[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018198398A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2018198398A1
WO2018198398A1 PCT/JP2017/035926 JP2017035926W WO2018198398A1 WO 2018198398 A1 WO2018198398 A1 WO 2018198398A1 JP 2017035926 W JP2017035926 W JP 2017035926W WO 2018198398 A1 WO2018198398 A1 WO 2018198398A1
Authority
WO
WIPO (PCT)
Prior art keywords
drain pan
heat exchanger
air conditioner
indoor heat
insulating material
Prior art date
Application number
PCT/JP2017/035926
Other languages
English (en)
French (fr)
Inventor
佑芽 赤津
能登谷 義明
吉田 和正
真和 粟野
正徳 秋元
幸範 田中
貴郎 上田
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=62706324&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018198398(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to CN201780088134.5A priority Critical patent/CN110392808B/zh
Publication of WO2018198398A1 publication Critical patent/WO2018198398A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G9/00Cleaning by flushing or washing, e.g. with chemical solvents

Definitions

  • the present invention relates to an air conditioner.
  • the indoor unit that constitutes the air conditioner is provided with a drain pan that receives the condensed water generated in the indoor heat exchanger.
  • a technique related to the structure of the drain pan a technique described in Patent Document 1 is known.
  • Patent Document 1 in the drain pan and the foam heat insulating material for the drain pan disposed on the inner wall of the drain pan, the condensed water is prevented from flowing between the drain pan and the foam heat insulating material for the drain pan and being exposed to the outer wall of the drain pan.
  • the air conditioning is characterized by lowering the expansion ratio of the foam insulation for drain pans and reducing only the drain pan outlet for discharging condensed water and the foam insulation insulation outlet for drain pan for the purpose of reducing work man-hours. The machine is listed.
  • JP 2008-292100 A (refer to FIG. 2 in particular)
  • the present inventors cause the refrigerant having an evaporation temperature lower than the evaporation temperature of the refrigerant to be passed during the cooling operation and the dehumidifying operation to flow through the indoor heat exchanger, and deliberately generate condensed water in the indoor heat exchanger.
  • the “condensation water” here includes liquid water directly adhering to the indoor heat exchanger and liquid water generated by melting frost adhering to the indoor heat exchanger.
  • the term “condensed water” is synonymous.
  • the refrigerant having an evaporation temperature lower than the evaporation temperature of the refrigerant to be passed during the cooling operation and the dehumidifying operation flows through the indoor heat exchanger. Therefore, the amount of condensed water that is instantaneously generated is larger than the amount of condensed water that is generated during cooling operation and dehumidifying operation. Therefore, from the viewpoint of preventing the condensed water flowing down to the drain pan from overflowing from the drain pan, it is preferable that the condensed water flowing down to the drain pan is quickly discharged to the outside.
  • An object of the present invention is to provide an air conditioner including a preventable drain pan.
  • the gist of the present invention is that the cross-flow fan, the indoor heat exchanger, and the condensed water generated in the indoor heat exchanger disposed below the indoor heat exchanger are received on the surface, and the received condensed water is outdoors.
  • a drain outlet for draining water is formed, and a drain pan having concavities and convexities for guiding condensed water received on the surface to the drain outlet and the indoor heat exchanger are passed through during the cooling operation and the dehumidifying operation.
  • the present invention relates to an air conditioner having an indoor unit including a control unit that causes a refrigerant having an evaporation temperature lower than an evaporation temperature of the refrigerant to flow.
  • an air conditioner including a drain pan that can prevent the dew condensation from overflowing from the drain pan even when a large amount of dew condensation water is instantaneously generated.
  • FIG. 7 is an end view taken along line BB in FIG. 6.
  • FIG. 7 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 1 is a cross-sectional view of an indoor unit 100 constituting an air conditioner 10 (see FIG. 2, not shown in FIG. 1) of the present embodiment.
  • the indoor unit 100 includes a cross-flow fan 4, an indoor heat exchanger 3 disposed so as to surround the cross-flow fan 4, and a drain pan 2 disposed below the indoor heat exchanger 3. These are accommodated in the housing 9.
  • the indoor heat exchanger 3 includes fins 3a and heat transfer tubes 3b.
  • the fins 3a are heated or cooled by allowing the refrigerant from the compressor 11 (see FIG. 2; not shown in FIG. 1) to flow through the heat transfer tubes 3b.
  • condensed water including liquid water generated by freezing and thawing as described above
  • the condensed water flows down to the drain pan 2 disposed below the indoor heat exchanger 3. The structure of the drain pan 2 will be described later with reference to FIG.
  • a discharge device 8 that discharges air is disposed at a position that does not block the flow of air during air-conditioning operation (specifically, above the front side).
  • the discharge device 8 When the discharge device 8 is discharged during air conditioning, the moisture in the air inside the housing 9 is charged with a negative charge, and the negatively charged water is released into the housing 9. The negatively charged moisture is released into the room by the rotational drive of the cross-flow fan 4 and the water retention of human skin existing in the room is enhanced.
  • an ultraviolet irradiation device for irradiating the inner surface of the drain pan 2 with ultraviolet rays is provided in the vicinity of the drain pan 2. While the air conditioning operation of the indoor unit 100 is stopped, the drain pan 2 is sterilized by irradiating the drain pan 2 with ultraviolet rays, and the occurrence of fungi and the like in the drain pan 2 is suppressed.
  • the front panel 7 is provided in front of the indoor unit 100.
  • the front panel 7 is pivotable to the front side with the lower end as the center.
  • the lower surface of the indoor unit 100 is provided with an up / down airflow direction plate 18 that can be rotated downward about the rear side end portion thereof.
  • the front panel 7 rotates and upper direction opens, and the air suction inlet which is not shown in figure is formed.
  • an air outlet (not shown) is formed.
  • an air suction port 6 a that is opened in advance is formed above the indoor unit 100.
  • the cross-flow fan 4 is rotationally driven, so that the inside of the housing 9 is passed from the air suction port 6a and the air suction port formed by the rotation of the front panel 7 through the filters 15a and 15b.
  • the indoor air is sucked into the room.
  • the sucked air is heat-exchanged by the indoor heat exchanger 3 arranged so as to surround the cross-flow fan 4 and then blown out into the room through an air outlet formed by the rotation of the vertical air direction plate 18.
  • the blowing position of an up-down direction is controlled by controlling the rotation angle of the up-down wind direction board 18.
  • one end of the left / right wind direction plate 17 can also be rotated, and by controlling the rotation angle of the left / right wind direction plate 17, the left / right direction direction plate 17 can be moved in the left / right direction (the direction from the front side to the back side in FIG. 1). The blowing position is controlled.
  • FIG. 2 is a diagram showing a refrigeration cycle provided in the air conditioner 10 of the present embodiment.
  • the air conditioner 10 includes an outdoor unit 101 in addition to the indoor unit 100 shown in FIG.
  • the indoor unit 100 and the outdoor unit 101 are connected by a refrigerant pipe 5 so that the refrigerant can circulate.
  • the indoor unit 100 includes the indoor heat exchanger 3 and the cross-flow fan 4 as described above, and also includes the indoor unit control unit 1 that controls the operation of the indoor unit 100. Although details will be described later with reference to FIG. 3, in the air conditioner 10 of the present embodiment, after the air conditioning operation by the indoor unit 100, the indoor heat exchanger 3 is controlled to generate dew condensation water. And the indoor heat exchanger 3 is wash
  • the indoor unit control unit 1 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an I / F (interface), and the like. And the indoor unit control part 1 is embodied when the predetermined
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • I / F interface
  • the outdoor unit 101 includes a compressor 11, a four-way valve 12, an outdoor fan 13, an outdoor heat exchanger 14, an expansion valve 15, and an outdoor unit control unit 16.
  • the refrigerant is discharged from the compressor 11 in the direction of the arrow in FIG.
  • the operation mode of the indoor unit 100 is switched to any one of the heating operation, the cooling operation, and the dehumidifying operation.
  • the operation mode of the indoor unit 100 is the heating operation
  • the refrigerant flows through the solid line in the four-way valve 12 shown in FIG.
  • the operation mode of the indoor unit 100 is the cooling operation and the dehumidifying operation
  • the refrigerant flows through the broken line in the four-way valve 12 shown in FIG.
  • the opening degree of the expansion valve 15 provided in the outdoor unit 101 can be adjusted. Adjustment of the opening degree of the expansion valve 15 is performed by driving an actuator (not shown) based on an instruction signal from the outdoor unit control unit 16 that controls the outdoor unit 101.
  • the outdoor unit control unit 16 includes a CPU, a RAM, a ROM, an I / F, and the like (not shown).
  • the outdoor unit control unit 16 is realized by a predetermined control program stored in the ROM being executed by the CPU.
  • the overall control of the air conditioner 10 is performed in cooperation with the outdoor unit controller 16 and the indoor unit controller 1 described above.
  • the indoor heat exchanger 3 is controlled to generate condensed water. Specifically, by allowing a low-temperature (for example, 0 ° C. or lower) refrigerant to flow through the indoor heat exchanger 3, moisture near the indoor heat exchanger 3 is frozen on the surface of the indoor heat exchanger 3. In other words, frost is generated on the surface of the indoor heat exchanger by allowing the refrigerant having an evaporation temperature that generates frost on the surface of the indoor heat exchanger 3 to flow through the indoor heat exchanger 3.
  • a low-temperature for example, 0 ° C. or lower
  • FIG. 3 is a diagram showing a freeze cleaning flow performed in the air conditioner 10 of the present embodiment. This flow is performed in cooperation with the indoor unit control unit 1 and the outdoor unit control unit 16 unless otherwise specified.
  • the air conditioning operation is stopped by the user operating, for example, a remote controller (step S1).
  • standby is performed for a predetermined time (for example, several minutes).
  • the outdoor unit control unit 16 throttles the opening of the expansion valve 15 (see FIG. 2). Specifically, the opening degree of the expansion valve 15 is made smaller than the opening degree of the indoor unit 100 during the cooling operation and the dehumidifying operation.
  • the outdoor unit control part 16 makes the direction of the four way valve 12 the same direction as the direction at the time of the air_conditionaing
  • the degree of expansion by the expansion valve 15 increases, and therefore, the indoor heat exchanger 3 is supplied with a low-temperature (for example, 0 ° C. or lower) refrigerant. Thereby, the indoor heat exchanger 3 is cooled. As a result, the moisture contained in the air inside the housing 9 is frozen on the surface of the indoor heat exchanger 3 and becomes frost (step S2).
  • the temperature (evaporation temperature) of the refrigerant flowing through the indoor heat exchanger 3 is lower than the evaporation temperature of the refrigerant flowing during the cooling operation and the dehumidifying operation. Therefore, the amount of water that has become frost in the indoor heat exchanger 3 is larger than the amount of condensed water that is generated during the cooling operation and the dehumidifying operation.
  • the outdoor unit control unit 16 changes the direction of the four-way valve 12 to the direction during the heating operation after a predetermined time has elapsed (for example, several minutes), and converts the high-temperature refrigerant discharged from the compressor 11 into the indoor heat exchanger 3.
  • a predetermined time for example, several minutes
