[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018100698A1 - エンジンの始動制御方法及び始動制御装置 - Google Patents

エンジンの始動制御方法及び始動制御装置 Download PDF

Info

Publication number
WO2018100698A1
WO2018100698A1 PCT/JP2016/085639 JP2016085639W WO2018100698A1 WO 2018100698 A1 WO2018100698 A1 WO 2018100698A1 JP 2016085639 W JP2016085639 W JP 2016085639W WO 2018100698 A1 WO2018100698 A1 WO 2018100698A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
speed
injection amount
combustion
fuel
Prior art date
Application number
PCT/JP2016/085639
Other languages
English (en)
French (fr)
Inventor
加奈恵 冨喜
康太郎 ▲高▼橋
小林 徹
宏 菅野
昌宏 立石
良平 唐津
孝光 宮東
二郎 山▲崎▼
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to PCT/JP2016/085639 priority Critical patent/WO2018100698A1/ja
Priority to EP16922604.0A priority patent/EP3511553B1/en
Priority to JP2018553589A priority patent/JP6791262B2/ja
Priority to US16/344,540 priority patent/US10890122B2/en
Publication of WO2018100698A1 publication Critical patent/WO2018100698A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/28Control for reducing torsional vibrations, e.g. at acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the technology disclosed herein relates to a method and apparatus for controlling engine start.
  • the engine is integrated with a power transmission mechanism such as a transmission to form a drive device called a power train, and is mounted on the vehicle body via an engine mount having elasticity. While the engine is in operation, vibrations occur in the powertrain due to the operation of the engine. When the frequency of this vibration matches the resonance frequency (natural frequency) of the power train, resonance is caused, so the vibration generated in the power train cannot be attenuated by the engine mount, and the vibration transmitted to the vehicle and the noise accompanying it increase. The passengers will be uncomfortable.
  • the frequency of vibration generated in the powertrain as the engine is driven has a relationship corresponding to the engine speed.
  • the engine speed that causes resonance in the powertrain and its surrounding speed range (hereinafter referred to as the “resonance speed range”) are operated in a no-load state in which the driving force is not transmitted to the drive wheels (tires) after the engine starts. If the engine speed is set to be equal to or higher than the engine speed during so-called idle operation (hereinafter referred to as “idle speed”), the powertrain will resonate while the vehicle is running. For this reason, the powertrain is usually designed such that the resonance rotational speed region is included in the rotational speed region below the idle rotational speed.
  • the resonance speed range of the powertrain is set to an engine speed range lower than the idle speed
  • the engine speed is set to the idle speed by executing the combustion cycle after the engine starts cranking.
  • the vibration of the vehicle can be generated by the resonance of the power train described above. Therefore, a technique for suppressing vibration of the vehicle at the time of starting the engine has been conventionally proposed.
  • Patent Document 1 discloses an engine control device (ignition timing control device) in which the ignition timing at the start of the engine is devised.
  • This control device is configured to advance the ignition timing more than during idling during a period from when the engine starts to when the engine speed passes through the resonance speed range (vehicle resonance band).
  • the torque of the engine increases as the ignition timing is advanced.
  • the speed at which the engine speed increases is increased, and the operating state of the engine can quickly pass through the resonance speed range.
  • the engine operating speed can quickly pass through the resonance speed range, but the engine speed is In the process of rising, the engine speed reached by combustion for each combustion cycle may be included in the resonance speed range of the power train, and it is impossible to avoid the vibration caused by resonance in the power train. If vehicle vibration occurs even in a short time due to powertrain resonance, the vehicle occupant will feel uncomfortable.
  • the torque ratio during combustion in the combustion cycle is relatively large because the compression ratio is larger than that in a general spark ignition engine.
  • the vibration generated in the engine is relatively large. Therefore, if the engine speed reached by combustion for each combustion cycle is included in the resonance speed range of the power train, the vibration caused by the resonance of the power train and the vibration caused by the torque fluctuation at that time are combined. As a result, the vibration generated in the power train increases, and as a result, the vehicle generates significant vibration.
  • the technology disclosed herein has been made in view of such a point, and an object thereof is to suppress vibration generated in a drive device including the engine when the engine is started.
  • the lower limit value of the resonance speed range of the drive device is brought close to a predetermined range. It was made to increase at a stretch above the resonance speed range.
  • the technology disclosed herein is directed to a method for controlling engine start from the start of cranking by driving a starter motor until the engine speed reaches a predetermined idle speed by executing a combustion cycle.
  • the engine start control method includes a rotation speed acquisition step for acquiring an engine rotation speed for each cycle, and a torque setting step for setting a torque based on the engine rotation speed acquired in the rotation speed acquisition step.
  • a first torque is set as the torque when the difference from the rotational speed is less than a predetermined reference value, and a second smaller than the first torque is set as the torque when the difference is greater than or equal to the reference value.
  • the combustion cycle is executed after cranking is started by driving the starter motor.
  • the combustion cycle is started, the engine speed is acquired for each cycle in the engine speed acquisition step.
  • a torque as a target control amount is set based on the engine speed acquired in the speed acquisition step.
  • the amount of increase in the engine speed varies according to the magnitude of the torque set at this time. The amount of increase in engine speed increases as the torque increases, and decreases as the torque decreases.
  • the engine speed is the lower limit of the resonance speed range. Since it is relatively far from the lower value, the engine torque is set to a relatively small second torque. By doing so, since the second torque is smaller than the first torque, the amount of increase in the engine speed is suppressed, so that the lower limit of the resonance speed range before the engine speed becomes equal to or higher than the resonance speed range. It becomes possible to approach the value.
  • the engine speed is the lower limit value of the resonance speed range. Therefore, the engine torque is set to a relatively large first torque. By doing so, the engine speed can be greatly increased from the engine speed close to the lower limit value of the resonance speed range by the amount that the first torque is larger than the second torque.
  • the engine start control method in the process of increasing the engine speed by executing the combustion cycle, the engine speed is approached to a predetermined range with respect to the lower limit value of the resonance speed range. Can be greatly increased. Accordingly, it is possible to reduce the possibility that the engine rotational speed reached by the combustion for each combustion cycle is included in the resonance rotational range. Therefore, at the time of starting the engine, it is possible to suppress the occurrence of resonance in the drive device including the engine.
  • the torque setting step when the difference is greater than or equal to the reference value, the engine speed that can be reached by combustion in the combustion cycle that acquired the engine speed related to the difference is less than the lower limit value of the resonance speed range
  • the torque may be set so that the difference is less than the reference value.
  • the engine torque is set to the first torque when the engine speed after starting the combustion cycle is relatively far from the lower limit value of the resonance speed range.
  • the torque is set so that the engine speed approaches the lower limit value of the resonance speed range up to a predetermined range.
  • the engine may be a 4-cylinder 4-cycle engine.
  • n is a positive integer
  • the rotation speed of the crankshaft is detected when the cylinder that executes the combustion cycle of the nth cycle is in the first half of the compression stroke of the combustion cycle. Then, based on the rotational speed, the engine speed reached by combustion in the (n ⁇ 1) th combustion cycle may be acquired.
  • the first half of the compression stroke corresponds to the first half when the compression stroke is divided into two equal parts, the first half and the second half.
  • the “combustion cycle” here is not counted up separately for each cylinder, but is counted up for all four cylinders. That is, in a four-cylinder four-cycle engine, the number of combustion cycles is counted up by one every time the crankshaft rotates 180 degrees.
  • the engine speed is determined based on the time required to rotate 180 degrees out of one rotation of the crankshaft (360 degrees), that is, the rotation speed corresponding to a half rotation of the crankshaft. May be detected.
  • This method of obtaining the engine speed ensures the detection accuracy of the engine speed because the rotation speed of the crankshaft is higher than that at start-up in the normal operation state where the engine operating state is equal to or higher than the idle speed. It is effective in doing.
  • the combustion cycle of the (n ⁇ 1) th cycle is determined based on the rotational speed of the crankshaft when it is in the first half of the compression stroke of the combustion cycle of the nth cycle.
  • the engine speed reached by the combustion of is detected.
  • the engine may be a compression ignition type engine having an injector configured to inject fuel supplied into a combustion chamber, and igniting the fuel supplied into the combustion chamber by a compression operation of a piston.
  • the torque setting step may be a fuel amount setting step of setting an injection amount of fuel to be injected into the injector according to the difference.
  • a predetermined first injection amount is set as the fuel injection amount
  • a second injection amount smaller than the first injection amount may be set as the fuel injection amount.
  • compression ignition type engine includes a diesel engine and a compression ignition type gasoline engine.
  • the “combustion chamber” here is not limited to the meaning of the space formed when the piston reaches compression top dead center.
  • combustion chamber is used in a broad sense.
  • the torque varies according to the amount of fuel injected into the combustion chamber.
  • the torque obtained by the engine increases as the fuel injection amount increases, and decreases as the fuel injection amount decreases. Therefore, when the fuel injection amount is set according to the difference between the engine speed and the lower limit value of the resonance speed range in the fuel amount setting step, torque according to the fuel injection amount can be obtained. . That is, when the first injection amount is set as the fuel injection amount, a relatively large first torque can be obtained as the torque corresponding to the first injection amount. On the other hand, when the second injection amount is set as the fuel injection amount, a relatively small second torque can be obtained as the torque corresponding to the second injection amount.
  • the engine start control method may acquire an intake air amount introduced into the combustion chamber and a temperature in the combustion chamber.
  • the fuel amount setting step when the difference is less than the reference value, it is possible to output a maximum torque according to the intake air amount introduced into the combustion chamber and the temperature in the combustion chamber.
  • the first injection amount may be set.
  • Engine torque can be obtained by burning fuel in the air.
  • the amount of intake air introduced into the combustion chamber is a factor that changes the combustion pressure together with the amount of fuel injected by the injector, and affects the torque obtained by the engine.
  • the temperature in the combustion chamber affects the vaporization property (ease of evaporation) of the fuel, and thus is a factor that changes the combustion pressure and affects the torque obtained by the engine. Therefore, the maximum torque that the engine can output mainly depends on the intake air amount introduced into the combustion chambers and the temperature in the combustion chambers.
  • the fuel amount setting step when the difference between the engine speed and the lower limit value of the resonance speed range is less than a predetermined reference value, that is, when the engine speed is relatively close to the lower limit value of the resonance speed range, the first injection amount is set so that the maximum torque can be output, the engine speed rapidly increases due to the maximum torque obtained by combustion according to the first injection amount. Thereby, the engine speed reached by the combustion at this time can be prevented from jumping over the resonance rotation area and being included in the resonance rotation area.
  • the first injection amount may be set so as to be maximum within the period.
  • the engine start control device includes a starter motor for rotating a crankshaft provided in the engine, an injector attached to the engine and configured to inject fuel to be supplied into a combustion chamber, and the starter A controller connected to each of the motor and the injector and configured to operate the engine by outputting a control signal to each of the starter motor and the injector; and connected to the controller; and An engine rotation sensor configured to detect an engine rotation speed and to output a detection signal to the control unit.
  • the control unit is configured to acquire an engine speed for each cycle based on a detection signal of the engine speed sensor, and to inject the injector based on the engine speed acquired by the speed acquisition unit.
  • a fuel amount setting unit that sets an injection amount of the fuel to be made.
  • the fuel amount setting unit is configured to resonate a drive device including the engine during a start-up period of the engine from the start of cranking by driving the starter motor until the engine speed reaches an idle speed by executing a combustion cycle.
  • a first injection amount is set as the fuel injection amount
  • a second injection amount smaller than the first injection amount is set as the fuel injection amount when the difference is greater than or equal to the reference value.
  • the combustion cycle is executed after cranking is started by driving the starter motor.
  • the rotation speed acquisition unit acquires the engine rotation speed for each cycle.
  • the fuel amount setting unit sets the fuel injection amount to be injected by the injector based on the engine speed acquired by the rotation speed acquisition unit.
  • the engine torque is determined according to the fuel injection amount set at this time, and the amount of increase in the engine speed varies. The amount of increase in the engine speed increases as the fuel injection amount increases, and decreases as the fuel injection amount decreases.
  • the fuel injection amount is set to a relatively small second injection amount. By doing so, since the second injection amount is smaller than the first injection amount, the torque is reduced and the increase amount of the engine speed is suppressed. Therefore, before the engine speed exceeds the resonance speed range. It is possible to approach the lower limit value of the resonance rotational speed range.
  • the engine speed is relatively close to the lower limit value of the resonance speed range.
  • the second fuel injection amount is set to a relatively large fuel injection amount.
  • the engine start control device in the process of increasing the engine speed by executing the combustion cycle, the engine speed is greatly increased after approaching the lower limit value of the resonance speed range. Can do. Accordingly, it is possible to reduce the possibility that the engine speed reached by combustion for each combustion cycle is included in the resonance speed range. Therefore, at the time of starting the engine, it is possible to suppress the occurrence of resonance in the drive device including the engine.
  • the fuel amount setting unit is configured such that an engine speed that can be reached by combustion in a combustion cycle that acquires the engine speed related to the difference is a lower limit value of the resonance speed range.
  • the second injection amount may be set so that the difference is less than the reference value.
  • the fuel injection amount is set to the first injection amount when the engine speed after starting the combustion cycle is relatively far from the lower limit value of the resonance speed range.
  • the second injection amount is set so that the engine speed approaches the lower limit value of the resonance speed range up to a predetermined range.
  • the engine may be a 4-cylinder 4-cycle engine.
  • the rotational speed acquisition unit detects the rotational speed of the crankshaft when the cylinder performing the nth combustion cycle is in the first half of the compression stroke of the combustion cycle. Based on the rotational speed, the engine rotational speed reached by combustion in the (n-1) th combustion cycle may be acquired.
  • the first half of the compression stroke corresponds to the first half when the compression stroke is divided into two equal parts, the first half and the second half.
  • the “combustion cycle” here is not counted up separately for each cylinder, but is counted up for all four cylinders. That is, in a four-cylinder four-cycle engine, the number of combustion cycles is counted up by one every time the crankshaft rotates 180 degrees.
  • the (n-1) th cycle of combustion Information on the engine speed reached by combustion in the cycle can be reflected.
  • the engine may be a compression ignition engine that ignites fuel supplied into the combustion chamber by a compression operation of a piston.
  • compression ignition type engine includes a diesel engine and a compression ignition type gasoline engine.
  • the “combustion chamber” here is not limited to the meaning of the space formed when the piston reaches compression top dead center.
  • combustion chamber is used in a broad sense.
  • the torque fluctuation is relatively large because the compression ratio is larger than that in a general spark ignition engine, and therefore vibration generated in the engine during combustion in the combustion cycle is also relatively large. . Therefore, if the engine speed reached by combustion for each combustion cycle is included in the resonance speed range of the power train, the vibration caused by the resonance of the power train and the vibration caused by the torque fluctuation at that time are combined. As a result, the vibration generated in the powertrain increases.
  • the engine start control device is particularly effective for such a compression ignition type engine because it can suppress the vibration of the vehicle due to the resonance of the power train.
  • the engine control device further includes an air flow sensor that detects a flow rate of intake air flowing in an intake passage provided in the engine, and a water temperature sensor that is attached to the engine and detects the temperature of engine cooling water. May be.
  • the control unit acquires the intake air amount introduced into the combustion chamber based on the detection signal of the air flow sensor and the temperature in the combustion chamber based on the detection signal of the water temperature sensor. It may be.
  • the fuel amount setting unit can output a maximum torque according to an intake air amount introduced into the combustion chamber and a temperature in the combustion chamber when the difference is less than the reference value.
  • the first injection amount may be set.
  • the maximum torque can be output.
  • the increase amount of the engine speed is maximized by the maximum torque obtained by combustion according to the first injection amount. Thereby, the engine speed reached by the combustion at this time can be prevented from jumping over the resonance rotation area and being included in the resonance rotation area.
  • the fuel amount setting unit starts from the start of the combustion cycle until the engine speed reaches the idle speed when the engine speed increases due to combustion in the combustion cycle.
  • the first injection amount may be set so as to be maximum within the period.
  • the engine speed increases during the start-up period.
  • the first injection amount is set so that the amount is maximized, the engine speed is increased as much as possible by the torque obtained by combustion according to the first injection amount. Thereby, the engine speed reached by the combustion at this time can be prevented from jumping over the resonance rotation area and being included in the resonance rotation area.
  • the engine start control method and the start control device it is possible to suppress vibrations generated in the drive device including the engine when the engine is started. As a result, it is possible to suitably reduce the vibration of the vehicle and the accompanying noise caused by the vibration of the drive device.
  • FIG. 1 is a rear view illustrating a front portion of a vehicle on which a compression ignition engine is mounted.
  • FIG. 2 is a diagram illustrating the configuration of a compression ignition engine.
  • FIG. 3 is a block diagram relating to control of the compression ignition engine.
  • FIG. 4 is a flowchart showing the control procedure of the injector.
  • FIG. 5 is a diagram illustrating the configuration of the PCM.
  • FIG. 6 is a diagram illustrating a method for obtaining the engine speed.
  • FIG. 7 is a diagram illustrating a method for obtaining the engine speed.
  • FIG. 8 is a flowchart showing a procedure for setting the fuel injection amount.
  • FIG. 9 is a diagram illustrating a change in engine speed and a change in fuel injection amount when the engine is started.
  • FIG. 10 is a diagram illustrating a change in torque with respect to the engine speed at the time of starting the engine.
  • FIG. 11 is a diagram illustrating a change in the fuel injection amount with respect to the
