[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018198288A1 - ポンプ監視装置、真空処理装置および真空ポンプ - Google Patents

ポンプ監視装置、真空処理装置および真空ポンプ Download PDF

Info

Publication number
WO2018198288A1
WO2018198288A1 PCT/JP2017/016818 JP2017016818W WO2018198288A1 WO 2018198288 A1 WO2018198288 A1 WO 2018198288A1 JP 2017016818 W JP2017016818 W JP 2017016818W WO 2018198288 A1 WO2018198288 A1 WO 2018198288A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
vacuum pumps
vacuum
monitoring device
abnormality
Prior art date
Application number
PCT/JP2017/016818
Other languages
English (en)
French (fr)
Inventor
雄介 玉井
陽 野田
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2019515000A priority Critical patent/JPWO2018198288A1/ja
Priority to US16/607,703 priority patent/US20200141415A1/en
Priority to PCT/JP2017/016818 priority patent/WO2018198288A1/ja
Priority to CN201780089971.XA priority patent/CN110546381A/zh
Publication of WO2018198288A1 publication Critical patent/WO2018198288A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/048Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps comprising magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0476Active magnetic bearings for rotary movement with active support of one degree of freedom, e.g. axial magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/048Active magnetic bearings for rotary movement with active support of two degrees of freedom, e.g. radial magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/43Screw compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0442Active magnetic bearings with devices affected by abnormal, undesired or non-standard conditions such as shock-load, power outage, start-up or touchdown

