[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018198401A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2018198401A1
WO2018198401A1 PCT/JP2017/036082 JP2017036082W WO2018198401A1 WO 2018198401 A1 WO2018198401 A1 WO 2018198401A1 JP 2017036082 W JP2017036082 W JP 2017036082W WO 2018198401 A1 WO2018198401 A1 WO 2018198401A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
heat exchanger
indoor heat
air conditioner
unit
Prior art date
Application number
PCT/JP2017/036082
Other languages
English (en)
French (fr)
Inventor
茂 高畑
貴郎 上田
光 梅澤
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=61557999&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018198401(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to ES201890029A priority Critical patent/ES2687781A1/es
Priority to CN201780003760.XA priority patent/CN110352320B/zh
Publication of WO2018198401A1 publication Critical patent/WO2018198401A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • F24F1/0073Indoor units, e.g. fan coil units with means for purifying supplied air characterised by the mounting or arrangement of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0083Indoor units, e.g. fan coil units with dehumidification means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • F24F11/526Indication arrangements, e.g. displays giving audible indications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/90Cleaning of purification apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control

Definitions

  • the present invention relates to an air conditioner.
  • dust In the heat exchanger (indoor heat exchanger) of the indoor unit attached to the inside of the air conditioner, dust, microorganisms, etc. (hereinafter referred to as dust) that have passed through the dust removal filter are accumulated in the indoor heat exchanger. It has the problem of emitting an offensive odor. In addition, there is also a problem that the efficiency of the heat exchanger is lowered and the energy saving performance is deteriorated. A plurality of non-removable pipes pass through the interior of the indoor heat exchanger, and it is difficult to remove the indoor heat exchanger from the indoor unit for cleaning.
  • Patent Document 1 “After the heating operation, the cooling operation is performed as a moisture applying means for adhering water to the fin surface, and the heat exchanger in the heating operation is automatically applied by applying the moisture on the fin surface. "Always keep clean” is described.
  • Patent No. 4931566 Unexamined-Japanese-Patent No. 2016-200348
  • Patent Document 1 Since the technology described in Patent Document 1 starts cleaning the indoor heat exchanger without considering the presence of the user in the room, the cold air that leaks due to the cleaning may cause the user to feel discomfort or the refrigerant cycle. There is a problem that abnormal noise caused by the rapid reverse rotation of the sensor causes a user to feel distrust.
  • an object of this invention is to provide the air conditioner which wash
  • the present invention is provided with cleaning means which cleans an indoor heat exchanger, and control means which controls the cleaning means, and the control means is the indoor heat exchanger by the cleaning means.
  • the cleaning of the indoor heat exchanger by the cleaning means is performed after a predetermined first delay time has elapsed since the heating operation was stopped after the heating operation is finished.
  • contamination adhering to the indoor heat exchanger smoothly can be provided.
  • FIG. 2 is a cross-sectional view taken along the line II in FIG.
  • FIG. 2 is a functional block diagram of the apparatus with which the indoor unit of the air conditioner concerning embodiment of this invention is provided.
  • It is a typical perspective view of the indoor heat exchanger with which the air harmony machine concerning the embodiment of the present invention is provided.
  • It is an image waveform of the differential analysis result of the image which imaged the indoor heat exchanger with which the air conditioner which concerns on embodiment of this invention is equipped.
  • It is a flowchart which shows the process of the main microcomputer with which the air conditioner concerning embodiment of this invention is equipped.
  • FIG. 1 is a front view of an indoor unit 100, an outdoor unit 20, and a remote control Re included in an air conditioner S according to the first embodiment.
  • the indoor unit 100 and the outdoor unit 200 are connected by a refrigerant pipe (not shown), and the refrigerant cycle air-conditions the room in which the indoor unit 100 is installed.
  • the indoor unit 100 and the outdoor unit 200 mutually transmit and receive information via a communication cable (not shown).
  • the outdoor unit 200 includes a compressor, a four-way valve, an outdoor heat exchanger, an outdoor fan, and an expansion valve. Then, in the refrigerant circuit in which the compressor, the four-way valve, the outdoor heat exchanger, the expansion valve, and the indoor heat exchanger 102 (see FIG. 2) are sequentially connected in an annular manner, the refrigerant is circulated in the heat pump cycle. There is.
  • the remote control Re is operated by the user, and transmits an infrared signal to the remote control transmission / reception unit Q of the indoor unit 100.
  • the content of the signal is an instruction such as an operation request, change of the set temperature, setting of the timer value, change of the operation mode, and stop request.
  • the air conditioner S performs air conditioning operation such as a cooling mode, a heating mode, a dehumidifying mode, and the like based on these signals. Further, information such as room temperature information, humidity information, and electricity cost information is transmitted from the remote control transmission / reception unit Q of the indoor unit 100 to the remote control Re, and the user is notified of these information.
  • an imaging means 110A for acquiring image information in the room and a visible light cut filter part 117A are installed.
  • the installation positions of the imaging unit 110A and the visible light cut filter unit 117A can be changed according to the purpose of acquiring image information to be described later, and are not limited to the positions in FIG. The reason for providing the visible light cut filter section 117A in the present embodiment will be described later.
  • FIG. 2 is a cross-sectional view of the indoor unit 100 of FIG. 1 taken along the line II.
  • the housing base 101 accommodates internal structures such as the indoor heat exchanger 102, the blower fan 103, and the filter 108.
  • the filter 108 is installed on the air suction side of the indoor heat exchanger 102.
  • the indoor heat exchanger 102 has a plurality of heat transfer pipes 102a, and the air taken into the indoor unit 100 by the blower fan 103 is subjected to heat exchange with the refrigerant flowing through the heat transfer pipes 102a to heat or cool the air. It is configured to The heat transfer pipe 102a communicates with the refrigerant pipe (not shown), and constitutes a part of a known refrigerant cycle (not shown).
  • the left and right wind direction plate 104 follows the instruction from the main microcomputer 130 (control means: see FIG. 3) described later, and the left and right wind direction plate motor (not shown) with the pivot shaft (not shown) provided at the lower part as a fulcrum. Is rotated by The vertical wind direction plate 105 is rotated by a vertical wind direction plate motor (not shown) around pivot shafts (not shown) provided at both ends according to an instruction from a main microcomputer 130 described later. Thus, the conditioned air can be blown to a predetermined position in the room.
  • An imaging unit 110A and a visible light cut filter unit 117A are provided under the front panel 106 installed to cover the front of the indoor unit 100.
  • the imaging unit 110A is installed so as to face downward by a predetermined angle with respect to the horizontal direction from the installation position of the imaging unit 110A, so that the room in which the indoor unit 100 is installed can be appropriately imaged.
  • the detailed mounting position and angle of the imaging unit 110A may be set according to the specification and application of the air conditioner S, and the configuration is not limited.
  • the configuration of the air conditioner S shown in FIGS. 1 and 2 is merely an example according to the present embodiment, and it goes without saying that the present invention is not limited to the present embodiment and applied.
  • FIG. 3 is a control block diagram of the air conditioner S.
  • the main microcomputer 130 shown in FIG. 3 controls the load drive unit 150 based on the environment information detected by the environment detection unit 160 and the operation instruction received by the remote control transmission / reception unit Q (see FIG. 1). Each device provided in the outdoor unit 200 is controlled.
  • the image pickup means 110A digitally converts the signal of the image pickup element 112A and the image pickup element 112A which converts the room light incident from the optical lens 111A into an electric signal, And a digital signal processing unit 114A for correcting the luminance and color tone of the image information.
  • the imaging means 110B is also configured similarly to the imaging means 110A.
  • the image detection unit 122 performs various types of image processing on the indoor image information acquired by the imaging unit 110A.
  • the image detection unit 122 can be configured to include an image detection unit that performs various image detection, such as a dust detection unit 122a that detects the presence or absence of dust.
  • each image detection unit may be configured to perform image detection from the same image information acquired by the imaging unit 110A, or the digital signal processing unit of the imaging unit 110A may use an imaging parameter suitable for each image detection.
  • the image detection may be performed using a dedicated captured image that is transmitted to 114A and captured according to the imaging parameter.
  • the operation processing unit 132 is notified of the detection result of the user's position information detected by the image detection unit 122 and the operation command based on the detection result.
  • the arithmetic processing unit 132 generally controls the control block of the air conditioner, controls the drive control unit 133 according to the operation setting of the air conditioning, and the operation command based on the detection result, and performs the air conditioning operation.
  • the imaging unit 110 ⁇ / b> A performs an imaging operation according to the operation command of the imaging request signal from the arithmetic processing unit 132.
  • the drive control unit 133 notifies the load drive unit 150 of the drive signal to issue a drive instruction.
  • the load drive unit 150 is installed on a refrigerant cycle (not shown), an indoor fan motor (not shown) provided in the indoor unit 100, a compressor motor (not shown) provided in the outdoor unit 200, and the up and down wind direction plate 105. Individual driving of a vertical wind direction plate motor (not shown) and a horizontal wind direction plate motor (not shown) installed on the left and right wind direction plates 104 is performed.
  • the load drive unit 150 may further be configured to drive the imaging unit 110A, the near-infrared light projector 115, or the filter drive unit 116 that rotates the visible light cut filter unit 117A.
  • the storage units 121 and 131 are configured to include a read only memory (ROM), a random access memory (RAM), and the like. Then, a program stored in the ROM is read by a central processing unit (CPU) in the arithmetic processing unit 132 of the main microcomputer 130, expanded in the RAM, and executed.
  • ROM read only memory
  • RAM random access memory