  • the indoor heat exchanger 3 is heated and the frost on the surface of the indoor heat exchanger 3 is thawed (step S3).
  • the condensed water generated by thawing flows down to the drain pan 2. Thereby, dust, oil droplets, etc. adhering to the indoor heat exchanger 3 are washed away to the drain pan 2, and the same effect as “cleaning” is obtained.
  • the amount of water that has become frost is larger than the amount of condensed water that is generated during cooling operation and dehumidifying operation. Therefore, the amount of water that instantaneously flows down to the drain pan 2 is larger than the amount of condensed water generated during the cooling operation and the dehumidifying operation. Condensed water that has flowed down to the drain pan 2 is quickly discharged outside the drain 42 (see FIG. 4 and the like, not shown in FIG. 3), as will be described in detail later.
  • the outdoor unit control unit 16 starts driving the cross-flow fan 4. Thereby, air circulates inside the housing 9 and as a result of the air coming into contact with the indoor heat exchanger 3, the indoor heat exchanger 3 is dried (step S4).
  • FIG. 4 is a perspective view showing a state of the drain pan 2 provided in the indoor unit 100 constituting the air conditioner 10 of the present embodiment.
  • the drain pan 2 is disposed below the indoor heat exchanger 3 as described above.
  • the drain pan 2 is made of, for example, a resin such as acrylonitrile-butadiene-styrene copolymer resin (ABS resin) or polystyrene.
  • ABS resin acrylonitrile-butadiene-styrene copolymer resin
  • the resin which comprises the drain pan 2 contains antibacterial agents, such as an imidazole series, for example.
  • the drain pan 2 is molded, for example, by filling a resin material in a mirror-finished mold and solidifying it.
  • the drain pan 2 includes a front drain pan 35 (see FIG. 5, not shown in FIG. 4, left-right flow path) extending in the left-right direction when the indoor unit 100 is viewed from the front. And on the inner surface of the front drain pan 35, the flat heat insulating material 31 (left-right direction flow path) is arrange
  • the heat insulating material 31 is formed in a container shape by extending upward at the respective end portions on the front side and the back side.
  • the heat insulating material 31 is fixed to the inner surface of the front drain pan 35 by being fitted after applying an adhesive to a recess (not shown) formed on the inner surface of the front drain pan 35 (see FIG. 5). At this time, generation of a gap between the inner surface of the recess and the heat insulating material 31 is suppressed by using the heat insulating material 31 having elasticity and slightly larger than the hollow as the heat insulating material 31. .
  • the heat insulating material 31 contains antibacterial agents, such as an imidazole series, for example.
  • the front-rear direction flow path 40 extending from the front to the back as a part of the drain pan 2 is provided at each of the left and right ends of the front drain pan 35 (see FIG. 5) (that is, the left and right ends of the heat insulating material 31). Connected. Although details will be described later, a drain port 42 for draining the dew condensation water received by the drain pan 2 to the outside is formed on the back side of the front-rear direction flow path 40 disposed on each of the left and right sides.
  • convex portions 32 extending in the left-right direction, and concave portions 33 and 34 arranged on the front side and the back side of the convex portions 32 are formed on the surface of the heat insulating material 31 so as to guide the dew condensation water received on the surface to the front-rear direction flow path 40. It is a thing.
  • the convex portion 32 is continuously formed in the left-right direction, and the width (length in the front-rear direction) is uniform throughout the left-right direction. Further, the recesses 33 and 34 are also formed continuously in the left-right direction, and the width (front-back length) is also uniform in the entire left-right direction.
  • the convex portion 32 is formed to extend in the left-right direction at the center in the front-back direction (hereinafter referred to as the front-rear direction).
  • the height of the convex portion 32 is constant on the surface of the heat insulating material 31.
  • the surface of the heat insulating material 31 is not formed with an inclination downward toward the front-rear direction channel 40 described later, and the entire convex portion 32 is formed in the same plane.
  • the thickness of the heat insulating material 31 is also constant in the left-right direction.
  • the heat insulating material 31 is made of a material that does not absorb moisture, such as foamed polystyrene or foamed urethane, and its surface is water repellent. That is, in the heat insulating material 31, a water-repellent surface is disposed at a portion where condensed water flows. Thereby, when the dew condensation water flows down to the heat insulating material 31, the dew condensation water on the surface of the heat insulating material 31 becomes easy to evaporate, and the remainder after the dew condensation water hardly occurs. Moreover, since the heat insulating material 31 does not absorb moisture, generation
  • the heat insulating material 31 is molded, for example, by filling a resin material into a mirror-finished mold and foaming.
  • a drain port 42 connected to a drain pipe (not shown) for draining the condensed water that has flowed down to the drain pan 2 to the outside is formed on the back side of the front-rear channel 40.
  • the details will be described later with reference to FIG. 8, and a slope that is lowered toward the drain outlet 42 is formed on the bottom surface on the back side of the front-rear direction flow path 40. Thereby, the dew condensation water that has flowed down to the drain pan 2 is easily guided to the drain port 42.
  • a motor (not shown) for driving the left and right wind direction plates 17 is disposed on the back side of the front-rear direction flow path 40 on the front side. Therefore, the front side of the front-rear direction flow path 40 is raised, and a raised portion 41 is formed.
  • the height of the raised portion 41 is slightly lower than the height of the concave portion 33 formed in the heat insulating material 31. Therefore, the dew condensation water guided from the heat insulating material 31 to the front-rear direction flow path 40 is prevented from flowing back to the heat insulating material 31 side.
  • the condensed water that reaches the rising portion 41 from the heat insulating material 31 descends the rising portion 41 and is guided to the drain port 42.
  • a heat insulating material is not disposed on the inner surface of the front-rear direction flow path 40. Therefore, it is not necessary to prepare the heat insulating material 31 having a complicated shape in which the heat insulating material 31 and the heat insulating material arranged on the inner surface of the front-rear direction flow path 30 are integrated, and the manufacturing cost can be reduced. Illustrated
  • the drain pan 2 is molded using the mirror-finished mold as described above. Therefore, the surface of the drain pan 2 is almost smooth. Therefore, in the front-rear direction flow path 40, the portion where the condensed water flows is water repellent. As a result, the condensed water easily evaporates, and the remainder after the condensed water is unlikely to occur.
  • FIG. 5 is a cross-sectional view showing a relative positional relationship between the drain pan 2 and the indoor heat exchanger 3 in the indoor unit 100 constituting the air conditioner 10 of the present embodiment.
  • the fins 3 a constituting the indoor heat exchanger 3 and the heat insulating material 31 constituting the drain pan 2 are in contact with each other.
  • the fins 3 a are in contact with the recesses 34 of the heat insulating material 31, so that the back side inner surface of the heat insulating material 31 and the lower back side end of the indoor heat exchanger 3 are in contact.
  • the condensed water that has flowed down the fins 3 a easily moves to the heat insulating material 31. That is, if there is a gap between them, the condensed water will fall between the gaps, but the surface tension of the fin 3a is utilized because the fin 3a and the heat insulating material 31 are in contact with each other. Condensed water will flow down. As a result, the falling speed of the condensed water is increased, and the condensed water is quickly drained to the outside using the drain pan 2.
  • FIG. 6 is an enlarged view of part A in FIG.
  • thick arrows indicate the directions in which the condensed water that has flowed down into the recesses 33 and 34 flows.
  • the dew condensation water flowing through the concave portion 33 reaches the front-rear direction flow path 40 via the rising portion 41.
  • the dew condensation water flowing through the concave portion 34 directly reaches the front-rear direction flow path 40.
  • Condensed water flowing down to the drain pan 2 includes not only water generated during cooling operation and dehumidifying operation in the indoor unit 100, but also water generated by freezing as described above (see step S2 in FIG. 3).
  • the dew condensation water generated at the time of freezing is defrosted frost, so that it is at a lower temperature than the dew condensation water generated during the cooling operation and the dehumidification operation. Therefore, when the low-temperature dew condensation water flows down on the heat insulating material 31, the front drain pan 35 (see FIG. 5 and not shown in FIG. 6) is not easily cooled. As a result, the back surface of the front drain pan 35 (the side opposite to the side on which the heat insulating material 31 is disposed) is prevented from condensing.
  • both the front side end and the back side end of the heat insulating material 31 extend upward. Thereby, it is prevented that the dew condensation water which flowed down to the heat insulating material 31 from the indoor heat exchanger 3 (not shown in FIG. 4) arranged above the drain pan 2 leaks to the front side and the back side.
  • neither of the left and right ends of the heat insulating material 31 extends upward. Thereby, the dew condensation water that has flowed down to the heat insulating material 31 is guided along the convex portion 32 to the front-rear direction flow path 40 connected to the left and right ends thereof.
  • convex portions 32 extending in the left-right direction toward the front-rear direction flow path 40 are formed on the surface of the heat insulating material 31.
  • the present inventors examined it turned out that the dew condensation water which flowed down to the heat insulating material 31 flows easily along the wall surface which comprises the convex part 32 formed continuously. Therefore, the convex part 32 which can guide dew condensation water to the drain port 42 is formed, and dew condensation water can flow continuously without interruption on the way, The front-back direction flow path formed in both right and left ends 40 is easily guided. Thereby, the remainder after the dew condensation water on the surface of the heat insulating material 31 is suppressed.
  • the convex portion 32 is formed at the center in the front-rear direction of the heat insulating material 31, it is possible to prevent water droplets from being combined and growing excessively on the surface of the heat insulating material 31. Thereby, the water droplets of the condensed water are kept small on the surface of the heat insulating material 31, and the condensed water is easily moved (that is, drained).
  • the condensed water guided to the front-rear direction flow path 40 is guided to the drain port 42 by the convex part 43 and the concave part 44 formed on the surface thereof.
  • the surface shape of the front-rear channel 40 will be described with reference to FIG.
  • FIG. 7 is an end view taken along the line BB of FIG.
  • FIG. 7 is a diagram illustrating a state of an end face of the front-rear direction channel 40 when viewed from the flow direction of the dew condensation water in the front-rear direction channel 40.
  • a convex portion 43 formed at equal intervals and a concave portion 44 formed between adjacent convex portions 43, 43 are provided.
  • Four convex portions 43 are formed in the present embodiment.
  • the convex portion 43 and the concave portion 44 are formed integrally with the drain pan 2 by using a mold in which concave and convex portions are formed at positions and sizes corresponding to the convex portion 43 and the concave portion 44 when the drain pan 2 is molded.
  • the convex part 43 and the recessed part 44 are continuously formed in the front-back direction of the front-back direction flow path 40 in the shape shown in FIG. 7, respectively (refer also to FIG. 6). ).