Definitions

  • the present invention relates to a pump monitoring device, a vacuum processing device, and a vacuum pump.
  • processing is performed in a high-vacuum process chamber. Therefore, as a means for exhausting the gas in the process chamber and maintaining the high vacuum, for example, a turbo molecular pump Such a vacuum pump is used.
  • a turbo molecular pump Such a vacuum pump is used.
  • Patent Document 1 discloses a method for detecting the products deposited in the pump.
  • a current value of a motor that rotationally drives a rotary body of a pump is measured, and a warning is issued when the amount of change in the measured value with respect to the initial value of the motor current is equal to or greater than a predetermined value. I am doing so.
  • the pump monitoring device is a pump monitoring device that detects an abnormality of a plurality of vacuum pumps connected to the same chamber, and each of the pump rotors of the plurality of vacuum pumps. Based on the result of comparing the signals representing the rotation state, it is estimated that an abnormality has occurred in any of the plurality of vacuum pumps.
  • the signal indicating the rotation state is a motor current value of a motor that rotationally drives the pump rotor, and is different from each other in the vacuum pumps. Based on the difference between the motor current values, it is estimated that an abnormality has occurred in any of the plurality of vacuum pumps.
  • the pump rotor is magnetically levitated and supported by a magnetic bearing, and the signal indicating the rotation state is based on a magnetic bearing control amount of the magnetic bearing. Calculated.
  • the rotational state of the plurality of vacuum pumps is represented from one or more vacuum processing apparatuses including a plurality of vacuum pumps that evacuate the chamber. An input unit for inputting a signal is provided, and it is estimated that an abnormality has occurred in any of the plurality of vacuum pumps for each of the vacuum processing apparatuses.
  • a vacuum processing apparatus includes a chamber, a plurality of vacuum pumps that evacuate the chamber, and the pump monitoring apparatus according to the first aspect.
  • the vacuum pump has a pump monitoring device according to the first aspect, a pump rotor that is rotationally driven by a motor, and an input to which a signal representing a rotational state from another vacuum pump is input.
  • the pump monitoring device estimates a pump abnormality by comparing a signal representing the rotational state of the pump rotor with a signal representing the rotational state input from the input unit.
  • FIG. 1 is a diagram showing a semiconductor manufacturing apparatus according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing details of the pump body.
  • FIG. 3 is a diagram illustrating an example of a measured motor current value.
  • FIG. 4 is a block diagram showing a vacuum pump and a pump monitoring device.
  • FIG. 5 is a diagram illustrating a configuration of the displacement sensor.
  • FIG. 6 is a flowchart illustrating an example of the abnormality determination process.
  • FIG. 7 is a block diagram illustrating magnetic bearing control.
  • FIG. 8 is a diagram illustrating an example of the XY value.
  • FIG. 9 is a flowchart illustrating an example of the abnormality determination process in the second embodiment.
  • FIG. 10 is a diagram for explaining the third embodiment.
  • FIG. 11 is a diagram for explaining the fourth embodiment.
  • FIG. 1 is a diagram showing a semiconductor manufacturing apparatus 10 according to the first embodiment.
  • the semiconductor manufacturing apparatus 10 is a vacuum processing apparatus such as an etching apparatus.
  • two vacuum pumps 1 ⁇ / b> A and 1 ⁇ / b> B are attached to the process chamber 100, but the present invention can be similarly applied when three or more are attached.
  • the vacuum pump 1A is attached to the process chamber 100 via a valve 3A
  • the vacuum pump 1B is attached to the process chamber 100 via a valve 3B.
  • the semiconductor manufacturing apparatus 10 includes a main controller 110 that controls the entire manufacturing apparatus including the vacuum pumps 1A and 1B and the valves 3A and 3B.
  • the main controller 110 includes a monitoring device 4 that monitors whether the vacuum pumps 1A and 1B are abnormal.
  • the vacuum pumps 1A and 1B are vacuum pumps of the same model, and each includes a pump body 11 and a controller 12 that drives and controls the pump body 11.
  • Each controller 12 of the vacuum pumps 1A and 1B is connected to the main controller 110 of the semiconductor manufacturing apparatus 10 via the communication line 40.
  • FIG. 2 is a cross-sectional view showing details of the pump body 11.
  • the vacuum pumps 1A and 1B in the present embodiment are magnetic bearing type turbo molecular pumps, and a rotary body R is provided in the pump body 11.
  • the rotating body R includes a pump rotor 14 and a rotor shaft 15 fastened to the pump rotor 14.
  • the pump rotor 14 is formed with a plurality of rotor blades 14a on the upstream side, and a cylindrical portion 14b constituting a thread groove pump on the downstream side.
  • a plurality of fixed blade stators 62 and a cylindrical screw stator 64 are provided on the fixed side.
  • the screw groove is formed on the screw stator 64 side, but the screw groove may be formed in the cylindrical portion 4b.
  • Each fixed blade stator 62 is placed on the base 60 via a spacer ring 63.
  • the rotor shaft 15 is magnetically levitated and supported by radial magnetic bearings 17A and 17B and an axial magnetic bearing 17C provided on the base 60, and is rotated by a motor 16.
  • Each of the magnetic bearings 17A to 17C includes an electromagnet and a displacement sensor, and the floating position of the rotor shaft 15 is detected by the displacement sensor.
  • the rotational speed of the rotor shaft 15 is detected by a rotational speed sensor 18.
  • the rotor shaft 15 is supported by emergency mechanical bearings 66a and 66b.
  • a pump casing 61 in which an air inlet 61a is formed is bolted to the base 60.
  • An exhaust port 65 is provided at the exhaust port 60 a of the base 60, and a back pump is connected to the exhaust port 65.
  • the base 60 is provided with a heater 19 and a refrigerant pipe 20 through which a refrigerant such as cooling water flows.
  • a refrigerant such as cooling water flows.
  • the heater 19 is turned on and off and the refrigerant flowing through the refrigerant pipe 20 is turned on and off in order to suppress product accumulation on the thread groove pump portion and the downstream rotor blade 14a.
  • the temperature adjustment is performed so that the base temperature in the vicinity of the screw stator fixing portion becomes a predetermined temperature.
  • the refrigerant pipe 20 is provided with an electromagnetic valve for turning on and off the refrigerant.
  • the two vacuum pumps 1A and 1B attached to the same process chamber 100 can be regarded as having almost the same use conditions.
  • pump maintenance due to deposition of reaction products is also performed at the same timing. For this reason, it is considered that the deposition state of the reaction product in the vacuum pump 1A and the vacuum pump 1B as the usage time elapses is almost the same.
  • FIG. 3 is a diagram showing an example of measured values of the motor current of the vacuum pump 1A and the vacuum pump 1B, and shows measured values in a state where the deposition of reaction products has progressed.
  • the horizontal axis represents time
  • the vertical axis represents the motor current value.
  • a line MA indicated by a solid line indicates a motor current value of the vacuum pump 1A
  • a line MB indicated by a broken line indicates a motor current value of the vacuum pump 1B.
  • gas is introduced into the process chamber 100, and the motor current values MA and MB are increased.
  • the motor current value greatly fluctuates as the gas flow rate fluctuates.
  • the vacuum pumps 1A and 1B are the same type of vacuum pump and use conditions are almost the same, the motor current values MA and MB are almost the same regardless of the change in the gas introduction amount as shown in FIG. The change tendency is shown, and the difference between the motor current values MA and MB is small.
  • the difference between the motor current value MA of the vacuum pump 1A and the motor current value MB of the vacuum pump 1B is calculated, and the magnitude of the difference exceeds a preset threshold (for example, FIG. 3), a warning is issued to the user.
  • FIG. 4 is a block diagram showing the configuration of the vacuum pumps 1A and 1B provided in the semiconductor manufacturing apparatus 10.
  • the vacuum pumps 1A and 1B are vacuum pumps of the same model.
  • the pump body 11 includes a motor 16, a magnetic bearing 17 and a rotation speed sensor 18, and the controller 12 includes a communication port 21, a magnetic bearing control unit 22, and a motor control unit 23. And a storage unit 24.
  • the radial magnetic bearings 17 ⁇ / b> A and 17 ⁇ / b> B and the axial magnetic bearing 17 ⁇ / b> C in FIG. 2 are collectively referred to as a magnetic bearing 17.
  • the main controller 110 includes a pump monitoring device 120, a display unit 130, and a communication port 44.
  • the motor control unit 23 estimates the rotation speed of the rotor shaft 15 based on the rotation signal detected by the rotation speed sensor 18, and controls the motor 16 to a predetermined target rotation speed based on the estimated rotation speed. Since the load on the pump rotor 14 increases as the gas flow rate increases, the predetermined target rotational speed is maintained by controlling the motor current according to the load.
  • the magnetic bearing 17 includes a bearing electromagnet and a displacement sensor for detecting the floating position of the rotor shaft 15.
  • FIG. 5 is a diagram showing the configuration of the displacement sensor.
  • the radial magnetic bearing 17A in FIG. 2 is composed of magnetic bearings for two axes, the x-axis and the y-axis, and includes a pair of displacement sensors X1a and X1b for the x-axis and a pair of displacement sensors Y1a and Y1b for the y-axis. I have.
  • the axial magnetic bearing 17C is provided with a displacement sensor z that detects the displacement of the rotor shaft 15 in the axial direction.
  • the magnetic bearing control unit 22 provided in the controller 12 of the vacuum pump 1A includes displacement sensors X1a, X1b, Y1a, Y1b, X2a, X2b, Y2a provided in the pump body 11 of the vacuum pump 1A. , Y2b, z, the respective detection signals are input.
  • the magnetic bearing control unit 22 provided in the controller 12 of the vacuum pump 1B includes displacement sensors X1a, X1b, Y1a, Y1b, X2a, X2b, Y2a, Y2b, provided in the pump body 11 of the vacuum pump 1B. Each detection signal is input from z.
  • the magnetic bearing control unit 22 of the controller 12 is configured so that the rotor shaft 15 is magnetically supported at the target floating position.
  • the exciting current of the magnetic bearing 17 is controlled.
  • the storage unit 24 of the controller 12 stores parameters necessary for motor control and magnetic bearing control, as well as model data of the vacuum pumps 1A and 1B.
  • the pump monitoring device 120 provided in the main controller 110 determines whether or not abnormality (that is, excessive deposition of reaction products) has occurred in the vacuum pumps 1A and 1B attached to the process chamber 100. It is a device that monitors. Information is exchanged between the controller 12 of the vacuum pumps 1A and 1B and the main controller 110 by communication. In the example shown in FIG. 4, the case where signals are exchanged by serial communication is shown.
  • the controller 12 is provided with a communication port 21, and the main controller 110 is also provided with a communication port 44.
  • the communication port 21 of the controller 12 is connected to the communication port 44 of the main controller 110 by a communication line 40.
  • the pump monitoring device 120 uses a signal representing the rotation state of each pump rotor 14 as information for detecting an abnormality in the vacuum pumps 1A and 1B.
  • a case will be described in which the motor current values MA and MB of the vacuum pumps 1A and 1B are used as signals representing the rotation state of the pump rotor 14.
  • the motor control unit 23 of the controller 12 calculates the rotational speed of the motor 16 based on the detection value of the rotational speed sensor 18, and performs feedback control so that the detected rotational speed becomes the target rotational speed. In a state where a series of processes are performed as shown in FIG. 3, the motor control unit 23 performs steady operation control for maintaining the rotation speed at the rated rotation speed. As described above, since the gas is introduced into the process chamber 100 in the section indicated by the symbol B, the load on the pump rotor 14 increases. Since the motor control unit 23 performs control to maintain the motor rotation speed at the rated rotation speed, the motor current values MA and MB increase as the gas load increases.
  • the pump monitoring device 120 receives the motor current values MA and MB of the vacuum pumps 1A and 1B acquired through the communication line 40.
  • the pump monitoring device 120 determines that an abnormality occurs when the magnitude
  • the vacuum pumps 1A and 1B have almost the same use environment, and the reaction product is deposited in almost the same manner. If the accumulated amount of the reaction product becomes excessive, an instantaneous increase in the motor current value estimated to be caused by accidental contact between the cylindrical portion 14b and the screw stator 64 occurs. However, such an increase in the motor current value occurs accidentally, and it is not known which of the vacuum pumps 1A and 1B occurs. In this embodiment, since the magnitude
  • the threshold value ⁇ a preset value may be used, or the threshold value ⁇ may be set based on the motor current values MA and MB of the vacuum pumps 1A and 1B that are actually operating.
  • the threshold value ⁇ is set based on the motor current values MA and MB in the operating state
  • the threshold value ⁇ is set based on the motor current values MA and MB in the initial state in which the usage period after the vacuum pumps 1A and 1B are used is shallow.
  • the threshold value ⁇ may be set based on the motor current values MA and MB from the use start time to the abnormality determination time.
  • the threshold ⁇ can be set without being affected by product accumulation. Further, in the initial state, the instantaneous increase in the motor current value as indicated by the symbol A in FIG. 3 hardly occurs.
  • the pump monitoring device 120 acquires a large amount of data over time with respect to the motor current values MA and MB, and calculates the standard deviation ⁇ of the difference ⁇ M based on these data. Since
  • FIG. 6 is a flowchart illustrating an example of an abnormality determination process performed by the pump monitoring device 120.
