[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018100670A1 - Automatic tuning device - Google Patents

Automatic tuning device Download PDF

Info

Publication number
WO2018100670A1
WO2018100670A1 PCT/JP2016/085543 JP2016085543W WO2018100670A1 WO 2018100670 A1 WO2018100670 A1 WO 2018100670A1 JP 2016085543 W JP2016085543 W JP 2016085543W WO 2018100670 A1 WO2018100670 A1 WO 2018100670A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
auto
tuning
control
master
Prior art date
Application number
PCT/JP2016/085543
Other languages
French (fr)
Japanese (ja)
Inventor
木原 健
隆廣 間瀬
貴司 新井
洸太 高橋
健太郎 山下
Original Assignee
理化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理化工業株式会社 filed Critical 理化工業株式会社
Priority to JP2018553571A priority Critical patent/JP6751244B2/en
Priority to PCT/JP2016/085543 priority patent/WO2018100670A1/en
Publication of WO2018100670A1 publication Critical patent/WO2018100670A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature

Definitions

  • the present invention relates to an auto-tuning device having an auto-tuning function for adjusting control parameters in a cascade control system.
  • Patent Document 1 discloses a PID control device that calculates a PID parameter of a master PID controller by approximating a slave-side closed loop transfer function with a first order delay + dead time model.
  • Patent Document 2 discloses a PID control device that can predict the end time of PID auto-tuning by a single loop.
  • JP 2012-89004 A International Publication No. WO2014 / 088705
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an auto-tuning device that can predict the auto-tuning end time of a control parameter in a cascade control system.
  • (Configuration 1) Used in a cascade control system in which a master controller that performs PID control and at least a slave controller that performs P control are cascade-connected, a master parameter that is a control parameter of the master controller and a slave parameter that is a control parameter of the slave controller
  • An auto tuning apparatus having an auto tuning function for performing auto tuning to be adjusted,
  • An auto tuning management unit that receives an effective command of auto tuning;
  • a heater that applies heat to the control target is set to an on state, and the temperature of the control target is set to the set temperature In the above period, by setting the heater to an off state, a temperature control unit that controls the temperature of the control target;
  • a control parameter calculation unit for calculating the master parameter and the slave parameter from the measured value of the temperature of the controlled object controlled by the temperature control unit; The process of monitoring the measured value of the temperature of the control object, detecting the timing at which the temperature of the control object passes the set
  • the elapsed time measurement unit measures the elapsed time from the previous passage timing to the current passage timing each time the passage timing is detected,
  • the time calculation unit calculates an end time of auto-tuning using the elapsed time every time the elapsed time is measured by the elapsed time measurement unit, 2.
  • the time presentation unit sets the time from the current time to the end time every time the auto-tuning end time is calculated by the time calculation unit, and sets the timer count value to reduce the count value.
  • the elapsed time calculation unit calculates the end time of the auto-tuning based on the time taken until the set temperature is switched after the set temperature is switched and the elapsed time.
  • the auto-tuning device according to any one of the above.
  • FIG. 1 is a schematic diagram illustrating an auto-tuning device according to an embodiment of the present invention. It is a flowchart which shows the outline
  • FIG. 1 is a block diagram showing an auto-tuning apparatus according to an embodiment of the present invention.
  • 1 has an auto tuning function for calculating control parameters in the master controller 9 and the slave controller 10 in a cascade control system. Further, the auto tuning apparatus 100 has a function of predicting the end time of the auto tuning.
  • the cascade control system refers to the master controller 9, the slave controller 10, the temperature controller 4, the heater 2, the master control target 1_1, the slave control target 1_2, the slave temperature measurement unit 3_2, the master temperature measurement unit 3_1, and the like in FIG. Refers to a control loop constituted by
  • the auto tuning management unit 11 starts the operation of the auto tuning device 100 based on an auto tuning command input from an input unit (not shown) or the like.
  • the master controller 9 is a control controller composed of, for example, a semiconductor integrated circuit on which a CPU is mounted, a one-chip microcomputer, or the like, and a set temperature input from an input unit (not shown) and a master input from the master temperature measurement unit 3_1. Based on the measured value PVm and the master parameter input from the control parameter calculation unit 5, the slave set temperature SVs is output to the slave controller 10.
  • the slave controller 10 is a control controller composed of, for example, a semiconductor integrated circuit mounted with a CPU or a one-chip microcomputer, and is input from the slave set temperature SVs input from the master controller 9 and the slave temperature measuring unit 3_2.
  • the manipulated variable MV is output to the temperature control unit 4 based on the slave measurement value PVs and the slave parameter input from the control parameter calculation unit 5.
  • the temperature control unit 4 includes, for example, a semiconductor integrated circuit on which a CPU is mounted, a one-chip microcomputer, and the like, and the slave measurement value output from the slave temperature measurement unit 3_2 before the temperature control of the control target 1 is started.
  • the heater 2 is set to the on state, and when the temperature of the slave control target 1_2 is equal to or higher than the slave set temperature SVs, heating is performed.
  • This is a temperature regulator that controls the temperature of the slave control object 1_2 by setting the device 2 to the OFF state.
  • the operation performed by the temperature control unit 4 is also referred to as ONOFF control.
  • setting the heater 2 to the on state means that the operation amount of the heating to the heater 2 is set to 100%, for example, and setting the heater 2 to the off state means that the heater 2 is set to the off state. It means that the operation amount of heating with respect to is set to 0%, for example.
  • the heater 2 is a device such as a heater that applies heat to the controlled object 1.
  • the master temperature measurement unit 3_1 is a temperature sensor that measures the temperature of the master control target 1_1 and outputs the measured value (PVm).
  • the slave temperature measuring unit 3_2 is a temperature sensor that measures the temperature of the slave control target 1_2 and outputs the measured value (PVs).
  • the control target 1 is, for example, a chemical temperature control system
  • the master control target 1_1 is a chemical temperature
  • the slave control target 1_2 is a chemical bath temperature
  • heat is applied to the slave control target 1_2 by the heater 2 to perform master control.
  • the temperature of the object 1_1 is controlled to the master set temperature SVm set by the master controller 9.
  • the control parameter calculation unit 5 includes, for example, a semiconductor integrated circuit on which a CPU is mounted, a one-chip microcomputer, or a computer including a multiplier or an adder. Then, a master parameter that is a control parameter in the master controller 9 and a slave parameter that is a control parameter in the slave controller 10 are calculated and output to the master controller 9 and the slave controller 10, respectively.
  • the elapsed time measuring unit 6 is composed of, for example, a semiconductor integrated circuit on which a CPU is mounted, a one-chip microcomputer, or a computer having a timer, and is input from the master temperature measuring unit 3_1 and the slave temperature measuring unit 3_2. The measured value is monitored, and the process of detecting the timing at which the temperature of the master control target 1_1 passes the master set temperature SVm is performed, and each time the passage timing is detected, the current passage time is detected from the previous passage timing. A process of measuring the elapsed time until the timing is reached.
  • the time calculation unit 7 includes, for example, a semiconductor integrated circuit on which a CPU is mounted, a one-chip microcomputer, or a computer including a multiplier or an adder.
  • the elapsed time measurement unit 6 measures the elapsed time. Every time, the elapsed time is used to calculate the remaining time until the end of auto-tuning.
  • the time presentation unit 8 includes, for example, a 7-segment display, a timer, and the like, and performs processing for displaying the end time each time the time calculation unit 7 calculates the remaining time of auto-tuning. Further, every time the time calculation unit 7 calculates the remaining time of auto-tuning, the time presentation unit 8 sets the remaining time to the count value of the timer and starts the count value reduction process. The process of displaying the count value of the timer is implemented.
  • FIG. 2 is a flowchart showing an outline of AT operation of PID control according to the embodiment of the present invention.
  • the limit cycle operation steps S201 and S202
  • the control parameter calculation unit obtains the PID parameter of the slave controller 10.
  • this operation is also referred to as a slave AT.
  • the master controller 9 performs two limit cycle operations (steps S203 and S204) to obtain the PID parameter of the master controller 9.
  • this operation is also referred to as a master AT.
  • AT is started by an AT effective command input to the auto-tuning management unit 11.
  • the first slave AT is executed (step S201).
  • the slave controller 10 performs ON / OFF control of the slave control object 1_2 through the temperature control unit 4 based on the slave measurement value PVs and the slave set temperature SVs set in advance during the first slave AT operation.
  • the heater 2 is switched ON / OFF, and ONOFF control is performed until the preset number of switching times is reached.
  • the number of times of switching is six.
  • the control parameter calculation unit 5 monitors the slave measurement value PVs. When the ON / OFF control for a preset number of times is completed, the control parameter calculation unit 5 records the limit cycle waveform generated as a result of the control and ends the AT.
  • the process proceeds to step S202.
  • the second slave AT is executed (step S202).
  • a value that is a preset constant k times larger than the amplitude of the limit cycle waveform obtained by the first slave AT is set as the second slave set temperature SVs.
  • ON / OFF control is performed for the number of times of switching.
  • the control parameter calculation unit 5 identifies the slave-side control target using the first order delay + dead time approximation model, and obtains the slave PID parameter expressed by the following equations 1 to 3.
  • Gs is the transfer function of the slave control target 1_2
  • K s is the steady gain of the slave control target 1_2
  • T s is equivalent time constant
  • L s is equivalent dead time
  • SV s1 is the target value in the first slave AT
  • theta s1 is an on / off duty ratio in the first slave AT
  • SV s2 is a target value in the second slave AT
  • ⁇ s2 is an on / off duty ratio in the second slave AT.
  • the limit gain: K cs and limit period: T cs of the slave side control target are calculated from the limit cycle waveform at AT, and the equivalent time constant: T s and the dead time equivalent to T s : L s are calculated by the following equation (3). .
  • the first master AT is executed (S203).
  • the master controller 9 Based on the AT effective command, the master controller 9 performs ON / OFF control for controlling the temperature of the master control target 1_1 through the slave controller 10 and the temperature control unit 4 based on the preset master set temperature SVm. Each time PVm reaches SVm, the heater 2 is switched ON / OFF, and ON / OFF control is performed until the preset number of switching times is reached. Similar to the slave AT, the preset number of times of switching is six.
  • the control parameter calculation unit 5 monitors the master measurement value PVm and the slave measurement value PVs, and when the ON / OFF control for a preset number of times is completed, the limit cycle waveform generated as a result of the control is recorded. When the ON / OFF control of the preset number of times is finished and the first master slave AT is finished, the process proceeds to step S204.
  • the second master AT is executed (step S205).
  • a value that is a constant set k times larger than the amplitude of the limit cycle waveform obtained by the first master AT is set as the second set temperature SVm.
  • the ON / OFF control is performed until the preset number of switching times is reached.
  • the control parameter calculation unit 5 obtains a mathematical model of the transfer function of the master control object 1_1 from the limit cycle waveform of the master measurement value PVm and the slave measurement value PVs generated by the control.
  • the master PID parameters represented by the following equations 4 to 6 are obtained.
  • K m is the steady gain of the master-side controlled object 1_1
  • T m is the equivalent time constant
  • L m is the equivalent dead time
  • SV m1 and ⁇ m1 are the target value and on / off duty ratio of the first master AT
  • SV m2 , ⁇ m2 are the target value and on / off duty ratio of the second master AT
  • K s is the steady gain of the slave-side control target 1_2 obtained from Equation 1.
  • control parameter calculation unit 5 calculates a limit gain: K cm and a limit period: T cm of the master-side controlled object 1_1, and obtains an equivalent time constant: T m and an equivalent dead time: L m by the following formula: Master PID parameter Get.
  • T cm is the limit cycle period
  • X s is the amplitude of the limit cycle waveform of PV s
  • X m is the amplitude of the limit cycle waveform of PV m
  • is the phase difference between the limit cycle waveforms of PV s and PV m .
  • this function is also referred to as an AT end time prediction function.
  • FIG. 5 is a conceptual diagram showing the relationship between the master measurement value PVm and the elapsed time at the master AT according to the embodiment of the present invention.
  • FIG. 3 is a flowchart showing an outline of the AT end time prediction function according to the embodiment of the present invention.
  • the AT end time prediction function operates in parallel with the AT operation. Therefore, in FIG. 3, in order to collate with the timing of the AT operation in the present embodiment, the flowchart of the AT operation in FIG. 2 is also shown.
  • step S302 an AT operation is started by an AT effective command input to the auto-tuning management unit 11 and an AT end time prediction operation is started. Simultaneously with the start of the AT, the elapsed time measuring unit 6 counts the actual time from the start of the AT and records it as Treal. First, until the first and second slave ATs are completed, the time presenting unit 8 displays “CALC” indicating that the PID parameter is being calculated (step S301). When the second slave AT is completed, the process proceeds to step S302. The detailed operation of step S302 will be described with reference to FIG.
  • step S302 the remaining AT time during execution of the first master AT is predicted.
  • the elapsed time measurement unit 6 monitors the master measurement value PVm input from the master temperature measurement unit 3_1 during execution of the first master AT, and performs processing to detect the timing when PVm passes the master set temperature SVm. To do.
  • the detection target point is referred to as an AT point, and the timing thereof is also referred to as a timing passing through the AT point.
  • the preset number of times of switching is six.
  • the elapsed time Tela12 starts to be measured from the passage time t1_1 (step ST4).
  • the elapsed time measuring unit 6 detects the passage of the second AT point (step ST5: Yes), it specifies the second AT point passage time t1_2 in the first master AT, and the following equation (7)
  • the measurement of the elapsed time Tela12 from the passage of the first AT point in the first master AT to the passage of the second AT point in the first master AT is ended (step ST6).
  • Tela12 t1_2 ⁇ t1_1 (7)
  • the time calculation unit 7 calculates Tend1_2, which is a predicted value of the remaining time until the end of only the AT at the time of the second AT point in the first master AT. (Step ST7). Note that “the end of only the AT” means the end time of the AT when the switching time of the first and second master ATs is not considered, and the same applies hereinafter.
  • step ST7 the AT end time at the second AT point in the first master AT is predicted.
  • the end time is predicted as follows.
  • the SV change time is predicted based on the time required for the first master AT to pass the AT point.
  • correction is performed to bias the remaining AT time based on the time required for the first master AT.
  • the bias is treated as a constant term Tbuff and is calculated as the following equation (9) as a half period of the AT point passing period.
  • Tbuff 0.5 ⁇ Tela12 (9)
  • Tend1_2 is calculated as in the following equation (10) in consideration of the characteristics of AT in cascade control.
  • Trest1_2 Tend1_2 + Tbuff (11)
  • the actual end of the AT means the end time of the AT in consideration of the switching time of the first and second master ATs, and so on.
  • the first elapsed time Tela 12 required for the first cycle of the control start is longer than the subsequent elapsed time. Therefore, the actual AT end time is expected to be smaller than the Tleft calculated as described above, but a rough AT remaining time can be calculated.
  • the time presenting unit 8 displays the expected time at which the AT ends based on the current time and the Tleft at that time. In addition, the time presentation unit 8 sets Tleft at the time to the count value of the timer, and starts the count value reduction process. Furthermore, the time presentation unit 8 displays the count value of the timer during the reduction process (step ST8). The timer count value reduction process and the count value display process during the reduction process are repeated until Tend1_3 is calculated in step ST12, which will be described later.
  • the elapsed time measuring unit 6 starts measuring the elapsed time Tela13 from the passing time t1_2 of the second AT point in the first master AT (step ST9).
  • the elapsed time measuring unit 6 detects the passage of the third AT point in the first master AT (step ST10: Yes)
  • it specifies the passage time t1_3 of the third AT point in the first master AT.
  • the measurement of the elapsed time Tela13 from the passage of the second AT point in the first master AT to the passage of the third AT point in the first master AT is ended as shown in the following equation (13) ( Step ST11).
  • Tela13 t1_3-t1_2 (13)
  • the time calculating unit 7 calculates Tend1_3, which is a predicted value of the remaining time until the end of only the AT at the third AT point in the first master AT, using the following formula ( 14) (step ST12).
  • Tend1_3 2.0 ⁇ Tela12 + 1.5 ⁇ Tela13 (14)
  • Trest1_3, which is the time until the actual end of the AT at the time of the third AT point in the first master AT is calculated by the following equation.
  • Trest1_3 Tend1_3 + Tbuff (15)
  • Tleft which is the estimated end time of the entire auto tuning process until the end of the second master AT, is calculated as in the following equation.
  • the time presenting unit 8 calculates the expected time when the AT ends based on the current time and the Tleft at the time.
  • the time presenting unit 8 deletes the previously displayed predicted end time and count and displays a new predicted end time.
  • the time presentation unit 8 sets Tleft as a new count value of the timer and starts the count value reduction process.
  • the time presentation unit 8 displays the count value of the timer during the reduction process (step ST13). The timer count value reduction process and the count value display process during the reduction process are repeated until Tend1_4 is calculated in step ST17, which will be described later.
  • step S15 to step S29 the operation up to the third AT point passing in the first master AT has been described. Thereafter, the operation (step S15 to step S29) in the 4th to 6th AT point passing in the first master AT is the same as the operation in the 3rd AT point passing except for the calculation of the predicted AT end time. Therefore, explanation is omitted.
  • the time presentation unit 8 displays the estimated end time calculated when the sixth AT point passes in the first master AT, and the timer count value reduction process and the reduction process are in progress. The display processing of the count value is continued.
  • step S302 a predicted time from the first master AT to the end of the master AT during the second master AT is predicted. The detailed operation of step S303 will be described with reference to FIG.
  • the elapsed time measurement unit 6 monitors the master measurement value PVm input from the master temperature measurement unit 3_1 during the execution of the second master AT, and the timing at which PVm passes the master set temperature SVm (passes the AT point). (Timing) is detected. Also for the second master AT, the number of times of switching set in advance is six.
  • the elapsed time measuring unit 6 detects passage of the first AT point in the second master AT (step ST33: Yes)
  • the elapsed time measuring unit 6 specifies the passage time t2_1 of the first AT point in the second master AT. Then, measurement of the elapsed time Tela22 from the passage time t2_1 is started (step ST34).
  • step ST35 the time presentation unit 8 displays the estimated end time calculated when the master AT passes the sixth AT point, and the timer count value reduction process and the reduction process are in progress. The display processing of the count value is continued.
  • the elapsed time Tela 22 from the passage of the first AT point in the second master AT to the passage of the second AT point in the second master AT is measured by the elapsed time measurement unit 6.
  • Tend2_2 which is the predicted value of the AT remaining time at the second AT point in the second master AT, is calculated as in the following equation (28) (step ST37).
  • Tend2_2 4.5 ⁇ Tela22 (28)
  • the time presenting unit 8 calculates the expected time when the AT ends based on the current time and the Tleft at the time.
  • the time presenting unit 8 displays the predicted end time and remaining time Tleft previously displayed (here, estimated end time and remaining time based on Tend1_6 in the first master AT) ) And display the new estimated end time.
  • the time presentation unit 8 sets Tleft as the count value of the timer and starts the count value reduction process.
  • the time presentation unit 8 displays the count value of the timer during the reduction process (step ST38). The timer count value reduction process and the count value display process during the reduction process are repeated until Tend2_3 is calculated in step ST42 described later.
  • step S40 to step S58 the operation up to the second AT point passing in the second master AT has been described. Thereafter, regarding the operation (step S40 to step S58) in the third to sixth AT point passages in the second master AT, the second AT point passage in the second master AT is performed except for the calculation of the predicted AT end time. Since this is the same operation as in FIG.
  • the control parameter calculation unit 5 outputs the calculated PID parameter to the master controller 9 and the slave controller 10 when the passage of the sixth AT point of the second master AT is detected. Then, when the timer count in the time calculation unit 7, that is, the reduction process of Tend2_6 becomes 0, the ON / OFF control of the heater 2 is terminated and the PID control of the control target 1 is started based on the calculated PID parameter. .
  • the transfer function of the master control target is 1 / (1 + 8s) (1 + 8s) (1 + 253s)
  • the transfer function of the slave control target is 1 / (1 + 32s)
  • the SV values of the master and slave are 50%.
  • the simulation result using the auto-tuning apparatus 100 of this embodiment is shown. It can be seen that the AT remaining expected time is close to linear, and the AT remaining time can be accurately predicted.
  • an auto tuning apparatus that can predict the end time of auto tuning in a cascade control system. For this reason, for example, even when the calculation time of the PID parameter by the auto tuning function becomes long because the load capacity of the control target 1 is large and the response is slow, the setup until the start of PID control can be easily set up. . In addition, since the end time is corrected based on the elapsed time between AT points in the first master AT, the accuracy of AT end time prediction in cascade control can be increased.
  • the AT in cascade control is The accuracy of the end time prediction can be increased.
  • the first AT effective time is used to estimate the second AT remaining time, the accuracy of AT end time prediction in cascade control can be improved.
  • every time the elapsed time measuring unit 6 detects the passage timing the elapsed time from the previous passage timing to the current passage timing is measured, and the time calculation unit 7
  • the example in which the calculation process of the PID parameter is completed when the timing of the sixth passage is detected is merely an example, and the timing of the sixth or more passage is detected.
  • the calculation process of the PID parameter may be completed at the time point, or the calculation process of the PID parameter may be completed when the timing of the fourth or subsequent passage is detected.
  • the operation at the AT point is also referred to as AT switching.
  • the calculation method is changed depending on the number of AT switching times at the time of calculating the remaining time.
  • the time corresponding to a half period of the AT switching cycle measured in the first AT switching time_count
  • the number of remaining switching return_cycle_count
  • the end time which is a time corresponding to 1 ⁇ 4 period from the previous AT point ( at_xtime).
  • FIG. 1 shows an example in which the heater 2, the master temperature measurement unit 3_1, and the slave temperature measurement unit 3_2 are provided outside the auto tuning apparatus 100. However, all or any combination thereof is auto tuning. It may be provided inside the apparatus 100. In the example of FIG.
  • each of the temperature control unit 4, the control parameter calculation unit 5, the elapsed time measurement unit 6, the time calculation unit 7, and the time presentation unit 8 that are components of the PID control device is dedicated hardware. Although what is comprised is assumed, all or any combination may be comprised by software. Moreover, although the case where the slave controller 10 performs PID control has been described in the present embodiment, similar processing may be performed when performing control such as P control and PI control instead of PID control. In addition, although the time Tsleep required for the SV change is set to 1.5 periods of the AT point passing period, an appropriate numerical value may be used according to the device characteristics and the like. Moreover, it may be updated every time the AT point passes by a coefficient (for example, 1.5) times the latest cycle time.
  • a coefficient for example, 1.5
  • an appropriate numerical value may be used as a half period of the AT point passing period in accordance with the device characteristics and the like as in Tsleeep. Further, it may be updated by a factor (for example, 0.5) times of the latest cycle time every time the AT point passes.
  • the content of the present invention has been described based on the embodiment.
  • the content of the present invention is not limited only to the content of the embodiment, but within the content described in the claims and the equivalent scope thereof. Of course, it can be changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Feedback Control In General (AREA)