  • the convex portion 43 has a substantially rectangular cross section in which two upper end portions are chamfered. Since the cross-sectional shape of the convex portion 43 is substantially rectangular, the contact area between the upper surface of the convex portion 43 and the condensed water increases. Thereby, coupled with the fact that the upper surface of the convex portion 43 is water-repellent, the growth of water droplets that straddle the convex portion 43 is suppressed. Therefore, the water droplets are kept small, and the water droplets of the dew condensation water are easily guided to the drain port 42 (see FIG. 6).
  • the convex portion 32 constituting the heat insulating material 31 the water droplets of the dew condensation water easily flow through the concave portion 44 along the convex portion 43 formed so as to be guided to the drain port 42. Therefore, as a result of the growth being suppressed by the convex portion 43, small water droplets are easily guided to the drain port 42 by the convex portion 43 and the concave portion 44.
  • the dew condensation water flowing into the front-rear direction channel 40 becomes easier to flow to the drain outlet 42, the dew condensation water disappears quickly from the front-rear direction channel 40. Therefore, as described above, low-temperature dew condensation water hardly remains in the front-rear direction flow path 40.
  • the front-rear channel 40 is prevented from being excessively cooled, and dew condensation on the back surface is prevented without providing a heat insulating material in the front-rear channel 40. Thereby, water is prevented from dripping into the ventilation path formed on the back surface side of the front-rear direction flow path 40 and facing the room where the indoor unit 100 is installed, and scattering of water into the room is prevented.
  • the width (length L1) of the convex portion 43 in the left-right direction is, for example, about 3 mm.
  • the center-to-center distance (length L2) between the protrusion 43 and the protrusion 43 adjacent to the protrusion 43 is, for example, about 4 mm.
  • the height (length L3) of the convex part 43 is about 0.3 mm, for example.
  • FIG. 8 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 8 is a view showing a state in the vicinity of the drain port 42 when viewed from a direction perpendicular to the flow direction of the dew condensation water in the front-rear direction flow path 40 in a horizontal plane.
  • an inclination is formed that descends toward the drain port 42 formed on the back side. That is, the front-rear direction flow path 40 extends horizontally on the front side starting from the boundary 45, but a slope is formed downward toward the drain outlet 42 on the back side starting from the boundary 45.
  • the condensed water that has flowed along the convex portion 43 toward the back surface through the concave portion 44 is accelerated by the downward slope, and is easily drained through the drain port 42.
  • the dew condensation water that has flowed from the heat insulating material 31 to the front-rear channel 40 is retained in the front-rear channel 40 without being drained.
  • the air conditioner 10 of this embodiment since the inclination is formed in the vicinity of the drain port 42, the air conditioner 10 is preferentially collected in the vicinity of the drain port 42. Then, if this slope is moderated and the depth is made shallower, the amount of accumulated water is reduced in the vicinity. Therefore, even if condensed water accumulates, the accumulated condensed water tends to evaporate. As a result, even when the drain port 42 is blocked, the dew condensation water stays on the entire surface of the front-rear channel 40 and is prevented from condensing on the back surface of the front-rear channel 40.
  • the vicinity of the drain port 42 refers to the position where the boundary 45 is formed (distance L4 from the end of the drain port 42) and the degree of inclination (depth from the horizontal plane of the front-rear channel 40). It can be defined by the length L5). That is, since the amount of dew condensation water that is retained by L4 and L5 is determined, the amount that can be evaporated in, for example, several hours is determined in consideration of the area where the indoor unit 100 is installed, and is larger than that amount. L4 and L5 are determined so as to be volume. L4 is about 30 mm, for example, and L5 is about several mm, for example.
  • the height of the convex portion 43 formed in the front-rear direction channel 40 is described with reference to the boundary portion 46 that is the same position in the front-rear direction as the boundary portion 45 (see FIG. 7 above).
  • the length L3) gradually decreases in the direction of decreasing slope.
  • the change in the slope of the convex portion 43 (that is, the slope of the straight line in FIG. 7) is larger than the change in the slope of the concave portion 44 (that is, the slope of the straight line in FIG. 7). For this reason, the convex portion 43 disappears in the middle of the inclination formed in the front-rear direction flow path 40.
  • the convex portion 43 is not formed in the vicinity of the drain port 42 (see also FIG. 6). Thereby, the dew condensation water that has flowed through the concave portion 44 along the convex portion 43 is easily collected at the drain port 42. Therefore, it is suppressed that dew condensation water accumulates on the back side of the front-rear direction flow path 40, and is easily drained outside through the drain port 42.
  • the drain pan 2 having the above-described configuration is configured such that condensed water flows easily. Therefore, even if a large amount of dew condensation water instantaneously flows down from the indoor heat exchanger 3, it is quickly drained from the drain pan 2 to the outside through the drain port 42. As a result, it is possible to prevent the condensed water from overflowing from the drain pan 2.
  • the dew condensation water in the indoor heat exchanger 3 first flows down to the heat insulating material 31 extending in the left-right direction on the front side. If it does so, especially the low-temperature dew condensation water of washing
  • the heat insulating material 31 prevents the front drain pan 35 from being cooled by the low-temperature cooling water, and prevents condensation on the back side (ventilation path side) of the front drain pan 35. Thereby, scattering of water into the room is prevented.
  • the dew condensation water that has flowed over the heat insulating material 31 flows in the front-rear direction flow path 40. Therefore, the dew condensation water is warmed at room temperature while flowing through the heat insulating material 31, and as a result, the dew condensation water having a temperature higher than the temperature of the dew condensation water immediately after flowing down the heat insulating material 31 flows in the front-rear direction flow path 40. Therefore, dew condensation on the back side of the front-rear channel 40 can be prevented without arranging a heat insulating material in the front-rear channel 40.
  • the width (length in the front-rear direction) of the convex portion 32 and the concave portions 33 and 34 formed on the heat insulating material 31 is the same in the entire region in the left-right direction. It may gradually become wider (becomes longer) or may become gradually narrower (becomes shorter). For example, by making the widths of the recesses 33 and 34 gradually widen toward the front-rear direction flow path 40, the clogging of dust is reliably prevented at the left and right end portions of the heat insulating material 31 where dust tends to collect.
  • the widths of the recesses 33 and 34 can be gradually become wider toward the front-rear direction flow path 40, the flow rate of the condensed water can be increased at the left and right end portions of the heat insulating material 31.
  • the dew condensation water existing in 31 can flow into the front-rear direction flow path 40 more quickly.
  • the number and shape of the irregularities formed on the surface of the heat insulating material 31 are not limited to the example shown in the figure, and may be those formed so that the condensed water can be guided to the drain port 42. Any shape is acceptable. Specifically, for example, the protrusion 32 does not need to have a rectangular cross section (see FIG. 5), and may have a substantially rectangular cross section with chamfered corners. Moreover, it is good also as other shapes other than rectangular shape. Further, the number of the convex portions 32 formed on the heat insulating material 31, for example, does not need to be only one in the left-right direction (see FIG. 4) as illustrated, and may be two or more, for example. And what is necessary is just to form the recessed parts 33 and 34 corresponding to the number and shape of the convex part 32. FIG.
  • the number and shape of the irregularities formed in the front-rear direction flow path 40 are not limited to the example shown in the drawing, and any form may be used as long as it is formed so that condensed water can be guided to the drain port 42. It may be a simple shape. Specifically, for example, the convex portion 43 does not need to have a substantially rectangular shape (see FIG. 7) in which corner portions are chamfered, and may have a rectangular shape in which corner portions are not chamfered. Moreover, it is good also as other shapes other than rectangular shape. Furthermore, the number of the convex parts 43 does not need to be four in the front-rear direction as shown in the figure (see FIG. 7), and can be three or less, or five or more, for example. And what is necessary is just to form the recessed part 44 corresponding to the number and shape of the convex part 43. FIG.
  • the frost generated in the indoor heat exchanger 3 was thawed by heating the indoor heat exchanger 3.
  • the frost generated in the indoor heat exchanger 3 is thawed by passing a refrigerant (a refrigerant having an evaporating temperature that is not frozen) during cooling operation or dehumidifying operation, for example, instead of the refrigerant during heating operation. May be.
  • natural thawing may be performed without flowing the refrigerant.
  • the cross-flow fan 4 may be rotationally driven as necessary to promote thawing.
  • step S4 in order to promote the drying of the indoor heat exchanger 3, a member for directing the flow of air generated by the cross-flow fan 4 toward the indoor heat exchanger 3, ventilation A road or the like may be provided.
  • the heat insulating material 31 is disposed on the front drain pan 35.
  • the heat insulating material 31 is preferably disposed on the surface (inner surface), the heat insulating material 31 is not essential.
  • the convex portion 32 formed on the heat insulating material 31 is directly formed on the inner surface of the front drain pan 35.
  • the heat insulating material 31 may be disposed on the back surface (outer surface) of the front drain pan 35.
  • the heat insulating material is not disposed on the surface of the front-rear flow path 40
  • the above example is preferable, but for example, the heat insulating material is disposed on the front surface (inner surface) or the back surface (outer surface) of the front-rear flow channel 40 You may make it do. Thereby, generation
  • a heat insulating material is provided on the surface (inner surface) of the front-rear direction flow path 40, it is preferable that the convex portion 43 and the concave portion 44 are formed on the surface of the heat insulating material.
  • the thickness of the heat insulating material 31 is constant in the left-right direction, but has a slope that goes down in the direction toward the front-rear direction flow path 40 with the vicinity of the center in the left-right direction as a boundary. Also good.
  • ozone is generated by discharging the air into the air by the discharge device 8.
  • Ozone gas may be generated inside the body 9.
  • both the negatively charged moisture and ozone gas may be generated by the discharge device 8 and released into the housing 9.
  • the discharge of the discharge device 8 is performed during the air conditioning in the above example, but instead, it may be performed while the air conditioning is stopped. Furthermore, it may be performed while the air conditioning is stopped as well as during the air conditioning as in the above example. The discharge performed while the air conditioning is stopped may be performed intermittently at regular intervals, for example, or may be performed continuously.
  • Air conditioner 16 Outdoor unit control unit (control unit) 31 Heat insulation material (drain pan, left and right channel) 32 Convex (drain pan, left and right channel) 33 Concave portion (drain pan, left and right channel) 34 Recessed part (drain pan, left and right channel) 35 Front drain pan (drain pan, left and right channel) 40 Front-rear channel (drain pan) 42 Drain port 43 Convex part (drain pan) 44 Concave part (drain pan) 100 indoor unit 101 outdoor unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