  • step S110 the motor current values MA and MB are read in step S110, and the magnitude
  • step S130 it is determined whether the magnitude relationship between
  • step S130 if it is determined that
  • the processing from step S110 to step S130 is repeatedly executed at predetermined time intervals until it is determined yes in step S130.
  • the pump monitoring device 120 that detects an abnormality in the plurality of vacuum pumps 1A and 1B connected to the same process chamber 100 has the pump rotor 14 of each of the plurality of vacuum pumps 1A and 1B. It is estimated that an abnormality has occurred in one of the vacuum pumps 1A and 1B based on the result of comparing the signals representing the rotation states of the vacuum pumps 1A and 1B.
  • the pump state such as the deposition amount of the reaction product is almost the same, and even if the motor current value fluctuates due to the fluctuation of the gas flow rate, the pump rotor
  • the signals representing the 14 rotational states show the same tendency. Therefore, by comparing the signals representing the rotational state, when the signals representing the rotational state (motor current values MA and MB in the example of FIG. 3) deviate from each other as at time t2 in FIG. It can be easily estimated that an abnormality has occurred in either of the vacuum pumps 1A and 1B, and a conventional erroneous determination can be prevented.
  • the motor current values MA and MB of the motor 16 that rotationally drives the pump rotor 14 can be used as a signal representing the above-described rotation state.
  • the above-described pump monitoring apparatus 120 is added to the semiconductor manufacturing apparatus 10 which is a vacuum processing apparatus including a process chamber 100 and a plurality of vacuum pumps 1A and 1B for evacuating the process chamber 100. You may make it provide. The operator can accurately know the maintenance timing of the vacuum pumps 1A and 1B attached to the process chamber 100 by a warning from the pump monitoring device 120.
  • the present invention can be applied to the case where three or more vacuum pumps are attached. Even when three or more vacuum pumps are installed, since each vacuum pump is used under the same conditions, any one of the plurality of vacuum pumps is abnormal (ie, excessive deposition of reaction products). Is detected, the pump monitoring device 120 warns that maintenance is required for all of the plurality of vacuum pumps attached to the process chamber 100.
  • the pump monitoring device 120 obtains motor current values from two arbitrary pumps from a plurality of vacuum pumps attached to the process chamber 100, and the difference
  • Such determination regarding any two units is performed for all of the plurality of vacuum pumps. For example, when five vacuum pumps 1A, 1B, 1C, 1D, and 1E are attached to the process chamber 100, three types of (1A, 1B), (1C, 1D), and (1E, 1A) It is determined whether or not
  • the three combinations (1A, 1B), (1C, 1D), and (1E, 1A) include all of the vacuum pumps 1A, 1B, 1C, 1D, and 1E attached to the process chamber 100. Therefore, the abnormality determination is performed for all the vacuum pumps 1A to 1E by performing the above-described abnormality detection processing for the three types of combinations.
  • the motor current values MA and MB are used as signals representing the rotation state of the pump rotor 14, but in the second embodiment, magnetism generated based on the displacement signal of the displacement sensor.
  • a signal indicating the rotation state is calculated based on the bearing control amount.
  • the radial magnetic bearings 17A, 17B, and 17C are provided with displacement sensors for detecting the flying position of the rotor shaft 15, respectively.
  • the displacement signal of displacement sensor X2a, X2b, Y2a, Y2b which detects the floating position of a radial direction is used as a signal showing a rotation state is demonstrated.
  • the radial magnetic bearing 17 ⁇ / b> A includes two pairs of electromagnets arranged so as to sandwich the rotor shaft 15.
  • a pair of displacement sensors X2a and X2b are provided for one electromagnet pair arranged in the x-axis direction, and a pair of displacement sensors Y2a and Y2b are provided for the other electromagnet pair arranged in the y-axis direction. It has been.
  • FIG. 7 is a block diagram illustrating magnetic bearing control related to the displacement sensors X2a and X2b.
  • the block diagram regarding the displacement sensors Y2a and Y2b is exactly the same as in the case of FIG.
  • the displacement signals of the displacement sensors X2a and X2b change according to the size of the gap between the displacement sensors X2a and X2b and the rotor shaft 15.
  • Displacement signals from the displacement sensors X2a and X2b are input to the differential amplifier 602.
  • the differential amplifier 602 outputs a differential signal Vdif that is a difference value between them.
  • the differential signal Vdif is input to the PID control circuit 53.
  • the PID control circuit 53 performs PID calculation on the current value to be passed through the electromagnet 37x so that the differential signal Vdif becomes zero, that is, the rotor shaft 15 is supported at the center of the displacement sensors X2a and X2b, and the magnetic It outputs to the current amplifier 55 as a bearing control amount.
  • the current amplifier 55 supplies an electromagnet current corresponding to the input magnetic bearing control amount to the electromagnet 37x.
  • an XY value that is a signal indicating the rotational state of the pump rotor 14 is calculated.
  • the magnetic bearing control amount in the x-axis direction is represented as PID-IX
  • the magnetic bearing control amount in the y-axis direction is represented as PID-IY.
  • the pump monitoring device 120 reads these magnetic bearing control amounts PID-IX and PID-IY from the vacuum pumps 1A and 1B, respectively, and calculates the XY value represented by Expression (1).
  • XY ⁇ (PID-IX) 2 + (PID-IY) 2 ⁇ 1/2 (1)
  • the XY value represented by the equation (1) is introduced as an index representing the horizontal force applied to the pump rotor 14, that is, the deviation of the axial center of the pump rotor 14 from the target flying position.
  • the greater the horizontal force that is, the greater the deviation of the axial center of the pump rotor 14 from the target flying position, the greater the XY value.
  • FIG. 8 is a diagram illustrating an example of the XY value.
  • FIG. 8 shows the XY values detected by the two vacuum pumps 1A and 1B attached to the same process chamber. The pump state is almost the same as the case shown in FIG.
  • the vertical axis represents the XY value
  • the horizontal axis represents time
  • the line SA indicated by a solid line indicates the XY value of the vacuum pump 1A
  • the line SB indicated by a broken line indicates the XY value of the vacuum pump 1B.
  • the change pattern of the XY values SA and SB in each section C is the same pattern in any section C.
  • between the XY value SA and the XY value SB at time t3 is larger than
  • is considered to be caused by contact between the cylindrical portion 14 b and the screw stator 64.
  • a momentary increase in the motor current value as indicated by reference symbol A in FIG. 3 occurs, a momentary increase in
  • the magnetic bearing control amounts PID-IX and PID-IY suppress the fluctuation. fluctuate. Therefore, the XY value fluctuates to some extent even in a state where there is no contact between the cylindrical portion 14b and the screw stator 64.
  • the pump monitoring device 120 calculates the XY values of the vacuum pumps 1A and 1B, respectively.
  • the difference ⁇ XY between the two calculated XY values is larger than the predetermined threshold value
  • the threshold ⁇ can be set in the same manner as in the first embodiment. For example, when the standard deviation of the difference ⁇ XY is ⁇ , 6 ⁇ may be set as the threshold ⁇ .
  • FIG. 9 is a flowchart showing an example of the abnormality determination process in the second embodiment.
  • step S200 as in the case of the first embodiment, a threshold value ⁇ based on the XY values SA and SB in the initial state is set.
  • the motor current values MA and MB in the first embodiment may be replaced with the XY values SA and SB, and the same processing as step S100 in FIG. 6 may be performed, and detailed description thereof is omitted here.
  • the calculated threshold value ⁇ is stored in a storage unit (not shown) provided in the pump monitoring device 120.
  • step S210 the XY values SA and SB are read, and in step S220, the magnitude of the difference between the XY values
  • step S230 it is determined whether the magnitude relationship between
  • step S230 determines whether the process is a correct answer to the answer in step S230. If it is determined in step S230 that
  • the processing from step S210 to step S230 is repeatedly executed at predetermined time intervals until it is determined yes in step S230.
  • the pump rotor 14 is a signal representing the rotation state based on the magnetic bearing control amounts PID-IX and PID-IY when the pump rotor 14 is supported by magnetic levitation.
  • a certain XY value was calculated.
  • the XY values SA and SB are calculated for the vacuum pumps 1A and 1B, respectively, and the magnitude of the difference
  • the XY value represents the deviation of the axial center of the pump rotor 14 with respect to the target flying position.
  • the displacement signals of the displacement sensors X2a, X2b, Y2a, Y2b close to the pump rotor 14 in the axial direction are used, but the displacement sensors X1a, You may use the displacement signal of X1b, Y1a, Y1b.
  • FIG. 10 is a diagram for explaining the third embodiment, and is a block diagram showing the configuration of the vacuum pumps 1A and 1B provided in the semiconductor manufacturing apparatus 10 as in FIG.
  • the pump monitoring device 120 is provided in the main controller 110 of the semiconductor manufacturing apparatus 10.
  • the pump monitoring device 120 is provided in the controller 12 for each of the vacuum pumps 1A and 1B.
  • Other configurations are the same as those shown in FIG.
  • the pump monitoring device 120 provided in the controller 12 of the vacuum pump 1A acquires a signal indicating the rotation state of the pump rotor 14 of the vacuum pump 1A, and at the same time, the pump rotor 14 of another vacuum pump 1B via the communication line 40.
  • a signal indicating the rotation state is acquired from the vacuum pump 1B.
  • the pump monitoring device 120 provided in the controller 12 of the vacuum pump 1B obtains a signal indicating the rotation state of the pump rotor 14 of the vacuum pump 1B, and pumps of other vacuum pumps 1A via the communication line 40.
  • a signal indicating the rotation state of the rotor 14 is acquired from the vacuum pump 1A.
  • the signal indicating the rotation state of the pump rotor 14 may be the motor current values MA and MB acquired from the motor control unit 23 described in the first embodiment, or the magnetic bearing described in the second embodiment.
  • An XY value calculated from the magnetic bearing control amounts PID-IX and PID-IY acquired from the control unit 22 may be used. Regardless of which signal is used, each of the vacuum pumps 1A, 1B detects that an abnormality (that is, excessive deposition of reaction products) has occurred in one of the vacuum pumps 1A, 1B. .
  • the abnormality detection result detected in each of the vacuum pumps 1A and 1B is transmitted to the main controller 110 via the communication line 40. If an abnormality detection result is input from at least one of vacuum pumps 1A and 1B, main controller 110 displays a warning display informing that the maintenance time for vacuum pumps 1A and 1B has come.
  • the pump monitoring device 120 is provided in the controller 12 of the vacuum pump 1A, and the communication port 21 which is the signal input unit of the controller 12 is connected to the other vacuum pump 1B.
  • a motor current value MB which is a signal representing the rotation state, is input.
  • each of the vacuum pumps 1A and 1B performs pump abnormality estimation, the use of both estimation results increases the redundancy for abnormality detection, and the abnormality of the vacuum pumps 1A and 1B can be reliably detected. it can.
  • FIG. 11 is a diagram for explaining the fourth embodiment.
  • the pump monitoring device 120 detects that an abnormality (that is, excessive deposition of reaction products) has occurred in the vacuum pumps attached to the process chambers of the plurality of semiconductor manufacturing apparatuses. To do.
  • the pump monitoring device 120 monitors the vacuum pumps 1A to 1F attached to the process chambers 100A to 100B of the three semiconductor manufacturing apparatuses 10A, 10B, and 10C.
  • Each of the semiconductor manufacturing apparatuses 10A to 10C is provided with a wireless communication apparatus 140.
  • the pump monitoring device 120 is also provided with a wireless communication device 200, and information can be exchanged between the communication device 140 and the communication device 200.
  • the pump monitoring device 120 can acquire signals indicating the rotation states of the pump rotors of the vacuum pumps 1A to 1F from the respective semiconductor manufacturing devices 10A to 10C via the communication devices 140 and 200.
  • the signal indicating the rotation state is a motor current value
  • the pump monitoring device 120 detects abnormality of the vacuum pump for each of the semiconductor manufacturing apparatuses 10A to 10C.
  • motor current values MA and MB of the vacuum pumps 1A and 1B are acquired from the semiconductor manufacturing apparatus 10A.
  • the abnormality detection process based on the motor current values MA and MB is the same as the abnormality detection process shown in FIG. 6 of the first embodiment. That is, the arithmetic part 210 sets the threshold value ⁇ used for abnormality determination based on the motor current values MA and MB in the initial state.
  • the threshold value ⁇ is stored in the storage unit 220.
  • the calculation unit 210 acquires the motor current values MA and MB from the semiconductor manufacturing apparatus 10A at predetermined time intervals, and the magnitude of the difference between the motor current values MA and MB
  • the same abnormality determination processing as that of the vacuum pumps 1A, 1B of the semiconductor manufacturing apparatus 10A is performed individually for each of the semiconductor manufacturing apparatuses 10B, 10C.
  • the pump monitoring device 120 receives motor current values MA to MF from the vacuum pumps 1A to 1F provided to each of the one or more semiconductor manufacturing devices 10A, 10B, and 10C. It is estimated that an abnormality has occurred in one of the two vacuum pumps provided in each of the semiconductor manufacturing apparatuses 10A, 10B, and 10C.
  • the communication apparatus 200 is a wireless system, but may be a wired system. By using a wireless system, remote collective management can be easily performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

