[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018199270A1 - 硬化性組成物 - Google Patents

硬化性組成物 Download PDF

Info

Publication number
WO2018199270A1
WO2018199270A1 PCT/JP2018/017091 JP2018017091W WO2018199270A1 WO 2018199270 A1 WO2018199270 A1 WO 2018199270A1 JP 2018017091 W JP2018017091 W JP 2018017091W WO 2018199270 A1 WO2018199270 A1 WO 2018199270A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
curable composition
mass
organic polymer
Prior art date
Application number
PCT/JP2018/017091
Other languages
English (en)
French (fr)
Inventor
章徳 佐藤
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2018199270A1 publication Critical patent/WO2018199270A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups

Definitions

  • the present invention relates to a curable composition containing an organic polymer having a reactive silicon group.
  • An organic polymer having at least one reactive silicon group in the molecule is crosslinked by forming a siloxane bond due to a hydrolysis reaction of the silicon group due to moisture or the like.
  • Such organic polymers are known to give rubbery cured products by the aforementioned crosslinking.
  • curable compositions using organic polymers having reactive silicon groups are widely used in applications such as sealing materials, adhesives and paints. These curable compositions are required to have curability, workability, stability, and the like depending on applications.
  • the obtained cured product is required to have various physical properties such as adhesiveness, flexibility, strength, hardness, restorability, and heat resistance.
  • the curable composition needs to exhibit the above physical properties in a well-balanced manner.
  • curable compositions are required to have fast curability and are used for various purposes. For this reason, in order to use the same curable composition for various uses, it is preferable that each physical property is exhibited simultaneously at a high level while exhibiting fast curability.
  • Patent Document 2 a curable composition containing an organic polymer having a specific reactive silicon group, an amine compound, and an acidic compound has been proposed (Patent Document 2).
  • the curable composition described in Patent Document 2 is excellent in surface fast curability, adhesiveness, restoration property, and storage stability.
  • the curable composition described in Patent Document 2 is particularly useful for adhesive applications.
  • a curable composition that provides a cured product that can be cured in a short time and can maintain good rubber elasticity over a long period of time has been proposed (Patent Document 3).
  • the above-mentioned curable compositions proposed in Patent Documents 1 to 3 exhibit other excellent physical properties while exhibiting rapid curability. However, depending on the application, a plurality of properties among many properties such as deep curability and storage stability of the curable composition and tear strength and heat resistance of the cured product may be required.
  • the effective compositions described in Patent Documents 1 to 3 still have room for improvement in that these characteristics can be exhibited simultaneously in the same composition.
  • the present inventors have solved the above problems with a curable composition containing an organic polymer having a specific reactive silicon group and a (meth) acrylic organic polymer having a specific structure.
  • the present inventors have found that the present invention can be accomplished and have completed the present invention.
  • R 1 represents a hydrogen atom on the first carbon atom in an aliphatic hydrocarbon group having one or more hydrogen atoms on the first carbon atom and having 1 to 20 carbon atoms.
  • An organic polymer (B) which is a (meth) acrylic organic polymer having a reactive silicon group represented by:
  • the curable composition whose ratio which the structural monomer unit derived from methyl methacrylate accounts for 20 mass% or more and 90 mass% or less among all the structural monomer units which comprise an organic polymer (B).
  • R 1 in the general formula (1) is a methoxymethyl group.
  • the blend ratio of the organic polymer (A) and the organic polymer (B) is 90:10 to 40:60 in terms of mass ratio (organic polymer (A): organic polymer (B)).
  • the blending ratio of the organic polymer (A) and the organic polymer (B) is 75:25 to 55:45 in terms of mass ratio (organic polymer (A): organic polymer (B)).
  • R 3 , R 5 , and R 6 are hydrogen atoms. atoms, or, carbon atoms a 1 to 20 substituted or unsubstituted hydrocarbon group, two R 5 and two R 6 may be the same, may be different .R 3 , R 4, two R 5, and a compound having an amidine structure or guanidine structure represented by any two or more ring structure by bonding with and may form.) of the two R 6
  • (19) The curable composition according to (17), wherein the organic tin compound (c2) is a dialkyltin compound.
  • (20) A cured product obtained by curing the curable composition according to any one of (1) to (19).
  • (21) A sealing material containing the curable composition according to any one of (1) to (19).
  • an organic polymer (A) having a reactive silicon group hereinafter also referred to as a polymer (A)
  • an organic polymer (B) hereinafter referred to as a (meth) acrylic organic polymer
  • the surface curability is good, and the cured product has elongation, tear strength, heat resistance, storage stability, deep curability, and adhesiveness. It is possible to provide a curable composition having an excellent balance, a cured product of the curable composition, and a sealing material and an adhesive containing the curable composition.
  • the polymer in the present specification conforms to the following definition.
  • a polymer contains all the polymer components obtained by the manufacturing process of the polymer, and includes components having different molecular weight, structure, number of substituents, and the like.
  • the average molecular weight, the molecular weight distribution, and the amount of substituents introduced on average per molecule are used.
  • representative molecular structures are sometimes described for convenience.
  • the organic polymer (A) has the following general formula (1) -SiR 1 a X 3-a (1)
  • R 1 represents a hydrogen atom on the first carbon atom in an aliphatic hydrocarbon group having one or more hydrogen atoms on the first carbon atom and having 1 to 20 carbon atoms.
  • X represents a hydroxyl group or a hydrolyzable group, a is 1 or 2, R 1 , And when there are a plurality of them, they may have the same or different reactive silicon groups.
  • substitution of at least one of the hydrogen atoms on the carbon atom at the 1-position with any of an oxygen atom, a nitrogen atom, and a sulfur atom is an oxygen atom, a nitrogen atom, or a sulfur atom. It includes not only substitution by atoms but also substitution by oxygen atom-containing groups, nitrogen atom-containing groups, or sulfur atom-containing groups.
  • R 1 when the hydrogen atom on the carbon atom at the 1-position is replaced by an oxygen atom-containing group, a nitrogen atom-containing group, or a sulfur atom-containing group, at least one oxygen atom in the oxygen atom-containing group, nitrogen At least one nitrogen atom in the atom-containing group or at least one sulfur atom in the sulfur atom-containing group is bonded to the carbon atom at the 1-position.
  • the aliphatic hydrocarbon group having one or more hydrogen atoms on the 1-position carbon atom constituting the main skeleton of R 1 include an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, and an ethynyl group.
  • Alkynyl and the like can be mentioned.
  • the group containing an oxygen atom, a nitrogen atom or a sulfur atom substituted on the carbon atom at the 1-position of R 1 in the general formula (1) is not particularly limited.
  • the oxygen atom-containing group include an oxo group ( ⁇ O), an alkoxy group, an alkenyloxy group, an aryloxy group, and an acyloxy group.
  • the nitrogen atom-containing group include an amino group, an alkylamino group, an alkylimino group, a carbamate group, and a ureido group.
  • S thioxo group
  • an oxygen atom-containing group, a nitrogen atom-containing group, and a sulfur atom-containing group are bonded to the 1-position carbon atom of R 1 , two of the plurality of groups are bonded to each other. To form a ring.
  • Examples of such a group include 2,5-dioxacyclopentyl group, 3-methyl-2,5-dioxacyclopentyl group, 1-methyl-2,5-dioxacyclopentyl group and the like.
  • the oxygen atom-containing group attached to the carbon atom at the 1-position of R 1, the nitrogen atom-containing group or a sulfur atom-containing group may be any of the carbon atoms in the aliphatic hydrocarbon group constituting the main skeleton of R 1 To form a ring.
  • Such a group includes a 2-oxacyclopentyl group.
  • R 1 in the general formula (1) include a methoxymethyl group, an ethoxymethyl group, a 1-methoxyethyl group, a 2-propenoxymethyl group, a phenoxymethyl group, an acetoxymethyl group, a dimethoxymethyl group, a trimethoxymethyl group, Methoxymethyl group, 2-oxacyclopentyl group, 2,5-dioxacyclopentyl group, 3-methyl-2,5-dioxacyclopentyl group, 1-methyl-2,5-dioxacyclopentyl group, acetyl group, and methoxy A group in which at least one hydrogen atom on the carbon atom at the 1-position is substituted with an oxygen atom, such as a carbonyl group; an aminomethyl group, a 1-aminoethyl group, an N-methylaminomethyl group, an N, N-dimethylaminomethyl group; N-ethylaminomethyl group, N-phenyla
  • a methoxymethyl group, an ethoxymethyl group, a 1-methoxyethyl group, a phenoxymethyl group, and an acetoxy group are excellent in the balance between the high activity of the reactive silicon group and the storage stability of the curable composition. More preferred is a group in which one of the hydrogen atoms on the 1-position carbon atom is substituted with an oxygen atom, such as a methyl group.
  • a methoxymethyl group is particularly preferable in terms of excellent balance of physical properties of the cured product.
  • X in the general formula (1) represents a hydroxyl group or a hydrolyzable group.
  • the hydrolyzable group include known hydrolyzable groups. Specific examples of the hydrolyzable group include, for example, hydrogen, halogen, alkoxy group, alkenyloxy group, aryloxy group, acyloxy group, ketoximate group, amino group, amide group, acid amide group, aminooxy group, alkylthio group, An arylthio group, an alkylsulfonyloxy group, an arylsulfonyloxy group and the like can be mentioned. In these, a halogen, an alkoxy group, an alkenyloxy group, and an acyloxy group are preferable.
  • the reactive silicon group-containing polymer must be stable before reacting with the presence of water and a catalyst. For this reason, as a hydrolysable group, the alkoxy group with moderate hydrolyzability is more preferable.
  • a methoxy group and an ethoxy group are more preferable from the viewpoint of easy production of raw materials.
  • a methoxy group is particularly preferred from the standpoint of both activity and ease of handling.
  • an ethoxy group and an isopropenoxy group are preferable because ethanol and acetone, which are safe and easy to remove, are eliminated by hydrolysis.
  • the reactive silicon group represented by the general formula (1) include (methoxymethyl) dimethoxysilyl group, bis (methoxymethyl) methoxysilyl group, (methoxymethyl) diethoxysilyl group, and bis (methoxy Methyl) ethoxysilyl group, (ethoxymethyl) dimethoxysilyl group, bis (ethoxymethyl) methoxysilyl group, (1-methoxyethyl) dimethoxysilyl group, bis (1-methoxyethyl) methoxysilyl group, (phenoxymethyl) dimethoxysilyl Group, bis (phenoxymethyl) methoxysilyl group, (phenoxymethyl) diethoxysilyl group, bis (phenoxymethyl) ethoxysilyl group, (acetoxymethyl) dimethoxysilyl group, bis (acetoxymethyl) methoxysilyl group, (acetoxymethyl) Diethoxysilyl group, (Acetoxymethyl) ethoxys
  • the reactive silicon group represented by the general formula (1) is not limited to these. Of these, (methoxymethyl) dimethoxysilyl group, (methoxymethyl) diethoxysilyl group, and (N, N-diethylaminomethyl) dimethoxysilyl group are preferable from the viewpoint of activity. A (methoxymethyl) dimethoxysilyl group is more preferable because the cured product exhibits good mechanical properties.
  • the polymer (A) may have other reactive silicon groups in addition to the group represented by the general formula (1).
  • specific examples of other reactive silicon groups include methyldimethoxysilyl group, methyldiethoxysilyl group, dimethylmethoxysilyl group, trimethoxysilyl group, triethoxysilyl group, and (methoxymethyl) methylmethoxysilyl group. It is done.
  • the method for introducing a reactive silicon group into the polymer (A) is not particularly limited.
  • a reactive silicon group can be introduced into the polymer (A) using a known method.
  • the method (i) is preferable because the reaction is simple, the amount of the reactive silicon group introduced is adjusted, and the physical properties of the resulting reactive silicon group-containing polymer are stable.
  • the method (ii) is preferable because there are many reaction options and it is easy to increase the rate of introduction of reactive silicon groups.
  • the number of silicon groups introduced may be expressed as silicon group introduction rate or functionalization rate with respect to the number of reactive groups as described above in the polymer before introduction. It is natural that the number of silicon in the reactive silicon-based polymer is controlled by the silicon group introduction rate, but unreacted reactive groups may affect the physical properties of the polymer and the polymer-containing composition. is there. For example, the reactivity may change or the viscosity may change during long-term storage of the composition.
  • the silicon group introduction rate is preferably 50% or more, more preferably 60% or more, and particularly preferably 70% or more.
  • the lower limit is preferably 1.1 or more, and the upper limit is preferably 5 or less.
  • the lower limit of the average number of reactive silicon groups per molecule is preferably 1.8 or more, and more preferably 2.0 or more.
  • the upper limit is more preferably 3.0 or less. If the average number of reactive silicon groups per molecule is too small, sufficient bonding between polymers is difficult to occur, and it is difficult to obtain a cured product having desired physical properties. On the other hand, if the average number of molecules per reactive silicon group is too large, the stretchability of the cured product may be lowered, and it is economically disadvantageous.
  • the lower limit of the average number of reactive silicon groups per molecule is preferably 1.2 or more, and 1.4 More preferably.
  • the average number of reactive silicon groups per molecule in the polymer (A) is determined by a method of quantifying protons on carbon directly bonded with reactive silicon groups by high resolution 1 H-NMR measurement.
  • the reactive silicon group may be present at either the molecular chain end, the side chain end, or both of the polymer (A).
  • the presence of a reactive silicon group having two hydroxyl groups and two hydrolyzable groups at the end of the molecular chain makes it easy to obtain a rubber-like cured product exhibiting high strength and high elongation due to the long molecular weight between crosslinking points.
  • the number average molecular weight of the polymer (A) is not particularly limited.
  • the number average molecular weight is preferably 3,000 or more and 100,000 or less, more preferably 3,000 or more and 50,000 or less, and particularly preferably 3,000 or more and 30,000 or less in terms of polystyrene in GPC. If the number average molecular weight is too small, the amount of reactive silicon groups introduced is large, which may be inconvenient in terms of production cost. When the number average molecular weight is excessive, the viscosity of the polymer (A) or the curable crude composition tends to be inconvenient in terms of workability.
  • polystyrene conversion molecular weight in GPC was measured using Tosoh HLC-8120GPC as a liquid feeding system, Tosoh TSK-GEL H type as a column, and tetrahydrofuran (THF) as a solvent. The same applies to other molecular weight notations in this specification.
  • the molecular weight distribution (Mw / Mn) of the polymer (A) is not particularly limited.
  • the molecular weight distribution is preferably narrow, preferably less than 2.0, more preferably 1.6 or less, further preferably 1.5 or less, and particularly preferably 1.4 or less.
  • the main chain of the polymer (A) may be linear or may have a branched chain.
  • the main chain of the polymer (A) is preferably a straight chain from the viewpoint of obtaining a cured product exhibiting good elongation properties.
  • the number of branched chains of the main chain of the polymer (A) is 1 or more and 4 or less in order to maintain good elongation properties of the cured product. More preferably, it is most preferably 1.
  • the main chain skeleton of the organic polymer (A) is not particularly limited. Polymers having various main chain skeletons can be used as the organic polymer (A). For example, polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxyisobutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, polyoxypropylene-polyoxybutylene copolymer, polyoxypropylene-poly Polyoxyalkylene polymers such as oxyisobutylene copolymers, polyoxyethylene-polyoxytetramethylene copolymers, and polyoxypropylene-polyoxytetramethylene copolymers; ethylene-propylene copolymers, polyisobutylene, Copolymers of isobutylene and isoprene, polychloroprene, polyisoprene, isoprene or copolymers of butadiene and acrylonitrile and / or styrene
  • Each of the above polymers may be mixed in a block shape, a graft shape or the like.
  • a polyether polymer such as a polyoxyalkylene polymer, a polyester polymer, or a polycarbonate polymer is used as a base polymer for an adhesive or a sealing material
  • an adhesive group having a low molecular weight component is used. It is preferable because there is little contamination due to transfer to materials.
  • polyoxyalkylene polymers are more preferred because they have high moisture permeability and are excellent in deep-part curability when made into a one-component composition, and are also excellent in adhesiveness.
  • Polyoxypropylene is particularly preferred as the main chain skeleton of the polyoxyalkylene polymer, since it is amorphous and has a relatively low glass transition temperature to give a cured product having low viscosity and excellent cold resistance.
  • the polymer (A) may be a polymer having any one of the main chain skeletons described above or a mixture of polymers having different main chain skeletons. Moreover, about a mixture, the mixture of the polymer each manufactured separately may be sufficient, and the mixture manufactured simultaneously so that it may become arbitrary mixed compositions may be sufficient.
  • the glass transition temperature of the polymer (A) is not particularly limited.
  • the glass transition temperature of the polymer (A) is preferably 20 ° C. or lower, more preferably 0 ° C. or lower, and particularly preferably ⁇ 20 ° C. or lower.
  • the glass transition temperature can be determined by DSC measurement according to the measurement method defined in JISK7121.
  • the polyoxyalkylene polymer is a polymer having a repeating unit represented by —R 7 —O— (wherein R 7 is a linear or branched alkylene group having 1 to 14 carbon atoms). Is preferred. R 7 is more preferably a linear or branched alkylene group having 2 to 4 carbon atoms.
  • Specific examples of the repeating unit represented by —R 7 —O— include —CH 2 O—, —CH 2 CH 2 O—, —CH 2 CH (CH 3 ) O—, —CH 2 CH (C 2 H 5 ) O—, —CH 2 C (CH 3 ) (CH 3 ) O—, —CH 2 CH 2 CH 2 CH 2 O— and the like.
  • the main chain structure of the polyoxyalkylene polymer may consist of only one type of repeating unit or may consist of two or more types of repeating units.
  • those composed of a polyoxypropylene polymer having a repeating unit of oxypropylene of 50% by mass or more, preferably 80% by mass or more of the polymer main chain structure It is preferable from the point of being crystalline and having a relatively low viscosity.
  • the polyoxyalkylene polymer is preferably a polymer obtained by a ring-opening polymerization reaction of a cyclic ether compound using a polymerization catalyst in the presence of an initiator.
  • cyclic ether compound examples include ethylene oxide, propylene oxide, butylene oxide, isobutylene oxide, and tetrahydrofuran. These cyclic ether compounds may be used alone or in combination of two or more. Among these cyclic ether compounds, propylene oxide is particularly preferable because an amorphous and relatively low viscosity polyether polymer can be obtained.
  • the initiator include ethylene glycol, propylene glycol, butanediol, hexamethylene glycol, neopentyl glycol, diethylene glycol, dipropylene glycol, triethylene glycol, glycerin, trimethylolmethane, trimethylolpropane, pentaerythritol, And alcohols such as sorbitol; polyoxyalkylene polymers such as polyoxypropylene diol, polyoxypropylene triol, polyoxyethylene diol, and polyoxyethylene triol.
  • the number average molecular weight of the polyoxyalkylene polymer is preferably from 300 to 5,000.
  • Examples of the polymerization method of the polyoxyalkylene polymer include a polymerization method using an alkali catalyst such as KOH; and a complex obtained by reacting an organoaluminum compound and porphyrin described in JP-A-61-215623.
  • Polymerization method using transition metal compound-porphyrin complex catalyst JP-B-46-27250, JP-B-59-15336, US Pat. No. 3,278,457, US Pat. No. 3,278,458, US Pat. No. 3,278,459, US Pat. No. 3,427,256, US Pat. No. 3,427,334, And a polymerization method using a double metal cyanide complex catalyst shown in US Pat. No.
  • the main chain skeleton of the polymer (A) may contain bonds other than oxyalkylene bonds, such as urethane bonds, as long as the effects of the present invention are not significantly impaired.
  • the urethane bond is not particularly limited.
  • Examples of the urethane bond include a bond formed by a reaction between an isocyanate group and a group containing active hydrogen (hereinafter also referred to as an amide segment).
  • the amide segment is not particularly limited.
  • Examples of the amide segment include a urethane bond formed by a reaction between an isocyanate group and a hydroxyl group; a urea bond formed by a reaction between an isocyanate group and an amino group; a thiourethane bond formed by a reaction between an isocyanate group and a mercapto group, and the like. Examples thereof include a bond having an amide bond, and a bond formed by further reacting an active hydrogen in the aforementioned urethane bond, urea bond, and thiourethane bond with an isocyanate group.
  • a cured product obtained by curing a curable composition comprising a polymer containing a urethane bond or an ester bond in the main chain may be cleaved at the urethane bond or ester bond portion by heat or the like.
  • the strength of the cured product may be significantly reduced depending on the curing conditions of the cured product.
  • the viscosity of the polymer tends to be high. Moreover, a viscosity may rise after storage, and workability
  • the average number of amide segments per molecule is preferably 1 or more and 10 or less, more preferably 1.5 or more and 5 or less.
  • the number of 1 to 3 is particularly preferable. When the number is less than 1, the curability may not be sufficient. When the number is more than 10, the polymer may have a high viscosity and may be difficult to handle.
  • Organic polymer (B) which is a reactive silicon group-containing (meth) acrylic organic polymer
  • the organic polymer (B) has the following general formula (2): -SiR 2 a X 3-a (2)
  • R 2 is an unsubstituted hydrocarbon group having 1 to 20 carbon atoms.
  • X and a are the same as those in the general formula (1).
  • R 2 in the general formula (2) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, an n-hexyl group, and a cyclohexyl group.
  • Alkyl groups such as 2-ethylhexyl group and n-dodecyl group; unsaturated hydrocarbon groups such as vinyl group, isopropenyl group and allyl group; aromatic carbon groups such as phenyl group, toluyl group and 1-naphthyl group A hydrogen group etc. are mentioned.
  • a methyl group and a phenyl group are preferable from the viewpoint of the balance between the activity of the reactive silicon group and the physical properties of the cured product.
  • a methyl group is more preferable in view of availability of raw materials.
  • X in the general formula (2) represents a hydroxyl group or a hydrolyzable group, and can be explained in the same manner as X in the general formula (1).
  • a 1 or 2.
  • a 1 or 2.
  • the reactive silicon group represented by the general formula (2) examples include a methyldimethoxysilyl group, a methyldiethoxysilyl group, an ethyldimethoxysilyl group, an ethyldiethoxysilyl group, an n-propyldimethoxysilyl group, Examples include n-hexyldimethoxysilyl group, phenyldimethoxysilyl group, phenyldiethoxysilyl group, methyldiisopropenoxysilyl group, methyldiphenoxysilyl group, methyldimethoxysilyl group, and dimethylmethoxysilyl group.
  • the reactive silicon group represented by the general formula (2) is not limited to these. Among these, a methyldimethoxysilyl group is preferable from the viewpoint that the activity and cured product exhibit a good balance of physical properties.
  • the polymer (B) may have other reactive silicon groups in addition to the group represented by the general formula (2).
  • specific examples of other reactive silicon groups include a trimethoxysilyl group, a triethoxysilyl group, and a (methoxymethyl) methylmethoxysilyl group.
  • the proportion of the constituent monomer units derived from methyl methacrylate in the constituent monomer units is 20 mass percent or more and 90 mass percent or less. If there is no particular limitation. It is preferable to use 1 type and / or 2 or more types of monomer (b) which has (meth) acrylic structures other than methyl methacrylate.
  • the constituent monomer means only a compound having a carbon-carbon double bond in the molecule and polymerizing the carbon-carbon double bond to constitute the polymer (B).
  • the proportion of the constituent monomer units derived from methyl methacrylate in the constituent monomer units constituting the main chain structure of the polymer (B) is 20 mass percent or more and 90 mass percent or less.
  • the proportion is preferably 30 mass percent or more and 85 mass percent or less, and more preferably 50 mass percent or more and 80 mass percent or less. If the proportion of the constituent monomer units derived from methyl methacrylate in the constituent monomer units is too small, the strength of the cured product may be reduced. If it is too large, the reactive silicon group content of the polymer (B) may be included. There exists a tendency for compatibility with an organic polymer (A) to fall.
  • the monomer (b) having a (meth) acrylic structure other than methyl methacrylate include methyl acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, ( N-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, neopentyl (meth) acrylate, n-heptyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, ( (Meth) acrylic acid alkyl ester monomers such as lauryl (meth) acrylate, hexadecyl (meth) acrylate, stearyl (meth) acrylate, and cyclohexyl (meth) acrylate; 2-methoxyethyl (meth) acrylate, (meth ) 3-
  • the monomer (b1) containing a reactive silicon group represented by the general formula (2) includes 3- (methyldimethoxysilyl) propyl (meth) acrylate, 3-methacrylic acid 3- (Methyldiethoxysilyl) propyl, 2- (methyldimethoxysilyl) ethyl (meth) acrylate, and (methyldimethoxysilyl) methyl (meth) acrylate.