Abstract

For a cascade control, the present invention is provided with: an elapsed time measurement unit 6 which performs a process of monitoring the temperature of a control target and detecting a timing at which the temperature of the control target passes a set temperature, and measures an elapsed time from a previous passing timing to a current passing timing; and a time calculation unit 7 which calculates an end time of automatic tuning by using the elapsed time measured by the elapsed time measurement unit 6, wherein a time presenting unit 8 displays the end time of automatic tuning calculated by the time calculation unit 7. Accordingly, for the cascade control, a user can know the end time of automatic tuning.

Description

オートチューニング装置Auto tuning device
 この発明は、カスケード制御系における制御パラメータを調整するオートチューニング機能を有するオートチューニング装置に関するものである。 The present invention relates to an auto-tuning device having an auto-tuning function for adjusting control parameters in a cascade control system.
 従来、カスケード制御系におけるPIDパラメータを算出しオートチューニングを行うPID制御装置が提案されている。以下の特許文献1には、スレーブ側閉ループ伝達関数を一次遅れ+むだ時間モデルで近似することによりマスタPIDコントローラのPIDパラメータを算出するPID制御装置が開示されている。 Conventionally, a PID control device that calculates PID parameters in a cascade control system and performs auto-tuning has been proposed. Patent Document 1 below discloses a PID control device that calculates a PID parameter of a master PID controller by approximating a slave-side closed loop transfer function with a first order delay + dead time model.
 一方、シングルループによるPID制御装置において、PID制御を開始するまでの段取りを立てるため、PIDオートチューニングの終了時間を知りたいという要望があった。以下の特許文献2には、シングルループによるPIDオートチューニングの終了時間を予測可能なPID制御装置が開示されている。 On the other hand, in a single loop PID control device, there was a request to know the end time of PID auto-tuning in order to set up the process until PID control is started. Patent Document 2 below discloses a PID control device that can predict the end time of PID auto-tuning by a single loop.
特開2012-89004号公報JP 2012-89004 A 国際公開WO2014/087805号公報International Publication No. WO2014 / 088705
 しかし、カスケード制御系においてはその制御の複雑さから、制御パラメータのオートチューニング終了時間を予測することは困難であった。 However, in the cascade control system, it was difficult to predict the auto-tuning end time of the control parameter due to the complexity of the control.
 この発明は上記のような課題を解決するためになされたもので、カスケード制御系における制御パラメータのオートチューニング終了時間を予測することができるオートチューニング装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an auto-tuning device that can predict the auto-tuning end time of a control parameter in a cascade control system.
  (構成1)
 PID制御を行うマスタコントローラと、少なくともP制御を行うスレーブコントローラとがカスケード接続されたカスケード制御系において使用され、前記マスタコントローラの制御パラメータであるマスタパラメータと前記スレーブコントローラの制御パラメータであるスレーブパラメータを調整するオートチューニングを行うためのオートチューニング機能を有するオートチューニング装置であって、
 オートチューニングの実効指令を受けるオートチューニング管理部と、
 制御対象の温度の制御を開始する前に、前記制御対象の温度が設定温度より低い期間では、前記制御対象に熱を加える加熱器をオン状態に設定し、前記制御対象の温度が前記設定温度以上の期間では、前記加熱器をオフ状態に設定することで、前記制御対象の温度を制御する温度制御部と、
 前記温度制御部により制御されている制御対象の温度の計測値から前記マスタパラメータと前記スレーブパラメータを算出する制御パラメータ算出部と、
 前記制御対象の温度の計測値を監視して、前記制御対象の温度が前記設定温度を通過するタイミングを検出する処理を実施し、前回の通過のタイミングから今回の通過のタイミングに至るまでの経過時間を計測する経過時間計測部と、
 前記経過時間計測部により計測された経過時間を用いて、オートチューニングの終了時間を算出する時刻算出部と、
 前記時刻算出部により算出されたオートチューニングの終了時間を提示する時刻提示部と、
 を備えたオートチューニング装置。
(Configuration 1)
Used in a cascade control system in which a master controller that performs PID control and at least a slave controller that performs P control are cascade-connected, a master parameter that is a control parameter of the master controller and a slave parameter that is a control parameter of the slave controller An auto tuning apparatus having an auto tuning function for performing auto tuning to be adjusted,
An auto tuning management unit that receives an effective command of auto tuning;
Before starting control of the temperature of the control target, in a period in which the temperature of the control target is lower than a set temperature, a heater that applies heat to the control target is set to an on state, and the temperature of the control target is set to the set temperature In the above period, by setting the heater to an off state, a temperature control unit that controls the temperature of the control target;
A control parameter calculation unit for calculating the master parameter and the slave parameter from the measured value of the temperature of the controlled object controlled by the temperature control unit;
The process of monitoring the measured value of the temperature of the control object, detecting the timing at which the temperature of the control object passes the set temperature is performed, and the process from the previous passage timing to the current passage timing An elapsed time measuring unit for measuring time;
Using the elapsed time measured by the elapsed time measuring unit, a time calculating unit that calculates the end time of auto-tuning,
A time presentation unit for presenting the end time of auto-tuning calculated by the time calculation unit;
Auto tuning device with
  (構成2)
 前記経過時間計測部は、前記通過のタイミングを検出する毎に、前回の通過のタイミングから今回の通過のタイミングに至るまでの経過時間を計測し、
 前記時刻算出部は、前記経過時間計測部により経過時間が計測される毎に、当該経過時間を用いて、オートチューニングの終了時間を算出し、
 前記時刻提示部は、前記時刻算出部によりオートチューニングの終了時間が算出される毎に、当該終了時間を提示することを特徴とする構成1記載のオートチューニング装置。
(Configuration 2)
The elapsed time measurement unit measures the elapsed time from the previous passage timing to the current passage timing each time the passage timing is detected,
The time calculation unit calculates an end time of auto-tuning using the elapsed time every time the elapsed time is measured by the elapsed time measurement unit,
2. The auto tuning apparatus according to claim 1, wherein the time presentation unit presents the end time every time the end time of auto tuning is calculated by the time calculation unit.
  (構成3)
 前記時刻提示部は、前記時刻算出部によりオートチューニングの終了時間が算出される毎に、現在の時刻から当該終了時間に至るまでの時間をタイマーのカウント値に設定して、前記カウント値の減数処理を開始し、減数処理中のカウント値を提示することを特徴とする構成2記載のオートチューニング装置。
(Configuration 3)
The time presentation unit sets the time from the current time to the end time every time the auto-tuning end time is calculated by the time calculation unit, and sets the timer count value to reduce the count value. The auto-tuning device according to Configuration 2, wherein the processing is started and a count value during reduction processing is presented.
  (構成4)
 前記オートチューニング機能においてリミットサイクル法を用いる場合に、
 前記経過時間算出部が、前記オートチューニングの終了時間に対して前記設定温度を切換える前の前記経過時間に基づき補正を行うことを特徴とする構成1から3の何れかに記載のオートチューニング装置。
(Configuration 4)
When using the limit cycle method in the auto tuning function,
4. The auto tuning apparatus according to claim 1, wherein the elapsed time calculation unit performs correction based on the elapsed time before switching the set temperature with respect to the end time of the auto tuning.
  (構成5)
 前記オートチューニング機能においてリミットサイクル法を用いる場合に、
 前記経過時間算出部が、前記設定温度の切換えにかかる時間を、前記設定温度切換前の前記経過時間に基づき予測することを特徴とする構成1から3の何れかに記載のオートチューニング装置。
(Configuration 5)
When using the limit cycle method in the auto tuning function,
4. The auto-tuning device according to claim 1, wherein the elapsed time calculation unit predicts a time required for switching the set temperature based on the elapsed time before the set temperature switching.
  (構成6)
 前記オートチューニング機能においてリミットサイクル法を用いる場合に、
 前記経過時間算出部が、前記設定温度の切換後、前記設定温度の切換えまでにかかった時間と、前記経過時間に基づき、前記オートチューニングの終了時間を算出することを特徴とする構成1から3の何れかに記載のオートチューニング装置。
(Configuration 6)
When using the limit cycle method in the auto tuning function,
The elapsed time calculation unit calculates the end time of the auto-tuning based on the time taken until the set temperature is switched after the set temperature is switched and the elapsed time. The auto-tuning device according to any one of the above.
 この発明によれば、カスケード制御系におけるオートチューニングの終了時間を予測することができるオートチューニング装置を得ることができる。 According to this invention, it is possible to obtain an auto-tuning device that can predict the end time of auto-tuning in a cascade control system.
本発明の実施の形態によるオートチューニング装置を示した概要図である。1 is a schematic diagram illustrating an auto-tuning device according to an embodiment of the present invention. 本発明の実施の形態によるカスケード接続時のオートチューニング動作の概要を示すフローチャートである。It is a flowchart which shows the outline | summary of the auto tuning operation | movement at the time of the cascade connection by embodiment of this invention. 本発明の実施の形態によるカスケード接続時のオートチューニング残り時間予測方法を示すフローチャートである。It is a flowchart which shows the auto tuning remaining time prediction method at the time of cascade connection by embodiment of this invention. 本発明の実施の形態によるカスケード接続時のオートチューニング残り時間予測方法の詳細を示すフローチャートである。It is a flowchart which shows the detail of the auto tuning remaining time prediction method at the time of cascade connection by embodiment of this invention. 本発明の実施の形態によるカスケード接続時のマスタATにおける測定値と時間の関係を示した概念図である。It is the conceptual diagram which showed the relationship between the measured value in master AT at the time of the cascade connection by embodiment of this invention, and time. 本発明実施の形態によるカスケード接続時のオートチューニング実施時における、マスタ制御対象の設定温度と測定値、スレーブ制御対象の設定温度と測定値及びオートチューニング残り時間のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the set temperature of a master control object, a measured value, the set temperature of a slave control object, a measured value, and the remaining auto-tuning time at the time of auto-tuning at the time of cascade connection by embodiment of this invention.
実施の形態
 図1はこの発明の実施の形態によるオートチューニング装置を示す構成図である。
 図1のオートチューニング装置100は、カスケード制御系において、マスタコントローラ9とスレーブコントローラ10における制御パラメータを算出するオートチューニング機能を有する。また、オートチューニング装置100は、当該オートチューニングの終了時間を予測する機能を有する。なお、カスケード制御系とは、図1におけるマスタコントローラ9、スレーブコントローラ10、温度制御部4、加熱器2、マスタ制御対象1_1、スレーブ制御対象1_2、スレーブ温度計測部3_2、マスタ温度計測部3_1等によって構成される制御ループのことを指す。
Embodiment FIG. 1 is a block diagram showing an auto-tuning apparatus according to an embodiment of the present invention.
1 has an auto tuning function for calculating control parameters in the master controller 9 and the slave controller 10 in a cascade control system. Further, the auto tuning apparatus 100 has a function of predicting the end time of the auto tuning. The cascade control system refers to the master controller 9, the slave controller 10, the temperature controller 4, the heater 2, the master control target 1_1, the slave control target 1_2, the slave temperature measurement unit 3_2, the master temperature measurement unit 3_1, and the like in FIG. Refers to a control loop constituted by
 オートチューニング管理部11は、図示しない入力部等から入力されるオートチューニング指令に基づき、オートチューニング装置100の動作を開始させる。 The auto tuning management unit 11 starts the operation of the auto tuning device 100 based on an auto tuning command input from an input unit (not shown) or the like.