同一のチャンバに接続されている複数の真空ポンプの異常を検出するポンプ監視装置であって、ポンプ監視装置は、複数の前記真空ポンプの各々のポンプロータの回転状態を表す信号を比較した結果に基づいて、複数の前記真空ポンプのいずれかに異常が生じていることを推定する。

Description

ポンプ監視装置、真空処理装置および真空ポンプ
 本発明は、ポンプ監視装置、真空処理装置および真空ポンプに関する。
 半導体や液晶パネルの製造におけるドライエッチングやCVD等の工程では、高真空のプロセスチャンバ内で処理を行うため、プロセスチャンバ内のガスを排気し高真空を維持する手段として、例えば、ターボ分子ポンプのような真空ポンプが用いられる。ドライエッチングやCVD等のプロセスチャンバ内のガスを排気する場合、ガスの排気に伴ってポンプ内に反応生成物が堆積する。
 このような反応生成物の堆積に関して、特許文献1には、ポンプ内に堆積した生成物を検知する方法が開示されている。特許文献1に開示されている堆積物検知方法では、ポンプの回転体を回転駆動するモータの電流値を計測し、モータ電流初期値に対する計測値の変化量が所定値以上の場合に警告を発するようにしている。
日本国特許第5767632号公報
 しかしながら、実際には、単一のプロセス内においても排気されるガス流量は大きく変動するので、ガス流量の変動に伴って回転体を回転駆動するモータの電流値も大きく変動することになる。そのため、ガス流量の変動によるモータ電流値が変動した場合も警告を発してしまい、誤判定が避けられないという課題があった。
 本発明の第1の態様によると、ポンプ監視装置は、同一のチャンバに接続されている複数の真空ポンプの異常を検出するポンプ監視装置であって、複数の前記真空ポンプの各々のポンプロータの回転状態を表す信号を比較した結果に基づいて、複数の前記真空ポンプのいずれかに異常が生じていることを推定する。
 本発明の第2の態様によると、第1の態様のポンプ監視装置において、前記回転状態を表す信号は、前記ポンプロータを回転駆動するモータのモータ電流値であって、互いに異なる前記真空ポンプの前記モータ電流値の差に基づいて、複数の前記真空ポンプのいずれかに異常が生じていることを推定する。
 本発明の第3の態様によると、第1の態様のポンプ監視装置において、前記ポンプロータは磁気軸受によって磁気浮上支持され、前記回転状態を表す信号は前記磁気軸受の磁気軸受制御量に基づいて算出される。
 本発明の第4の態様によると、第1の態様のポンプ監視装置において、チャンバを真空排気する複数の真空ポンプを備える一以上の真空処理装置から、複数の前記真空ポンプの前記回転状態を表す信号が入力される入力部を備え、前記真空処理装置毎に複数の前記真空ポンプのいずれかに異常が生じていることを推定する。
 本発明の第5の態様によると、真空処理装置は、チャンバと、前記チャンバを真空排気する複数の真空ポンプと、第1の態様のポンプ監視装置と、を備える。
 本発明の第6の態様によると、真空ポンプは、第1の態様のポンプ監視装置と、モータにより回転駆動されるポンプロータと、他の真空ポンプからの回転状態を表す信号が入力される入力部と、を備え、前記ポンプ監視装置は、前記ポンプロータの回転状態を表す信号と前記入力部から入力される回転状態を表す信号とを比較してポンプ異常を推定する。
 本発明によれば、真空ポンプの異常検出の際の誤判定を防止することができる。
図1は、第1の実施の形態における半導体製造装置を示す図である。 図2は、ポンプ本体の詳細を示す断面図である。 図3は、モータ電流計測値の一例を示す図である。 図4は、真空ポンプおよびポンプ監視装置を示すブロック図である。 図5は、変位センサの構成を示す図である。 図6は、異常判定処理の一例を示すフローチャートである。 図7は、磁気軸受制御を説明するブロック図である。 図8は、XY値の一例を示す図である。 図9は、第2の実施の形態における異常判定処理の一例を示すフローチャートである。 図10は、第3の実施の形態を説明する図である。 図11は、第4の実施の形態を説明する図である。
 以下、図を参照して本発明を実施するための形態について説明する。
-第1の実施の形態-
 図1は、第1の実施の形態における半導体製造装置10を示す図である。半導体製造装置10はエッチング装置等の真空処理装置である。図1に示す例では、2台の真空ポンプ1A,1Bがプロセスチャンバ100に取り付けられているが、3台以上が取り付けられている場合にも同様に適用することができる。
 真空ポンプ1Aはバルブ3Aを介してプロセスチャンバ100に取り付けられ、真空ポンプ1Bはバルブ3Bを介してプロセスチャンバ100に取り付けられている。半導体製造装置10は、真空ポンプ1A、1Bおよびバルブ3A,3Bを含む製造装置全体を制御する主制御装置110を備える。主制御装置110には、真空ポンプ1A、1Bが異常か否かを監視する監視装置4を備えている。真空ポンプ1A,1Bは同一機種の真空ポンプであり、それぞれポンプ本体11と、ポンプ本体11を駆動制御するコントローラ12とを備えている。真空ポンプ1A,1Bの各コントローラ12は、通信ライン40を介して半導体製造装置10の主制御装置110に接続されている
 図2は、ポンプ本体11の詳細を示す断面図である。本実施の形態における真空ポンプ1A,1Bは磁気軸受式のターボ分子ポンプであり、ポンプ本体11には回転体Rが設けられている。回転体Rは、ポンプロータ14と、ポンプロータ14に締結されたロータシャフト15とを備えている。
 ポンプロータ14には、上流側に回転翼14aが複数段形成され、下流側にネジ溝ポンプを構成する円筒部14bが形成されている。これらに対応して、固定側には複数の固定翼ステータ62と、円筒状のネジステータ64とが設けられている。図2に示す例ではネジステータ64側にネジ溝が形成されているが、円筒部4bにネジ溝を形成しても構わない。各固定翼ステータ62は、スペーサリング63を介してベース60上に載置される。
 ロータシャフト15は、ベース60に設けられたラジアル磁気軸受17A,17Bとアキシャル磁気軸受17Cとによって磁気浮上支持され、モータ16により回転駆動される。各磁気軸受17A~17Cは電磁石と変位センサとを備えおり、変位センサによりロータシャフト15の浮上位置が検出される。ロータシャフト15の回転数は回転数センサ18により検出される。磁気軸受17A~17Cが作動していない場合には、ロータシャフト15は非常用のメカニカルベアリング66a,66bによって支持される。
 ベース60には、吸気口61aが形成されたポンプケーシング61がボルト固定されている。ベース60の排気口60aには排気ポート65が設けられ、この排気ポート65にバックポンプが接続される。ポンプロータ14が締結されたロータシャフト15をモータ16により高速回転すると、吸気口61a側の気体分子は排気ポート65側へと排気される。
 ベース60には、ヒータ19と、冷却水などの冷媒が流れる冷媒配管20とが設けられている。反応生成物の堆積しやすいガスを排気する場合には、ネジ溝ポンプ部分や下流側の回転翼14aへの生成物堆積を抑制するために、ヒータ19のオンオフおよび冷媒配管20を流れる冷媒のオンオフを行うことにより、例えばネジステータ固定部付近のベース温度が所定温度となるように温度調整を行う。なお、図示は省略したが、冷媒配管20には、冷媒をオンオフするための電磁弁が設けられている。
 ところで、同一のプロセスチャンバ100に取り付けられた2つの真空ポンプ1A,1Bは、使用条件がほぼ同一であるとみなすことができる。また、反応生成物の堆積によるポンプメンテナンスも同一タイミングで行われる。そのため、使用時間の経過に伴う真空ポンプ1Aおよび真空ポンプ1Bにおける反応生成物の堆積状態は、ほぼ同一であると考えられる。
 図3は、真空ポンプ1Aおよび真空ポンプ1Bのモータ電流の計測値の一例を示す図であり、反応生成物の堆積が進行した状態における計測値を示す。図3において、横軸は時間を表し、縦軸はモータ電流値を表している。実線で示すラインMAは真空ポンプ1Aのモータ電流値を示し、破線で示すラインMBは真空ポンプ1Bのモータ電流値を示す。符号Bで示す期間はプロセスチャンバ100内へのガス導入が行われ、モータ電流値MA,MBが上昇している。
 図3のようにガスの導入および停止が繰り返される運転状態では、ガス流量の変動に伴ってモータ電流値が大きく変動することになる。しかし、真空ポンプ1A,1Bは、同一機種の真空ポンプであって、使用条件もほぼ同一なので、図3に示すように、ガス導入量の変化によらずモータ電流値MA,MBはほぼ同様の変化傾向を示し、モータ電流値MA,MB間の差も小さい。