貫流ファン(4)と、室内熱交換器(3)と、室内熱交換器(3)の下方に配置されて室内熱交換器(3)において発生した結露水を表面に受け、受けた結露水を室外に排水する排水口(42)が形成されているとともに、凸部(32)を表面に有するドレンパン(2)と、室内熱交換器(3)に対し、冷房運転時及び除湿運転時に通流する冷媒の蒸発温度よりも低い蒸発温度の冷媒を通流させる室内機制御部及び室外機制御部とを備える室内機(100)を有する空気調和機とする。

Description

空気調和機
 本発明は、空気調和機に関する。
 空気調和機を構成する室内機には、室内熱交換器において発生した結露水を受けるドレンパンが備えられる。ドレンパンの構造に関する技術として、特許文献1に記載の技術が知られている。
 特許文献1には、ドレンパンと前記ドレンパンの内壁に配置されるドレンパン用発泡断熱材において、凝縮水がドレンパンとドレンパン用発泡断熱材の間に流れ込んでドレンパンの外壁に露付きすることを防止すること及び作業工数を低減させることを目的に、ドレンパン用発泡断熱材の発泡倍率を低くし、凝縮水を排出させるドレンパン排出口とドレンパン用発泡断熱材排出口のみを接着させることを特徴とした空気調和機が記載されている。
特開2008-292100号公報(特に図2を参照)
 ところで、本発明者らは、冷房運転時及び除湿運転時に通流させる冷媒の蒸発温度よりも低い蒸発温度の冷媒を室内熱交換器に通流させ、室内熱交換器に敢えて結露水を発生させる技術を検討した。なお、ここでいう「結露水」には、室内熱交換器に直接付着する液体の水を含むほか、室内熱交換器に付着した霜が溶けて発生した液体の水を含むものとする。以下、「結露水」という場合には同義である。そして、このような技術により、発生した結露水がドレンパンに流れ落ちる際、室内熱交換器に付着した埃、油分等を洗い流すことができ、室内熱交換器を清浄に保つことができる。
 ただ、この技術において、室内熱交換器には、前記のように、冷房運転時及び除湿運転時に通流させる冷媒の蒸発温度よりも低い蒸発温度の冷媒が通流する。そのため、瞬間的に発生する結露水の量は、冷房運転時及び除湿運転時に発生する結露水の量よりも多くなる。従って、ドレンパンに流れ落ちた結露水がドレンパンから溢れることを防止する観点から、ドレンパンに流れ落ちた結露水は速やかに外部に排出されることが好ましい。
 しかし、特許文献1に記載の技術では、ドレンパン外壁への露付き防止については考慮されているが、ドレンパンからの速やかな排水については考慮されていない。そのため、瞬間的に多量の結露水が発生した場合にドレンパンから速やかに排水し、ドレンパンから結露水が溢れることを防止可能な技術が望まれている。
 本発明はこのような課題に鑑みて為されたものであり、本発明が解決しようとする課題は、瞬間的に多量の結露水が発生した場合であってもドレンパンから結露水が溢れることを防止可能なドレンパンを備える空気調和機を提供することである。
 本発明者らは前記課題を解決するために鋭意検討を行った結果、以下の知見を見出して本発明を完成させた。即ち、本発明の要旨は、貫流ファンと、室内熱交換器と、当該室内熱交換器の下方に配置されて前記室内熱交換器において発生した結露水を表面に受け、受けた結露水を室外に排水する排水口が形成されているとともに、表面で受けた結露水を前記排水口に導く凹凸を表面に有するドレンパンと、前記室内熱交換器に対し、冷房運転時及び除湿運転時に通流する冷媒の蒸発温度よりも低い蒸発温度の冷媒を通流させる制御部と、を備える室内機を有することを特徴とする、空気調和機に関する。
 本発明によれば、瞬間的に多量の結露水が発生した場合であってもドレンパンから結露水が溢れることを防止可能なドレンパンを備える空気調和機を提供することができる。
本実施形態の空気調和機を構成する室内機の断面図である。 本実施形態の空気調和機に備えられる冷凍サイクルを示す図である。 本実施形態の空気調和機において行われる凍結洗浄フローを示す図である。 本実施形態の空気調和機を構成する室内機に備えられるドレンパンの様子を示す斜視図である。 本実施形態の空気調和機を構成する室内機において、ドレンパンと室内熱交換器との相対的な位置関係を示す断面図である。 図4のA部拡大図である。 図6のB-B線端面図である。 図6のC-C線断面図である。
 以下、図面を適宜参照しながら本発明を実施するための形態(本実施形態)を説明する。ただし、参照する各図はあくまでも模式図である。また、本実施形態は以下に記載する事項に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で任意に変更して実施可能である。
 図1は、本実施形態の空気調和機10(図2参照、図1では図示しない)を構成する室内機100の断面図である。図1に示す状態では、貫流ファン4は停止し、かつ、前面パネル7及び上下風向板18は閉じられて、室内機100による空調運転は停止している。室内機100は、貫流ファン4と、貫流ファン4を囲うように配置された室内熱交換器3と、室内熱交換器3の下方に配置されたドレンパン2とを備える。これらは筐体9に収容される。
 室内熱交換器3は、フィン3a及び伝熱管3bを備える。この伝熱管3bに圧縮機11(図2参照、図1では図示しない)からの冷媒が通流することでフィン3aが加熱又は冷却される。これらのうち、特に伝熱管3bに冷たい冷媒が通流し、フィン3aが冷却されると、フィン3aの表面には結露水(前記のように凍結後解凍により生じた液体の水を含む)が発生する。そこで、この結露水は、室内熱交換器3の下方に配置されたドレンパン2に流れ落ちる。ドレンパン2の構造は、図4等を参照しながら後記する。
 室内機100の内部には、空調運転中に空気の流れを遮らない位置(具体的には正面側の上方)に、空気に対して放電を行う放電装置8が配置される。空気調和中に放電装置8の放電がなされると、筐体9の内部の空気中の水分にマイナスの電荷が荷電され、マイナスに荷電された水分が筐体9内に放出される。そして、このマイナスに荷電された水分は、貫流ファン4の回転駆動により室内に放出され、室内に存在する人の肌の保水性が高められる。
 また、図示はしないが、ドレンパン2の近傍には、ドレンパン2の内表面に紫外線を照射する紫外線照射装置が備えられる。室内機100の空調運転停止中に紫外線照射装置によってドレンパン2に紫外線が照射されることで、ドレンパン2の殺菌が行われ、ドレンパン2でのかび等の発生が抑制される。
 室内機100の正面には、下方端部を中心として正面側に回動可能な前面パネル7が備えられる。また、室内機100の下面には、その背面側端部を中心として下方に回動可能な上下風向板18が備えられる。そして、室内機100による空調運転が開始されるときには、前面パネル7が回動して上方が開口することで、図示しない空気吸込口が形成される。一方で、上下風向板18が下方に回動して正面側下方が開口することで、図示しない空気吹出口が形成される。なお、室内機100の上方には、予め開口した空気吸込口6aが形成される。
 そして、この状態で貫流ファン4が回転駆動することで、空気吸込口6aと、前面パネル7の回動により形成された空気吸込口とから、フィルタ15a,15bを介して、筐体9の内部に室内の空気が吸い込まれる。吸い込まれた空気は、貫流ファン4を囲うように配置された室内熱交換器3によって熱交換された後、上下風向板18の回動により形成された空気吹出口を通じて、室内に吹き出される。
 このとき、筐体9の内部では、放電装置8による放電が行われている。そのため、室内に吹き出される空気には、マイナスに荷電された水分が含まれている。そして、上下風向板18の回動角度が制御されることで、上下方向の吹き出し位置が制御される。また、左右風向板17も、その一端が回動可能になっており、左右風向板17の回動角度が制御されることで、左右方向(図1において紙面手前と奥側との方向)の吹き出し位置が制御される。
 図2は、本実施形態の空気調和機10に備えられる冷凍サイクルを示す図である。なお、図2において、図示の簡略化のために、室内機100に備えられる部材を、図1に示したものから一部省略して示している。空気調和機10は、前記の図1に示した室内機100のほか、室外機101を有する。室内機100と室外機101とは、冷媒配管5により、冷媒が循環可能に接続される。
 室内機100は、前記のように室内熱交換器3及び貫流ファン4を備えるほか、室内機100の運転を制御する室内機制御部1を備える。詳細は図3を参照しながら後記するが、本実施形態の空気調和機10では、室内機100による空調運転後に、室内熱交換器3に結露水を発生させる制御が行われる。そして、この結露水により、室内熱交換器3の洗浄が行われる。
 室内機制御部1は、いずれも図示しないが、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、I/F(インターフェイス)等を備えて構成される。そして、室内機制御部1は、ROMに格納されている所定の制御プログラムがCPUによって実行されることにより具現化される。