  • 3- (methyldimethoxysilyl) propyl methacrylate is preferred because it is easily available.
  • 3- (trimethoxysilyl) propyl (meth) acrylate As the monomer (b2) containing a reactive silicon group not represented by the general formula (2), 3- (trimethoxysilyl) propyl (meth) acrylate, 3- (triethoxysilyl) propyl (meth) acrylate, ( Examples include 2- (trimethoxysilyl) ethyl (meth) acrylate, trimethoxysilylmethyl (meth) acrylate, and triethoxysilylmethyl (meth) acrylate. Of these, 3- (trimethoxysilyl) propyl methacrylate is preferred because it is easily available. These may be used alone or in combination of two or more together with methyl methacrylate.
  • the polymer (B) contains a constituent monomer unit derived from one or more monomers having an alkyl group having 10 to 30 carbon atoms. Preferably, it contains a constituent monomer unit derived from stearyl methacrylate. Examples of the monomer having an alkyl group having 10 to 30 carbon atoms include lauryl (meth) acrylate, hexadecyl (meth) acrylate, and stearyl (meth) acrylate. Further, the total amount of the constituent monomer units derived from the aforementioned monomer having an alkyl group having 10 to 30 carbon atoms in the polymer (B) is 1 mass relative to the total mass of the constituent monomer units. % To less than 50% by mass is preferable, and 10% to 30% by mass is more preferable.
  • monomers exhibiting copolymerizability with these may be used as long as the physical properties are not impaired.
  • monomers include styrene monomers such as styrene, vinyl toluene, ⁇ -methyl styrene, chlorostyrene, and styrene sulfonic acid; fluorine-containing vinyl monomers such as perfluoroethylene, perfluoropropylene, and vinylidene fluoride.
  • Maleic acid and its derivatives such as maleic acid, maleic anhydride, maleic acid monoalkyl ester, and maleic acid dialkyl ester; fumaric acid and its derivatives, such as fumaric acid, fumaric acid monoalkyl ester, and fumaric acid dialkyl ester; maleimide , Methylmaleimide, ethylmaleimide, propylmaleimide, butylmaleimide, hexylmaleimide, octylmaleimide, dodecylmaleimide, stearylmaleimide, phenylmaleimide And maleimide monomers such as cyclohexylmaleimide; vinyl ester monomers such as vinyl acetate, vinyl propionate, vinyl pivalate, vinyl benzoate, and vinyl cinnamate; olefin monomers such as ethylene and propylene; butadiene and isoprene, etc.
  • maleimide Methylmaleimide, e
  • Conjugated diene monomers (meth) acrylonitrile; vinyl monomers such as vinyl chloride, vinylidene chloride, allyl chloride, allyl alcohol, ethyl vinyl ether, and butyl vinyl ether. These may be used alone or in combination of two or more.
  • the monomer units constituting the main chain structure of the polymer (B) include methyl methacrylate and (meth) acrylic acid alkyl esters.
  • the content of the monomer is preferably 50% by mass or more, more preferably 70% by mass or more, and particularly preferably 80% by mass or more.
  • (meth) acrylic acid butyl and (meth) acrylic acid alkyl ester monomer having an alkyl group having 7 to 9 carbon atoms or (meth) acrylic acid alkyl ester having an alkyl group having 10 to 30 carbon atoms Combined use with monomers and combined use of (meth) acrylic acid alkyl ester monomers having 1 or 2 carbon atoms and (meth) acrylic acid alkyl ester monomers having 7 to 9 carbon atoms Is preferable from the viewpoint of compatibility between the organic polymer (A) and the organic polymer (B).
  • the method for synthesizing the acrylic polymer (B) is not particularly limited, and may be a known method.
  • a radical polymerization method is preferred from the viewpoint of versatility of monomers and ease of control of the polymerization reaction.
  • Radical polymerization methods can be broadly divided into “free radical polymerization methods” and “living radical polymerization methods”.
  • the “free radical polymerization method” is a method for polymerizing monomers using an azo compound, a peroxide or the like as a polymerization initiator, and is a simple polymerization method. According to the “free radical polymerization method”, it is possible to obtain a polymer having a functional group at the terminal by using a chain transfer agent having a specific functional group.
  • the “living radical polymerization method” the polymer growth terminal grows without causing a side reaction such as a termination reaction under specific reaction conditions.
  • a method for obtaining an acrylic polymer using a metallocene catalyst as disclosed in JP-A-2001-040037 and a thiol compound having at least one reactive silicon group in the molecule a vinyl monomer as shown in JP-A-57-502171, JP-A-59-006207, and JP-A-60-511992 is used in a stirred tank reactor. It is also possible to use a high temperature continuous polymerization method in which continuous polymerization is performed.
  • the method for introducing a reactive silicon group into the (meth) acrylic acid ester polymer is not particularly limited.
  • the following method can be used.
  • (Iii) A method of copolymerizing a compound having a polymerizable unsaturated group and a reactive silicon-containing group together with the above-described monomer. When this method is used, reactive silicon groups tend to be randomly introduced into the main chain of the polymer.
  • (Iv) A method of polymerizing a (meth) acrylate polymer using a mercaptosilane compound having a reactive silicon-containing group as a chain transfer agent. When this method is used, a reactive silicon group can be introduced into the polymer terminal.
  • V A compound having a polymerizable unsaturated group and a reactive functional group (V group) is copolymerized, and then the V group of the obtained copolymer reacts with the reactive silicon group and the V group.
  • a method of reacting a compound having a functional group Specifically, after copolymerizing 2-hydroxyethyl acrylate, a method of reacting a hydroxyl group of the obtained copolymer with an isocyanate silane having a reactive silicon-containing group, or copolymerizing glycidyl acrylate Then, the method etc. with which the epoxy group which the obtained copolymer has, and the aminosilane compound which has a reactive silicon containing group can be illustrated.
  • (Vi) A method of introducing a reactive silicon group by modifying a terminal functional group of a (meth) acrylic acid ester polymer synthesized by a living radical polymerization method.
  • the (meth) acrylic acid ester polymer obtained by the living radical polymerization method is easy to introduce a functional group at the polymer terminal.
  • a reactive silicon group can be introduced into the polymer terminal.
  • Examples of the silicon compound that can be used to introduce the reactive silicon group of the (meth) acrylic acid ester-based polymer using the above method include the following compounds.
  • Examples of the compound having a polymerizable unsaturated group and a reactive silicon group used in the method (iii) include (meth) acrylic acid (methyldimethoxysilyl) methyl, (meth) acrylic acid (methyldiethoxysilyl) methyl, Examples include 2- (methyldimethoxysilyl) ethyl (meth) acrylate and 3- (methyldimethoxysilyl) propyl (meth) acrylate. From the viewpoint of availability, 3- (methyldimethoxysilyl) propyl methacrylate is preferable.
  • Mercaptosilane compounds having reactive silicon-containing groups used in method (iv) include (mercaptomethyl) methyldimethoxysilane, (3-mercaptopropyl) methyldimethoxysilane, (mercaptomethyl) methyldiethoxysilane, and ( And 3-mercaptopropyl) methyldiethoxysilane.
  • (3-mercaptopropyl) methyldimethoxysilane is particularly preferable.
  • Examples of the compound having a reactive silicon group and a functional group that reacts with the V group used in the method (v) include (isocyanate methyl) methyldimethoxysilane, (isocyanatemethyl) methyldiethoxysilane, and (3-isocyanatepropyl).
  • Isocyanate silane compounds such as methyldimethoxysilane and (3-isocyanatopropyl) methyldiethoxysilane; (glycidoxymethyl) methyldimethoxysilane, (glycidoxymethyl) methyldiethoxysilane, (3-glycidoxypropyl) Epoxysilane compounds such as methyldimethoxysilane and (3-glycidoxypropyl) methyldimethoxysilane; (aminomethyl) methyldimethoxysilane, (N-cyclohexylaminomethyl) methyldimethoxysilane, (N-phenyl) Aminomethyl) methyldimethoxysilane, and the like (N-(2-aminoethyl) aminomethyl) aminosilane compounds such as methyl dimethoxy silane.
  • any denaturation reaction can be used.
  • a polymer using a compound having a functional group capable of reacting with a terminal reactive group obtained by polymerization and a compound having a silicon group, or a compound having a functional group capable of reacting with a terminal reactive group and a double bond can be used.
  • a method in which a double bond is introduced at the terminal and a reactive silicon group is introduced into the double bond at the polymer terminal by hydrosilylation or the like can be used.
  • the above-mentioned isocyanate silane can be used.
  • Hydrosilanes used for hydrosilylation include (chloromethyl) dimethoxysilane, (chloromethyl) diethoxysilane, (methoxymethyl) dimethoxysilane, (methoxymethyl) diethoxysilane, (ethoxymethyl) dimethoxysilane, (amino Methyl) dimethoxysilane, (dimethylaminomethyl) dimethoxysilane, (diethylaminomethyl) dimethoxysilane, (N- (2-aminoethyl) aminomethyl) dimethoxysilane, (acetoxymethyl) dimethoxysilane, and (acetoxymethyl) diethoxysilane And hydrosilanes. If the method (vi) is used, a reactive silicon group-containing (meth) acrylate polymer having a narrow molecular weight distribution can be obtained by arbitrarily controlling the molecular weight.
  • a reactive silicon group can be introduced into both the molecular chain terminal and / or the side chain.
  • the number average molecular weight of the (meth) acrylic acid ester polymer is not particularly limited, but is preferably a molecular weight in terms of polystyrene by GPC measurement, preferably 500 or more and 15,000 or less, more preferably 500 or more and 10,000 or less, and 1,000 or more. 4,000 or less is particularly preferable.
  • the number average molecular weight of the (meth) acrylic acid ester polymer is within the above range, it is easy to form a cured product exhibiting sufficient rubber elasticity, and there is an advantageous tendency in terms of workability with respect to viscosity.
  • the number average molecular weight is in the range of 1,000 to 4,000, the balance between physical properties and viscosity of the cured product tends to be particularly excellent.
  • the reactive silicon group of the reactive silicon group-containing (meth) acrylic acid ester polymer may be introduced at either the molecular chain terminal or the main chain.
  • a polymer in which a reactive silicon group is introduced only at the end of the molecular chain is used, the elongation characteristics of the resulting cured product tend to be improved.
  • the adhesiveness of the curable composition may be improved.
  • the average number of reactive silicon groups per molecule is preferably 0.5 or more and 4.0 or less, more preferably 0.7 or more and 3.5 or less, and 1.0 or more and 3.0. The following are particularly preferred:
  • the blending ratio of the polymer (A) and the polymer (B) is not particularly limited.
  • the mass ratio (polymer (A): polymer (B)) is preferably 90:10 to 40:60, more preferably 75:25 to 55:45.
  • the blending ratio of the polymer (B) is small, the cured product may not exhibit sufficient heat resistance.
  • the blending ratio of the polymer (B) is large, the flexibility of the cured product tends to decrease.
  • Specific examples of the combination of the reactive silicon group represented by the general formula (1) and the reactive silicon group represented by the general formula (2) include (methoxymethyl) dimethoxysilyl group, methyldimethoxysilyl group, Combinations of (methoxymethyl) diethoxysilyl and methyldimethoxysilyl, (ethoxymethyl) dimethoxysilyl and methyldimethoxysilyl, and (methoxymethyl) dimethoxysilyl and methyldiethoxysilyl And a combination of an (alkoxymethyl) dialkoxysilyl group and an alkyldialkoxy group.
  • a combination of a (methoxymethyl) dimethoxysilyl group and a methyldimethoxysilyl group is preferable because the balance between the curability of the curable composition and the physical properties of the cured product is good.
  • an amine compound (c1) and / or an organic tin compound (c2) can be used as the condensation catalyst (C).
  • the condensation catalyst (C) promotes a crosslinking reaction by hydrolysis / condensation between reactive silicon groups of the polymer (A) and the polymer (B).
  • amine compound (c1) examples include aliphatic primary amines; aliphatic secondary amines; aliphatic tertiary amines; aliphatic unsaturated amines; aromatic amines; nitrogen-containing heterocyclic compounds.
  • a compound having an amidine structure or a guanidine structure represented by the following general formula (3) can be particularly preferably used.
  • R 3 N CR 4 -NR 5 2 (3)
  • R 4 is a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, or a group represented by —NR 6 2.
  • R 3 , R 5 , and R 6 are: A hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, and two R 5 and two R 6 may be the same or different. Any two or more of 3 , R 4 , two R 5 , and two R 6 may be bonded to form a cyclic structure.
  • the compound having the amidine structure or guanidine structure represented by the general formula (3) include 1,8-diazabicyclo [5,4,0] undec-7-ene (DBU), 6- (dibutylamino). ) -1,8-diazabicyclo [5,4,0] undec-7-ene (DBA-DBU), 6- (2-hydroxypropyl) -1,8-diazabicyclo [5,4,0] undec-7- Ene (OH-DBU), a compound in which the hydroxyl group of OH-DBU is modified by urethanation or the like, and a compound having an amidine structure such as 1,5-diazabicyclo [4,3,0] non-5-ene (DBN); DBU phenol salt (specifically, trade name: U-CAT SA1 (manufactured by SANAPRO)), DBU octylate (specifically, trade name: U-CAT SA102 (SANAPRO) DBU p-toluenesulfonate (specific
  • DBU, DBA-DBU, DBN, and phenylguanidine are preferable because of high activity, and DBU and phenylguanidine are more preferable.
  • amine compound (c1) examples include methylamine, ethylamine, propylamine, isopropylamine, butylamine, amylamine, hexylamine, octylamine, 2-ethylhexylamine, nonylamine, decylamine, laurylamine, pentadecyl.
  • Aliphatic primary amines such as amine, cetylamine, stearylamine, and cyclohexylamine; dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, diamylamine, dihexylamine, dioctylamine, di (2-ethylhexyl) amine , Didecylamine, dilaurylamine, dicetylamine, distearylamine, methylstearylamine, ethylstearylamine, and buty Aliphatic secondary amines such as stearylamine; Aliphatic tertiary amines such as triethylamine, diisopropylethylamine, tributylamine, trihexylamine, and trioctylamine; Aliphatic unsaturated amines such as triallylamine and oleylamine Aromatic amines such as aniline, lauryl aniline, steary
  • the total number of carbon atoms of the amine compound (c1) is preferably 2 or more, and more preferably 6 or more.
  • the amine compound (c1) is liquid in terms of easy handling and preparation of the composition.
  • the amine compound (c1) is in a solid state in that bleeding out can be suppressed.
  • the amine compound (c1) may be used by dissolving or dispersing in a liquid compound as necessary.
  • a liquid compound which can be used From the viewpoint of the VOC reduction
  • liquid compounds with low volatility include N-ethyltoluenesulfonamide, N-butylbenzenesulfonamide (BBSA), tetrahydrothiophene-1,1-dioxide (sulfolane), 2-pyrrolidone, N-methyl- Examples include 2-pyrrolidone, polyoxyalkylene, and alkyl ethers thereof.
  • the usage-amount of a liquid compound has the preferable range of 20 to 500 mass parts with respect to 100 mass parts of amine compounds (c1).
  • amine compounds (c1) may be used alone or in combination of two or more.
  • the amount of the amine compound (c1) used is preferably 0.01 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass in total of the mass of the polymer (A) and the mass of the polymer (B). 05 parts by mass or more and 5 parts by mass or less are more preferable, and 0.1 parts by mass or more and 1 part by mass or less are particularly preferable. If the amount of the amine compound (c1) used is too small, the curing rate may become insufficient, or the curing reaction may not proceed sufficiently. On the other hand, if the amount used is too large, the curing speed is too high, and the usable time of the curable composition tends to be short, resulting in poor workability and poor storage stability.
  • a compound that forms a salt with the amine compound (c1) may be used.
  • any one or more of phenols, organic sulfonic acids, and inorganic acids may be used. Specific examples include phenol and phenol derivatives; organic sulfonic acids such as trifluoromethanesulfonic acid and p-toluenesulfonic acid; and inorganic acids such as hydrochloric acid, phosphoric acid, and boronic acid.
  • the amount of the compound that forms a salt with the amine compound (c1) is 0.001 part by mass or more and 20 parts by mass with respect to 100 parts by mass in total of the mass of the polymer (A) and the mass of the polymer (B). Or less, more preferably 0.01 parts by mass or more and 10 parts by mass or less, and particularly preferably 0.05 parts by mass or more and 5 parts by mass or less. If the amount used is too small, the effect of suppressing bleeding out of the amine compound (c1) may be insufficient. On the other hand, if the amount used is excessive, the curing rate tends to be slow.
  • organic tin compound (c2) examples include dibutyltin dilaurate, dibutyltin maleate, dibutyltin phthalate, dibutyltin dioctanoate, dibutyltin bis (2-ethylhexanoate), dibutyltin bis (methylmaleate), dibutyltin bis ( Ethyl maleate), dibutyl tin bis (butyl maleate), dibutyl tin bis (octyl maleate), dibutyl tin bis (tridecyl maleate), dibutyl tin bis (benzyl maleate), dibutyl tin diacetate, dibutyl tin dimethoxide , Dibutyltin bis (nonylphenoxide), dibutenyltin oxide, dibutyltin oxide, dibutyltin bis (acety
  • dioctyltin compounds are preferred because they exhibit moderate activity.
  • dioctyltin diacetylacetonate and dioctyltin dilaurate are more preferable.
  • organotin compounds (c2) may be used alone or in combination of two or more.
  • the organic tin compound (c2) When the organic tin compound (c2) is used, the elongation of the cured product tends to be improved as compared with the case where the amine compound (c1) is used. On the other hand, when the amine compound (c1) is used, the resilience of the cured product tends to be improved.
  • the amount of the organic tin compound (c2) used is preferably 0.01 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass in total of the mass of the polymer (A) and the mass of the polymer (B). 0.05 parts by mass or more and 5 parts by mass or less is more preferable, and 0.1 parts by mass or more and 1 part by mass or less are particularly preferable. If the amount of the organic tin compound (c2) used is too small, the curing rate may be insufficient, or the curing reaction may not proceed sufficiently. On the other hand, if the amount used is too large, the curing speed is too high, and therefore the time that the curable composition can be used tends to be short, resulting in poor workability and poor storage stability.
  • the amine compound (c1) and the organotin compound (c2) may be used alone or in combination.
  • the ratio of the amount used in combination is not particularly limited as long as the effects of the invention are not impaired.
  • the curable composition contains the amine as a condensation catalyst (C).
  • an acidic compound (c3) may be used in combination.
  • the acidic compound (c3) is selected from Lewis acid or carboxylic acid.
  • the addition of the acidic compound (c3) tends to improve the storage stability of the curable composition and the tear strength of the cured product.
  • the Lewis acid as the acidic compound (c3) is not particularly limited.
  • Specific examples of Lewis acids include triethoxyborane, triethoxyaluminum, triisopropoxyaluminum, isopropoxyaluminum bis (ethylacetoacetate), diisopropoxyaluminum (ethylacetoacetate), tetraethoxytitanium, tetraisopropoxytitanium, Tetrabutoxytitanium, diisopropoxytitanium bisacetylacetonate, diisopropoxytitanium bis (ethylacetoacetate), tetrabutoxyzirconium, butoxyzirconium (acetylacetonato) bis (ethylacetoacetate), tetrabutoxyhafnium, tetraethoxygermanium, pentaethoxy Alkoxy metals such as tantalum and pentaethoxyniobium; boron trifluoride dieth
  • titanium compounds such as alkoxy titanium are preferable in terms of availability, handling properties, and catalytic activity.
  • titanium compounds when used in combination, only one of the titanium compounds may be used, or two or more may be used in combination.
  • carboxylic acid of an acidic compound (c3) there is no restriction
  • Preferred examples of the carboxylic acid include acetic acid, propionic acid, butyric acid, 2-ethylhexanoic acid, lauric acid, stearic acid, oleic acid, linoleic acid, pivalic acid, 2,2-dimethylbutyric acid, 2,2-diethyl.
  • Examples include butyric acid, 2,2-dimethylhexanoic acid, 2,2-diethylhexanoic acid, 2,2-dimethyloctanoic acid, 2-ethyl-2,5-dimethylhexanoic acid, neodecanoic acid, and versatic acid.
  • the amount of the acidic compound (c3) used is preferably 0.01 parts by mass or more and 20 parts by mass or less, more preferably 0.05 parts by mass or more and 10 parts by mass or less, with respect to 100 parts by mass of the polymer (A). More preferably, it is 1 to 5 parts by mass.
  • condensation catalyst (C) other condensation catalysts other than the amine compound (c1), the organic tin compound (c2), and the acidic compound (c3) can be used.
  • condensation catalysts include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, and 3- (N-2-aminoethylamino) propyltrimethoxysilane.
  • Aminosilanes such as: tin carboxylate, lead carboxylate, bismuth carboxylate, potassium carboxylate, calcium carboxylate, barium carboxylate, titanium carboxylate, zirconium carboxylate, hafnium carboxylate, vanadium carboxylate, manganese carboxylate, carboxyl Carboxylic acid metal salts such as iron acid, cobalt carboxylate, nickel carboxylate, and cerium carboxylate; organic acidic phosphate ester; organic sulfonic acid such as trifluoromethanesulfonic acid; inorganic such as hydrochloric acid, phosphoric acid, and boronic acid ; Ammonium fluoride, tetrabutylammonium fluoride, potassium fluoride, cesium fluoride, ammonium bifluoride, Na 2 SiF 6, K 2 SiF 6, and (NH 4) fluorine-anion-containing compounds such as 2 SiF 6 and Can be mentioned.
  • a photoacid generator or a photobase generator that generates an acid or a base by light can also be used as a condensation catalyst.
  • the amount of the condensation catalyst other than the amine compound (c1), the organic tin compound (c2), and the acidic compound (c3) is 100 parts by mass in total of the mass of the polymer (A) and the mass of the polymer (B). 0.001 to 10 parts by mass is preferable, 0.01 to 7 parts by mass is more preferable, and 0.05 to 5 parts by mass is particularly preferable.
  • the curable composition contains the polymer (A) and the polymer (B) as essential components.
  • the curable composition does not have the reactive silicon group represented by the general formula (1) in addition to the polymer (A) and the polymer (B) as necessary, and the general formula (3): -SiR 2 3-a X a (3)
  • An organic polymer (D) other than the (meth) acrylic organic polymer having a reactive silicon group represented by the formula (wherein R 2 , X and a are the same as described above) may be included.
  • R 2 , X and a are the same as described above.
  • the reactive silicon group represented by the general formula (3) is not particularly limited.
  • Examples of the reactive silicon group represented by the general formula (3) include a methyldimethoxysilyl group, a methyldiethoxysilyl group, a methyldiisopropoxysilyl group, a methyldiisopropenyloxysilyl group, a methoxydimethylsilyl group, and An ethoxydimethylsilyl group etc. are mentioned.
  • a methyldimethoxysilyl group is preferable from the viewpoints of curability and mechanical properties of the obtained cured product.
  • the main chain skeleton of the polymer (D) and the synthesis method thereof can be explained in the same manner as the polymer (A).
  • the polymer (D) can be used by mixing at an arbitrary ratio with respect to the total of the polymer (A) and the polymer (B).
  • the ratio of the mixture can be selected from the viewpoint of curing speed, stability, cost, and the like.
  • the mixing ratio of the polymer (D) to the total of 100 parts by mass of the mass of the polymer (A) and the mass of the polymer (B) is preferably from 0 to 100 parts by mass, and from 0 to 50 parts by mass. The following is more preferable, and 0 to 20 parts by mass is further preferable.
  • the mixing ratio of the polymer (D) is 100 parts by mass or more, the curability of the composition may be lowered.
  • the polymer (A) and the polymer (D) may be of the same type or different types with respect to the main chain skeleton, but are preferably compatible with each other.
  • the polymer (A) may contain a reactive silicon-containing group represented by the general formula (3) in the molecule.
  • polysiloxane can be used to the extent that the effects of the invention are not impaired.
  • Polysiloxane is a polymer whose main chain is composed of repeating siloxane bonds.
  • examples of the polysiloxane include polydimethylsiloxane.
  • the polysiloxane those showing fluidity at room temperature can be used.
  • the main chain may contain other polymer components such as polyoxyalkylene.
  • the strength of the cured product may be improved.
  • the blending amount of the polysiloxane is preferably 1 part by mass or more and 100 parts by mass or less, more preferably 5 to 50 parts by mass with respect to 100 parts by mass in total of the mass of the polymer (A) and the mass of the polymer (B). Particularly preferred is 10 to 30 parts by mass.
  • a plasticizer (E) can be added to the curable composition.
  • a plasticizer By adding a plasticizer, the viscosity of the curable composition and the mechanical properties such as hardness, tensile strength, and elongation of the cured product obtained by curing the curable composition can be adjusted. On the other hand, the tear strength of the cured product tends to decrease due to the addition of the plasticizer.
  • plasticizer (E) examples include phthalic acid ester compounds such as dibutyl phthalate, diheptyl phthalate, di (2-ethylhexyl) phthalate, diisononyl phthalate (DINP), diisodecyl phthalate (DIDP), and butyl benzyl phthalate; Terephthalic acid ester compounds such as (2-ethylhexyl) -1,4-benzenedicarboxylate; non-phthalic acid ester compounds such as 1,2-cyclohexanedicarboxylic acid diisononyl ester; dioctyl adipate, dioctyl sebacate, dibutyl sebacate, Aliphatic polycarboxylic acid ester compounds such as diisodecyl succinate and tributyl acetyl citrate; unsaturated fatty acid ester compounds such as butyl oleate and methyl acetyl ricin
  • a polymer plasticizer can be used.
  • the polymer plasticizer include vinyl polymers; polyester plasticizers; polyether polyols such as polyethylene glycol having a number average molecular weight of 500 or more, and polypropylene glycol, hydroxy groups of these polyether polyols as ester groups, and And / or polyethers such as derivatives converted to ether groups; polystyrenes; polybutadiene, polybutene, polyisobutylene, butadiene-acrylonitrile, and polychloroprene.
  • polymer plasticizers those compatible with the mixture of the polymer (A) and the polymer (B) are preferable.
  • phthalic acid ester compounds non-phthalic acid ester compounds, polyethers and vinyl polymers are preferred.