 しかしながら、反応生成物の堆積量が増大した状態においては、図3の符号Aで示すような瞬間的なモータ電流値の上昇が見られる。これは、反応生成物の堆積が進行すると、堆積物によって図2に示す円筒部14bとネジステータ64とのギャップが小さくなり、ポンプロータ14が揺れた場合に円筒部14bとネジステータ64とが偶発的に接触し、モータ電流値の瞬間的な上昇が発生するものと推定される。図3に示す例では、真空ポンプ1Aのモータ電流値MAに瞬間的な上昇が発生している。このような現象は、反応生成物の堆積量が過大になると発生し、モータ電流値の瞬間的な上昇が発生した後、数日~2週間程度で堆積物による不具合(例えば、円筒部14bとネジステータ64との接触によるポンプ起動不能)が発生することが分かった。
 そこで、本実施の形態では、真空ポンプ1Aのモータ電流値MAと真空ポンプ1Bのモータ電流値MBとの差を算出し、その差の大きさが予め設定した閾値を超えた場合(例えば、図3の符号Aで示すような状況の場合)に、ユーザへ警告を発生するようにした。
 図4は、半導体製造装置10に設けられた真空ポンプ1A,1Bの構成を示すブロック図である。真空ポンプ1A,1Bは同一機種の真空ポンプであって、ポンプ本体11はモータ16,磁気軸受17および回転数センサ18を備え、コントローラ12は通信ポート21,磁気軸受制御部22,モータ制御部23および記憶部24を備えている。なお、図4では、図2のラジアル磁気軸受17A,17Bおよびアキシャル磁気軸受17Cを、まとめて磁気軸受17と記載した。また、主制御装置110は、ポンプ監視装置120および表示部130および通信ポート44を備えている。
 モータ制御部23は、回転数センサ18で検出した回転信号に基づいてロータシャフト15の回転数を推定し、推定された回転数に基づいてモータ16を所定目標回転数に制御する。なお、ガス流量が大きくなるとポンプロータ14への負荷が増加するので、負荷に応じてモータ電流を制御することにより所定目標回転数を維持するようにしている。磁気軸受17は、軸受電磁石と、ロータシャフト15の浮上位置を検出するための変位センサとを備えている。
 図5は変位センサの構成を示す図である。図2のラジアル磁気軸受17Aはx軸およびy軸の2軸分の磁気軸受で構成されており、x軸に関して一対の変位センサX1a,X1bを備え、y軸に関して一対の変位センサY1a,Y1bを備えている。同様に、図2のラジアル磁気軸受17Bはx軸およびy軸の2軸分の磁気軸受で構成されており、x軸に関して一対の変位センサX2a,X2bを備え、y軸に関して一対の変位センサY2a,Y2bを備えている。また、アキシャル磁気軸受17Cに関しては、ロータシャフト15の軸方向の変位を検出する変位センサzを備えている。
 図4に戻って、真空ポンプ1Aのコントローラ12に設けられた磁気軸受制御部22には、真空ポンプ1Aのポンプ本体11に設けられた変位センサX1a,X1b,Y1a,Y1b,X2a,X2b,Y2a,Y2b,zから、それぞれの検出信号が入力される。同様に、真空ポンプ1Bのコントローラ12に設けられた磁気軸受制御部22には、真空ポンプ1Bのポンプ本体11に設けられた変位センサX1a,X1b,Y1a,Y1b,X2a,X2b,Y2a,Y2b,zから、それぞれの検出信号が入力される。
 コントローラ12の磁気軸受制御部22は、変位センサX1a,X1b,Y1a,Y1b,X2a,X2b,Y2a,Y2b,zの検出信号に基づいて、ロータシャフト15が目標浮上位置に磁気支持されるように磁気軸受17の励磁電流を制御する。コントローラ12の記憶部24には、モータ制御や磁気軸受制御に必要なパラメータが記憶されると共に、真空ポンプ1A,1Bの機種データが記憶されている。
 上述したように、主制御装置110に設けられたポンプ監視装置120は、プロセスチャンバ100に取り付けられた真空ポンプ1A,1Bに異常(すなわち、反応生成物の過剰な堆積)が生じていないか否かを監視する装置である。真空ポンプ1A,1Bのコントローラ12と主制御装置110とは、通信により情報の授受が行われる。図4に示す例では、シリアル通信により信号のやり取りが行われる場合について示した。コントローラ12には通信ポート21が設けられ、主制御装置110にも通信ポート44が設けられている。コントローラ12の通信ポート21は通信ライン40によって主制御装置110の通信ポート44に接続されている。
(監視方法の説明)
 ポンプ監視装置120は、真空ポンプ1A,1Bの異常を検出するための情報として、各ポンプロータ14の回転状態を表す信号を用いる。本実施の形態では、ポンプロータ14の回転状態を表す信号として真空ポンプ1A,1Bのモータ電流値MA,MBを用いる場合について説明する。
 コントローラ12のモータ制御部23においては、回転数センサ18の検出値に基づいてモータ16の回転速度を算出し、検出される回転速度が目標回転速度となるようにフィードバック制御している。図3のように一連のプロセスが行われている状態では、モータ制御部23は回転速度を定格回転速度に維持する定常運転制御を行っている。前述したように、符号Bで示す区間ではプロセスチャンバ100内へのガス導入が行われるので、ポンプロータ14への負荷が増加する。モータ制御部23はモータ回転速度を定格回転速度に維持する制御を行っているので、ガス負荷の増加に伴ってモータ電流値MA,MBが上昇する。
 ポンプ監視装置120には、通信ライン40を介して取得した真空ポンプ1A,1Bのモータ電流値MA,MBが入力される。ポンプ監視装置120は、モータ電流値MA,MBの差ΔM(=MA-MB)を算出する。ポンプ監視装置120は、差ΔMの大きさ|ΔM|が所定の閾値αを超えた場合に異常と判定する。例えば、図3の時刻t1ではモータ電流値MA,MBの差ΔMは|ΔM|<αを満たしているので異常と判定されないが、時刻t2では|ΔM|>αとなっているので異常と判定される。
 真空ポンプ1A,1Bは使用環境がほぼ同じであり、反応生成物の堆積状況もほぼ同じである。反応生成物の堆積量が過大になると、円筒部14bとネジステータ64との偶発的接触に起因すると推定されるモータ電流値の瞬間的な上昇が発生する。しかしながら、そのようなモータ電流値の上昇は偶発的に発生するものであって、真空ポンプ1A,1Bのいずれに発生するかについても分からない。本実施形態では、差ΔMの大きさ|ΔM|と閾値αとを比較しているので、真空ポンプ1A,1Bのいずれに異常(すなわち、モータ電流値の上昇)が発生した場合でも、その異常を検出することができる。
 閾値αに関しては、予め設定された値を用いても良いし、実際に稼働している真空ポンプ1A,1Bのモータ電流値MA,MBに基づいて設定するようにしても良い。稼働状態におけるモータ電流値MA,MBに基づいて閾値αを設定する場合、真空ポンプ1A,1Bを使用開始してからの使用期間が浅い初期状態のモータ電流値MA,MBに基づいて設定しても良いし、使用開始時点から異常判断時までのモータ電流値MA,MBに基づいて閾値αを設定しても良い。
 初期状態においては生成物の堆積量も少ないので、生成物堆積に影響されることなく閾値σを設定することができる。また、初期状態においては、図3の符号Aで示すようなモータ電流値の瞬間的な上昇も、ほぼ発生することがない。ポンプ監視装置120は、モータ電流値MA,MBに関して経時的に多数のデータを取得し、それらに基づいて差ΔMの標準偏差σを算出する。異常時の|ΔM|は正常時の|ΔM|に比べて格段に大きいので、誤検出を避ける意味で、標準偏差σに対して例えば6σのように大きめの値を閾値に設定する。
 図6は、ポンプ監視装置120による異常判定処理の一例を示すフローチャートである。ステップS100では、初期状態のモータ電流値MA,MBに基づく閾値αを設定する。具体的には、真空ポンプ1A,1Bをプロセスチャンバ100に取り付けた後、ポンプ運転開始から所定期間までの初期状態において、一定時間間隔でモータ電流値MA,MBをサンプリングする。この場合、モータ電流値MA,MBのサンプリングは同一タイミングで行われる。得られた複数対のモータ電流値MA,MBに関して差ΔM=MA-MBを求め、差ΔMの標準偏差σを算出する。そして、6σを閾値αに設定する。閾値α=6σは図4のポンプ監視装置120に設けられた記憶部(不図示)に記憶される。
 次いで、ステップS110でモータ電流値MA,MBを読み込み、続くステップS120において差ΔMの大きさ|ΔM|を算出する。ステップS130では、|ΔM|と閾値αとの大小関係が|ΔM|>αであるか否かを判定する。ステップS130おいて|ΔM|>αと判定されると、ステップS140に進んで警告処理を実行する。例えば、主制御装置110の表示部130に警告表示を行うことで、プロセスチャンバ100に取り付けられている真空ポンプ1A,1Bのメンテナンスが必要であることをユーザに知らせる。
 一方、ステップS130において|ΔM|≦αと判定された場合には、ステップS110に戻って、ステップS110からステップS130までの処理を再び実行する。ステップS110からステップS130までの処理は、ステップS130でyesと判定されるまで、所定時間間隔で繰り返し実行される。
