに、成膜処理後の清掃などのメンテナンス作業量を抑制することができる。
また、本実施形態では、上記のように、ブレード離間工程において、ウェハ1の回転を継続しながら、塗布ブレード30が熱硬化性樹脂3の塗膜と接触する位置から塗膜と非接触となる位置へ移動するまでに、少なくともウェハ1が1回転するように、塗布ブレード30をウェハ1に対して相対的に離間させる。これにより、成膜工程が完了した後、ウェハ1をさらに1回転以上させる間に、塗布ブレード30とウェハ1との間隔が徐々に拡大することによって、塗膜上にごく僅かに残留する液溜まりKr(図11参照)を塗膜上にならして平坦にしつつ、液溜まりKが完全になくなった状態(膜厚t1が均一になった状態)で塗布ブレード30を塗膜表面から離間させることができる。その結果、塗布ブレード30を離間させる際に塗布ムラ(ブレード痕)が発生するのを抑制することができる。
また、本実施形態では、上記のように、所定間隔Dを20μm以上とする。これにより、スピン塗布法では困難な20μm以上の膜厚t1の均一な塗膜を成膜する際に好適に適用できる。
また、本実施形態では、上記のように、ウェハ1を回転させる工程では、1rpm以上100rpm以下の回転速度でウェハ1を回転させる。これにより、一般に、数百rpm~数千rpm程度の回転速度で成膜を行うスピン塗布法と異なり、1rpm以上100rpm以下の低い回転速度で成膜を行うことにより、熱硬化性樹脂3の飛散を回避して材料使用量を低減することができる。
[変形例]
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
たとえば、上記実施形態では、処理対象物として、シリコンやガラスなどにより形成されたウェハ1を用いる例を示したが、本発明はこれに限られない。平板状の形状を有し、表面に塗布材料の塗膜が形成される物体であれば、ウェハ1以外の処理対象物であってよい。
また、上記実施形態では、塗布材料として、液状の熱硬化性樹脂3を用いる例を示したが、本発明はこれに限られない。液状で所定の粘性を有する物質であれば、熱硬化性樹脂3以外の塗布材料であってよい。
また、上記実施形態では、ウェハ1に熱硬化性樹脂3の塗膜を形成することにより、ウェハ1に形成された微細空間2内に熱硬化性樹脂3を充填する例について説明したが、本発明はこれに限られない。本発明では、塗布材料の塗膜を形成すればよく、微細空間内に充填する必要はない。したがって、処理対象物に微細空間が形成されていなくてもよい。
また、上記実施形態では、直線状の塗布ブレード30の例を示したが、本発明はこれに限られない。本発明では、塗布ブレードが湾曲していたり、凸部や凹部を有したりしていてもよい。
また、上記実施形態では、塗布ブレード30がウェハ1の半径R以上の長さを有する例を示したが、本発明はこれに限られない。本発明では、塗布ブレード30がウェハ1の半径Rと未満であってもよい。
また、上記実施形態では、塗布ブレード30を、ウェハ1の径方向外側に配置された回動中心軸41回りに回動させる構成の例を示したが、本発明はこれに限られない。本発明では、たとえば塗布ブレード30の一端部31と他端部32との間の所定位置に回動軸を設けて、塗布ブレード30を回動軸回りに回動させてもよい。
また、上記実施形態では、熱硬化性樹脂3をウェハ1の中心を含む領域に供給した例を示したが、本発明はこれに限られない。本発明では、熱硬化性樹脂(塗布材料)をウェハ(処理対象物)上のどの位置に供給してもよい。また、塗布ブレード30を液溜まりKと接触する位置に配置しなくてもよい。
また、上記実施形態では、液溜まりKを塗布ブレード30に沿ってウェハ1の中心側から外周側に向けて移動させることにより、塗膜を形成する例を示したが、本発明はこれに限られない。たとえば、液溜まりKを外周側から内周側に向けて移動させて塗膜を形成してもよい。また、たとえば、液溜まりKを塗布ブレード30の中間位置から外周側または内周側の一方に移動させた後、外周側または内周側の他方に移動させて、液溜まりKを往復させるように移動させてもよい。本発明では、塗膜形成領域の全体に塗膜が形成できるように液溜まりKを移動させればよく、どのように液溜まりKを移動させてもよい。このため、成膜工程における塗布ブレード30の初期位置は、第1角度Ag1となる位置でなくてもよいし、塗布ブレード30の最終位置が第2角度Ag2となる位置でなくてもよい。
また、上記実施形態では、ウェハ1を回転させながら、塗布ブレード30の傾きを第1角度Ag1と第2角度Ag2との間で連続的に変化させる例を示したが、本発明はこれに限られない。本発明では、第1角度Ag1と第2角度Ag2との間を複数角度に分割し、塗布ブレード30がこれらの複数角度になるように傾きを段階的に変化させてもよい。
また、上記実施形態では、ウェハ1の表面1aと塗布ブレード30との間の所定間隔Dが20μm以上である例を示したが、本発明はこれに限られない。本発明では、所定間隔Dが20μm未満であってもよいが、上記の通り、所定間隔Dが20μm以上である場合に特に好適である。