 室外機101は、圧縮機11と、四方弁12と、室外ファン13と、室外熱交換器14と、膨張弁15と、室外機制御部16とを備える。圧縮機11からは図2において矢印の方向に冷媒が吐出する。そして、四方弁12によって吐出された冷媒の流路が切り替えられることで、室内機100の運転モードが、暖房運転、冷房運転又は除湿運転のいずれかに切り替えられる。具体的には、室内機100の運転モードが暖房運転のときには、図2に示す四方弁12において、実線の流路で冷媒が流れる。一方で、室内機100の運転モードが冷房運転及び除湿運転のときには、図2に示す四方弁12において、破線の流路で冷媒が流れる。
 また、室外機101に備えられる膨張弁15では、その開度が調整可能である。膨張弁15の開度の調整は、室外機101の制御を行う室外機制御部16からの指示信号に基づき、図示しないアクチュエータが駆動することで行われる。
 室外機制御部16は、いずれも図示しないが、CPU、RAM、ROM、I/F等を備えて構成される。そして、室外機制御部16は、ROMに格納されている所定の制御プログラムがCPUによって実行されることにより具現化される。なお、空気調和機10の全体の制御は、この室外機制御部16と前記の室内機制御部1とにより協動して行われる。
 本実施形態の空気調和機10では、前記のように、室内機100による空調運転後に、室内熱交換器3に結露水を発生させる制御が行われる。具体的には、室内熱交換器3に対して低温(例えば0℃以下)の冷媒を通流させることで、室内熱交換器3近傍の水分が室内熱交換器3の表面で凍結する。即ち、室内熱交換器3の表面に霜を発生させる蒸発温度の冷媒を室内熱交換器3に通流させることで、前記室内熱交換器の表面に霜が発生する。その後、暖房運転時の冷媒を通流させて室内熱交換器3を加熱して凍結した霜(水分)を解凍することで、発生した液体の結露水がドレンパン2(図1参照)に流される。これにより、空調中に筐体9に取り込まれ、室内熱交換器3に付着した微細な塵埃、油滴等が、結露水によって洗い流される。この制御について、図3を参照しながら説明する。
 図3は、本実施形態の空気調和機10において行われる凍結洗浄フローを示す図である。このフローは、特に断らない限り、室内機制御部1と室外機制御部16とが協動して行われる。まず、室内機100による空調運転中、使用者が例えばリモコン等を操作することで、空調運転が停止される(ステップS1)。次いで、冷凍サイクル内の冷媒の状態を安定させるため、所定時間(例えば数分)の待機が行われる。所定時間の待機後、室外機制御部16は、膨張弁15(図2参照)の開度を絞る。具体的には、室内機100の冷房運転時及び除湿運転時の開度よりも小さくなるように、膨張弁15の開度が小さくされる。
 そして、室外機制御部16は、四方弁12の向きを、室内機100が冷房運転時及び除湿運転時の方向の同じ方向にし、室内熱交換器3に冷媒を通流させる。この一連の動作により、膨張弁15による膨張度合いが大きくなるため、室内熱交換器3には低温(例えば0℃以下)の冷媒が供給されることになる。これにより、室内熱交換器3は冷却される。この結果、筐体9の内部の空気に含まれる水分は室内熱交換器3の表面で凍結され、霜となる(ステップS2)。
 ここで、霜を付着させる際、室内熱交換器3を通流する冷媒の温度(蒸発温度)は、冷房運転時及び除湿運転時に通流する冷媒の蒸発温度よりも低い。そのため、室内熱交換器3において霜となった水の量は、冷房運転時及び除湿運転時に発生する結露水の量よりも多い。
 次いで、室外機制御部16は、所定時間経過後(例えば数分)、四方弁12の方向を暖房運転時の方向に変更し、圧縮機11から吐出された高温の冷媒を室内熱交換器3に供給する。これにより、室内熱交換器3は加熱され、室内熱交換器3の表面の霜が解凍される(ステップS3)。そして、解凍されて発生した結露水は、ドレンパン2に流れ落ちる。これにより、室内熱交換器3に付着していた塵埃、油滴等がドレンパン2に洗い流され、「洗浄」と同じ効果が得られる。
 前記のように、霜となっていた水の量は、冷房運転時及び除湿運転時に発生する結露水よりも多い量である。そのため、ドレンパン2に瞬間的に流れ落ちる水量も、冷房運転時及び除湿運転時に発生する結露水の水量よりも多い。そして、ドレンパン2に流れ落ちた結露水は、詳細は後記するが、排水口42(図4等参照、図3では図示しない)速やかに室外に排出される。
 そして、所定時間経過後、室外機制御部16は貫流ファン4の駆動を開始する。これにより、筐体9の内部で空気が循環し、室内熱交換器3に空気が接触する結果、室内熱交換器3が乾燥される(ステップS4)。
 この図3を参照しながら説明したように、室内熱交換器3の表面で水分を凍結及び解凍することで、室内熱交換器3の所謂「洗浄」が行われる。そして、この一連の動作により、ドレンパン2には、前記のように、通常の運転モード(冷房運転及び除湿運転)の際に発生する結露水の量よりも多量の結露水が瞬間的に流れ込む。そこで、瞬間的に多量の結露水が流れ込んだ場合であってもドレンパン2から溢れださずに速やかに排水されるように、ドレンパン2が構成されている。以下、ドレンパン2の構成を中心に説明を続ける。
 図4は、本実施形態の空気調和機10を構成する室内機100に備えられるドレンパン2の様子を示す斜視図である。このドレンパン2は、前記のように室内熱交換器3の下方に配置されたものである。ドレンパン2は、例えばアクリロニトリル-ブタジエン-スチレン共重合樹脂(ABS樹脂)、ポリスチレン等の樹脂により構成される。また、ドレンパン2を構成する樹脂には、ドレンパン2でのかび等の発生を抑制するために、例えばイミダゾール系等の抗菌剤が含まれている。なお、ドレンパン2は、例えば鏡面加工された金型に樹脂材料を充填して固化させることで成型される。
 ドレンパン2は、室内機100の正面視で左右方向に延在する前ドレンパン35(図5参照、図4では図示しない。左右方向流路)を備える。そして、前ドレンパン35の内面では、平板状の断熱材31(左右方向流路)が、前記の室内熱交換器3で発生した結露水を受ける位置に配置される。ただし、この断熱材31は、その正面側及び背面側のそれぞれ端部において上方に延びることで容器形状になっている。
 断熱材31は、前ドレンパン35(図5参照)の内表面に形成された窪み(図示しない)に接着材を塗布した後に嵌められることで、前ドレンパン35の内表面に固定される。このとき、断熱材31として、弾力性を有し、かつ、当該窪みよりもやや大きな断熱材31を使用することで、窪みの内側面と断熱材31との間で隙間の発生が抑制される。なお、断熱材31には、断熱材31でのかび等の発生を抑制するために、例えばイミダゾール系等の抗菌剤が含まれている。
 また、前ドレンパン35(図5参照)の左右両端(即ち、断熱材31の左右両端)のそれぞれには、ドレンパン2の一部として、正面から背面に向かって延在する前後方向流路40が接続される。なお、詳細は後記するが、左右のそれぞれに配置された前後方向流路40の背面側には、ドレンパン2で受けた結露水を室外に排水するための排水口42が形成される。
 断熱材31の表面には、左右方向に延びる凸部32と、凸部32の正面側と背面側とにそれぞれ配置された凹部33,34とが形成される。凸部32及び凹部33,34(それぞれドレンパン2に形成された凹凸に相当)は、いずれも、表面で受けた結露水を前後方向流路40に導くようにして断熱材31の表面に形成されたものである。
 凸部32は左右方向に連続的に形成されており、その幅(正面-背面方向の長さ)は左右方向全域で一様な長さになっている。さらに、凹部33,34も左右方向に連続的に形成されており、その幅(正面-背面の長さ)も左右方向全域で一様な長さになっている。そして、凸部32は、正面-背面方向(以下、前後方向という)の中央に、左右方向に延在して形成される。
 また、断熱材31の表面では、凸部32の高さは一定になっている。即ち、断熱材31の表面には、後記する前後方向流路40に向かって下る傾斜が形成されておらず、凸部32の全体が同一平面内に形成される。ちなみに、断熱材31の厚さも、左右方向で一定である。これらの構成により、仮に室内機100が室内で傾いて取り付けられた場合でも、結露水が断熱材31の表面で溜まることが無く、左右いずれかの前後方向流路40に至らせることができる。
 断熱材31は、例えば発泡スチロール、発泡ウレタン等の吸湿しない材料で構成され、その表面は撥水性になっている。即ち、断熱材31において、結露水が流れる部分には撥水性の表面が配置される。これにより、断熱材31に結露水が流れ落ちた場合に、断熱材31の表面の結露水が蒸発し易くなり、結露水の後残りが生じにくい。また、断熱材31は吸湿しないため、断熱材31が含水してしまう結果生じるかび等の発生が抑制される。なお、断熱材31は、例えば鏡面加工された金型に樹脂材料を充填し、発泡させることで成型される。
 前後方向流路40の背面側には、ドレンパン2に流れ落ちた結露水を室外に排水するための排水管(図示しない)に接続された排水口42が形成される。そして、詳細は図8を参照しながら後記するが、前後方向流路40の背面側の底面には、排水口42に向かって下る傾斜が形成される。これにより、ドレンパン2に流れ落ちた結露水が排水口42に導かれ易くなる。