  • CPU central processing unit
  • various sensors such as a temperature sensor based on a thermopile, an activity detection sensor using a Fresnel lens and an infrared sensor, etc. may be provided in the air conditioner S main body.
  • the main microcomputer 130 operates the air conditioner S according to the image information input from the imaging unit 110A, the command signal input from the remote control Re, the sensor output input from various sensors, etc. Detailed control can be achieved by comprehensive control.
  • the detection result obtained by the image processing of the image detection unit 122 is only information such as the user's position and activity amount, distance information and the like, and does not include image information that can be visually grasped by a person. good. Thereby, reduction of the amount of data held in the storage means 121 and 131 can be realized. Further, since the image information can not be extracted outside the main microcomputer 130, privacy protection of the user in the air-conditioned room can be realized.
  • the indoor unit 100 has an automatic cleaning operation function as a cleaning means of the indoor heat exchanger 102.
  • the control means of the automatic cleaning operation (hereinafter referred to as the automatic cleaning operation) of the indoor heat exchanger 102 will be described with reference to FIGS. 2 and 3.
  • the indoor heat exchanger 102 In the automatic cleaning operation, the indoor heat exchanger 102 is cooled, moisture in the surrounding air is attached to the indoor heat exchanger 102, and the indoor heat exchanger 102 is cleaned with the moisture.
  • the main microcomputer 130 can set the evaporation temperature of the refrigerant in the automatic cleaning operation lower than the evaporation temperature of the refrigerant in the dehumidifying operation. If a higher cleaning capacity is required, the evaporation temperature of the refrigerant can also be set below freezing.
  • the amount of dirt adhering to the indoor heat exchanger 102 varies depending on the operating time of the air conditioner S, the operating mode used, the amount of dust in the indoor air, and the like. Therefore, the main microcomputer 130 calculates the operation integrated time from the previous cleaning stored in the storage unit 131, the number of operations from the previous cleaning stored in the storage unit 131, or the progress from the installation of the air conditioner S. When the time reaches a predetermined value, the automatic cleaning operation is performed. This makes it possible to perform an automatic cleaning operation when necessary, and can suppress the accumulation of dust and the sticking of dirt. Further, energy saving can be achieved by reducing the number of times of execution as compared with the case of performing the automatic cleaning operation every time the air conditioning operation is stopped.
  • the main microcomputer 130 stores the time information managed by the time management unit 134 in the storage means 131, and reads it from the storage means 131 periodically or when an event occurs, and the time information and current time at the previous automatic cleaning operation
  • the accumulated operation time of each operation mode is acquired by taking the difference of the time information of (4).
  • the same process as described above is performed on the operation information managed by the operation information management unit 135.
  • the same process as described above is performed on the time information at the time of installation, which is managed by the time management unit 134, also for acquiring the elapsed time from the installation of the air conditioner.
  • the time management unit 134 may grasp calendar information including a date as well as time information.
  • a time management server such as NTP
  • the indoor unit 100 sets the acquired current time information in the time management unit 134 in the main microcomputer 130.
  • the time management unit 134 continues to count up the set time as time passes. Thus, the time management unit 134 manages the correct current time.
  • the user can use the time information setting means to update the current time managed by the time management unit 134 at an arbitrary timing. Further, by setting the indoor unit 100 to periodically execute the above-described time information automatic acquisition function, it is possible to periodically and automatically update the current time managed by the time management unit 134. is there. This prevents the occurrence of a gap between the current time managed by the time management unit 134 and the actual current time.
  • the various driving information is managed by the driving information management unit 135.
  • the operation information management unit 135 performs operation such as switching of the operation mode by the input from the remote control Re (FIG. 1), switching of the operation mode by the input via the communication network 190, or switching of the operation mode by the built-in timer of the indoor unit 100.
  • Manage. By recording the operation information and the current time managed by the time management unit 134 in the storage unit 131, the integrated operation time of each operation mode, the number of operations, and the elapsed time from the installation of the air conditioner S It is possible to acquire.
  • a predetermined value is stored in advance for each of the operation integrated time from the previous cleaning stored in the storage unit 131, the number of operations from the previous cleaning stored in the storage unit 131, and the elapsed time from the installation of the air conditioner S. It is stored in 131.
  • the operating condition of the automatic cleaning operation and that the operation integrated time stored in the storage means 131, the number of operation times stored in the storage means 131, or the elapsed time reach each predetermined value stored in the storage means 131 Do.
  • the combination of the operating conditions of the automatic cleaning operation there is no limitation on the combination of the operating conditions of the automatic cleaning operation, as long as the automatic cleaning operation is performed at regular time intervals or at regular intervals. One or more of the above conditions may be satisfied.
  • the value of the operation integration time and the number of operations may be reset to 0 after the execution of the automatic cleaning operation. After the automatic cleaning operation is performed, the number of automatic cleaning operations is counted up, and the product of the number of automatic cleaning operations, the reference integrated operation time, the number of operations, and the elapsed time from the installation of the air conditioner S is calculated.
  • the predetermined value of the operation integration time, the number of operations, and the elapsed time may be arbitrarily set by an input device such as a remote control Re or an information terminal connected to the communication network 190.
  • the automatic cleaning operation is performed after a predetermined first delay time has elapsed from the time of stopping the heating operation.
  • the automatic cleaning operation is performed immediately after the operation is stopped or after the second delay time shorter than the first delay time has elapsed. Run.
  • the stop of operation here means that each device such as the compressor of the air conditioner S and the blower fan 103 has stopped.
  • the heating operation has been completed, by setting the predetermined first delay time, it becomes possible to cool the indoor heat exchanger 102 and then perform the automatic cleaning operation, thereby saving energy in the automatic cleaning operation. It is possible. Also, during this time, the user can complete the room exit, and it is possible to prevent the cold air of the automatic cleaning operation from making the user uncomfortable. In addition, it is possible to suppress the generation of abnormal noise and the like by rapidly switching the refrigerant cycle to reverse rotation.
  • the setting of the predetermined first delay time at the time of factory shipment may be, for example, about 3 minutes. This is sufficient time for the user to complete the exit, cool the indoor heat exchanger 102, and silently switch the four-way valve to reverse the refrigerant cycle.
  • the indoor heat exchanger 102 can be cooled quickly. Moreover, it becomes possible to equalize and acquire room temperature by a ventilation driving
  • a hygrometer (not shown) is installed in the vicinity of the indoor heat exchanger 102, the humidity in the vicinity of the indoor heat exchanger 102 is measured within the delay time, and the automatic cleaning operation to be performed thereafter is performed according to the measurement result. You may optimize.
  • the cooling time of the automatic cleaning operation can be shortened. If the cooling time is set to 20 minutes, it is possible to collect sufficient water for automatic washing operation even in dry winter, but when there is a lot of water around the indoor heat exchanger 102, the cooling time It may be about 15 minutes.
  • the indoor heat exchanger 102 (FIG. 2) shown in the indoor unit 100 (FIG. 2) is provided with a filter 108 (FIG. 2) above it to prevent the indoor heat exchanger 102 from becoming dirty by removing large dust. There is. The accumulation of dust on the filter 108 causes clogging, the air passing through the indoor heat exchanger 102 decreases, and the air conditioning capacity of the indoor unit 100 is reduced.
  • the indoor unit 100 may be provided with filter cleaning means for automatically cleaning the filter 108 using a brush (not shown) after completion of the operation such as air conditioning and heating.
  • the indoor unit 100 may include an information terminal connected to the communication network 190, or an input unit for inputting the delay time from the remote control Re.
  • the indoor unit 100 is provided with notification means such as a display lamp (not shown) for notifying execution of the automatic cleaning operation within the delay time and an alarm sound generation unit (not shown) until the automatic cleaning operation is started.
  • the notification content of the notification means may be changed in accordance with the remaining time of the message.
  • the change of the notification content corresponds to, for example, changing the blinking cycle of the display lamp or making an announcement by using a voice guide.
  • the air conditioning operation is stopped by remote input from outside, there is a high possibility that the room is unmanned. Therefore, if the air conditioning operation has been stopped by remote input from an information terminal connected to the communication network 190 when cooling, dehumidifying, or blowing operation has ended after satisfying the operation conditions of the automatic cleaning operation.
  • the automatic cleaning operation may be performed immediately after the operation stop.
  • the automatic cleaning operation may be performed after the delay time has elapsed.
  • the human detection unit 122b may analyze the image captured by the imaging unit 110A to detect whether a person is shown. Further, infrared rays generated from a human body may be detected by a human sensor (not shown). Thus, the start of the automatic cleaning operation can be controlled based on the detection result of the person in the room.
  • the operating condition of the automatic cleaning operation is not satisfied for a long time and dust is accumulated in the indoor heat exchanger 102, it may be considered that the user desires to execute the automatic cleaning operation immediately after the air conditioning operation is stopped. Therefore, when an instruction to execute the automatic cleaning operation is input from the remote control Re or an information terminal connected to the communication network 190, the automatic cleaning operation may be performed immediately after the input.