 マスタコントローラ9は例えばCPUを実装している半導体集積回路やワンチップマイコンなどから構成された制御コントローラであり、図示しない入力部等より入力された設定温度とマスタ温度計測部3_1より入力されるマスタ測定値PVmと、制御パラメータ算出部5から入力されるマスタパラメータに基づき、スレーブ設定温度SVsをスレーブコントローラ10へと出力する。 The master controller 9 is a control controller composed of, for example, a semiconductor integrated circuit on which a CPU is mounted, a one-chip microcomputer, or the like, and a set temperature input from an input unit (not shown) and a master input from the master temperature measurement unit 3_1. Based on the measured value PVm and the master parameter input from the control parameter calculation unit 5, the slave set temperature SVs is output to the slave controller 10.
 スレーブコントローラ10は例えばCPUを実装している半導体集積回路やワンチップマイコンなどから構成された制御コントローラであり、マスタコントローラ9より入力されたスレーブ設定温度SVsと、スレーブ温度計測部3_2より入力されるスレーブ測定値PVsと、制御パラメータ算出部5から入力されたスレーブパラメータに基づき、操作量MVを温度制御部4へと出力する。 The slave controller 10 is a control controller composed of, for example, a semiconductor integrated circuit mounted with a CPU or a one-chip microcomputer, and is input from the slave set temperature SVs input from the master controller 9 and the slave temperature measuring unit 3_2. The manipulated variable MV is output to the temperature control unit 4 based on the slave measurement value PVs and the slave parameter input from the control parameter calculation unit 5.
 温度制御部4は例えばCPUを実装している半導体集積回路やワンチップマイコンなどから構成されており、制御対象1の温度制御を開始する前に、スレーブ温度計測部3_2から出力されたスレーブ測定値PVsが示すスレーブ制御対象1_2の温度がスレーブコントローラ10のスレーブ設定温度SVsより低い期間では、加熱器2をオン状態に設定し、スレーブ制御対象1_2の温度がスレーブ設定温度SVs以上の期間では、加熱器2をオフ状態に設定することで、スレーブ制御対象1_2の温度を制御する温度調節器である。以下、温度制御部4にて実施される当該動作をONOFF制御とも称する。
 ここで、加熱器2をオン状態に設定することは、加熱器2に対する加熱の操作量を例えば100%に設定することを意味し、加熱器2をオフ状態に設定することは、加熱器2に対する加熱の操作量を例えば0%に設定することを意味する。
 加熱器2は制御対象1に熱を加えるヒータなどの機器である。
The temperature control unit 4 includes, for example, a semiconductor integrated circuit on which a CPU is mounted, a one-chip microcomputer, and the like, and the slave measurement value output from the slave temperature measurement unit 3_2 before the temperature control of the control target 1 is started. When the temperature of the slave control target 1_2 indicated by PVs is lower than the slave set temperature SVs of the slave controller 10, the heater 2 is set to the on state, and when the temperature of the slave control target 1_2 is equal to or higher than the slave set temperature SVs, heating is performed. This is a temperature regulator that controls the temperature of the slave control object 1_2 by setting the device 2 to the OFF state. Hereinafter, the operation performed by the temperature control unit 4 is also referred to as ONOFF control.
Here, setting the heater 2 to the on state means that the operation amount of the heating to the heater 2 is set to 100%, for example, and setting the heater 2 to the off state means that the heater 2 is set to the off state. It means that the operation amount of heating with respect to is set to 0%, for example.
The heater 2 is a device such as a heater that applies heat to the controlled object 1.
 マスタ温度計測部3_1はマスタ制御対象1_1の温度を計測し、その計測値(PVm)を出力する温度センサである。
 スレーブ温度計測部3_2はスレーブ制御対象1_2の温度を計測し、その計測値(PVs)を出力する温度センサである。
The master temperature measurement unit 3_1 is a temperature sensor that measures the temperature of the master control target 1_1 and outputs the measured value (PVm).
The slave temperature measuring unit 3_2 is a temperature sensor that measures the temperature of the slave control target 1_2 and outputs the measured value (PVs).
 制御対象1は例えば薬液温度制御系であり、マスタ制御対象1_1は薬液温度であり、スレーブ制御対象1_2は薬液槽温度であり、加熱器2によりスレーブ制御対象1_2に熱が加えられて、マスタ制御対象1_1の温度がマスタコントローラ9にて設定されたマスタ設定温度SVmに制御される。 The control target 1 is, for example, a chemical temperature control system, the master control target 1_1 is a chemical temperature, the slave control target 1_2 is a chemical bath temperature, and heat is applied to the slave control target 1_2 by the heater 2 to perform master control. The temperature of the object 1_1 is controlled to the master set temperature SVm set by the master controller 9.
 制御パラメータ算出部5は例えばCPUを実装している半導体集積回路、ワンチップマイコン、あるいは、乗算器や加算器などを備える計算機などから構成されており、温度計測部3より出力された計測値から、マスタコントローラ9における制御パラメータであるマスタパラメータと、スレーブコントローラ10における制御パラメータであるスレーブパラメータと、を算出し、それぞれマスタコントローラ9とスレーブコントローラ10へと出力する。 The control parameter calculation unit 5 includes, for example, a semiconductor integrated circuit on which a CPU is mounted, a one-chip microcomputer, or a computer including a multiplier or an adder. Then, a master parameter that is a control parameter in the master controller 9 and a slave parameter that is a control parameter in the slave controller 10 are calculated and output to the master controller 9 and the slave controller 10, respectively.
 経過時間計測部6は例えばCPUを実装している半導体集積回路、ワンチップマイコン、あるいは、タイマーを備える計算機などから構成されており、マスタ温度計測部3_1及びスレーブ温度計測部3_2から入力されたそれぞれの計測値を監視して、マスタ制御対象1_1の温度がマスタ設定温度SVmを通過するタイミングを検出する処理を実施し、通過のタイミングを検出する毎に、前回の通過のタイミングから今回の通過のタイミングに至るまでの経過時間を計測する処理を実施する。 The elapsed time measuring unit 6 is composed of, for example, a semiconductor integrated circuit on which a CPU is mounted, a one-chip microcomputer, or a computer having a timer, and is input from the master temperature measuring unit 3_1 and the slave temperature measuring unit 3_2. The measured value is monitored, and the process of detecting the timing at which the temperature of the master control target 1_1 passes the master set temperature SVm is performed, and each time the passage timing is detected, the current passage time is detected from the previous passage timing. A process of measuring the elapsed time until the timing is reached.
 時刻算出部7は例えばCPUを実装している半導体集積回路、ワンチップマイコン、あるいは、乗算器や加算器などを備える計算機などから構成されており、経過時間計測部6により経過時間が計測される毎に、当該経過時間を用いて、オートチューニングが終了するまでの残り時間を算出する処理を実施する。 The time calculation unit 7 includes, for example, a semiconductor integrated circuit on which a CPU is mounted, a one-chip microcomputer, or a computer including a multiplier or an adder. The elapsed time measurement unit 6 measures the elapsed time. Every time, the elapsed time is used to calculate the remaining time until the end of auto-tuning.
 時刻提示部8は例えば7セグメント表示器やタイマーなどから構成されており、時刻算出部7によりオートチューニングの残り時間が算出される毎に、当該終了時間を表示する処理を実施する。
 また、時刻提示部8は時刻算出部7によりオートチューニングの残り時間が算出される毎に、当該残り時間をタイマーのカウント値に設定して、そのカウント値の減数処理を開始し、減数処理中のタイマーのカウント値を表示する処理を実施する。
The time presentation unit 8 includes, for example, a 7-segment display, a timer, and the like, and performs processing for displaying the end time each time the time calculation unit 7 calculates the remaining time of auto-tuning.
Further, every time the time calculation unit 7 calculates the remaining time of auto-tuning, the time presentation unit 8 sets the remaining time to the count value of the timer and starts the count value reduction process. The process of displaying the count value of the timer is implemented.
 次に、オートチューニング装置100のカスケード制御におけるオートチューニング動作について説明する。
 以下、オートチューニングのことを単にATとも称する。
 また、ここではマスタコントローラ9、スレーブコントローラ10がともにPID制御を実行する例を記載し、それぞれの制御パラメータである、マスタパラメータ、スレーブパラメータのことを、それぞれ、マスタPIDパラメータ、スレーブPIDパラメータとも称する。
Next, the auto tuning operation in the cascade control of the auto tuning device 100 will be described.
Hereinafter, auto-tuning is also simply referred to as AT.
Here, an example is described in which both the master controller 9 and the slave controller 10 execute PID control, and the master parameter and the slave parameter, which are the respective control parameters, are also referred to as a master PID parameter and a slave PID parameter, respectively. .
 図2はこの発明の実施の形態によるPID制御のAT動作概要を示すフローチャートである。
 ここでは、スレーブコントローラ10において2回のリミットサイクル動作(ステップS201、S202)を実行し、制御パラメータ算出部がスレーブコントローラ10のPIDパラメータを求める例を記載する。以下、当該動作をスレーブATとも称する。
 また、マスタコントローラ9において2回のリミットサイクル動作(ステップS203、S204)を実行し、マスタコントローラ9のPIDパラメータを求める例を記載する。以下、当該動作をマスタATとも称する。
 まず、オートチューニング管理部11に入力されたAT実効指令によりATを開始する。
FIG. 2 is a flowchart showing an outline of AT operation of PID control according to the embodiment of the present invention.
Here, an example will be described in which the limit cycle operation (steps S201 and S202) is executed twice in the slave controller 10, and the control parameter calculation unit obtains the PID parameter of the slave controller 10. Hereinafter, this operation is also referred to as a slave AT.
In addition, an example will be described in which the master controller 9 performs two limit cycle operations (steps S203 and S204) to obtain the PID parameter of the master controller 9. Hereinafter, this operation is also referred to as a master AT.
First, AT is started by an AT effective command input to the auto-tuning management unit 11.
 まずは1回目のスレーブATを実行する(ステップS201)。スレーブコントローラ10は、スレーブ測定値PVsと、1回目のスレーブAT動作時にはあらかじめ設定されているスレーブ設定温度SVsと、に基づき、温度制御部4を通じてスレーブ制御対象1_2のONOFF制御を行う。スレーブ測定値PVsがスレーブ設定温度SVsに到達するたびに加熱器2のONOFFを切換え、事前に設定された切換回数に到達するまで、ONOFF制御を行う。
 なお、ここでは切換回数を6回としている。
 制御パラメータ算出部5は、スレーブ測定値PVsを監視し、事前に設定された回数のONOFF制御が完了すると、当該制御の結果により生じたリミットサイクル波形を記録し、ATを終了する。1回目のスレーブATが終了すると、ステップS202へと進む。
First, the first slave AT is executed (step S201). The slave controller 10 performs ON / OFF control of the slave control object 1_2 through the temperature control unit 4 based on the slave measurement value PVs and the slave set temperature SVs set in advance during the first slave AT operation. Each time the slave measurement value PVs reaches the slave set temperature SVs, the heater 2 is switched ON / OFF, and ONOFF control is performed until the preset number of switching times is reached.
Here, the number of times of switching is six.
The control parameter calculation unit 5 monitors the slave measurement value PVs. When the ON / OFF control for a preset number of times is completed, the control parameter calculation unit 5 records the limit cycle waveform generated as a result of the control and ends the AT. When the first slave AT is completed, the process proceeds to step S202.
 次に2回目のスレーブATを実行する(ステップS202)。2回目のスレーブATでは、1回目のスレーブATにより得られたリミットサイクル波形の振幅に対して、事前に設定された定数であるk倍離れた値を2回目のスレーブ設定温度SVsとする。そして、1回目スレーブATと同様に、切換回数分のONOFF制御を行う。これにより制御パラメータ算出部5は、スレーブ側制御対象を一次遅れ+むだ時間近似モデルで同定を行い、以下の式1から式3で表されるスレーブPIDパラメータを得る。 Next, the second slave AT is executed (step S202). In the second slave AT, a value that is a preset constant k times larger than the amplitude of the limit cycle waveform obtained by the first slave AT is set as the second slave set temperature SVs. Then, similarly to the first slave AT, ON / OFF control is performed for the number of times of switching. As a result, the control parameter calculation unit 5 identifies the slave-side control target using the first order delay + dead time approximation model, and obtains the slave PID parameter expressed by the following equations 1 to 3.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 但し、Gsはスレーブ制御対象1_2の伝達関数、Kはスレーブ制御対象1_2の定常ゲイン、Tは等価時定数、Lは等価むだ時間、SVs1は1回目のスレーブATにおける目標値、θs1は1回目のスレーブATにおけるオンオフのデューティ比、SVs2は2回目のスレーブATにおける目標値、θs2は2回目のスレーブATにおけるオンオフのデューティ比である。