  • FIG. 1 shows a rear view of a front portion of a vehicle V on which a compression ignition engine 1 is mounted.
  • a compression ignition type engine (hereinafter simply referred to as “engine”) 1 according to the present embodiment is mounted on a front engine / front drive type four-wheeled vehicle (hereinafter referred to as “vehicle”) V as shown in FIG. ing.
  • the engine 1 constitutes a powertrain PT of the vehicle V.
  • the power train PT includes an engine 1 and a transmission 2.
  • the power train PT is configured to shift the output of the engine 1 in the transmission 2 and to transmit the shifted output to the front wheels 201 of the vehicle V.
  • the vehicle body of the vehicle V is composed of a plurality of frames.
  • a pair of left and right front side frames 202 extending in the front-rear direction of the vehicle V are disposed on both sides of the power train PT in the vehicle width direction.
  • a subframe 203 is installed below the front side frame 202 in the vehicle width direction.
  • the power train PT has a Pendulum support structure. That is, the upper portions of the power train PT at both ends in the vehicle width direction (specifically, portions located above the center of gravity G of the power train PT) are respectively supported by the front side frame 202 via the engine mount 204. Yes. Each engine mount 204 has an elastic force and supports both ends of the power train PT so as to be suspended.
  • the power train PT vibrates so as to rotate around the roll axis A extending substantially in the vehicle width direction using, for example, torque fluctuation when the engine 1 is operated as a vibration force.
  • a lower portion of the power train PT (specifically, a portion positioned below the center of gravity G of the power train PT) is coupled to the subframe 203 via the torque rod 205.
  • the resonance frequency when the power train PT vibrates is determined according to the hardware configuration of the power train PT and the support structure thereof. Although details are omitted, the resonance frequency according to the present embodiment is such that the engine speed (hereinafter referred to as “resonance speed”) Rr corresponding to the resonance frequency is at least smaller than the idle speed Ri of the engine 1.
  • the idle speed Ri is set so as not to cause engine stall, for example, when the vehicle V is not running and when the accelerator pedal is not depressed.
  • FIG. 2 illustrates the configuration of the engine 1.
  • FIG. 3 is a block diagram relating to the control of the engine 1.
  • the engine 1 is an in-line four-cylinder and four-cycle diesel engine, and is configured to ignite fuel supplied into a combustion chamber by a compression operation of a piston.
  • the engine 1 is not limited to a diesel engine.
  • the technology disclosed herein may be applied to, for example, a compression ignition type gasoline engine.
  • the engine 1 includes a cylinder block 11 provided with four cylinders 11 a (only one is shown), a cylinder head 12 disposed thereon, and a cylinder block 11 disposed below the cylinder block 11. And an oil pan 13 in which lubricating oil is stored.
  • a piston 14 is slidably inserted in each cylinder 11a.
  • a cavity that defines the combustion chamber 14 a is formed on the top surface of the piston 14.
  • the piston 14 is connected to the crankshaft 15 via a connecting rod 14b.
  • the crankshaft 15 is connected to the transmission 2 described above.
  • a trigger plate 92 is attached to the crankshaft 15. The trigger plate 92 rotates integrally with the crankshaft 15.
  • combustion chamber here is not limited to the meaning of the space formed when the piston 14 reaches compression top dead center.
  • combustion chamber is used in a broad sense. That is, the “combustion chamber” may mean a space formed by the piston 14, the cylinder 11 a, and the cylinder head 12 regardless of the position of the piston 14.
  • the geometric compression ratio of the engine 1 is set higher than that of a general spark ignition engine. Specifically, the geometric compression ratio of the engine 1 is set to 14 or more. This setting is an example and may be changed as appropriate.
  • the cylinder block 11 is provided with a starter motor 91 (shown only in FIG. 3) for starting cranking when the engine 1 is started.
  • the starter motor 91 meshes with a ring gear (not shown) connected to one end of the crankshaft 15 so as to be detachable.
  • the starter motor 91 is driven.
  • the starter motor 91 meshes with the ring gear, the power of the starter motor 91 is transmitted to the ring gear, and the crankshaft 15 is driven to rotate.
  • the cylinder head 12 is formed with two intake ports 16 and two exhaust ports 17 for each cylinder 11a. Both the intake port 16 and the exhaust port 17 communicate with the combustion chamber 14a.
  • the intake port 16 is provided with an intake valve 21 for opening and closing the opening on the combustion chamber 14a side.
  • the exhaust port 17 is provided with an exhaust valve 22 for opening and closing the opening on the combustion chamber 14a side.
  • the cylinder head 12 is provided with an injector 18 for each cylinder 11a.
  • the injector 18 is configured to supply fuel into the combustion chamber 14a by directly injecting fuel into the cylinder 11a.
  • the injector 18 is supplied with fuel from a fuel tank 52 via a fuel supply system 51.
  • the fuel supply system 51 includes an electric low-pressure fuel pump (not shown), a fuel filter 53, a high-pressure fuel pump 54, and a common rail 55 disposed in the fuel tank 52.
  • the high-pressure fuel pump 54 is driven by a rotating member (for example, a camshaft) of the engine 1.
  • the high-pressure fuel pump 54 pumps the low-pressure fuel supplied from the fuel tank 52 through the low-pressure fuel pump and the fuel filter 53 to the common rail 55 at a high pressure.
  • the common rail 55 stores the pumped fuel in a high pressure state. Then, the fuel stored in the common rail 55 is injected from the injector 18 into the combustion chamber 14a when the injector 18 operates.
  • the surplus fuel generated in each of the low pressure fuel pump, the high pressure fuel pump 54, the common rail 55 and the injector 18 is returned to the fuel tank 52 via the return passage 56 (the surplus fuel generated in the low pressure fuel pump is directly). It is.
  • the configuration of the fuel supply system 51 is not limited to the above configuration.
  • the cylinder head 12 is also provided with a glow plug 19 for each cylinder 11a.
  • the glow plug 19 is configured to warm the gas sucked into the cylinder 11a when the engine 1 is cold-started to improve the ignitability of the fuel.
  • An intake passage 30 is connected to one side of the engine 1.
  • the intake passage 30 is a passage through which the gas introduced into the combustion chamber 14a flows.
  • an exhaust passage 40 is connected to the other side of the engine 1.
  • the exhaust passage 40 is a passage through which exhaust gas discharged from the combustion chamber 14a flows.
  • the intake passage 30 and the exhaust passage 40 are provided with a turbocharger 61 for supercharging gas.
  • the intake passage 30 communicates with the intake port 16 of each cylinder 11a.
  • An air cleaner 31 that filters fresh air is disposed at the upstream end of the intake passage 30.
  • a surge tank 34 is disposed near the downstream end of the intake passage 30.
  • the intake passage 30 on the downstream side of the surge tank 34 constitutes an independent passage branched for each cylinder 11a. The downstream end of each independent passage is connected to the intake port 16 of each cylinder 11a.
  • the intake shutter valve 36 is basically fully opened.
  • the intercooler 35 is configured to cool the gas with the cooling water supplied from the electric water pump 37.
  • the exhaust passage 40 communicates with the exhaust port 17 of each cylinder 11a.
  • the upstream portion of the exhaust passage 40 constitutes an independent passage that branches for each cylinder 11a, although detailed illustration is omitted.
  • the upstream end of each independent passage is connected to the exhaust port 17 of each cylinder 11a.
  • a portion of the exhaust passage 40 on the downstream side of the independent passage constitutes a collecting portion where the independent passages gather.
  • an exhaust purification device 41 that purifies harmful components in the exhaust gas of the engine 1, and a silencer 42 is disposed.
  • the exhaust purification device 41 includes an oxidation catalyst 41a and a diesel particulate filter (hereinafter referred to as “DPF”) 41b in order from the upstream side.
  • DPF diesel particulate filter
  • the oxidation catalyst 41a has an oxidation catalyst carrying platinum or platinum added with palladium, etc., and promotes a reaction in which CO and HC in exhaust gas are oxidized to generate CO2 and H2O. is there. Further, the DPF 41b collects fine particles such as soot contained in the exhaust gas of the engine 1. The DPF 41b may be coated with an oxidation catalyst.
  • the turbocharger 61 has the compressor 61a disposed in the intake passage 30 as described above and the turbine 61b disposed in the exhaust passage 40 as described above.
  • the turbine 61b is rotated by the exhaust gas flow.
  • the compressor 61a is connected to the turbine 61b and operates by the rotation of the turbine 61b.
  • the turbocharger 61 compresses the gas introduced into the combustion chamber 14a.
  • a VGT throttle valve 62 is provided in the vicinity of the upstream side of the turbine 61 b in the exhaust passage 40. By controlling the opening degree (throttle amount) of the VGT throttle valve 62, the flow rate of the exhaust gas sent to the turbine 61b can be adjusted.
  • the engine 1 is configured to recirculate a part of the exhaust gas from the exhaust passage 40 to the intake passage 30.
  • a high pressure EGR passage 71 and a low pressure EGR passage 81 are provided to recirculate the exhaust gas.
  • the high pressure EGR passage 71 includes a portion of the exhaust passage 40 between the collecting portion and the turbine 61b of the turbocharger 61 (that is, a portion upstream of the turbine 61b of the turbocharger 61) and the intake passage 30. A portion between the surge tank 34 and the intercooler 35 (that is, a portion on the downstream side of the compressor 61a of the turbocharger 61) is connected.
  • the high pressure EGR passage 71 is provided with a high pressure EGR valve 73 that adjusts the amount of exhaust gas recirculated by the high pressure EGR passage 71.
  • the low pressure EGR passage 81 includes a portion in the exhaust passage 40 between the exhaust purification device 41 and the silencer 42 (that is, a portion on the downstream side of the turbine 61 b of the turbocharger 61), and a turbocharger 61 in the intake passage 30. A portion between the compressor 61a and the air cleaner 31 (that is, a portion upstream of the compressor 61a of the turbocharger 61) is connected.
  • the low-pressure EGR passage 81 is provided with a low-pressure EGR cooler 82 that cools the exhaust gas that passes through the low-pressure EGR passage 81 and a low-pressure EGR valve 83 that adjusts the recirculation amount of the exhaust gas through the low-pressure EGR passage 81.
  • the compression ignition type engine includes a PCM (Powertrain Control Module) 100 shown in FIG. 3 for controlling the entire powertrain PT including the engine 1.
  • the PCM 100 is a controller based on a well-known microcomputer and includes a central processing unit (CPU) that executes a program and, for example, a RAM (Random Access Memory) or a ROM (Read Only Memory). A memory for storing programs and data, and an input / output bus for inputting and outputting electrical signals.
  • the PCM 100 is an example of a “control unit”.
  • various sensors SW1 to SW11 are connected to the PCM 100.
  • Each of the sensors SW1 to SW11 outputs a detection signal to the PCM 100.
  • the sensors SW1 to SW11 include the following sensors.
  • the air flow sensor SW2 is disposed downstream of the air cleaner 31 in the intake passage 30 and detects the flow rate of fresh air (air) flowing through the intake passage 30, the intake air temperature sensor SW3 that detects the temperature of the fresh air, and the intercooler 35.
  • An intake pressure sensor SW5 that detects the pressure of the gas that has passed through the intercooler 35 and an intake gas temperature sensor that is attached to the surge tank 34 and detects the temperature of the gas supplied into the cylinder 11a SW4, a water temperature sensor SW8 that is attached to the engine 1 and detects the temperature of the engine coolant (hereinafter referred to as “cooling water temperature”), a crank angle sensor SW1 that detects the rotation angle of the crankshaft 15, and a high pressure EGR in the exhaust passage 40 Exhaust gas provided near the connection with the passage 71 and discharged from the combustion chamber 14a.
  • Exhaust pressure sensor SW6 for detecting the pressure of gas
  • DPF differential pressure sensor SW11 for detecting the differential pressure of exhaust gas before and after passing through DPF 41b
  • Exhaust temperature sensor SW7 for detecting the temperature of exhaust gas after passing through DPF 41b
  • accelerator An accelerator opening sensor SW9 that detects the accelerator opening corresponding to the amount of pedal depression
  • a vehicle speed sensor SW10 that detects the rotational speed of the output shaft of the transmission 2.
  • the crank angle sensor SW1 is an example of an “engine rotation sensor”.
  • the PCM 100 determines the operating state of the engine 1 and the traveling state of the vehicle V based on these detection signals, and calculates the control amount of each actuator accordingly.
  • the PCM 100 sends control signals related to the calculated control amount to the injector 18, the intake shutter valve 36, the electric water pump 37, the exhaust shutter valve 43, the high pressure fuel pump 54, the VGT throttle valve 62, the high pressure EGR valve 73, and the low pressure EGR valve. 83, and output to the starter motor 91 and the like.
  • FIG. 5 illustrates the configuration of the PCM 100.
  • the PCM 100 includes, as functional elements related to the start control of the engine 1, an engine start unit 101 that starts cranking by a starter motor 91, a rotation speed acquisition unit 102 that acquires an engine speed, and engine cooling A cooling water temperature acquisition unit 103 that acquires the water temperature of water, an in-cylinder temperature acquisition unit 104 that acquires a temperature in the combustion chamber 14a based on the water temperature (hereinafter referred to as “in-cylinder temperature”), and a combustion chamber 14a Is provided with an intake air amount acquisition unit 105 that acquires the intake air amount introduced into the engine, and an injection amount setting unit 106 that sets the fuel injection amount by the injector 6 based on the engine speed, the in-cylinder temperature, and the intake air amount.
  • an engine start unit 101 that starts cranking by a starter motor 91
  • a rotation speed acquisition unit 102 that acquires an engine speed
  • engine cooling A cooling water temperature acquisition unit 103 that acquires the water temperature of water
  • an in-cylinder temperature acquisition unit 104 that acquires a temperature in the
  • the engine starting unit 101 inputs a control signal to the starter motor 91 when starting the engine 1.
  • the starter motor 91 rotates the crankshaft 15. By this rotation, cranking of the engine 1 is started.
  • the rotational speed acquisition unit 102 detects or estimates the engine rotational speed based on the detection signal of the crank angle sensor SW1, and outputs a signal corresponding to the detected value or the estimated value to the injection amount setting unit 106. .
  • the rotational speed acquisition unit 102 detects or estimates the engine rotational speed at a predetermined timing when cranking by the starter motor 91 is performed. Then, when the engine 1 performs the idle operation and when the engine 1 performs the normal operation (when the vehicle V travels), for example, if n is a positive integer, Before performing fuel injection in the combustion cycle of, obtain an engine speed that can be reached by combustion in the previous cycle (that is, combustion before the nth cycle), and correspond to the engine speed A signal is generated and output to the injection amount setting unit 106.
  • combustion cycle here is not counted up separately for each cylinder, but is counted up for all four cylinders. Specifically, in the case of a four-cylinder engine, the combustion cycle is offset by 180 degrees, so considering that one cycle is completed every time the crankshaft 15 rotates 720 degrees per cylinder 11a, Each time the shaft 15 rotates 180 degrees, the number of cycles is incremented by one.
  • FIGS. 6 and 7 are diagrams for explaining a method for obtaining the engine speed.
  • the four cylinders 11a are arranged in the order of the cylinder row direction, the first cylinder (# 1), the second cylinder (# 2), the third cylinder (# 3), and the fourth cylinder (# 4). Call it. That is, in this engine 1, combustion occurs in the order of # 1 ⁇ # 3 ⁇ # 4 ⁇ # 2 every time the crankshaft 15 rotates 720 degrees. Then, as shown in FIG. 6, each time a series of strokes including an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke is performed in each cylinder 11a, the number of combustion cycles is counted up by one.
  • the rotation speed acquisition unit 102 performs the intake stroke in the cylinder 11 a (for example, the fourth cylinder (# 4)) scheduled to burn in the nth combustion cycle. Based on the time required for the trigger plate 92 to rotate by 180 degrees from the first half through the intake bottom dead center to the first half of the compression stroke (t1 + t2 + t3 + t4 + t5 + t6 shown in FIGS. 6 and 7), the engine speed is acquired. .
  • ti i is an integer of 1 to 6
  • the rotation speed acquisition unit 102 calculates an average value of six unit rotation times (t1 + t2 +... + T6), and the rotation speed of the trigger plate 92 (that is, the crankshaft 15) from the average value. And the engine speed is acquired based on the rotation speed of the trigger plate 92.
  • the rotation speed of the trigger plate 92 is higher than that at the start. Therefore, if the unit rotation time in the intake stroke is taken into consideration, the engine rotation reflects the influence of fluctuations in the engine speed for each combustion in the combustion cycle rather than considering only the unit rotation time in the compression stroke. Number detection accuracy can be increased. Therefore, such an engine speed acquisition method is effective in ensuring the detection accuracy of the engine speed during normal operation.
  • the fluctuation of the engine speed for each combustion in the combustion cycle varies. It becomes relatively large. Therefore, if the time (six unit rotation times) required for the half rotation of the trigger plate 92 is used to acquire the engine speed, the detection accuracy of the engine speed is lowered. From this, the above-described method for obtaining the engine speed during normal operation is that the previous (n-1) th cycle combustion is performed before the fuel injection amount in the nth combustion cycle at the start is set. It is not suitable for obtaining the engine speed reached by combustion in the cycle.
  • the rotation speed acquisition unit 102 is shown in FIG. 6 within a period (hereinafter referred to as “starting period”) until the engine rotation speed reaches a predetermined idle rotation speed after the engine 1 starts the combustion cycle.
  • starting period a period (hereinafter referred to as “starting period”) until the engine rotation speed reaches a predetermined idle rotation speed after the engine 1 starts the combustion cycle.
  • the cylinder 11a executing the combustion cycle of the nth cycle is In the compression stroke. Therefore, if the rotation speed of the crankshaft 15 is detected when the cylinder 11a that executes the nth combustion cycle is in the compression stroke, the engine that can be reached by combustion in the (n-1) th combustion cycle. The number of rotations can be acquired. In particular, when the engine speed is acquired in the first half of the compression stroke, the (n-1) th cycle combustion is used to set the torque in the nth combustion cycle and to control the manipulated variable related to that torque. It is possible to reflect the information of the engine speed reached by combustion in the cycle.
  • the rotation speed acquisition unit 102 performs the engine rotation speed reached by combustion in the immediately preceding (n ⁇ 1) th combustion cycle (hereinafter referred to as “current rotation”) before performing combustion injection in the nth combustion cycle.
  • the engine speed may be obtained).
  • the rotational speed acquisition unit 102 generates a signal corresponding to the current engine rotational speed and outputs the signal to the injection amount setting unit 106.
  • the cooling water temperature acquisition unit 103 detects the coolant temperature of the engine cooling water based on the detection signal of the water temperature sensor SW8 and outputs a signal corresponding to the detected value to the in-cylinder temperature acquisition unit 104.
  • the in-cylinder temperature acquisition unit 104 detects or estimates the in-cylinder temperature based on the detection value by the cooling water temperature acquisition unit 103 and outputs a signal corresponding to the detection value or the estimation value to the injection amount setting unit 106.
  • the intake air amount acquisition unit 105 detects or estimates the intake air amount introduced into the combustion chamber 14a of each cylinder 11a based on the detection signal of the air flow sensor SW2 and the detection signal of the intake air temperature sensor SW3. A signal corresponding to the detected value or the estimated value is output to the fuel amount setting unit 106.
  • the injection amount setting unit 106 includes an engine speed detected or estimated by the rotation speed acquisition unit 102, an in-cylinder temperature detected or estimated by the in-cylinder temperature acquisition unit 104, and an intake air amount acquisition unit 105 within the start period. Based on the intake amount detected or estimated by the engine, the fuel injection amount by the injector 6 after the next combustion cycle is set. In the engine 1, the torque varies according to the fuel injection amount. The torque obtained by the engine 1 increases as the fuel injection amount increases, and decreases as the fuel injection amount decreases.