(C1)以上説明したように、同一のプロセスチャンバ100に接続されている複数の真空ポンプ1A,1Bの異常を検出するポンプ監視装置120は、複数の真空ポンプ1A,1Bの各々のポンプロータ14の回転状態を表す信号を比較した結果に基づいて、真空ポンプ1A,1Bのいずれかに異常が生じていることを推定する。
 真空ポンプ1A,1Bは同一のプロセスチャンバ100に接続されているので、反応生成物の堆積量のようなポンプ状態はほぼ同一となり、ガス流量の変動によるモータ電流値が変動した場合でも、ポンプロータ14の回転状態を表す信号は同様の傾向を示す。そのため、回転状態を表す信号を比較することで、図3の時刻t2におけるように回転状態を表す信号(図3の例ではモータ電流値MA,MB)が相互に乖離するような場合には、真空ポンプ1A,1Bのいずれかに異常が生じていることを容易に推定することができ、従来のような誤判定を防止することができる。
(C2)例えば、上述の回転状態を表す信号としては、ポンプロータ14を回転駆動するモータ16のモータ電流値MA,MBを使用することができる。その場合、互いに異なる真空ポンプ1A,1Bのモータ電流値MA,MBの差に基づいて、例えば、モータ電流値MA,MBの差ΔMの大きさ|ΔM|を閾値αと比較することで、真空ポンプ1A,1Bのいずれかに異常が生じていることを推定する。
(C5)また、図1に示すように、プロセスチャンバ100とプロセスチャンバ100を真空排気する複数の真空ポンプ1A,1Bとを備える真空処理装置である半導体製造装置10に、上述したポンプ監視装置120を備えるようにしても良い。オペレータは、ポンプ監視装置120からの警告により、プロセスチャンバ100に取り付けられた真空ポンプ1A,1Bのメンテナンスタイミングを的確に知ることができる。
 なお、上述した実施の形態では、異常か否かを判定する際の閾値αを設定する場合に、差=MA-MBの標準偏差σを用いてα=6σのように設定したが、差の平均値を用いて設定しても良い。
 上述した実施の形態ではプロセスチャンバ100に真空ポンプが2台取り付けられている場合を例に説明したが、3台以上取り付けられている場合にも適用できる。真空ポンプが3台以上取り付けられている場合も、それぞれの真空ポンプは同一条件で使用されているので、複数台の真空ポンプのいずれか1台に異常(すなわち、反応生成物の堆積の過剰)が検出された場合には、ポンプ監視装置120は、プロセスチャンバ100に取り付けられた複数台の真空ポンプの全てについてメンテナンスを行う必要があることを警告する。
 ポンプ監視装置120は、プロセスチャンバ100に取り付けられた複数台の真空ポンプから任意の2台からモータ電流値をそれぞれ取得し、その2つのモータ電流値の差の大きさ|ΔM|が|ΔM|>αか否かを判定する。任意の2台に関するこのような判定を、複数台の真空ポンプの全てについて行う。例えば、5台の真空ポンプ1A,1B,1C,1D,1Eがプロセスチャンバ100に取り付けられている場合には、(1A,1B),(1C,1D),(1E,1A)の3種類の組み合わせに関して|ΔM|>αか否かを判定する。そして、3種類の組み合わせの少なくとも1つについて|ΔM|>αであった場合には、5台の真空ポンプ1A~1Eの全てについてメンテナンスを警告する。
 なお、3種類の組み合わせ(1A,1B),(1C,1D),(1E,1A)には、プロセスチャンバ100に取り付けられている真空ポンプ1A,1B,1C,1D,1Eの全てが含まれているので、3種類の組み合わせに関して上述の異常検出処理を行うことで、全ての真空ポンプ1A~1Eについて異常判定を行ったことになる。
-第2の実施の形態-
 上述した第1の実施の形態では、ポンプロータ14の回転状態を表す信号としてモータ電流値MA,MBを用いたが、第2の実施の形態では変位センサの変位信号に基づいて生成される磁気軸受制御量に基づいて、回転状態を表す信号を算出するようにした。図5に示したように、ラジアル磁気軸受17A,17B,17Cには、それぞれロータシャフト15の浮上位置を検出するための変位センサが設けられている。以下では、ラジアル方向の浮上位置を検出する変位センサX2a,X2b,Y2a,Y2bの変位信号を、回転状態を表す信号として使用する場合について説明する。
 図5に示すように、ラジアル磁気軸受17Aはロータシャフト15を挟むように配置された二対の電磁石を備えている。x軸方向に配置された一方の電磁石対に対しては一対の変位センサX2a,X2bが設けられ、y軸方向に配置された他方の電磁石対に対しては一対の変位センサY2a,Y2bが設けられている。
 図7は、変位センサX2a,X2bに関する磁気軸受制御を説明するブロック図である。変位センサY2a,Y2bに関するブロック図も図7の場合と全く同様となる。変位センサX2a,X2bの変位信号は、変位センサX2a,X2bとロータシャフト15とのギャップの大きさに応じて変化する。変位センサX2a,X2bからの変位信号は差動アンプ602に入力される。差動アンプ602からはそれらの差分値である差動信号Vdifが出力される。
 差動信号VdifはPID制御回路53に入力される。PID制御回路53は、差動信号Vdifがゼロになるように、すなわち、ロータシャフト15が変位センサX2a,X2bの中央に支持されるように、電磁石37xに流すべき電流値をPID演算し、磁気軸受制御量として電流アンプ55に出力する。電流アンプ55は、入力された磁気軸受制御量に応じた電磁石電流を、電磁石37xに供給する。
 本実施の形態では、PID制御回路53から電流アンプ55に出力される磁気軸受制御量に基づいて、ポンプロータ14の回転状態を示す信号であるXY値を算出するようにした。以下では、x軸方向の磁気軸受制御量をPID-IXと表し、y軸方向の磁気軸受制御量をPID-IYと表すことにする。ポンプ監視装置120は、これらの磁気軸受制御量PID-IX,PID-IYを真空ポンプ1A,1Bのそれぞれから読み込み、式(1)で示すXY値を算出する。
  XY={(PID-IX)+(PID-IY)1/2 ・・・(1)
 式(1)で表されるXY値は、ポンプロータ14に加わる水平方向の力、すなわち、目標浮上位置に対するポンプロータ14の軸芯の偏差を表す指標として導入したものである。水平方向の力が大きいほどすなわち目標浮上位置に対するポンプロータ14の軸芯の偏差が大きいほど、XY値は大きな値となる。反応生成物の堆積量が増加して円筒部14bとネジステータ64とが接触してポンプロータ14に力が加わると、ポンプロータ14の回転状態である軸芯の偏差が大きくなり、XY値も大きくなる。
 図8は、XY値の一例を示す図である。図8は、同一プロセスチャンバに取り付けられた2台の真空ポンプ1A,1Bにおいて検出されたXY値を示したものであり、ポンプ状態は図3に示した場合とほぼ同時期の状態である。図8において縦軸はXY値、横軸は時間であり、実線で示すラインSAは真空ポンプ1AのXY値を示し、破線で示すラインSBは真空ポンプ1BのXY値を示している。
 各区間CにおけるXY値SA,SBの変化パターンは、いずれの区間Cでも同様なパターンとなっている。しかしながら、時刻t3におけるXY値SAとXY値SBとの差の大きさ|ΔXY|は、他の時刻における|ΔXY|よりも大きくなっている。このような|ΔXY|の瞬間的な上昇は、円筒部14bとネジステータ64との接触に起因していると考えられる。実際に、図3の符号Aで示すようなモータ電流値の瞬間的な上昇が発生する場合には、図8に示すような|ΔXY|の瞬間的な上昇も同時に発生している。
 なお、外乱がポンプロータ14に作用したり、ガス負荷の急激な変化があったりした場合にもポンプロータ14が揺れるので、磁気軸受制御量PID-IX,PID-IYはその揺れを抑えるように変動する。そのため、円筒部14bとネジステータ64との接触が無い状態においても、XY値はある程度変動することになる。
 本実施の形態では、ポンプ監視装置120は、真空ポンプ1A,1BのXY値をそれぞれ算出する。そして、算出された2つのXY値の差ΔXYの大きさが|ΔXY|が所定の閾値よりも大きくなった場合には、真空ポンプ1A,1Bの何れかに異常(すなわち、反応生成物の過剰な堆積)が発生したと警告する。すなわち、真空ポンプ1A,1Bのメンテナンスが必要なことを警告する。なお、閾値αの設定方法については第1の実施の形態の場合と同様に考えることができ、例えば、差ΔXYの標準偏差をσとした場合に、6σを閾値αとすれば良い。
 図9は、第2の実施の形態における異常判定処理の一例を示すフローチャートである。ステップS200では、第1の実施の形態の場合と同様に、初期状態のXY値SA,SBに基づく閾値αを設定する。これは第1の実施の形態の場合のモータ電流値MA,MBをXY値SA,SBに置き換えて、図6のステップS100と同様の処理を行えば良く、ここでは詳細説明を省略する。算出された閾値αはポンプ監視装置120に設けられた記憶部(不図示)に記憶される。