  • the amount of the plasticizer used is preferably 100 parts by mass or less, more preferably 20 parts by mass or less, and more preferably 10 parts by mass with respect to 100 parts by mass in total of the mass of the polymer (A) and the mass of the polymer (B).
  • the following are particularly preferred: When the amount of the plasticizer used is too large, the mechanical strength of the cured product tends to be insufficient.
  • a plasticizer may be used independently and may use 2 or more types together. Further, a low molecular plasticizer and a high molecular plasticizer may be used in combination. These plasticizers can also be blended at the time of polymer production.
  • a solvent or a diluent can be added to the curable composition.
  • the solvent and diluent are not particularly limited.
  • As the solvent and diluent aliphatic hydrocarbon, aromatic hydrocarbon, alicyclic hydrocarbon, halogenated hydrocarbon, alcohol, ester, ketone, ether and the like can be used.
  • the boiling point of the solvent is preferably 150 ° C. or higher, more preferably 200 ° C. or higher, and 250 ° C. or higher under atmospheric pressure because of the problem of air pollution when the composition is used indoors. C. or higher is particularly preferable.
  • the said solvent or diluent may be used independently and may be used together 2 or more types.
  • An adhesiveness imparting agent can be added to the curable composition.
  • an adhesiveness imparting agent a silane coupling agent or a reaction product of a silane coupling agent can be added.
  • silane coupling agent examples include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, N- ⁇ -aminoethyl- ⁇ -aminopropyltrimethoxysilane, N- ⁇ -aminoethyl- ⁇ - Amino group-containing silanes such as aminopropylmethyldimethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, and (2-aminoethyl) aminomethyltrimethoxysilane; ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropyl Isocyanate group-containing silanes such as triethoxysilane, ⁇ -isocyanatopropylmethyldimethoxysilane, ⁇ -isocyanatemethyltrimethoxysilane, and ⁇ -isocyanatemethyldimethoxymethyl
  • the above-mentioned adhesion imparting agent may be used alone or in combination of two or more.
  • the reaction material of various silane coupling agents can also be used.
  • the amount of the silane coupling agent to be used is preferably 0.1 to 20 parts by mass, and preferably 0.5 to 10 parts by mass with respect to 100 parts by mass as the total of the mass of the polymer (A) and the polymer (B). Part is particularly preferred.
  • Fillers include heavy calcium carbonate, colloidal calcium carbonate, magnesium carbonate, diatomaceous earth, clay, talc, titanium oxide, fumed silica, precipitated silica, crystalline silica, fused silica, anhydrous silicic acid, hydrous silicic acid, Examples thereof include carbon black, ferric oxide, aluminum fine powder, zinc oxide, activated zinc white, PVC powder, PMMA powder, glass fiber and filament.
  • the amount of the filler used is preferably 1 to 300 parts by mass, particularly preferably 10 to 250 parts by mass with respect to a total of 100 parts by mass of the mass of the polymer (A) and the polymer (B).
  • an organic balloon or an inorganic balloon may be added to the curable composition.
  • the balloon is a spherical filler with a hollow inside.
  • the balloon material include inorganic materials such as glass, shirasu, and silica, and organic materials such as phenol resin, urea resin, polystyrene, and saran.
  • the amount of the balloon used is that of the polymer (A).
  • the amount is preferably from 0.1 to 100 parts by weight, particularly preferably from 1 to 20 parts by weight, based on 100 parts by weight in total of the weight and the weight of the polymer (B).
  • an anti-sagging agent may be added to the curable composition as needed to prevent sagging and improve workability.
  • the sagging inhibitor is not particularly limited. Examples of the sagging inhibitor include polyamide waxes; hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate, and barium stearate. These anti-sagging agents may be used alone or in combination of two or more.
  • the amount of the sagging inhibitor used is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass in total of the mass of the polymer (A) and the mass of the polymer (B).
  • antioxidant antioxidant agent
  • the weather resistance of the cured product can be increased.
  • examples of the antioxidant include hindered phenols, monophenols, bisphenols, and polyphenols. Specific examples of the antioxidant are also described in JP-A-4-283259 and JP-A-9-194731.
  • the amount of the antioxidant used is preferably 0.1 to 10 parts by weight, and preferably 0.2 to 5 parts by weight with respect to 100 parts by weight as the total of the weight of the polymer (A) and the weight of the polymer (B). Is particularly preferred.
  • a light stabilizer can be used.
  • Use of a light stabilizer can prevent photooxidation degradation of the cured product.
  • Examples of the light stabilizer include benzotriazole, hindered amine, and benzoate compounds.
  • a hindered amine system is particularly preferable.
  • the light stabilizer is preferably used in an amount of 0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight, based on 100 parts by weight in total of the weight of the polymer (A) and the weight of the polymer (B). Is particularly preferred.
  • an ultraviolet absorber can be used.
  • the surface weather resistance of the cured product can be enhanced.
  • ultraviolet absorbers include benzophenone, benzotriazole, salicylate, substituted tolyl, and metal chelate compounds.
  • a benzotriazole type is particularly preferable.
  • commercially available products include Tinuvin P, Tinuvin 213, Tinuvin 234, Tinuvin 326, Tinuvin 327, Tinuvin 328, Tinuvin 329, and Tinuvin 571 (above, manufactured by BASF).
  • the amount of the ultraviolet absorber used is preferably 0.1 to 10 parts by mass, and preferably 0.2 to 5 parts by mass with respect to 100 parts by mass in total of the mass of the polymer (A) and the mass of the polymer (B). Is particularly preferred.
  • the physical property modifier which adjusts the tensile characteristic of the hardened
  • the physical property modifier include alkyl alkoxysilanes such as phenoxytrimethylsilane, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, and n-propyltrimethoxysilane; aryl such as diphenyldimethoxysilane and phenyltrimethoxysilane Alkoxysilanes; alkylisopropenoxysilanes such as dimethyldiisopropenoxysilane, methyltriisopropenoxysilane, and ⁇ -glycidoxypropylmethyldiisopropenoxysilane; tris (trimethylsilyl) borate, and tris (triethylsilyl) ) Trialkylsilyl borates such
  • the physical property adjusting agent By using the physical property adjusting agent, it is possible to increase the hardness when the curable composition is cured, or conversely to decrease the hardness and to bring about elongation at break.
  • the said physical property modifier may be used independently and may be used together 2 or more types.
  • a compound that generates a compound having a monovalent silanol group in the molecule by hydrolysis has an action of reducing the modulus of the cured product without deteriorating the stickiness of the surface of the cured product.
  • Particularly preferred are compounds that produce trimethylsilanol.
  • Compounds that generate monovalent silanol groups in the molecule by hydrolysis include alcohol derivatives such as hexanol, octanol, phenol, trimethylolpropane, glycerin, pentaerythritol, and sorbitol. Mention may be made of silicon compounds that produce monools.
  • the amount of the physical property modifier used is preferably 0.1 to 10 parts by mass, and preferably 0.5 to 5 parts by mass with respect to 100 parts by mass as a total of the mass of the polymer (A) and the polymer (B). Is particularly preferred.
  • a tackifying resin can be added to the curable composition for the purpose of improving the adhesion and adhesion to the substrate, or as necessary.
  • tackifying resin a commonly used resin can be used.
  • tackifying resins include terpene resins, aromatic modified terpene resins, hydrogenated terpene resins, terpene-phenol resins, phenol resins, modified phenol resins, xylene-phenol resins, cyclopentadiene-phenol resins, coumarone indenes.
  • Resin Resin, rosin resin, rosin ester resin, hydrogenated rosin ester resin, xylene resin, low molecular weight polystyrene resin, styrene copolymer resin, styrene block copolymer, hydrogenated styrene block copolymer, petroleum Examples thereof include resins (for example, C5 hydrocarbon resins, C9 hydrocarbon resins, C5 hydrocarbon-C9 hydrocarbon copolymer resins, etc.), hydrogenated petroleum resins, and DCPD resins. These may be used alone or in combination of two or more.
  • the amount of the tackifying resin used is preferably 2 parts by mass or more and 100 parts by mass or less, preferably 5 parts by mass or more and 50 parts by mass with respect to 100 parts by mass in total of the mass of the polymer (A) and the mass of the polymer (B).
  • the following is more preferable, and 5 parts by mass or more and 30 parts by mass or less is more preferable.
  • the amount is less than 2 parts by mass, it is difficult to obtain adhesion and adhesion effects to the substrate.
  • the amount exceeds 100 parts by mass the viscosity of the curable composition becomes too high, and handling of the curable composition may be difficult. .
  • a compound having an epoxy group can be used.
  • the restorability of the cured product can be improved.
  • the compound having an epoxy group include epoxidized unsaturated fats and oils, epoxidized unsaturated fatty acid esters, alicyclic epoxy compounds, compounds shown in epichlorohydrin derivatives, and mixtures thereof.
  • the amount of the compound having an epoxy group is preferably in the range of 0.5 to 50 parts by mass with respect to 100 parts by mass in total of the mass of the polymer (A) and the mass of the polymer (B).
  • a photocurable material can be used in the curable composition.
  • a photocurable material When a photocurable material is used, a film of the photocurable material is formed on the surface of the cured product, and the stickiness of the cured product and the weather resistance of the cured product can be improved.
  • Many compounds such as organic monomers, oligomers, resins or compositions containing them are known as this type of compound.
  • Typical photocurable materials include monomers, oligomers or mixtures thereof having one or several acrylic or methacrylic unsaturated groups, polyvinyl cinnamates or azido resins. Can be used.
  • the amount of the photocurable substance used is preferably 0.1 parts by mass or more and 20 parts by mass or less, with respect to 100 parts by mass in total of the mass of the polymer (A) and the mass of the polymer (B), 0.5 mass More preferred is 10 parts by mass or more. If the amount used is too small, it is difficult to obtain the effect of increasing the weather resistance of the cured product to the desired extent. If the amount used is excessive, the cured product tends to be cracked because the cured product is too hard.
  • an oxygen curable substance can be used.
  • the oxygen curable substance include unsaturated compounds that can react with oxygen in the air.
  • the oxygen curable substance reacts with oxygen in the air to form a cured film in the vicinity of the surface of the cured product, and has an effect of preventing stickiness of the surface and adhesion of dust and dust to the surface of the cured product.
  • Specific examples of the oxygen curable substance include drying oils typified by drill oil and linseed oil, and various alkyd resins obtained by modifying the compounds; acrylic polymers, epoxy resins, and silicon resins.
  • Modified products with drying oil 1,2-polybutadiene, 1,4-polybutadiene, and C5-C8 dienes obtained by polymerizing or copolymerizing diene compounds such as butadiene, chloroprene, isoprene, and 1,3-pentadiene
  • diene compounds such as butadiene, chloroprene, isoprene, and 1,3-pentadiene
  • liquid polymers such as polymers. These may be used alone or in combination of two or more.
  • the amount of the oxygen curable substance used is preferably 0.1 parts by mass or more and 20 parts by mass or less, with respect to 100 parts by mass in total of the mass of the polymer (A) and the mass of the polymer (B), and 0.5 mass. More preferred is 10 parts by mass or more. If the amount used is less than 0.1 parts by mass, the improvement in contamination may not be sufficient. If the amount used exceeds 20 parts by mass, the tensile properties of the cured product tend to be impaired. As described in JP-A-3-160053, the oxygen curable substance is preferably used in combination with a photocurable substance.
  • An epoxy resin can be added to the curable composition.
  • a composition to which an epoxy resin is added is particularly preferred as an adhesive, particularly as an adhesive for exterior wall tiles.
  • the epoxy resin include bisphenol A type epoxy resins and novolac type epoxy resins.
  • the use ratio of these epoxy resins and the total of the polymer (A) and the polymer (B) is 100/1 as (polymer (A) + polymer (B)) / epoxy resin in mass ratio.
  • a range of ⁇ 1 / 100 is preferred.
  • the mass ratio is within the above range as (polymer (A) + polymer (B)) / epoxy resin, it is easy to obtain the effect of improving the impact strength and toughness of the cured product, and the cured product has good strength. Easy to form.
  • a curing agent for curing the epoxy resin can be added to the curable composition together with the epoxy resin.
  • the amount used is in the range of 0.1 to 300 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • the curable composition can be prepared as a one-component curable composition in which all the components are pre-mixed and stored in a sealed state.
  • the one-component curable composition is cured at room temperature after application by moisture in the air.
  • the curable composition comprises a compounding material as a curing agent in which components such as a curing catalyst, a filler, a plasticizer, and water are blended, and an organic polymer composition mixed with the compounding material before use. It can also be prepared as a two-component curable composition. From the viewpoint of workability, a one-component curable composition is preferable.
  • the curable composition is of a one-component type
  • all the ingredients are pre-blended, so the water-containing ingredients are dehydrated and dried before use, or dehydrated during decompression or the like during compounding and kneading. Is preferred.
  • n-propyltrimethoxysilane, vinyltrimethoxysilane, vinylmethyldimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, ⁇ -mercaptopropylmethyldiethoxysilane, and ⁇ -glycidoxypropyltri By adding a silicon compound that can react with water, such as methoxysilane, the storage stability is further improved.
  • the amount of silicon compound capable of reacting with water such as dehydrating agent, especially vinyltrimethoxysilane, is 0.1% with respect to 100 parts by mass in total of the mass of the polymer (A) and the mass of the polymer (B). It is preferably no less than 20 parts by mass and no greater than 0.5 parts by mass and no greater than 10 parts by mass.
  • the method for preparing the curable composition is not particularly limited.
  • normal ingredients such as blending the above ingredients and kneading them at room temperature or under heat using a mixer, roll, kneader, etc. or using a small amount of a suitable solvent to dissolve and mix the ingredients are adopted. Can be done.
  • the curable composition has a good curing rate, deep curability, and storage stability, and gives a cured product having an excellent balance of tear strength and heat resistance.
  • curable properties such as adjusting the curing rate and controlling the physical properties of the resulting cured product by arbitrarily mixing and using the composition containing no polymer (A) and polymer (B).
  • the use of a composition is also possible.
  • the curable composition is a moisture reaction type composition in which the reaction proceeds with moisture.
  • the curable composition can also be used as a so-called dual curable composition that is used in combination with a thermosetting resin, a photocurable resin, or a radiation curable resin.
  • curable resins using reactions such as ene-thiol addition reaction, (meth) acrylic radical polymerization reaction, epoxy group ring-opening polymerization reaction, hydrosilylation addition reaction, and urethanization reaction are used in combination. can do.
  • Curable compositions are adhesives, sealing materials for buildings, ships, automobiles, roads, etc., adhesives, waterproofing materials, waterproofing coating materials, mold preparations, antivibration materials, vibration damping materials, soundproofing materials, foam materials Can be used for paint, spraying material, etc.
  • a cured product obtained by curing the curable composition is excellent in flexibility and adhesiveness. For this reason, it is more preferable that the curable composition is used as a sealing material or an adhesive among them.
  • electrical and electronic component materials such as solar cell backside sealing materials; electrical and electronic components such as insulation coating materials for electric wires and cables; and electrical insulating materials for electrical and electronic devices; potting agents for electrical and electronic; acoustic insulation Materials: Adhesives such as elastic adhesives, contact adhesives, tile adhesives, adhesives for asphalt waterproofing materials, and adhesives for temporary fixings; spray type sealing materials; crack repair materials; powder paints; Materials; Medical rubber materials, medical adhesives, medical adhesive sheets, medical equipment sealing materials, medical / dental materials such as dental impression materials, or processed materials for medical / dental products; food packaging materials ; Sealing materials for joints of exterior materials such as sizing boards; Coating materials; Anti-slip coating materials; Buffer materials; Primers; Conductive materials for shielding electromagnetic waves; Thermally conductive materials; Hot melt materials; Gasket; Concrete reinforcing material; Various molding materials; Sealing material for rust prevention and waterproofing of meshed glass and laminated glass end face (cut part); Automobile parts such as ordinary passenger cars, large vehicle
  • the above-mentioned curable composition can be used for a wide variety of applications such as adhesive mounting of plastic covers, trims, flanges, bumpers, window mountings, interior members, and exterior parts. Furthermore, the cured product of the curable composition of the previous operation can be adhered to a wide range of substrates such as glass, porcelain, wood, metal, and resin moldings alone or in the presence of a primer. For this reason, the above-mentioned curable composition can also be used as various types of sealing compositions and adhesive compositions.
  • the curable composition is an adhesive for interior panels, an adhesive for exterior panels, an adhesive for tiles, an adhesive for stonework, an adhesive for ceiling finishing, an adhesive for floor finishing, an adhesive for wall finishing, Adhesives for vehicle panels, adhesives for electrical, electronic and precision equipment assembly, leather, textiles, adhesives for bonding fabrics, paper, boards and rubber, reactive post-crosslinking pressure sensitive adhesives, direct glazing sealing Materials, sealing materials for double glazing, sealing materials for SSG construction or building working joints, sealing materials used for applications other than those described above, civil engineering adhesives or sealing materials, and bridge adhesives or sealing materials Can also be used. Furthermore, it can be used as an adhesive material such as an adhesive tape or an adhesive sheet.
  • Polyoxypropylene (A-5) of straight-chain branched mixture having an average of 1.8 silicon groups, a number average molecular weight of 20,000 and Mw / Mn 1.37 and having a (chloromethyl) dimethoxysilyl group at the terminal Got.
  • each polymer was mixed with a filler and a (plasticizer) sagging inhibitor and kneaded thoroughly, and then dispersed through three paint rolls. Thereafter, dehydration under reduced pressure at 120 ° C. for 2 hours using a planetary mixer, cooling to 50 ° C. or lower, adding a dehydrating agent, an adhesion-imparting agent, and a condensation catalyst (C), with substantially no moisture present Kneaded. After degassing under reduced pressure, it was sealed in a cartridge which is a moisture-proof container to obtain a one-component curable composition. After storing the cartridge type container at 23 ° C. for 1 week and / or at 50 ° C. for 4 weeks, various test specimens were prepared in a constant temperature and humidity atmosphere at 23 ° C. and 50% relative humidity, and various evaluations were performed.
  • each of the constituent polymers is shown for easy comparison even in Examples and Comparative Examples using the polymer (AB) as the polymer.
  • the polymer actually used for preparing the composition is shown in the row of “polymer used” in each table.
  • the curable composition is filled into a 5 mm thick mold using a spatula, the surface is touched with a spatula, and the time until the composition does not adhere to the spatula is peeled.
  • the curing time was measured as the tension time (before storage at 50 ° C.).
  • the time for which the surface was flattened was defined as the curing start time.
  • the curable composition was stored at 50 ° C. for 28 days, then placed at 23 ° C. for 1 hour or longer, and the skinning time was measured in the same manner as described above (after storage at 50 ° C.). Moreover, the rate of change of the skinning time after storage relative to the skinning time before storage was determined.
  • the curable composition was BM type viscometer manufactured by Tokyo Keiki Co., Ltd., rotor no. 7 was used to measure the 2 rpm viscosity (before storage at 50 ° C.).
  • the curable composition was stored at 50 ° C. for 28 days and then placed at 23 ° C. for 1 hour or longer. Moreover, the change rate of the viscosity after storage with respect to the viscosity before storage was calculated
  • the curable composition was filled in a polyethylene tube having a diameter of 12 mm without bubbles, and scraped with a spatula so that the surface was horizontal to prepare a test specimen. did. After leaving the specimen at 23 ° C. and 50% relative humidity for 3 days or 7 days, turn off the cured part of the surface layer, remove the uncured part cleanly, and then measure the thickness of the cured part using calipers. did.
  • the curable composition was filled into a sheet-like mold having a thickness of 3 mm. After curing for 3 days at 23 ° C. and 50% relative humidity, curing was performed for 4 days in a 50 ° C. dryer to obtain a sheet-like cured product. The obtained cured product was punched into a No. 3 dumbbell type or No. 7 dumbbell type according to JIS K 6251 to obtain a test piece. Using the obtained test piece, a tensile test (tensile speed: 200 mm / min) is performed using an autograph at 23 ° C.
  • dumbbell prepared in the same manner was stored in a 90 ° C. dryer for 28 days, then in a 120 ° C. dryer for 14 days, and then placed at 23 ° C. for 1 hour or longer, and a tensile test was performed in the same manner as described above ( After storage at 90 ° C. + 120 ° C.).
  • the curable composition was filled into a sheet-like mold having a thickness of 3 mm. After curing for 3 days at 23 ° C. and 50% relative humidity, curing was performed for 4 days in a 50 ° C. dryer to obtain a sheet-like cured product. The obtained cured product was punched into a tear test dumbbell mold (JIS A type) to obtain a test piece. Using the obtained test piece, a tear test (tensile speed: 200 mm / min) was performed using an autograph at 23 ° C. and a relative humidity of 50%, and the stress at break was measured.
  • JIS A type tear test dumbbell mold
  • the sheet-like cured product was punched out into a No. 7 dumbbell type to obtain a dumbbell type test piece.
  • a 10 mm marked line was drawn on the constricted portion of the dumbbell-shaped test piece.
  • the dumbbell-shaped test piece was fixed in a stretched state so that the distance between the marked lines was 15 mm, and left standing in a 70 ° C. dryer. After 24 hours, the fixation was released, and the restoration rate was determined by measuring the marked line after 3 hours and 24 hours at 23 ° C. and 50% relative humidity.
  • the curable composition was applied at 23 ° C. and 50% relative humidity so as to be in close contact with various substrates. The applied curable composition was then cured for 7 days at 23 ° C. and 50% relative humidity. The obtained cured product was subjected to a 90 ° hand peel test, and the adhesiveness was evaluated based on the cohesive failure rate of the adhesive interface.
  • the evaluation criteria are as follows. A: 95% or more B: 50% or more and less than 95% C: 5% or more and less than 50% and strong resistance at peeling D: Less than 5% and strong resistance at peeling E: 5% or more 50 Less than% and resistance at peeling is weak F: Less than 5% and resistance at peeling is weak
  • the curable composition containing a combination of the polymer (A) and the polymer (B) has a good balance of physical properties, compared to the case where a polymer substituted with chlorine atoms is used instead of the polymer (A), It turns out that it is excellent in storage stability and adhesiveness.
  • the curable composition containing a combination of the polymer (A) and the polymer (B) has a good balance of physical properties, and has a reactive silicon group represented by the general formula (2) instead of the polymer (B). It can be seen that the deep part curability, the elongation, the heat resistance, and the tear strength are excellent as compared with the case of using a polymer that does not have.
  • the curable composition containing the polymer (A) and the polymer (B) in combination has a good balance of physical properties, and the elongation, heat resistance, tear strength, and adhesion are better than when the polymer (B) is not used. It turns out that it is excellent in property.
  • the curable composition comprising a combination of the polymer (A) and the polymer (B) has a good balance of physical properties, and the proportion of methyl methacrylate in the constituent monomer units instead of the polymer (B).
  • the elongation, heat resistance, tear strength, and adhesiveness are excellent compared to the case where the (meth) acrylic polymer having a MMA content of less than 20 mass percent is used.
  • the curable composition containing a combination of the polymer (A) and the polymer (B) has a good balance of physical properties, and when the polymer (D) is further added, the general formula is used instead of the polymer (B).
  • the polymer which does not have the reactive silicon group represented by (2) it turns out that it is excellent in deep part sclerosis
  • the curable composition containing a combination of the polymer (A) and the polymer (B) has a good balance of physical properties, and has a reactive silicon group represented by the general formula (2) instead of the polymer (B). It can be seen that the deep part curability, the elongation, the heat resistance, and the tear strength are excellent as compared with the case of using a polymer that does not have.
  • the curable composition containing the combination of the polymer (A) and the polymer (B) has a fast surface curability and the elongation, tear strength, heat resistance, storage stability of the cured product, It turns out that a favorable balance is shown regarding deep part curability and adhesiveness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)