  • the resonance rotational speed Rr of the power train PT is smaller than the idle rotational speed Ri. Therefore, there is a possibility that the engine speed at the time of combustion in the combustion cycle is included in and around the resonance speed Rr of the power train PT within the start-up period. In that case, there is a concern that the vibration of the entire power train PT including the engine 1 is excited by resonance and becomes large.
  • the inventors of the present application prevent the engine speed at the time of combustion in the combustion cycle from being included in and around the resonance speed Rr through the processing performed by the injection amount setting unit 106, and temporarily Even when it is included in Rr and the vicinity thereof, the inventors have found a torque control so that the vibration associated therewith is eliminated as quickly as possible.
  • the PCM 100 stores a resonance rotation speed Rr and a resonance rotation speed range Br including the rotation speed range before and after the resonance rotation speed Rr as an index for determining whether or not the engine rotation speed is included in and around the resonance rotation speed Rr.
  • Both the lower limit value R1 and the upper limit value R2 of the resonance rotational speed range Br are set in advance as threshold values that allow the acceleration when the engine 1 vibrates, and thus the powertrain PT vibrates, to fall within a predetermined range. Yes.
  • the lower limit value R1 is larger than the aforementioned cranking determination value Rc.
  • the upper limit value R2 is smaller than the idle speed Ri.
  • FIG. 4 shows a control flow relating to fuel injection.
  • the PCM 100 performs fuel injection by the injector 18 in accordance with the procedure shown in FIG. 4 including processing performed by the injection amount setting unit 106.
  • step S101 the PCM 100 acquires various types of information based on the detection signals acquired from the sensors. For example, the PCM 100 acquires the engine speed, the accelerator opening, the coolant temperature, the intake air amount, and the like. Subsequently, in step S102, the injection amount setting unit 106 of the PCM 100 sets a target amount of fuel to be injected into the combustion chamber 14a (hereinafter referred to as “fuel injection amount”) based on the information acquired in step S101. To do. Furthermore, in step S103, the PCM 100 sets an injection pattern and an injection timing when executing fuel injection. In step S104, the PCM 100 generates a control signal corresponding to the settings in steps S102 to S103 and inputs the control signal to the injector 6.
  • fuel injection amount a target amount of fuel to be injected into the combustion chamber 14a
  • step S101 is an example of a “rotation speed acquisition step”.
  • step S102 is an example of a “fuel amount setting step” and a “torque setting step”.
  • the torque is adjusted according to the fuel injection amount. The torque increases as the fuel injection amount increases, and decreases as the fuel injection amount decreases. Setting the fuel injection amount is equivalent to setting the torque of the engine 1.
  • FIG. 8 is a flowchart showing a procedure for setting the fuel injection amount.
  • the flow shown in FIG. 8 is an example of the process according to step S102 of FIG.
  • the injection amount setting unit 106 sets the fuel injection amount to be equal to or less than a predetermined maximum injection amount Fm.
  • the maximum injection amount Fm decreases when the in-cylinder temperature is high, and increases when the in-cylinder temperature is low.
  • the maximum injection amount Fm is set so that the maximum torque corresponding to the in-cylinder temperature and the intake air amount can be output.
  • the maximum injection amount Fm increases when the intake amount is large, and decreases when the intake amount is small.
  • step S201 the injection amount setting unit 106 acquires the engine speed and determines whether or not cranking is completed. This determination is made based on whether or not the engine speed is equal to or higher than the cranking determination value Rc illustrated in FIGS.
  • the cranking determination value Rc is set in advance according to the configuration of the engine 1 and the like.
  • step S201 if the engine speed is lower than the cranking determination value Rc, it is determined that the cranking has not been completed and NO is determined. When it determines with NO, it progresses to step S207. In step S207, the injection amount setting unit 106 sets the fuel injection amount to zero and continues cranking. On the other hand, if the engine speed has reached the cranking reversal value Rc or higher in step S201, it is determined that the cranking has been completed and YES is determined. When it determines with YES, it progresses to step S202 from step S201, and transfers to execution of a combustion cycle (firing) from cranking.
  • step S202 the injection amount setting unit 106 determines whether or not the difference between the lower limit value R1 of the resonance rotational speed range Br and the engine rotational speed is less than a predetermined reference value.
  • a method of determining whether or not the engine speed is equal to or greater than a predetermined level crossing determination value R0 is employed.
  • the crossing determination value R0 is set in advance to a value that is lower than the lower limit value R1 of the resonance rotational speed range Br by the reference value.
  • the crossing determination value R0 is larger than the cranking determination value Rc and smaller than the lower limit value R1 of the resonance rotational speed range Br.
  • step S202 When it is determined in step S202 that the engine speed is less than the predetermined level crossing determination value R0 (that is, the difference between the lower limit value R1 of the resonance speed range Br and the engine speed is less than the reference value), and NO. Advances to step S208.
  • step S208 the injection amount setting unit 106 sets the fuel injection amount to a predetermined stepping injection amount F1 and returns.
  • the step injection amount F1 is equal to or greater than the crossing determination value R0 and the lower limit value R1 of the resonance rotational speed range Br. Set to be less than The step injection amount F1 is smaller than the aforementioned maximum injection amount Fm (step injection amount ⁇ maximum injection amount).
  • the step injection amount F1 here is an example of the “second injection amount” for obtaining the “second torque”.
  • step S202 when it is determined in step S202 that the engine speed is equal to or greater than a predetermined level crossing determination value R0 (that is, the difference between the lower limit value R1 of the resonance speed range Br and the engine speed is equal to or greater than the reference value), and YES.
  • step S203 the process proceeds to step S203.
  • step S203 the injection amount setting unit 106 determines whether or not the engine speed is equal to or higher than the lower limit value R1 of the resonance speed range Br.
  • step S203 If it is determined in step S203 that the engine speed is less than the lower limit value R1 of the resonance speed range Br and the determination is NO, the process proceeds to step S209.
  • step S209 the injection amount setting unit 106 sets the fuel injection amount to a predetermined jump injection amount F2 and returns.
  • step S204 if it is determined in step S203 that the engine speed is equal to or greater than the lower limit value R1 of the resonance speed range Br and YES, the process proceeds to step S204.
  • the jump injection amount F2 is set so that the increase amount of the engine speed due to combustion in the combustion cycle becomes maximum within the start-up period from the start of the combustion cycle until the engine speed reaches the idle speed.
  • the engine speed increases greatly by the amount of fuel injection. This means that the engine speed increases from a value smaller than the lower limit value R1 of the resonance speed range Br to a value larger than the upper limit value R2 by combustion for one cycle (hereinafter referred to as “resonance speed range Br”). It is effective in the case of “jumping”.
  • the jump injection amount F2 here is an example of the “first injection amount” for obtaining the “first torque”.
  • the maximum injection amount Fm increases or decreases according to the in-cylinder temperature.
  • the intake air temperature changes, the air density changes, so the oxygen concentration in the cylinder fluctuates, and the torque obtained even with the same fuel injection amount fluctuates.
  • the range of the resonance rotational speed range Br changes depending on the external environment. Specifically, when the outside air temperature decreases, the elastic characteristics of the engine mount 204 change, and the acceleration when the power train PT vibrates, and thus the lower limit value R1 and the upper limit value R2 of the resonance rotational speed range Br change. To do. Due to such circumstances, the engine speed at the time of combustion in the combustion cycle may be included in the resonance speed range Br.
  • the injection amount setting unit 106 when the engine speed is included in the resonance speed range Br, the injection amount setting unit 106 according to the present embodiment performs processing for quickly eliminating the vibration caused by that in steps S204 and S210. Execute.
  • step S204 it is determined whether or not the engine speed is equal to or higher than the upper limit value R2 of the resonance speed range Br. In this step S204, if the engine speed is less than the upper limit value R2 of the resonance speed range Br and it is determined YES, the process proceeds to step S210. In step S210, the injection amount setting unit 106 sets the fuel injection amount to a predetermined jump injection amount F2 and returns. On the other hand, if it is determined in step S204 that the engine speed is equal to or greater than the upper limit value R2 of the resonance speed range Br and the determination is NO, the process proceeds to step S205.
  • the engine speed greatly increases as in the process related to step S209 described above. This is advantageous in increasing the engine speed from the resonance speed range Br to a value equal to or higher than the upper limit value R2 of the resonance speed range Br (hereinafter referred to as “escape from the resonance speed range Br”). Become.
  • the jump injection amount F2 set as the combustion injection amount in step S204 does not need to coincide with the maximum injection amount Fm.
  • the jump injection amount F2 only needs to be set to be larger than at least the fuel injection amount set when the engine speed becomes equal to or higher than the upper limit value R2 of the resonance speed range Br.
  • the fuel is set to be larger than the fuel injection amount set for the next combustion cycle that has succeeded in jumping over the resonance speed range Br or set for the next combustion cycle escaped from the resonance speed range Br. It may be more than the amount of injection.
  • resonance rotational speed range Br even if the resonance rotational speed range Br is jumped over or escaped from the resonance rotational speed range Br, resonance may be induced by torque fluctuation immediately after passing through the resonant rotational speed range Br.
  • the injection amount setting unit 106 passes through the resonance rotational speed range Br when the resonance rotational speed range Br is successfully jumped or escaped from the resonance rotational speed range Br. After that, processing for suppressing the induction of resonance is executed in steps S205 and S211.
  • step S205 the injection amount setting unit 106 determines whether or not the engine speed is equal to or higher than the idle speed Ri. In step S205, if the engine speed is less than the idle speed Ri and it is determined as NO, that is, the resonance speed range Br has been successfully skipped, or the escape from the resonance speed range Br has been successful. However, if the idle operation state has not been reached, the process proceeds to step S211. On the other hand, if it is determined in step S205 that the engine speed is equal to or greater than the idle speed Ri and YES, the process proceeds to step S206. In step S206, the injection amount setting unit 106 starts the idle operation by setting the fuel injection amount to the amount Fi corresponding to the idle operation and returning.
  • step S211 the injection amount setting unit 106 sets the fuel injection amount in the next combustion cycle to a predetermined induction suppression amount F3 and returns.
  • the induced suppression amount F3 is at least smaller than the jump injection amount F2 set when attempting to jump over the resonance rotational speed range Br (induced suppression amount ⁇ interlace injection amount). According to this, since the torque fluctuation is reduced as much as the induction suppression amount F3 is reduced, it is advantageous in suppressing the induction of resonance.
  • the injection amount setting unit 106 is a combustion cycle after passing through the resonance speed range Br (specifically, a combustion cycle after jumping over the resonance speed range Br, or after exiting from the resonance speed range Br).
  • the difference ⁇ R between the engine speed reached in the combustion cycle) and the upper limit value R2 of the resonance speed range Br is calculated, and when the difference ⁇ R is small, the induction suppression amount F3 is set smaller than when it is large.
  • the setting of the induction suppression amount F3 is not limited to the combustion cycle immediately after jumping over the resonance speed range Br or the combustion cycle immediately after exiting from the resonance speed range Br, and the engine speed reaches the idle operation state. Until now.
  • FIG. 11 illustrates the fuel injection amount (that is, the induced suppression amount F3) after passing through the resonance rotational speed range Br.
  • the induction suppression amount F3 increases as the difference ⁇ R increases, and reaches the maximum injection amount Fm.
  • the torque generated by the combustion based on the induced suppression amount F3 also increases along the straight line L in FIG.
  • the straight line L is defined based on the vibration characteristics of the power train PT.
  • the torque generated by the operation of the engine 1 exceeds the straight line L, the acceleration due to the vibration of the power train PT exceeds the allowable range. It is stipulated. If the fuel injection amount is set according to the characteristics shown in FIG. 11, the torque output from the engine 1 becomes a value along the straight line L, so that the acceleration can be within an allowable range.
  • the induction suppression amount F3 becomes constant at the maximum injection amount Fm.
  • FIG. 9 is a time chart illustrating the change in the engine speed and the change in the fuel injection amount when the engine 1 is started.
  • FIG. 10 is a diagram illustrating a change in torque with respect to the engine speed when the engine 1 is started.
  • Ta1 to Ta5 and Tb1 to Tb6 indicate states achieved by combustion for each combustion cycle.
  • the engine speed when it is determined in step S201 that cranking has been completed is higher than the crossing determination value R0
  • the engine speed is increased as shown by connecting the white circles ( ⁇ ) in the upper diagram, and in each combustion cycle as shown in the middle diagram.
  • the fuel injection amount is set immediately before the combustion Ta1 to Ta5.
  • the relationship between the engine speed and the torque changes as Ta1-> Ta2-> Ta3-> Ta4-> Ta5 due to combustion for each cycle.
  • the engine speed when cranking is completed is equal to or higher than the level crossing determination value R0 and is lower than the lower limit value R1 of the resonance speed range Br. Therefore, the fuel injection amount in the first combustion cycle is set to the jump injection amount F2 by the fuel amount setting unit 106 (step S209). Then, when fuel injection based on the setting of the combustion injection amount is executed and the injected fuel is combusted, the engine speed is greatly increased by the torque obtained by the combustion than when cranking is completed. Thereby, the resonance speed range Br is skipped.
  • the engine speed reached by the combustion in the first cycle is shown in FIG. 9 and FIG. 10 as shown by the solid line connecting Ta1 and Ta2.
  • the rotational speed rises to a rotational speed that is higher than the upper limit value R2 of the number range Br and lower than the idle rotational speed Ri. Therefore, the fuel injection amount in the second combustion cycle is set to the induced suppression amount F3 smaller than the jump injection amount F2 by the fuel amount setting unit 106 (step S211).
  • the engine speed is the first cycle combustion by the amount obtained by reducing the fuel injection amount with the torque obtained by the combustion. Rise smaller than.
  • the fuel injection amount in the third cycle is also set to the induction suppression amount F3 by the fuel setting unit 106 (step S211).
  • the induction suppression amount at the third cycle is set to be larger than the induction suppression amount F3 at the combustion cycle at the second cycle because it is far away from the resonance rotational speed range Br by the increase in the engine speed. .
  • fuel injection based on the setting of the combustion injection amount is executed, and when the injected fuel is combusted, the engine speed is increased by the amount of fuel injection by the torque obtained by the combustion, and the second cycle combustion Rise more than combustion in the cycle.
  • the fuel injection amount in the fourth and subsequent combustion cycles is set to the amount Fi corresponding to the idle operation by the fuel setting unit 106 (step S206). Then, fuel injection based on the setting of the fuel injection amount is executed, and when the injected fuel is combusted, the engine speed is maintained at a speed equal to or higher than the idle speed Ri with the torque obtained by the combustion. Driving is performed.
  • the engine speed when cranking is completed is lower than the level crossing determination value R0
  • the engine speed is increased as shown by connecting the black circles ( ⁇ ) in the upper diagram, and the fuel in each combustion cycle as shown in the lower diagram is shown.
  • the injection amount is set immediately before Tb1 to Tb5 during combustion.
  • the relationship between the engine speed and the torque changes as Tb 1 ⁇ Tb 2 ⁇ Tb 3 ⁇ Tb 4 ⁇ Tb 5 ⁇ Tb 6 due to combustion in each cycle.
  • the fuel injection amount in the first combustion cycle is set to the stepping injection amount F1 that is smaller than the jump injection amount F2 by the fuel amount setting unit 106 (step S208).
  • the engine speed is the solid line connecting Tb1 and Tb2 in FIGS. 9 and 10 with the torque obtained by the combustion. As shown in FIG. 4, the value increases so as to approach the lower limit value R1 of the resonance rotational speed range Br.
  • the engine speed reached by the combustion is larger than the crossing determination value R0, as shown by the solid line connecting Tb1 and Tb2 in FIGS.
  • the rotational speed increases to a rotational speed smaller than the lower limit value R1 of the resonance rotational speed range Br.
  • the engine speed has increased to near the lower limit value R1 of the resonance speed range Br due to combustion in the first combustion cycle, so that the fuel injection amount in the second cycle is determined by the fuel setting unit 106.
  • the engine speed is increased by the amount of fuel injection by the torque obtained by the combustion. Rise more than combustion in the cycle. Thereby, the resonance speed range Br is skipped.
  • the engine speed reached by the combustion in the second cycle is shown in FIG. 9 and FIG. 10 as shown by the solid line connecting Tb2 and Tb3.
  • the rotational speed rises to a rotational speed that is higher than the upper limit value R2 of the number range Br and lower than the idle rotational speed Ri.
  • the setting of the fuel injection amount after the third combustion cycle in the second example and the way of increasing the engine speed by combustion are the same as those after the second combustion cycle in the first example. is there.
  • the fuel injection amount in the first combustion cycle is set to the maximum injection amount. Then, fuel injection based on the setting is executed, and the engine speed reached when the injected fuel burns is the resonance speed as shown by the broken line connecting T1 'and T2' in FIGS. It may be included in the area Br.
  • vibration due to resonance occurs greatly in the power train PT including the engine 1, and the vibration and noise of the vehicle V caused by the vibration cause discomfort to the passengers of the vehicle V.
  • the injection amount setting unit 106 skips when the engine speed is smaller than the crossing determination value R0.
  • the fuel injection amount is set to a step injection amount F1 smaller than the injection amount F2, and the engine speed is larger than the level crossing determination value R0, the fuel injection amount is set to a jump injection amount F2 larger than the step injection amount F1.
  • the resonance speed range Br can be jumped after approaching the lower limit value R1 of the resonance speed range Br to a predetermined range.
  • the possibility that the jump of the resonance rotational speed range Br may fail can be reduced. Therefore, it is possible to effectively suppress the resonance of the power train PT when the engine 1 is started.
  • the vibration of the vehicle V resulting from the resonance of the power train PT and the noise associated therewith can be suitably reduced.
  • the following embodiment may be configured as follows.
  • the configuration of the engine 1 is merely an example, and the present invention is not limited to this.
  • the engine 1 includes the turbocharger 61.
  • the turbocharger 61 may not be included.
  • the engine 1 is a diesel engine, and an example of adjusting the fuel injection amount to control the torque has been described as an example, but the present invention is not limited thereto.
  • the engine 1 may be a spark ignition gasoline engine.
  • the torque control of the engine 1 may be performed by adjusting the ignition timing instead of adjusting the fuel injection amount.
  • the engine speed is acquired for each combustion cycle, and the difference between the engine speed and the lower limit value R1 of the resonance speed range Br is less than a predetermined reference value. If the difference is equal to or greater than the reference value, a relatively small torque (second torque) is set, so that the engine speed can be reduced by executing the combustion cycle.
  • second torque a relatively small torque