Figure JPOXMLDOC01-appb-M000002
However, Gs is the transfer function of the slave control target 1_2, K s is the steady gain of the slave control target 1_2, T s is equivalent time constant, L s is equivalent dead time, SV s1 is the target value in the first slave AT, theta s1 is an on / off duty ratio in the first slave AT, SV s2 is a target value in the second slave AT, and θ s2 is an on / off duty ratio in the second slave AT.
 さらにAT時のリミットサイクル波形からスレーブ側制御対象の限界ゲイン:Kcsと限界周期:Tcsを算出し、等価時定数:Tと等価むだ時間:Lが以下の数3により算出される。 Further, the limit gain: K cs and limit period: T cs of the slave side control target are calculated from the limit cycle waveform at AT, and the equivalent time constant: T s and the dead time equivalent to T s : L s are calculated by the following equation (3). .
Figure JPOXMLDOC01-appb-M000003
 このようにしてスレーブPIDパラメータが算出されるとスレーブATを終了し、ステップS203へと進む。
Figure JPOXMLDOC01-appb-M000003
When the slave PID parameter is calculated in this way, the slave AT is terminated and the process proceeds to step S203.
 次に、1回目のマスタATを実行する(S203)。AT実効指令に基づき、マスタコントローラ9は、あらかじめ設定されたマスタ設定温度SVmと、に基づきスレーブコントローラ10及び温度制御部4を通じてマスタ制御対象1_1の温度を制御するONOFF制御を行う。PVmがSVmに到達するたびに加熱器2のONOFFを切換え、事前に設定された切換回数に到達するまで、ONOFF制御を行う。
 なお、スレーブATと同様に、事前に設定された切換回数を6回としている。
 制御パラメータ算出部5は、マスタ測定値PVmと、スレーブ測定値PVsを監視し、事前に設定された回数のONOFF制御が完了すると、当該制御の結果により生じたリミットサイクル波形をそれぞれ記録する。事前に設定された回数のONOFF制御が終了し、1回目のマスタスレーブATが終了すると、ステップS204へと進む。
Next, the first master AT is executed (S203). Based on the AT effective command, the master controller 9 performs ON / OFF control for controlling the temperature of the master control target 1_1 through the slave controller 10 and the temperature control unit 4 based on the preset master set temperature SVm. Each time PVm reaches SVm, the heater 2 is switched ON / OFF, and ON / OFF control is performed until the preset number of switching times is reached.
Similar to the slave AT, the preset number of times of switching is six.
The control parameter calculation unit 5 monitors the master measurement value PVm and the slave measurement value PVs, and when the ON / OFF control for a preset number of times is completed, the limit cycle waveform generated as a result of the control is recorded. When the ON / OFF control of the preset number of times is finished and the first master slave AT is finished, the process proceeds to step S204.
 次に、2回目のマスタATを実行する(ステップS205)。2回目のマスタATでは1回目のマスタATにより得られたリミットサイクル波形の振幅に対して、事前に設定された定数であるk倍離れた値を2回目の設定温度SVmとする。
 そして1回目のマスタATと同様に事前に設定された切換回数に到達するまでONOFF制御を行う。制御パラメータ算出部5は、当該制御により生じるマスタ測定値PVmとスレーブ測定値PVsのリミットサイクル波形からマスタ制御対象1_1の伝達関数の数式モデルを得る。マスタ制御対象1_1の伝達関数をスレーブ制御対象1_2と同様にむだ時間+一時遅れモデルで近似した場合、以下の式4から6で表されるマスタPIDパラメータを得る。
Next, the second master AT is executed (step S205). In the second master AT, a value that is a constant set k times larger than the amplitude of the limit cycle waveform obtained by the first master AT is set as the second set temperature SVm.
Then, similarly to the first master AT, the ON / OFF control is performed until the preset number of switching times is reached. The control parameter calculation unit 5 obtains a mathematical model of the transfer function of the master control object 1_1 from the limit cycle waveform of the master measurement value PVm and the slave measurement value PVs generated by the control. When the transfer function of the master control target 1_1 is approximated by the dead time + temporary delay model in the same manner as the slave control target 1_2, the master PID parameters represented by the following equations 4 to 6 are obtained.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 但し、Kはマスタ側制御対象1_1の定常ゲイン、Tは等価時定数、Lは等価むだ時間、SVm1、θm1は、1回目のマスタATの目標値とオンオフデューティ比、SVm2、θm2は、2回目のマスタATの目標値とオンオフデューティ比であり、Kは式1より求まるスレーブ側制御対象1_2の定常ゲインである。
Figure JPOXMLDOC01-appb-M000005
However, K m is the steady gain of the master-side controlled object 1_1, T m is the equivalent time constant, L m is the equivalent dead time, SV m1 and θ m1 are the target value and on / off duty ratio of the first master AT, SV m2 , Θ m2 are the target value and on / off duty ratio of the second master AT, and K s is the steady gain of the slave-side control target 1_2 obtained from Equation 1.
 さらに制御パラメータ算出部5は、マスタ側制御対象1_1の限界ゲイン:Kcmと限界周期:Tcmを算出し、等価時定数:Tと等価むだ時間:Lを下式により求めマスタPIDパラメータを得る。 Further, the control parameter calculation unit 5 calculates a limit gain: K cm and a limit period: T cm of the master-side controlled object 1_1, and obtains an equivalent time constant: T m and an equivalent dead time: L m by the following formula: Master PID parameter Get.
Figure JPOXMLDOC01-appb-M000006
 但し、Tcmはリミットサイクル周期、XはPVのリミットサイクル波形の振幅、XはPVのリミットサイクル波形の振幅、φはPVとPVのリミットサイクル波形の位相差である。
 このようにしてマスタPIDパラメータが算出され、本実施形態におけるAT動作が終了する。
Figure JPOXMLDOC01-appb-M000006
Where T cm is the limit cycle period, X s is the amplitude of the limit cycle waveform of PV s , X m is the amplitude of the limit cycle waveform of PV m , and φ is the phase difference between the limit cycle waveforms of PV s and PV m .
In this way, the master PID parameter is calculated, and the AT operation in the present embodiment ends.
 次に本実施の形態におけるオートチューニング装置100におけるオートチューニング終了までの時間を予測する機能につき説明する。以下、当該機能について、AT終了時間予測機能とも称する。 Next, the function for predicting the time until the end of auto-tuning in the auto-tuning apparatus 100 in the present embodiment will be described. Hereinafter, this function is also referred to as an AT end time prediction function.
 図5はこの発明の実施の形態による、マスタAT時におけるマスタ測定値PVmと経過時間の関係を示す概念図である。 FIG. 5 is a conceptual diagram showing the relationship between the master measurement value PVm and the elapsed time at the master AT according to the embodiment of the present invention.
 図3はこの発明の実施の形態によるAT終了時間予測機能の概要を示すフローチャートである。AT終了時間予測機能は、AT動作と並行して動作する。そのため、図3においては、本実施の形態におけるAT動作のタイミングと照合するため、図2におけるAT動作のフローチャートを併記している。 FIG. 3 is a flowchart showing an outline of the AT end time prediction function according to the embodiment of the present invention. The AT end time prediction function operates in parallel with the AT operation. Therefore, in FIG. 3, in order to collate with the timing of the AT operation in the present embodiment, the flowchart of the AT operation in FIG. 2 is also shown.
 最初に、オートチューニング管理部11に入力されたAT実効指令によりAT動作が開始されるとともにAT終了時間予測動作を開始する。
 また、ATの開始と同時に経過時間計測部6は、AT開始からの実際の時間をカウントし、Trealとして記録を行う。
 まず、スレーブAT1回目及び2回目が完了するまでは、時刻提示部8は、PIDパラメータの計算中である旨を示す“CALC”を表示する(ステップS301)。スレーブAT2回目が完了すると、ステップS302に移行する。
 ステップS302の詳細な動作については図4を参照しながら説明する。
First, an AT operation is started by an AT effective command input to the auto-tuning management unit 11 and an AT end time prediction operation is started.
Simultaneously with the start of the AT, the elapsed time measuring unit 6 counts the actual time from the start of the AT and records it as Treal.
First, until the first and second slave ATs are completed, the time presenting unit 8 displays “CALC” indicating that the PID parameter is being calculated (step S301). When the second slave AT is completed, the process proceeds to step S302.
The detailed operation of step S302 will be described with reference to FIG.
<マスタAT1回目>
 ステップS302では、1回目のマスタAT実行中のAT残り時間を予測する。
 経過時間計測部6は、1回目のマスタATの実行中、マスタ温度計測部3_1から入力されたマスタ測定値PVmを監視して、PVmがマスタ設定温度SVmを通過するタイミングを検出する処理を実施する。以下、当該検出対象点をATポイントと称し、そのタイミングをATポイントを通過するタイミングとも称する。
 前述の通り、事前に設定された切換回数は6回である。
 経過時間計測部6は、1回目のマスタATにおける1回目のATポイントの通過を検出すると(ステップST3:Yes)、1回目のマスタATにおける1回目のATポイントの通過時刻t1_1を特定し、その通過時刻t1_1から経過時間Tela12の計測を開始する(ステップST4)。
 経過時間計測部6は、2回目のATポイントの通過を検出すると(ステップST5:Yes)、1回目のマスタATにおける2回目のATポイントの通過時刻t1_2を特定し、下記の式(7)のように1回目のマスタATにおける1回目のATポイントの通過から1回目のマスタATにおける2回目のATポイントの通過に至るまでの経過時間Tela12の計測を終了する(ステップST6)。
   Tela12=t1_2-t1_1   (7)
<Master AT 1st time>
In step S302, the remaining AT time during execution of the first master AT is predicted.
The elapsed time measurement unit 6 monitors the master measurement value PVm input from the master temperature measurement unit 3_1 during execution of the first master AT, and performs processing to detect the timing when PVm passes the master set temperature SVm. To do. Hereinafter, the detection target point is referred to as an AT point, and the timing thereof is also referred to as a timing passing through the AT point.
As described above, the preset number of times of switching is six.
When the elapsed time measuring unit 6 detects passage of the first AT point in the first master AT (step ST3: Yes), it specifies the passage time t1_1 of the first AT point in the first master AT. The elapsed time Tela12 starts to be measured from the passage time t1_1 (step ST4).
When the elapsed time measuring unit 6 detects the passage of the second AT point (step ST5: Yes), it specifies the second AT point passage time t1_2 in the first master AT, and the following equation (7) As described above, the measurement of the elapsed time Tela12 from the passage of the first AT point in the first master AT to the passage of the second AT point in the first master AT is ended (step ST6).
Tela12 = t1_2−t1_1 (7)
 時刻算出部7は、経過時間計測部6によりTela12が計測されると、1回目のマスタATにおける2回目のATポイント時点での当該ATのみの終了までの残り時間の予測値であるTend1_2を算出する(ステップST7)。
 なお、「ATのみの終了」とは1回目と2回目のマスタATの切換時間等を考慮しない場合のATの終了時間を意味し、以下においても同様とする。
When the elapsed time measurement unit 6 measures Tela 12, the time calculation unit 7 calculates Tend1_2, which is a predicted value of the remaining time until the end of only the AT at the time of the second AT point in the first master AT. (Step ST7).
Note that “the end of only the AT” means the end time of the AT when the switching time of the first and second master ATs is not considered, and the same applies hereinafter.
 ステップST7において、1回目のマスタATにおける2回目のATポイントでのAT終了時間を予測する。 In step ST7, the AT end time at the second AT point in the first master AT is predicted.
 ここで、カスケード制御におけるAT終了時間を予測する際に以下の点につき考慮する必要がある。
 1つは、1回目のAT終了時から2回目のATに移行する際のSV変更に時間がかかるという点である。
 もう1つは、1回目のATに比べ、2回目のATは負荷率が下がることにより1回目のATよりも長く時間がかかる可能性が高いという点である。
 これらの点に対処するため、以下のように終了時間を予測する。
Here, it is necessary to consider the following points when predicting the AT end time in cascade control.
One is that it takes time to change the SV when shifting from the end of the first AT to the second AT.
The other is that, compared to the first AT, the second AT is likely to take longer than the first AT due to the reduced load factor.
In order to deal with these points, the end time is predicted as follows.
 SV変更の時間については、1回目のマスタATのATポイント通過に要した時間に基づき予測を行う。ここでは、SV変更にかかる時間TsleepをATポイント通過周期の例えば1.5周期分として以下の式(8)のように算出する。
   Tsleep=1.5×Tela12   (8)
 