 前後方向流路40の裏側には、その正面側に、左右風向板17を駆動させるためのモータ(図示しない)が配置される。そのため、前後方向流路40の正面側は盛り上がっており、盛り上がり部41が形成される。この盛り上がり部41の高さは、前記の断熱材31に形成された凹部33の高さよりもわずかに低い程度である。そのため、断熱材31から前後方向流路40に導かれた結露水は、断熱材31の側への逆流が防止される。なお、断熱材31から盛り上がり部41に至った結露水は、盛り上がり部41を降りて排水口42に導かれる。
 なお、前後方向流路40の内側表面には、前記の前ドレンパン35(図5参照)とは異なり、断熱材は配置されていない。そのため、前記の断熱材31と前後方向流路30の内表面に配置される断熱材とが一体になったような複雑な形状の断熱材31を用意する必要が無く、製造コストの安価化が図られる
 また、ドレンパン2は、前記のように鏡面加工された金型を使用して成型される。そのため、ドレンパン2の表面ではほぼ平滑になっている。従って、前後方向流路40において、結露水が流れる部分は撥水性になっている。これにより、結露水が蒸発し易くなり、結露水の後残りが生じにくい。
 図5は、本実施形態の空気調和機10を構成する室内機100において、ドレンパン2と室内熱交換器3との相対的な位置関係を示す断面図である。図5に示すように、室内熱交換器3を構成するフィン3aとドレンパン2を構成する断熱材31とは接触している。具体的には、断熱材31の凹部34にフィン3aが接触することで、断熱材31の背面側内側面と室内熱交換器3の下方背面側端部とが接触している。
 このような配置により、室内熱交換器3の下背面側端部と、断熱材31の背面側内側面との間には、隙間が形成されない。そのため、貫流ファン4(図1参照)の回転により正面側から背面側に空気が通流する際(図5において白抜きの矢印)、室内熱交換器3の下方背面側端部と、断熱材31の背面側内側面との間の隙間を通じた空気の抜けが防止される。特に、凹部34に隣接して凸部32が形成されることで、この凸部32が障害となって空気が流れにくくなることから、そのような抜けが確実に防止される。この結果、室内熱交換器3での熱交換量を増やし、エネルギ効率が高められる。さらには、断熱材31を掠めるようにした空気の抜けが防止されるため、断熱材31の表面に存在し得る水滴が室内に飛散することが防止される。
 また、室内熱交換器3のフィン3aと断熱材31とが接触していることで、フィン3aを流れ落ちた結露水が断熱材31に移動し易くなる。即ち、これらの間に隙間があいていれば、その隙間の間で結露水が落下することになるが、フィン3aと断熱材31とが接触していることで、フィン3aの表面張力を利用して結露水が流れ落ちることになる。これにより、結露水の落下速度を速め、ドレンパン2を利用して速やかに室外に結露水が排水される。
 図6は、図4のA部拡大図である。図6において太線矢印は、凹部33,34のそれぞれに流れ落ちた結露水が流れる方向を示している。
 断熱材31には、前記のように、ドレンパン2の上方に配置された室内熱交換器3(図4では図示しない)に付着した結露水が流れ落ちる。そして、流れ落ちた結露水は、凸部32に沿って凹部33,34を通流して前後方向流路40に導かれる。このとき、凹部33を通流する結露水は、盛り上がり部41を経由して、前後方向流路40に至る。一方で、凹部34を通流する結露水は、直接、前後方向流路40に至る。
 ドレンパン2に流れ落ちる結露水は、室内機100での冷房運転時及び除湿運転時に発生するもののほか、前記のように凍結(前記の図3のステップS2を参照)により発生したものも含まれる。特に、凍結時に発生した結露水は、霜を解凍したものであるから、冷房運転時及び除湿運転時に発生する結露水よりも低温である。そのため、断熱材31の上に低温の結露水が流れ落ちることで、前ドレンパン35(図5参照、図6では図示しない)が冷やされにくい。この結果、前ドレンパン35の裏面(断熱材31が配置された側とは反対側)が結露することが防止される。これにより、前ドレンパン35の裏面側に形成された、室内機100が設置される室内に臨む通風路に水が垂れることが防止され、室内への水の飛散が防止される。さらには、当該通風路が広く確保される結果、通風抵抗の増大が防止される
 また、断熱材31の正面側端部及び背面側端部はいずれも上方向に延びている。これにより、ドレンパン2の上方に配置された室内熱交換器3(図4では図示しない)から断熱材31に流れ落ちた結露水が正面側及び背面側に漏出することが防止される。一方で、断熱材31の左右両端では、いずれも上方向に延びていない。これにより、断熱材31に流れ落ちた結露水は、凸部32に沿って、その左右両端に接続された前後方向流路40に導かれる。
 ここで、断熱材31の表面には、前後方向流路40に向かって左右方向に延びる凸部32が形成される。そして、本発明者らが検討したところ、断熱材31に流れ落ちた結露水は、連続的に形成された凸部32を構成する壁面に沿って流れ易いことがわかった。そのため、排水口42に結露水を導くことが可能な凸部32が形成されることで、結露水が途中で途切れることなく連続して流れることができ、左右両端に形成された前後方向流路40に導かれ易くなる。これにより、断熱材31の表面への結露水の後残りが抑制される。
 また、断熱材31の前後方向の中央に凸部32が形成されることで、断熱材31の表面で水滴同士が結合して過度に成長することが防止される。これにより、断熱材31の表面において結露水の水滴が小さいまま維持され、結露水が移動(即ち排水)され易くなる。
 前後方向流路40に導かれた結露水は、その表面に形成された凸部43及び凹部44により、排水口42に導かれる。前後方向流路40の表面形状について、図7を参照しながら説明する。
 図7は、図6のB-B線端面図である。この図7は、前後方向流路40での結露水の流れ方向から視たときの前後方向流路40の端面の様子を示す図である。前後方向流路40の上表面には、等間隔に形成された凸部43と、隣接する凸部43,43の間に形成された凹部44とが備えられている。凸部43は、本実施形態では四つ形成される。凸部43及び凹部44は、ドレンパン2の成型時に、凸部43及び凹部44に対応する位置及び大きさで凹及び凸が形成された金型を使用することで、ドレンパン2と一体に形成される。
 なお、凸部43及び凹部44は、前記の図6に示すように、図7に示す形状で、それぞれ、前後方向流路40の前後方向に連続的に形成される(図6を併せて参照)。
 凸部43は、上部の二つの端部が面取りされたような断面略矩形状である。凸部43の断面形状が略矩形状となっていることで、凸部43の上面と結露水との接触面積が増加する。これにより、凸部43の上面が撥水性になっていることと相俟って、凸部43を跨ぐようにした水滴の成長が抑制される。そのため、水滴が小さいまま維持され、結露水の水滴が排水口42(図6参照)に導かれ易くなる。
 また、前記の断熱材31を構成する凸部32において説明したのと同様に、結露水の水滴は、排水口42に導かれるように形成された凸部43に沿って凹部44を流れ易い。そのため、凸部43によって成長が抑制された結果、小さいままの水滴は、凸部43及び凹部44により、排水口42に導かれ易くなる。
 そして、前後方向流路40に流し込まれた結露水が排水口42に流れ易くなる結果、前後方向流路40からは速やかに結露水が消失する。そのため、前記のように低温の結露水が前後方向流路40に残留し難くなる。この結果、前後方向流路40が過度に冷やされることが防止され、前後方向流路40に断熱材を設けなくても、裏面での結露が防止される。これにより、前後方向流路40の裏面側に形成された、室内機100が設置される室内に臨む通風路に水が垂れることが防止され、室内への水の飛散が防止される。
 なお、凸部43の左右方向の幅(長さL1)は例えば3mm程度である。さらに、凸部43と当該凸部43に隣接する凸部43との中心間距離(長さL2)は例えば4mm程度である。そして、凸部43の高さ(長さL3)は例えば0.3mm程度である。
 図8は、図6のC-C線断面図である。この図8は、前後方向流路40での結露水の流れ方向に水平面内で垂直な方向から視たときの、排水口42の近傍の様子を示す図である。図8に示すように、前後方向流路40では、背面側に形成された排水口42に向かって下る傾斜が形成される。即ち、境界部45を起点として正面側では前後方向流路40は水平に延在するが、境界部45を起点として背面側では、排水口42に向かって下る傾斜が形成される。これにより、凸部43に沿って凹部44を背面に向かって流れてきた結露水が、下る傾斜により流速が加速され、排水口42を通じて排水され易くなる。
 ここで、室内機100の設置状況によっては、誤って排水口42に栓が為され、排水口42が閉塞される可能性がある。この場合、断熱材31から前後方向流路40に流れてきた結露水は、排水されずに前後方向流路40に滞留することになる。しかし、本実施形態の空気調和機10では、排水口42の近傍に傾斜が形成されていることから、排水口42の近傍に優先的に溜まることになる。そして、この傾斜をある程度緩やかにして深さを浅くすれば、この近傍の部分では、溜まる水の量が少なくなる。そのため、結露水が溜まったとしても、溜まった結露水は蒸発し易い。この結果、排水口42が閉塞された場合でも前後方向流路40の全面に結露水が滞留して、前後方向流路40の裏面で結露してしまうことが防止される。