Abstract

表面硬化性が良好であり、かつ、硬化物の伸び、引き裂き強度、耐熱性、貯蔵安定性、深部硬化性、および接着性のバランスに優れた、硬化性組成物と、当該硬化性組成物を硬化させて得られる硬化物と、当該硬化性組成物を含むシーリング材および接着剤とを提供する。 特定の高活性な反応性ケイ素基を有する有機重合体(A)と、構成単量体成分中、一定量以上のメタクリル酸メチル単位を有する(メタ)アクリル系有機重合体である有機重合体(B)を含有する硬化性組成物を用いることにより、上記課題を解決できる。

Description

硬化性組成物
 本発明は、反応性ケイ素基を有する有機重合体を含む硬化性組成物に関する。
 分子中に少なくとも1個の反応性ケイ素基を有する有機重合体は、湿分などによるケイ素基の加水分解反応などにともないシロキサン結合を形成することによって架橋する。かかる有機重合体が、前述の架橋によりゴム状硬化物を与えることが知られている。
 この特徴を利用して、反応性ケイ素基を有する有機重合体を使用した硬化性組成物は、シーリング材や接着剤、塗料などの用途に広く使用されている。これら硬化性組成物には、用途によって、硬化性、作業性、および安定性などが求められる。また得られる硬化物には、接着性、柔軟性、強度、硬度、復元性、および耐熱性などの種々の物性が要求される。
 硬化性組成物には、上記のような各物性がバランスよく発揮される必要がある。特に近年は、硬化性組成物について、速硬化性が求められるうえに用途が多様化している。このため、同一の硬化性組成物を様々な用途に使用するために、速硬化性を示しつつ、各物性が高いレベルで同時に発揮されることが好ましい。
 これまでに、硬化性組成物において、特定構造の反応性ケイ素基を有する有機重合体と、反応性ケイ素基含有ポリエーテル系重合体および/または反応性ケイ素基含有(メタ)アクリル系重合体とを用いることにより、速硬化性に加え、優れた伸び物性と初期粘着性能とを両立できることが開示されている(特許文献1)。
 また、特定の反応性ケイ素基を有する有機重合体と、アミン化合物と、酸性化合物とを含む硬化性組成物が提案されている(特許文献2)。特許文献2に記載の硬化性組成物は、表面の速硬化性、接着性、復元性、および貯蔵安定性に優れる。特許文献2に記載の硬化性組成物は、特に接着剤用途に有用である。その他、短時間で硬化でき、かつ良好なゴム弾性を長期間に亘って維持できる硬化物を与える硬化性組成物も提案されている(特許文献3)。
WO2012/020560号公報 特開2014-114434号公報 特開2015-209525号公報
 上記の特許文献1~3で提案されている硬化性組成物は、速硬化性を示しつつ、併せて他の優れた物性も示す。ただし、用途によっては、硬化性組成物についての深部硬化性および貯蔵安定性や、硬化物についての引き裂き強度および耐熱性などの多くの特性のうちの複数の特性が要求される場合がある。特許文献1~3に記載の効果性組成物には、これらの特性を同一組成物で同時に発揮させるという点に関して、未だ改善の余地があった。
 本発明者らは、鋭意検討した結果、特定の反応性ケイ素基を有する有機重合体と、特定の構造を有する(メタ)アクリル系有機重合体とを含む硬化性組成物により上記の課題を解決できることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、
(1)下記一般式(1):
-SiR 3-a  (1)
(式中、Rは、1位の炭素原子上に1以上の水素原子を有し、かつ炭素原子数が1以上20以下である脂肪族炭化水素基において、1位の炭素原子上の水素原子の少なくとも1つが、酸素原子、窒素原子、および硫黄原子のいずれかで置換されている基を示す。Xは水酸基または加水分解性基を示す。aは1または2、である。R、およびXのそれぞれについて、それらが複数存在するとき、それらは同じでもよく、異なっていてもよい。)で表される反応性ケイ素基を有する有機重合体(A)、および、
下記一般式(2):
-SiR 3-a  (2)
(式中、Rは炭素原子数1以上20以下の無置換の炭化水素基である。Xおよびaは一般式(1)と同じ。)
で表される反応性ケイ素基を有する(メタ)アクリル系有機重合体である有機重合体(B)、を含み、
有機重合体(B)を構成する全構成単量体単位のうち、メタクリル酸メチルに由来する構成単量体単位が占める割合が20質量%以上90質量%以下である、硬化性組成物。
(2)一般式(1)中のRの1位の炭素原子上の水素原子の1つが、酸素原子で置換されている、(1)に記載の硬化性組成物。
(3)一般式(1)中のRがメトキシメチル基である、(1)または(2)に記載の硬化性組成物。
(4)一般式(1)中のXがアルコキシ基である、(1)~(3)のいずれか1つに記載の硬化性組成物。
(5)一般式(1)中のXがメトキシ基である、(1)~(4)のいずれか1つに記載の硬化性組成物。
(6)有機重合体(A)の主鎖骨格がポリエーテル系重合体である、(1)~(5)のいずれか1つに記載の硬化性組成物。
(7)有機重合体(A)の主鎖骨格がポリオキシプロピレンである、(1)~(6)のいずれか1つに記載の硬化性組成物。
(8)一般式(2)中のRがメチル基である、(1)~(7)のいずれか1つに記載の硬化性組成物。
(9)一般式(2)中のXがアルコキシ基である、(1)~(8)のいずれか1つに記載の硬化性組成物。
(10)一般式(2)中のXがメトキシ基である、(1)~(9)のいずれか1つに記載の硬化性組成物。
(11)有機重合体(B)を構成する全構成単量体単位のうち、メタクリル酸メチルに由来する構成単量体単位が占める割合が50質量%以上80質量%以下である、(1)~(10)のいずれか1つに記載の硬化性組成物。
(12)有機重合体(B)を構成する全構成単量体単位のうち、メタクリル酸ステアリルに由来する構成単量体単位が占める割合が10質量%以上30質量%以下である、(1)~(11)のいずれか1つに記載の硬化性組成物。
(13)有機重合体(B)の数平均分子量が15,000未満である、(1)~(12)のいずれか1つに記載の硬化性組成物。
(14)有機重合体(B)の数平均分子量が、4,000未満である、(1)~(13)のいずれか1つに記載の硬化性組成物。
(15)有機重合体(A)と、有機重合体(B)との配合割合が、質量比(有機重合体(A):有機重合体(B))で90:10~40:60である、(1)~(14)のいずれか1項に記載の硬化性組成物。
(16)有機重合体(A)と、有機重合体(B)との配合割合が、質量比(有機重合体(A):有機重合体(B))で75:25~55:45である、(1)~(14)のいずれか1つに記載の硬化性組成物。
(17)さらに、縮合触媒(C)として、アミン化合物(c1)および/または有機錫化合物(c2)を含有する、(1)~(16)のいずれか1つに記載の硬化性組成物。
(18)アミン化合物(c1)が、下記一般式(3):
N=CR-NR   (3)
(式中、Rは、炭素原子数が1以上20以下の置換もしくは非置換の炭化水素基、または-NR で表される基である。R、R、Rは、水素原子、または、炭素原子数が1以上20以下の置換もしくは非置換の炭化水素基であって、2つのRおよび2つのRは同じであってもよく、異なっていてもよい。R、R、2つのR、および、2つのRのうち任意の2つ以上が結合して環状構造を形成していてもよい。)で表されるアミジン構造またはグアニジン構造を有する化合物である、(17)に記載の硬化性組成物。
(19)有機錫化合物(c2)が、ジアルキル錫化合物である、(17)に記載の硬化性組成物。
(20)(1)~(19)のいずれか1つに記載の硬化性組成物を硬化させて得られる硬化物。
(21)(1)~(19)のいずれか1つに記載の硬化性組成物を含有するシーリング材。
(22)(1)~(19)のいずれか1つに記載の硬化性組成物を含有する接着剤。
に関する。
 本発明によれば、反応性ケイ素基を有する有機重合体(A)(以下、重合体(A)とも言う)と、(メタ)アクリル系有機重合体である有機重合体(B)(以下、重合体(B)とも言う)とを含有するため、表面硬化性が良好であり、かつ、硬化物の伸び、引き裂き強度、および耐熱性と、貯蔵安定性と、深部硬化性と、接着性とのバランスに優れる硬化性組成物と、当該硬化性組成物の硬化物と、当該硬化性組成物を含むシーリング材および接着剤とを提供することができる。
 以下、本発明について詳細に説明するが、これらに限定されるものではない。
 本願明細書における重合体は、以下の定義に順ずる。重合体とは、その重合体の製造工程によって得られる重合体成分全てを含有するものであり、分子量や構造、置換基の数、などが異なる成分を含む。重合体の同定には平均分子量や分子量分布、一分子あたりに平均して含有される置換基の導入量(平均の個数や含有率)を使用する。また、本願明細書においては、便宜的に代表的な分子構造を記載する場合もある。
(反応性ケイ素基を有する有機重合体(A))
 有機重合体(A)は、以下の一般式(1)
-SiR 3-a  (1)
(式中、Rは、1位の炭素原子上に1以上の水素原子を有し、かつ炭素原子数が1以上20以下である脂肪族炭化水素基において、1位の炭素原子上の水素原子の少なくとも1つが、酸素原子、窒素原子、および硫黄原子のいずれかで置換されている基を示す。Xは水酸基または加水分解性基を示す。aは1または2、である。R、およびXのそれぞれについて、それらが複数存在するとき、それらは同じでもよく、異なっていてもよい。)で表される反応性ケイ素基を有する。
 一般式(1)中のRについて、1位の炭素原子上の水素原子の少なくとも1つにおける、酸素原子、窒素原子、および硫黄原子のいずれかによる置換は、酸素原子、窒素原子、または硫黄原子による置換だけでなく、酸素原子含有基、窒素原子含有基、または硫黄原子含有基による置換を包含する。なお、Rにおいて、1位の炭素原子上の水素原子が酸素原子含有基、窒素原子含有基、または硫黄原子含有基により置換される場合、酸素原子含有基中の少なくとも1つの酸素原子、窒素原子含有基中の少なくとも1つの窒素原子、または硫黄原子含有基中の少なくとも1つの硫黄原子が、それぞれ、1位の炭素原子に結合する。
 Rの主骨格を構成する、1位の炭素原子上に1以上の水素原子を有する脂肪族炭化水素基としては、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、およびエチニル基以外のアルキニルなどが挙げられる。
 一般式(1)中のRの1位の炭素原子上に置換している酸素原子、窒素原子、硫黄原子を含む基は特に限定されない。酸素原子含有基としては、オキソ基(=O)、アルコキシ基、アルケニルオキシ基、アリールオキシ基、およびアシロキシ基などが挙げられる。窒素原子含有基としては、アミノ基、アルキルアミノ基、アルキルイミノ基、カルバメート基、ウレイド基などが挙げられる。硫黄原子含有基としては、チオキソ基(=S)、アルキルチオ基、アリールチオ基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、およびアリールスルホニル基などが挙げられる。
 Rの1位の炭素原子上に、酸素原子含有基、窒素原子含有基、および硫黄原子含有基から選択される基が複数結合する場合、複数の基のうちの2つの基は互いに結合して環を形成してもよい。このような基としては、2,5-ジオキサシクロペンチル基、3-メチル-2,5-ジオキサシクロペンチル基、および1-メチル-2,5-ジオキサシクロペンチル基などが挙げられる。
 また、Rの1位の炭素原子上に結合する酸素原子含有基、窒素原子含有基、または硫黄原子含有基は、Rの主骨格を構成する脂肪族炭化水素基中の任意の炭素原子に結合して環を形成してもよい。このような基としては、2-オキサシクロペンチル基が挙げられる。
 一般式(1)中のRの具体例としては、メトキシメチル基、エトキシメチル基、1-メトキシエチル基、2-プロペノキシメチル基、フェノキシメチル基、アセトキシメチル基、ジメトキシメチル基、トリメトキシメチル基、2-オキサシクロペンチル基、2,5-ジオキサシクロペンチル基、3-メチル-2,5-ジオキサシクロペンチル基、1-メチル-2,5-ジオキサシクロペンチル基、アセチル基、およびメトキシカルボニル基など、1位の炭素原子上の水素原子の少なくとも1つが酸素原子で置換された基;アミノメチル基、1-アミノエチル基、N-メチルアミノメチル基、N,N-ジメチルアミノメチル基、N-エチルアミノメチル基、N-フェニルアミノメチル基、N-メチルイミノメチル基、N-フェニルイミノメチル基、アセトアミドメチル基、O-メチルカルバメートメチル基、および2,5-ジアザシクロペンチル基など、1位の炭素原子上の水素原子の少なくとも1つが窒素原子で置換された基;メチルチオメチル基、フェニルチオメチル基、メチルスルフィニルメチル基、フェニルスルフィニルメチル基、メチルスルホニルメチル基、およびフェニルスルホニルメチル基など、1位の炭素原子上の水素原子の少なくとも1つが硫黄原子で置換された基などが挙げられる。
 これらの中では、反応性ケイ素基の活性の高さと硬化性組成物の貯蔵安定性とのバランスに優れる点で、メトキシメチル基、エトキシメチル基、1-メトキシエチル基、フェノキシメチル基、およびアセトキシメチル基など、1位の炭素原子上の水素原子の1つが、酸素原子で置換された基がより好ましい。硬化物の物性のバランスに優れる点で、メトキシメチル基が特に好ましい。
 一般式(1)中のXは水酸基または加水分解性基を示す。加水分解性基としては、公知の加水分解性基が挙げられる。加水分化性基の具体例としては、例えば、水素、ハロゲン、アルコキシ基、アルケニルオキシ基、アリールオキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、アルキルチオ基、アリールチオ基、アルキルスルホニルオキシ基、およびアリールスルホニルオキシ基などが挙げられる。これらの中では、ハロゲン、アルコキシ基、アルケニルオキシ基、およびアシルオキシ基が好ましい。反応性ケイ素基含有重合体は、水と触媒との存在に反応させる前には安定である必要がある。このため、加水分解性基としては、加水分解性が穏やかなアルコキシ基がより好ましい。原料製造の容易さから、メトキシ基およびエトキシ基がさらに好ましい。活性と取り扱いの容易さとの両立から、メトキシ基が特に好ましい。また、エトキシ基やイソプロペノキシ基は、安全性が高く除去が容易であるエタノールおよびアセトンを加水分解により脱離させる点で好ましい。
 一般式(1)で示される反応性ケイ素基において、a=1または2である。硬化性および硬化物の物性バランスの面で、a=1であることがより好ましい。
 一般式(1)で表される反応性ケイ素基としては、具体的には、(メトキシメチル)ジメトキシシリル基、ビス(メトキシメチル)メトキシシリル基、(メトキシメチル)ジエトキシシリル基、ビス(メトキシメチル)エトキシシリル基、(エトキシメチル)ジメトキシシリル基、ビス(エトキシメチル)メトキシシリル基、(1-メトキシエチル)ジメトキシシリル基、ビス(1-メトキシエチル)メトキシシリル基、(フェノキシメチル)ジメトキシシリル基、ビス(フェノキシメチル)メトキシシリル基、(フェノキシメチル)ジエトキシシリル基、ビス(フェノキシメチル)エトキシシリル基、(アセトキシメチル)ジメトキシシリル基、ビス(アセトキシメチル)メトキシシリル基、(アセトキシメチル)ジエトキシシリル基、ビス(アセトキシメチル)エトキシシリル基、(メトキシメチル)ジイソプロペノキシシリル基、ビス(メトキシメチル)イソプロペノキシシリル基、(メトキシメチル)ジフェノキシシリル基、ビス(メトキシメチル)フェノキシシリル基、(N,N-ジメチルアミノメチル)ジメトキシシリル基、ビス(N,N-ジメチルアミノメチル)メトキシシリル基、(N,N-ジエチルアミノメチル)ジメトキシシリル基、ビス(N,N-ジエチルアミノメチル)メトキシシリル基、(N,N-ジエチルアミノメチル)ジエトキシシリル基、ビス(N,N-ジエチルアミノメチル)エトキシシリル基、(アセトアミドメチル)ジメトキシシリル基、ビス(アセトアミドメチル)メトキシシリル基、(アセトアミドメチル)ジエトキシシリル基、およびビス(アセトアミドメチル)エトキシシリル基などが挙げられる。一般式(1)で表される反応性ケイ素基は、これらに限定されない。これらの中では、(メトキシメチル)ジメトキシシリル基、(メトキシメチル)ジエトキシシリル基、および(N,N-ジエチルアミノメチル)ジメトキシシリル基が活性の観点から好ましい。硬化物が良好な機械物性を示す点から、(メトキシメチル)ジメトキシシリル基がより好ましい。
 重合体(A)は、上記一般式(1)で表される基以外に、その他の反応性ケイ素基を有していてもよい。その他の反応性ケイ素基の具体例としては、メチルジメトキシシリル基、メチルジエトキシシリル基、ジメチルメトキシシリル基、トリメトキシシリル基、トリエトキシシリル基、および(メトキシメチル)メチルメトキシシリル基などが挙げられる。
 重合体(A)への反応性ケイ素基の導入方法は特に限定されない。例えば、特許文献2の段落[0021]~[0029]に記載のような、(i)ヒドロシリル化、(ii)反応性基含有重合体(前駆重合体)とシランカップリング剤との反応など、公知の方法を利用して、重合体(A)へ反応性ケイ素基を導入することができる。
 (i)の方法は、反応が簡便で、反応性ケイ素基の導入量の調整や、得られる反応性ケイ素基含有重合体の物性が安定であるため好ましい。(ii)の方法は反応の選択肢が多く、反応性ケイ素基導入率を高めることが容易であるため好ましい。
 ケイ素基の導入において、導入前の重合体の上記のような各反応性基の数に対して、ケイ素基が導入された数を、ケイ素基導入率や官能化率と表現することがある。ケイ素基導入率によって、反応性ケイ素基重合体のケイ素の個数が制御されることは当然であるが、未反応の反応性基が重合体や重合体含有組成物の物性に影響を与えることもある。例えば、組成物を長期保存する間に反応性が変化したり、粘度が変化したりすることがある。このような影響を抑えるためには、ケイ素基導入率は50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることが特に好ましい。
 重合体(A)の反応性ケイ素基の1分子あたりの平均個数について、下限は1.1個以上が好ましく、上限は5個以下が好ましい。重合体が分岐構造を有する場合には、反応性ケイ素基の1分子あたりの平均個数は、下限が1.8個以上であることが好ましく、2.0個以上であることがより好ましい。上限は、3.0個以下であることがより好ましい。反応性ケイ素基の1分子あたりの平均個数が少なすぎると、十分な高分子間の結合が起きにくく、所望する物性の硬化物を得にくい。一方、反応性ケイ素基1分子あたりの平均個数が多すぎると、硬化物の伸縮性が低下する可能性があるとともに、経済的にも不利である。また、重合体(A)の構造が直鎖構造のみからなる場合には、反応性ケイ素基の1分子あたりの平均個数について、下限が1.2個以上であることが好ましく、1.4個以上であることがより好ましい。
 重合体(A)中の反応性ケイ素基の1分子あたりの平均個数は、反応性ケイ素基が直接結合した炭素上のプロトンを高分解能H-NMR測定法により定量する方法により求める。
 反応性ケイ素基は、重合体(A)の分子鎖末端、側鎖末端、その両方のいずれにあってもよい。特に、水酸基や加水分解性基を2つ有する反応性ケイ素基が分子鎖末端にあることが、架橋点間分子量が長いことにより、高強度、高伸びを示すゴム状硬化物が得られ易いことから好ましい。
 重合体(A)の数平均分子量は特に限定されない。数平均分子量は、GPCにおけるポリスチレン換算として、好ましくは3,000以上100,000以下、より好ましくは3,000以上50,000以下、特に好ましくは3,000以上30,000以下である。数平均分子量が過小であると、反応性ケイ素基の導入量が多いことにより、製造コストの点で不都合な場合がある。数平均分子量が過大であると、重合体(A)または硬化性粗組成物の粘度が高過ぎることにより、作業性の点で不都合な傾向がある。
 なお、GPCにおけるポリスチレン換算分子量は、送液システムとして東ソー製HLC-8120GPCを用い、カラムとして東ソー製TSK-GEL Hタイプを用い、溶媒としてテトラヒドロフラン(THF)を用いて測定した。本願明細書における他の分子量の表記についても全て同様である。
 重合体(A)の分子量分布(Mw/Mn)は特に限定されない。分子量分布は狭いことが好ましく、2.0未満が好ましく、1.6以下がより好ましく、1.5以下がさらに好ましく、1.4以下が特に好ましい。
 重合体(A)の主鎖は、直鎖状であってもよいし、分岐鎖を有していてもよい。良好な伸び物性を示す硬化物が得られる点からは、重合体(A)の主鎖は、直鎖状であるのが好ましい。他方で、速硬化性の硬化性組成物を得やすい点からは、重合体(A)の主鎖が分岐鎖を有することが好ましい。重合体(A)の主鎖が分岐鎖を有する場合、硬化物の良好な伸び物性を保つために、重合体(A)の主鎖が有する分岐鎖数が、1個以上4個以下であるのがより好ましく、1個であるのが最も好ましい。
 有機重合体(A)の主鎖骨格には特に制限はない。各種の主鎖骨格を持つ重合体を有機重合体(A)として使用することができる。例えば、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシイソブチレン、ポリオキシテトラメチレン、ポリオキシエチレン-ポリオキシプロピレン共重合体、ポリオキシプロピレン-ポリオキシブチレン共重合体、ポリオキシプロピレン-ポリオキシイソブチレン共重合体、ポリオキシエチレン-ポリオキシテトラメチレン共重合体、およびポリオキシプロピレン-ポリオキシテトラメチレン共重合体などのポリオキシアルキレン系重合体;エチレン-プロピレン系共重合体、ポリイソブチレン、イソブチレンとイソプレンなどとの共重合体、ポリクロロプレン、ポリイソプレン、イソプレンあるいはブタジエンとアクリロニトリルおよび/またはスチレンなどとの共重合体、ポリブタジエン、イソプレンあるいはブタジエンとアクリロニトリルおよびスチレンなどとの共重合体、これらのポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体などの炭化水素系重合体;アジピン酸などの二塩基酸とジオール類との縮合、または、ラクトン類の開環重合で得られるポリエステル系重合体;メチル(メタ)アクリレート、ブチル(メタ)アクリレートなど(メタ)アクリル酸エステルモノマー類を重合して得られる(メタ)アクリル酸エステル系重合体;(メタ)アクリル酸エステル系モノマー、酢酸ビニル、アクリロニトリル、スチレンなどのモノマーを重合して得られるビニル系重合体;前記重合体中でのビニルモノマー類を重合して得られるグラフト重合体;ポリサルファイド系重合体;ポリアミド6、ポリアミド6・6、ポリアミド6・10、ポリアミド11、ポリアミド12、および前記のポリアミドのうち2以上の成分を有する共重合ポリアミドなどのポリアミド系重合体;例えば、ビスフェノールAと塩化カルボニルより縮重合して製造されるポリカーボネート系重合体、ジアリルフタレート系重合体などの有機重合体が挙げられる。上記各重合体はブロック状、グラフト状などに混在していてもよい。これらのなかでも、ポリオキシアルキレン系重合体、ポリエステル系重合体、ポリカーボネート系重合体などのポリエーテル系重合体が、接着剤やシーリング材のベースポリマーとして使用した際に、低分子量成分の接着基材への移行などによる汚染が少なく好ましい。
 また、透湿性が高く1液型組成物にした場合に深部硬化性に優れ、さらに接着性にも優れることから、ポリオキシアルキレン系重合体がより好ましい。非晶質で比較的ガラス転移温度が低いことにより、低粘度で耐寒性に優れる硬化物を与えることから、ポリオキシアルキレン系重合体の主鎖骨格として、ポリオキシプロピレンが特に好ましい。
 重合体(A)は、上記した各種主鎖骨格のうち、いずれか1種の主鎖骨格を有する重合体でもよく、異なる主鎖骨格を有する重合体の混合物でもよい。また、混合物については、それぞれ別々に製造された重合体の混合物でもよいし、任意の混合組成になるように同時に製造された混合物でもよい。
 重合体(A)のガラス転移温度は、特に限定されない。重合体(A)のガラス転移温度は、20℃以下が好ましく、0℃以下がより好ましく、-20℃以下が特に好ましい。ガラス転移温度が高すぎると、冬季または寒冷地での重合体(A)の粘度が高くなり、硬化性組成物を取り扱い難くい場合があったり、硬化物の柔軟性や伸びが低下する場合があったりする。ガラス転移温度はJISK7121に規定される測定方法に則ったDSC測定により求めることができる。
 ポリオキシアルキレン系重合体は、-R-O-(式中、Rは炭素原子数1以上14以下の直鎖状もしくは分岐アルキレン基である)で示される繰り返し単位を有する重合体であるのが好ましい。Rは炭素原子数2以上4以下の直鎖状もしくは分岐状アルキレン基がより好ましい。-R-O-で示される繰り返し単位の具体例としては、-CHO-、-CHCHO-、-CHCH(CH)O-、-CHCH(C)O-、-CHC(CH)(CH)O-、および-CHCHCHCHO-などが挙げられる。ポリオキシアルキレン系重合体の主鎖構造は、1種類だけの繰り返し単位からなってもよいし、2種類以上の繰り返し単位からなってもよい。特にシーラント、接着剤などに使用される場合には、オキシプロピレンの繰り返し単位を重合体主鎖構造の50質量%以上、好ましくは80質量%以上有するポリオキシプロピレン系重合体から成るものが、非晶質であることや比較的低粘度である点から好ましい。
 ポリオキシアルキレン系重合体としては、開始剤の存在下、重合触媒を用いて、環状エーテル化合物の開環重合反応により得られる重合体が好ましい。
 環状エーテル化合物としては、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、イソブチレンオキシド、およびテトラヒドロフランなどが挙げられる。これら環状エーテル化合物は1種のみでもよく、2種以上を組み合わせて用いてもよい。非晶質で比較的低粘度なポリエーテル重合体を得られることから、これら環状エーテル化合物の中では、プロピレンオキシドが特に好ましい。
 開始剤としては、具体的には、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサメチレングリコール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、グリセリン、トリメチロールメタン、トリメチロールプロパン、ペンタエリスリトール、およびソルビトールなどのアルコール類;ポリオキシプロピレンジオール、ポリオキシプロピレントリオール、ポリオキシエチレンジオール、およびポリオキシエチレントリオールなどのポリオキシアルキレン系重合体などが挙げられる。ポリオキシアルキレン系重合体の数平均分子量は、300以上5,000以下が好ましい。
 ポリオキシアルキレン系重合体の重合方法としては、例えば、KOHのようなアルカリ触媒による重合法;特開昭61-215623号に示される有機アルミニウム化合物とポルフィリンとを反応させて得られる錯体のような遷移金属化合物-ポルフィリン錯体触媒による重合法;特公昭46-27250号、特公昭59-15336号、米国特許3278457号、米国特許3278458号、米国特許3278459号、米国特許3427256号、米国特許3427334号、および米国特許3427335号などに示される複合金属シアン化物錯体触媒による重合法;特開平10-273512号に例示されるポリホスファゼン塩からなる触媒を用いる重合法;特開平11-060722号に例示されるホスファゼン化合物からなる触媒を用いる重合法など、が挙げられる。重合方法は特に限定されない。製造コストや、分子量分布の狭い重合体が得られることなどの理由から、複合金属シアン化物錯体触媒による重合法がより好ましい。
 一方、重合体(A)の主鎖骨格は、本発明の効果を大きく損なわない範囲でウレタン結合などの、オキシアルキレン結合以外の他の結合を含んでいてもよい。
 ウレタン結合としては特に限定されない。ウレタン結合としては、イソシアネート基と活性水素を含有する基との反応により生成する結合(以下、アミドセグメントとも言う)を挙げることができる。アミドセグメントとしては、特に限定されない。アミドセグメントとしては、例えば、イソシアネート基と水酸基との反応により生成するウレタン結合;イソシアネート基とアミノ基との反応により生成する尿素結合;イソシアネート基とメルカプト基との反応により生成するチオウレタン結合などのアミド結合を有する結合と、前述のウレタン結合、尿素結合、および、チオウレタン結合中の活性水素が、さらにイソシアネート基と反応して生成する結合とが挙げられる。
 主鎖にウレタン結合やエステル結合を含有する重合体からなる硬化性組成物を硬化させた硬化物は、熱などによりウレタン結合やエステル結合部分で主鎖が開裂する恐れがある。主鎖の開裂が生じると、硬化物の養生条件によっては硬化物の強度が著しく低下する場合がある。