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

エンジンの始動時において、サイクル毎に取得されるエンジン回転数がパワートレイン(PT)の共振回転数域(Br)の下限値(R1)から所定の基準値分だけ低い値に設定された踏切判定値(R0)以上である場合に、燃料噴射量を飛越噴射量(F2)に設定し、エンジン回転数が踏切判定値(R0)未満である場合に、燃料噴射量を飛越噴射量(F2)よりも少ない踏出噴射量(F1)に設定する。 これにより、エンジン回転数を燃焼サイクルの実行により上昇させていく過程でパワートレインの共振回転数域の下限値に対し所定範囲まで近づけてから共振回転数域以上の一気に高めて、エンジン始動時にパワートレインに生じる振動を抑制する。

Description

エンジンの始動制御方法及び始動制御装置
 ここに開示する技術は、エンジンの始動を制御する方法及び装置に関する。
 エンジンは、変速機などの動力伝達機構と一体化してパワートレインと呼ばれる駆動装置を構成し、弾性力を有するエンジンマウントを介して車体に搭載される。エンジンが運転されている間は、エンジンの動作によってパワートレインに振動が生じる。この振動の周波数がパワートレインの共振周波数(固有振動数)に一致すると、共振が引き起こされるため、パワートレインに生じる振動をエンジンマウントでは減衰しきれず、車両に伝わる振動やそれに伴う騒音が大きくなり、乗員に不快感を与えてしまう。
 エンジンの駆動に伴ってパワートレインに生じる振動の周波数は、エンジン回転数に対応する関係にある。パワートレインに共振を生じるエンジン回転数及びその付近の回転数域(以下、「共振回転数域」という)が、エンジンにおいて、始動後に駆動力を駆動輪(タイヤ)に伝達しない無負荷状態で運転する、いわゆるアイドル運転を行っているときのエンジン回転数(以下、「アイドル回転数」という)以上に設定されていると、車両の走行中にパワートレインが共振を生じてしまう。このことから、パワートレインは、アイドル回転数未満の回転数領域に共振回転数域が含まれるように設計されるのが通例である。
 このようにパワートレインの共振回転数域がアイドル回転数によりも低いエンジン回転数の領域に設定されていると、エンジンがクランキングを開始してから燃焼サイクルの実行によりエンジン回転数がアイドル回転数に至るまでの始動時において、前述したパワートレインの共振によって車両に振動が発生し得る。そこで、エンジンの始動時における当該車両の振動を抑制するための技術が、従来から提案されている。
 例えば、特許文献1には、エンジンの始動時における点火時期を工夫したエンジンの制御装置(点火時期制御装置)が開示されている。この制御装置は、エンジンの始動直後から、エンジン回転数が共振回転数域(車両共振帯)を通過するまでの期間内において、点火時期をアイドル運転時よりも進角させるように構成されている。これによれば、点火時期を進角させた分、エンジンのトルクが高くなる。それによって、エンジン回転数の上昇速度が高まり、エンジンの運転状態が共振回転数域を素早く通過することが可能となる。
特開2015-113774号公報
 特許文献1に開示されたエンジンの制御装置のように始動時におけるエンジンのトルクを高める場合には、エンジンの運転状態が共振回転数域を素早く通過することが可能になるものの、エンジン回転数が上昇する過程で、燃焼サイクル毎の燃焼により到達するエンジン回転数がパワートレインの共振回転数域に含まれることがあり、パワートレインに共振による振動が生じるのを回避することができない。パワートレインの共振に起因して車両の振動が短時間でも発生すると、車両の乗員は不快感を覚えることになる。
 特に、ディーゼルエンジンをはじめとする圧縮着火式エンジンでは、一般的な火花点火式エンジンよりも圧縮比が大きくなる分、燃焼サイクルでの燃焼時のトルク変動が比較的大きくなるため、トルク変動に起因してエンジンに生じる振動も比較的大きい。よって、燃焼サイクル毎の燃焼により到達するエンジン回転数がパワートレインの共振回転数域に含まれると、パワートレインの共振に起因する振動と、そのときのトルク変動に起因する振動とが相俟って、パワートレインに生じる振動が大きくなり、その結果、車両に顕著な振動が生じてしまう。
 ここに開示する技術は、斯かる点に鑑みてなされたものであり、その目的とするところは、エンジンの始動時において、エンジンを含む駆動装置に生じる振動を抑制することにある。
 上記の目的を達成するために、ここに開示する技術では、エンジン回転数を燃焼サイクルの実行により上昇させていく過程で駆動装置の共振回転数域の下限値に対し所定範囲にまで近づけてから共振回転数域以上に一気に高めるようにした。
 具体的には、ここに開示する技術は、スタータモータの駆動によるクランキングの開始から燃焼サイクルの実行によりエンジン回転数が所定のアイドル回転数に至るまでのエンジンの始動を制御する方法を対象とする。このエンジンの始動制御方法は、サイクル毎にエンジン回転数を取得する回転数取得ステップと、前記回転数取得ステップで取得されたエンジン回転数に基づいてトルクを設定するトルク設定ステップと、を備える。
 そして、前記トルク設定ステップでは、前記エンジンを備えた駆動装置の共振周波数に対応するエンジン回転数を含む、予め設定された共振回転数域の下限値と、前記回転数取得ステップで取得されたエンジン回転数との差分が所定の基準値未満である場合に、前記トルクとして第1トルクを設定し、前記差分が前記基準値以上である場合に、前記トルクとして前記第1トルクよりも小さな第2トルクを設定する。
 このエンジンの始動制御方法では、スタータモータの駆動によってクランキングを開始した後に燃焼サイクルが実行される。燃焼サイクルが開始されると、回転数取得ステップにて、エンジン回転数がサイクル毎に取得される。そして、トルク設定ステップにおいて、回転数取得ステップで取得されたエンジン回転数に基づき、目標とする制御量としてのトルクが設定される。エンジンの始動時においては、このとき設定されるトルクの大きさに応じて、エンジン回転数の上昇量が変動する。エンジン回転数の上昇量は、トルクが大きいほど大きくなり、トルクが小さいほど小さくなる。
 このトルク設定ステップにおいて、回転数取得ステップで取得されたエンジン回転数と共振回転数域の下限値との差分が所定の基準値以上である場合には、エンジン回転数が共振回転数域の下限値から低い方に比較的離れているから、エンジンのトルクが相対的に小さな第2トルクに設定される。そうすることで、第2トルクが第1トルクと比較して小さい分、エンジン回転数の上昇量が抑えられるので、エンジン回転数が共振回転数域以上となる前に、共振回転数域の下限値に近づけることが可能になる。
 また、トルク設定ステップにおいて、回転数取得ステップで取得されたエンジン回転数と共振回転数域の下限値との差分が基準値未満である場合には、エンジン回転数が共振回転数域の下限値に比較的近いから、エンジンのトルクが相対的に大きな第1トルクに設定される。そうすることで、共振回転数域の下限値に近いエンジン回転数から、第1トルクが第2トルクと比較して大きい分、エンジン回転数を大きく上昇させることができる。
 このように、前記エンジンの始動制御方法によれば、エンジン回転数を燃焼サイクルの実行により上昇させていく過程で、共振回転数域の下限値に対し所定範囲にまで近づけてから、エンジン回転数を大きく上昇させることができる。これにより、燃焼サイクル毎の燃焼によって到達するエンジン回転数が共振回転域に含まれる可能性を下げることができる。従って、エンジンの始動時において、エンジンを備えた駆動装置に共振が生じるのを抑制することができる。
 前記トルク設定ステップでは、前記差分が前記基準値以上である場合に、当該差分に係るエンジン回転数を取得した燃焼サイクルでの燃焼によって到達し得るエンジン回転数が前記共振回転数域の下限値未満となるように、且つ前記差分が前記基準値未満となるように、前記トルクを設定してもよい。
 こうしたエンジンの始動制御方法によると、燃焼サイクルを開始した後のエンジン回転数が共振回転数域の下限値から低い方に比較的離れている場合に、エンジンのトルクが第1トルクに設定される所定範囲にまでエンジン回転数が共振回転数域の下限値に近づくように、トルクが設定される。そのことで、共振回転数域の下限値から比較的離れていたエンジン回転数を少ない回数の燃焼サイクルで当該下限値に好適に近づけることができる。従って、エンジンの始動を速やかに完了する上で有利になる。
 前記エンジンは、4気筒4サイクルエンジンであってもよい。この場合、前記回転数取得ステップでは、nを正の整数とした場合、nサイクル目の燃焼サイクルを実行する気筒が、該燃焼サイクルの圧縮行程前半にあるときに、クランクシャフトの回転速度を検出し、該回転速度に基づいて、(n-1)サイクル目の燃焼サイクルでの燃焼によって到達するエンジン回転数を取得してもよい。
 ここで、「圧縮行程前半」とは、圧縮行程を前半と後半とに二等分したときの前半に相当する。また、ここでいう「燃焼サイクル」は、気筒毎に別々にカウントアップされるものではなく、4気筒全てを合わせてカウントアップされるものである。すなわち、4気筒4サイクルエンジンにおいて、燃焼サイクルの回数は、クランクシャフトが180度回転する毎に、1回分ずつカウントアップされる。
 エンジン回転数を取得する方法としては、例えば、クランクシャフト1回転(360度)のうち180度分が回転するのに要する時間、つまりクランクシャフトの半回転分の回転速度に基づいて、エンジン回転数を検出することが考えられる。このようなエンジン回転数の取得方法は、エンジンの運転状態がアイドル回転数以上となる通常の運転状態においては、クランクシャフトの回転速度が始動時よりも高いから、エンジン回転数の検出精度を確保する上で有効である。
 しかしながら、エンジンの始動時においては、エンジンの運転状態がアイドル回転数以上にあるときと比較すると、フライホイールのイナーシャの影響が大きい分、燃焼サイクル毎の燃焼後におけるエンジン回転数の変動が相対的に大きくなる。そのため、エンジン回転数を取得するのにクランクシャフトの180度分の回転(半回転)に要する時間を用いたのでは、却ってエンジン回転数の検出精度が低くなってしまう。このことから、クランクシャフトの半回転分の回転速度に基づいてエンジン回転数を取得する方法は、始動時におけるnサイクル目の燃焼サイクルでの燃料噴射量を設定する前に、直前の(n-1)サイクル目の燃焼サイクルでの燃焼によって到達するエンジン回転数を取得するのに適さない。
 これに対し、ここに開示する技術に係る前記の方法では、nサイクル目の燃焼サイクルの圧縮行程前半にあるときのクランクシャフトの回転速度に基づいて、(n-1)サイクル目の燃焼サイクルでの燃焼によって到達するエンジン回転数を検出する。
 4気筒4サイクルエンジンにおいて、(n-1)サイクル目の燃焼サイクルでの燃焼が行われるとき、つまり当該燃焼サイクルを実行する気筒が膨張行程にあるときには、nサイクル目の燃焼サイクルを実行する気筒は、圧縮行程にある。よって、nサイクル目の燃焼サイクルを実行する気筒が圧縮行程にあるときに、クランクシャフトの回転速度を取得すれば、(n-1)サイクル目の燃焼サイクルでの燃焼により到達し得るエンジン回転数を取得することができる。とりわけ、当該圧縮行程のうち前半にエンジン回転数を取得すると、nサイクル目の燃焼サイクルでのトルクの設定、さらにはそのトルクに係る操作量の制御動作に、(n-1)サイクル目の燃焼サイクルでの燃焼によって到達するエンジン回転数の情報を反映させることができる。
 前記エンジンは、燃焼室の中に供給する燃料を噴射するように構成されたインジェクタを備え、前記燃焼室の中に供給された燃料をピストンの圧縮動作により着火させる圧縮着火式エンジンであってもよい。この場合、前記トルク設定ステップは、前記差分に応じて、前記インジェクタに噴射させる燃料の噴射量を設定する燃料量設定ステップであってもよい。そして、前記燃料量設定ステップでは、前記差分が前記基準値未満である場合に、前記燃料の噴射量として所定の第1噴射量を設定し、前記差分が前記基準値以上である場合に、前記燃料の噴射量として前記第1噴射量よりも少ない第2噴射量を設定してもよい。
 ここで、「圧縮着火式エンジン」には、ディーゼルエンジンや圧縮着火式のガソリンエンジンが含まれる。また、ここでいう「燃焼室」は、ピストンが圧縮上死点に至ったときに形成される空間の意味に限定されない。「燃焼室」の語は広義で用いる。
 圧縮着火式エンジンでは、燃焼室の中に供給される燃料の噴射量に応じてトルクが変動する。エンジンで得られるトルクは、燃料の噴射量が多いほど大きくなり、燃料の噴射量が少ないほど小さくなる。従って、燃料量設定ステップにて、エンジン回転数と共振回転数域の下限値との差分に応じて燃料の噴射量が設定されると、その燃料の噴射量に応じたトルクを得ることができる。つまり、燃料の噴射量として第1噴射量が設定されると、その第1噴射量に応じたトルクとして相対的に大きな第1トルクを得ることができる。他方、燃料の噴射量として第2噴射量が設定されると、その第2噴射量に応じたトルクとして相対的に小さな第2トルクを得ることができる。
 前記エンジンの始動制御方法は、前記燃焼室の中に導入される吸気量と、前記燃焼室の中の温度とを取得していてもよい。この場合、前記燃料量設定ステップでは、前記差分が前記基準値未満である場合に、前記燃焼室に導入される吸気量と前記燃焼室の中の温度とに応じた最大トルクを出力し得るように前記第1噴射量を設定してもよい。
 エンジンのトルクは、空気中での燃料の燃焼を以て得られる。燃焼室の中に導入される吸気量は、インジェクタによる燃料の噴射量と共に、燃焼圧力を変化させる因子であり、エンジンで得られるトルクに影響を及ぼす。また、燃焼室の中の温度は、燃料の気化性(蒸発のしやすさ)に影響するから、燃焼圧力を変化させる因子であり、エンジンで得られるトルクに影響を及ぼす。従って、エンジンが出力し得る最大トルクは、主に、それら燃焼室の中に導入される吸気量と燃焼室の中の温度とに応じて決まる。
 燃料量設定ステップにて、エンジン回転数と共振回転数域の下限値との差分が所定の基準値未満である場合、つまりエンジン回転数が共振回転数域の下限値に比較的近い場合に、最大トルクを出力し得るように第1噴射量が設定されると、その第1噴射量に応じて燃焼で得られる最大トルクによってエンジン回転数が急上昇する。それにより、このときの燃焼により到達するエンジン回転数が、共振回転域を飛び越して共振回転域に含まれないようにすることができる。
 前記燃料量設定ステップでは、前記差分が前記基準値未満である場合に、燃焼サイクルでの燃焼によるエンジン回転数の上昇量が、燃焼サイクルの開始からエンジン回転数がアイドル回転数に至るまでの始動期間内で最大となるように前記第1噴射量を設定してもよい。
 燃料量設定ステップにて、エンジン回転数と共振回転数域の下限値との差分が基準値未満である場合、つまりエンジン回転数が共振回転数域の下限値に比較的近い場合に、始動期間内におけるエンジン回転数の上昇量が最大となるように第1噴射量が設定されると、その第1噴射量に応じて燃焼で得られるトルクによりエンジン回転数が可及的に大きく上昇する。それによって、このときの燃焼により到達するエンジン回転数が、共振回転域を飛び越して共振回転域に含まれないようにすることができる。
 また、ここに開示する技術は、スタータモータの駆動によるクランキングの開始から燃焼サイクルの実行によりエンジン回転数が所定のアイドル回転数に至るまでのエンジンの始動を制御する装置をも対象とする。このエンジンの始動制御装置は、エンジンに設けられたクランクシャフトを回転させるスタータモータと、前記エンジンに取り付けられ、且つ燃焼室の中に供給する燃料を噴射するように構成されたインジェクタと、前記スタータモータ及び前記インジェクタのそれぞれに接続され、且つ前記スタータモータ及び前記インジェクタのそれぞれに制御信号を出力することによって、前記エンジンを運転するように構成された制御部と、前記制御部に接続され、且つエンジン回転速度を検知すると共に、前記制御部に検知信号を出力するように構成されたエンジン回転センサと、を備える。
 前記制御部は、前記エンジン回転センサの検知信号に基づいて、サイクル毎にエンジン回転数を取得する回転数取得部と、該回転数取得部で取得されたエンジン回転数に基づいて前記インジェクタに噴射させる燃料の噴射量を設定する燃料量設定部と、を有する。前記燃料量設定部は、前記スタータモータの駆動によるクランキングの開始から燃焼サイクルの実行によりエンジン回転数がアイドル回転数に至るまでの前記エンジンの始動期間において、前記エンジンを備えた駆動装置の共振周波数に対応するエンジン回転数を含む、予め設定された共振回転数域の下限値と、前記回転数取得部で取得されたエンジン回転数との差分が所定の基準値未満である場合に、前記燃料の噴射量として第1噴射量を設定し、前記差分が前記基準値以上である場合に、前記燃料の噴射量として前記第1噴射量よりも少ない第2噴射量を設定する。
 このエンジンの始動制御装置では、スタータモータの駆動によってクランキングを開始した後に燃焼サイクルが実行される。燃焼サイクルが開始されると、回転数取得部は、サイクル毎にエンジン回転数を取得する。そして、燃料量設定部は、回転数取得部で取得されたエンジン回転数に基づき、インジェクタに噴射させる燃料の噴射量を設定する。このとき設定される燃料の噴射量に応じて、エンジンのトルクが決まり、エンジン回転数の上昇量が変動する。エンジン回転数の上昇量は、燃料の噴射量が多いほど大きくなり、燃料の噴射量が少ないほど小さくなる。