  • the air conditioner S includes a capacity detection unit that detects the capacity or the size of the room, and according to the detection result, the operation integration time from the previous cleaning to execute the automatic cleaning operation, the operation from the previous cleaning It is desirable to be configured to be able to predetermine the threshold of the number.
  • a reference value for example, 1 degree
  • the room temperature fluctuation time is measured in advance by experiment for each capacity of the room, and correlation data (FIG. 6A) between the room temperature fluctuation time and the capacity or size of the room is stored in the storage means 131.
  • correlation data (FIG. 6A) between the room temperature fluctuation time and the capacity or size of the room is stored in the storage means 131.
  • each model of the air conditioner S performs the above measurement separately for the cooling and heating capacity and acquires correlation data in accordance with the cooling and heating capacity. desirable.
  • the correlation between the room temperature fluctuation time and the capacity of the room is influenced by the room temperature at the start of the measurement, the illuminance in the room, and the like. In order to remove this influence, the adjustment value ⁇ (FIG.
  • the capacity detection means may obtain room temperature and illuminance in the room using the room temperature detection unit 161 and the illuminance detection unit 162, and detect the capacity of the room in comparison with the correlation data, the adjustment value ⁇ , and the adjustment value ⁇ . It is possible.
  • the capacity or the size of the room may be detected based on the image information input from the imaging unit 110A.
  • the image pickup means 13 recognizes information such as the number of people who are in or out, the number of people in the room, the location, the amount of activity, and the space and the area where sunlight is inserted.” Have been described.
  • the area such as a wall other than the floor may be estimated, and the capacity or the size of the room may be calculated from these area ratios. . In this manner, the automatic cleaning operation can be optimized based on the capacity or the size of the room to be conditioned.
  • the capacity detection means is to obtain the approximate size of the room. Therefore, the capacity detection means does not have to be highly accurate. However, in order to cope with the case where the difference between the detection result and the actual capacity of the room becomes large, it is desirable to have the following function. That is, in addition to automatically detecting the capacity of the room, the user inputs the capacity or size of the room to be air-conditioned from the information terminal connected to the communication network 190 or the remote control Re, or the initial value
  • the indoor unit 100 may be configured to have an input unit that can be reset.
  • the main microcomputer 130 executes an operation integration time from the previous cleaning and an operation from the previous cleaning to execute the cleaning of the indoor heat exchanger by the cleaning unit based on the volume or size of the room input by the input unit. Determine the threshold number of times.
  • the indoor unit 100 is provided with a dirt detection means for detecting dirt on the indoor heat exchanger 102, and storage is performed when the dirt detected by the dirt detection means exceeds a predetermined amount.
  • the automatic cleaning operation is performed regardless of the value of the integrated operation time from the previous cleaning stored in the means 131, the number of operations from the previous cleaning stored in the storage unit 131, or the elapsed time from the installation of the air conditioner S. It is desirable to do.
  • automatic cleaning is performed before dust is accumulated and dirt is accumulated in the indoor heat exchanger 102, and the indoor heat exchanger 102 is cleaned with less power without requiring a large amount of water to clean the indoor heat exchanger 102. It is possible to keep
  • the dirt detection means may include an imaging means 110B using visible light or near infrared light as a light source, and an optical filter for blocking or attenuating light of a specific wavelength.
  • the image information input from the imaging unit 110B is image-analyzed by the dust detection unit 122a of the image detection unit 122 of the camera microcomputer, and the dust portion in the image information is detected as dirt.
  • metal plates are arranged at equal intervals at a very fine pitch as shown in FIG. 4 (a).
  • the metal plate portion is white because light is reflected, and the air layer between the metal plates is imaged black because light is not reflected, and the metal plates are arranged at equal intervals. It is possible to acquire an image that can be confirmed.
  • differential analysis is performed on the image by the analysis line 301, an image waveform shown in FIG. 5A is obtained.
  • FIG. 4 (b) when the indoor heat exchanger 102 to which the dust 401A is attached is imaged by the imaging means 110B, the unclear metal plates of the white-black boundary are arranged at equal intervals.
  • An image that can not be confirmed is acquired.
  • differential analysis is performed on the image in the analysis line 302
  • an image waveform shown in FIG. 5B is obtained, and it is possible to confirm an image waveform 401B with no peak due to the adhesion of dust.
  • the adhesion of dust can be detected from here.
  • the infrared light emitting unit (not shown) and the visible light cut filter unit 117B (FIG. 3) make the image data of only a specific wavelength, thereby removing the influence of disturbance from the image data, and the dust detecting unit 122a (FIG. 3) It is possible to improve the recognition accuracy of
  • the amount of dirt adhering to the indoor heat exchanger 102 varies depending on the operation mode such as cooling, heating, dehumidifying operation, and the like. Therefore, the value of the operation integration time from the previous cleaning, the number of operations from the previous cleaning, or the elapsed time since the installation of the air conditioner S is set for each operation mode such as heating operation, cooling operation, dehumidification operation, etc. It is desirable to
  • the operation integrated time from the previous cleaning stored in the storage unit 131, the number of operations from the previous cleaning stored in the storage unit 131, the value of the elapsed time from the installation of the air conditioner S do not satisfy the set values, and the filter Even when the cleaning is not performed, the user may wish to execute the automatic cleaning operation.
  • the processing executed by the main microcomputer 130 will be described below as an example.
  • FIG. 7 is a flowchart showing the processing of the main microcomputer 130 when the cleaning processing is started.
  • step S101 the main microcomputer 130 determines whether the start condition of the cleaning process is satisfied.
  • the "cleaning process start condition" is, for example, a condition that a value obtained by integrating the air conditioning operation time from the end of the previous cleaning process has reached a predetermined value.
  • step S101 Yes
  • step S102 the main microcomputer 130 ends the series of processes (END).
  • step S102 the main microcomputer 130 causes the notification sound generation unit (not shown) to generate a predetermined notification sound, and turns on a display lamp (not shown). That is, before starting the cleaning process such as freezing of the indoor heat exchanger 102, the main microcomputer 130 notifies the notification sound generation unit and the display lamp that the cleaning process is to be performed. Thereby, the user can be notified in advance that the cleaning process is to be started.
  • step S103 the main microcomputer 130 sets a delay time until the cleaning process of the indoor heat exchanger 102 is started.
  • This delay time (for example, 3 minutes) is a time from when the user is notified in advance that the cleaning process is to be started in step S102 to when the cleaning operation is actually started, and is set in advance.
  • step S104 the main microcomputer 130 determines in advance whether or not a predetermined delay time has elapsed after notifying the user in advance that cleaning processing is to be started (S102). If the predetermined delay time has elapsed (S104: Yes), the processing of the main microcomputer 130 proceeds to step S105. The lighting of the display lamp may be continued (S102) until the delay time elapses. In step S105, the main microcomputer 130 executes the cleaning process of the indoor heat exchanger 102.
  • step S104 the processing of the main microcomputer 130 proceeds to step S106.
  • step S106 the main microcomputer 130 determines whether or not there is a cancel instruction of the cleaning process by the operation of the remote control R or the information terminal (not shown). When there is no cancellation command for the cleaning process (S106: No), the process of the main microcomputer 130 returns to step S104. On the other hand, when there is a cancel instruction of the cleaning process (S104: Yes), the process of the main microcomputer 130 proceeds to step S107.
  • step S107 the main microcomputer 130 causes the notification sound generation unit to generate a predetermined notification sound, and turns on the display lamp. By this, it is possible to notify the user that the cleaning operation is actually canceled according to the operation of the remote control R or the like.
  • the notification sound and the like (S107) described above are different from the notification sound and the like (S102) for notifying the cleaning process in advance. This is because the user can be informed in an easy-to-understand manner that the cleaning process is actually canceled.
  • step S108 the main microcomputer 130 cancels the cleaning process of the indoor heat exchanger 102. That is, the main microcomputer 130 cancels the cleaning process including the freezing of the indoor heat exchanger 102 based on the signal from the remote control R or the information terminal. More specifically, when a predetermined cancel instruction is received from the remote control R or the information terminal before the predetermined delay time elapses from the start of the notification (S102) before the cleaning process (S104: No, S106: Yes And the main microcomputer 130 do not perform cleaning processing including freezing of the indoor heat exchanger 102 (S108). Thus, the main microcomputer 130 can appropriately cancel the cleaning process of the indoor heat exchanger 102 in accordance with the user's intention. Then, after performing the process of step S108, the main microcomputer 130 ends the series of processes (END).
  • END series of processes
  • S air conditioner 100 indoor unit 101 housing base 102 indoor heat exchanger 103 air blower fan 104 left and right air direction plate 105 upper and lower air direction plate 106 front panel 107 air inlet 108 filter 109a outlet air path 109b air outlet 110A, 110B imaging means 111A Optical lens 112A Image sensor 113A A / D converter 114A Digital signal processing unit 116 Filter drive unit 117A, 117B Visible light cut filter unit 120 Camera microcomputer 121, 131 Storage means 122 Image detection unit 122a Dust detection unit (Soil detection means) 122b Human Detection Unit (Human Detection Means) 130 Main microcomputer (control means) 132 operation processing unit 133 drive control unit 134 time management unit 135 operation information management unit 150 load drive unit 160 environment detection means 161 room temperature detection unit 162 illumination detection unit 190 communication network 200 outdoor unit Q remote control (input means) 301, 302 Analysis line 401 A Dust 401 B Image waveform without peak due to dust adhesion