 なお、排水口42の近傍とは、本明細書では、境界部45が形成される位置(排水口42の端部からの距離L4)及び傾斜の程度(前後方向流路40の水平面からの深さL5)により規定可能である。即ち、L4及びL5により滞留する結露水の量が決定されるため、室内機100が設置される地域等を考慮して例えば数時間程度で蒸発可能な量を決定し、その量よりも大きくなる体積となるようにL4及びL5が決定される。L4は例えば30mm程度であり、L5は例えば数mm程度である。
 また、前後方向流路40に形成された凸部43について、前記の境界部45と前後方向で同じ位置となる境界部46を境に、その高さ(前記の図7を参照しながら説明した長さL3)が傾斜の下る方向に向かって徐々に低くなる。ただし、凸部43の傾斜の変化(即ち、図7における直線の傾き)は、凹部44の傾斜の変化(即ち、図7における直線の傾き)よりも大きい。そのため、前後方向流路40に形成された傾斜の途中で凸部43が無くなることになる。
 このことを言い換えれば、排水口42の近傍では、凸部43は形成されていない(図6を併せて参照)。これにより、凸部43に沿って凹部44を流れてきた結露水が、排水口42に集まり易くなる。そのため、結露水が前後方向流路40の背面側に溜まることが抑制され、排水口42を通じて室外に排水され易くなる。
 以上の構成を有するドレンパン2では、前記のように、結露水が流れ易いように構成されている。そのため、室内熱交換器3から瞬間的に多量の結露水が流れ落ちたとしても、速やかに排水口42を通じてドレンパン2から室外に排水される。この結果、ドレンパン2から結露水が溢れることが防止される。
 また、結露水が排水され易い結果、ドレンパン2の表面に付着した塵埃も洗い流され易くなる。この結果、ドレンパン2の表面に塵埃が堆積し難くなり、ドレンパン2の内容積が長期間に亘って十分に確保される。そのため、このような作用によっても、瞬間的に多量の結露水が流れ込んだ場合に、ドレンパン2から結露水が溢れることが防止される。
 さらに、室内熱交換器3での結露水は、正面側において左右方向に延在する断熱材31に初めに流れ落ちることになる。そうすると、特に洗浄の低温の結露水が断熱材31に流れ落ちることになる。しかし、断熱材31により、低温の冷却水によって前ドレンパン35が冷却されることが防止され、前ドレンパン35の裏面側(通風路側)での結露が防止される。これにより、室内への水の飛散が防止される。
 また、前後方向流路40には、断熱材31の上を流れた結露水が流れる。そのため、断熱材31を流れるうちに結露水は室温によって温められ、この結果、前後方向流路40には、断熱材31に流れ落ちた直後の結露水の温度よりは高い温度の結露水が流れる。そのため、前後方向流路40に断熱材を配置しなくても、前後方向流路40の裏面側での結露が防止される。
 以上、本発明を具体的な実施形態を挙げながら説明したが、本発明は前記の実施形態に何ら限定されず、本発明の要旨を逸脱しない範囲内で任意に変更して実施することができる。
 例えば、前記の例では、断熱材31に形成された凸部32及び凹部33,34の幅(前後方向の長さ)は、左右方向の全域で同じとしたが、例えば、前後方向流路40に向かって徐々に広くなったり(長くなったり)、又は、徐々に狭くなったり(短くなったり)してもよい。例えば、凹部33,34の幅が前後方向流路40に向かって徐々に広くなるようにすることで、塵埃が集まり易い断熱材31の左右端部において、塵埃のつまりが確実に防止される。一方で、例えば、凹部33,34の幅が前後方向流路40に向かって徐々に広くなるようにすることで、断熱材31の左右端部において結露水の流速を速めることができ、断熱材31に存在する結露水がさらに速やかに前後方向流路40に流れ込ませることができる。
 また、例えば、断熱材31の表面に形成される凹凸の数及び形状は図示の例に限定されるものではなく、排水口42に結露水を導くことができるように形成されたものであれば、どのような形状であってもよい。具体的には、例えば凸部32は断面矩形状(図5参照)とする必要は無く、角が面取りされたような断面略矩形状としてもよい。また、矩形状以外のその他の形状としてもよい。さらに、断熱材31に形成される例えば凸部32の数も、図示のような、左右方向に一つのみ(図4参照)とする必要は無く、例えば二つ以上とすることができる。そして、凸部32の数及び形状に対応して、凹部33,34を形成すればよい。
 さらに、例えば、前後方向流路40に形成された凹凸の数及び形状も図示の例に限定されず、排水口42に結露水を導くことができるように形成されたものであれば、どのような形状であってもよい。具体的には、例えば凸部43は、角部が面取りされたような略矩形状(図7参照)とする必要は無く、角部が面取りされていない矩形状としてもよい。また、矩形状以外のその他の形状としてもよい。さらに、凸部43の数も、図示のような、前後方向に四つ(図7参照)とする必要は無く、例えば三つ以下、又は、五つ以上とすることができる。そして、凸部43の数及び形状に対応して、凹部44を形成すればよい。
 また、室内熱交換器3の洗浄に際して、前記の例では室内熱交換器3をいったん凍結させた後解凍させることで結露水を発生させているが、凍結させることなく液体の結露水をそのまま発生させるようにしてもよい。即ち、冷房運転時及び除湿運転時に通流させる冷媒の蒸発温度よりも低い蒸発温度の冷媒であれば、凍結させなくても、冷房運転時及び除湿運転時に生じる結露水の量よりも多量の結露水を発生させて、洗浄することができる。
 さらに、室内熱交換器3の洗浄に際して、前記の例では、室内熱交換器3に発生した霜は、室内熱交換器3の加熱により解凍されていた。また、室内熱交換器3に発生した霜の解凍は、暖房運転時の冷媒に代えて、例えば冷房運転時又は除湿運転時の冷媒(凍結しない蒸発温度の冷媒)を通流させることで、行ってもよい。さらには、冷媒を通流させずに、自然解凍させてもよい。なお、解凍の際には、必要に応じて、貫流ファン4を回転駆動させて、解凍を促してもよい。
 また、例えば、前記の図3を参照しながら説明したステップS4において、室内熱交換器3の乾燥を促すため、貫流ファン4による発生した空気の流れを室内熱交換器3に向かわせる部材、通風路等を設けるようにしてもよい。
 さらに、例えば、前記の例では、前ドレンパン35の上に断熱材31が配置されているが、断熱材31が表面(内面)に配置されることが好ましいものの、断熱材31は必須ではない。断熱材31が使用されない場合、断熱材31に形成されていた凸部32は前ドレンパン35の内表面に直接形成されることになる。また、断熱材31は、前ドレンパン35の裏面(外面)に配置されるようにしてもよい。
 また、例えば、前後方向流路40の表面に断熱材を配置していないことについて、前記の例が好ましいものの、例えば前後方向流路40の表面(内面)又は裏面(外面)に断熱材を配置するようにしてもよい。これにより、前後方向流路40の裏面での結露の発生がより確実に防止される。前後方向流路40の表面(内面)に断熱材が設けられる場合、その断熱材の表面に凸部43及び凹部44が形成されることが好ましい。
 さらに、例えば、前記の例では、断熱材31の厚さは左右方向で一定としたが、左右方向で中央近傍を境にして、前後方向流路40に向かう方向に下る傾斜を有していてもよい。
 また、例えば、前記の例では、放電装置8により、マイナスに荷電された水分が筐体9の内部で発生するようにしたが、放電装置8によって空気中に放電させてオゾンを発生させ、筐体9の内部にオゾンガスを発生させるようにしてもよい。また、放電装置8により、前記のマイナスに荷電された水分とオゾンガスとの双方を発生させて、これらを筐体9の内部に放出するようにしてもよい。
 さらに、例えば、放電装置8の放電は、前記の例では空調中に行うようにしたが、これに代えて、空調停止中に行うようにしてもよい。さらには、前記の例のように空調中に行うとともに、空調停止中にも行うようにしてもよい。空調停止中に行う放電は、例えば、一定時間毎に断続的に行ってもよいし、連続的に行うこともできる。
 1  室内機制御部(制御部)
 2  ドレンパン
 3  室内熱交換器
 3a  フィン
 3b  伝熱管
 4  貫流ファン
 8  放電装置
 10  空気調和機
 16  室外機制御部(制御部)
 31  断熱材(ドレンパン、左右方向流路)
 32  凸部(ドレンパン、左右方向流路)
 33  凹部(ドレンパン、左右方向流路)
 34  凹部(ドレンパン、左右方向流路)
 35  前ドレンパン(ドレンパン、左右方向流路)
 40  前後方向流路(ドレンパン)
 42  排水口(ドレンパン)
 43  凸部(ドレンパン)
 44  凹部(ドレンパン)
 100  室内機
 101  室外機