 回転数取得部で取得されたエンジン回転数と共振回転数域の下限値との差分が基準値以上である場合には、エンジン回転数が共振回転数域の下限値から低い方に比較的離れているから、燃料の噴射量が相対的に少ない第2噴射量に設定される。そうすることで、第2噴射量が第1噴射量と比較して少ない分、トルクが小さくなり、エンジン回転数の上昇量が抑えられるから、エンジン回転数が共振回転数域以上となる前に、共振回転数域の下限値に近づけることができる。
 また、回転数取得部で取得されたエンジン回転数と共振回転数域の下限値との差分が基準値以上である場合には、エンジン回転数が共振回転数域の下限値に比較的近いから、燃料の噴射量が相対的に多い第2噴射量に設定される。そうすることで、第1噴射量が第2噴射量と比較して多い分、トルクが大きくなり、エンジン回転数の上昇量を大きくすることができる。
 このように、前記エンジンの始動制御装置によれば、エンジン回転数を燃焼サイクルの実行により上昇させていく過程で、共振回転数域の下限値に近づけてから、エンジン回転数を大きく上昇させることができる。これにより、燃焼サイクル毎の燃焼によって到達するエンジン回転数が共振回転数域に含まれる可能性を下げることができる。従って、エンジンの始動時において、エンジンを備えた駆動装置に共振が生じるのを抑制することができる。
 前記燃料量設定部は、前記差分が前記基準値以上である場合に、当該差分に係るエンジン回転数を取得した燃焼サイクルでの燃焼によって到達し得るエンジン回転数が前記共振回転数域の下限値未満となるように、且つ前記差分が前記基準値未満となるように、前記第2噴射量を設定するようになっていてもよい。
 こうしたエンジンの始動制御装置によると、燃焼サイクルを開始した後のエンジン回転数が共振回転数域の下限値から低い方に比較的離れている場合に、燃料の噴射量が第1噴射量に設定される所定範囲にまでエンジン回転数が共振回転数域の下限値に近づくように、第2噴射量が設定される。そのことで、共振回転数域の下限値から比較的離れていたエンジン回転数を少ない回数の燃焼サイクルで当該下限値に好適に近づけることができる。従って、エンジンの始動を速やかに完了する上で有利になる。
 前記エンジンは、4気筒4サイクルエンジンであってもよい。この場合、前記回転数取得部は、nを正の整数とした場合、nサイクル目の燃焼サイクルを行う気筒が、該燃焼サイクルの圧縮行程前半にあるときに、クランクシャフトの回転速度を検出し、該回転速度に基づいて、(n-1)サイクル目の燃焼サイクルでの燃焼によって到達するエンジン回転数を取得するようになっていてもよい。
 ここで、「圧縮行程前半」とは、圧縮行程を前半と後半とに二等分したときの前半に相当する。また、ここでいう「燃焼サイクル」は、気筒毎に別々にカウントアップされるものではなく、4気筒全てを合わせてカウントアップされるものである。すなわち、4気筒4サイクルエンジンにおいて、燃焼サイクルの回数は、クランクシャフトが180度回転する毎に、1回分ずつカウントアップされる。
 4気筒4サイクルエンジンにおいて、(n-1)サイクル目の燃焼サイクルでの燃焼が行われるとき、つまり(n-1)サイクル目の燃焼サイクルを実行する気筒が膨張行程にあるときには、nサイクル目の燃焼サイクルを実行する気筒は、圧縮行程にある。よって、nサイクル目の燃焼サイクルを実行する気筒が圧縮行程にあるときに、クランクシャフトの回転速度を検出すれば、(n-1)サイクル目の燃焼サイクルでの燃焼によって到達し得るエンジン回転数を取得することができる。とりわけ、当該圧縮行程のうち前半にエンジン回転数を取得すると、nサイクル目の燃焼サイクルでの燃料の噴射量の設定、さらにはその燃料噴射の制御動作に、(n-1)サイクル目の燃焼サイクルでの燃焼によって到達するエンジン回転数の情報を反映することができる。
 前記エンジンは、前記燃焼室の中に供給された燃料をピストンの圧縮動作により着火させる圧縮着火式エンジンであってもよい。
 ここで、「圧縮着火式エンジン」には、ディーゼルエンジンや圧縮着火式のガソリンエンジンが含まれる。また、ここでいう「燃焼室」は、ピストンが圧縮上死点に至ったときに形成される空間の意味に限定されない。「燃焼室」の語は広義で用いる。
 ディーゼルエンジンをはじめとする圧縮着火式エンジンでは、一般的な火花点火式エンジンよりも圧縮比が大きくなる分、トルク変動が比較的大きいから、燃焼サイクルでの燃焼時にエンジンに生じる振動も比較的大きい。よって、燃焼サイクル毎の燃焼により到達するエンジン回転数がパワートレインの共振回転数域に含まれると、パワートレインの共振に起因する振動と、そのときのトルク変動に起因する振動とが相俟って、パワートレインに生じる振動が大きくなる。ここに開示する技術に係るエンジンの始動制御装置は、パワートレインの共振に起因する車両の振動を抑制できることから、そうした圧縮着火式エンジンに特に有効である。
 前記エンジンの制御装置は、前記エンジンに設けられた吸気通路に流れる吸気の流量を検知するエアフローセンサと、前記エンジンに取り付けられ、且つエンジン冷却水の温度を検知する水温センサと、をさらに備えていてもよい。この場合、前記制御部は、前記エアフローセンサの検知信号に基づいて前記燃焼室に導入される吸気量を、前記水温センサの検知信号に基づいて前記燃焼室の中の温度を、それぞれ取得するようになっていてもよい。そして、前記燃料量設定部は、前記差分が前記基準値未満である場合に、前記燃焼室に導入される吸気量と前記燃焼室の中の温度とに応じた最大トルクを出力し得るように前記第1噴射量を設定するようになっていてもよい。
 エンジン回転数と共振回転数域の下限値との差分が基準値未満である場合、つまりエンジン回転数が共振回転数域の下限値に比較的近い場合に、最大トルクを出力し得るように第1噴射量が設定されると、その第1噴射量に応じて燃焼で得られる最大トルクによりエンジン回転数の上昇量が最大となる。それにより、このときの燃焼により到達するエンジン回転数が、共振回転域を飛び越して共振回転域に含まれないようにすることができる。
 前記燃料量設定部は、前記差分が前記基準値未満である場合に、燃焼サイクルでの燃焼によるエンジン回転数の上昇量が、燃焼サイクルの開始からエンジン回転数がアイドル回転数に至るまでの始動期間内で最大となるように前記第1噴射量を設定するようになっていてもよい。
 エンジン回転数と共振回転数域の下限値との差分が基準値未満である場合、つまりエンジン回転数が共振回転数域の下限値に比較的近い場合に、始動期間内におけるエンジン回転数の上昇量が最大となるように第1噴射量が設定されると、その第1噴射量に応じて燃焼で得られるトルクによりエンジン回転数が可及的に大きく上昇する。それによって、このときの燃焼によって到達するエンジン回転数が、共振回転域を飛び越して共振回転域に含まれないようにすることができる。
 前記エンジンの始動制御方法及び始動制御装置によれば、エンジンの始動時において、エンジンを含む駆動装置に生じる振動を抑制することができる。その結果、当該駆動装置の振動に起因する車両の振動やそれに伴う騒音を好適に軽減することができる。
図1は、圧縮着火式エンジンが搭載された車両の前部を例示する後面図である。 図2は、圧縮着火式エンジンの構成を例示する図である。 図3は、圧縮着火式エンジンの制御に係るブロック図である。 図4は、インジェクタの制御手順を示すフローチャートである。 図5は、PCMの構成を例示する図である。 図6は、エンジン回転数の取得方法を説明する図である。 図7は、エンジン回転数の取得方法を説明する図である。 図8は、燃料噴射量の設定手順を示すフローチャートである。 図9は、エンジンの始動時における、エンジン回転数の変化と、燃料噴射量の変化とを例示する図である。 図10は、エンジンの始動時における、エンジン回転数に対するトルクの変化を例示する図である。 図11は、エンジン回転数と共振回転数域の上限値との差分に対する燃料噴射量の変化を例示する図である。
 以下、例示的な実施形態を図面に基づいて詳細に説明する。この実施形態では、エンジンの始動制御方法及び始動制御装置について、圧縮着火式エンジンを例に挙げて説明する。
 図1に、圧縮着火式エンジン1が搭載された車両Vの前部の後面図を示す。本実施形態に係る圧縮着火式エンジン(以下、単に「エンジン」という)1は、図1に示すように、フロントエンジン・フロントドライブタイプの4輪自動車(以下、「車両」という)Vに搭載されている。エンジン1は、車両VのパワートレインPTを構成している。
 (パワートレインの構成)
 パワートレインPTは、エンジン1と、変速機2とを備えている。パワートレインPTは、エンジン1の出力を変速機2において変速すると共に、変速した出力を車両Vの前輪201へ伝えるよう構成されている。
 車両Vの車体は、複数のフレームから構成されている。例えば、パワートレインPTの車幅方向における両側には、車両Vの前後方向に延びる左右一対のフロントサイドフレーム202が配設されている。そして、フロントサイドフレーム202の下方には、車幅方向に亘ってサブフレーム203が架設されている。
 本実施形態に係るパワートレインPTには、ペンデュラム方式の支持構造が適用されている。すなわち、パワートレインPTの車幅方向両端の上部(具体的には、パワートレインPTの重心Gよりも上方に位置する部分)は、それぞれ、エンジンマウント204を介してフロントサイドフレーム202に支持されている。各エンジンマウント204は、弾性力を有していると共に、パワートレインPTの両端を吊り下げるように支持している。
 ペンデュラム方式を適用した場合、パワートレインPTは、例えばエンジン1が運転したときのトルク変動を起振力として、略車幅方向に延びるロール軸Aまわりに回転するように振動する。そうした振動を制振するべく、パワートレインPTの下部(具体的には、パワートレインPTの重心Gよりも下方に位置する部分)は、トルクロッド205を介してサブフレーム203に連結されている。
 尚、パワートレインPTが振動するときの共振周波数は、パワートレインPTのハード構成や、その支持構造に応じて定まっている。詳細は省略するが、本実施形態に係る共振周波数は、その共振周波数に対応するエンジン回転数(以下、「共振回転数」という)Rrが、少なくともエンジン1のアイドル回転数Riよりも小さくなるように調整されている。ここで、アイドル回転数Riは、例えば車両Vの非走行時かつ、アクセルペダルの非踏込時にエンジンストールを招くことの無いように設定されている。
 (エンジンの全体構成)
 図2に、エンジン1の構成を例示する。また、図3に、エンジン1の制御に係るブロック図を示す。エンジン1は、直列4気筒かつ、4サイクルのディーゼルエンジンであって、燃焼室の中に供給された燃料をピストンの圧縮動作により着火させるように構成されている。但し、エンジン1はディーゼルエンジンに限られない。ここに開示する技術は、例えば圧縮着火式のガソリンエンジンに適用してもよい。
 エンジン1は、図2に示すように、4つの気筒11a(1つのみ図示)が設けられたシリンダブロック11と、その上に配設されたシリンダヘッド12と、シリンダブロック11の下側に配設され、潤滑油が貯留されるオイルパン13と、を有している。各気筒11a内には、ピストン14が摺動自在に内挿されている。このピストン14の頂面には、燃焼室14aを区画するキャビティが形成されている。
 ピストン14は、コンロッド14bを介してクランクシャフト15と連結されている。クランクシャフト15は、前述の変速機2に連結されている。また、クランクシャフト15には、トリガープレート92が取り付けられている。トリガープレート92は、クランクシャフト15と一体的に回転する。
 尚、ここでいう「燃焼室」は、ピストン14が圧縮上死点に至ったときに形成される空間の意味に限定されない。「燃焼室」の語は広義で用いる。つまり、「燃焼室」は、ピストン14の位置に関わらず、ピストン14、気筒11a及びシリンダヘッド12によって形成される空間を意味する場合がある。
 エンジン1の幾何学的圧縮比は、一般的な火花点火式エンジンよりも高く設定されている。具体的に、エンジン1の幾何学的圧縮比は、14以上に設定されている。この設定は一例であり、適宜変更してもよい。
 シリンダブロック11には、エンジン1の始動時にクランキングを開始するためのスタータモータ91(図3にのみ図示)が設けられている。スタータモータ91は、クランクシャフト15の一端部に連結されたリングギア(不図示)に対し、離接可能に噛合している。エンジン1の始動時にクランキングを開始する際には、スタータモータ91を駆動する。そうすると、スタータモータ91がリングギアと噛合し、スタータモータ91の動力がリングギアに伝達されて、クランクシャフト15が回転駆動される。
 シリンダヘッド12には、気筒11a毎に、2つの吸気ポート16と、2つの排気ポート17とが形成されている。吸気ポート16及び排気ポート17は、双方とも燃焼室14aに連通している。吸気ポート16には、その燃焼室14a側の開口を開閉する吸気弁21が配設されている。同様に、排気ポート17には、その燃焼室14a側の開口を開閉する排気弁22が配設されている。
 シリンダヘッド12には、気筒11a毎にインジェクタ18が取り付けられている。インジェクタ18は、気筒11a内に燃料を直接噴射することにより、燃焼室14aの中に燃料を供給するように構成されている。インジェクタ18には、燃料供給システム51を介して燃料が燃料タンク52から供給されるようになっている。この燃料供給システム51は、燃料タンク52内に配設された電動の低圧燃料ポンプ(不図示)、燃料フィルタ53、高圧燃料ポンプ54及びコモンレール55を有している。
 高圧燃料ポンプ54は、エンジン1の回転部材(例えばカムシャフト)によって駆動される。この高圧燃料ポンプ54は、低圧燃料ポンプ及び燃料フィルタ53を介して燃料タンク52から供給されてきた低圧の燃料をコモンレール55に高圧で圧送する。このコモンレール55は、その圧送された燃料を、高圧状態で蓄える。そして、コモンレール55に蓄えられている燃料は、インジェクタ18が作動することによって、インジェクタ18から燃焼室14aの中に噴射される。
 尚、低圧燃料ポンプ、高圧燃料ポンプ54、コモンレール55及びインジェクタ18のそれぞれで生じた余剰の燃料は、リターン通路56を介して(低圧燃料ポンプで生じた余剰の燃料は直接)燃料タンク52へ戻される。尚、燃料供給システム51の構成は、前記の構成に限定されない。
 シリンダヘッド12にはまた、気筒11a毎にグロープラグ19が設けられている。グロープラグ19は、エンジン1の冷間始動時に気筒11a内に吸入されたガスを暖めて、燃料の着火性を高めるよう構成されている。
 エンジン1の一側面には吸気通路30が接続されている。吸気通路30は、燃焼室14aに導入するガスが流れる通路である。一方、エンジン1の他側面には排気通路40が接続されている。排気通路40は、燃焼室14aから排出された排気ガスが流れる通路である。これら吸気通路30及び排気通路40には、ガスの過給を行うターボ過給機61が配設されている。
 詳しくは、吸気通路30は、各気筒11aの吸気ポート16に連通している。吸気通路30の上流端部には、新気を濾過するエアクリーナ31が配設されている。吸気通路30の下流端近傍には、サージタンク34が配設されている。サージタンク34よりも下流側の吸気通路30は、詳細な図示は省略するが、気筒11a毎に分岐する独立通路を構成している。各独立通路の下流端が、各気筒11aの吸気ポート16に接続されている。
 吸気通路30におけるエアクリーナ31とサージタンク34との間には、上流側から順に、ターボ過給機61のコンプレッサ61aと、吸気シャッター弁36と、コンプレッサ61aにおいて圧縮されたガスを冷却するインタークーラ35とが配設されている。吸気シャッター弁36は、基本的には全開状態とされる。インタークーラ35は、電動ウォータポンプ37から供給された冷却水によって、ガスを冷却するよう構成されている。
 一方、排気通路40は、各気筒11aの排気ポート17に連通している。詳しくは、排気通路40の上流側の部分は、詳細な図示は省略するが、気筒11a毎に分岐する独立通路を構成している。各独立通路の上流端は、各気筒11aの排気ポート17に接続されている。排気通路40における独立通路よりも下流側の部分は、各独立通路が集合する集合部を構成している。
 排気通路40における前記集合部よりも下流側の部分には、上流側から順に、ターボ過給機61のタービン61bと、エンジン1の排気ガス中の有害成分を浄化する排気浄化装置41と、サイレンサ42とが配設されている。排気浄化装置41は、上流側から順に、酸化触媒41aと、ディーゼルパティキュレートフィルタ(以下、「DPF」という)41bとを有している。
 酸化触媒41aは、白金、又は、白金にパラジウムを加えたもの等を担持した酸化触媒を有していて、排気ガス中のCO及びHCが酸化されてCO2及びH2Oを生成する反応を促すものである。また、DPF41bは、エンジン1の排気ガス中に含まれるスス等の微粒子を捕集するものである。尚、DPF41bに酸化触媒をコーティングしてもよい。
 ターボ過給機61は、前述の如く吸気通路30に配設されたコンプレッサ61aと、前述の如く排気通路40に配設されたタービン61bとを有している。タービン61bは排気ガス流によって回転する。コンプレッサ61aは、タービン61bと連結されていて、タービン61bの回転により作動する。コンプレッサ61aが作動すると、ターボ過給機61は、燃焼室14aに導入するガスを圧縮する。排気通路40におけるタービン61bの上流側近傍には、VGT絞り弁62が設けられている。このVGT絞り弁62の開度(絞り量)を制御することにより、タービン61bへ送る排気ガスの流速を調整することができる。