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Air Conditioning Control Device (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

本発明に係る空気調和機(S)は、室内熱交換器(102)を洗浄する洗浄手段と、前記洗浄手段を制御する制御手段(130)と、を備え、前記制御手段は、前記洗浄手段によって前記室内熱交換器を洗浄する場合において、暖房運転終了後であったときは、当該暖房運転の停止時から所定の第1の遅延時間が経過した後に、前記洗浄手段による前記室内熱交換器の洗浄を実行する。

Description

空気調和機
 本発明は空気調和機に関する。
 空気調和機の内部に取り付けられている室内機の熱交換器(室内熱交換器)は、埃除去用フィルタを通過した塵、微生物等(以下、埃という。)が室内熱交換器に堆積し悪臭を発するという問題を有している。また、熱交換器の効率も低下して省エネ性が悪くなるという問題も有している。室内熱交換器の内部には取り外し不能な配管が複数通っており、室内熱交換器を室内機から取り外して洗浄することは困難である。
 室内熱交換器を室内機から取り外すことなく洗浄する技術として、例えば、以下に示すものが知られている。すなわち、特許文献1には、「暖房運転後に、フィン表面に水を付着させる水分付与手段として冷房運転を行い、フィン表面の水分を付与することで、暖房運転時の熱交換器を自動的に常に清潔な状態に維持する」ことが記載されている。
特許第4931566号 特開2016-200348号
 しかしながら、特許文献1に記載の技術は、室内の使用者の存在を考慮せずに室内熱交換器の洗浄を開始するため、洗浄により漏れ出す冷気が使用者に不快感を与えたり、冷媒サイクルの急激な逆回転による異音が使用者に不信感を与えたりするという課題を有する。
 そこで、本発明は、室内熱交換器に付着した汚れを円滑に洗浄する空気調和機を提供することを目的とする。
 前記課題を解決するために、本発明は、室内熱交換器を洗浄する洗浄手段と、前記洗浄手段を制御する制御手段と、を備え、前記制御手段は、前記洗浄手段によって前記室内熱交換器を洗浄する場合において、暖房運転終了後、当該暖房運転の停止時から所定の第1の遅延時間が経過した後に、前記洗浄手段による前記室内熱交換器の洗浄を実行することを特徴とする。
 本発明によれば、室内熱交換器に付着した汚れを円滑に洗浄する空気調和機を提供できる。
本発明の実施形態に係る空気調和機が備える室内機、室外機、及びリモコンの正面図である。 図1に示すI-I線矢視断面図である。 本発明の実施形態に係る空気調和機の室内機が備える機器の機能ブロック図である。 本発明の実施形態に係る空気調和機が備える室内熱交換器の模式的な斜視図である。 本発明の実施形態に係る空気調和機が備える室内熱交換器を撮像した画像の微分解析結果の画像波形である。 室温の変動が基準値に達するまでに要する時間と部屋の容量の相関、及びその補正値を示したグラフである。 本発明の実施形態に係る空気調和機が備えるメインマイコンの処理を示すフローチャートである。
 図1は、第1実施形態に係る空気調和機Sが備える室内機100、室外機20、及びリモコンReの正面図である。
 室内機100と室外機200とは冷媒配管(図示せず)で接続され、冷媒サイクルによって、室内機100が設置されている室内を空調する。また、室内機100と室外機200とは、通信ケーブル(図示せず)を介して互いに情報を送受信する。
 室外機200は、図示はしないが、圧縮機と、四方弁と、室外熱交換器と、室外ファンと、膨張弁と、を備えている。そして、圧縮機、四方弁、室外熱交換器、膨張弁、及び室内熱交換器102(図2参照)が環状に順次接続されてなる冷媒回路において、ヒートポンプサイクルで冷媒を循環させるようになっている。
 リモコンReは使用者によって操作され、室内機100のリモコン送受信部Qに対して赤外線信号を送信する。当該信号の内容は、運転要求、設定温度の変更、タイマー値の設定、運転モードの変更、停止要求等の指令である。空気調和機Sは、これらの信号に基づいて、冷房モード、暖房モード、除湿モード等の空調運転を行う。また、室内機100のリモコン送受信部Qから、室温情報、湿度情報、電気代情報等の情報をリモコンReへ送信し、使用者にこれらの情報を報知する。
 室内機100の前面の下部には、室内の画像情報を取得するための撮像手段110Aと可視光カットフィルタ部117Aが設置されている。この撮像手段110Aと可視光カットフィルタ部117Aの設置位置は、後述する画像情報の取得目的に応じて、変更可能であり、図1の位置に限定されない。本実施形態で、可視光カットフィルタ部117Aを設ける理由については、後述する。
 図2は、図1の室内機100のI-I線矢視断面図である。
 筐体ベース101は、室内熱交換器102、送風ファン103、フィルタ108等の内部構造体を収容している。なお、フィルタ108は室内熱交換器102の空気吸込側に設置されている。
 室内熱交換器102は複数本の伝熱管102aを有し、送風ファン103により室内機100内に取り込まれた空気を、伝熱管102aを通流する冷媒と熱交換させ、前記空気を加熱または冷却するように構成されている。なお、伝熱管102aは、前記冷媒配管(図示せず)に連通し、周知の冷媒サイクル(図示せず)の一部を構成している。
 図2に示す送風ファン103が回転することによって、空気吸込み口107及びフィルタ108を介して室内空気を取り込み、室内熱交換器102で熱交換された空気が吹出し風路109aに導かれる。さらに、吹出し風路109aに導かれた空気は、左右風向板104及び上下風向板105によって風向きが調整され、空気吹出し口109bから送風されて室内を空調する。
 左右風向板104は、後述するメインマイコン130(制御手段:図3参照)からの指示に従い、下部に設けた回動軸(図示せず)を支点にして左右風向板用モータ(図示せず)により回動される。
 上下風向板105は、後述するメインマイコン130からの指示に従い、両端部に設けた回動軸(図示せず)を支点にして上下風向板用モータ(図示せず)により回動される。 これにより、室内の所定位置に、空調風を送風することが可能である。
 室内機100の前面を覆うように設置されている前面パネル106の下部には、撮像手段110Aと可視光カットフィルタ部117Aが設けられている。撮像手段110Aは、撮像手段110Aの設置位置から水平方向に対して所定角度だけ下方を向くように設置され、室内機100が設置されている室内を適切に撮像できるようになっている。ただし、詳細な撮像手段110Aの搭載位置や角度については、空気調和機Sの仕様や用途に合わせて設定すればよく、構成を限定するものではない。
 なお、図1、図2に示す空気調和機Sの構成は、あくまで本実施形態に係る一例であり、本発明が本実施形態に限定して適用されるものでないことは言うまでもない。
 図3は、空気調和機Sの制御ブロック図である。
 図3に示すメインマイコン130は、環境検知手段160の検知した環境情報や、リモコン送受信部Q(図1参照)の受信した操作指示に基づいて、負荷駆動部150を制御し、室内機100や室外機200の備える各機器を制御する。
 図3に示すように、撮像手段110Aは、撮像範囲やピントを調整する光学レンズ111Aと、光学レンズ111Aから入射した室内光を電気信号に変換する撮像素子112Aと、撮像素子112Aの信号をデジタル化して画像情報に変換するA/D変換器113Aと、画像情報の輝度や色調を補正するデジタル信号処理部114Aと、を備えている。
 撮像手段110Bも、撮像手段110Aと同様に構成されている。
 撮像手段110Aで取得した室内の画像情報は、画像検知部122により、各種の画像処理が行われる。画像検知部122は、埃の有無を検知する埃検知部122a等、様々な画像検知を行う画像検知部を備える構成をとることが可能である。
 このとき、各画像検知部は、撮像手段110Aによって取得された同一の画像情報から画像検知を行うよう構成しても良いし、各画像検知に適した撮像パラメータを撮像手段110Aのデジタル信号処理部114Aへ送信し、当該撮像パラメータに従って撮像された専用の撮像画像を用いて画像検知を行うよう構成しても良い。
 画像検知部122で検知された使用者の位置情報等の検知結果と、検知結果に基づく動作指令は、演算処理部132に報知される。
 演算処理部132は、空調機の制御ブロックを統括制御し、空調の運転設定と、前記検知結果に基づく動作指令に従って駆動制御部133を制御し、空調運転を行う。撮像手段110Aは、演算処理部132からの撮像要求信号の動作指令により、撮像動作を行う。
 駆動制御部133は、負荷駆動部150に駆動信号を報知して、駆動指示を行う。
 負荷駆動部150は、冷媒サイクル(図示せず)、室内機100が備える室内ファンモータ(図示せず)、室外機200が備える圧縮機モータ(図示せず)、上下風向板105に設置される上下風向板用モータ(図示せず)、左右風向板104に設置される左右風向板用モータ(図示せず)の個々の駆動を行う。負荷駆動部150は、さらに、撮像手段110A、近赤外線投光器115、または、可視光カットフィルタ部117Aの回動を行うフィルタ駆動部116の駆動を行うように構成しても良い。
 記憶手段121,131は、ROM(Read Only Memory)、RAM(Random Access Memory)等を含んで構成される。そして、ROMに記憶されたプログラムがメインマイコン130の演算処理部132内のCPU(Central Processing Unit)によって読み出されてRAMに展開され、実行される。
 環境検知手段160として、サーモパイルによる温度センサ、フレネルレンズと赤外線センサを用いた活動量検知センサ等、各種センサを空気調和機S本体に備える構成としても良い。
 上記の構成により、メインマイコン130は、撮像手段110Aから入力される画像情報、リモコンReから入力される指令信号、及び各種センサから入力されるセンサ出力等に応じて、空気調和機Sの動作を統括制御することにより、きめ細やかな運転制御を可能としている。
 画像検知部122の画像処理によって得られる検知結果は、使用者の位置や活動量等の情報、距離情報等の情報のみとし、人が目視で捉えることが可能な画像情報は含まない構成としても良い。これにより、記憶手段121,131に保持されるデータ量の軽減が実現できる。また、画像情報はメインマイコン130外に取り出せない構成となっているため、空調室内の使用者のプライバシー保護が実現できる。
 室内機100は、室内熱交換器102の洗浄手段として自動洗浄運転機能を有する。図2及び図3により、室内熱交換器102の自動洗浄運転(以下、自動洗浄運転という。)の制御手段について説明する。
 自動洗浄運転とは、室内熱交換器102を冷却し、周囲の空気中の水分を室内熱交換器102に付着させ、その水分で室内熱交換器102を洗浄するものである。
 室内熱交換器102に水分を付着させるために、メインマイコン130は、自動洗浄運転における冷媒の蒸発温度を、除湿運転における前記冷媒の蒸発温度よりも低く設定することができる。より高い洗浄能力を必要とする場合は、冷媒の蒸発温度を氷点下に設定することもできる。