 重合体(A)の主鎖骨格中にアミドセグメントが多いと、重合体の粘度が高い傾向がある。また、貯蔵後に粘度が上昇する場合もあり、得られる組成物の作業性が低下する可能性がある。さらに、前記したように、熱などによってアミドセグメントが開裂する可能性がある。従って、貯蔵安定性や作業性の優れた組成物を得るためには、実質的にアミドセグメントを含まないことが好ましい。一方、重合体(A)の主鎖骨格中のアミドセグメントによって、硬化性が向上する傾向がある。従って、重合体(A)の主鎖骨格中にアミドセグメントを含む場合、アミドセグメントは1分子あたり平均で、1個以上10個以下が好ましく、1.5個以上5個以下がより好ましく、2個以上3個以下が特に好ましい。1個よりも少ない場合には、硬化性が十分ではない場合があり、10個よりも大きい場合には、重合体が高粘度となり取り扱い難くなる可能性がある。
 アミドセグメントと反応性ケイ素基とを有する有機重合体の工業的に容易な製造方法は、特許文献2の段落[0083]~[0084]に例示されている。
(反応性ケイ素基含有(メタ)アクリル系有機重合体である有機重合体(B))
 有機重合体(B)は、以下の一般式(2):
-SiR 3-a  (2)
(式中、Rは炭素原子数1以上20以下の無置換の炭化水素基である。Xおよびaは一般式(1)と同じ。)
で表される反応性ケイ素基を有する(メタ)アクリル系有機重合体である。重合体(B)を構成する全構成単位のうちメタクリル酸メチルに由来する構成単位が占める割合が20質量%以上90質量%以下である。
 一般式(2)中のRとしては、具体的には、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、n-ヘキシル基、シクロヘキシル基、2-エチルヘキシル基、およびn-ドデシル基などのアルキル基;ビニル基、イソプロペニル基、およびアリル基などの不飽和炭化水素基;フェニル基、トルイル基、および1-ナフチル基などの芳香族炭化水素基などが挙げられる。
 これらの中では、反応性ケイ素基の活性および硬化物の物性のバランスの観点から、メチル基、およびフェニル基が好ましい。原料の入手性からメチル基がより好ましい。
 一般式(2)中のXは水酸基または加水分解性基を示し、一般式(1)中のXと同様の説明ができる。
 一般式(2)で示される反応性ケイ素基において、a=1または2である。硬化性組成物の硬化性と、硬化物の物性とのバランスの面で、a=1であることがより好ましい。
 一般式(2)で表される反応性ケイ素基としては、具体的には、メチルジメトキシシリル基、メチルジエトキシシリル基、エチルジメトキシシリル基、エチルジエトキシシリル基、n-プロピルジメトキシシリル基、n-ヘキシルジメトキシシリル基、フェニルジメトキシシリル基、フェニルジエトキシシリル基、メチルジイソプロペノキシシリル基、メチルジフェノキシシリル基、メチルジメトキシシリル基、およびジメチルメトキシシリル基などが挙げられる。一般式(2)で表される反応性ケイ素基は、これらに限定されない。これらの中では、活性および硬化物が良好な物性バランスを示す点から、メチルジメトキシシリル基が好ましい。
 重合体(B)は、上記一般式(2)で表される基以外に、その他の反応性ケイ素基を有していてもよい。その他の反応性ケイ素基としては、具体的には、トリメトキシシリル基、トリエトキシシリル基、および(メトキシメチル)メチルメトキシシリル基などが挙げられる。
 重合体(B)の主鎖構造を構成する構成単量体単位は、構成単量体単位のうちメタクリル酸メチルに由来する構成単量体単位が占める割合が20質量パーセント以上90質量パーセント以下であれば特に制限はない。メタクリル酸メチル以外の(メタ)アクリル構造を有するモノマー(b)を1種および/または2種以上使用することが好ましい。ここで構成単量体とは、炭素-炭素二重結合を分子内に有し、その炭素-炭素二重結合が重合して重合体(B)を構成する化合物のみを意味する。
 重合体(B)の主鎖構造を構成する構成単量体単位のうちメタクリル酸メチルに由来する構成単量体単位が占める割合が20質量パーセント以上90質量パーセント以下であることを必須である。かかる割合は、30質量パーセント以上85質量パーセント以下が好ましく、50質量パーセント以上80質量パーセント以下がよりに好ましい。構成単量体単位のうちメタクリル酸メチルに由来する構成単量体単位が占める割合が小さすぎると硬化物の強度が低下する場合があり、大きすぎると重合体(B)の反応性ケイ素基含有有機重合体(A)との相溶性が低下する傾向にある。
 メタクリル酸メチル以外の(メタ)アクリル構造を有するモノマー(b)の具体例としては、アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ネオペンチル、(メタ)アクリル酸n-ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ステアリル、および(メタ)アクリル酸シクロヘキシルなどの(メタ)アクリル酸アルキルエステルモノマー;(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸3-メトキシ-n-プロピル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸のエチレンオキシド付加物、および(メタ)アクリル酸のプロピレンレンオキシド付加物などの酸素置換(メタ)アクリル酸アルキルエステルモノマー;(メタ)アクリル酸2,2,2-トリフルオロエチル、(メタ)アクリル酸2-パーフルオロエチル-2-パーフルオロブチルエチル、(メタ)アクリル酸トリフルオロメチル、(メタ)アクリル酸パーフルオロエチル、および(メタ)アクリル酸ビス(トリフルオロメチル)メチルなどのフッ素置換(メタ)アクリル酸アルキルエステルモノマー;(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸クロロエチル、(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリル酸グリシジルなどのその他の(メタ)アクリル酸エステルモノマー;(メタ)アクリルアミドが挙げられる。また前記各モノマーに加え、一般式(2)で表される反応性ケイ素基を含有するモノマー(b1)として、(メタ)アクリル酸3-(メチルジメトキシシリル)プロピル、(メタ)アクリル酸3-(メチルジエトキシシリル)プロピル、(メタ)アクリル酸2-(メチルジメトキシシリル)エチル、および(メタ)アクリル酸(メチルジメトキシシリル)メチルなどが挙げられる。これらの中では、入手容易な点で、メタクリル酸3-(メチルジメトキシシリル)プロピルが好ましい。一般式(2)で表されない反応性ケイ素基を含有するモノマー(b2)として、(メタ)アクリル酸3-(トリメトキシシリル)プロピル、(メタ)アクリル酸3-(トリエトキシシリル)プロピル、(メタ)アクリル酸2-(トリメトキシシリル)エチル、(メタ)アクリル酸トリメトキシシリルメチル、および(メタ)アクリル酸トリエトキシシリルメチルなどが挙げられる。これらの中では、入手容易な点で、メタクリル酸3-(トリメトキシシリル)プロピルが好ましい。これらは、メタクリル酸メチルとともに、1種のみで使用されてもよく、2種以上を併用されてもよい。
 硬化物の耐熱性が向上する傾向にあることから、重合体(B)が、炭素原子数10以上30以下のアルキル基を有する1種類以上のモノマーに由来する構成単量体単位を含むのが好ましく、メタクリル酸ステアリルに由来する構成単量体単位を含むのがより好ましい。炭素原子数10以上30以下のアルキル基を有するモノマーとしては、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ヘキサデシル、および(メタ)アクリル酸ステアリルなどが挙げられる。また、重合体(B)における、炭素原子数10以上30以下のアルキル基を有する前述のモノマーに由来する構成単量体単位の総量は、構成単量体単位の総質量に対して、1質量%以上50質量%未満が好ましく、10質量%以上30質量%以下がより好ましい。
 また、物性を損なわない範囲でこれらと共重合性を示すモノマーを用いてもよい。そのようなモノマーとしては、例えば、スチレン、ビニルトルエン、α-メチルスチレン、クロロスチレン、およびスチレンスルホン酸などのスチレン系モノマー;パーフルオロエチレン、パーフルオロプロピレン、およびフッ化ビニリデンなどのフッ素含有ビニルモノマー;マレイン酸、無水マレイン酸、マレイン酸モノアルキルエステル、およびマレイン酸ジアルキルエステルなどのマレイン酸およびその誘導体;フマル酸、フマル酸モノアルキルエステル、およびフマル酸ジアルキルエステルなどのフマル酸およびその誘導体;マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、およびシクロヘキシルマレイミドなどのマレイミド系モノマー;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、および桂皮酸ビニルなどのビニルエステル系モノマー;エチレン、およびプロピレンなどのオレフィン系モノマー;ブタジエン、およびイソプレンなどの共役ジエン系モノマー;(メタ)アクリロニトリル;塩化ビニル、塩化ビニリデン、塩化アリル、アリルアルコール、エチルビニルエーテル、およびブチルビニルエーテルなどのビニル系モノマーが挙げられる。これらは1種のみで使用してもよく、2種以上を併用して使用してもよい。
 重合体(B)の主鎖構造を構成する単量体単位は、反応性ケイ素基含有有機重合体(A)との相溶性の点から、メタクリル酸メチルを含め、(メタ)アクリル酸アルキルエステルモノマーを50質量%以上含むことが好ましく、70質量%以上含むことがより好ましく、80質量%以上含むパーセント含むことが特に好ましい。
 また、(メタ)アクリル酸ブチルと、炭素原子数7以上9以下のアルキル基を有する(メタ)アクリル酸アルキルエステルモノマーまたは炭素原子数10以上30以下のアルキル基を有する(メタ)アクリル酸アルキルエステルモノマーとの併用、ならびに炭素原子数1または2のアルキル基を有する(メタ)アクリル酸アルキルエステルモノマーと炭素原子数7以上9以下のアルキル基を有する(メタ)アクリル酸アルキルエステルモノマーとの併用などが、有機重合体(A)と有機重合体(B)との相溶性の点から好ましい。
 アクリル系重合体(B)の合成法としては、特に限定されず、公知の方法が挙げられる。モノマーの汎用性、重合反応の制御の容易性の点からラジカル重合法が好ましい。
 ラジカル重合法は「フリーラジカル重合法」と「リビングラジカル重合法」とに大別できる。「フリーラジカル重合法」はアゾ系化合物、過酸化物などを重合開始剤として用いてモノマー類を重合させる方法であり、簡便な重合法である。「フリーラジカル重合法」によれば、特定の官能基を有する連鎖移動剤を用いることで、末端に官能基を有する重合体を得ることも可能である。一方、「リビングラジカル重合法」では、特定の反応条件の下、重合体生長末端が停止反応などの副反応を起こさずに生長する。「リビングラジカル重合法」によれば、任意の分子量を有し、分子量分布が狭く、粘度が低い重合体を得ることができる上に、特定の官能基を有するモノマーに由来する構成単量体単位を重合体のほぼ任意の位置に導入することが可能である。これらの重合法の詳細については、特許文献1の段落[0086]~[0094]、特許文献2の[0061]~[0068]に開示されている。
 上記以外の重合方法として、特開2001-040037号公報に示されているようなメタロセン触媒と分子中に反応性ケイ素基を少なくとも1つ以上有するチオール化合物とを用いてアクリル系重合体を得る方法、または、特表昭57-502171号公報、特開昭59-006207号公報、および特開昭60-511992号公報に示されているような、ビニルモノマーを、撹拌槽型反応器を使用して連続重合する高温連続重合法などを用いることも可能である。
 (メタ)アクリル酸エステル系重合体に反応性ケイ素基を導入する方法は特に限定されない。例えば、以下の方法を用いることができる。
(iii)重合性不飽和基と反応性ケイ素含有基を有する化合物を、上述のモノマーとともに共重合する方法。この方法を用いると反応性ケイ素基は重合体の主鎖中にランダムに導入される傾向がある。
(iv)連鎖移動剤として、反応性ケイ素含有基を有するメルカプトシラン化合物を使用して(メタ)アクリル酸エステル系重合体を重合する方法。この方法を用いると、反応性ケイ素基を重合体末端に導入することができる。
(v)重合性不飽和基と反応性官能基(V基)とを有する化合物を、共重合した後、得られた共重合体が有するV基に、反応性ケイ素基とV基に反応する官能基とを有する化合物を反応させる方法。具体的には、アクリル酸2-ヒドロキシエチルを共重合した後、得られた共重合体が有する水酸基と、反応性ケイ素含有基を有するイソシアネートシランとを反応させる方法や、アクリル酸グリシジルを共重合した後、得られた共重合体が有するエポキシ基と、反応性ケイ素含有基を有するアミノシラン化合物とを反応させる方法などが例示できる。
(vi)リビングラジカル重合法によって合成した(メタ)アクリル酸エステル系重合体の末端官能基を変性して、反応性ケイ素基を導入する方法。リビングラジカル重合法によって得られる(メタ)アクリル酸エステル系重合体は重合体末端に官能性基を導入しやすい。リビングラジカル重合法によって得られる(メタ)アクリル酸エステル系重合体を変性することで重合体末端に反応性ケイ素基を導入することができる。
 上記の方法を用いて(メタ)アクリル酸エステル系重合体の反応性ケイ素基を導入するために使用できるケイ素化合物としては、以下の化合物が例示できる。
 方法(iii)で使用される重合性不飽和基と反応性ケイ素基とを有する化合物としては、(メタ)アクリル酸(メチルジメトキシシリル)メチル、(メタ)アクリル酸(メチルジエトキシシリル)メチル、(メタ)アクリル酸2-(メチルジメトキシシリル)エチル、および(メタ)アクリル酸3-(メチルジメトキシシリル)プロピルなどが挙げられる。入手容易な点で、メタクリル酸3-(メチルジメトキシシリル)プロピルが好ましい。
 方法(iv)で使用される反応性ケイ素含有基を有するメルカプトシラン化合物としては、(メルカプトメチル)メチルジメトキシシラン、(3-メルカプトプロピル)メチルジメトキシシラン、(メルカプトメチル)メチルジエトキシシラン、および(3-メルカプトプロピル)メチルジエトキシシランなどが挙げられる。入手容易な点で、(3-メルカプトプロピル)メチルジメトキシシランが特に好ましい。
 方法(v)で使用される反応性ケイ素基とV基に反応する官能基とを有する化合物としては、(イソシアネートメチル)メチルジメトキシシラン、(イソシアネートメチル)メチルジエトキシシラン、(3-イソシアネートプロピル)メチルジメトキシシラン、および(3-イソシアネートプロピル)メチルジエトキシシランなどのイソシアネートシラン化合物;(グリシドキシメチル)メチルジメトキシシラン、(グリシドキシメチル)メチルジエトキシシラン、(3-グリシドキシプロピル)メチルジメトキシシラン、および(3-グリシドキシプロピル)メチルジメトキシシランなどのエポキシシラン化合物;(アミノメチル)メチルジメトキシシラン、(N-シクロヘキシルアミノメチル)メチルジメトキシシラン、(N-フェニルアミノメチル)メチルジメトキシシラン、および(N-(2-アミノエチル)アミノメチル)メチルジメトキシシランなどのアミノシラン化合物などが挙げられる。
 上記(vi)の方法では、任意の変性反応を利用できる。例えば、重合によって得られた末端反応性基と反応し得る官能基とケイ素基を有する化合物を用いる方法や、末端反応性基と反応し得る官能基と二重結合を有する化合物を用いて重合体末端に二重結合を導入し、重合体末端の二重結合にヒドロシリル化などによって反応性ケイ素基を導入する方法などが使用できる。前者の方法では、上記したイソシアネートシランなどが使用できる。また、ヒドロシリル化に使用するヒドロシランとしては、(クロロメチル)ジメトキシシラン、(クロロメチル)ジエトキシシラン、(メトキシメチル)ジメトキシシラン、(メトキシメチル)ジエトキシシラン、(エトキシメチル)ジメトキシシラン、(アミノメチル)ジメトキシシラン、(ジメチルアミノメチル)ジメトキシシラン、(ジエチルアミノメチル)ジメトキシシラン、(N-(2-アミノエチル)アミノメチル)ジメトキシシラン、(アセトキシメチル)ジメトキシシラン、および(アセトキシメチル)ジエトキシシランなどのヒドロシランなどが挙げられる。方法(vi)を利用すれば分子量を任意に制御し、分子量分布が狭い反応性ケイ素基含有(メタ)アクリル酸エステル系重合体を得ることができる。
 なお、これらの方法は任意に組み合わせて用いてもよい。例えば方法(iii)と方法(iv)とを組み合わせると、分子鎖末端および/または側鎖の両方に反応性ケイ素基を導入することができる。
 (メタ)アクリル酸エステル系重合体の数平均分子量は特に限定されないが、GPC測定によるポリスチレン換算分子量で、500以上15,000以下が好ましく、500以上10,000以下がより好ましく、1,000以上4,000以下が特に好ましい。
 (メタ)アクリル酸エステル系重合体の数平均分子量が上記の範囲内であれば、十分なゴム弾性を示す硬化物を形成しやすく、また、粘度に関して作業性の点で好都合な傾向がある。数平均分子量が1,000以上4,000以下の範囲で、硬化物の物性と粘度のバランスが特に優れる傾向にある。
 反応性ケイ素基含有(メタ)アクリル酸エステル系重合体の反応性ケイ素基は分子鎖末端および主鎖のいずれに導入されていてもよい。反応性ケイ素基が分子鎖末端のみに導入された重合体を用いた場合、得られる硬化物の伸び特性が向上する傾向が見られる。また、主鎖に反応性ケイ素基が導入された重合体を用いた場合、硬化性組成物の接着性が改善する場合がある。反応性ケイ素基の数は1分子あたり平均して、0.5個以上4.0個以下が好ましく、0.7個以上3.5個以下がより好ましく、1.0個以上3.0個以下が特に好ましい。
 重合体(A)と重合体(B)との配合割合は特に限定されない。質量比(重合体(A):重合体(B))として、90:10~40:60が好ましく、75:25~55:45がより好ましい。重合体(B)の配合割合が小さいと、硬化物が十分な耐熱性が発揮しない可能性がある。重合体(B)の配合割合が大きいと、硬化物の柔軟性が低下する傾向にある。
 一般式(1)で表される反応性ケイ素基と、一般式(2)で表される反応性ケイ素基との組み合わせの具体例としては、(メトキシメチル)ジメトキシシリル基とメチルジメトキシシリル基との組み合わせ、(メトキシメチル)ジエトキシシリル基とメチルジメトキシシリル基との組み合わせ、(エトキシメチル)ジメトキシシリル基とメチルジメトキシシリル基との組み合わせ、および(メトキシメチル)ジメトキシシリル基とメチルジエトキシシリル基との組み合わせなどのような、(アルコキシメチル)ジアルコキシシリル基とアルキルジアルコキシ基との組み合わせが挙げられる。これらの組み合わせの中でも(メトキシメチル)ジメトキシシリル基とメチルジメトキシシリル基との組み合わせが、硬化性組成物の硬化性と硬化物の物性とのバランスが良いことから好ましい。
 硬化性組成物には、縮合触媒(C)として、アミン化合物(c1)および/または有機錫化合物(c2)を使用することができる。縮合触媒(C)は、重合体(A)および重合体(B)が有する反応性ケイ素基間の加水分解・縮合による架橋反応を促進させる。
 アミン化合物(c1)としては、特に制限はない。アミン化合物(c1)としては、脂肪族第一級アミン類;脂肪族第二級アミン類;脂肪族第三級アミン類;脂肪族不飽和アミン類;芳香族アミン類;含窒素複素環式化合物;アミジン構造を有する化合物;アミジン構造を有する化合物から誘導される塩;グアニジン構造を有する化合物;ビグアニド構造を有する化合物;および、その他のアミン類が挙げられる。
 下記一般式(3)で表される、アミジン構造またはグアニジン構造を有する化合物は、特に好適に使用できる。
N=CR-NR   (3)
(式中、Rは、炭素原子数が1以上20以下の置換もしくは非置換の炭化水素基、または-NR で表される基である。R、R、およびRは、水素原子、または、炭素原子数が1以上20以下の置換もしくは非置換の炭化水素基であって、2つのRおよび2つのRは同じであってもよく、異なっていてもよい。R、R、2つのR、および、2つのRのうち任意の2つ以上が結合して環状構造を形成していてもよい。)。
 一般式(3)で表されるアミジン構造またはグアニジン構造を有する化合物を具体的に例示すると、1,8-ジアザビシクロ[5,4,0]ウンデカ-7-エン(DBU)、6-(ジブチルアミノ)-1,8-ジアザビシクロ[5,4,0]ウンデカ-7-エン(DBA-DBU)、6-(2-ヒドロキシプロピル)-1,8-ジアザビシクロ[5,4,0]ウンデカ-7-エン(OH-DBU)、OH-DBUの水酸基をウレタン化などで変性した化合物、および1,5-ジアザビシクロ[4,3,0]ノナ-5-エン(DBN)などのアミジン構造を有する化合物;DBUのフェノール塩(具体的には、商品名:U-CAT SA1(サンアプロ製))、DBUのオクチル酸塩(具体的には、商品名:U-CAT SA102(サンアプロ製))、DBUのp-トルエンスルホン酸塩(具体的には、商品名:U-CAT SA506(サンアプロ製))、およびDBNのオクチル酸塩(具体的には、商品名:U-CAT 1102(サンアプロ製))などのアミジン構造を有する化合物から誘導される塩;グアニジン、フェニルグアニジン、およびジフェニルグアニジンなどのグアニジン構造を有する化合物、などが挙げられる。
 これらの中でも、高い活性を示すことから、DBU、DBA-DBU、DBN、およびフェニルグアニジンが好ましく、DBU、およびフェニルグアニジンがより好ましい。
 その他、アミン化合物(c1)として使用できる化合物を例示すると、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、アミルアミン、ヘキシルアミン、オクチルアミン、2-エチルヘキシルアミン、ノニルアミン、デシルアミン、ラウリルアミン、ペンタデシルアミン、セチルアミン、ステアリルアミン、およびシクロヘキシルアミンなどの脂肪族第一級アミン類;ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミン、ジアミルアミン、ジヘキシルアミン、ジオクチルアミン、ジ(2-エチルヘキシル)アミン、ジデシルアミン、ジラウリルアミン、ジセチルアミン、ジステアリルアミン、メチルステアリルアミン、エチルステアリルアミン、およびブチルステアリルアミンなどの脂肪族第二級アミン類;トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミン、トリヘキシルアミン、およびトリオクチルアミンなどの脂肪族第三級アミン類;トリアリルアミン、およびオレイルアミンなどの脂肪族不飽和アミン類;アニリン、ラウリルアニリン、ステアリルアニリン、およびトリフェニルアミンなどの芳香族アミン類;ピリジン、2-アミノピリジン、2-(ジメチルアミノ)ピリジン、4-(ジメチルアミノピリジン)、2-ヒドロキシピリジン、イミダゾール、2-エチル-4-メチルイミダゾール、モルホリン、N-メチルモルホリン、ピペリジン、2-ピペリジンメタノール、2-(2-ピペリジノ)エタノール、ピペリドン、1,2-ジメチル-1,4,5,6-テトラヒドロピリミジン、1,4-ジアザビシクロ[2,2,2]オクタン(DABCO)、およびアジリジンなどの含窒素複素環式化合物;ブチルビグアニド、1-o-トリルビグアニド、および1-フェニルビグアニドなどのビグアニド構造を有する化合物;モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、3-ヒドロキシプロピルアミン、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、N-メチル-1,3-プロパンジアミン、N,N'-ジメチル-1,3-プロパンジアミン、ジエチレントリアミン、トリエチレンテトラミン、2-(2-アミノエチルアミノ)エタノール、ベンジルアミン、3-メトキシプロピルアミン、3-ラウリルオキシプロピルアミン、3-ジメチルアミノプロピルアミン、3-ジエチルアミノプロピルアミン、3-ジブチルアミノプロピルアミン、3-モルホリノプロピルアミン、2-(1-ピペラジニル)エチルアミン、キシリレンジアミン、および2,4,6-トリス(ジメチルアミノメチル)フェノールなどのその他のアミン類が挙げられる。
 アミン化合物(c1)の炭素原子数の合計がある程度多い(分子量が大きい)場合には、アミン化合物(c1)の揮発を抑制しやすいため、所望する硬化性を得やすい傾向がある。従って、前記アミン化合物(c1)の炭素原子数の合計は、2以上が好ましく、6以上がより好ましい。
 取り扱いや組成物の作製が容易である点で、アミン化合物(c1)が液状であるのが好ましい。一方で、ブリードアウトを抑制できる点で、アミン化合物(c1)が固体状であるのも好ましい。
 また、アミン化合物(c1)は、必要に応じて液状化合物に溶解または分散させて用いてもよい。使用できる液状化合物としては特に制限は無いが、配合物のVOC低減の観点から、WO2008/078654号公報で提案されているように、大気圧での沸点が200℃以下の、揮発性が低い液状化合物が好ましい。揮発性が低い液状化合物の具体例としては、N-エチルトルエンスルホンアミド、N-ブチルベンゼンスルホンアミド(BBSA)、テトラヒドロチオフェン-1,1-ジオキサイド(スルホラン)、2-ピロリドン、N-メチル-2-ピロリドン、ポリオキシアルキレンおよびそのアルキルエーテル類などが挙げられる。
 液状化合物を使用する場合、液状化合物の使用量はアミン化合物(c1)100質量部に対し、20質量部以上500質量部以下の範囲が好ましい。
 これらアミン化合物(c1)は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 アミン化合物(c1)の使用量は、重合体(A)の質量と重合体(B)の質量との合計100質量部に対して、0.01質量部以上10質量部以下が好ましく、0.05質量部以上5質量部以下がより好ましく、0.1質量部以上1質量部以下が特に好ましい。アミン化合物(c1)の使用量が少なすぎると硬化速度が不十分となったり、硬化反応が充分に進行し難くなったりする可能性がある。一方、使用量が多すぎると、硬化速度が速すぎるため、硬化性組成物の使用可能な時間が短くなり作業性が悪くなったり、貯蔵安定性が悪くなったりする傾向がある。
 さらに、アミン化合物(c1)のブリードアウトを抑制させる目的で、アミン化合物(c1)と塩を形成する化合物を用いてもよい。かかる化合物として、フェノール類、有機スルホン酸類、および無機酸類のうちいずれか1つ以上を用いてもよい。具体的には、例えば、フェノール、およびフェノール誘導体;トリフルオロメタンスルホン酸、およびp-トルエンスルホン酸などの有機スルホン酸;塩酸、リン酸、およびボロン酸などの無機酸が挙げられる。
 アミン化合物(c1)と塩を形成する化合物の使用量は、重合体(A)の質量と重合体(B)の質量との合計100質量部に対して、0.001質量部以上20質量部以下が好ましく、0.01質量部以上10質量部以下がより好ましく、0.05質量部以上5質量部以下が特に好ましい。使用量が過少であるとアミン化合物(c1)のブリードアウトを抑制する効果が不十分である可能性がある。一方、使用量が過多であると硬化速度が遅い傾向がある。
 アミン化合物(c1)と塩を形成する化合物を添加する代わりに、市販されているアミン化合物(c1)から誘導される塩を使用することも可能である。
 有機錫化合物(c2)としては、特に制限はない。有機錫化合物(c2)としては、ジブチル錫ジラウレート、ジブチル錫マレエート、ジブチル錫フタレート、ジブチル錫ジオクタノエート、ジブチル錫ビス(2-エチルヘキサノエート)、ジブチル錫ビス(メチルマレエート)、ジブチル錫ビス(エチルマレエート)、ジブチル錫ビス(ブチルマレエート)、ジブチル錫ビス(オクチルマレエート)、ジブチル錫ビス(トリデシルマレエート)、ジブチル錫ビス(ベンジルマレエート)、ジブチル錫ジアセテート、ジブチル錫ジメトキサイド、ジブチル錫ビス(ノニルフェノキサイド)、ジブテニル錫オキサイド、ジブチル錫オキサイド、ジブチル錫ビス(アセチルアセトナート)、ジブチル錫ビス(エチルアセトアセトナート)、ジブチル錫オキサイドとシリケート化合物との反応物、ジブチル錫オキサイドとフタル酸エステルとの反応物などのジブチル錫化合物;ジオクチル錫ビス(トリエトキシシリケート)、ジオクチル錫ジメトキシド、ジオクチル錫ジアセチルアセトナート、ジオクチル錫ジアセテート、ジオクチル錫ジオクトエート、ジオクチル錫ジバーサテート、ジオクチル錫ジラウレート、ジオクチル錫ジステアレート、ジオクチル錫ジベヘネート、ジクチル錫ジオレート、ビス(ジオクチル錫アセテート)オキシド、ビス(ジオクチル錫オクトエート)オキシド、ビス(ジオクチル錫バーサテート)オキシド、ビス(ジオクチル錫ラウレート)オキシド、ビス(ジオクチル錫ステアレート)オキシド、ビス(ジオクチル錫ベヘネート)オキシド、ジオクチル錫ビス(エチルマレエート)、ジオクチル錫ビス(オクチルマレエート)、およびジオクチル錫ビスイソオクチルチオグリコレートなどのジオクチル錫化合物などが挙げられる。