 エンジン1は、その排気ガスの一部を排気通路40から吸気通路30へ還流させるようになされている。この排気ガスの還流のために、高圧EGR通路71と、低圧EGR通路81とが設けられている。
 高圧EGR通路71は、排気通路40における前記集合部とターボ過給機61のタービン61bとの間の部分(つまり、ターボ過給機61のタービン61bよりも上流側部分)と、吸気通路30におけるサージタンク34とインタークーラ35との間の部分(つまり、ターボ過給機61のコンプレッサ61aよりも下流側部分)とを接続している。高圧EGR通路71には、該高圧EGR通路71による排気ガスの還流量を調整する高圧EGR弁73が配設されている。
 低圧EGR通路81は、排気通路40における排気浄化装置41とサイレンサ42との間の部分(つまり、ターボ過給機61のタービン61bよりも下流側部分)と、吸気通路30におけるターボ過給機61のコンプレッサ61aとエアクリーナ31との間の部分(つまり、ターボ過給機61のコンプレッサ61aよりも上流側部分)とを接続している。低圧EGR通路81には、その内部を通過する排気ガスを冷却する低圧EGRクーラ82と、該低圧EGR通路81による排気ガスの還流量を調整する低圧EGR弁83とが配設されている。
 圧縮着火式エンジンは、エンジン1を含めパワートレインPT全体を制御するための、図3に示すPCM(Powertrain Control Module)100を備えている。PCM100は、周知のマイクロコンピュータをベースとするコントローラーであって、プログラムを実行する中央演算処理装置(Central Processing Unit:CPU)と、例えばRAM(Random Access Memory)やROM(Read Only Memory)により構成されてプログラム及びデータを格納するメモリと、電気信号の入出力をする入出力バスとを備えている。PCM100は、「制御部」の一例である。
 PCM100には、図2及び図3に示すように、各種のセンサSW1~SW11が接続されている。センサSW1~SW11は、それぞれ、検知信号をPCM100に出力する。センサSW1~SW11には、以下のセンサが含まれる。
 すなわち、吸気通路30におけるエアクリーナ31の下流に配置され、且つ吸気通路30を流れる新気(空気)の流量を検知するエアフローセンサSW2、その新気の温度を検知する吸気温度センサSW3、インタークーラ35の下流側に配置され、且つインタークーラ35を通過したガスの圧力を検知する吸気圧センサSW5、サージタンク34に取り付けられ、且つ気筒11a内に供給されるガスの温度を検知する吸入ガス温度センサSW4、エンジン1に取り付けられ、且つエンジン冷却水の温度(以下、「冷却水温」という)を検知する水温センサSW8、クランクシャフト15の回転角を検知するクランク角センサSW1、排気通路40における高圧EGR通路71との接続部付近に設けられ、且つ燃焼室14aから排出した排気ガスの圧力を検知する排気圧センサSW6、DPF41bを通過する前後の排気ガスの差圧を検知するDPF差圧センサSW11、DPF41bを通過した後の排気ガスの温度を検知する排気温度センサSW7、アクセルペダルの踏込量に対応したアクセル開度を検知するアクセル開度センサSW9、及び、変速機2の出力軸の回転速度を検出する車速センサSW10である。ここで、クランク角センサSW1は、「エンジン回転センサ」の一例である。
 PCM100は、これらの検知信号に基づいて、エンジン1の運転状態や車両Vの走行状態を判断すると共に、これに応じて、各アクチュエータの制御量を計算する。PCM100は、計算をした制御量に係る制御信号を、インジェクタ18、吸気シャッター弁36、電動ウォータポンプ37、排気シャッター弁43、高圧燃料ポンプ54、VGT絞り弁62、高圧EGR弁73、低圧EGR弁83、スタータモータ91等に出力する。
 このPCM100の機能のうち、特に、エンジン1の始動制御に関する機能について、以下に詳しく説明する。図5に、PCM100の構成を例示する。
 PCM100は、図5に示すように、エンジン1の始動制御に関する機能的要素として、スタータモータ91によってクランキングを開始するエンジン始動部101と、エンジン回転数を取得する回転数取得部102、エンジン冷却水の水温を取得する冷却水温取得部103と、その水温に基づき燃焼室14aの中の温度(以下、「筒内温度」という)を取得する筒内温度取得部104と、燃焼室14aの中に導入される吸気量を取得する吸気量取得部105と、エンジン回転数、筒内温度及び吸気量に基づき、インジェクタ6による燃料噴射量を設定する噴射量設定部106を備えている。
 エンジン始動部101は、エンジン1を始動するときに、スタータモータ91に対し制御信号を入力するものである。エンジン始動部101から制御信号が入力されると、スタータモータ91がクランクシャフト15を回転駆動させる。この回転により、エンジン1のクランキングが開始される。
 回転数取得部102は、クランク角センサSW1の検知信号に基づいて、エンジン回転数を検出または推定すると共に、その検出値または推定値に対応する信号を噴射量設定部106に出力するものである。
 具体的には、回転数取得部102は、スタータモータ91によるクランキングを行うときには、所定のタイミングでエンジン回転数を検出又は推定する。そして、回転数取得部102は、エンジン1がアイドル運転を行うとき、及び、通常運転を行うとき(車両Vが走行するとき)には、例えばnを正の整数とすると、(n+1)サイクル目の燃焼サイクルでの燃料噴射を行う前に、それよりも前のサイクルでの燃焼(つまり、nサイクル目以前の燃焼)によって到達し得るエンジン回転数を取得すると共に、そのエンジン回転数に対応する信号を生成し、噴射量設定部106に出力する。
 尚、ここでの「燃焼サイクル」は、気筒毎に別々にカウントアップされるものではなく、4気筒全てを合わせてカウントアップされるものである。具体的には、4気筒エンジンの場合、燃焼サイクルが180度ずつオフセットされているから、1つの気筒11aにつき、クランクシャフト15が720度回転する度に1サイクルが完了することを考慮すると、クランクシャフト15が180度回転する毎に、サイクルの回数が1回分ずつカウントアップされるようになっている。
 図6及び図7に、エンジン回転数の取得方法を説明する図を示す。図6において、4つの気筒11aを、気筒列方向の順に、1番気筒(#1)、2番気筒(#2)、3番気筒(#3)、及び、4番気筒(#4)と呼称する。すなわち、このエンジン1は、クランクシャフト15が720度回転する度に、#1→#3→#4→#2の順で燃焼が発生する。そして、図6に示すように、各気筒11aにおいて、吸気行程、圧縮行程、膨張行程、及び排気行程からなる一連の行程が行われるたびに、燃焼サイクルの回数が1回分ずつカウントアップされる。
 回転数取得部102は、アイドル運転及び通常運転においては、図7に示すように、nサイクル目の燃焼サイクルで燃焼する予定の気筒11a(例えば4番気筒(#4))において、吸気行程の前半から吸気下死点を経て圧縮行程の前半までに至るまでの、トリガープレート92が180度分回転するのに要する時間(図6及び図7に示すt1+t2+t3+t4+t5+t6)に基づき、エンジン回転数を取得する。ここで、ti(iは1~6の整数)は、図7に示すように、トリガープレート92が30度分回転するのに要する所要時間(以下、「単位回転時間」という)を示す。
 図6及び図7に示す例では、回転数取得部102は、6つの単位回転時間(t1+t2+…+t6)の平均値を割り出し、その平均値からトリガープレート92(つまりはクランクシャフト15)の回転速度を求め、当該トリガープレート92の回転速度に基づいて、エンジン回転数を取得する。通常の運転時においては、トリガープレート92の回転速度が始動時よりも高くなる。このことから、吸気行程における単位回転時間を考慮すれば、圧縮行程の単位回転時間のみを考慮する場合よりも、燃焼サイクルでの燃焼毎のエンジン回転数の変動による影響を反映して、エンジン回転数の検出精度を高めることができる。よって、このようなエンジン回転数の取得方法は、通常の運転時においては、エンジン回転数の検出精度を確保する上で有効である。
 しかしながら、エンジン1の始動時においては、エンジン1の運転状態がアイドル回転数以上にあるときと比較すると、フライホイールのイナーシャの影響が大きい分、燃焼サイクルでの燃焼毎のエンジン回転数の変動が相対的に大きくなる。そのため、エンジン回転数を取得するのにトリガープレート92の半回転分に要する時間(6つの単位回転時間)を用いたのでは、却ってエンジン回転数の検出精度が低くなってしまう。このことから、前述した通常の運転時におけるエンジン回転数の取得方法は、始動時におけるnサイクル目の燃焼サイクルでの燃料噴射量を設定する前に、直前の(n-1)サイクル目の燃焼サイクルでの燃焼によって到達するエンジン回転数を取得するのには適さない。
 そこで、回転数取得部102は、エンジン1が燃焼サイクルを開始した後、エンジン回転数が所定のアイドル回転数に至るまでの期間(以下、「始動期間」という)内においては、図6に示すように、燃料噴射の開始直前であって、且つ直前の燃焼による回転数の変動が収束するタイミングである、圧縮行程の前半における単位回転時間(図6~図7に示すt1)に基づいて、エンジン回転数を取得する。
 エンジン1において、(n-1)サイクル目の燃焼サイクルでの燃焼が行われるとき、つまり当該燃焼サイクルを実行する気筒11aが膨張行程にあるときには、nサイクル目の燃焼サイクルを実行する気筒11aは、圧縮行程にある。よって、nサイクル目の燃焼サイクルを実行する気筒11aが圧縮行程にあるときに、クランクシャフト15の回転速度を検出すれば、(n-1)サイクル目の燃焼サイクルでの燃焼によって到達し得るエンジン回転数を取得することができる。とりわけ、当該圧縮行程のうち前半にエンジン回転数を取得すると、nサイクル目の燃焼サイクルでのトルクの設定、さらにはそのトルクに係る操作量の制御動作に、(n-1)サイクル目の燃焼サイクルでの燃焼によって到達するエンジン回転数の情報を反映させることができる。
 こうして、回転数取得部102は、nサイクル目の燃焼サイクルでの燃焼噴射を行う前に、直前の(n-1)サイクル目の燃焼サイクルでの燃焼によって到達するエンジン回転数(以下、「現エンジン回転数」という場合がある)を取得する。そして、回転数取得部102は、その現エンジン回転数に対応する信号を生成して、噴射量設定部106に出力する。
 冷却水温取得部103は、水温センサSW8の検知信号に基づいて、エンジン冷却水の水温を検出すると共に、その検出値に対応する信号を筒内温度取得部104へ出力する。
 筒内温度取得部104は、冷却水温取得部103による検出値に基づいて、筒内温度を検出または推定すると共に、その検出値または推定値に対応する信号を噴射量設定部106へ出力する。
 吸気量取得部105は、エアフローセンサSW2の検知信号と、吸気温度センサSW3の検知信号とに基づいて、各気筒11aの燃焼室14aの中に導入される吸気量を検出または推定すると共に、その検出値または推定値に対応する信号を燃料量設定部106へ出力する。
 噴射量設定部106は、前記の始動期間内において、回転数取得部102が検出または推定したエンジン回転数と、筒内温度取得部104が検出または推定した筒内温度と、吸気量取得部105が検出または推定した吸気量とに基づき、次の燃焼サイクル以降のインジェクタ6による燃料の噴射量を設定する。エンジン1では、燃料の噴射量に応じてトルクが変動する。エンジン1で得られるトルクは、燃料の噴射量が多いほど大きくなり、燃料の噴射量が少ないほど小さくなる。
 ところで、前述の如く、パワートレインPTの共振回転数Rrは、アイドル回転数Riよりも小さい。そのため、始動期間内において、燃焼サイクルでの燃焼時のエンジン回転数がパワートレインPTの共振回転数Rr及びその付近に含まれる虞がある。その場合、エンジン1を含むパワートレインPT全体の振動が共振により励起されて大きくなることが懸念される。
 そこで、本願発明者等は、噴射量設定部106が行う処理を通じて、燃焼サイクルでの燃焼時のエンジン回転数が共振回転数Rr及びその付近に含まれないようにすると共に、仮に、共振回転数Rr及びその付近に含まれた場合であっても、それに伴う振動が可及的速やかに解消されるようなトルクの制御を見出した。
 PCM100には、エンジン回転数が共振回転数Rr及びその付近に含まれるか否かを判定する指標として、共振回転数Rr及びその前後の回転数域を含む共振回転数域Brが記憶されている。この共振回転数域Brの下限値R1と上限値R2は、双方とも、エンジン1が振動したとき、ひいてはパワートレインPTが振動したときの加速度が所定の範囲に納まるような閾値として予め設定されている。下限値R1は、前述のクランキング判定値Rcよりも大きい。他方、上限値R2は、アイドル回転数Riよりも小さい。
 (燃焼噴射に係る制御)
 図4に、燃料噴射に係る制御のフローを示す。PCM100は、噴射量設定部106が行う処理を含め、図4に示す手順で、インジェクタ18による燃料噴射を実行する。
 図4に示すフローがスタートすると、まず、ステップS101において、PCM100は、各センサから取得した検知信号に基づき、各種の情報を取得する。例えば、PCM100は、エンジン回転数、アクセル開度、冷却水温、及び、吸気量等を取得する。続いて、ステップS102において、PCM100のうち噴射量設定部106は、ステップS101において取得した情報に基づき、燃焼室14aの中に噴射する燃料の目標量(以下、「燃料噴射量」という)を設定する。さらに、ステップS103において、PCM100は、燃料の噴射を実行するときの噴射パターン及び噴射タイミングを設定する。そして、ステップS104において、PCM100は、ステップS102~S103の設定に対応した制御信号を生成し、インジェクタ6に入力する。
 尚、このような燃料噴射に係る制御のフローにおいて、ステップS101は、「回転数取得ステップ」の一例である。また、ステップS102は、「燃料量設定ステップ」、「トルク設定ステップ」の一例である。エンジン1では、前記の燃料噴射量によってトルクを調整する。トルクは、燃料噴射量が多いほど大きくなり、燃料噴射量が少ないほど小さくなる。燃料噴射量を設定することは、エンジン1のトルクを設定することに等しい。
 (燃料噴射量の設定手順)
 以下、エンジン1の始動制御のうち、特に燃料噴射量の設定に係る処理について、図8を参照しながら詳細に説明する。図8は、燃料噴射量の設定手順を示すフローチャートである。図8に示すフローは、図6のステップS102に係る処理の例示である。
 図8に示すフローにおいて、噴射量設定部106は、燃料噴射量を所定の最大噴射量Fm以下になるように設定する。最大噴射量Fmは、筒内温度が高いときには小さくなり、筒内温度が低いときには大きくなる。また、最大噴射量Fmは、筒内温度と吸気量とに応じた最大トルクを出力し得るように設定される。最大噴射量Fmは、吸気量が多いときには大きくなり、吸気量が少ないときには小さくなる。
 図8に示すフローがスタートすると、まず、ステップS201において、噴射量設定部106は、エンジン回転数を取得し、クランキングが完了したか否かを判定する。この判定は、エンジン回転数が図9~10に例示したクランキング判定値Rc以上か否かに基づいて行われるようになっている。クランキング判定値Rcは、エンジン1の構成等に応じて予め設定されている。
 このステップS201において、エンジン回転数がクランキング判定値Rcを下回っている場合には、クランキングが完了していないとして、NOと判定する。NOと判定した場合にはステップS207へ進む。ステップS207では、噴射量設定部106は燃料噴射量をゼロに設定し、クランキングを続行する。一方、ステップS201において、エンジン回転数がクランキング反転値Rc以上に至っている場合には、クランキングが完了しているとして、YESと判定する。YESと判定した場合、ステップS201からステップS202へ進み、クランキングから燃焼サイクル(ファイヤリング)の実行へ移行する。
 ステップS202では、噴射量設定部106は、共振回転数域Brの下限値R1とエンジン回転数との差分が所定の基準値未満であるか否かを判定する。本実施形態では、その具体的な方法として、エンジン回転数が所定の踏切判定値R0以上であるか否かを判定する方法を採用している。踏切判定値R0は、共振回転数域Brの下限値R1から前記基準値分だけ低い値に予め設定されている。踏切判定値R0は、クランキング判定値Rcよりも大きく、且つ共振回転数域Brの下限値R1よりも小さい。
 このステップS202において、エンジン回転数が所定の踏切判定値R0未満(つまり、共振回転数域Brの下限値R1とエンジン回転数との差分が前記基準値未満)であり、NOと判定した場合には、ステップS208へ進む。ステップS208では、噴射量設定部106は、燃料噴射量を所定の踏出噴射量F1に設定してリターンする。
 この踏出噴射量F1は、当該噴射量F1に基づく燃料噴射を行ったとき、その燃料噴射に係る燃焼によって到達するエンジン回転数が踏切判定値R0以上、且つ共振回転数域Brの下限値R1未満になるように設定される。踏出噴射量F1は、前述の最大噴射量Fmよりも少量である(踏出噴射量<最大噴射量)。ここでの踏出噴射量F1は、「第2トルク」を得るための「第2噴射量」の例示である。