 室内熱交換器102に付着する汚れの量は、空気調和機Sの使用時間、使用された運転モード、室内の空気中の埃の量等によって変動する。
 そこで、メインマイコン130は、記憶手段131に記憶されている前回洗浄からの運転積算時間、記憶手段131に記憶されている前回洗浄からの運転回数、または、空気調和機Sの据付時からの経過時間が所定の値に達した場合に、自動洗浄運転を実行する。これにより、必要時に自動洗浄運転を行うことが可能になり、埃の堆積と汚れのこびりつきを抑制できる。また、空調運転停止の度に自動洗浄運転を実行する場合に比べ実行回数を減少させ、省エネ化を図ることが可能である。
 各運転モードの運転積算時間の取得は以下のように行う。すなわち、メインマイコン130は、時刻管理部134で管理されている時刻情報を記憶手段131に保存し、これを定期的またはイベント発生時に記憶手段131から読み出し、前回自動洗浄運転時の時刻情報と現在の時刻情報の差分をとることによって、各運転モードの積算運転時間を取得する。
 運転回数の取得についても、運転情報管理部135で管理されている運転情報に対して、上記と同様の処理を行う。
 空気調和機据付時からの経過時間の取得についても、時刻管理部134で管理されている据付時の時刻情報に対して、上記と同様の処理を行う。
 時刻管理部134は、時刻情報以外にも日付を含むカレンダー情報を把握しても良い。
 時刻情報設定手段として以下が存在する。すなわち、使用者はリモコンRe(図1)に時刻情報を入力し、入力した時刻情報をリモコン信号としてリモコンRe(図1)から室内機100のリモコン受信部に送信し、メインマイコン130に時刻情報を設定することが可能である。また、使用者は、情報端末から通信ネットワーク190を介して室内機100に時刻情報を送信し、メインマイコン130に時刻情報を設定することもできる。
 また、通信ネットワーク190上に存在する時刻管理サーバ(NTP等)の時刻情報を自動的に取得する、時刻情報自動取得機能を備えるように室内機100を構成しても良い。
 室内機100は取得した現在時刻の情報をメインマイコン130内部の時刻管理部134に設定する。時刻管理部134は、時間経過に合わせて、設定された時刻をカウントアップし続ける。このようにして時刻管理部134は正しい現在時刻を管理する。
 使用者は前記時刻情報設定手段を用いて、任意のタイミングで時刻管理部134の管理する現在時刻を更新することが可能である。また、室内機100に対して、定期的に前記の時刻情報自動取得機能を実施するように設定することで、定期的に自動で時刻管理部134の管理する現在時刻を更新することが可能である。これにより、時刻管理部134の管理する現在時刻と現実の現在時刻とのズレが生じることを防ぐ。
 各種運転情報は運転情報管理部135によって管理される。運転情報管理部135は、リモコンRe(図1)からの入力による運転モードの切替え、通信ネットワーク190を介した入力による運転モードの切替え、または室内機100の内蔵タイマーによる運転モードの切替え等の運転管理を行う。
 当該運転情報と、時刻管理部134の管理する現在時刻とを、記憶手段131に記録することで、各運転モードの積算運転時間、運転回数、及び空気調和機Sの据付時からの経過時間を取得することが可能である。
 記憶手段131の記憶する前回洗浄からの運転積算時間、記憶手段131の記憶する前回洗浄からの運転回数、及び空気調和機Sの据付時からの経過時間のそれぞれについて、予め所定の値を記憶手段131に記憶させておく。記憶手段131の記憶する前記運転積算時間、記憶手段131の記憶する前記運転回数、または前記経過時間が、記憶手段131に記憶された各所定の値に達することを、自動洗浄運転の動作条件とする。
 自動洗浄運転が一定の時間間隔で、または一定の運転回数ごとに実行されれば、前記自動洗浄運転の動作条件の組合せについては問わない。前記条件の内、一つ以上を満たせば良いものとする。
 また、前記運転積算時間、前記運転回数、前記経過時間の演算方法についても問わない。例えば、以下のような演算方法が考えられる。自動洗浄運転実施後に前記運転積算時間、前記運転回数の値を0にリセットしても良い。自動洗浄運転実施後に自動洗浄運転の回数をカウントアップし、自動洗浄運転の回数、基準となる積算運転時間、運転回数、及び空気調和機Sの据付時からの経過時間との積をとり、この積が所定の値以上になった場合に実行するようにしても良い。
 前記運転積算時間、前記運転回数、前記経過時間の所定の値については、リモコンReもしくは通信ネットワーク190に接続された情報端末等の入力装置によって任意に設定できるようにしても良い。
 自動洗浄運転の動作条件を満たした場合において、暖房運転終了後であったときは、当該暖房運転の停止時から所定の第1の遅延時間が経過した後に、自動洗浄運転を実行する。
 冷房、除湿、または送風運転から、自動洗浄運転を実行する場合は、当該運転の停止直後に、または、前記第1の遅延時間よりも短い第2の遅延時間が経過した後に、自動洗浄運転を実行する。
 ここでいう運転の停止とは、空気調和機Sの圧縮機や送風ファン103等の各機器が停止したことを指す。
 暖房運転終了後であった場合、所定の第1の遅延時間をおくことで、室内熱交換器102を冷ましてから自動洗浄運転を行うことが可能になり、自動洗浄運転を省エネ化することが可能である。また、この間に使用者は退室を完了することが可能であり、自動洗浄運転の冷気が使用者に不快感を与えることを抑止することが可能である。また冷媒サイクルを逆回転に急激に切り替えることによる異音の発生等も抑止できる。
 工場出荷時における所定の第1の遅延時間の設定は、例えば3分程度にすることが考えられる。これは、使用者が退室を完了し、室内熱交換器102を冷まし、冷媒サイクルを逆に回すための四方弁の切り替えを静かに行うのに十分な時間である。
 前記遅延時間内に、送風ファン103を駆動したり、上下風向板105を開いたりすることが望ましい。これにより、室内熱交換器102を迅速に冷ますことができる。また、送風運転により室温を均等化しつつ取得することが可能になり、室温の変動の度合いに応じて、自動洗浄運転の冷却温度等を最適化することもできる。
 その他、室内熱交換器102の近傍に湿度計(図示せず)を設置し、前記遅延時間内に室内熱交換器102近傍の湿度を測定し、測定結果に応じて、その後行う自動洗浄運転を最適化しても良い。例えば、湿度が高く室内熱交換器102の周囲の水分が多いときは、自動洗浄運転の冷却時間を短縮することができる。冷却時間を20分と設定すれば、乾燥した冬期であっても自動洗浄運転に十分な水分を集めることが可能であるが、室内熱交換器102の周囲の水分が多いときは、当該冷却時間を15分程度にしても良い。
 室内機100(図2)に示される室内熱交換器102(図2)は、その上方にフィルタ108(図2)を備え、大きな埃を取り除くことで室内熱交換器102の汚れを防止している。フィルタ108に埃が堆積すると目詰まりを起こし、室内熱交換器102を通過する空気が減少し、室内機100の冷暖房能力が減衰する。これを防ぐため、室内機100は、冷暖房等運転終了後、ブラシ(図示せず)を用いてフィルタ108を自動的に清掃するフィルタ清掃手段を備えても良い。
 室内機100がフィルタ清掃手段を備える場合、前記ブラシがフィルタ108をこする際に、細かな埃が室内熱交換器102に落下する。フィルタ清掃により落下する埃は、通常の空調運転で付着する埃に比べて大量であり、室内熱交換器102への埃の堆積と汚れのこびりつきの原因となる。
 そこで、前記遅延時間中に、前記フィルタ清掃手段によるフィルタ108の清掃を実行することが望ましい。これにより、フィルタ清掃の実行により落下した埃を、落下直後に自動洗浄運転で洗浄することが可能になり、フィルタ清掃による室内熱交換器102への汚れのこびりつきを防止できる。
 使用者の退出に要する時間は状況によって変動する。室内熱交換器102を冷ますのに要する時間は気温等によって変動する。よって、前記遅延時間は変更可能なことが望ましい。
 例えば、室内機100は、通信ネットワーク190に接続された情報端末、またはリモコンReから前記遅延時間を入力する入力手段を備えても良い。
 前記遅延時間が存在する場合、前記遅延時間中に自動洗浄運転を実行することを使用者に報知できることが望ましい。これにより、使用者が不信感を持つことを抑止することができる。よって、室内機100は、自動洗浄運転の実行を、前記遅延時間内に報知する表示ランプ(図示なし)や報知音発生部(図示なし)等の報知手段を備え、自動洗浄運転を開始するまでの残り時間に応じて、前記報知手段の報知内容を変更するよう構成しても良い。報知内容の変更とは、例えば表示ランプの点滅周期を変化させたり、音声ガイドでアナウンスをしたりすることが該当する。
 使用者が存在しなければ、空調運転停止直後に自動洗浄運転を開始しても、自動洗浄運転の冷気は使用者に不快感を与えない。
 よって自動洗浄運転の動作条件を満たした場合において、冷房、除湿、送風運転終了後であったとき、室内機100の人検知手段が室内に人を検知しなかったのであれば、運転停止直後に自動洗浄運転を実行しても良い。
 また、室外からの遠隔入力によって空調運転が停止された場合は、室内が無人である可能性が高い。
 そこで、自動洗浄運転の動作条件を満たした場合において、冷房、除湿、送風運転終了後であったとき、通信ネットワーク190に接続された情報端末からの遠隔入力によって空調運転が停止されたのであれば、当該運転停止直後に自動洗浄運転を実行しても良い。
 ただし、前記遠隔入力によって空調運転が停止された場合であっても、室内に人が存在することも考えられる。そこで、前記人検知手段が室内に人を検知したときは、前記遅延時間の経過後に自動洗浄運転を実行するようにしても良い。
 人検知手段としては以下が存在する。すなわち、人検知部122bによって、撮像手段110Aが撮像した画像を解析し、人が映っているか否かを検知しても良い。また、人感センサ(図示なし)によって人体から発生する赤外線を検知しても良い。このように、室内の人の検知結果に基づいて自動洗浄運転開始を制御することができる。
 前記自動洗浄運転の動作条件が長期間満たせず、室内熱交換器102に埃が堆積している場合に、空調運転停止直後に自動洗浄運転を実行したいと使用者が希望することも考えられる。そこで、リモコンReまたは通信ネットワーク190に接続された情報端末から自動洗浄運転の実行指示が入力された場合、当該入力直後に自動洗浄運転を実行しても良い。
 被空調空間である部屋が広くなるほど室内の埃の総量は増大する。空気中の埃は、送風ファン103によって室内熱交換器102を通過するため、前記部屋の広さと室内熱交換器102に堆積する埃の量は相関する。よって、空気調和機Sは、部屋の容量又は広さを検知する容量検知手段を備え、検知結果に応じて、前記自動洗浄運転を実行するべき前回洗浄からの運転積算時間、前回洗浄からの運転回数の閾値を予め決定できるように構成されることが望ましい。
 前記容量検知手段としては以下が存在する。すなわち、室温検知部161により室温を検知し、室温の変動が基準値(例えば1度とする。)に達するまでに要する時間(以下、室温変動時間という。)から、部屋の容量又は広さを自動検知しても良い。