 次いで、ステップS210でXY値SA,SBを読み込み、ステップS220においてXY値の差の大きさ|ΔXY|=|SA-SB|を算出する。ステップS230では、|ΔXY|と閾値αとの大小関係が|ΔXY|>αであるか否かを判定する。ステップS230において|ΔXY|>αと判定されると、ステップS240に進んで第1の実施の形態のステップS140における警告処理と同様の警告処理を実行する。
 一方、ステップS230において|ΔXY|≦αと判定された場合には、ステップS210に戻って、ステップS210からステップS230までの処理を再実行する。ステップS210からステップS230までの処理は、ステップS230でyesと判定されるまで、所定時間間隔で繰り返し実行される。
(C3)上述のように、第2の実施の形態では、ポンプロータ14を磁気軸受によって磁気浮上支持する際の磁気軸受制御量PID-IX,PID-IYに基づいて、回転状態を表す信号であるXY値を算出するようにした。そして、真空ポンプ1A,1Bに関してXY値SA,SBをそれぞれ算出し、それらの差の大きさ|ΔXY|を閾値αと比較することで、真空ポンプ1A,1Bのいずれかに異常が生じていることを推定する。
 XY値は、目標浮上位置に対するポンプロータ14の軸芯の偏差を表しており、反応生成物の堆積量が増加して円筒部14bとネジステータ64とが接触してポンプロータ14に力が加わると、ポンプロータ14の回転状態である軸芯の偏差が大きくなり、XY値も大きくなる。そのため、真空ポンプ1A,1Bに関して、それぞれのXY値の差の大きさ|ΔXY|を閾値αと比較することで、真空ポンプ1A,1Bのいずれかに異常(すなわち、反応生成物の過剰な堆積)を容易に検出することができる。
 なお、XY値の差ΔXYと上述したモータ電流値の差ΔMの両方を用いて、真空ポンプ1A,1Bのいずれかに異常が生じたことを検出するようにしても良い。
 上述した説明では、ポンプロータ14とネジステータ64との接触を検出する場合、軸方向においてポンプロータ14に近い変位センサX2a,X2b,Y2a,Y2bの変位信号を用いるようにしたが、変位センサX1a,X1b,Y1a,Y1bの変位信号を用いても構わない。
-第3の実施の形態-
 図10は第3の実施の形態を説明する図であり、図4と同様に半導体製造装置10に設けられた真空ポンプ1A,1Bの構成を示すブロック図である。上述した第1および第2の実施の形態では、ポンプ監視装置120が半導体製造装置10の主制御装置110に設けられていた。一方、第3の実施の形態では、ポンプ監視装置120は真空ポンプ1A,1B毎にコントローラ12内に設けられている。その他の構成は、図4に示す構成と同様である。
 真空ポンプ1Aのコントローラ12に設けられたポンプ監視装置120は、真空ポンプ1Aのポンプロータ14の回転状態を示す信号を取得すると共に、通信ライン40を介して他の真空ポンプ1Bのポンプロータ14の回転状態を示す信号を真空ポンプ1Bから取得する。同様に、真空ポンプ1Bのコントローラ12に設けられたポンプ監視装置120は、真空ポンプ1Bのポンプロータ14の回転状態を示す信号を取得すると共に、通信ライン40を介して他の真空ポンプ1Aのポンプロータ14の回転状態を示す信号を真空ポンプ1Aから取得する。
 ポンプロータ14の回転状態を示す信号としては、第1の実施の形態で説明したモータ制御部23から取得されるモータ電流値MA,MBでも良いし、第2の実施の形態で説明した磁気軸受制御部22から取得される磁気軸受制御量PID-IX,PID-IYから算出されるXY値であっても良い。いずれの信号を用いた場合であっても、各真空ポンプ1A,1Bは、真空ポンプ1A,1Bの何れか一方に異常(すなわち、反応生成物の過剰な堆積)が発生したことをそれぞれ検出する。
 真空ポンプ1A,1Bのそれぞれにおいて検出された異常検出結果は、通信ライン40を介して主制御装置110に送信される。主制御装置110は、真空ポンプ1A,1Bの少なくとも一方から異常検出結果が入力されたならば、真空ポンプ1A,1Bのメンテナンス時期が来たことを知らせる警告表示を表示する。
(C6)本実施の形態では、図10に示すように真空ポンプ1Aのコントローラ12にポンプ監視装置120が設けられ、コントローラ12の信号入力部である通信ポート21には他の真空ポンプ1Bからの回転状態を表す信号であるモータ電流値MBが入力される。そして、ポンプ監視装置120は、真空ポンプ1Aのポンプロータ14の回転状態を表す信号であるモータ電流値MAと通信ポート21から入力されるモータ電流値MBとを比較することで、すなわち差ΔM=MA-MBの大きさ|ΔM|を閾値αと比較することで、ポンプ異常を推定する。
 このように、真空ポンプ1A,1Bのそれぞれがポンプ異常推定を行うので、両方の推定結果を用いることにより異常検出についての冗長性が増し、真空ポンプ1A,1Bの異常を確実に検出することができる。
-第4の実施の形態-
 図11は、第4の実施の形態を説明する図である。第4の実施の形態では、ポンプ監視装置120は、複数の半導体製造装置のそれぞれのプロセスチャンバに取り付けられた真空ポンプについて,異常(すなわち、反応生成物の過剰な堆積)が発生したことを検出する。図11に示す例では、ポンプ監視装置120は3つの半導体製造装置10A,10B,10Cのプロセスチャンバ100A~100Bに取り付けられた真空ポンプ1A~1Fを監視する。
 各半導体製造装置10A~10Cには、無線方式の通信装置140がそれぞれ設けられている。また、ポンプ監視装置120にも無線方式の通信装置200が設けられており、通信装置140と通信装置200との間で情報の授受を行うことができる。ポンプ監視装置120は、通信装置140,200を介して各半導体製造装置10A~10Cから真空ポンプ1A~1Fのポンプロータの回転状態を示す信号を取得することができる。以下では、回転状態を示す信号がモータ電流値である場合を例に説明する。
 3つの半導体製造装置10A~10Cが同一の装置であった場合でも、それぞれの半導体製造装置10A~10Cに設けられた真空ポンプ1A~1Fの直近のメンテナンス時期が異なる場合には、各半導体製造装置10A~10Cにおける真空ポンプの次回メンテナンス時期は異なることになる。そのため、ポンプ監視装置120は、半導体製造装置10A~10C毎に真空ポンプの異常検出を行う。
 真空ポンプ1A,1Bの異常を判定する場合には、半導体製造装置10Aから真空ポンプ1A,1Bのモータ電流値MA,MBを取得する。モータ電流値MA,MBに基づく異常検出処理は第1の実施の形態の図6に示す異常検出処理と同様である。すなわち、演算部210は、初期状態におけるモータ電流値MA,MBに基づいて異常判定に用いる閾値αを設定する。その閾値αは記憶部220に記憶される。演算部210は、所定時間間隔でモータ電流値MA,MBを半導体製造装置10Aから取得し、モータ電流値MA,MBの差の大きさ|ΔM|=|MA-MB|が|ΔM|>αか否かを判定する。そして、|ΔM|>αであった場合には、真空ポンプ1A,1Bの何れかに異常が発生したと判定し、表示部230に真空ポンプ1A,1Bのメンテナンスを促す警告表示を表示する。
 半導体製造装置10B,10Cの真空ポンプ1C,1Dおよび1E,1Fに関しても、半導体製造装置10Aの真空ポンプ1A,1Bの場合と同様の異常判定処理を半導体製造装置10B,10C毎に個別に行う。
(C4)第4の実施の形態では、ポンプ監視装置120は、一以上の半導体製造装置10A,10B,10Cから、それぞれに設けられた真空ポンプ1A~1Fからのモータ電流値MA~MFが入力される入力部としての通信装置200を備え、半導体製造装置10A,10B,10C毎に、それぞれの半導体製造装置に設けられた2つの真空ポンプのいずれかに異常が生じていることを推定する。
 このようなポンプ監視装置120を設けることで、複数の半導体製造装置10A,10B,10Cに対して、それらに設けられている真空ポンプの異常を個別に検出することができる。
 なお、図11に示す例では、通信装置200を無線方式としたが有線方式でも構わない。無線方式とすることで、遠隔での一括管理を容易に行うことができる。
 上記では、種々の実施の形態を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。また、複数の実施形態を組み合わせても良い。
 1A,1B,1C,1D,1E,1F…真空ポンプ、10…半導体製造装置、11…ポンプ本体、12…コントローラ、14…ポンプロータ、16…モータ、17…磁気軸受、17A,17B…ラジアル磁気軸受、17C…アキシャル磁気軸受、21,44…通信ポート、22…磁気軸受制御部、23…モータ制御部、100,100A…プロセスチャンバ、110…主制御装置、120…ポンプ監視装置、MA,MB…モータ電流値、SA,SB…XY値、X1a,X1b,Y1a,Y1b,X2a,X2b,Y2a,Y2b,z…変位センサ