 また、2回目のATは1回目のATよりも長く時間がかかる点については、1回目のマスタATにかかる時間に基づきAT残り時間にバイアスをかける補正を行う。ここでは、バイアスを定数項Tbuffとして扱い、ATポイント通過周期の半周期分として以下の式(9)のように算出する。
   Tbuff=0.5×Tela12   (9)
 このようにカスケード制御におけるATの特徴を考慮し、以下の式(10)ようにTend1_2を算出する。
   Tend1_2=4.5×Tela12 (10)
 そして、1回目のマスタATにおける2回目のATポイント時点での当該ATの実際の終了までの予測時間であるTrest1_2を以下の式のように算出する。
   Trest1_2=Tend1_2+Tbuff (11)
 なお、「ATの実際の終了」とは、1回目と2回目のマスタATの切換時間等を考慮した場合のATの終了時間を意味し、以下においても同様とする。
 更に、2回目のマスタAT終了までの全オートチューニング工程の終了予測時間であるTleftを以下のように算出する。
   Tleft=2×Trest1_2+Treal+Tsleep (12)
The SV change time is predicted based on the time required for the first master AT to pass the AT point. Here, the time Tsleep required for the SV change is calculated as shown in the following formula (8), for example, for 1.5 periods of the AT point passing period.
Tsleep = 1.5 × Tela12 (8)