 一方、ステップS202において、エンジン回転数が所定の踏切判定値R0以上(つまり、共振回転数域Brの下限値R1とエンジン回転数との差分が前記基準値以上)であり、YESと判定した場合には、ステップS203へ進む。ステップS203では、噴射量設定部106は、エンジン回転数が共振回転数域Brの下限値R1以上か否かを判定する。
 このステップS203において、エンジン回転数が共振回転数域Brの下限値R1未満であり、NOと判定した場合には、ステップS209へ進む。ステップS209では、噴射量設定部106は、燃料噴射量を所定の飛越噴射量F2に設定してリターンする。一方、ステップS203において、エンジン回転数が共振回転数域Brの下限値R1以上であり、YESと判定した場合には、ステップS204へ進む。
 ステップS209で燃料噴射量に設定される飛越噴射量F2は、前述の最大噴射量Fmに一致する(飛越噴射量=最大噴射量)。よって、飛越噴射量F2は、前述の踏出噴射量F1よりも大きい(飛越噴射量>踏出噴射量)。飛越噴射量F2は、燃焼サイクルでの燃焼によるエンジン回転数の上昇量が、燃焼サイクルの開始からエンジン回転数がアイドル回転数に至るまでの始動期間内で最大となるように設定される。
 燃料噴射量を飛越噴射量F2に設定すると、例えば踏出噴射量F1に設定したときと比較すると、燃料噴射量が多い分だけ、エンジン回転数が大きく上昇するようになる。このことは、エンジン回転数が、1サイクル分の燃焼によって、共振回転数域Brの下限値R1よりも小さな値から上限値R2よりも大きな値まで上昇させる(以下、「共振回転数域Brの飛び越し」という)上で有効である。ここでの飛越噴射量F2は、「第1トルク」を得るための「第1噴射量」の例示である。
 このように、ステップS203において、飛越噴射量F2として最大噴射量Fmに設定した場合であっても、共振回転数域Brの飛び越しに成功するとは限らない。例えば、筒内温度に応じて最大噴射量Fmは増減する。また、吸気温度が変化すると、空気密度が変わるので、筒内の酸素濃度が変動し、同じ燃料噴射量でも得られるトルクが変動する。他にも、外部の環境に応じて共振回転数域Brの範囲が変わったりする。具体的には、外気温度が低くなると、エンジンマウント204に係る弾性特性が変化して、パワートレインPTが振動したときの加速度、ひいては共振回転数域Brの下限値R1と上限値R2とが変化する。こうした事情に起因して、燃焼サイクルでの燃焼時のエンジン回転数が、共振回転数域Brに含まれる場合がある。
 そこで、本実施形態に係る噴射量設定部106は、エンジン回転数が共振回転数域Brに含まれる場合には、そのことに起因した振動を速やかに解消するための処理をステップS204,S210で実行する。
 ステップS204では、エンジン回転数が共振回転数域Brの上限値R2以上か否かを判定する。このステップS204において、エンジン回転数が共振回転数域Brの上限値R2未満であり、YESと判定した場合には、ステップS210へ進む。ステップS210では、噴射量設定部106は、燃料噴射量を所定の飛越噴射量F2に設定してリターンする。一方、ステップS204において、エンジン回転数が共振回転数域Brの上限値R2以上であり、NOと判定した場合には、ステップS205へ進む。
 ステップS210で燃料噴射量を飛越噴射量F2に設定すると、前述のステップS209に係る処理と同様に、エンジン回転数が大きく上昇する。このことは、エンジン回転数を、共振回転数域Br内から共振回転数域Brの上限値R2以上の値まで増加させる(以下、「共振回転数域Brからの脱出」という)上で有利となる。
 尚、ステップS204で燃焼噴射量に設定される飛越噴射量F2は、最大噴射量Fmに一致していなくてもよい。飛越噴射量F2は、少なくとも、エンジン回転数が共振回転数域Brの上限値R2以上になったときに設定される燃料噴射量よりも多く設定されていればよい。具体的に、共振回転数域Brの飛び越しに成功した次の燃焼サイクルに対して設定する燃料噴射量よりも多くしたり、共振回転数域Brから脱出した次の燃焼サイクルに対して設定する燃料噴射量より多くしたりすればよい。
 ところで、共振回転数域Brの飛び越しや共振回転数域Brからの脱出に成功した場合であっても、共振回転数域Brを通過した直後は、トルク変動によって共振が誘発される虞がある。
 そこで、本実施形態に係る噴射量設定部106は、共振回転数域Brの飛び越しに成功したり、共振回転数域Brからの脱出に成功したりした場合には、共振回転数域Brを通過した後に、共振の誘発を抑制するための処理をステップS205,S211で実行する。
 ステップS205では、噴射量設定部106は、エンジン回転数がアイドル回転数Ri以上か否かを判定する。このステップS205において、エンジン回転数がアイドル回転数Ri未満であり、NOと判定した場合、つまり、共振回転数域Brの飛び越しに成功したり、共振回転数域Brからの脱出に成功したりしたものの、アイドル運転状態に未達の場合には、ステップS211へ進む。一方、ステップS205において、エンジン回転数がアイドル回転数Ri以上であり、YESと判定した場合には、ステップS206へ進む。ステップS206では、噴射量設定部106は、燃料噴射量をアイドル運転に対応した量Fiに設定してリターンすることにより、アイドル運転を開始する。
 ステップS211では、噴射量設定部106は、次の燃焼サイクルでの燃料噴射量を所定の誘発抑制量F3に設定してリターンする。誘発抑制量F3は、少なくとも、共振回転数域Brを飛び越そうとしたときに設定した飛越噴射量F2よりも少ない(誘発抑制量<飛越噴射量)。それによれば、誘発抑制量F3を少なくした分、トルク変動が小さくなるから、共振の誘発を抑制する上で有利になる。
 噴射量設定部106は、共振回転数域Brを通過した以降の燃焼サイクル(具体的には、共振回転数域Brを飛び越した以降の燃焼サイクル、又は、共振回転数域Brから脱出した以降の燃焼サイクル)において到達したエンジン回転数と、共振回転数域Brの上限値R2との差分ΔRを算出すると共に、該差分ΔRが小さいときには、大きいときよりも誘発抑制量F3を少なく設定する。
 つまり、誘発抑制量F3の設定は、共振回転数域Brを飛び越した直後の燃焼サイクル、又は、共振回転数域Brから脱出した直後の燃焼サイクルに限らず、エンジン回転数がアイドル運転状態に至るまで行われるようになっている。
 図11に、共振回転数域Brを通過した以降の燃料噴射量(つまり誘発抑制量F3)を例示する。図11に示すように、差分ΔRがゼロから所定の誘発判定値Rtまで大きくなるときには、差分ΔRが大きくなるに従って誘発抑制量F3は増加して、最大噴射量Fmに至る。誘発抑制量F3が増加すると、その誘発抑制量F3に基づく燃焼によって生じるトルクもまた、図11の直線Lに沿って増加する。この直線Lは、パワートレインPTの振動特性に基づき規定されており、エンジン1の運転に伴い生じたトルクがこの直線Lを越えたときに、パワートレインPTの振動による加速度が許容範囲を超えるものと定められている。図11に示す特性にしたがって燃料噴射量を設定すれば、エンジン1から出力されるトルクは、直線Lに沿った値となるため、加速度を許容範囲に収めることが可能となる。
 一方で、差分ΔRが誘発判定値Rtよりも大きくなると、誘発抑制量F3は、最大噴射量Fmのまま一定となる。
 次に、前述した燃料噴射量の設定フローに従って、エンジン1の始動制御を行った場合のエンジン回転数の上昇の仕方について、以下に、図9及び図10を参照しながら例を挙げて説明する。
 図9は、エンジン1の始動時における、エンジン回転数の変化と、燃料噴射量の変化とを例示するタイムチャートである。また、図10は、エンジン1の始動時のエンジン回転数に対するトルクの変化を例示する図である。図9及び図10でのTa1~Ta5、Tb1~Tb6は、それぞれ燃焼サイクル毎の燃焼により達成される状態を示している。
 まず、前記ステップS201において、クランキングを完了したと判定されたときのエンジン回転数が踏切判定値R0よりも高い場合を、第1の例として説明する。この第1の例では、図9において、上側の図で白抜きの丸印(○)を繋いだようなエンジン回転数の上昇経路を辿り、中程の図で示すような各燃焼サイクルでの燃料噴射量の設定が燃焼時Ta1~Ta5の直前に行われる。また、図10において、エンジン回転数とトルクとの関係がサイクル毎の燃焼によってTa1→Ta2→Ta3→Ta4→Ta5の如く遷移する。
 すなわち、第1の例では、クランキングが完了したときのエンジン回転数が、踏切判定値R0以上となり、且つ共振回転数域Brの下限値R1を下回っている。よって、1サイクル目の燃焼サイクルでの燃料噴射量は、燃料量設定部106によって飛越噴射量F2に設定される(前記ステップS209)。そして、燃焼噴射量の設定に基づく燃料噴射を実行し、噴射した燃料が燃焼すると、エンジン回転数は、その燃焼により得られるトルクで以て、クランキングの完了時よりも大きく上昇する。これにより、共振回転数域Brの飛び越しが行われる。
 共振回転数域Brの飛び越しが行われると、1サイクル目(1着火目)の燃焼により到達するエンジン回転数が、図9及び図10にTa1とTa2を結んだ実線で示すように、共振回転数域Brの上限値R2よりも高く、且つアイドル回転数Riよりも低い回転数にまで上昇する。よって、2サイクル目の燃焼サイクルでの燃料噴射量は、燃料量設定部106によって飛越噴射量F2よりも少ない誘発抑制量F3に設定される(前記ステップS211)。そして、燃料噴射量の設定に基づく燃料噴射を実行し、噴射した燃料が燃焼すると、エンジン回転数は、その燃焼により得られるトルクで以て、燃料噴射量を少なくした分、1サイクル目の燃焼よりも小さく上昇する。
 2サイクル目の燃焼サイクルでの燃焼が行われると、その燃焼よって到達するエンジン回転数が、図9及び図10にTa2とTa3を結んだ実線で示すように上昇するが、アイドル回転数Riを依然として下回っている。よって、3サイクル目の燃料噴射量も、燃料設定部106によって誘発抑制量F3に設定される(前記ステップS211)。3サイクル目の誘発抑制量は、エンジン回転数が上昇した分、共振回転数域Brから相対的に大きく離れているので、2サイクル目の燃焼サイクルでの誘発抑制量F3よりも多く設定される。そして、燃焼噴射量の設定に基づく燃料噴射を実行し、噴射した燃料が燃焼すると、エンジン回転数は、その燃焼により得られるトルクで以て、燃料噴射量を多くした分、2サイクル目の燃焼サイクルでの燃焼よりも大きく上昇する。
 3サイクル目の燃焼サイクルでの燃料が行われると、その燃焼によって到達するエンジン回転数が、図9及び図10にTa3とTa4を結んだ実線で示すように上昇し、アイドル回転数Riを上回る。よって、4サイクル目以降の燃焼サイクルでの燃料噴射量は、燃料設定部106によってアイドル運転に対応した量Fiに設定される(前記ステップS206)。そして、燃料噴射量の設定に基づく燃料噴射を実行し、噴射した燃料が燃焼すると、エンジン回転数は、その燃焼により得られるトルクで以て、アイドル回転数Ri以上の回転数を維持し、アイドル運転が行われる。
 次いで、クランキングを完了したときのエンジン回転数が踏切判定値R0よりも低い場合を、第2の例として説明する。この第2の例では、図9において、上側の図で黒色の丸印(●)を繋いだようなエンジン回転数の上昇経路を辿り、下側の図で示すような各燃焼サイクルでの燃料噴射量の設定が燃焼時Tb1~Tb5の直前に行われる。また、図10において、エンジン回転数とトルクとの関係がサイクル毎の燃焼によってTb1→Tb2→Tb3→Tb4→Tb5→Tb6の如く遷移する。
 すなわち、第2の例では、クランキングが完了したときのエンジン回転数が踏切判定値R0よりも低い。よって、1サイクル目の燃焼サイクルでの燃料噴射量は、燃料量設定部106によって飛越噴射量F2よりも少ない踏出噴射量F1に設定される(前記ステップS208)。そして、燃料噴射量の設定に基づく燃料噴射を実行し、噴射した燃料が燃焼すると、エンジン回転数は、その燃焼により得られるトルクで以て、図9及び図10にTb1とTb2を結んだ実線に示すように、共振回転数域Brの下限値R1に近づくように上昇する。
 1サイクル目の燃焼サイクルによる燃焼が行われると、その燃焼によって到達するエンジン回転数が、図9及び図10にTb1とTb2を結んだ実線で示すように、踏切判定値R0よりも大きく、且つ共振回転数域Brの下限値R1よりも小さい回転数にまで上昇する。これにより、1サイクル目の燃焼サイクルでの燃焼によって共振回転数域Brの下限値R1近傍にまでエンジン回転数が上昇したので、2サイクル目の燃焼サイクルでの燃料噴射量は、燃料設定部106によって飛越噴射量F2に設定される(前記ステップS209)。そして、燃料噴射量の設定に基づく燃料噴射を実行し、噴射した燃料が燃焼すると、エンジン回転数は、その燃焼により得られるトルクで以て、燃料噴射量を多くした分、1サイクル目の燃焼サイクルでの燃焼よりも大きく上昇する。これにより、共振回転数域Brの飛び越しが行われる。
 共振回転数域Brの飛び越しが行われると、2サイクル目(2着火目)の燃焼により到達するエンジン回転数が、図9及び図10にTb2とTb3を結んだ実線で示すように、共振回転数域Brの上限値R2よりも高く、且つアイドル回転数Riよりも低い回転数にまで上昇する。この第2の例での3サイクル目の燃焼サイクル以降の燃料噴射量の設定と、燃焼によるエンジン回転数の上昇の仕方は、前述した第1の例における2サイクル目の燃焼サイクル以降と同じである。
 ところで、この第2の例と同じようにクランキングが完了したときのエンジン回転数が踏切判定値R0よりも低い場合に、1サイクル目の燃焼サイクルでの燃料噴射量を、最大噴射量に設定すると、その設定に基づく燃料噴射を実行し、噴射した燃料が燃焼することにより到達するエンジン回転数は、図9及び図10にT1'とT2'を結んだ破線で示すように、共振回転数域Brに含まれることがある。そうなると、エンジン1を含むパワートレインPTに共振による振動が大きく生じ、それに起因する車両Vの振動や騒音によって車両Vの乗員に不快感を与えることになる。
 これに対し、本実施形態のエンジン1では、前述した第1及び第2の例に示したように、噴射量設定部106は、エンジン回転数が踏切判定値R0よりも小さい場合には、飛越噴射量F2よりも少ない踏出噴射量F1に燃料噴射量を設定し、エンジン回転数が踏切判定値R0よりも大きい場合には、踏出噴射量F1よりも大きい飛越噴射量F2に燃料噴射量を設定する。それによれば、エンジン回転数を燃焼サイクルの実行により上昇させていく過程で共振回転数域Brの下限値R1に対し所定範囲にまで近づけてから共振回転数域Brの飛び越しを行うことができる。これにより、共振回転数域Brの飛び越しが失敗する可能性を下げることができる。従って、エンジン1の始動時において、パワートレインPTに共振が生じるのを効果的に抑制することができる。その結果、パワートレインPTの共振に起因する車両Vの振動やそれに伴う騒音を好適に軽減することができる。
 以上のように、ここに開示する技術の例示として、好ましい実施形態について説明した。しかし、ここに開示する技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、上記実施形態で説明した各構成要素を組み合わせて新たな実施の形態とすることも可能である。また、添付図面及び詳細な説明に記載された構成要素の中には、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須でない構成要素が添付図面や詳細な説明に記載されていることを以て、直ちにそれらの必須でない構成要素が必須であるとの認定をするべきではない。
 例えば、前記実施形態について、以下のような構成としてもよい。
 前記エンジン1の構成は一例に過ぎず、これに限定されるものではない。例えば、前記実施形態では、エンジン1はターボ過給機61を備えていたが、ターボ過給機61を備えていなくてもよい。
 また、前記エンジン1は、ディーゼルエンジンであって、トルクを制御するのに燃料噴射量を調整することを例に挙げて説明したが、これに限定されない。エンジン1は、火花点火式のガソリンエンジンであってもよい。この場合、エンジン1のトルクの制御は、燃料噴射量の調整に加え、またこれに代えて点火時期の調整などによっても行われていてもよい。
 要は、エンジン1の始動時において、エンジン回転数を燃焼サイクル毎に取得し、そのエンジン回転数と共振回転数域Brの下限値R1との差分が所定の基準値未満である場合に、相対的に大きなトルク(第1トルク)を設定し、当該差分が前記基準値以上である場合に、相対的に小さなトルク(第2トルク)を設定することにより、エンジン回転数を燃焼サイクルの実行により上昇させていく過程で共振回転数域の下限値に対し所定範囲にまで近づけてから共振回転数域Br以上に高めるようになっていればよい。
 1   エンジン(圧縮着火式エンジン)
 11a 気筒
 14  ピストン
 14a 燃焼室
 15  クランクシャフト
 6   インジェクタ
 91  スタータモータ
 100 PCM(制御部)
 101 エンジン始動部
 102 回転数取得部
 105 吸気量取得部
 106 噴射量設定部
 Ri  アイドル回転数
 Rr  共振回転数
 Br  共振回転数域
 R0  踏切判定値(基準値)
 R1  共振回転数域の下限値
 R2  共振回転数域の上限値
 F1  踏出噴射量(第2噴射量)
 F2  飛越噴射量(第1噴射量)
 F3  誘発抑制量
 SW1 クランク角センサ(エンジン回転センサ)
 SW2 エアフローセンサ
 SW8 水温センサ