Claims (6)

  1.  同一のチャンバに接続されている複数の真空ポンプの異常を検出するポンプ監視装置であって、
     複数の前記真空ポンプの各々のポンプロータの回転状態を表す信号を比較した結果に基づいて、複数の前記真空ポンプのいずれかに異常が生じていることを推定する、ポンプ監視装置。
  2.  請求項1に記載のポンプ監視装置において、
     前記回転状態を表す信号は、前記ポンプロータを回転駆動するモータのモータ電流値であって、
     互いに異なる前記真空ポンプの前記モータ電流値の差に基づいて、複数の前記真空ポンプのいずれかに異常が生じていることを推定する、ポンプ監視装置。
  3.  請求項1に記載のポンプ監視装置において、
     前記ポンプロータは磁気軸受によって磁気浮上支持され、
     前記回転状態を表す信号は前記磁気軸受の磁気軸受制御量に基づいて算出される、ポンプ監視装置。
  4.  請求項1に記載のポンプ監視装置において、
     チャンバを真空排気する複数の真空ポンプを備える一以上の真空処理装置から、複数の前記真空ポンプの前記回転状態を表す信号が入力される入力部を備え、
     前記真空処理装置毎に複数の前記真空ポンプのいずれかに異常が生じていることを推定する、ポンプ監視装置。
  5.  チャンバと、
     前記チャンバを真空排気する複数の真空ポンプと、
     請求項1に記載のポンプ監視装置と、を備える真空処理装置。
  6.  請求項1に記載のポンプ監視装置と、
     モータにより回転駆動されるポンプロータと、
     他の真空ポンプからの回転状態を表す信号が入力される入力部と、を備え、
     前記ポンプ監視装置は、前記ポンプロータの回転状態を表す信号と前記入力部から入力される回転状態を表す信号とを比較してポンプ異常を推定する、真空ポンプ。
PCT/JP2017/016818 2017-04-27 2017-04-27 ポンプ監視装置、真空処理装置および真空ポンプ WO2018198288A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019515000A JPWO2018198288A1 (ja) 2017-04-27 2017-04-27 ポンプ監視装置、真空処理装置および真空ポンプ
US16/607,703 US20200141415A1 (en) 2017-04-27 2017-04-27 Pump monitoring device, vacuum processing device, and vacuum pump
PCT/JP2017/016818 WO2018198288A1 (ja) 2017-04-27 2017-04-27 ポンプ監視装置、真空処理装置および真空ポンプ
CN201780089971.XA CN110546381A (zh) 2017-04-27 2017-04-27 泵监视装置、真空处理装置以及真空泵

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/016818 WO2018198288A1 (ja) 2017-04-27 2017-04-27 ポンプ監視装置、真空処理装置および真空ポンプ

Publications (1)

Publication Number Publication Date
WO2018198288A1 true WO2018198288A1 (ja) 2018-11-01

Family

ID=63919703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016818 WO2018198288A1 (ja) 2017-04-27 2017-04-27 ポンプ監視装置、真空処理装置および真空ポンプ

Country Status (4)

Country Link
US (1) US20200141415A1 (ja)
JP (1) JPWO2018198288A1 (ja)
CN (1) CN110546381A (ja)
WO (1) WO2018198288A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020155603A (ja) * 2019-03-20 2020-09-24 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP2020176525A (ja) * 2019-04-15 2020-10-29 株式会社島津製作所 ポンプ監視装置および真空ポンプ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054369A (ja) * 1996-05-21 1998-02-24 Ebara Corp 真空ポンプの制御装置
JP2000283056A (ja) * 1999-03-26 2000-10-10 Hitachi Ltd 真空ポンプ異常監視システム
JP2016094849A (ja) * 2014-11-12 2016-05-26 エドワーズ株式会社 真空ポンプ及び該真空ポンプの異常原因推定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8721295B2 (en) * 2005-04-08 2014-05-13 Ebara Corporation Vacuum pump self-diagnosis method, vacuum pump self-diagnosis system, and vacuum pump central monitoring system
JP4588773B2 (ja) * 2008-03-13 2010-12-01 三菱電機株式会社 エレベータの異常検出装置
JP5494807B2 (ja) * 2010-08-06 2014-05-21 株式会社島津製作所 真空ポンプ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054369A (ja) * 1996-05-21 1998-02-24 Ebara Corp 真空ポンプの制御装置
JP2000283056A (ja) * 1999-03-26 2000-10-10 Hitachi Ltd 真空ポンプ異常監視システム
JP2016094849A (ja) * 2014-11-12 2016-05-26 エドワーズ株式会社 真空ポンプ及び該真空ポンプの異常原因推定方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020155603A (ja) * 2019-03-20 2020-09-24 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP7126468B2 (ja) 2019-03-20 2022-08-26 株式会社Screenホールディングス 基板処理方法および基板処理装置
US11881403B2 (en) 2019-03-20 2024-01-23 SCREEN Holdings Co., Ltd. Substrate processing method and substrate processing apparatus
JP2020176525A (ja) * 2019-04-15 2020-10-29 株式会社島津製作所 ポンプ監視装置および真空ポンプ
JP7172821B2 (ja) 2019-04-15 2022-11-16 株式会社島津製作所 ポンプ監視装置および真空ポンプ

Also Published As

Publication number Publication date
US20200141415A1 (en) 2020-05-07
JPWO2018198288A1 (ja) 2020-05-14
CN110546381A (zh) 2019-12-06

Similar Documents

Publication Publication Date Title
KR102518079B1 (ko) 정보 처리 장치, 정보 처리 시스템, 정보 처리 방법, 프로그램, 기판 처리 장치, 기준 데이터 결정 장치 및 기준 데이터 결정 방법
CN114109832B (zh) 信息处理装置
US20180066669A1 (en) Deposition substance monitoring device and vacuum pump
WO2020194852A1 (ja) ポンプ監視装置、真空ポンプおよび生成物堆積診断用データ処理プログラム
WO2017051520A1 (ja) 圧力式流量制御装置及びその異常検知方法
WO2018198288A1 (ja) ポンプ監視装置、真空処理装置および真空ポンプ
CN111828362B (zh) 真空泵系统
CN112219034B (zh) 真空泵及温度控制装置
JP7439890B2 (ja) ポンプ監視装置および真空ポンプ
JP6110231B2 (ja) 真空ポンプシステム、真空ポンプの異常予兆の報知方法
JP2009074512A (ja) ターボ分子ポンプ
JP7172821B2 (ja) ポンプ監視装置および真空ポンプ
CN110709607B (zh) 用于监视泵送装置的运转状态的方法
CN114251295B (zh) 泵监视装置、真空泵、泵监视方法及存储介质
EP4108929A1 (en) Vacuum pump and controller
JP6820799B2 (ja) 情報処理装置、基準データ決定装置、情報処理方法、基準データ決定方法及びプログラム
JP6835757B2 (ja) 情報処理装置、情報処理システム、情報処理方法、プログラム及び基板処理装置
JP2004116328A (ja) 真空ポンプ
JP2019148176A (ja) 真空ポンプシステム、および真空ポンプシステムの制御方法
JP7046503B2 (ja) 情報処理装置、基準データ決定装置、情報処理方法、基準データ決定方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907296

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019515000

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907296

Country of ref document: EP

Kind code of ref document: A1