Further, for the point that the second AT takes longer than the first AT, correction is performed to bias the remaining AT time based on the time required for the first master AT. Here, the bias is treated as a constant term Tbuff and is calculated as the following equation (9) as a half period of the AT point passing period.
Tbuff = 0.5 × Tela12 (9)
In this way, Tend1_2 is calculated as in the following equation (10) in consideration of the characteristics of AT in cascade control.
Tend1_2 = 4.5 × Tela12 (10)
Then, Trest1_2, which is an estimated time until the actual end of the AT at the second AT point time in the first master AT, is calculated as follows.
Trest1_2 = Tend1_2 + Tbuff (11)
Note that “the actual end of the AT” means the end time of the AT in consideration of the switching time of the first and second master ATs, and so on.
Further, Tleft, which is a predicted end time of the entire auto tuning process until the end of the second master AT, is calculated as follows.
Tleft = 2 × Trest1_2 + Treal + Tsleep (12)
 通常、制御開始の最初のサイクルに要する第1の経過時間Tela12は、以降の経過時間よりも大きい。従って、実際のAT終了時間は、上述のように算出したTleftよりも小さくなることが見込まれるが、大まかなAT残り時間を算出することができる。 Usually, the first elapsed time Tela 12 required for the first cycle of the control start is longer than the subsequent elapsed time. Therefore, the actual AT end time is expected to be smaller than the Tleft calculated as described above, but a rough AT remaining time can be calculated.
 時刻提示部8は、時刻算出部7によりTend1_2が算出されると、現在時刻と当該時点におけるTleftに基づきATが終了する予想時刻を表示する。
 また、時刻提示部8は、当該時点におけるTleftをタイマーのカウント値に設定して、そのカウント値の減数処理を開始する。
 さらに、時刻提示部8は、減数処理中のタイマーのカウント値を表示する(ステップST8)。
 ここでのタイマーのカウント値の減数処理と、減数処理中のカウント値の表示処理は、後述するステップST12でTend1_3が算出されるまで繰り返される。
When the time calculating unit 7 calculates Tend1_2, the time presenting unit 8 displays the expected time at which the AT ends based on the current time and the Tleft at that time.
In addition, the time presentation unit 8 sets Tleft at the time to the count value of the timer, and starts the count value reduction process.
Furthermore, the time presentation unit 8 displays the count value of the timer during the reduction process (step ST8).
The timer count value reduction process and the count value display process during the reduction process are repeated until Tend1_3 is calculated in step ST12, which will be described later.
 次に、経過時間計測部6は、1回目のマスタATにおける2回目のATポイントの通過時刻t1_2からの経過時間Tela13の計測を開始する(ステップST9)。
 経過時間計測部6は、1回目のマスタATにおける3回目のATポイントの通過を検出すると(ステップST10:Yesの場合)、1回目のマスタATにおける3回目のATポイントの通過時刻t1_3を特定し、下記の式(13)のように1回目のマスタATにおける2回目のATポイントの通過から1回目のマスタATにおける3回目のATポイントの通過に至るまでの経過時間Tela13の計測を終了する(ステップST11)。
   Tela13=t1_3-t1_2   (13)
Next, the elapsed time measuring unit 6 starts measuring the elapsed time Tela13 from the passing time t1_2 of the second AT point in the first master AT (step ST9).
When the elapsed time measuring unit 6 detects the passage of the third AT point in the first master AT (step ST10: Yes), it specifies the passage time t1_3 of the third AT point in the first master AT. Then, the measurement of the elapsed time Tela13 from the passage of the second AT point in the first master AT to the passage of the third AT point in the first master AT is ended as shown in the following equation (13) ( Step ST11).
Tela13 = t1_3-t1_2 (13)
 時刻算出部7は、経過時間計測部6によりTela13が計測されると、1回目のマスタATにおける3回目のATポイントにおけるATのみの終了までの残り時間の予測値であるTend1_3を下記の式(14)のように算出する(ステップST12)。
   Tend1_3=2.0×Tela12+1.5×Tela13(14)
 そして、1回目のマスタATにおける3回目のATポイント時点での当該ATの実際の終了までの時間であるTrest1_3を以下の式のように算出する。
   Trest1_3=Tend1_3+Tbuff (15)
 更に、2回目のマスタAT終了までの全オートチューニング工程の終了予測時間であるTleftを以下の式のように算出する。
   Tleft=2×Trest1_3+Treal+Tsleep (16)
 更に、3回目以降のATポイント切換においては、現在の予測値を再計算し、予測値が現在までに実際にかかった時間に基づく推定値temp_leftよりも大きな場合にのみ、上記のように算出したTleftを、以下の式のように算出したtemp_leftに置き換える。
   temp_left=Treal+(6-n)×Tend1_n+Tsleep (17)
 なお、nは当該マスタATにおけるATポイントの残り切換回数であり、ここではn=3となる。
When the elapsed time measuring unit 6 measures Tela 13, the time calculating unit 7 calculates Tend1_3, which is a predicted value of the remaining time until the end of only the AT at the third AT point in the first master AT, using the following formula ( 14) (step ST12).
Tend1_3 = 2.0 × Tela12 + 1.5 × Tela13 (14)
Then, Trest1_3, which is the time until the actual end of the AT at the time of the third AT point in the first master AT, is calculated by the following equation.
Trest1_3 = Tend1_3 + Tbuff (15)
Further, Tleft, which is the estimated end time of the entire auto tuning process until the end of the second master AT, is calculated as in the following equation.
Tleft = 2 × Trest1_3 + Treal + Tsleep (16)
Further, in the AT point switching after the third time, the current predicted value is recalculated and calculated as described above only when the predicted value is larger than the estimated value temp_left based on the actual time taken until now. Replace Tleft with temp_left calculated as in the following equation.
temp_left = Treal + (6-n) × Tend1_n + Tsleep (17)
Note that n is the number of remaining AT point switchings in the master AT, and here, n = 3.
 時刻提示部8は、時刻算出部7によりTend1_3が算出されると、現在時刻と当該時点におけるTleftに基づきATが終了する予想時刻を算出する。
 時刻提示部8は、時刻算出部7により当該時点におけるTleftが算出されると、先に表示している終了予想時刻及びカウントを消して、新たな終了予想時刻を表示する。
 また、時刻提示部8は、Tleftをタイマーの新たなカウント値に設定して、そのカウント値の減数処理を開始する。
 さらに、時刻提示部8は、減数処理中のタイマーのカウント値を表示する(ステップST13)。
 ここでのタイマーのカウント値の減数処理と、減数処理中のカウント値の表示処理は、後述するステップST17でTend1_4が算出されるまで繰り返される。
When the time calculating unit 7 calculates Tend1_3, the time presenting unit 8 calculates the expected time when the AT ends based on the current time and the Tleft at the time.
When the time calculating unit 7 calculates Tleft at the time, the time presenting unit 8 deletes the previously displayed predicted end time and count and displays a new predicted end time.
In addition, the time presentation unit 8 sets Tleft as a new count value of the timer and starts the count value reduction process.
Furthermore, the time presentation unit 8 displays the count value of the timer during the reduction process (step ST13).
The timer count value reduction process and the count value display process during the reduction process are repeated until Tend1_4 is calculated in step ST17, which will be described later.
 ここで、Tend1_3はTend1_2を算出した段階よりも制御パラメータ算出部5によるPIDパラメータの算出処理が進んでいるため、Tend1_3に含まれている誤差はTend1_2と比較して減少していると想定される。 Here, in Tend1_3, since the calculation process of the PID parameter by the control parameter calculation unit 5 is more advanced than the stage in which Tend1_2 is calculated, it is assumed that the error included in Tend1_3 is reduced as compared with Tend1_2. .
 ここまで、AT終了時間予測機能について、1回目のマスタATにおける3回目のATポイント通過までの動作を説明した。以降、1回目のマスタATにおける4~6回目のATポイント通過における動作(ステップS15~ステップS29)については、AT終了時間予測値の算出以外は、3回目のATポイント通過における動作と同様の動作であるので説明を省略する。 So far, regarding the AT end time prediction function, the operation up to the third AT point passing in the first master AT has been described. Thereafter, the operation (step S15 to step S29) in the 4th to 6th AT point passing in the first master AT is the same as the operation in the 3rd AT point passing except for the calculation of the predicted AT end time. Therefore, explanation is omitted.
 マスタAT1回目における各ATポイント通過におけるTend1_4~Tend1_6の算出方法は以下の式(18)~(20)の通りである。
   Tend1_4=1.5×Tela13+Tela14  (18)(ステップS17)
   Tend1_5=Tela14+0.5×Tela15  (19)(ステップS22)
   Tend1_6=0.5×Tela15  (20)(ステップS27)
 上記それぞれの式に基づき、Trest1_4~Trest1_6について算出し、それぞれの時点におけるAT終了時間予測値であるTleftを以下の式のように算出する。
   Trest1_4=Tend1_4+Tbuff  (21)
   Tleft=2×Trest1_4+Treal+Tsleep (22)
   Trest1_5=Tend1_5+Tbuff  (23)
   Tleft=2×Trest1_5+Treal+Tsleep (24)
   Trest1_6=Tend1_6+Tbuff  (25)
   Tleft=2×Trest1_6+Treal+Tsleep (26)
The following formulas (18) to (20) are used to calculate Tend1_4 to Tend1_6 when passing through each AT point in the first master AT.
Tend1_4 = 1.5 × Tela13 + Tela14 (18) (step S17)
Tend1_5 = Tela14 + 0.5 × Tela15 (19) (step S22)
Tend1_6 = 0.5 × Tela15 (20) (Step S27)
Based on the above equations, Trest1_4 to Trest1_6 are calculated, and Tleft, which is an AT end time prediction value at each time point, is calculated as follows.
Trest1_4 = Tend1_4 + Tbuff (21)
Tleft = 2 × Trest1_4 + Treal + Tsleep (22)
Trest1_5 = Tend1_5 + Tbuff (23)
Tleft = 2 × Trest1_5 + Treal + Tsleep (24)
Trest1_6 = Tend1_6 + Tbuff (25)
Tleft = 2 × Trest1 — 6 + Treal + Tsleep (26)
<マスタAT2回目>
 ステップST24においてTela16の計測を開始した後、1回目のマスタATが完了し、制御パラメータ算出部5にて算出された新たなマスタ設定温度SVmがマスタコントローラ9に入力され、マスタ設定温度SVmが新たなマスタ設定温度に切り替えられる。その後、2回目のマスタATが開始され、2回目のマスタATにおけるAT終了時間予測動作へと移行する(ステップS303)。
<Master AT second time>
After starting the measurement of Tela 16 in step ST24, the first master AT is completed, the new master set temperature SVm calculated by the control parameter calculation unit 5 is input to the master controller 9, and the master set temperature SVm is newly set. Can be switched to the correct master set temperature. Thereafter, the second master AT is started, and the process proceeds to an AT end time prediction operation in the second master AT (step S303).
 時刻提示部8は、ステップS302からステップS303への移行の間も、マスタAT1回目における6回目のATポイント通過時に算出した終了予想時刻を表示し、タイマーのカウント値の減数処理と、減数処理中のカウント値の表示処理を継続する。 During the transition from step S302 to step S303, the time presentation unit 8 displays the estimated end time calculated when the sixth AT point passes in the first master AT, and the timer count value reduction process and the reduction process are in progress. The display processing of the count value is continued.
 ステップS302において、1回目のマスタATから引き続き、2回目のマスタAT実効中のマスタAT終了までの予測時間を予測する。ステップS303の詳細な動作は図4を参照しながら説明する。 In step S302, a predicted time from the first master AT to the end of the master AT during the second master AT is predicted. The detailed operation of step S303 will be described with reference to FIG.
 経過時間計測部6は、2回目のマスタATの実行中、マスタ温度計測部3_1から入力されたマスタ測定値PVmを監視して、PVmがマスタ設定温度SVmを通過するタイミング(ATポイントを通過するタイミング)を検出する処理を実施する。2回目のマスタATについても、事前に設定された切換回数は6回である。
 経過時間計測部6は、2回目のマスタATにおける1回目のATポイントの通過を検出すると(ステップST33:Yesの場合)、2回目のマスタATにおける1回目のATポイントの通過時刻t2_1を特定し、その通過時刻t2_1からの経過時間Tela22の計測を開始する(ステップST34)。
The elapsed time measurement unit 6 monitors the master measurement value PVm input from the master temperature measurement unit 3_1 during the execution of the second master AT, and the timing at which PVm passes the master set temperature SVm (passes the AT point). (Timing) is detected. Also for the second master AT, the number of times of switching set in advance is six.
When the elapsed time measuring unit 6 detects passage of the first AT point in the second master AT (step ST33: Yes), the elapsed time measuring unit 6 specifies the passage time t2_1 of the first AT point in the second master AT. Then, measurement of the elapsed time Tela22 from the passage time t2_1 is started (step ST34).
 時刻提示部8は、ステップST33からステップST35への移行の間も、マスタAT1回目における6回目のATポイント通過時に算出した終了予想時刻を表示し、タイマーのカウント値の減数処理と、減数処理中のカウント値の表示処理を継続する。 During the transition from step ST33 to step ST35, the time presentation unit 8 displays the estimated end time calculated when the master AT passes the sixth AT point, and the timer count value reduction process and the reduction process are in progress. The display processing of the count value is continued.
 経過時間計測部6は、2回目のマスタATにおける2回目のATポイントの通過を検出すると(ステップST35:Yesの場合)、2回目のマスタATにおける2回目のATポイントの通過時刻t2_2を特定し、下記の式(27)のように2回目のマスタATにおける1回目のATポイントの通過からマスタAT2回目における2回目のATポイントの通過に至るまでの経過時間Tela22の計測を終了する(ステップST36)。
   Tela22=t2_2-t2_1   (27)
When the elapsed time measuring unit 6 detects passage of the second AT point in the second master AT (step ST35: Yes), the elapsed time measuring unit 6 specifies the passage time t2_2 of the second AT point in the second master AT. Then, the measurement of the elapsed time Tela22 from the passage of the first AT point in the second master AT to the passage of the second AT point in the second master AT is finished as shown in the following equation (27) (step ST36). ).
Tela22 = t2_2-t2_1 (27)
 時刻算出部7は、経過時間計測部6により2回目のマスタATにおける1回目のATポイントの通過から2回目のマスタATにおける2回目のATポイントの通過に至るまでの経過時間Tela22が計測されると、2回目のマスタATにおける2回目のATポイントにおけるAT残り時間の予測値であるTend2_2を下記の式(28)のように算出する(ステップST37)。
   Tend2_2=4.5×Tela22(28)
 そして、2回目のマスタATにおける全オートチューニング工程の終了予測時間であるTleftを以下の式ように算出する。
   Tleft=Tend2_2 (29)
In the time calculation unit 7, the elapsed time Tela 22 from the passage of the first AT point in the second master AT to the passage of the second AT point in the second master AT is measured by the elapsed time measurement unit 6. Then, Tend2_2, which is the predicted value of the AT remaining time at the second AT point in the second master AT, is calculated as in the following equation (28) (step ST37).
Tend2_2 = 4.5 × Tela22 (28)
Then, Tleft, which is the predicted end time of the full auto tuning process in the second master AT, is calculated as follows.
Tleft = Tend2_2 (29)
 時刻提示部8は、時刻算出部7によりTend2_2が算出されると、現在時刻と当該時点におけるTleftに基づきATが終了する予想時刻を算出する。
 時刻提示部8は、時刻算出部7によりTleftが算出されると、先に表示している終了予想時刻及び残り時間Tleft(ここでは、1回目のマスタATにおけるTend1_6に基づく終了予想時刻及び残り時間)を消して、新たな終了予想時刻を表示する。また、時刻提示部8は、Tleftをタイマーのカウント値に設定して、そのカウント値の減数処理を開始する。