また、上記実施形態では、1rpm以上100rpm以下の回転速度でウェハ1を回転させる例を示したが、本発明はこれに限られない。本発明では、100rpmよりも大きい回転速度でウェハ1を回転させてもよいが、上記の通り、1rpm以上100rpm以下の回転速度である場合に特に好適である。また、ウェハ1の回転速度は一定である必要はなく、成膜工程の間に回転速度を変化させてもよい。たとえば、塗布ブレード30の移動(角度変化)に伴ってウェハ1の回転速度を変化させてもよい。
また、上記実施形態では、成膜工程の終了後、塗布ブレード30が塗膜と接触する位置から塗膜と非接触となる位置へ移動するまでに、少なくともウェハ1が1回転するように、塗布ブレード30をウェハ1に対して相対的に離間させる例を示したが、本発明はこれに限られない。本発明では、成膜工程の終了後、直ちに塗布ブレード30を離間(上昇)させてもよい。
なお、塗布ブレード30とウェハ1との接近および離間は、移動機構40によって塗布ブレード30側を移動させなくてもよく、載置部10を上下に移動させてもよい。
1 ウェハ(処理対象物)
1a 表面
3 熱硬化性樹脂(塗布材料)
10 載置部
11 回転中心軸
20 供給部
30 塗布ブレード
31 一端部
32 他端部
40 移動機構(駆動手段)
41 回動中心軸
50 制御部
Ag1 第1角度
Ag2 第2角度
D 所定間隔
K、Kr 液溜まり
P 交点
θ 交差角
1a 表面
3 熱硬化性樹脂(塗布材料)
10 載置部
11 回転中心軸
20 供給部
30 塗布ブレード
31 一端部
32 他端部
40 移動機構(駆動手段)
41 回動中心軸
50 制御部
Ag1 第1角度
Ag2 第2角度
D 所定間隔
K、Kr 液溜まり
P 交点
θ 交差角
Claims (13)
- 平板状の処理対象物の表面から所定間隔を隔てた位置に配置された塗布ブレードを、前記処理対象物の前記表面上に供給された液状の塗布材料の液溜まりに接触させた状態で、前記処理対象物を鉛直方向の回転中心軸回りに回転させる工程と、
前記処理対象物の回転に伴って前記塗布材料の液溜まりが前記塗布ブレードに沿って前記塗布ブレードの一端部と他端部との間を移動するように、前記処理対象物に沿う面内における回転方向に対する前記塗布ブレードの傾きを変化させて、前記処理対象物の前記表面上に前記塗布材料を成膜する工程と、を備える、塗膜形成方法。 - 前記塗布材料を成膜する工程において、
前記処理対象物の回転に伴って前記塗布材料の液溜まりに前記塗布ブレードの前記一端部側に向かう力を作用させる第1角度と、
前記処理対象物の回転に伴って前記塗布材料の液溜まりに前記塗布ブレードの前記他端部側に向かう力を作用させる第2角度と、
の間で前記塗布ブレードの傾きを変化させる、請求項1に記載の塗膜形成方法。 - 前記第1角度は、前記回転中心軸回りの円と前記塗布ブレードとの交点における前記円の接線と前記塗布ブレードとの交差角が前記一端部側に向けて鋭角となる角度であり、
前記第2角度は、前記回転中心軸回りの円と前記塗布ブレードとの交点における前記円の接線と前記塗布ブレードとの交差角が前記他端部側に向けて鋭角となる角度である、請求項2に記載の塗膜形成方法。 - 前記塗布材料を成膜する工程において、前記処理対象物を回転させながら、前記塗布ブレードの傾きを前記第1角度と前記第2角度との間で連続的に変化させる、請求項2または3に記載の塗膜形成方法。
- 前記塗布材料を成膜する工程において、前記処理対象物の上方に配置された前記塗布ブレードを、前記処理対象物の径方向外側に配置された回動中心軸回りに回動させて、前記塗布ブレードの傾きを変化させる、請求項1~4のいずれか1項に記載の塗膜形成方法。
- 前記処理対象物を回転させる工程において、前記処理対象物の半径以上の長さを有する直線状の前記塗布ブレードを、前記一端部が前記処理対象物の中心近傍に位置し、前記他端部が前記処理対象物の外周部近傍に位置するように配置し、
前記塗布材料を成膜する工程において、前記塗布ブレードの前記一端部側が前記処理対象物の中心を跨いで通過するように回動させて、前記塗布ブレードの傾きを変化させる、請求項5に記載の塗膜形成方法。 - 前記処理対象物を回転させる工程において、前記処理対象物の中心を含む領域に前記塗布材料を供給し、
前記塗布材料を成膜する工程において、前記塗布材料の液溜まりを前記塗布ブレードに沿って前記処理対象物の中心側から外周側に向けて移動させる、請求項1~6のいずれか1項に記載の塗膜形成方法。 - 前記処理対象物を回転させる工程において、前記塗布ブレードを、前記塗布ブレードの前記一端部が前記塗布材料と接する位置に配置する、請求項7に記載の塗膜形成方法。