 これらの中でも、ジオクチル錫化合物は適度な活性を示すことから好ましい。入手性の面で、ジオクチル錫ジアセチルアセトナート、およびジオクチル錫ジラウレートがより好ましい。
 これら有機錫化合物(c2)は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 有機錫化合物(c2)を用いた場合、アミン化合物(c1)を用いた場合に比べ、硬化物の伸びが向上する傾向にある。他方、アミン化合物(c1)を用いる場合、硬化物の復元性が向上する傾向にある。
 有機錫化合物(c2)の使用量は、重合体(A)の質量と重合体(B)の質量との合計100質量部に対して、0.01質量部以上10質量部以下が好ましく、0.05質量部以上5質量部以下がより好ましく、0.1質量部以上1質量部以下が特に好ましい。有機錫化合物(c2)の使用量が少なすぎると硬化速度が不十分となったり、硬化反応が充分に進行し難くなったりする可能性がある。一方、使用量が多すぎると硬化速度が速すぎるため、硬化性組成物の使用可能な時間が短くなり作業性が悪くなったり、貯蔵安定性が悪くなったりする傾向がある。
 アミン化合物(c1)と有機錫化合物(c2)とは、それぞれ単独で用いてもよいし、併用してもよい。併用する場合の使用量の比は、発明の効果を損なわない範囲であれば特に制限は無い。
 重合体(A)の反応性ケイ素基を加水分解・縮合させて架橋させる反応の反応性や硬化物の物性を調整する目的で、硬化性組成物には、縮合触媒(C)として、前記アミン化合物(c1)や有機錫化合物(c2)以外に加え、酸性化合物(c3)を併用してもよい。酸性化合物(c3)は、ルイス酸またはカルボン酸から選択される。
 酸性化合物(c3)の添加によって、硬化性組成物の貯蔵安定性や硬化物の引き裂き強度が向上する傾向にある。
 酸性化合物(c3)としてのルイス酸は、特に制限されない。ルイス酸の具体例としては、トリエトキシボラン、トリエトキシアルミニウム、トリイソプロポキシアルミニウム、イソプロポキシアルミニウムビス(エチルアセトアセテート)、ジイソプロポキシアルミニウム(エチルアセトアセテート)、テトラエトキシチタン、テトライソプロポキシチタン、テトラブトキシチタン、ジイソプロポキシチタンビスアセチルアセトナート、ジイソプロポキシチタンビス(エチルアセトアセテート)、テトラブトキシジルコニウム、ブトキシジルコニウム(アセチルアセトナート)ビス(エチルアセトアセテート)、テトラブトキシハフニウム、テトラエトキシゲルマニウム、ペンタエトキシタンタル、およびペンタエトキシニオブなどのアルコキシ金属;三フッ化ホウ素ジエチルエーテル錯体、三フッ化ホウ素モノエチルアミン錯体、および三フッ化ホウ素水和物などの三フッ化ホウ素錯体;インジウムトリフラート、錫トリフラート、およびスカンジウムトリフラートなどの金属トリフラート塩;トリクロロアルミニウム、テトラクロロチタン、およびテトラクロロ錫などの金属塩化物などが挙げられる。
 また、アルコキシチタンなどのチタン化合物は入手性、取扱い性、触媒活性が良好な面で好ましい。
 これらチタン化合物を併用する場合、チタン化合物の中から1種のみ用いてもよいし、2種以上を組み合わせて用いてもよい。
 酸性化合物(c3)のカルボン酸としては、特に制限はない。カルボン酸の好適な具体例としては、酢酸、プロピオン酸、酪酸、2-エチルヘキサン酸、ラウリン酸、ステアリン酸、オレイン酸、リノール酸、ピバル酸、2,2-ジメチル酪酸、2,2-ジエチル酪酸、2,2-ジメチルヘキサン酸、2,2-ジエチルヘキサン酸、2,2-ジメチルオクタン酸、2-エチル-2,5-ジメチルヘキサン酸、ネオデカン酸、およびバーサティック酸などが挙げられる。
 酸性化合物(c3)の使用量は、重合体(A)100質量部に対して、0.01質量部以上20質量部以下が好ましく、0.05質量部以上10質量部以下がより好ましく、0.1質量部以上5質量部以下がさらに好ましい。
 さらに硬化性組成物には、縮合触媒(C)として、前記アミン化合物(c1)、有機錫化合物(c2)、および酸性化合物(c3)以外の他の縮合触媒を用いることも可能である。
 他の縮合触媒の具体例としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジメトキシシラン、および3-(N-2-アミノエチルアミノ)プロピルトリメトキシシランなどのアミノシラン類;カルボン酸錫、カルボン酸鉛、カルボン酸ビスマス、カルボン酸カリウム、カルボン酸カルシウム、カルボン酸バリウム、カルボン酸チタン、カルボン酸ジルコニウム、カルボン酸ハフニウム、カルボン酸バナジウム、カルボン酸マンガン、カルボン酸鉄、カルボン酸コバルト、カルボン酸ニッケル、およびカルボン酸セリウムなどのカルボン酸金属塩;有機酸性リン酸エステル;トリフルオロメタンスルホン酸などの有機スルホン酸;塩酸、リン酸、およびボロン酸などの無機酸;フッ化アンモニウム、フッ化テトラブチルアンモニウム、フッ化カリウム、フッ化セシウム、フッ化水素アンモニウム、NaSiF、KSiF、および(NHSiFなどのフッ素アニオン含有化合物などを挙げることができる。
 硬化性組成物には、特許文献2の段落[0119]に例示されているような、光によって酸や塩基を発生させる光酸発生剤や光塩基発生剤も縮合触媒として使用できる。
 アミン化合物(c1)、有機錫化合物(c2)、酸性化合物(c3)以外の縮合触媒の使用量は、重合体(A)の質量と重合体(B)の質量との合計100質量部に対して、0.001質量部以上10質量部以下が好ましく、0.01質量部以上7質量部以下がより好ましく、0.05質量部以上5質量部以下が特に好ましい。
 硬化性組成物は、重合体(A)および重合体(B)を必須成分とする。硬化性組成物は、必要に応じて重合体(A)および重合体(B)の他に、一般式(1)で表される反応性ケイ素基を有さず、一般式(3):
-SiR 3-a  (3)
(式中R、X、aは前記と同じである。)で表される反応性ケイ素基を有する、(メタ)アクリル系有機重合体以外の有機重合体(D)を含んでもよい。重合体(D)の添加により、例えば重合体(D)の数平均分子量が低い場合は、組成物の粘度を下げて作業性向上が期待出来る点で好ましい。重合体(D)の数平均分子量が高い場合は、硬化物の伸び改善が期待出来る点で好ましい。
 一般式(3)で表される反応性ケイ素基としては、特に限定されない。一般式(3)で表される反応性ケイ素基としては、例えば、メチルジメトキシシリル基、メチルジエトキシシリル基、メチルジイソプロポキシシリル基、メチルジイソプロペニルオキシシリル基、メトキシジメチルシリル基、およびエトキシジメチルシリル基などが挙げられる。これらの中では、メチルジメトキシシリル基が硬化性や得られる硬化物の機械物性の観点から好ましい。
 重合体(D)の主鎖骨格およびその合成方法については、前記の重合体(A)と同様の説明ができる。
 重合体(D)は、重合体(A)および重合体(B)の合計に対し、任意の割合で混合して使用することが可能である。その混合物の割合は、硬化速度、安定性、コストなどの観点から選択することができる。重合体(A)の質量と重合体(B)の質量との合計100質量部に対する重合体(D)の混合割合は、0質量部以上100質量部以下が好ましく、0質量部以上50質量部以下がより好ましく、0質量部以上20質量部以下がさらに好ましい。重合体(D)の混合割合が100質量部以上であると、組成物の硬化性が低下する場合がある。重合体(A)と重合体(D)は、主鎖骨格について同種異種を問わないが、互いに相溶することが好ましい。また、重合体(A)は、分子中に一般式(3)で表される反応性ケイ素含有基を含有していてもよい。
 硬化性組成物には、発明の効果を損なわない程度に、ポリシロキサンを使用できる。ポリシロキサンは主鎖がシロキサン結合の繰り返しからなる重合体である。ポリシロキサンとしては、例えばポリジメチルシロキサンなどがある。ポリシロキサンとしては常温で流動性を示すものが使用できる。また、主鎖にポリオキシアルキレンなどの他の重合体成分を含有していてもよい。ポリシロキサンを使用することで、低粘度化、可塑化効果が期待できる。また、低温作業性の改善、硬化物表面のタック性改善や機械物性の制御などが期待できる。ポリシロキサンは反応性ケイ素基を有していてもよい。このようなポリシロキサンを使用することで、硬化物の強度が向上する場合もある。ポリシロキサンの配合量は、重合体(A)の質量と重合体(B)の質量との合計100質量部に対して、1質量部以上100質量部以下が好ましく、5~50質量部がより好ましく、特に10~30質量部が好ましい。
 硬化性組成物には、可塑剤(E)を添加することができる。可塑剤の添加により、硬化性組成物の粘度や硬化性組成物を硬化して得られる硬化物の硬度、引張り強度、伸びなどの機械特性が調整できる。一方で、可塑剤の添加により硬化物の引き裂き強度は低下する傾向にある。
 可塑剤(E)の具体例としては、ジブチルフタレート、ジヘプチルフタレート、ジ(2-エチルヘキシル)フタレート、ジイソノニルフタレート(DINP)、ジイソデシルフタレート(DIDP)、およびブチルベンジルフタレートなどのフタル酸エステル化合物;ビス(2-エチルヘキシル)-1,4-ベンゼンジカルボキシレートなどのテレフタル酸エステル化合物;1,2-シクロヘキサンジカルボン酸ジイソノニルエステルなどの非フタル酸エステル化合物;アジピン酸ジオクチル、セバシン酸ジオクチル、セバシン酸ジブチル、コハク酸ジイソデシル、およびアセチルクエン酸トリブチルなどの脂肪族多価カルボン酸エステル化合物;オレイン酸ブチル、およびアセチルリシノール酸メチルなどの不飽和脂肪酸エステル化合物;アルキルスルホン酸フェニルエステル;リン酸エステル化合物;トリメリット酸エステル化合物;塩素化パラフィン;アルキルジフェニル、および部分水添ターフェニルなどの炭化水素系油;プロセスオイル;エポキシ化大豆油、およびエポキシステアリン酸ベンジルなどのエポキシ可塑剤、などを挙げることができる。
 また、高分子可塑剤を使用することができる。高分子可塑剤の具体例としては、ビニル系重合体;ポリエステル系可塑剤;数平均分子量500以上のポリエチレングリコール、およびポリプロピレングリコールなどのポリエーテルポリオール、これらポリエーテルポリオールのヒドロキシ基をエステル基、および/またはエーテル基などに変換した誘導体などのポリエーテル類;ポリスチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン-アクリロニトリル、およびポリクロロプレンなどが挙げられる。
 これらの高分子可塑剤の中では、重合体(A)および重合体(B)の混合物に相溶するものが好ましい。この点から、フタル酸エステル化合物、非フタル酸エステル化合物、ポリエーテル類やビニル系重合体が好ましい。
 可塑剤の使用量は、重合体(A)の質量と重合体(B)の質量との合計100質量部に対して、100質量部以下が好ましく、20質量部以下がより好ましく、10質量部以下が特に好ましい。可塑剤の使用量が多すぎる場合は、硬化物の機械強度が不足する傾向にある。可塑剤は、単独で使用してもよく、2種以上を併用してもよい。また低分子可塑剤と高分子可塑剤を併用してもよい。なお、これら可塑剤は重合体製造時に配合することも可能である。
 硬化性組成物には溶剤または希釈剤を添加することができる。溶剤および希釈剤としては、特に限定されない。溶剤および希釈剤としては、脂肪族炭化水素、芳香族炭化水素、脂環族炭化水素、ハロゲン化炭化水素、アルコール、エステル、ケトン、エーテルなどを使用することができる。溶剤または希釈剤を使用する場合、組成物を屋内で使用した時の空気への汚染の問題から、溶剤の沸点は、大気圧下において、150℃以上が好ましく、200℃以上がより好ましく、250℃以上が特に好ましい。上記溶剤または希釈剤は単独で用いてもよく、2種以上併用してもよい。
 硬化性組成物には、接着性付与剤を添加することができる。接着性付与剤としては、シランカップリング剤、シランカップリング剤の反応物を添加することができる。
 シランカップリング剤の具体例としては、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-β-アミノエチル-γ-アミノプロピルトリメトキシシラン、N-β-アミノエチル-γ-アミノプロピルメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、および(2-アミノエチル)アミノメチルトリメトキシシランなどのアミノ基含有シラン類;γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン、α-イソシアネートメチルトリメトキシシラン、およびα-イソシアネートメチルジメトキシメチルシランなどのイソシアネート基含有シラン類;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、およびγ-メルカプトプロピルメチルジメトキシシランなどのメルカプト基含有シラン類;γ-グリシドキシプロピルトリメトキシシラン、およびβ-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ基含有シラン類、が挙げられる。
 上記接着性付与剤は1種類のみで使用してもよいし、2種類以上混合使用してもよい。また、各種シランカップリング剤の反応物も使用できる。
 シランカップリング剤の使用量は、重合体(A)の質量と重合体(B)の質量との合計100質量部に対して、0.1~20質量部が好ましく、0.5~10質量部が特に好ましい。
 硬化性組成物には、種々の充填剤を配合することができる。充填剤としては、重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、ケイソウ土、クレー、タルク、酸化チタン、ヒュームドシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、無水ケイ酸、含水ケイ酸、カーボンブラック、酸化第二鉄、アルミニウム微粉末、酸化亜鉛、活性亜鉛華、PVC粉末、PMMA粉末、ガラス繊維およびフィラメントなどが挙げられる。
 充填剤の使用量は、重合体(A)の質量と重合体(B)の質量との合計100質量部に対して、1~300質量部が好ましく、10~250質量部が特に好ましい。
 組成物の軽量化(低比重化)の目的で、有機バルーン、無機バルーンを硬化性組成物に添加してもよい。バルーンは、内部が中空の球状体充填剤である。バルーンの材料としては、ガラス、シラス、シリカなどの無機系の材料、および、フェノール樹脂、尿素樹脂、ポリスチレン、サランなどの有機系の材料が挙げられる
 バルーンの使用量は、重合体(A)の質量と重合体(B)の質量との合計100質量部に対して、0.1~100質量部が好ましく、1~20質量部が特に好ましい。
 硬化性組成物には、必要に応じてタレを防止し、作業性を良くするためにタレ防止剤を添加してもよい。また、タレ防止剤としては特に限定されない。タレ防止剤としては、例えば、ポリアミドワックス類;水添ヒマシ油誘導体類;ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウムなどの金属石鹸類などが挙げられる。これらタレ防止剤は単独で用いてもよく、2種以上併用してもよい。
 タレ防止剤の使用量は、重合体(A)の質量と重合体(B)の質量との合計100質量部に対して、0.1~20質量部が好ましい。
 硬化性組成物には、酸化防止剤(老化防止剤)を使用することができる。酸化防止剤を使用すると硬化物の耐候性を高めることができる。酸化防止剤としてはヒンダードフェノール系、モノフェノール系、ビスフェノール系、およびポリフェノール系が例示できる。酸化防止剤の具体例は特開平4-283259号公報や特開平9-194731号公報にも記載されている。
 酸化防止剤の使用量は、重合体(A)の質量と重合体(B)の質量との合計100質量部に対して、0.1~10質量部が好ましく、0.2~5質量部が特に好ましい。
 硬化性組成物においては、光安定剤を使用することができる。光安定剤を使用すると硬化物の光酸化劣化を防止できる。光安定剤としてベンゾトリアゾール系、ヒンダードアミン系、ベンゾエート系化合物などが例示できる。特にヒンダードアミン系が好ましい。
 光安定剤の使用量は、重合体(A)の質量と重合体(B)の質量との合計100質量部に対して、0.1~10質量部が好ましく、0.2~5質量部が特に好ましい。
 硬化性組成物においては、紫外線吸収剤を使用することができる。紫外線吸収剤を使用すると硬化物の表面耐候性を高めることができる。紫外線吸収剤としてはベンゾフェノン系、ベンゾトリアゾール系、サリチレート系、置換トリル系および金属キレート系化合物などが例示できる。紫外線吸収剤としては、特にベンゾトリアゾール系が好ましい。市販品としては、チヌビンP、チヌビン213、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン329、チヌビン571(以上、BASF製)が挙げられる。
 紫外線吸収剤の使用量は、重合体(A)の質量と重合体(B)の質量との合計100質量部に対して、0.1~10質量部が好ましく、0.2~5質量部が特に好ましい。
 硬化性組成物には、必要に応じて生成する硬化物の引張特性を調整する物性調整剤を添加してもよい。物性調整剤としては特に限定されない。物性調整剤としては、例えば、フェノキシトリメチルシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、およびn-プロピルトリメトキシシランなどのアルキルアルコキシシラン類;ジフェニルジメトキシシラン、フェニルトリメトキシシランなどのアリールアルコキシシラン類;ジメチルジイソプロペノキシシラン、メチルトリイソプロペノキシシラン、およびγ-グリシドキシプロピルメチルジイソプロペノキシシランなどのアルキルイソプロペノキシシラン;トリス(トリメチルシリル)ボレート、およびトリス(トリエチルシリル)ボレートなどのトリアルキルシリルボレート類;シリコーンワニス類;ポリシロキサン類などが挙げられる。前記物性調整剤を用いることにより、硬化性組成物を硬化させた時の硬度を上げたり、逆に硬度を下げ、破断伸びを出したりし得る。上記物性調整剤は単独で用いてもよく、2種以上併用してもよい。
 特に、加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物は硬化物の表面のべたつきを悪化させずに硬化物のモジュラスを低下させる作用を有する。特にトリメチルシラノールを生成する化合物が好ましい。加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物としては、ヘキサノール、オクタノール、フェノール、トリメチロールプロパン、グリセリン、ペンタエリスリトール、およびソルビトールなどのアルコールの誘導体であって加水分解によりシランモノオールを生成するシリコン化合物を挙げることができる。
 物性調整剤の使用量は、重合体(A)の質量と重合体(B)の質量との合計100質量部に対して、0.1~10質量部が好ましく、0.5~5質量部が特に好ましい。
 基材への接着性や密着性を高める目的、あるいはその他必要に応じて、硬化性組成物には粘着付与樹脂を添加できる。粘着付与樹脂としては、特に制限はない。粘着付与樹脂としては、通常使用されている樹脂を使うことが出来る。
 粘着付与樹脂の具体例としては、テルペン系樹脂、芳香族変性テルペン樹脂、水素添加テルペン樹脂、テルペン-フェノール樹脂、フェノール樹脂、変性フェノール樹脂、キシレン-フェノール樹脂、シクロペンタジエン-フェノール樹脂、クマロンインデン樹脂、ロジン系樹脂、ロジンエステル樹脂、水添ロジンエステル樹脂、キシレン樹脂、低分子量ポリスチレン系樹脂、スチレン共重合体樹脂、スチレン系ブロック共重合体、スチレン系ブロック共重合体の水素添加物、石油樹脂(例えば、C5炭化水素樹脂、C9炭化水素樹脂、C5炭化水素-C9炭化水素共重合樹脂など)、水添石油樹脂、およびDCPD樹脂などが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
 粘着付与樹脂の使用量は、重合体(A)の質量と重合体(B)の質量との合計100質量部に対して2質量部以上100質量部以下が好ましく、5質量部以上50質量部以下がより好ましく、5質量部以上30質量部以下がさらに好ましい。2質量部より少ないと基材への接着、密着効果が得られにくく、また100質量部を超えると硬化性組成物の粘度が高くなりすぎ、硬化性組成物の取扱いが困難となる場合がある。
 硬化性組成物においてはエポキシ基を有する化合物を使用できる。エポキシ基を有する化合物を使用すると硬化物の復元性を高めることができる。エポキシ基を有する化合物としてはエポキシ化不飽和油脂類、エポキシ化不飽和脂肪酸エステル類、脂環族エポキシ化合物類、エピクロルヒドリン誘導体に示す化合物およびそれらの混合物などが例示できる。具体的には、エポキシ化大豆油、エポキシ化あまに油、ビス(2-エチルヘキシル)-4,5-エポキシシクロヘキサン-1,2-ジカーボキシレート(E-PS)、エポキシオクチルステアレ-ト、およびエポキシブチルステアレ-トなどが挙げられる。
 エポキシ基を有する化合物の使用量は、重合体(A)の質量と重合体(B)の質量との合計100質量部に対して0.5質量部以上50質量部以下の範囲がよい。
 硬化性組成物においては光硬化性物質を使用できる。光硬化性物質を使用すると、硬化物表面に光硬化性物質の皮膜が形成され、硬化物のべたつきや硬化物の耐候性を改善できる。この種の化合物には有機単量体、オリゴマー、樹脂あるいはそれらを含む組成物など多くのものが知られている。代表的な光硬化性物質としては、アクリル系またはメタクリル系不飽和基を1ないし数個有するモノマー、オリゴマーあるいはそれらの混合物である不飽和アクリル系化合物、ポリケイ皮酸ビニル類あるいはアジド化樹脂などが使用できる。
 光硬化性物質の使用量は、重合体(A)の質量と重合体(B)の質量との合計100質量部に対して0.1質量部以上20質量部以下が好ましく、0.5質量部以上10質量部以下がより好ましい。使用量が過少であると、所望する程度に硬化物の耐候性を高める効果を得にくい。使用量が過多であると、硬化物が硬すぎることにより、硬化物にヒビ割れが生じる傾向がある。
 硬化性組成物においては酸素硬化性物質を使用できる。酸素硬化性物質としては、空気中の酸素と反応し得る不飽和化合物を例示できる。酸素硬化性物質は、空気中の酸素と反応して硬化物の表面付近に硬化皮膜を形成し表面のべたつきや硬化物表面へのゴミやホコリの付着を防止するなどの作用を奏する。酸素硬化性物質の具体例には、キリ油、アマニ油などで代表される乾性油や、該化合物を変性して得られる各種アルキッド樹脂;アクリル系重合体、エポキシ系樹脂、およびシリコン樹脂などの乾性油による変性物;ブタジエン、クロロプレン、イソプレン、および1,3-ペンタジエンなどのジエン系化合物を重合または共重合させてえられる1,2-ポリブタジエン、1,4-ポリブタジエン、およびC5~C8ジエンの重合体などの液状重合体などが挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。
 酸素硬化性物質の使用量は、重合体(A)の質量と重合体(B)の質量との合計100質量部に対して0.1質量部以上20質量部以下が好ましく、0.5質量部以上10質量部以下がより好ましい。使用量が0.1質量部未満であると汚染性の改善が充分でない場合がある。使用量が20質量部超であると硬化物の引張り特性などが損なわれる傾向が生ずる。特開平3-160053号公報に記載されているように酸素硬化性物質は光硬化性物質と併用するのが好ましい。
 硬化性組成物にはエポキシ樹脂を添加することができる。エポキシ樹脂を添加した組成物は特に接着剤、殊に外壁タイル用接着剤として好ましい。エポキシ樹脂としてはビスフェノールA型エポキシ樹脂類またはノボラック型エポキシ樹脂などが挙げられる。
 これらのエポキシ樹脂と、重合体(A)および重合体(B)の合計との使用割合は、質量比で、(重合体(A)+重合体(B))/エポキシ樹脂として、100/1~1/100の範囲が好ましい。質量比が、(重合体(A)+重合体(B))/エポキシ樹脂として上記の範囲内であると、硬化物の衝撃強度や強靱性の改良効果を得やすく、強度が良好な硬化物を形成しやすい。
 硬化性組成物には、エポキシ樹脂とともに、エポキシ樹脂を硬化させる硬化剤を添加できる。使用し得るエポキシ樹脂硬化剤としては、特に制限はなく、一般に使用されているエポキシ樹脂硬化剤を使用できる。
 エポキシ樹脂の硬化剤を使用する場合、その使用量はエポキシ樹脂100質量部に対し、0.1質量部以上300質量部以下の範囲である。
 硬化性組成物は、すべての配合成分が予め配合され密封保存された1成分型の硬化性組成物として調製することが可能である。1成分型の硬化性組成物は、施工後、空気中の湿気により室温で硬化する。硬化性組成物は、硬化触媒、充填材、可塑剤、および水などの成分が配合された硬化剤としての配合材と、該配合材と使用前に混合される、有機重合体組成物とからなる2成分型の硬化性組成物として調製することもできる。作業性の点からは、1成分型の硬化性組成物が好ましい。
 硬化性組成物が1成分型の場合、すべての配合成分が予め配合されるため、水分を含有する配合成分は予め脱水乾燥してから使用するか、また配合混練中に減圧などにより脱水するのが好ましい。また、脱水乾燥法に加えてn-プロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、およびγ-グリシドキシプロピルトリメトキシシランなどの水と反応し得るケイ素化合物を添加することにより、さらに貯蔵安定性は向上する。
 脱水剤、特にビニルトリメトキシシランなどの水と反応し得るケイ素化合物の使用量は、重合体(A)の質量と重合体(B)の質量との合計100質量部に対して、0.1質量部以上20質量部以下が好ましく、0.5質量部以上10質量部以下がより好ましい。
 本明細書に挙げた添加物の具体例以外の具体例は、例えば、特公平4-69659号、特公平7-108928号、特開昭63-254149号、特開昭64-22904号、および特開2001-72854号の各公報などに記載されている。
 硬化性組成物の調製法は特に限定されない。例えば上記した成分を配合し、ミキサーやロールやニーダーなどを用いて常温または加熱下で混練したり、適した溶剤を少量使用して成分を溶解させ、混合したりするなどの通常の方法が採用されうる。
 硬化性組成物は、良好な硬化速度、深部硬化性、および貯蔵安定性を有し、引き裂き強度や耐熱性のバランスに優れる硬化物を与える。例えば重合体(A)および重合体(B)を含有しない組成物と任意に混合して使用することで、硬化速度を調整したり、得られる硬化物の物性を制御したりするといった、硬化性組成物の使用も可能である。
 硬化性組成物は、水分によって反応が進行する湿気反応型組成物である。硬化性組成物は、熱硬化型樹脂や光硬化型樹脂、放射線硬化性樹脂と併用して用いる、いわゆるデュアル硬化型組成物として使用することもできる。具体的には、エン-チオール付加反応、(メタ)アクリル基のラジカル重合反応、エポキシ基の開環重合反応、ヒドロシリル化による付加反応、およびウレタン化反応などの反応を利用した硬化性樹脂を併用することができる。
 硬化性組成物は、粘着剤、建造物・船舶・自動車・道路などのシーリング材、接着剤、防水材、塗膜防水材、型取剤、防振材、制振材、防音材、発泡材料、塗料、吹付材などに使用できる。硬化性組成物を硬化して得られる硬化物は、柔軟性および接着性に優れる。このため、硬化性組成物が、これらのなかでも、シーリング材または接着剤として用いられることがより好ましい。