 さらに、時刻提示部8は、減数処理中のタイマーのカウント値を表示する(ステップST38)。
 ここでのタイマーのカウント値の減数処理と、減数処理中のカウント値の表示処理は、後述するステップST42でTend2_3が算出されるまで繰り返される。
When the time calculating unit 7 calculates Tend2_2, the time presenting unit 8 calculates the expected time when the AT ends based on the current time and the Tleft at the time.
When the time calculating unit 7 calculates Tleft, the time presenting unit 8 displays the predicted end time and remaining time Tleft previously displayed (here, estimated end time and remaining time based on Tend1_6 in the first master AT) ) And display the new estimated end time. In addition, the time presentation unit 8 sets Tleft as the count value of the timer and starts the count value reduction process.
Furthermore, the time presentation unit 8 displays the count value of the timer during the reduction process (step ST38).
The timer count value reduction process and the count value display process during the reduction process are repeated until Tend2_3 is calculated in step ST42 described later.
 ここまで、AT終了時間予測機能について、2回目のマスタATにおける2回目のATポイント通過までの動作を説明した。以降、2回目のマスタATにおける3~6回目のATポイント通過における動作(ステップS40~ステップS58)については、AT終了時間予測値の算出以外は、2回目のマスタATにおける2回目のATポイント通過における動作と同様の動作であるので説明を省略する。 So far, regarding the AT end time prediction function, the operation up to the second AT point passing in the second master AT has been described. Thereafter, regarding the operation (step S40 to step S58) in the third to sixth AT point passages in the second master AT, the second AT point passage in the second master AT is performed except for the calculation of the predicted AT end time. Since this is the same operation as in FIG.
 2回目のマスタATにおける各ATポイント通過におけるAT終了時間予測値Tend2_3~Tend2_6の算出方法は以下の式(30)~(33)の通りである。
   Tend2_3=2.0×Tela22+2.5×Tela23 (30)(ステップS42)
   Tend2_4=1.5×Tela23+Tela24 (31)(ステップS47)
   Tend2_5=Tela24+0.5×Tela25 (32)(ステップS52)
   Tend2_6=0.5×Tela25 (33)(ステップS57)
 また、以下の式のように、それぞれの時点におけるAT終了時間予測値であるTleftを算出する。
   Tleft=Tend2_3  (34)
   Tleft=Tend2_4  (35)
   Tleft=Tend2_5  (36)
   Tleft=Tend2_6  (37)
The calculation methods of the predicted AT end time values Tend2_3 to Tend2_6 at each AT point passage in the second master AT are as shown in the following equations (30) to (33).
Tend2_3 = 2.0 × Tela22 + 2.5 × Tela23 (30) (step S42)
Tend2_4 = 1.5 × Tela23 + Tela24 (31) (step S47)
Tend2_5 = Tela24 + 0.5 × Tela25 (32) (step S52)
Tend2 — 6 = 0.5 × Tela25 (33) (step S57)
Further, as shown in the following expression, Tleft, which is an AT end time prediction value at each time point, is calculated.
Tleft = Tend2_3 (34)
Tleft = Tend2_4 (35)
Tleft = Tend2_5 (36)
Tleft = Tend2_6 (37)
 制御パラメータ算出部5は、マスタAT2回目の6回目のATポイントの通過が検出されると、算出したPIDパラメータをマスタコントローラ9及びスレーブコントローラ10に出力する。
 そして、時刻算出部7におけるタイマーカウント、すなわちTend2_6の減数処理が0になると、加熱器2のON/OFF制御を終了して、算出されたPIDパラメータに基づいて制御対象1のPID制御を開始する。
The control parameter calculation unit 5 outputs the calculated PID parameter to the master controller 9 and the slave controller 10 when the passage of the sixth AT point of the second master AT is detected.
Then, when the timer count in the time calculation unit 7, that is, the reduction process of Tend2_6 becomes 0, the ON / OFF control of the heater 2 is terminated and the PID control of the control target 1 is started based on the calculated PID parameter. .
 図6はマスタ制御対象の伝達関数を、1/(1+8s)(1+8s)(1+253s)とし、スレーブ制御対象の伝達関数を1/(1+32s)とし、マスタ、スレーブのSV値を50%とした場合において、本実施形態のオートチューニング装置100を用いた、シミュレーション結果を示している。
 AT残り予想時間が線形に近く、AT残り時間を精度良く予測できていることがわかる。
In FIG. 6, the transfer function of the master control target is 1 / (1 + 8s) (1 + 8s) (1 + 253s), the transfer function of the slave control target is 1 / (1 + 32s), and the SV values of the master and slave are 50%. The simulation result using the auto-tuning apparatus 100 of this embodiment is shown.
It can be seen that the AT remaining expected time is close to linear, and the AT remaining time can be accurately predicted.
 以上のように、この実施の形態によれば、カスケード制御系におけるオートチューニングの終了時間を予測することができるオートチューニング装置を得ることができる。
 このため、例えば、制御対象1の負荷容量が大きく応答性が遅いために、オートチューニング機能によるPIDパラメータの算出時間が長くなる場合でも、PID制御を開始するまでの段取りを容易に立てることができる。
 また、1回目のマスタATにおけるATポイント間の経過時間に基づき終了時間を補正するように構成したため、カスケード制御におけるAT終了時間予測の精度をあげることができる。
 また、1回目のマスタATと2回目のマスタATとの間におけるSVmを切換える際の時間を、1回目のマスタATにおけるATポイント間の経過時間に基づき予測するように構成したため、カスケード制御におけるAT終了時間予測の精度をあげることができる。
 また、1回目のAT実効時間を2回目のAT残り時間の推定に使用するように構成したため、カスケード制御におけるAT終了時間予測の精度をあげることができる。
As described above, according to this embodiment, it is possible to obtain an auto tuning apparatus that can predict the end time of auto tuning in a cascade control system.
For this reason, for example, even when the calculation time of the PID parameter by the auto tuning function becomes long because the load capacity of the control target 1 is large and the response is slow, the setup until the start of PID control can be easily set up. .
In addition, since the end time is corrected based on the elapsed time between AT points in the first master AT, the accuracy of AT end time prediction in cascade control can be increased.
In addition, since the time for switching SVm between the first master AT and the second master AT is predicted based on the elapsed time between AT points in the first master AT, the AT in cascade control is The accuracy of the end time prediction can be increased.
In addition, since the first AT effective time is used to estimate the second AT remaining time, the accuracy of AT end time prediction in cascade control can be improved.
 また、この実施の形態によれば、経過時間計測部6が、通過のタイミングを検出する毎に前回の通過のタイミングから今回の通過のタイミングに至るまでの経過時間を計測し、時刻算出部7が、経過時間計測部6により経過時間が計測される毎に当該経過時間を用いてAT残り時間を算出し、時刻提示部8が、時刻算出部7によりAT残り時間が算出される毎に当該終了時間及び残り時間のカウントを表示するように構成したので、オートチューニングの処理が終了に近づくにつれて、算出精度の高いAT残り時間を表示することができる。 Further, according to this embodiment, every time the elapsed time measuring unit 6 detects the passage timing, the elapsed time from the previous passage timing to the current passage timing is measured, and the time calculation unit 7 However, every time the elapsed time is measured by the elapsed time measuring unit 6, the remaining AT time is calculated using the elapsed time, and every time the time presenting unit 8 calculates the remaining AT time by the time calculating unit 7, Since it is configured to display the count of the end time and the remaining time, the AT remaining time with high calculation accuracy can be displayed as the auto-tuning process approaches.
 この実施の形態では、6回目の通過のタイミングが検出された時点で、PIDパラメータの算出処理が完了する例を示したが、これは一例に過ぎず、6回目以上の通過のタイミングが検出された時点で、PIDパラメータの算出処理が完了する場合もあれば、4回目以下の通過のタイミングが検出された時点で、PIDパラメータの算出処理が完了する場合もある。以下、ATポイントにおける動作をAT切替とも称する。
 なお、そのような場合は以下のように残り時間Tleftを算出する。
 残りAT切替回数:remain_cycle_count=全体の切替回数-現在の切替回数とする。
 残りAT切替の周期回数:remain_cyc=remain_cycle_count/2(あまりは切り捨てる)とする。
 そして、残り時間算出時点でのAT切替回数により計算方法を変える。
 AT切替2回目では、AT切替1回目に測定したAT切替周期の半周期分の時間(time_count)×残り切替数(remain_cycle_count)+前回のATポイントから1/4周期分の時間である終了時間(at_xtime)とする。
 また、AT切替3回目以降では、まず、残り周期に半周期の「あまり」があるか確認する。半周期の「あまり」とは、残り切替回数(remain_cycle_count)を2で割ったあまりである。なお、計算では残りの切替が1回の場合、「あまり」はゼロになる。
 そして、「あまり」がある場合は、
 Tleft=直前1周期の時間である(ct_cyc)×(remain_cyc)+1周期前の半周期分の時間である(ct_old)+(at_xtime)として計算する。
 「あまり」がない場合は、
 Tleft=直前1周期時間(ct_cyc)×(remain_cyc)+1周期前の1/4周期分の時間である(xt_old)として計算する。
In this embodiment, the example in which the calculation process of the PID parameter is completed when the timing of the sixth passage is detected is merely an example, and the timing of the sixth or more passage is detected. In some cases, the calculation process of the PID parameter may be completed at the time point, or the calculation process of the PID parameter may be completed when the timing of the fourth or subsequent passage is detected. Hereinafter, the operation at the AT point is also referred to as AT switching.
In such a case, the remaining time Tleft is calculated as follows.
Remaining AT switching count: remain_cycle_count = total switching count−current switching count.
The number of remaining AT switching cycles: remain_cyc = remain_cycle_count / 2 (much rounded down).
Then, the calculation method is changed depending on the number of AT switching times at the time of calculating the remaining time.
In the second AT switching, the time corresponding to a half period of the AT switching cycle measured in the first AT switching (time_count) × the number of remaining switching (remain_cycle_count) + the end time which is a time corresponding to ¼ period from the previous AT point ( at_xtime).
In addition, after the third AT switching, first, it is confirmed whether or not there is a “less” half cycle in the remaining cycle. “Too much” in a half cycle is too much obtained by dividing the remaining switching count (remain_cycle_count) by 2. In the calculation, if the remaining switching is one time, “too much” becomes zero.
And if there is "too much",
Tleft = (ct_cyc) × (remain_cyc) which is the time of the previous one cycle + (ct_old) + (at_xtime) which is the time of a half cycle before one cycle.
If you do n’t have “too much”,
Tleft = immediately preceding one cycle time (ct_cyc) × (remain_cyc) + calculated as (xt_old) which is a time corresponding to a quarter cycle before one cycle.
 なお、この実施の形態ではマスタループとスレーブループの2段で構成している例を記載したが、これに限るものではなく、複数のスレーブループで構成されていてもよい。その場合は、スレーブループの数だけスレーブコントローラが必要となる。
 また、時刻提示部8は7セグメント表示器等で構成される例について記載したが、これに限るものではなく、例えば、終了時間や残り時間を音声出力することで提示するものであってもよい。
 また、図1では、オートチューニング装置100の外部に加熱器2及びマスタ温度計測部3_1、スレーブ温度計測部3_2が設けられている例を示しているが、全て、又は何れかの組み合わせがオートチューニング装置100の内部に設けられているものであってもよい。
 また、図1の例では、PID制御装置の構成要素である温度制御部4、制御パラメータ算出部5、経過時間計測部6、時刻算出部7及び時刻提示部8のそれぞれが専用のハードウェアで構成されているものを想定しているが、全て、又は何れかの組み合わせがソフトウェアにより構成されているものであってもよい。
 また、本実施の形態においてはスレーブコントローラ10がPID制御を行う場合について記載したが、PID制御ではなくP制御やPI制御等の制御を行う場合も同様の処理を実施すればよい。
 また、SV変更にかかる時間TsleepをATポイント通過周期の1.5周期としたが、装置特性などに応じて適切な数値を用いるようにしてもよい。また、ATポイント通過毎に最新の周期時間の係数(例えば1.5)倍で更新するようにしてもよい。
 また、TbuffについてもATポイント通過周期の半周期として、Tsleeep同様に、装置特性などに応じて適切な数値を用いるようにしてもよい。また、ATポイント通過毎に最新の周期時間の係数(例えば、0.5)倍で更新するようにしてもよい。
In this embodiment, an example in which the master loop and the slave loop are configured in two stages has been described. However, the present invention is not limited to this and may be configured by a plurality of slave loops. In that case, as many slave controllers as slave loops are required.
Moreover, although the time presentation part 8 described about the example comprised by a 7 segment display etc., it is not restricted to this, For example, you may present by outputting audio | voice the end time and remaining time. .
FIG. 1 shows an example in which the heater 2, the master temperature measurement unit 3_1, and the slave temperature measurement unit 3_2 are provided outside the auto tuning apparatus 100. However, all or any combination thereof is auto tuning. It may be provided inside the apparatus 100.
In the example of FIG. 1, each of the temperature control unit 4, the control parameter calculation unit 5, the elapsed time measurement unit 6, the time calculation unit 7, and the time presentation unit 8 that are components of the PID control device is dedicated hardware. Although what is comprised is assumed, all or any combination may be comprised by software.
Moreover, although the case where the slave controller 10 performs PID control has been described in the present embodiment, similar processing may be performed when performing control such as P control and PI control instead of PID control.
In addition, although the time Tsleep required for the SV change is set to 1.5 periods of the AT point passing period, an appropriate numerical value may be used according to the device characteristics and the like. Moreover, it may be updated every time the AT point passes by a coefficient (for example, 1.5) times the latest cycle time.
In addition, as for Tbuff, an appropriate numerical value may be used as a half period of the AT point passing period in accordance with the device characteristics and the like as in Tsleeep. Further, it may be updated by a factor (for example, 0.5) times of the latest cycle time every time the AT point passes.
 以上のように、本発明の内容を実施形態に基づいて説明したが、本発明の内容は実施形態の内容のみに限定されるものではなく、請求項に記載された内容及びその均等の範囲内において、変更可能であることはもちろんである。 As described above, the content of the present invention has been described based on the embodiment. However, the content of the present invention is not limited only to the content of the embodiment, but within the content described in the claims and the equivalent scope thereof. Of course, it can be changed.
1 制御対象
2 加熱器
3_1 マスタ温度計測部
3_2 スレーブ温度計測部
4 温度制御部
5 制御パラメータ算出部
6 経過時間計測部
7 時刻算出部
8 時刻提示部
9 マスタコントローラ
10 スレーブコントローラ
11 オートチューニング管理部
100 オートチューニング装置
DESCRIPTION OF SYMBOLS 1 Control object 2 Heater 3_1 Master temperature measurement part 3_2 Slave temperature measurement part 4 Temperature control part 5 Control parameter calculation part 6 Elapsed time measurement part 7 Time calculation part 8 Time presentation part 9 Master controller 10 Slave controller 11 Auto tuning management part 100 Auto tuning device