 室温変動時間を部屋の容量ごとに実験によって予め測定し、室温変動時間と部屋の容量又は広さとの相関データ(図6(a))を記憶手段131に保存しておく。ここで、空気調和機Sの冷暖房能力によって前記相関関係は変化するため、冷暖房能力別に空気調和機Sの各モデルで上記測定を実行し、冷暖房能力に即した相関データを取得しておくことが望ましい。
 また、室温変動時間と部屋の容量の相関関係は、測定開始時の室温や室内の照度等に影響される。この影響を取り除くために、測定開始時の室温と室温変動時間に係る調整値α(図6(b))、測定開始時の室内の照度と室温変動時間に係る調整値β(図6(c))を実験によって予め測定し、調整値α、調整値βについても記憶手段131に保存しておくことが望ましい。
 前記容量検知手段は、室温検知部161、照度検知部162を用いて室内の室温、照度を取得し、前記相関データ、調整値α、調整値βと照らし合わせて部屋の容量を検知することが可能である。
 また、撮像手段110Aから入力される画像情報に基づいて部屋の容量又は広さを検知してもよい。例えば、特許文献2には「撮像手段13は、人の出入りや、室内にいる人の人数や居場所、活動量、さらに間取りや太陽光が差し込んでいるエリア等の情報を認識する。」ことが記載されている。このように撮像手段110Aから入力された画像情報中の床部分を検知することによって、床以外の壁等の面積を推定し、これらの面積比率から部屋の容量又は広さを算出しても良い。このようにして、被空調空間である部屋の容量又は広さに基づいて、自動洗浄運転を最適化することができる。
 前記容量検知手段は、あくまで部屋のおおよその大きさを取得するものである。よって前記容量検知手段が高精度である必要はない。しかし、検知結果と実際の部屋の容量との齟齬が大きくなってしまった場合に対応するため、以下のような機能を備えることが望ましい。すなわち、部屋の容量を自動検知するだけでなく、通信ネットワーク190に接続された情報端末、またはリモコンReから、使用者が被空調空間である部屋の容量又は大きさを入力し、あるいは、初期値にリセットすることができる入力手段を備えるように、室内機100を構成しても良い。
 メインマイコン130は、前記入力手段で入力された前記部屋の容量又は大きさに基づいて、前記洗浄手段による前記室内熱交換器の洗浄を実行する前回洗浄からの運転積算時間、前回洗浄からの運転回数の閾値を決定する。
 自動洗浄運転を効率化するためには、室内機100に、室内熱交換器102の汚れを検知する汚れ検知手段を備え、汚れ検知手段の検知した汚れが所定の量を超えた場合は、記憶手段131の記憶する前回洗浄からの運転積算時間、記憶手段131の記憶する前回洗浄からの運転回数、または、空気調和機Sの据付時からの経過時間の値と関わりなく、自動洗浄運転を実行することが望ましい。これにより、室内熱交換器102に埃が堆積し汚れがこびりつく前に自動洗浄が実行され、室内熱交換器102の洗浄に大量の水を要することなく、少ない電力で室内熱交換器102を清潔に保つことが可能である。
 前記汚れ検知手段は、光源に可視光線または近赤外線を用いる撮像手段110Bと、特定波長の光を遮断または減衰させる光学フィルタと、を備えることが可能である。撮像手段110Bから入力される画像情報は、カメラマイコンの画像検知部122の埃検知部122aによって画像解析され、画像情報中の埃部分が汚れとして検知される。
 室内熱交換器102内には、図4(a)に示すように非常に細かなピッチで、金属板が等間隔に並べられている。撮像手段110Bによって室内熱交換器102を撮像すると、金属板部分は光が反射するため白く、金属板のピッチ間の空気層は光が反射しないため黒く撮像され、金属板が等間隔に並んでいることが確認可能な画像が取得できる。当該画像に対して解析ライン301で微分解析を行うと、図5(a)に示す画像波形となる。
 ここで、図4(b)に示すように埃401Aが付着した室内熱交換器102を撮像手段110Bにより撮像した場合は、白と黒の境界の不鮮明な、金属板が等間隔に並んでいることが確認できない画像が取得される。当該画像に対して解析ライン302で微分解析を行うと、図5(b)に示す画像波形となり、埃の付着によりピークの欠如した画像波形401Bが確認できる。ここから埃の付着が検知できる。
 撮像手段110Bの精度を向上する手段の例として、以下が存在する。すなわち、赤外線発光部(図示せず)と可視光カットフィルタ部117B(図3)によって特定波長のみの画像データにすることによって、画像データから外乱の影響を取り除き、埃検知部122a(図3)の認識精度を上げることが可能である。
 室内熱交換器102に付着する汚れの量は、冷房、暖房、除湿運転等、運転モードによって異なる。よって、前回洗浄からの運転積算時間、前回洗浄からの運転回数、または、空気調和機Sの据付時からの経過時間の値は、暖房運転、冷房運転、除湿運転等の運転モードごとに設定されるようにするのが望ましい。
 記憶手段131の記憶する前回洗浄からの運転積算時間、記憶手段131の記憶する前回洗浄からの運転回数、空気調和機Sの据付時からの経過時間の値が設定値に満たず、また、フィルタ清掃を実行していない場合であっても、使用者が自動洗浄運転の実行を希望する場合も考えられる。ここで、使用者の不快感等を抑止するには、使用者が室内にが不在な時刻に自動洗浄運転を開始するように予約設定できることが望ましい。そこで、通信ネットワーク190に接続された情報端末、またはリモコンReから入力する入力手段を備え、前記入力手段によって、自動洗浄運転の開始時刻が入力されるようにしても良い。
 以下では一例として、メインマイコン130の実行する処理について説明する。
 図7は、洗浄処理を開始する際のメインマイコン130の処理を示すフローチャートである。
 ステップS101においてメインマイコン130は、洗浄処理の開始条件が成立したか否かを判定する。前記したように、「洗浄処理の開始条件」とは、例えば、前回の洗浄処理の終了時から空調運転の時間を積算した値が所定値に達したという条件である。ステップS101において洗浄処理の開始条件が成立した場合(S101:Yes)、メインマイコン130の処理はステップS102に進む。一方、洗浄処理の開始条件が成立していない場合(S101:No)、メインマイコン130は一連の処理を終了する(END)。
 ステップS102においてメインマイコン130は、報知音発生部(図示せず)によって所定の報知音を発生させ、また、表示ランプ(図示せず)を点灯させる。すなわち、メインマイコン130は、室内熱交換器102の凍結等の洗浄処理を開始する前に、この洗浄処理を行う旨を、報知音発生部及び表示ランプによって報知する。これによって、洗浄処理が開始されることを使用者に対して事前に報知できる。
 次に、ステップS103においてメインマイコン130は、室内熱交換器102の洗浄処理を開始するまでの遅延時間を設定する。この遅延時間(例えば3分)は、ステップS102において洗浄処理を開始する旨を使用者に事前に報知してから、実際に洗浄運転を開始するまでの時間であり、予め設定されている。
 ステップS104においてメインマイコン130は、洗浄処理を開始する旨を使用者に事前に報知(S102)してから、所定の遅延時間が経過したか否かを判定する。所定の遅延時間が経過した場合(S104:Yes)、メインマイコン130の処理はステップS105に進む。この遅延時間が経過するまでの間、表示ランプの点灯等(S102)を継続するようにしてもよい。
 ステップS105においてメインマイコン130は、室内熱交換器102の洗浄処理を実行する。
 一方、ステップS104において所定の遅延時間が経過していない場合(S104:No)、メインマイコン130の処理はステップS106に進む。
 ステップS106においてメインマイコン130は、リモコンR又は情報端末(図示せず)の操作によって、洗浄処理のキャンセル指令があったか否かを判定する。洗浄処理のキャンセル指令がない場合(S106:No)、メインマイコン130の処理はステップS104に戻る。一方、洗浄処理のキャンセル指令があった場合(S104:Yes)、メインマイコン130の処理はステップS107に進む。
 ステップS107においてメインマイコン130は、報知音発生部によって所定の報知音を発生させ、また、表示ランプを点灯させる。これによって、リモコンR等の操作に応じて洗浄運転が実際にキャンセルされることを使用者に報知できる。
 なお、前記した報知音等(S107)は、洗浄処理を事前に報知するための報知音等(S102)とは別種類のものであることが望ましい。これによって、洗浄処理が実際にキャンセルされることを、使用者にわかりやすく報知できるからである。
 次に、ステップS108においてメインマイコン130は、室内熱交換器102の洗浄処理をキャンセルする。すなわち、メインマイコン130は、室内熱交換器102の凍結を含む洗浄処理を、リモコンR又は情報端末からの信号に基づいてキャンセルする。さらに詳しく説明すると、洗浄処理前の報知(S102)が開始されてから所定の遅延時間が経過するまでに、リモコンR又は情報端末から所定のキャンセル指令を受信した場合(S104:No、S106:Yes)、メインマイコン130は、室内熱交換器102の凍結を含む洗浄処理を行わない(S108)。これによって、メインマイコン130は、室内熱交換器102の洗浄処理を使用者の意図に沿って、適切にキャンセルできる。そして、ステップS108の処理を行った後、メインマイコン130は一連の処理を終了する(END)。
 実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
 S         空気調和機
 100       室内機
 101       筐体ベース
 102       室内熱交換器
 103       送風ファン
 104       左右風向板
 105       上下風向板
 106       前面パネル
 107       空気吸込み口
 108       フィルタ
 109a      吹出し風路
 109b      空気吹出し口
 110A,110B 撮像手段
 111A      光学レンズ
 112A      撮像素子
 113A      A/D変換器
 114A      デジタル信号処理部
 116       フィルタ駆動部
 117A,117B 可視光カットフィルタ部
 120       カメラマイコン
 121,131   記憶手段
 122       画像検知部
 122a      埃検知部(汚れ検知手段)
 122b      人検知部(人検知手段)
 130       メインマイコン(制御手段)
 132       演算処理部
 133       駆動制御部
 134       時刻管理部
 135       運転情報管理部
 150       負荷駆動部
 160       環境検知手段
 161       室温検知部
 162       照度検知部
 190       通信ネットワーク
 200       室外機
 Q         リモコン(入力手段)
 301,302   解析ライン
 401A      埃
 401B      埃の付着によりピークの欠如した画像波形