Claims (14)

  1.  貫流ファンと、
     室内熱交換器と、
     当該室内熱交換器の下方に配置されて前記室内熱交換器において発生した結露水を表面に受け、受けた結露水を室外に排水する排水口が形成されているとともに、凹凸を表面に有するドレンパンと、
     前記室内熱交換器に対し、冷房運転時及び除湿運転時に通流する冷媒の蒸発温度よりも低い蒸発温度の冷媒を通流させる制御部と、を備える室内機を有することを特徴とする、空気調和機。
  2.  前記ドレンパンは、前記室内機の正面視で左右方向に延在する左右方向流路と、当該左右方向流路の左右両端にそれぞれに接続され、前記室内機の正面から背面に向かって延在する前後方向流路とを備えて構成されることを特徴とする、請求項1に記載の空気調和機。
  3.  前記凹凸は、前記左右方向流路の内部に、前記室内機の正面視で左右方向に延在していることを特徴とする、請求項2に記載の空気調和機。
  4.  前記ドレンパンは、前記左右方向流路の表面に断熱材を備える一方で、前記前後方向流路の表面には断熱材を備えないことを特徴とする、請求項2又は3に記載の空気調和機。
  5.  前記左右方向流路の表面に備えられた断熱材は、前記室内熱交換器において発生した結露水を受ける部分に配置され、
     前記凹凸は当該断熱材の表面に形成されていることを特徴とする、請求項4に記載の空気調和機。
  6.  前記前後方向流路の背面側には、前記排水口が形成されていることを特徴とする、請求項2又は3に記載の空気調和機。
  7.  前記前後方向流路の底面には、前記排水口の近傍において、前記排水口に向かって下る傾斜が形成されていることを特徴とする、請求項2又は3に記載の空気調和機。
  8.  前記前後方向流路には凸部が形成され、
     当該凸部は、前記傾斜の途中で無くなるように前記傾斜の下る方向に徐々に高さが低くなっていることを特徴とする、請求項7に記載の空気調和機。
  9.  前記室内熱交換器を構成するフィンと前記ドレンパンとは接触しており、
     前記ドレンパンを構成する凹凸のうちの凹んだ部分の内側に前記フィンの先端が接触していることを特徴とする、請求項1乃至3の何れか1項に記載の空気調和機。
  10.  前記ドレンパンのうち、前記結露水が流れる部分には撥水性の表面が配置されていることを特徴とする、請求項1乃至3の何れか1項に記載の空気調和機。
  11.  前記制御部は、冷房運転時及び除湿運転時に通流する冷媒の蒸発温度よりも低い蒸発温度であって、かつ、前記室内熱交換器の表面に霜を発生させる蒸発温度の冷媒を前記室内熱交換器に通流させて、前記室内熱交換器の表面に霜を発生させ、
     前記室内熱交換器の表面に霜を発生させた後に、発生した霜を解凍することで液体の水を発生させて、結露水として前記ドレンパンに流すことを特徴とする、請求項1乃至3の何れか1項に記載の空気調和機。
  12.  前記室内機は、オゾンガス、及び、マイナスに荷電された水分のうちの少なくとも一方を発生させる放電装置を備えることを特徴とする、請求項1乃至3の何れか1項に記載の空気調和機。
  13.  前記室内機は、前記ドレンパンに紫外線を照射する紫外線照射装置を備えることを特徴とする、請求項1乃至3の何れか1項に記載の空気調和機。
  14.  前記ドレンパンには抗菌剤が含まれていることを特徴とする、請求項1乃至3の何れか1項に記載の空気調和機。
PCT/JP2017/035926 2017-04-28 2017-10-03 空気調和機 WO2018198398A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780088134.5A CN110392808B (zh) 2017-04-28 2017-10-03 空调机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017089731A JP6349011B1 (ja) 2017-04-28 2017-04-28 空気調和機
JP2017-089731 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018198398A1 true WO2018198398A1 (ja) 2018-11-01

Family

ID=62706324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035926 WO2018198398A1 (ja) 2017-04-28 2017-10-03 空気調和機

Country Status (4)

Country Link
JP (1) JP6349011B1 (ja)
CN (1) CN110392808B (ja)
TW (1) TWI657220B (ja)
WO (1) WO2018198398A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7421064B2 (ja) * 2019-09-30 2024-01-24 ダイキン工業株式会社 空気調和機
CN215982864U (zh) * 2021-09-30 2022-03-08 广东美的暖通设备有限公司 空调室内机和空调

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07172152A (ja) * 1993-05-19 1995-07-11 Nippondenso Co Ltd 空気調和装置のクーリングユニットおよび排水ケース
JP2002277044A (ja) * 2001-03-19 2002-09-25 Mitsubishi Heavy Ind Ltd 床置型空気調和装置
JP2003279190A (ja) * 2002-03-19 2003-10-02 Kitakyushu Foundation For The Advancement Of Industry Science & Technology 気体の除湿装置及び除湿方法
JP2007083855A (ja) * 2005-09-21 2007-04-05 Calsonic Kansei Corp 凝縮水排水構造
JP2008202829A (ja) * 2007-02-19 2008-09-04 Sharp Corp ドレンパン及びこれを備えた空気調和機
JP2009052844A (ja) * 2007-08-28 2009-03-12 Toshiba Carrier Corp 空気調和機
JP2009243796A (ja) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp 空気調和装置
US20100050664A1 (en) * 2008-08-26 2010-03-04 Bajnar Dan David Method and system for maintenance of an air-condition unit
JP2014119131A (ja) * 2012-12-13 2014-06-30 Mitsubishi Electric Corp 空気調和機の室内機
JP2016200290A (ja) * 2015-04-07 2016-12-01 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101273236B (zh) * 2005-10-31 2011-07-06 三菱电机株式会社 空调机的室内机
KR20070073163A (ko) * 2006-01-04 2007-07-10 엘지전자 주식회사 공기조화기의 실내기
CN101078556B (zh) * 2006-05-25 2011-07-06 乐金电子(天津)电器有限公司 空调器室内机的排水底盘
KR101416988B1 (ko) * 2006-11-06 2014-08-07 엘지전자 주식회사 공기조화기
CN103363648A (zh) * 2012-03-29 2013-10-23 乐金电子(天津)电器有限公司 中空式空调器接水盘

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07172152A (ja) * 1993-05-19 1995-07-11 Nippondenso Co Ltd 空気調和装置のクーリングユニットおよび排水ケース
JP2002277044A (ja) * 2001-03-19 2002-09-25 Mitsubishi Heavy Ind Ltd 床置型空気調和装置
JP2003279190A (ja) * 2002-03-19 2003-10-02 Kitakyushu Foundation For The Advancement Of Industry Science & Technology 気体の除湿装置及び除湿方法
JP2007083855A (ja) * 2005-09-21 2007-04-05 Calsonic Kansei Corp 凝縮水排水構造
JP2008202829A (ja) * 2007-02-19 2008-09-04 Sharp Corp ドレンパン及びこれを備えた空気調和機
JP2009052844A (ja) * 2007-08-28 2009-03-12 Toshiba Carrier Corp 空気調和機
JP2009243796A (ja) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp 空気調和装置
US20100050664A1 (en) * 2008-08-26 2010-03-04 Bajnar Dan David Method and system for maintenance of an air-condition unit
JP2014119131A (ja) * 2012-12-13 2014-06-30 Mitsubishi Electric Corp 空気調和機の室内機
JP2016200290A (ja) * 2015-04-07 2016-12-01 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機

Also Published As

Publication number Publication date
CN110392808A (zh) 2019-10-29
JP6349011B1 (ja) 2018-06-27
TWI657220B (zh) 2019-04-21
CN110392808B (zh) 2021-06-11
TW201839328A (zh) 2018-11-01
JP2018189254A (ja) 2018-11-29

Similar Documents

Publication Publication Date Title
TWI659182B (zh) air conditioner
JP4931566B2 (ja) 空気調和機
JP6340111B1 (ja) 空気調和機の室内機
JP5092647B2 (ja) 換気空調装置
JP4880377B2 (ja) 空気調和機
JP5272360B2 (ja) 換気空調装置
JP4708199B2 (ja) 空気調和機
JP6349011B1 (ja) 空気調和機
KR102037319B1 (ko) 냉장고의 기계실
JP4495005B2 (ja) 空気調和機
JP2007210360A (ja) 空調装置
KR101389619B1 (ko) 공기조화기의 응축수 처리장치
JP5228344B2 (ja) 換気空調装置
KR100354132B1 (ko) 환기회수율 조절식 폐열회수겸용 냉난방 공기조화기
KR20080000025U (ko) 냉풍기
JPWO2019180998A1 (ja) ルーバー、空気調和機および除湿機
CN208154619U (zh) 空调器
JP6251884B2 (ja) 除湿装置
KR101645962B1 (ko) 냉각탑 및 그 제어 방법
JP2011069549A (ja) 空気調和機の室内機
JP4495006B2 (ja) 空気調和機
JP2007127374A (ja) 一体型空気調和機
JP2011127892A (ja) 空気調和方法及び空気調和機
WO2020059232A1 (ja) 気液接触モジュール
KR20240097099A (ko) 공기조화기 및 공기조화기의 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907744

Country of ref document: EP

Kind code of ref document: A1