Claims (6)

  1.  PID制御を行うマスタコントローラと、少なくともP制御を行うスレーブコントローラとがカスケード接続されたカスケード制御系において使用され、前記マスタコントローラの制御パラメータであるマスタパラメータと前記スレーブコントローラの制御パラメータであるスレーブパラメータを調整するオートチューニングを行うためのオートチューニング機能を有するオートチューニング装置であって、
     オートチューニングの実効指令を受けるオートチューニング管理部と、
     制御対象の温度の制御を開始する前に、前記制御対象の温度が設定温度より低い期間では、前記制御対象に熱を加える加熱器をオン状態に設定し、前記制御対象の温度が前記設定温度以上の期間では、前記加熱器をオフ状態に設定することで、前記制御対象の温度を制御する温度制御部と、
     前記温度制御部により制御されている制御対象の温度の計測値から前記マスタパラメータと前記スレーブパラメータを算出する制御パラメータ算出部と、
     前記制御対象の温度の計測値を監視して、前記制御対象の温度が前記設定温度を通過するタイミングを検出する処理を実施し、前回の通過のタイミングから今回の通過のタイミングに至るまでの経過時間を計測する経過時間計測部と、
     前記経過時間計測部により計測された経過時間を用いて、オートチューニングの終了時間を算出する時刻算出部と、
     前記時刻算出部により算出されたオートチューニングの終了時間を提示する時刻提示部と、
     を備えたオートチューニング装置。
    Used in a cascade control system in which a master controller that performs PID control and at least a slave controller that performs P control are cascade-connected, a master parameter that is a control parameter of the master controller and a slave parameter that is a control parameter of the slave controller An auto tuning apparatus having an auto tuning function for performing auto tuning to be adjusted,
    An auto tuning management unit that receives an effective command of auto tuning;
    Before starting control of the temperature of the control target, in a period in which the temperature of the control target is lower than a set temperature, a heater that applies heat to the control target is set to an on state, and the temperature of the control target is set to the set temperature In the above period, by setting the heater to an off state, a temperature control unit that controls the temperature of the control target;
    A control parameter calculation unit that calculates the master parameter and the slave parameter from the measured value of the temperature of the controlled object controlled by the temperature control unit;
    The process of monitoring the measured value of the temperature of the control object, detecting the timing at which the temperature of the control object passes the set temperature is performed, and the process from the previous passage timing to the current passage timing An elapsed time measuring unit for measuring time;
    Using the elapsed time measured by the elapsed time measuring unit, a time calculating unit that calculates the end time of auto-tuning,
    A time presentation unit for presenting the end time of auto-tuning calculated by the time calculation unit;
    Auto tuning device with
  2.  前記経過時間計測部は、前記通過のタイミングを検出する毎に、前回の通過のタイミングから今回の通過のタイミングに至るまでの経過時間を計測し、
     前記時刻算出部は、前記経過時間計測部により経過時間が計測される毎に、当該経過時間を用いて、オートチューニングの終了時間を算出し、
     前記時刻提示部は、前記時刻算出部によりオートチューニングの終了時間が算出される毎に、当該終了時間を提示することを特徴とする請求項1記載のオートチューニング装置。
    The elapsed time measurement unit measures the elapsed time from the previous passage timing to the current passage timing each time the passage timing is detected,
    The time calculation unit calculates an end time of auto-tuning using the elapsed time every time the elapsed time is measured by the elapsed time measurement unit,
    2. The auto tuning apparatus according to claim 1, wherein the time presentation unit presents the end time each time the end time of auto tuning is calculated by the time calculation unit.
  3.  前記時刻提示部は、前記時刻算出部によりオートチューニングの終了時間が算出される毎に、現在の時刻から当該終了時間に至るまでの時間をタイマーのカウント値に設定して、前記カウント値の減数処理を開始し、減数処理中のカウント値を提示することを特徴とする請求項2記載のオートチューニング装置。 The time presentation unit sets the time from the current time to the end time every time the auto-tuning end time is calculated by the time calculation unit, and sets the timer count value to reduce the count value. 3. The auto-tuning apparatus according to claim 2, wherein processing is started and a count value during reduction processing is presented.
  4.  前記オートチューニング機能においてリミットサイクル法を用いる場合に、
     前記経過時間算出部が、前記オートチューニングの終了時間に対して前記設定温度を切換える前の前記経過時間に基づき補正を行うことを特徴とする請求項1から3の何れかに記載のオートチューニング装置。
    When using the limit cycle method in the auto tuning function,
    4. The auto tuning apparatus according to claim 1, wherein the elapsed time calculation unit performs correction based on the elapsed time before switching the set temperature with respect to the end time of the auto tuning. .
  5.  前記オートチューニング機能においてリミットサイクル法を用いる場合に、
     前記経過時間算出部が、前記設定温度の切換えにかかる時間を、前記設定温度切換前の前記経過時間に基づき予測することを特徴とする請求項1から3の何れかに記載のオートチューニング装置。
    When using the limit cycle method in the auto tuning function,
    The auto-tuning device according to any one of claims 1 to 3, wherein the elapsed time calculation unit predicts a time required for switching the set temperature based on the elapsed time before the set temperature switching.
  6.  前記オートチューニング機能においてリミットサイクル法を用いる場合に、
     前記経過時間算出部が、前記設定温度の切換後、前記設定温度の切換えまでにかかった時間と、前記経過時間に基づき、前記オートチューニングの終了時間を算出することを特徴とする請求項1から3の何れかに記載のオートチューニング装置。
    When using the limit cycle method in the auto tuning function,
    2. The elapsed time calculation unit calculates an end time of the auto-tuning based on the time taken until the set temperature is switched after the set temperature is switched and the elapsed time. 4. The auto-tuning device according to any one of 3.
PCT/JP2016/085543 2016-11-30 2016-11-30 Automatic tuning device WO2018100670A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018553571A JP6751244B2 (en) 2016-11-30 2016-11-30 Auto tuning device
PCT/JP2016/085543 WO2018100670A1 (en) 2016-11-30 2016-11-30 Automatic tuning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/085543 WO2018100670A1 (en) 2016-11-30 2016-11-30 Automatic tuning device

Publications (1)

Publication Number Publication Date
WO2018100670A1 true WO2018100670A1 (en) 2018-06-07

Family

ID=62242377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085543 WO2018100670A1 (en) 2016-11-30 2016-11-30 Automatic tuning device

Country Status (2)

Country Link
JP (1) JP6751244B2 (en)
WO (1) WO2018100670A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7500341B2 (en) 2020-08-18 2024-06-17 株式会社チノー Parameter adjustment device for cascade control

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243094A (en) * 2000-02-28 2001-09-07 Fujitsu Ltd End time prediction method for computer processing operation and end time prediction system for computer processing operation
JP2012089004A (en) * 2010-10-21 2012-05-10 Rkc Instrument Inc Auto-tuning device and auto-tuning method
JP2016170806A (en) * 2012-12-07 2016-09-23 オムロン株式会社 Regulator, control method, and control program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243094A (en) * 2000-02-28 2001-09-07 Fujitsu Ltd End time prediction method for computer processing operation and end time prediction system for computer processing operation
JP2012089004A (en) * 2010-10-21 2012-05-10 Rkc Instrument Inc Auto-tuning device and auto-tuning method
JP2016170806A (en) * 2012-12-07 2016-09-23 オムロン株式会社 Regulator, control method, and control program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7500341B2 (en) 2020-08-18 2024-06-17 株式会社チノー Parameter adjustment device for cascade control

Also Published As

Publication number Publication date
JP6751244B2 (en) 2020-09-02
JPWO2018100670A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
US10248084B2 (en) Controller, control method, and control program
JP2009229382A (en) Controller and electric power estimation method
US20030216823A1 (en) Control apparatus
JP6859725B2 (en) PID controller, PID control method, and PID control program
JP5585381B2 (en) Auto tuning device and auto tuning method
JP2015133878A (en) Motor control device and motor control method
JP2023028327A (en) Controller, control method and program
WO2018100670A1 (en) Automatic tuning device
JP4770498B2 (en) Control device
JP6296170B2 (en) Temperature control apparatus and temperature control method
JP7275492B2 (en) Control device, control method and program
JP6718124B2 (en) PID control device and PID control method
JP2018112956A (en) Controller, method for control, and control program
WO2020039934A1 (en) Setting assistance device
JP5271726B2 (en) Stop time estimation apparatus and estimation method
JP6237914B2 (en) Temperature control apparatus and temperature control method
JPS63276604A (en) Process controller
JP6464899B2 (en) Multivariable predictive control system
JP2013167920A (en) Power estimation device and control device and method
WO2020039935A1 (en) Setting assistance device
CN114243769B (en) System, method and inverter for reducing control strategy operand
JP2018112858A (en) Controller, method for control, and control program
JP2020021298A (en) Control apparatus and control method
JP6845449B2 (en) Temperature control device and method for estimating temperature rise completion time
WO2020189342A1 (en) Control device, control method, and control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923052

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018553571

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923052

Country of ref document: EP

Kind code of ref document: A1