Claims (17)

  1.  室内熱交換器を洗浄する洗浄手段と、
     前記洗浄手段を制御する制御手段と、を備え、
     前記制御手段は、
     前記洗浄手段によって前記室内熱交換器を洗浄する場合において、暖房運転終了後、当該暖房運転の停止時から所定の第1の遅延時間が経過した後に、前記洗浄手段による前記室内熱交換器の洗浄を実行すること
     を特徴とする空気調和機。
  2.  前記制御手段は、
     冷房、除湿、または送風運転終了後に、前記洗浄手段によって前記室内熱交換器を洗浄する場合は、前記第1の遅延時間よりも短い第2の遅延時間が経過した後に、前記洗浄手段による前記室内熱交換器の洗浄を実行すること
     を特徴とする請求項1に記載の空気調和機。
  3.  空気調和機の運転状況を記憶する記憶手段を備え、
     前記制御手段は、
     前記記憶手段に記憶されている前回洗浄からの運転積算時間、前記記憶手段に記憶されている前回洗浄からの運転回数、または、前記空気調和機の据付時からの経過時間が所定の閾値に達した場合に、前記洗浄手段による前記室内熱交換器の洗浄を実行すること
     を特徴とする請求項1に記載の空気調和機。
  4.  室内機に設置され、前記室内熱交換器に空気を送り込む送風ファンと、
     前記室内機から吹き出される空気の風向きを調整する上下風向板と、を備え、
     前記制御手段は、
     暖房運転の停止時から前記第1の遅延時間が経過するまでの間、前記送風ファンを駆動するか、又は、前記上下風向板を開くこと
     を特徴とする請求項1に記載の空気調和機。
  5.  前記室内熱交換器の空気吸込側に設置されたフィルタの清掃を行うフィルタ清掃手段を備え、
     前記制御手段は、
     暖房運転の停止時から前記第1の遅延時間が経過するまでの間、前記フィルタ清掃手段によるフィルタの清掃を実行すること
     を特徴とする請求項1に記載の空気調和機。
  6.  前記制御手段は、前記洗浄手段によって前記室内熱交換器が洗浄されているときの冷媒の蒸発温度を、除湿運転における前記冷媒の蒸発温度よりも低く設定すること
     を特徴とする請求項1に記載の空気調和機。
  7.  前記制御手段は、前記洗浄手段によって前記室内熱交換器が洗浄されているときの冷媒の蒸発温度を氷点下に設定すること
     を特徴とする請求項1に記載の空気調和機。
  8.  前記洗浄手段による前記室内熱交換器の洗浄を実行することを、前記暖房運転の停止時から前記第1の遅延時間が経過するまでの間、又は、冷房、除湿若しくは送風運転の停止時から前記第2の遅延時間が経過するまでの間に報知する報知手段を備えること
     を特徴とする請求項2に記載の空気調和機。
  9.  通信ネットワークに接続された情報端末、またはリモコンから前記洗浄手段による前記室内熱交換器の洗浄の実行指示を入力する入力手段を備え、
     前記入力手段によって、前記洗浄手段による前記室内熱交換器の洗浄の実行指示が入力された場合、当該入力直後に前記洗浄手段による前記室内熱交換器の洗浄を実行すること
     を特徴とする請求項2に記載の空気調和機。
  10.  被空調空間である部屋の容量又は広さを検知する容量検知手段を備え、
     前記制御手段は、前記容量検知手段の検知した前記部屋の容量又は広さに基づいて、前記洗浄手段による前記室内熱交換器の洗浄を実行する前回洗浄からの運転積算時間の前記閾値、又は、前回洗浄からの運転回数の前記閾値を決定すること
     を特徴とする請求項3に記載の空気調和機。
  11.  前記容量検知手段は、室温の測定開始時から、室温の変動が基準温度に達する時までに経過した時間に基づいて前記部屋の容量又は広さを検知すること
     を特徴とする請求項10に記載の空気調和機。
  12.  前記容量検知手段は、室内を撮像する撮像手段から入力される画像情報に基づいて、前記部屋の容量又は広さを検知すること
     を特徴とする請求項10に記載の空気調和機。
  13.  通信ネットワークに接続された情報端末、またはリモコンから、被空調空間である部屋の容量又は広さを入力する入力手段を備え、
     前記制御手段は、前記入力手段で入力された前記部屋の容量又は広さに基づいて、前記洗浄手段による前記室内熱交換器の洗浄を実行する前回洗浄からの運転積算時間の前記閾値、又は、前回洗浄からの運転回数の前記閾値を決定すること
     を特徴とする請求項3に記載の空気調和機。
  14.  前記室内熱交換器の汚れを検知する汚れ検知手段を備え、
     前記汚れ検知手段の検知した汚れが所定の量を超えた場合は、前記制御手段は、前記洗浄手段による前記室内熱交換器の洗浄を実行すること
     を特徴とする請求項1ないし請求項3のいずれか1項に記載の空気調和機。
  15.  前記汚れ検知手段は、
     光源に可視光線または近赤外線を用いる撮像手段と、
     特定波長の光を遮断または減衰させる光学フィルタと、を備え、
     前記撮像手段から入力される画像情報に基づいて前記室内熱交換器の汚れを検知すること
     を特徴とする請求項14に記載の空気調和機。
  16.  前回洗浄からの運転積算時間、前回洗浄からの運転回数、または、前記空気調和機の据付時からの経過時間の前記閾値は、暖房運転、冷房運転、除湿運転等の運転モード毎に設定されること
     を特徴とする請求項3に記載の空気調和機。
  17.  通信ネットワークに接続された情報端末、またはリモコンから前記室内熱交換器の洗浄開始時刻を入力する入力手段を備えること
     を特徴とする請求項1ないし請求項3のいずれか1項に記載の空気調和機。
PCT/JP2017/036082 2017-04-28 2017-10-04 空気調和機 WO2018198401A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES201890029A ES2687781A1 (es) 2017-04-28 2017-10-04 Aire acondicionado
CN201780003760.XA CN110352320B (zh) 2017-04-28 2017-10-04 空调