- 前記塗布材料を成膜する工程において、前記処理対象物の外周部よりも内側に配置された前記塗布ブレードの前記他端部側の所定位置まで、前記塗布材料の液溜まりを前記塗布ブレードに沿って移動させる、請求項7または8に記載の塗膜形成方法。
- 前記塗布材料を成膜する工程の後、前記塗布ブレードを前記処理対象物の前記表面に対して離間させる工程をさらに備え、
前記塗布ブレードを前記処理対象物の前記表面に対して離間させる工程において、前記処理対象物の回転を継続しながら、前記塗布ブレードが前記塗布材料の塗膜と接触する位置から前記塗膜と非接触となる位置へ移動するまでに、少なくとも前記処理対象物が1回転するように、前記塗布ブレードを前記処理対象物に対して相対的に離間させる、請求項1~9のいずれか1項に記載の塗膜形成方法。 - 前記所定間隔は、20μm以上である、請求項1~10のいずれか1項に記載の塗膜形成方法。
- 前記処理対象物を回転させる工程では、1rpm以上100rpm以下の回転速度で前記処理対象物を回転させる、請求項1~11のいずれか1項に記載の塗膜形成方法。
- 平板状の処理対象物を保持して鉛直方向の回転中心軸回りに回転させる載置部と、
前記処理対象物の表面上に液状の塗布材料を供給する供給部と、
前記処理対象物の前記表面から所定間隔を隔てた位置に前記処理対象物の前記表面に沿って配置される塗布ブレードと、
前記処理対象物に沿う面内において前記塗布ブレードを回動させる駆動手段と、
前記塗布ブレードを前記処理対象物の前記表面上に供給された液状の塗布材料の液溜まりに接触させた状態で、前記駆動手段により、前記処理対象物の回転に伴って前記塗布材料の液溜まりが前記塗布ブレードに沿って前記塗布ブレードの一端部と他端部との間を移動するように、回転方向に対する前記塗布ブレードの傾きを変化させる制御を行う制御部と、を備える、塗膜形成装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017567836A JP6297246B1 (ja) | 2016-12-01 | 2017-11-14 | 塗膜形成方法および塗膜形成装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016233763 | 2016-12-01 | ||
JP2016-233763 | 2016-12-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018101031A1 true WO2018101031A1 (ja) | 2018-06-07 |
Family
ID=62242897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/040982 WO2018101031A1 (ja) | 2016-12-01 | 2017-11-14 | 塗膜形成方法および塗膜形成装置 |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201829075A (ja) |
WO (1) | WO2018101031A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022116078A (ja) * | 2019-02-15 | 2022-08-09 | シャンドン ツァイジュー エレクトロニック テクノロジー カンパニー リミテッド | ウェハにガラス粉末を充填する装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06112242A (ja) * | 1992-09-24 | 1994-04-22 | Toshiba Corp | ダイボンダ用ぺ−スト供給装置 |
JPH07289973A (ja) * | 1994-04-21 | 1995-11-07 | Dainippon Screen Mfg Co Ltd | 塗布装置及び塗布方法 |
JPH0822952A (ja) * | 1994-07-07 | 1996-01-23 | Dainippon Screen Mfg Co Ltd | 基板回転式現像処理方法及びその装置 |
JP2011147853A (ja) * | 2010-01-19 | 2011-08-04 | Disco Abrasive Syst Ltd | 液状樹脂塗布装置 |
WO2014057568A1 (ja) * | 2012-10-11 | 2014-04-17 | サンデン株式会社 | ディスク状基材への摺動用塗料の塗布方法 |
-
2017
- 2017-11-14 WO PCT/JP2017/040982 patent/WO2018101031A1/ja active Application Filing