Claims (12)

  1.  スタータモータの駆動によるクランキングの開始から燃焼サイクルの実行によりエンジン回転数が所定のアイドル回転数に至るまでのエンジンの始動を制御する方法であって、
     サイクル毎にエンジン回転数を取得する回転数取得ステップと、
     前記回転数取得ステップで取得されたエンジン回転数に基づいてトルクを設定するトルク設定ステップと、を備え、
     前記トルク設定ステップでは、前記エンジンを備えた駆動装置の共振周波数に対応するエンジン回転数を含む、予め設定された共振回転数域の下限値と、前記回転数取得ステップで取得されたエンジン回転数との差分が所定の基準値未満である場合に、前記トルクとして第1トルクを設定し、前記差分が前記基準値以上である場合に、前記トルクとして前記第1トルクよりも小さな第2トルクを設定する
    エンジンの始動制御方法。
  2.  請求項1に記載されたエンジンの始動制御方法において、
     前記トルク設定ステップでは、前記差分が前記基準値以上である場合に、当該差分に係るエンジン回転数を取得した燃焼サイクルでの燃焼によって到達し得るエンジン回転数が前記共振回転数域の下限値未満となるように、且つ前記差分が前記基準値未満となるように、前記トルクを設定する
    エンジンの始動制御方法。
  3.  請求項1又は2に記載されたエンジンの始動制御方法において、
     前記エンジンは、4気筒4サイクルエンジンであり、
     前記回転数取得ステップでは、nを正の整数とした場合、nサイクル目の燃焼サイクルを実行する気筒が、該燃焼サイクルの圧縮行程前半にあるときに、前記エンジンに設けられたクランクシャフトの回転速度を検出し、該回転速度に基づいて、(n-1)サイクル目の燃焼サイクルでの燃焼によって到達するエンジン回転数を取得する
    エンジンの始動制御方法。
  4.  請求項1~3のいずれか1項に記載されたエンジンの始動制御方法において、
     前記エンジンは、燃焼室の中に供給する燃料を噴射するように構成されたインジェクタを備え、前記燃焼室の中に供給された燃料をピストンの圧縮動作により着火させる圧縮着火式エンジンであり、
     前記トルク設定ステップは、前記差分に応じて、前記インジェクタに噴射させる燃料の噴射量を設定する燃料量設定ステップであり、
     前記燃料量設定ステップでは、前記差分が前記基準値未満である場合に、前記燃料の噴射量として所定の第1噴射量を設定し、前記差分が前記基準値以上である場合に、前記燃料の噴射量として前記第1噴射量よりも少ない第2噴射量を設定する
    エンジンの始動制御方法。
  5.  請求項4に記載されたエンジンの始動制御方法において、
     前記燃焼室の中に導入される吸気量と、前記燃焼室の中の温度とを取得し、
     前記燃料量設定ステップでは、前記差分が前記基準値未満である場合に、前記燃焼室に導入される吸気量と前記燃焼室の中の温度とに応じた最大トルクを出力し得るように前記第1噴射量を設定する
    エンジンの始動制御方法。
  6.  請求項4又は5に記載されたエンジンの始動制御方法において、
     前記燃料量設定ステップでは、前記差分が前記基準値未満である場合に、燃焼サイクルでの燃焼によるエンジン回転数の上昇量が、燃焼サイクルの開始からエンジン回転数がアイドル回転数に至るまでの始動期間内で最大となるように前記第1噴射量を設定する
    エンジンの始動制御方法。
  7.  エンジンに設けられたクランクシャフトを回転させるスタータモータと、
     前記エンジンに取り付けられ、且つ燃焼室の中に供給する燃料を噴射するように構成されたインジェクタと、
     前記スタータモータ及び前記インジェクタのそれぞれに接続され、且つ前記スタータモータ及び前記インジェクタのそれぞれに制御信号を出力することによって、前記エンジンを運転するように構成された制御部と、
     前記制御部に接続され、且つエンジン回転速度を検知すると共に、前記制御部に検知信号を出力するように構成されたエンジン回転センサと、を備え、
     前記制御部は、前記エンジン回転センサの検知信号に基づいて、燃焼サイクル毎にエンジン回転数を取得する回転数取得部と、該回転数取得部で取得されるエンジン回転数に基づいて前記インジェクタに噴射させる燃料の噴射量を設定する燃料量設定部と、を有し、
     前記燃料量設定部は、前記スタータモータの駆動によるクランキングの開始から燃焼サイクルの実行によりエンジン回転数が所定のアイドル回転数に至るまでの前記エンジンの始動期間において、前記エンジンを備えた駆動装置の共振周波数に対応するエンジン回転数を含む、予め設定された共振回転数域の下限値と、前記回転数取得部で取得されたエンジン回転数との差分が所定の基準値未満である場合に、前記燃料の噴射量として第1噴射量を設定し、前記差分が前記基準値以上である場合に、前記燃料の噴射量として前記第1噴射量よりも少ない第2噴射量を設定する
    エンジンの始動制御装置。
  8.  請求項7に記載されたエンジンの始動制御装置において、
     前記燃料量設定部は、前記差分が前記基準値以上である場合に、当該差分に係るエンジン回転数を取得した燃焼サイクルでの燃焼によって到達し得るエンジン回転数が前記共振回転数域の下限値未満となるように、且つ前記差分が前記基準値未満となるように、前記第2噴射量を設定する
    エンジンの始動制御装置。
  9.  請求項7又は8に記載されたエンジンの始動制御装置において、
     前記エンジンは、4気筒4サイクルエンジンであり、
     前記回転数取得部は、nを正の整数とした場合、nサイクル目の燃焼サイクルを行う気筒が、該燃焼サイクルの圧縮行程前半にあるときに、クランクシャフトの回転速度を検出し、該回転速度に基づいて、(n-1)サイクル目の燃焼サイクルでの燃焼によって到達するエンジン回転数を取得する
    エンジンの始動制御装置。
  10.  請求項7~9のいずれか1項に記載されたエンジンの始動制御装置において、
     前記エンジンは、前記燃焼室の中に供給された燃料をピストンの圧縮動作により着火させる圧縮着火式エンジンである
    エンジンの始動制御装置。
  11.  請求項10に記載されたエンジンの始動制御装置において、
     前記エンジンに設けられた吸気通路に流れる吸気の流量を検知するエアフローセンサと、
     前記エンジンに取り付けられ、且つエンジン冷却水の温度を検知する水温センサと、をさらに備え、
     前記制御部は、前記エアフローセンサの検知信号に基づいて前記燃焼室に導入される吸気量を、前記水温センサの検知信号に基づいて前記燃焼室の中の温度を、それぞれ取得し、
     前記燃料量設定部は、前記差分が前記基準値未満である場合に、前記燃焼室に導入される吸気量と前記燃焼室の中の温度とに応じた最大トルクを出力し得るように前記第1噴射量を設定する
    エンジンの始動制御装置。
  12.  請求項10又は11に記載されたエンジンの始動制御装置において、
     前記燃料量設定部は、前記差分が前記基準値未満である場合に、燃焼サイクルでの燃焼によるエンジン回転数の上昇量が、燃焼サイクルの開始からエンジン回転数がアイドル回転数に至るまでの始動期間内で最大となるように前記第1噴射量を設定する
    エンジンの始動制御装置。
     
PCT/JP2016/085639 2016-11-30 2016-11-30 エンジンの始動制御方法及び始動制御装置 WO2018100698A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2016/085639 WO2018100698A1 (ja) 2016-11-30 2016-11-30 エンジンの始動制御方法及び始動制御装置
EP16922604.0A EP3511553B1 (en) 2016-11-30 2016-11-30 Method and device for controlling starting of engine
JP2018553589A JP6791262B2 (ja) 2016-11-30 2016-11-30 エンジンの始動制御装置
US16/344,540 US10890122B2 (en) 2016-11-30 2016-11-30 Method and device for controlling starting of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/085639 WO2018100698A1 (ja) 2016-11-30 2016-11-30 エンジンの始動制御方法及び始動制御装置

Publications (1)

Publication Number Publication Date
WO2018100698A1 true WO2018100698A1 (ja) 2018-06-07

Family

ID=62242049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085639 WO2018100698A1 (ja) 2016-11-30 2016-11-30 エンジンの始動制御方法及び始動制御装置

Country Status (4)

Country Link
US (1) US10890122B2 (ja)
EP (1) EP3511553B1 (ja)
JP (1) JP6791262B2 (ja)
WO (1) WO2018100698A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113898488A (zh) * 2021-10-22 2022-01-07 中车大连机车车辆有限公司 一种米勒循环柴油机低温环境起动控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018100698A1 (ja) 2016-11-30 2018-06-07 マツダ株式会社 エンジンの始動制御方法及び始動制御装置
EP3550130B1 (en) * 2016-11-30 2021-01-20 Mazda Motor Corporation Method and device for controlling compression ignition engine
EP3550131B1 (en) * 2016-11-30 2021-01-27 Mazda Motor Corporation Method and device for controlling compression ignition engine
CN113357036B (zh) * 2021-07-27 2023-05-23 潍柴动力股份有限公司 一种发动机转速调节方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315510A (ja) * 2005-05-12 2006-11-24 Toyota Motor Corp 動力出力装置およびその制御方法並びに自動車
JP2009035121A (ja) * 2007-08-01 2009-02-19 Nissan Motor Co Ltd ハイブリッド車両の内燃機関の始動制御装置
JP2010203423A (ja) * 2009-03-06 2010-09-16 Nissan Motor Co Ltd 内燃機関の制御装置
JP2012007487A (ja) * 2010-06-22 2012-01-12 Toyota Industries Corp 内燃機関における燃料噴射制御装置
JP2013194584A (ja) * 2012-03-19 2013-09-30 Mazda Motor Corp 車両搭載エンジンの始動装置
JP2015113774A (ja) 2013-12-12 2015-06-22 日産自動車株式会社 エンジンの制御装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367214U (ja) 1976-11-04 1978-06-06
JPS57201777A (en) 1981-06-05 1982-12-10 Toyota Motor Corp Construction of floor of car body
JP3378640B2 (ja) * 1994-03-09 2003-02-17 富士重工業株式会社 アイドリング制御方法
DE19954296C2 (de) 1999-11-11 2003-06-18 Porsche Ag Fahrzeug
US6968268B2 (en) * 2003-01-17 2005-11-22 Denso Corporation Misfire detector for an internal combustion engine
JP4135587B2 (ja) 2003-08-05 2008-08-20 いすゞ自動車株式会社 エンジンの始動時制御方法及び装置
JP4385894B2 (ja) 2004-08-25 2009-12-16 トヨタ自動車株式会社 エンジンの始動制御方法及び始動制御装置
JP2009121303A (ja) * 2007-11-14 2009-06-04 Denso Corp 内燃機関の失火検出装置
JP5311610B2 (ja) * 2007-12-27 2013-10-09 現代自動車株式会社 ハイブリッド車の駆動力制御装置
JP2009228538A (ja) 2008-03-21 2009-10-08 Toyota Motor Corp 内燃機関の始動制御装置
DE102008036339A1 (de) 2008-08-04 2010-02-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Fahrzeugaufbau
JP2011047348A (ja) * 2009-08-28 2011-03-10 Toyota Motor Corp 自動車
JP2011230521A (ja) 2010-04-23 2011-11-17 Toyota Motor Corp 始動制御装置
JP5728996B2 (ja) 2011-02-16 2015-06-03 日産自動車株式会社 エンジンの始動装置
JP5267607B2 (ja) * 2011-03-31 2013-08-21 トヨタ自動車株式会社 内燃機関の制御装置、およびそれを搭載する車両
JP5807393B2 (ja) 2011-05-30 2015-11-10 いすゞ自動車株式会社 内燃機関の制御方法、内燃機関及びそれを搭載した車両
JP2015074285A (ja) 2013-10-07 2015-04-20 トヨタ自動車株式会社 始動制御装置
DE102013224890A1 (de) 2013-12-04 2015-06-11 Volkswagen Aktiengesellschaft Verfahren zum Steuern einer Verbrennungskraftmaschine eines Triebstrangs eines Kraftfahrzeuges und Kraftfahrzeug
JP6020522B2 (ja) * 2014-07-22 2016-11-02 トヨタ自動車株式会社 ハイブリッド車
JP6546487B2 (ja) 2015-09-11 2019-07-17 株式会社Subaru ボルト締結部構造およびクロスメンバ締結部構造
JP2017203402A (ja) * 2016-05-10 2017-11-16 株式会社デンソー エンジン制御装置
DE102016211950A1 (de) * 2016-06-30 2018-01-04 Zf Friedrichshafen Ag Verfahren zur Übertragung und Dämpfung von Drehmomenten
DE102016211958A1 (de) * 2016-06-30 2018-01-04 Zf Friedrichshafen Ag Verfahren zur Übertragung und Dämpfung von Drehmomenten
WO2018100698A1 (ja) 2016-11-30 2018-06-07 マツダ株式会社 エンジンの始動制御方法及び始動制御装置
DE102017214787A1 (de) * 2017-08-23 2019-02-28 Bayerische Motoren Werke Aktiengesellschaft Impulsstart in einem Hybrid-Antriebsstrang
JP7151288B2 (ja) * 2018-09-04 2022-10-12 トヨタ自動車株式会社 ミラーサイクルエンジン

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315510A (ja) * 2005-05-12 2006-11-24 Toyota Motor Corp 動力出力装置およびその制御方法並びに自動車
JP2009035121A (ja) * 2007-08-01 2009-02-19 Nissan Motor Co Ltd ハイブリッド車両の内燃機関の始動制御装置
JP2010203423A (ja) * 2009-03-06 2010-09-16 Nissan Motor Co Ltd 内燃機関の制御装置
JP2012007487A (ja) * 2010-06-22 2012-01-12 Toyota Industries Corp 内燃機関における燃料噴射制御装置
JP2013194584A (ja) * 2012-03-19 2013-09-30 Mazda Motor Corp 車両搭載エンジンの始動装置
JP2015113774A (ja) 2013-12-12 2015-06-22 日産自動車株式会社 エンジンの制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113898488A (zh) * 2021-10-22 2022-01-07 中车大连机车车辆有限公司 一种米勒循环柴油机低温环境起动控制方法
CN113898488B (zh) * 2021-10-22 2023-09-05 中车大连机车车辆有限公司 一种米勒循环柴油机低温环境起动控制方法

Also Published As

Publication number Publication date
US10890122B2 (en) 2021-01-12
EP3511553A1 (en) 2019-07-17
US20190293005A1 (en) 2019-09-26
JP6791262B2 (ja) 2020-11-25
EP3511553A4 (en) 2019-08-21
EP3511553B1 (en) 2021-02-24
JPWO2018100698A1 (ja) 2019-08-08

Similar Documents

Publication Publication Date Title
WO2018100698A1 (ja) エンジンの始動制御方法及び始動制御装置
US10920629B2 (en) Oil temperature sensor diagnostic device
JP5720700B2 (ja) 過給機付き内燃機関
WO2013014789A1 (ja) 内燃機関の制御装置
EP2211044B1 (en) EGR controller and EGR control method for internal combustion engine
WO2009150790A1 (en) Intake control apparatus of internal combustion engine
WO2018100689A1 (ja) 圧縮着火式エンジンの制御方法及び制御装置
JP4997272B2 (ja) 内燃機関の燃料供給制御装置
JP2020037914A (ja) 内燃機関制御装置、および、振動センサの異常検出方法
JP6711415B2 (ja) 圧縮着火式エンジンの制御方法及び制御装置
JP4232636B2 (ja) 内燃機関の制御装置
WO2009141972A1 (en) Intake control apparatus of internal combustion engine and automatic adaptation apparatus of internal combustion engine
JP2006316731A (ja) 内燃機関の排ガス浄化装置
JP4818341B2 (ja) 内燃機関の制御装置
JP2019060264A (ja) 内燃機関の制御装置
JP4510704B2 (ja) 内燃機関の燃料噴射制御装置
JP5682231B2 (ja) 内燃機関の制御装置
JP2010112295A (ja) 内燃機関の燃料噴射制御装置及び制御方法
JP2010112282A (ja) 圧縮着火式内燃機関の制御装置
JP2021102933A (ja) 内燃機関の制御装置
JPWO2013014789A1 (ja) 内燃機関の制御装置
JP2010265803A (ja) 内燃機関の制御装置
JP2006336538A (ja) エンジンの燃料噴射量制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018553589

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016922604

Country of ref document: EP

Effective date: 20190411

NENP Non-entry into the national phase

Ref country code: DE