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-089774 2017-04-28
JP2017089774A JP6290492B1 (ja) 2017-04-28 2017-04-28 空気調和機

Publications (1)

Publication Number Publication Date
WO2018198401A1 true WO2018198401A1 (ja) 2018-11-01

Family

ID=61557999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036082 WO2018198401A1 (ja) 2017-04-28 2017-10-04 空気調和機

Country Status (7)

Country Link
JP (1) JP6290492B1 (ja)
CN (1) CN110352320B (ja)
ES (1) ES2687781A1 (ja)
FR (3) FR3065788B1 (ja)
MY (1) MY169021A (ja)
TW (1) TWI638119B (ja)
WO (1) WO2018198401A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6924718B2 (ja) * 2018-04-03 2021-08-25 株式会社コロナ 空気調和機
CN109210690A (zh) * 2018-08-27 2019-01-15 珠海格力电器股份有限公司 空调机脏堵的判断方法、装置和空调机
JP6787421B2 (ja) 2019-02-26 2020-11-18 ダイキン工業株式会社 空気処理装置
CN109916042A (zh) * 2019-03-21 2019-06-21 青岛海尔空调器有限总公司 空调器自清洁控制方法
CN109990441B (zh) * 2019-03-21 2020-12-29 青岛海尔空调器有限总公司 空调器自清洁控制方法
CN109916036B (zh) * 2019-03-21 2021-06-29 青岛海尔空调器有限总公司 空调器自清洁控制方法
CN109916047A (zh) * 2019-03-21 2019-06-21 青岛海尔空调器有限总公司 空调器自清洁控制方法和空调器
CN109916037B (zh) * 2019-03-21 2022-01-21 青岛海尔空调器有限总公司 空调器自清洁控制方法
CN109916034B (zh) * 2019-03-21 2021-04-20 青岛海尔空调器有限总公司 空调器自清洁控制方法
CN109916053B (zh) * 2019-03-21 2021-04-20 青岛海尔空调器有限总公司 空调器自清洁控制方法和空调器
CN109916060A (zh) * 2019-03-21 2019-06-21 青岛海尔空调器有限总公司 空调器自清洁控制方法
CN110001346A (zh) * 2019-03-21 2019-07-12 青岛海尔空调器有限总公司 汽车空调自清洁控制方法
CN110307617B (zh) * 2019-07-03 2020-05-26 珠海格力电器股份有限公司 换热器及其脏堵检测方法、装置和系统、电器设备
CN111854030B (zh) * 2020-06-29 2021-11-30 珠海格力电器股份有限公司 一种过滤网除尘控制方法、装置及空调设备
JP7381936B2 (ja) * 2021-12-17 2023-11-16 ダイキン工業株式会社 換気装置
TWI847727B (zh) * 2023-05-25 2024-07-01 華碩電腦股份有限公司 電子裝置及其濾網狀態偵測方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300380A (ja) * 1993-04-20 1994-10-28 Matsushita Refrig Co Ltd 多室型空気調和機
JP2002312456A (ja) * 2000-04-03 2002-10-25 Daikin Ind Ltd 施設運用方法、その装置、施設運用システム、管理方法、その装置および施設
JP2004037036A (ja) * 2002-07-05 2004-02-05 Daikin Ind Ltd 空気調和機および空気調和機の制御方法
JP2009144992A (ja) * 2007-12-14 2009-07-02 Mitsubishi Electric Building Techno Service Co Ltd 汚染度計測装置
JP2009300030A (ja) * 2008-06-16 2009-12-24 Daikin Ind Ltd 空気調和機
JP2013164191A (ja) * 2012-02-10 2013-08-22 Rinnai Corp 浴室暖房乾燥機

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4369220B2 (ja) * 2003-12-18 2009-11-18 東芝キヤリア株式会社 空気調和機の室内機
JP4931566B2 (ja) 2006-11-30 2012-05-16 東芝キヤリア株式会社 空気調和機
JP4523578B2 (ja) * 2006-12-11 2010-08-11 ダイキン工業株式会社 空気調和機のフィルタ清掃機構
JP2009058143A (ja) * 2007-08-30 2009-03-19 Panasonic Corp 空気調和機
JP2009243796A (ja) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp 空気調和装置
JP2010014288A (ja) * 2008-07-01 2010-01-21 Toshiba Carrier Corp 空気調和機
JP2012122674A (ja) * 2010-12-09 2012-06-28 Hitachi Appliances Inc 多室型空気調和機
CN102418980A (zh) * 2011-11-07 2012-04-18 太仓新凯裕电子科技有限公司 空调系统的加湿除尘方法
JP6352038B2 (ja) * 2014-04-30 2018-07-04 三菱重工サーマルシステムズ株式会社 空気調和機用室内機およびこれを備えた空気調和機ならびに熱交換器の汚れ検出方法
JP2016200348A (ja) 2015-04-13 2016-12-01 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機
CN104930669B (zh) * 2015-07-07 2017-10-27 珠海格力电器股份有限公司 空调器运行方法
CN105486164A (zh) * 2016-02-02 2016-04-13 广东美的制冷设备有限公司 空调器室内换热器的清洁控制方法及空调器
CN105928139B (zh) * 2016-04-27 2019-10-01 青岛海尔空调器有限总公司 空调器自清洁控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300380A (ja) * 1993-04-20 1994-10-28 Matsushita Refrig Co Ltd 多室型空気調和機
JP2002312456A (ja) * 2000-04-03 2002-10-25 Daikin Ind Ltd 施設運用方法、その装置、施設運用システム、管理方法、その装置および施設
JP2004037036A (ja) * 2002-07-05 2004-02-05 Daikin Ind Ltd 空気調和機および空気調和機の制御方法
JP2009144992A (ja) * 2007-12-14 2009-07-02 Mitsubishi Electric Building Techno Service Co Ltd 汚染度計測装置
JP2009300030A (ja) * 2008-06-16 2009-12-24 Daikin Ind Ltd 空気調和機
JP2013164191A (ja) * 2012-02-10 2013-08-22 Rinnai Corp 浴室暖房乾燥機

Also Published As

Publication number Publication date
TWI638119B (zh) 2018-10-11
CN110352320B (zh) 2021-02-26
CN110352320A (zh) 2019-10-18
FR3076890A1 (fr) 2019-07-19
FR3065788B1 (fr) 2020-12-04
FR3066806B1 (fr) 2021-01-22
JP2018189257A (ja) 2018-11-29
TW201839326A (zh) 2018-11-01
FR3066806A1 (fr) 2018-11-30
FR3076890B1 (fr) 2023-07-14
FR3065788A1 (fr) 2018-11-02
ES2687781A1 (es) 2018-10-29
MY169021A (en) 2019-01-29
JP6290492B1 (ja) 2018-03-07

Similar Documents

Publication Publication Date Title
WO2018198401A1 (ja) 空気調和機
JP2018189355A (ja) 空気調和機
CN109695945B (zh) 空调换热器自清洁控制方法、系统及空调
JP6314294B1 (ja) 空気調和機
US8603230B2 (en) Indoor unit of air conditioner
US20170350611A1 (en) Arrangement and method for air management of a room
JP5845439B2 (ja) 空気調和機
CN115095917A (zh) 空调
KR20190050879A (ko) 실내 환경 제어 시스템
TW202104807A (zh) 空調機
EP3489592A1 (en) Filter contamination detection method
JP6395413B2 (ja) 換気・空調システム
JP2011237088A (ja) 空気調和機
CN111023265B (zh) 一种自清洁控制方法及空调器
KR20100098174A (ko) 지하철 역사용 공기조화시스템
CN109028467A (zh) 一种空调智能除霜方法及装置
JP2012154558A (ja) 空気調和機
JP5194349B2 (ja) 空気調和機
JP2007255841A (ja) 空気調和機の室内機
KR101947157B1 (ko) 공기조화기의 제어방법
CN116164351A (zh) 空气处理设备及其自清洁方法、清洁装置、存储介质
JP6924718B2 (ja) 空気調和機
JP2021120601A (ja) 空気調和換気システム
CN112665022B (zh) 空调器及其新风除湿系统清洁的控制方法和装置
CN110873403A (zh) 一种空调及其自清洁的控制方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: P201890029

Country of ref document: ES

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907141

Country of ref document: EP

Kind code of ref document: A1