- 2017-12-01 TW TW106142189A patent/TW201829075A/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06112242A (ja) * | 1992-09-24 | 1994-04-22 | Toshiba Corp | ダイボンダ用ぺ−スト供給装置 |
JPH07289973A (ja) * | 1994-04-21 | 1995-11-07 | Dainippon Screen Mfg Co Ltd | 塗布装置及び塗布方法 |
JPH0822952A (ja) * | 1994-07-07 | 1996-01-23 | Dainippon Screen Mfg Co Ltd | 基板回転式現像処理方法及びその装置 |
JP2011147853A (ja) * | 2010-01-19 | 2011-08-04 | Disco Abrasive Syst Ltd | 液状樹脂塗布装置 |
WO2014057568A1 (ja) * | 2012-10-11 | 2014-04-17 | サンデン株式会社 | ディスク状基材への摺動用塗料の塗布方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022116078A (ja) * | 2019-02-15 | 2022-08-09 | シャンドン ツァイジュー エレクトロニック テクノロジー カンパニー リミテッド | ウェハにガラス粉末を充填する装置 |
JP7300539B2 (ja) | 2019-02-15 | 2023-06-29 | シャンドン ツァイジュー エレクトロニック テクノロジー カンパニー リミテッド | ウェハにガラス粉末を充填する装置 |
Also Published As
Publication number | Publication date |
---|---|
TW201829075A (zh) | 2018-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4745358B2 (ja) | 回転塗布方法、および回転塗布装置 | |
JP6297246B1 (ja) | 塗膜形成方法および塗膜形成装置 | |
JP7212730B2 (ja) | 塗布方法 | |
KR101506768B1 (ko) | 도포방법 및 도포장치 | |
US11033929B2 (en) | Application method | |
CN103008175B (zh) | 涂覆设备和涂覆方法 | |
WO2018008325A1 (ja) | 塗布方法 | |
WO2018101031A1 (ja) | 塗膜形成方法および塗膜形成装置 | |
JP6481598B2 (ja) | 塗布膜形成方法、塗布膜形成装置及び記憶媒体 | |
JP2015153857A (ja) | 塗布処理方法、プログラム、コンピュータ記憶媒体及び塗布処理装置 | |
JP2019148569A (ja) | 塗布膜解析方法 | |
JP2010042325A (ja) | 塗布方法および塗布装置 | |
JP6880664B2 (ja) | 塗布膜形成装置、塗布膜形成方法及び記憶媒体 | |
US9793111B2 (en) | Spin coating method and manufacturing method of electronic component | |
JP7202901B2 (ja) | 塗布膜形成方法及び塗布膜形成装置 | |
WO2014034927A1 (ja) | 光学レンズの製造方法 | |
JP2016092356A (ja) | レジスト塗布方法 | |
JP2005021803A (ja) | 回転塗布方法およびそれを用いた半導体装置の製造方法 | |
JP4556550B2 (ja) | 基板への成膜材の塗布方法、基板被膜装置、及び成膜材の塗布プログラム | |
JP2023180804A (ja) | 塗布装置および塗布方法 | |
JP2006108433A (ja) | 半導体装置の製造方法 | |
JP2009253028A (ja) | 塗布膜形成装置及び塗布膜形成方法 | |
KR20230148761A (ko) | 도포 장치 및 도포 방법 | |
JP2017103319A (ja) | 塗布装置 | |
JP2009142788A (ja) | スリットコート式塗布方法及びスリットコート式塗布装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017567836 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17875534 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17875534 Country of ref document: EP Kind code of ref document: A1 |