 また、太陽電池裏面封止材などの電気・電子部品材料;電線・ケーブル用絶縁被覆材などの電気・電子部品、および電気・電子装置の電気絶縁材料;電気電子用ポッティング剤;音響学的絶縁材料;弾性接着剤、コンタクト型接着剤、タイル張り用接着剤、アスファルト防水材用接着剤、および仮止め用接着剤などの接着剤;スプレー型シール材;クラック補修材;粉体塗料;注型材料;医療用ゴム材料、医療用粘着剤、医療用粘着シート、医療機器シール材、および歯科印象材料などの医科・歯科用の材料、または医科・歯科用の製品用の加工材料;食品包装材;サイジングボードなどの外装材の目地用シーリング材;コーティング材;防滑被覆材;緩衝材;プライマー;電磁波遮蔽用導電性材料;熱伝導性材料;ホットメルト材料;フィルム;ガスケット;コンクリート補強材;各種成形材料;網入りガラスや合わせガラス端面(切断部)の防錆・防水用封止材;普通乗用車などの自動車部品、トラックおよびバスなどの大型車両部品、列車車両用部品、航空機部品、船舶用部品、電機部品、ならびに各種機械部品などの種々の部品において使用される液状シール剤などの様々な用途に、前述の硬化組成物が利用可能である。
 自動車を例にすると、プラスチックカバー、トリム、フランジ、バンパー、ウインドウ取付、内装部材、および外装部品などの接着取付など多種多様な用途に、前述の硬化性組成物が使用可能である。
 さらに、前術の硬化性組成物の硬化物は、単独あるいはプライマーの介在下に、ガラス、磁器、木材、金属、および樹脂成形物などの如き広範囲の基質に密着しうる。このため、前述の硬化性組成物は、種々のタイプの密封組成物および接着組成物としても使用可能である。また、硬化性組成物は、内装パネル用接着剤、外装パネル用接着剤、タイル張り用接着剤、石材張り用接着剤、天井仕上げ用接着剤、床仕上げ用接着剤、壁仕上げ用接着剤、車両パネル用接着剤、電気・電子・精密機器組立用接着剤、皮革、繊維製品、布地、紙、板およびゴムを結合するための接着剤、反応性後架橋感圧性接着剤、ダイレクトグレージング用シーリング材、複層ガラス用シーリング材、SSG工法用または建築物のワーキングジョイント用シーリング材、前述の用途以外の用途に用いられるシーリング材、土木用接着剤またはシーリング材、および橋梁用接着剤またはシーリング材としても使用可能である。さらに、粘着テープや粘着シートなどの粘着材料としても使用可能である。
 以下に、具体的な実施例を挙げて本発明をより詳細に説明する。本発明は、下記実施例に限定されるものではない。
(合成例1)
 数平均分子量約3,000のポリオキシプロピレンジオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキシドの重合を行い、数平均分子量が28,000の水酸基末端ポリオキシプロピレンを得た。続いてこの水酸基末端ポリオキシプロピレンの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、さらに1.5倍当量の3-クロロ-1-プロペンを添加して末端の水酸基をアリル基に変換した。次に得られたアリル基末端ポリオキシプロピレン100質量部に対して白金ジビニルジシロキサン錯体(白金換算で3質量%のイソプロピルアルコール溶液)36ppmを加え撹拌しながら、(メトキシメチル)ジメトキシシラン1.18質量部をゆっくりと滴下し、90℃で2時間反応させることにより、1分子あたりのケイ素基が平均1.5個、数平均分子量が28,000、Mw/Mn=1.31の、末端に(メトキシメチル)ジメトキシシリル基を有する直鎖状のポリオキシプロピレン(A-1)を得た。
(合成例2)
 数平均分子量約3,000のポリオキシプロピレントリオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキシドの重合を行い、数平均分子量が26,000の水酸基末端ポリオキシプロピレンを得た。続いてこの水酸基末端ポリオキシプロピレンの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、さらに1.5倍当量の3-クロロ-1-プロペンを添加して末端の水酸基をアリル基に変換した。次に得られたアリル基末端ポリオキシプロピレン100質量部に対して白金ジビニルジシロキサン錯体(白金換算で3質量%のイソプロピルアルコール溶液)36ppmを加え撹拌しながら、(メトキシメチル)ジメトキシシラン1.18質量部をゆっくりと滴下し、90℃で2時間反応させることにより、1分子あたりのケイ素基が平均2.2個、数平均分子量が26,000、Mw/Mn=1.40の、末端に(メトキシメチル)ジメトキシシリル基を有する分岐状のポリオキシプロピレン(A-2)を得た。
(合成例3)
 数平均分子量約3,000のポリオキシプロピレンジオールおよび数平均分子量約3,000のポリオキシプロピレントリオールを、質量比3:2で混合したものを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキシドの重合を行い、数平均分子量が20,000の水酸基末端ポリオキシプロピレンを得た。続いてこの水酸基末端ポリオキシプロピレンの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、さらに1.5倍当量の3-クロロ-1-プロペンを添加して末端の水酸基をアリル基に変換した。次に得られたアリル基末端ポリオキシプロピレン100質量部に対して白金ジビニルジシロキサン錯体(白金換算で3質量%のイソプロピルアルコール溶液)36ppmを加え撹拌しながら、(メトキシメチル)ジメトキシシラン1.76質量部をゆっくりと滴下し、90℃で2時間反応させることにより、1分子あたりのケイ素基が平均1.8個、数平均分子量が20,000、Mw/Mn=1.30の、末端に(メトキシメチル)ジメトキシシリル基を有する直鎖分岐混合のポリオキシプロピレン(A-3)を得た。
(合成例4)
 合成例2と同様にしてアリル基末端ポリオキシプロピレンを合成し、重合体100質量部に対して白金ジビニルジシロキサン錯体(白金換算で3質量%のイソプロピルアルコール溶液)72ppmおよびオルト酢酸トリメチル3.0質量部を加え、撹拌しながら(クロロメチル)ジメトキシシラン1.62質量部をゆっくりと滴下し、90℃で2時間反応させたあと、オルト酢酸トリメチルを減圧留去することにより、1分子あたりのケイ素基が平均2.1個、数平均分子量が26,000、Mw/Mn=1.35の、末端に(クロロメチル)ジメトキシシリル基を有する分岐状のポリオキシプロピレン(A-4)を得た。
(合成例5)
 合成例3と同様にしてアリル基末端ポリオキシプロピレンを合成し、重合体100質量部に対して白金ジビニルジシロキサン錯体(白金換算で3質量%のイソプロピルアルコール溶液)72ppmおよびオルト酢酸トリメチル0.6質量部を加え、撹拌しながら(クロロメチル)ジメトキシシラン1.77質量部をゆっくりと滴下し、90℃で2時間反応させたあと、オルト酢酸トリメチルを減圧留去することにより、1分子あたりのケイ素基が平均1.8個、数平均分子量が20,000、Mw/Mn=1.37の、末端に(クロロメチル)ジメトキシシリル基を有する直鎖分岐混合のポリオキシプロピレン(A-5)を得た。
(合成例6)
 合成例1と同様にしてアリル基末端ポリオキシプロピレンを合成し、重合体100質量部に対して白金ジビニルジシロキサン錯体(白金換算で3質量%のイソプロピルアルコール溶液)36ppmを加え撹拌しながら、メチルジメトキシシラン0.94質量部をゆっくりと滴下し、90℃で2時間反応させることにより、1分子あたりのケイ素基が平均1.5個、数平均分子量が28,000、Mw/Mn=1.32の、末端にメチルジメトキシシリル基を有するポリオキシプロピレン(D-1)を得た。
(合成例7)
 ブタノールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキシドの重合を行い、数平均分子量が8,000で、分子鎖の一方の末端が水酸基末端のポリオキシプロピレンを得た。続いてこの水酸基末端ポリオキシプロピレンの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、さらに1.5倍当量の3-クロロ-1-プロペンを添加して末端の水酸基をアリル基に変換した。次に得られたアリル基末端ポリオキシプロピレン100質量部に対して白金ジビニルジシロキサン錯体(白金換算で3質量%のイソプロピルアルコール溶液)36ppmを加え撹拌しながら、メチルジメトキシシラン1.80質量部をゆっくりと滴下し、90℃で2時間反応させることにより、1分子あたりのケイ素基が平均0.8個、数平均分子量が8,000、Mw/Mn=1.51の、分子鎖の一方の末端にメチルジメトキシシリル基を有する直鎖状のポリオキシプロピレン(D-2)を得た。
(合成例8)
 撹拌機を備えた四口フラスコにイソブチルアルコール44.7質量部を入れ、窒素雰囲気下、105℃まで昇温した。そこに、メチルメタクリレート72.9質量部、ブチルアクリレート6.5質量部、ステアリルメタクリレート14.6質量部、(3-メタクリロキシプロピル)メチルジメトキシシラン6.0質量部、(3-メルカプトプロピル)メチルジメトキシシラン7.9質量部、および2,2’-アゾビス(2-メチルブチロニトリル)2.7質量部をイソブチルアルコール24.3質量部に溶解した混合溶液を5時間かけて滴下した。続いて、2,2’-アゾビス(2-メチルブチロニトリル)0.3質量部をイソブチルアルコール2.7質量部に溶解した混合溶液を1時間かけて滴下した。さらに105℃で2時間重合を行い、1分子あたりのケイ素基が平均1.2個、数平均分子量が1,900である反応性ケイ素基含有(メタ)アクリル系重合体(B-1)のイソブチルアルコール溶液(固形分60%)を得た。
(合成例9)
 撹拌機を備えた四口フラスコにイソブチルアルコール50.0質量部を入れ、窒素雰囲気下、105℃まで昇温した。そこに、メチルメタクリレート65.0質量部、2-エチルヘキシルアクリレート24.0質量部、ステアリルメタクリレート1.0質量部、(3-メタクリロキシプロピル)トリメトキシシラン10.0質量部、(3-メルカプトプロピル)トリメトキシシラン7.3質量部、および2,2’-アゾビス(2-メチルブチロニトリル)1.8質量部をイソブチルアルコール16.2質量部に溶解した混合溶液を5時間かけて滴下した。続いて、2,2’-アゾビス(2-メチルブチロニトリル)0.7質量部をイソブチルアルコール6.3質量部に溶解した混合溶液を1時間かけて滴下した。さらに105℃で2時間重合を行い、1分子あたりのケイ素基が平均1.6個、数平均分子量が2,200である反応性ケイ素基含有(メタ)アクリル系重合体(B-2)のイソブチルアルコール溶液(固形分60%)を得た。
(合成例10)
 撹拌機を備えた四口フラスコにイソブチルアルコール48.8質量部を入れ、窒素雰囲気下、105℃まで昇温した。そこに、メチルメタクリレート65.0質量部、2-エチルヘキシルアクリレート24.6質量部、ステアリルメタクリレート1.0質量部、(3-メタクリロキシプロピル)メチルジメトキシシラン9.4質量部、(3-メルカプトプロピル)メチルジメトキシシラン6.7質量部、および2,2’-アゾビス(2-メチルブチロニトリル)2.7質量部をイソブチルアルコール24.3質量部に溶解した混合溶液を5時間かけて滴下した。続いて、2,2’-アゾビス(2-メチルブチロニトリル)0.3質量部をイソブチルアルコール2.7質量部に溶解した混合溶液を1時間かけて滴下した。さらに105℃で2時間重合を行い、1分子あたりのケイ素基が平均1.6個、数平均分子量が2,200である反応性ケイ素基含有(メタ)アクリル系重合体(B-3)のイソブチルアルコール溶液(固形分60%)を得た。
(合成例11)
 撹拌機を備えた四口フラスコにイソブチルアルコール45.5質量部を入れ、窒素雰囲気下、105℃まで昇温した。そこに、メチルメタクリレート72.9質量部、ブチルアクリレート6.1質量部、ステアリルメタクリレート14.6質量部、(3-メタクリロキシプロピル)トリメトキシシラン6.4質量部、(3-メルカプトプロピル)トリメトキシシラン8.6質量部、および2,2’-アゾビス(2-メチルブチロニトリル)2.7質量部をイソブチルアルコール24.3質量部に溶解した混合溶液を5時間かけて滴下した。続いて、2,2’-アゾビス(2-メチルブチロニトリル)0.3質量部をイソブチルアルコール2.7質量部に溶解した混合溶液を1時間かけて滴下した。さらに105℃で2時間重合を行い、1分子あたりのケイ素基が平均1.2個、数平均分子量が1,900である反応性ケイ素基含有(メタ)アクリル系重合体(B-4)のイソブチルアルコール溶液(固形分60%)を得た。
(合成例12)
 撹拌機を備えた四口フラスコにイソブチルアルコール60.0質量部を入れ、窒素雰囲気下、90℃まで昇温した。そこに、メチルメタクリレート14.5質量部、ブチルアクリレート68.2質量部、ステアリルメタクリレート14.9質量部、(3-メタクリロキシプロピル)メチルジメトキシシラン2.4質量部、および2,2’-アゾビス(2-メチルブチロニトリル)0.47質量部をイソブチルアルコール4.2質量部に溶解した混合溶液を7時間かけて滴下した。続いて、2,2’-アゾビス(2-メチルブチロニトリル)0.09質量部をイソブチルアルコール0.8質量部に溶解した混合溶液を1時間かけて滴下した。さらに90℃で2時間重合を行い、1分子あたりのケイ素基が平均1.8個、数平均分子量が17,200である反応性ケイ素基含有(メタ)アクリル系重合体(B-5)のイソブチルアルコール溶液(固形分60%)を得た。
(合成例13)
 撹拌機を備えた四口フラスコにイソブチルアルコール77.5質量部を入れ、窒素雰囲気下、105℃まで昇温した。そこに、メチルメタクリレート3.0質量部、ブチルアクリレート73.2質量部、2-エチルヘキシルアクリレート20.0質量部、(3-メタクリロキシプロピル)メチルジメトキシシラン1.9質量部、(3-メタクリロキシプロピル)トリメトキシシラン1.9質量部および2,2’-アゾビス(2-メチルプロピオン酸)ジメチル2.3質量部をイソブチルアルコール11.5質量部に溶解した混合溶液を5時間かけて滴下した。続いて、2,2’-アゾビス(2-メチルプロピオン酸)ジメチル0.2質量部をイソブチルアルコール1.0質量部に溶解した混合溶液を0.5時間重合かけて滴下した。さらに105℃で1.5時間重合を行い、1分子あたりのケイ素基が平均0.7個、数平均分子量が4,300である反応性ケイ素基含有(メタ)アクリル系重合体(B-6)のイソブチルアルコール溶液(固形分55%)を得た。
(合成例14)
 重合体(A-1)と、重合体(B-1)のイソブチルアルコール溶液とを固形分比(質量比)70/30で混合した。得られた混合液をロータリーエバポレーターを用いて110℃に加熱し、減圧条件下でイソブチルアルコールの脱揮を行い、固形分濃度99%以上の重合体(AB-1)を得た。なお、重合体(AB)は、重合体(A)と重合体(B)の混合物を示す。
(合成例15)
 重合体(A-1)と、重合体(B-2)のイソブチルアルコール溶液とを固形分比(質量比)70/30で混合した。得られた混合液をロータリーエバポレーターを用いて110℃に加熱し、減圧条件下でイソブチルアルコールの脱揮を行い、固形分濃度99%以上の重合体(AB-2)を得た。
(合成例16)
 重合体(A-2)と、重合体(B-1)のイソブチルアルコール溶液とを固形分比(質量比)70/30で混合した。得られた混合液をロータリーエバポレーターを用いて110℃に加熱し、減圧条件下でイソブチルアルコールの脱揮を行い、固形分濃度99%以上の重合体(AB-3)を得た。
(合成例17)
 重合体(A-2)と、重合体(B-2)のイソブチルアルコール溶液とを固形分比(質量比)70/30で混合した。得られた混合液をロータリーエバポレーターを用いて110℃に加熱し、減圧条件下でイソブチルアルコールの脱揮を行い、固形分濃度99%以上の重合体(AB-4)を得た。
(合成例18)
 重合体(A-2)と、重合体(B-3)のイソブチルアルコール溶液とを固形分比(質量比)70/30で混合した。得られた混合液をロータリーエバポレーターを用いて110℃に加熱し、減圧条件下でイソブチルアルコールの脱揮を行い、固形分濃度99%以上の重合体(AB-5)を得た。
(合成例19)
 重合体(A-2)と、重合体(B-4)のイソブチルアルコール溶液とを固形分比(質量比)70/30で混合した。得られた混合液をロータリーエバポレーターを用いて110℃に加熱し、減圧条件下でイソブチルアルコールの脱揮を行い、固形分濃度99%以上の重合体(AB-6)を得た。
(合成例20)
 重合体(A-4)と、重合体(B-1)のイソブチルアルコール溶液とを固形分比(質量比)70/30で混合した。得られた混合液をロータリーエバポレーターを用いて110℃に加熱し、減圧条件下でイソブチルアルコールの脱揮を行い、固形分濃度99%以上の重合体(AB-7)を得た。
(合成例21)
 重合体(A-3)と、重合体(B-1)のイソブチルアルコール溶液とを固形分比(質量比)70/30で混合した。得られた混合液をロータリーエバポレーターを用いて110℃に加熱し、減圧条件下でイソブチルアルコールの脱揮を行い、固形分濃度99%以上の重合体(AB-8)を得た。
(合成例22)
 重合体(A-3)と、重合体(B-2)のイソブチルアルコール溶液とを固形分比(質量比)70/30で混合した。得られた混合液をロータリーエバポレーターを用いて110℃に加熱し、減圧条件下でイソブチルアルコールの脱揮を行い、固形分濃度99%以上の重合体(AB-9)を得た。
(合成例23)
 重合体(A-3)と、重合体(B-5)のイソブチルアルコール溶液とを固形分比(質量比)70/30で混合した。得られた混合液をロータリーエバポレーターを用いて110℃に加熱し、減圧条件下でイソブチルアルコールの脱揮を行い、固形分濃度99%以上の重合体(AB-10)を得た。
 (合成例24)
 重合体(A-3)と、重合体(B-6)のイソブチルアルコール溶液とを固形分比(質量比)70/30で混合した。得られた混合液をロータリーエバポレーターを用いて110℃に加熱し、減圧条件下でイソブチルアルコールの脱揮を行い、固形分濃度99%以上の重合体(AB-11)を得た。
 (合成例25)
 重合体(A-5)と、重合体(B-1)のイソブチルアルコール溶液とを固形分比(質量比)70/30で混合した。得られた混合液をロータリーエバポレーターを用いて110℃に加熱し、減圧条件下でイソブチルアルコールの脱揮を行い、固形分濃度99%以上の重合体(AB-12)を得た。
 (合成例26)
 重合体(A-3)と、重合体(B-1)のイソブチルアルコール溶液とを固形分比(質量比)60/40で混合した。得られた混合液をロータリーエバポレーターを用いて110℃に加熱し、減圧条件下でイソブチルアルコールの脱揮を行い、固形分濃度99%以上の重合体(AB-13)を得た。
 (合成例27)
 重合体(A-3)と、重合体(B-2)のイソブチルアルコール溶液を固形分比(質量比)60/40で混合し、ロータリーエバポレーターを用いて110℃に加熱し、減圧条件下でイソブチルアルコールの脱揮を行い、固形分濃度99%以上の重合体(AB-14)を得た。
(実施例1-1~6-1、比較例1-1~6-1)
 表1~6に示した組成に従って、各重合体に対して、充填剤、(可塑剤、)タレ防止剤を混合して充分混練した後、3本ペイントロール通して分散させた。この後、プラネタリーミキサーを用い120℃で2時間減圧脱水を行い、50℃以下に冷却後、脱水剤、接着性付与剤、縮合触媒(C)を加え、実質的に水分の存在しない状態で混練した。減圧脱泡後に防湿性の容器であるカートリッジに密封し、1成分型硬化性組成物を得た。カートリッジ型容器を23℃で1週間、および/または50℃で4週間の貯蔵後に、23℃、相対湿度50%の恒温恒湿雰囲気下にて各種試験体を作成し、各種評価を行った。
 なお、以降の表中では、重合体として重合体(AB)を使用した実施例や比較例であっても、比較を容易にするために、その構成重合体それぞれを記載した。実際に組成物作製に使用した重合体は、各表の「使用重合体」の行に示した。
(評価)
 作製した配合物の皮張り時間、粘度、深部硬化性、ダンベル物性、引っ張り剪断強度、引き裂き強度、復元性、基材への接着性、耐熱性、および貯蔵安定性を下記の方法にて測定した。その結果を表1~7に示した。
(硬化性、貯蔵安定性)
 23℃、相対湿度50%下で、上記硬化性組成物を厚さ約5mmの型枠にスパチュラを用いて充填し、表面をスパチュラで触り、スパチュラに組成物が付着しなくなるまでの時間を皮張り時間として硬化時間の測定を行った(50℃貯蔵前)。表面を平面状に整えた時間を硬化開始時間とした。また、上記硬化性組成物を50℃で28日間保存した後に23℃で1時間以上置き、前記と同様の方法で皮張り時間を測定した(50℃貯蔵後)。また、貯蔵前の皮張り時間に対する貯蔵後の皮張り時間の変化率を求めた。
(粘度、貯蔵安定性)
 23℃、相対湿度50%下で、上記硬化性組成物を東京計器(株)製のBM型粘度計、ローターNo.7を使用して、2rpm粘度を測定した(50℃貯蔵前)。また、上記硬化性組成物を50℃で28日間保存した後に23℃で1時間以上置き、前記と同様の方法で粘度を測定した(50℃貯蔵後)。また、貯蔵前の粘度に対する貯蔵後の粘度の変化率を求めた。
(深部硬化性)
 23℃、相対湿度50%下で、上記硬化性組成物を直径12mmのポリエチレン製チューブに泡が入らないようにして充填し、ヘラで表面が水平になるようにかきとって、試験体を作製した。23℃、相対湿度50%下で、試験体を3日間または7日間放置した後、表層の硬化部分をめくり取り、未硬化部分をきれいに取り去ってから、ノギスを用いて硬化部分の厚さを測定した。
(ダンベル物性)
 23℃、相対湿度50%下で、硬化性組成物を3mm厚のシート状型枠に充填した。23℃、相対湿度50%下で3日間硬化させた後、50℃乾燥機内で4日間養生し、シート状硬化物を得た。得られた硬化物をJIS K 6251に従って3号ダンベル型または7号ダンベル型に打ち抜き試験片を得た。得られた試験片を用い、23℃、相対湿度50%下で、オートグラフを用いて引張試験(引張速度200mm/分)を行い、50%伸長時応力、破断時応力、破断時伸びを測定した(90℃貯蔵前)。また、同様に準備した7号ダンベルを90℃乾燥機内で28日間、続けて120℃乾燥機内で14日間保存した後に23℃で1時間以上置き、前記と同様の方法で引張試験を行った(90℃+120℃貯蔵後)。
(引き裂き強度)
 23℃、相対湿度50%下で、硬化性組成物を3mm厚のシート状型枠に充填した。23℃、相対湿度50%下で3日間硬化させた後、50℃乾燥機内で4日間養生し、シート状硬化物を得た。得られた硬化物を引き裂き試験用ダンベル型(JIS A型)に打ち抜き、試験片を得た。得られた試験片を用い、23℃、相対湿度50%下で、オートグラフを用いて引き裂き試験(引張速度200mm/分)を行い、破断時応力を測定した。
(復元性)
 上記のシート状硬化物を7号ダンベル型に打ち抜いてダンベル型試験片を得た。ダンベル型試験片のくびれ部分に10mmの標線を引いた。標線間が15mmになるようにダンベル型試験片を伸長させた状態で固定し、70℃乾燥機内で静置した。24時間後に固定を解除し、23℃、相対湿度50%下で、3時間後、24時間後の標線間を計測することで復元率を求めた。
(基材に対する接着性)
 23℃、相対湿度50%下で、硬化性組成物を各種基材に密着させるように塗布した。次いで、塗布された硬化性組成物を、23℃、相対湿度50%下で7日間硬化させた。得られた硬化物の90°ハンドピール試験を行い、接着界面の凝集破壊率に基づいて接着性を評価した。評価基準は以下の通りである。
A:95%以上
B:50%以上95%未満
C:5%以上50%未満でかつ剥離時の抵抗力が強い
D:5%未満でかつ剥離時の抵抗力が強い
E:5%以上50%未満でかつ剥離時の抵抗力が弱い
F:5%未満でかつ剥離時の抵抗力が弱い
Figure JPOXMLDOC01-appb-T000001
(1)N-ブチルベンゼンスルホンアミドの50質量%溶液(日本カーバイド(株))
(4)チタニウムジイソプロポキシドビス(エチルアセトアセテート)(マツモトファインケミカル(株))
(5)フタル酸ジイソデシル(ジェイプラス(株))
(6)脂肪酸処理沈降炭酸カルシウム(白石工業(株))
(7)重質炭酸カルシウム(白石カルシウム(株))
(8)脂肪酸アミドワックス(楠本化成(株))
(9)ビニルトリメトキシシラン(Momentive(株))
(10)3-(N-2-アミノエチルアミノ)プロピルトリメトキシシラン(Momentive(株))
 重合体(A)と重合体(B)とを組み合わせて含む硬化性組成物は各物性のバランスが良く、重合体(A)の代わりに塩素原子が置換した重合体を用いた場合に比べ、貯蔵安定性、接着性に優れることが分かる。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
(1)N-ブチルベンゼンスルホンアミノドの50質量%溶液(日本カーバイド(株))
(2)1,8-ジアザビシクロ[5,4,0]-7-ウンデセン(和光純薬工業(株))
(3)ジオクチル錫ジラウレート(日東化成(株))
(6)脂肪酸処理沈降炭酸カルシウム(白石工業(株))
(7)重質炭酸カルシウム(白石カルシウム(株))
(8)脂肪酸アマイドワックス(楠本化成(株))
(9)ビニルトリメトキシシラン(Momentive(株))
(10)3-(N-2-アミノエチルアミノ)プロピルトリメトキシシラン(Momentive(株))
 重合体(A)と重合体(B)とを組み合わせて含む硬化性組成物は各物性のバランスが良く、重合体(B)の代わりに一般式(2)で表される反応性ケイ素基を有さない重合体を用いた場合に比べ、深部硬化性、伸び、耐熱性、引き裂き強度に優れることが分かる。
Figure JPOXMLDOC01-appb-T000004
(1)N-ブチルベンゼンスルホンアミノドの50質量%溶液(日本カーバイド(株))
(6)脂肪酸処理沈降炭酸カルシウム(白石工業(株))
(7)重質炭酸カルシウム(白石カルシウム(株))
(8)脂肪酸アマイドワックス(楠本化成(株))
(9)ビニルトリメトキシシラン(Momentive(株))
(10)3-(N-2-アミノエチルアミノ)プロピルトリメトキシシラン(Momentive(株))
 重合体(A)と重合体(B)とを組み合わせて含む硬化性組成物は各物性のバランスが良く、重合体(B)を用いなかった場合に比べ、伸び、耐熱性、引き裂き強度、接着性に優れることが分かる。
Figure JPOXMLDOC01-appb-T000005
(1)N-ブチルベンゼンスルホンアミドの50質量%溶液(日本カーバイド(株))
(6)脂肪酸処理沈降炭酸カルシウム(白石工業(株))
(7)重質炭酸カルシウム(白石カルシウム(株))
(8)脂肪酸アミドワックス(楠本化成(株))
(9)ビニルトリメトキシシラン(Momentive(株))
(10)3-(N-2-アミノエチルアミノ)プロピルトリメトキシシラン(Momentive(株))
 重合体(A)と重合体(B)とを組み合わせて含む硬化性組成物は各物性のバランスが良く、重合体(B)の代わりに、構成単量体単位のうちメタクリル酸メチルが占める割合がMMAの含有率が20質量パーセント未満の(メタ)アクリル系重合体を用いた場合に比べ、伸び、耐熱性、引き裂き強度、接着性に優れることが分かる。
Figure JPOXMLDOC01-appb-T000006
(1)N-ブチルベンゼンスルホンアミドの50質量%溶液(日本カーバイド(株))
(6)脂肪酸処理沈降炭酸カルシウム(白石工業(株))
(7)重質炭酸カルシウム(白石カルシウム(株))
(8)脂肪酸アミドワックス(楠本化成(株))
(9)ビニルトリメトキシシラン(Momentive(株))
(10)3-(N-2-アミノエチルアミノ)プロピルトリメトキシシラン(Momentive(株))
 重合体(A)と重合体(B)とを組み合わせて含む硬化性組成物は各物性のバランスが良く、さらに重合体(D)を加えた場合も、重合体(B)の代わりに一般式(2)で表される反応性ケイ素基を有さない重合体を用いた場合に比べ、深部硬化性、伸び、耐熱性、引き裂き強度に優れることが分かる。
Figure JPOXMLDOC01-appb-T000007
(1)N-ブチルベンゼンスルホンアミドの50質量%溶液(日本カーバイド(株))
(6)脂肪酸処理沈降炭酸カルシウム(白石工業(株))
(7)重質炭酸カルシウム(白石カルシウム(株))
(8)脂肪酸アミドワックス(楠本化成(株))
(9)ビニルトリメトキシシラン(Momentive(株))
(10)3-(N-2-アミノエチルアミノ)プロピルトリメトキシシラン(Momentive(株))
 重合体(A)と重合体(B)とを組み合わせて含む硬化性組成物は各物性のバランスが良く、重合体(B)の代わりに一般式(2)で表される反応性ケイ素基を有さない重合体を用いた場合に比べ、深部硬化性、伸び、耐熱性、引き裂き強度に優れることが分かる。
 以上の結果より、重合体(A)と重合体(B)とを組み合わせて含む硬化性組成物は、表面硬化性が速く、かつ、硬化物の伸び、引き裂き強度、耐熱性、貯蔵安定性、深部硬化性、接着性に関して良好なバランスを示すことが分かる。

Claims (22)

  1.  下記一般式(1):
    -SiR 3-a  (1)
    (式中、Rは、1位の炭素原子上に1以上の水素原子を有し、かつ炭素原子数が1以上20以下である脂肪族炭化水素基において、1位の炭素原子上の水素原子の少なくとも1つが、酸素原子、窒素原子、および硫黄原子のいずれかで置換されている基を示す。Xは水酸基または加水分解性基を示す。aは1または2、である。R、およびXのそれぞれについて、それらが複数存在するとき、それらは同じでもよく、異なっていてもよい。)で表される反応性ケイ素基を有する有機重合体(A)、および、
    下記一般式(2):
    -SiR 3-a  (2)
    (式中、Rは炭素原子数1以上20以下の無置換の炭化水素基である。Xおよびaは一般式(1)と同じ。)
    で表される反応性ケイ素基を有する(メタ)アクリル系有機重合体である有機重合体(B)、を含み、
    有機重合体(B)を構成する全構成単量体単位のうち、メタクリル酸メチルに由来する構成単量体単位が占める割合が20質量%以上90質量%以下である、硬化性組成物。
  2.  一般式(1)中のRの1位の炭素原子上の水素原子の1つが、酸素原子で置換されている、請求項1に記載の硬化性組成物。
  3.  一般式(1)中のRがメトキシメチル基である、請求項1または2に記載の硬化性組成物。
  4.  一般式(1)中のXがアルコキシ基である、請求項1~3のいずれか1項に記載の硬化性組成物。
  5.  一般式(1)中のXがメトキシ基である、請求項1~4のいずれか1項に記載の硬化性組成物。
  6.  有機重合体(A)の主鎖骨格がポリエーテル系重合体である、請求項1~5のいずれか1項に記載の硬化性組成物。
  7.  有機重合体(A)の主鎖骨格がポリオキシプロピレンである、請求項1~6のいずれか1項に記載の硬化性組成物。
  8.  一般式(2)中のRがメチル基である、請求項1~7のいずれか1項に記載の硬化性組成物。
  9.  一般式(2)中のXがアルコキシ基である、請求項1~8のいずれか1項に記載の硬化性組成物。
  10.  一般式(2)中のXがメトキシ基である、請求項1~9のいずれか1項に記載の硬化性組成物。
  11.  有機重合体(B)を構成する全構成単量体単位のうち、メタクリル酸メチルに由来する構成単量体単位が占める割合が50質量%以上80質量%以下である、請求項1~10のいずれか1項に記載の硬化性組成物。
  12.  有機重合体(B)を構成する全構成単量体単位種のうち、メタクリル酸ステアリルに由来する構成単量体単位が占める割合が10質量%以上30質量%以下である、請求項1~11のいずれか1項に記載の硬化性組成物。
  13.  有機重合体(B)の数平均分子量が15,000未満である、請求項1~12のいずれか1項に記載の硬化性組成物。
  14.  有機重合体(B)の数平均分子量が、4,000未満である、請求項1~13のいずれか1項に記載の硬化性組成物。
  15.  有機重合体(A)と、有機重合体(B)との配合割合が、質量比(有機重合体(A):有機重合体(B))で90:10~40:60である、請求項1~14のいずれか1項に記載の硬化性組成物。
  16.  有機重合体(A)と、有機重合体(B)との配合割合が、質量比(有機重合体(A):有機重合体(B))で75:25~55:45である、請求項1~14のいずれか1項に記載の硬化性組成物。
  17.  さらに、縮合触媒(C)として、アミン化合物(c1)および/または有機錫化合物(c2)を含有する、請求項1~16のいずれか1項に記載の硬化性組成物。
  18.  アミン化合物(c1)が、下記一般式(3):
    N=CR-NR   (3)
    (式中、Rは、炭素原子数が1以上20以下の置換もしくは非置換の炭化水素基、または-NR で表される基である。R、R、Rは、水素原子、または、炭素原子数が1以上20以下の置換もしくは非置換の炭化水素基であって、2つのRおよび2つのRは同じであってもよく、異なっていてもよい。R、R、2つのR、および、2つのRのうち任意の2つ以上が結合して環状構造を形成していてもよい。)で表されるアミジン構造またはグアニジン構造を有する化合物である、請求項17に記載の硬化性組成物。
  19.  有機錫化合物(c2)が、ジアルキル錫化合物である、請求項17に記載の硬化性組成物。
  20.  請求項1~19のいずれか1項に記載の硬化性組成物を硬化させて得られる硬化物。
  21.  請求項1~19のいずれか1項に記載の硬化性組成物を含有するシーリング材。
  22.  請求項1~19のいずれか1項に記載の硬化性組成物を含有する接着剤。
PCT/JP2018/017091 2017-04-26 2018-04-26 硬化性組成物 WO2018199270A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-087522 2017-04-26
JP2017087522A JP2020109134A (ja) 2017-04-26 2017-04-26 硬化性組成物

Publications (1)

Publication Number Publication Date
WO2018199270A1 true WO2018199270A1 (ja) 2018-11-01

Family

ID=63918586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017091 WO2018199270A1 (ja) 2017-04-26 2018-04-26 硬化性組成物

Country Status (2)

Country Link
JP (1) JP2020109134A (ja)
WO (1) WO2018199270A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020158733A (ja) * 2019-03-28 2020-10-01 株式会社カネカ 硬化性組成物、及び硬化物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048146A1 (ja) * 2022-08-31 2024-03-07 三井金属鉱業株式会社 仮固定用組成物、接合構造体の製造方法及び仮固定用組成物の使用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111870A (ja) * 2008-11-07 2010-05-20 Kaneka Corp 硬化性組成物および複層ガラス用シーリング材
WO2012020560A1 (ja) * 2010-08-10 2012-02-16 株式会社カネカ 硬化性組成物
WO2012036109A1 (ja) * 2010-09-14 2012-03-22 株式会社カネカ 硬化性組成物
JP2012057150A (ja) * 2010-08-10 2012-03-22 Kaneka Corp 硬化性組成物
JP2012214755A (ja) * 2011-03-31 2012-11-08 Kaneka Corp 硬化性組成物
JP2015205984A (ja) * 2014-04-18 2015-11-19 積水フーラー株式会社 硬化性組成物
JP2015209525A (ja) * 2014-04-30 2015-11-24 積水フーラー株式会社 硬化性組成物及びこれを用いてなる目地構造

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111870A (ja) * 2008-11-07 2010-05-20 Kaneka Corp 硬化性組成物および複層ガラス用シーリング材
WO2012020560A1 (ja) * 2010-08-10 2012-02-16 株式会社カネカ 硬化性組成物
JP2012057150A (ja) * 2010-08-10 2012-03-22 Kaneka Corp 硬化性組成物
WO2012036109A1 (ja) * 2010-09-14 2012-03-22 株式会社カネカ 硬化性組成物
JP2012214755A (ja) * 2011-03-31 2012-11-08 Kaneka Corp 硬化性組成物
JP2015205984A (ja) * 2014-04-18 2015-11-19 積水フーラー株式会社 硬化性組成物
JP2015209525A (ja) * 2014-04-30 2015-11-24 積水フーラー株式会社 硬化性組成物及びこれを用いてなる目地構造

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020158733A (ja) * 2019-03-28 2020-10-01 株式会社カネカ 硬化性組成物、及び硬化物
JP7356247B2 (ja) 2019-03-28 2023-10-04 株式会社カネカ 硬化性組成物、及び硬化物

Also Published As

Publication number Publication date
JP2020109134A (ja) 2020-07-16

Similar Documents

Publication Publication Date Title
JP4101632B2 (ja) 硬化性組成物および復元性、クリープ性改善方法
JP6275036B2 (ja) 複数の反応性ケイ素基を有する末端構造を有する重合体、およびその製造方法および利用
JP6096320B2 (ja) 硬化性組成物
JP4814733B2 (ja) 硬化性組成物
JP6261966B2 (ja) 硬化性組成物
JP5485932B2 (ja) 硬化性組成物
JP6282450B2 (ja) 硬化性組成物
JP2014114434A (ja) 硬化性組成物
JP6682227B2 (ja) 硬化性組成物
WO2015105122A1 (ja) 硬化性組成物
JP6253372B2 (ja) 硬化性組成物
WO2015133564A1 (ja) 硬化性組成物
WO2019189491A1 (ja) 反応性ケイ素基含有重合体、および硬化性組成物
JP2012214755A (ja) 硬化性組成物
JP2014234396A (ja) 室温硬化性組成物およびその硬化物
JP2018197287A (ja) 硬化性組成物
JP2011063669A (ja) 硬化性組成物
WO2022181545A1 (ja) 加水分解性シリル基を有する重合体の製造方法、並びに、重合体、硬化性組成物、及び硬化物
WO2019189492A1 (ja) 反応性ケイ素基含有重合体、および硬化性組成物
WO2018199270A1 (ja) 硬化性組成物
JP6283509B2 (ja) 反応性ケイ素基含有重合体および硬化性組成物
US20230027947A1 (en) Mixture of polyoxyalkylene polymers and curable composition
US20210284797A1 (en) Polyoxyalkylene polymer and curable composition
JP2018104488A (ja) 硬化性組成物
JP2018109121A (ja) 硬化性組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP