WO2018193716A1 - Fuel cell system - Google Patents
Fuel cell system Download PDFInfo
- Publication number
- WO2018193716A1 WO2018193716A1 PCT/JP2018/006873 JP2018006873W WO2018193716A1 WO 2018193716 A1 WO2018193716 A1 WO 2018193716A1 JP 2018006873 W JP2018006873 W JP 2018006873W WO 2018193716 A1 WO2018193716 A1 WO 2018193716A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exhaust gas
- fuel cell
- auxiliary machine
- ceiling
- cooling air
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04067—Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04067—Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
- H01M8/04074—Heat exchange unit structures specially adapted for fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0432—Temperature; Ambient temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04701—Temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04701—Temperature
- H01M8/04716—Temperature of fuel cell exhausts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/247—Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
- H01M8/2475—Enclosures, casings or containers of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a fuel cell system.
- Patent Document 1 discloses a fuel cell system that enables efficient operation of a fuel cell by disposing an internal device so that the difference between the air inlet temperature and the air outlet temperature of the fuel cell becomes small. ing.
- a plurality of cooling fans are arranged in a region covering the entire front and back side surfaces of the fuel cell (for example, nine vertical and horizontal three rows are installed on the front and back), and the fuel cell is arranged from the outside air side. The air can be blown toward.
- a blower fan is provided on the lower surface side of the fuel cell. The blower fan sucks the exhaust heat of the fuel cell and blows it to the lower exhaust heat passage.
- blower fan (second blower fan) that cools the control device by sucking air from the exhaust heat passage side and blowing it out to the control device.
- second blower fan By controlling the flow rates of the two blower fans with the control device, it is possible to adjust the blown air amount introduced into the exhaust heat passage, and consequently the blown air amount and temperature to the air pump, the air transfer pipe, and the humidifier.
- the present invention has been made in view of such points, and an object of the present invention is to provide a fuel cell system capable of realizing cooling of exhaust gas from the fuel cell with an efficient and simple configuration.
- the fuel cell system of the present embodiment includes a main engine room in which a fuel cell is disposed, an auxiliary machine room in which a cooling device that takes in cooling air is disposed, and the cooling that is taken into the auxiliary machine chamber by the cooling device.
- a ceiling hole provided in the auxiliary machine room for exhausting air to the outside, and guiding exhaust gas from the fuel cell from the main machine room through the auxiliary machine room to the ceiling hole part, and the ceiling hole
- FIG. 1 is a schematic configuration diagram showing a fuel cell system according to a first embodiment. It is the perspective view which drawn the internal structure of the ceiling chamber with the skeleton. It is a conceptual diagram for demonstrating the airflow in the inside of a ceiling chamber. It is a conceptual diagram corresponding to FIG. 3 which shows the fuel cell system by 2nd Embodiment.
- a thin solid line indicates a flow of fluid such as gas or water
- a thin one-dot chain line indicates a flow of electricity or a signal.
- a thick solid line indicates a part of the outer shell (outline) of the housing unit 10
- a thick broken line indicates a boundary portion between the main engine room 11 and the auxiliary machine room 12.
- the fuel cell system 1 has a box-shaped housing unit 10.
- the housing unit 10 is divided into a main machine room 11 and an auxiliary machine room 12.
- the main engine room 11 and the auxiliary machine room 12 may be partitioned by a partition wall (not shown) to guarantee an explosion-proof structure.
- the main engine room 11 and the auxiliary machine room 12 may communicate with each other without being partitioned by a partition as long as an explosion-proof structure between the two is guaranteed.
- a solid oxide fuel cell (SOFC: Solid Oxide Fuel Cell) 20 is disposed in the main engine room 11 as a fuel cell.
- the SOFC 20 has a cell stack in which a plurality of cells are stacked or aggregated. Each cell has a basic configuration in which an electrolyte is sandwiched between an air electrode and a fuel electrode, and a separator is interposed between the cells. Each cell of the cell stack is electrically connected in series.
- the SOFC 20 is a power generation mechanism in which oxide ions generated at the air electrode permeate the electrolyte and move to the fuel electrode, and the oxide ions react with hydrogen or carbon monoxide at the fuel electrode to generate electric energy. .
- the SOFC 20 has a fuel gas channel through which fuel gas is supplied from the fuel gas supplier and an oxidant gas channel through which oxidant gas is supplied from the oxidant gas supplier. ing.
- a direct current is generated by causing an electrochemical reaction between the fuel gas supplied to the fuel gas flow path and the oxidant gas supplied to the oxidant gas flow path.
- the fuel gas and the oxidant gas that have not caused the electrochemical reaction are discharged from the SOFC 20 as an exhaust gas.
- a combustor (not shown) that removes fuel components remaining in the exhaust gas by burning the exhaust gas from the SOFC 20 may be provided inside the main engine chamber 11.
- the exhaust gas from the SOFC 20 has a high temperature exceeding 300 ° C., for example.
- Exhaust gas from the SOFC 20 is guided from the main engine room 11 through the auxiliary machine room 12 to the vicinity of a ceiling hole part (auxiliary machine outlet part) 13 to be described later by an exhaust gas guide pipe 30 (see FIGS. 2 and 3).
- the detailed piping structure of the exhaust gas guiding pipe 30 will be described later.
- auxiliary machine room 12 various auxiliary machines (not shown) such as a solenoid valve and a flow meter are disposed.
- a cooling fan (auxiliary room ventilation fan, cooling device, cooling device) 40 for taking cooling air from the outside of the auxiliary machine room 12 and cooling the auxiliary machine during driving is provided inside the auxiliary machine room 12.
- the ceiling surface of the auxiliary machine room 12 is provided with a ceiling hole part (auxiliary machine room outlet part) 13 in which a large number of holes are formed by punching metal or the like, for example.
- the cooling air taken in by the cooling fan 40 spreads in a form that fills the interior of the auxiliary machine chamber 12 and cools the auxiliary machine during driving, and then is exhausted upward through the ceiling hole portion 13.
- the cooling air taken in by the cooling fan 40 is located around the exhaust gas guide pipe 30, it has a function of cooling the exhaust gas from the SOFC 20 guided inside the exhaust gas guide pipe 30. become.
- An exhaust heat recovery heat exchanger (hot water heat exchanger) 50 is disposed inside the auxiliary machine room 12.
- the exhaust heat recovery heat exchanger 50 recovers the heat of the exhaust gas from the SOFC 20.
- the exhaust heat recovery heat exchanger 50 is connected to an exhaust heat recovery circulation line 51 through which water (hot water) as a heat medium for exhaust heat recovery is circulated.
- the exhaust heat recovery circulation line 51 includes a down line 51A through which relatively high temperature water (hot water) flows from the exhaust heat recovery heat exchanger 50, and relatively low temperature water (warm water) toward the exhaust heat recovery heat exchanger 50. ) To flow up line 51B. Whether or not exhaust heat recovery by the exhaust heat recovery heat exchanger 50 is performed (whether cogeneration operation or monogeneration operation is performed) is controlled by a control unit (not shown).
- FIG. 1 illustrates the simplified configuration of the ceiling chamber 60, the internal configuration of the ceiling chamber 60 and the airflow in the ceiling chamber 60 will be described in detail with reference to FIGS. 2 and 3.
- the ceiling room 60 has a rectangular parallelepiped or cubic box shape.
- the ceiling chamber 60 functions as an exhaust duct that mixes the exhaust gas from the SOFC 20 guided by the exhaust gas induction pipe 30 and the cooling air taken in by the cooling fan 40 into a mixed gas, and exhausts the mixed gas to the outside.
- the ceiling chamber 60 has a function of preventing foreign matter such as rainwater and birds from entering the auxiliary machine chamber 12 through the ceiling hole portion 13.
- a hole or a groove for draining rainwater is formed in the lower portion of the ceiling chamber 60.
- the upper surface of the ceiling chamber 60 is an exhaust hole (final exhaust hole) 61 in which a number of holes are formed by punching metal or the like, for example.
- the lower surface of the ceiling chamber 60 is configured to include the ceiling hole portion 13 larger than the ceiling hole portion 13 of the auxiliary machine chamber 12 when viewed in plan.
- the ceiling hole portion 13 of the auxiliary machine chamber 12 has a large number of holes formed by punching metal or the like, and a through hole 14 is formed at the center of the ceiling hole portion 13.
- An exhaust gas induction pipe 30 extending from the SOFC 20 in the main engine room 11 through the exhaust heat recovery heat exchanger 50 in the auxiliary machine room 12 protrudes upward through the through hole 14. That is, the distal end portion of the exhaust gas guiding pipe 30 enters the ceiling chamber 60.
- a first baffle plate 62 having a substantially H shape in plan view corresponding to the shape in plan view of the ceiling chamber 60 is disposed inside the ceiling chamber 60.
- the first baffle plate 62 has a pair of left and right opposing sides 62A extending in the front-rear direction, and a connection side 62B extending in the left-right direction connecting intermediate portions of the pair of opposing sides 62A in the front-rear direction.
- a gap 62C that mainly serves as a flow path for cooling air is formed.
- a through hole 62D is formed in the central portion of the first baffle plate 62, and the exhaust gas guiding pipe 30 protrudes upward through the through hole 62D. In this way, the first baffle plate 62 is disposed so as to surround the exhaust gas guiding pipe 30 above the ceiling hole portion 13.
- the first baffle plate 62 has a function of positioning and fixing the exhaust gas guiding pipe 30 inside the ceiling chamber 60.
- a second baffle plate 63 having a substantially H shape in plan view corresponding to the plan view shape of the ceiling chamber 60 is disposed above the first baffle plate 62.
- the second baffle plate 63 has a pair of front and rear opposing sides 63A extending in the left-right direction, and a connecting side 63B extending in the front-rear direction connecting the intermediate portions of the pair of opposing sides 63A in the left-right direction.
- gaps 63C that mainly serve as a flow path for the mixed gas of the exhaust gas and the cooling air are formed.
- the second baffle plate 63 is disposed so as to face the tip of the exhaust gas guiding pipe 30 above the ceiling hole portion 13.
- the first baffle plate 62 and the second baffle plate 63 are arranged with their phases shifted by 90 °. For this reason, the gap portion 62C of the first baffle plate 62 and the gap portion 63C of the second baffle plate 63 do not communicate in the vertical direction, and correspond to the four sides of the ceiling chamber 60 when viewed in plan, Each of the two gap portions 62C and the gap portion 63C is located.
- the cooling air taken in by the cooling fan 40 spreads in a form that fills the interior of the auxiliary machine chamber 12 and cools the auxiliary machine (not shown) during driving. It enters the ceiling chamber 60 through the ceiling hole 13.
- the exhaust gas from the SOFC 20 is guided to the ceiling hole 13 by the exhaust gas guiding pipe 30 and is discharged between the first baffle plate 62 and the second baffle plate 63 inside the ceiling chamber 60.
- the cooling air taken in by the cooling fan 40 is located around the exhaust gas guide pipe 30 in the auxiliary machine chamber 12, so that the exhaust from the SOFC 20 guided inside the exhaust gas guide pipe 30 is performed.
- the gas is cooled.
- the exhaust gas from the SOFC 20 guided by the exhaust gas guide pipe 30 and the cooling air taken in by the cooling fan 40 are not in contact with each other inside the auxiliary machine chamber 12, an increase in pressure loss in the auxiliary machine chamber 12 is prevented. can do.
- the first baffle plate 62 Since the phases of the first baffle plate 62 and the second baffle plate 63 are shifted by 90 ° (since the gap portion 62C and the gap portion 63C do not communicate in the vertical direction), the first baffle plate 62 It is possible to obtain a longer cooling air and exhaust gas residence time between the first baffle plate 63 and the second baffle plate 63 and to obtain excellent cooling efficiency (dilution efficiency).
- the temperature of the exhaust gas discharged from the SOFC 20 discharged from the exhaust gas induction pipe 30 is, for example, about 90 ° C. when the exhaust heat recovery heat exchanger 50 is driven (during cogeneration operation), and the exhaust heat recovery heat exchanger 50 It is about 360 ° C. in a non-driven state (during monogeneration operation).
- the temperature of the cooling air that enters the ceiling chamber 60 from the auxiliary machine chamber 12 through the ceiling hole 13 is, for example, about 60 ° C.
- the temperature of the mixed gas obtained by stirring and mixing (diluting) the cooling air and the exhaust gas is the non-driven state of the exhaust heat recovery heat exchanger 50.
- the mixed gas agitated and mixed (diluted) between the first baffle plate 62 and the second baffle plate 63 rises through the gap 63C of the second baffle plate 63 and passes through the exhaust hole 61 to the outside. Exhausted.
- a temperature detection unit that detects the air temperature (for example, the temperature of the mixed gas that is stirred and mixed (diluted) inside the ceiling room 60). 70 is provided.
- a control unit 80 that controls the cooling fan 40 based on the detection result of the temperature detection unit 70 is provided in the auxiliary machine chamber 12.
- VVVF Very Voltage Variable Frequency
- the control unit 80 controls the on / off state of the cooling fan 40 and the exhaust gas flow rate so that the temperature detected by the temperature detection unit 70 is equal to or lower than a predetermined temperature threshold (for example, 260 ° C.).
- the control unit 80 controls the on / off state of the cooling fan 40 and the exhaust flow rate so that the temperature of the mixed gas exhausted from the exhaust hole 61 of the ceiling chamber 60 becomes a predetermined temperature threshold (for example, 260 ° C.) or less. Control.
- the SOFC (fuel cell) 20 is disposed in the main engine room 11, and the cooling fan (cooling device) 40 that takes in cooling air into the auxiliary machine room 12 is disposed.
- the ceiling hole (auxiliary chamber outlet) 13 exhausts the cooling air taken into the auxiliary chamber 12 by the cooling fan 40 to the outside, and the exhaust gas guide pipe 30 discharges the exhaust gas from the SOFC 20 to the main engine chamber 11.
- the exhaust gas from the SOFC 20 is cooled (diluted) with the cooling air in the vicinity of the ceiling hole portion 13 (the exhaust gas from the SOFC 20 is cooled (diluted) using the cooling air taken in by the cooling fan 40).
- cooling of the exhaust gas from the SOFC 20 can be realized with an efficient and simple configuration. That is, it is not necessary to separately provide a means for cooling the exhaust gas from the SOFC 20 (for example, a radiator or a dilution air blower when exhaust heat is not used), thereby reducing the number of equipment and reducing the size and cost of the apparatus. Therefore, it is possible to improve power generation efficiency by suppressing auxiliary machine power.
- a means for cooling the exhaust gas from the SOFC 20 for example, a radiator or a dilution air blower when exhaust heat is not used
- Second Embodiment With reference to FIG. 4, the fuel cell system 1 by 2nd Embodiment is demonstrated.
- a cooling air guide pipe 15 that guides the cooling air taken in by the cooling fan 40 to the ceiling hole 13 is provided in the auxiliary machine chamber 12.
- the exhaust gas guide pipe 30 and the cooling air guide pipe 15 have a double pipe structure in which the exhaust gas guide pipe 30 is disposed on the inner side and the cooling air guide pipe 15 is disposed on the outer side.
- the exhaust gas guide pipe 30 protrudes upward from the ceiling hole portion 13 of the auxiliary machine room 12 (enters the inside of the ceiling room 60) has been described as an example.
- the exhaust gas guide pipe 30 may extend to the same height position as the ceiling hole portion 13 of the auxiliary machine room 12 or a slightly lower height position (the auxiliary machine room without entering the ceiling room 60). 12 may stay inside). Even in this case, the exhaust gas guide pipe 30 can guide the exhaust gas from the SOFC 20 from the main engine room 11 through the auxiliary machine room 12 to the ceiling hole 13.
- the case where the first baffle plate 62 and the second baffle plate 63 are disposed inside the ceiling chamber 60 is illustrated, but the first baffle plate 62 and the second baffle plate 63 are illustrated. Can be omitted. Further, the ceiling chamber 60 is omitted, and the exhaust gas from the SOFC 20 guided by the exhaust gas induction pipe 30 and the cooling air taken in by the cooling fan 40 are mixed and diluted in the vicinity of the ceiling hole portion 13 of the auxiliary machine chamber 12. It is also possible to do.
- SOFC solid oxide fuel cell
- other types of fuel cells for example, solid polymer fuel cells and phosphorous cells
- acid fuel cell or the like it is also possible to use an acid fuel cell or the like.
- cooling fan is used as the cooling device
- other types of cooling devices can be used as long as the cooling air can be taken into the auxiliary machine room.
- the fuel cell system of the present invention is suitable for application to fuel cell systems for household, business, and other industrial fields.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Fuel Cell (AREA)
Abstract
Provided is a fuel cell system in which the exhaust gas from a fuel cell can be cooled effectively with a simple configuration. A fuel cell (20) is disposed in a main machinery room (11). A cooling device (40) for taking in cooling air is disposed in an auxiliary machinery room (12). A ceiling opening portion (13) is provided in the auxiliary machinery room (12) and discharges the cooling air taken into the auxiliary machinery room (12) by the cooling device (40) to the outside. An exhaust gas guide pipe (30) guides the exhaust gas from the fuel cell (20) from the main machinery room (11) to the ceiling opening portion (13) via the auxiliary machinery room (12) and projects upward from the ceiling opening portion (13). A first baffle (62) is disposed upward from the ceiling opening portion (13) so as to surround the exhaust gas guide pipe (30). A second baffle (63) is disposed upward from the ceiling opening portion (13) so as to face an end of the exhaust gas guide pipe (30).
Description
本発明は、燃料電池システムに関する。
The present invention relates to a fuel cell system.
特許文献1には、燃料電池の空気入口温度と空気出口温度の差が小さくなるように内部の機器を配置することで燃料電池の効率的な運転を可能にするための燃料電池システムが開示されている。そのための構成として、燃料電池の表裏側面側の全体を覆う領域に、複数の冷却ファンを配列(例えば縦3列×横3列の9個を表裏それぞれに設置)させて、外気側から燃料電池に向けて送風を行うことができるようになっている。また、燃料電池の下面側に送風ファンが設けられており、この送風ファンによって燃料電池の排熱を吸引して下方側の排熱通路に送風するようになっている。さらに、排熱通路側から空気を吸引して制御装置に吹き出すことで当該制御装置を冷却する送風ファン(第2の送風ファン)が設けられている。2つの送風ファンの流量を制御装置によって制御することで、排熱通路に導入される送風量、ひいては空気ポンプ、空気移送管、加湿器への送風量や温度の調整を行うことができる。
Patent Document 1 discloses a fuel cell system that enables efficient operation of a fuel cell by disposing an internal device so that the difference between the air inlet temperature and the air outlet temperature of the fuel cell becomes small. ing. As a configuration for this purpose, a plurality of cooling fans are arranged in a region covering the entire front and back side surfaces of the fuel cell (for example, nine vertical and horizontal three rows are installed on the front and back), and the fuel cell is arranged from the outside air side. The air can be blown toward. In addition, a blower fan is provided on the lower surface side of the fuel cell. The blower fan sucks the exhaust heat of the fuel cell and blows it to the lower exhaust heat passage. Further, a blower fan (second blower fan) that cools the control device by sucking air from the exhaust heat passage side and blowing it out to the control device is provided. By controlling the flow rates of the two blower fans with the control device, it is possible to adjust the blown air amount introduced into the exhaust heat passage, and consequently the blown air amount and temperature to the air pump, the air transfer pipe, and the humidifier.
一方、従来の燃料電池システムでは、燃料電池からの高温の排出ガス(例えば電気化学反応を起こさなかった燃料ガス及び酸化剤ガス並びにこれらを燃焼させた燃焼ガス等)の排熱処理を如何にして実行するかが技術課題となっている。
On the other hand, in a conventional fuel cell system, how to perform exhaust heat treatment of high-temperature exhaust gas from the fuel cell (for example, fuel gas and oxidant gas that did not cause an electrochemical reaction and combustion gas obtained by burning them). It has become a technical issue.
上記の技術課題の解決策の1つとして、例えば、排熱回収熱交換器(温水熱交換器)を用いて排出ガスの熱を温水により回収して熱出力する構成を採用することが考えられる。また、このような排熱利用が無い場合(排熱回収熱交換器が非作動の場合)、排出ガスの温度を下げて排気するために、ラジエータによる冷却や希釈用空気ブロアによる希釈を行うことが考えられる。
As one of the solutions to the above technical problem, for example, it is conceivable to employ a configuration in which the heat of the exhaust gas is recovered by hot water using a waste heat recovery heat exchanger (warm water heat exchanger) and is thermally output. . In addition, when there is no such exhaust heat utilization (when the exhaust heat recovery heat exchanger is not in operation), cooling with a radiator or dilution with an air blower for dilution is performed to lower the exhaust gas temperature and exhaust the exhaust gas. Can be considered.
しかしながら、特許文献1を含む従来の燃料電池システムは、燃料電池からの排出ガスの冷却手段(例えば排熱利用が無い場合のラジエータや希釈用空気ブロア等)により機器点数が増え、装置の大型化やコストアップ、補機動力増加による発電効率の低下を招くおそれがある。とりわけ、燃料電池として業務用の大型の固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)を用いた場合は、SOFCからの排出ガスが非常に高温になるため、上記技術課題がより一層顕著になる。
However, in the conventional fuel cell system including Patent Document 1, the number of equipment increases due to cooling means for exhaust gas from the fuel cell (for example, a radiator or a dilution air blower when exhaust heat is not used), and the size of the apparatus is increased. In addition, there is a risk that power generation efficiency will decrease due to increased costs and auxiliary power. In particular, when a large-sized solid oxide fuel cell (SOFC: Solid Oxide Fuel Cell) for business use is used as the fuel cell, the exhaust gas from the SOFC becomes extremely hot, so the above technical problem becomes even more prominent. become.
本発明はかかる点に鑑みてなされたものであり、燃料電池からの排出ガスの冷却を効率的かつ簡易な構成で実現することができる燃料電池システムを提供することを目的の1つとする。
The present invention has been made in view of such points, and an object of the present invention is to provide a fuel cell system capable of realizing cooling of exhaust gas from the fuel cell with an efficient and simple configuration.
本実施形態の燃料電池システムは、燃料電池が配設される主機室と、冷却空気を取り込む冷却機器が配設される補機室と、前記冷却機器によって前記補機室に取り込まれた前記冷却空気を外部に排気する、前記補機室に設けられた天井孔部と、前記燃料電池からの排出ガスを前記主機室から前記補機室を経て前記天井孔部まで誘導するとともに、前記天井孔部より上方に突出する排出ガス誘導管と、前記天井孔部より上方で前記排出ガス誘導管を取り囲むように配置された第1の邪魔板と、前記天井孔部より上方で前記排出ガス誘導管の先端に対向するように配置された第2の邪魔板と、を有することを特徴としている。
The fuel cell system of the present embodiment includes a main engine room in which a fuel cell is disposed, an auxiliary machine room in which a cooling device that takes in cooling air is disposed, and the cooling that is taken into the auxiliary machine chamber by the cooling device. A ceiling hole provided in the auxiliary machine room for exhausting air to the outside, and guiding exhaust gas from the fuel cell from the main machine room through the auxiliary machine room to the ceiling hole part, and the ceiling hole An exhaust gas guide pipe projecting upward from the upper part, a first baffle plate disposed so as to surround the exhaust gas guide pipe above the ceiling hole part, and the exhaust gas guide pipe above the ceiling hole part And a second baffle plate disposed so as to face the tip of the first baffle.
本発明によれば、燃料電池からの排出ガスの冷却を効率的かつ簡易な構成で実現することができる燃料電池システムを提供することができる。
According to the present invention, it is possible to provide a fuel cell system capable of realizing cooling of exhaust gas from the fuel cell with an efficient and simple configuration.
≪第1実施形態≫
図1~図3を参照して、第1実施形態による燃料電池システム1について説明する。図2、図3における上下前後左右の各方向は、図中に記載した矢線方向を基準とする。図1において、細い実線は、ガスや水等の流体の流れを示しており、細い一点鎖線は、電気や信号の流れを示している。また、図1において、太い実線は、筐体ユニット10の外殻(輪郭)の一部を示しており、太い破線は、主機室11と補機室12の境界部を示している。 << First Embodiment >>
Thefuel cell system 1 according to the first embodiment will be described with reference to FIGS. 2 and 3 is based on the arrow direction described in the drawings. In FIG. 1, a thin solid line indicates a flow of fluid such as gas or water, and a thin one-dot chain line indicates a flow of electricity or a signal. In FIG. 1, a thick solid line indicates a part of the outer shell (outline) of the housing unit 10, and a thick broken line indicates a boundary portion between the main engine room 11 and the auxiliary machine room 12.
図1~図3を参照して、第1実施形態による燃料電池システム1について説明する。図2、図3における上下前後左右の各方向は、図中に記載した矢線方向を基準とする。図1において、細い実線は、ガスや水等の流体の流れを示しており、細い一点鎖線は、電気や信号の流れを示している。また、図1において、太い実線は、筐体ユニット10の外殻(輪郭)の一部を示しており、太い破線は、主機室11と補機室12の境界部を示している。 << First Embodiment >>
The
燃料電池システム1は、箱型の筐体ユニット10を有している。この筐体ユニット10は、内部が主機室11と補機室12に分けられている。主機室11と補機室12は、図示を省略した隔壁によって区画されて防爆構造が保証されていてもよい。あるいは、主機室11と補機室12は、両者の間の防爆構造が保証される限りにおいて、隔壁によって区画されることなく1つの部屋で連通していてもよい。
The fuel cell system 1 has a box-shaped housing unit 10. The housing unit 10 is divided into a main machine room 11 and an auxiliary machine room 12. The main engine room 11 and the auxiliary machine room 12 may be partitioned by a partition wall (not shown) to guarantee an explosion-proof structure. Alternatively, the main engine room 11 and the auxiliary machine room 12 may communicate with each other without being partitioned by a partition as long as an explosion-proof structure between the two is guaranteed.
主機室11の内部には、燃料電池として、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)20が配設されている。図示は省略しているが、SOFC20は、複数のセルを積層または集合体として構成したセルスタックを有している。各セルは空気極と燃料極で電解質を挟んだ基本構成を有しており、各セルの間にはセパレータが介在している。セルスタックの各セルは電気的に直列に接続されている。SOFC20は、空気極で生成された酸化物イオンが電解質を透過して燃料極に移動し、燃料極で酸化物イオンが水素又は一酸化炭素と反応することにより電気エネルギーを発生する発電メカニズムである。
A solid oxide fuel cell (SOFC: Solid Oxide Fuel Cell) 20 is disposed in the main engine room 11 as a fuel cell. Although not shown, the SOFC 20 has a cell stack in which a plurality of cells are stacked or aggregated. Each cell has a basic configuration in which an electrolyte is sandwiched between an air electrode and a fuel electrode, and a separator is interposed between the cells. Each cell of the cell stack is electrically connected in series. The SOFC 20 is a power generation mechanism in which oxide ions generated at the air electrode permeate the electrolyte and move to the fuel electrode, and the oxide ions react with hydrogen or carbon monoxide at the fuel electrode to generate electric energy. .
図示は省略しているが、SOFC20は、燃料ガス供給器から燃料ガスが供給される燃料ガス流路と、酸化剤ガス供給器から酸化剤ガスが供給される酸化剤ガス流路とを有している。燃料ガス流路に供給された燃料ガスと酸化剤ガス流路に供給された酸化剤ガスが電気化学反応を起こすことにより、直流電流が発生する。電気化学反応を起こさなかった燃料ガスと酸化剤ガスは、排出ガスとして、SOFC20から排出される。なお、主機室11の内部には、SOFC20からの排出ガスを燃焼させることで排出ガス中に残留している燃料成分を除去する燃焼器(図示略)が設けられていてもよい。SOFC20からの排出ガスは、例えば、300℃を超えるような高温となっている。
Although not shown, the SOFC 20 has a fuel gas channel through which fuel gas is supplied from the fuel gas supplier and an oxidant gas channel through which oxidant gas is supplied from the oxidant gas supplier. ing. A direct current is generated by causing an electrochemical reaction between the fuel gas supplied to the fuel gas flow path and the oxidant gas supplied to the oxidant gas flow path. The fuel gas and the oxidant gas that have not caused the electrochemical reaction are discharged from the SOFC 20 as an exhaust gas. Note that a combustor (not shown) that removes fuel components remaining in the exhaust gas by burning the exhaust gas from the SOFC 20 may be provided inside the main engine chamber 11. The exhaust gas from the SOFC 20 has a high temperature exceeding 300 ° C., for example.
SOFC20からの排出ガスは、排出ガス誘導管30(図2、図3参照)により、主機室11から補機室12を経て後述する天井孔部(補機室出口部)13の近傍まで誘導される。排出ガス誘導管30の詳細な配管構造については後述する。
Exhaust gas from the SOFC 20 is guided from the main engine room 11 through the auxiliary machine room 12 to the vicinity of a ceiling hole part (auxiliary machine outlet part) 13 to be described later by an exhaust gas guide pipe 30 (see FIGS. 2 and 3). The The detailed piping structure of the exhaust gas guiding pipe 30 will be described later.
補機室12の内部には、例えば、電磁弁や流量計などの各種補機(図示略)が配設されている。また、補機室12の内部には、補機室12の外部から冷却空気を取り込んで、駆動時の補機を冷却するための冷却ファン(補機室換気ファン、冷却機器、冷却装置)40が配設されている。また、補機室12の天井面には、例えば、パンチングメタル等により多数の孔が形成された天井孔部(補機室出口部)13が設けられている。冷却ファン40が取り込んだ冷却空気は、補機室12の内部に充満する形で広がって駆動時の補機を冷却した後に、天井孔部13を介して上方に排気される。さらに、冷却ファン40が取り込んだ冷却空気は、排出ガス誘導管30の周囲に位置しているので、当該排出ガス誘導管30の内部を誘導されるSOFC20からの排出ガスを冷却する機能を担うことになる。
In the auxiliary machine chamber 12, various auxiliary machines (not shown) such as a solenoid valve and a flow meter are disposed. Further, a cooling fan (auxiliary room ventilation fan, cooling device, cooling device) 40 for taking cooling air from the outside of the auxiliary machine room 12 and cooling the auxiliary machine during driving is provided inside the auxiliary machine room 12. Is arranged. The ceiling surface of the auxiliary machine room 12 is provided with a ceiling hole part (auxiliary machine room outlet part) 13 in which a large number of holes are formed by punching metal or the like, for example. The cooling air taken in by the cooling fan 40 spreads in a form that fills the interior of the auxiliary machine chamber 12 and cools the auxiliary machine during driving, and then is exhausted upward through the ceiling hole portion 13. Further, since the cooling air taken in by the cooling fan 40 is located around the exhaust gas guide pipe 30, it has a function of cooling the exhaust gas from the SOFC 20 guided inside the exhaust gas guide pipe 30. become.
補機室12の内部には、排熱回収熱交換器(温水熱交換器)50が配設されている。排熱回収熱交換器50は、SOFC20からの排出ガスの熱を回収する。排熱回収熱交換器50には、排熱回収のための熱媒体としての水(温水)が循環される排熱回収循環ライン51が接続されている。排熱回収循環ライン51は、排熱回収熱交換器50から相対的に高温の水(温水)を流す下りライン51Aと、排熱回収熱交換器50に向けて相対的に低温の水(温水)を流す上りライン51Bとを有している。排熱回収熱交換器50による排熱回収を行うか否か(コジェネ運転とモノジェネ運転のいずれを行うか)は、図示を省略した制御部によって制御される。
An exhaust heat recovery heat exchanger (hot water heat exchanger) 50 is disposed inside the auxiliary machine room 12. The exhaust heat recovery heat exchanger 50 recovers the heat of the exhaust gas from the SOFC 20. The exhaust heat recovery heat exchanger 50 is connected to an exhaust heat recovery circulation line 51 through which water (hot water) as a heat medium for exhaust heat recovery is circulated. The exhaust heat recovery circulation line 51 includes a down line 51A through which relatively high temperature water (hot water) flows from the exhaust heat recovery heat exchanger 50, and relatively low temperature water (warm water) toward the exhaust heat recovery heat exchanger 50. ) To flow up line 51B. Whether or not exhaust heat recovery by the exhaust heat recovery heat exchanger 50 is performed (whether cogeneration operation or monogeneration operation is performed) is controlled by a control unit (not shown).
補機室12の天井孔部13の上方には、天井室60が設けられている。図1は天井室60の構成を簡略化して描いているが、図2、図3を参照して、天井室60の内部構成と天井室60の内部における気流について詳細に説明する。
A ceiling room 60 is provided above the ceiling hole 13 of the auxiliary machine room 12. Although FIG. 1 illustrates the simplified configuration of the ceiling chamber 60, the internal configuration of the ceiling chamber 60 and the airflow in the ceiling chamber 60 will be described in detail with reference to FIGS. 2 and 3.
天井室60は、直方体型または立方体型の箱型形状をなしている。天井室60は、排出ガス誘導管30が誘導したSOFC20からの排出ガスと冷却ファン40が取り込んだ冷却空気を混合して混合ガスとし、当該混合ガスを外部に排気する排気ダクトとして機能する。また、天井室60は、天井孔部13を介して補機室12の内部に雨水や鳥などの異物が侵入するのを防止する機能を持つ。なお、天井室60の下部には、雨水排水用の孔や溝が形成されていることが好ましい。
The ceiling room 60 has a rectangular parallelepiped or cubic box shape. The ceiling chamber 60 functions as an exhaust duct that mixes the exhaust gas from the SOFC 20 guided by the exhaust gas induction pipe 30 and the cooling air taken in by the cooling fan 40 into a mixed gas, and exhausts the mixed gas to the outside. The ceiling chamber 60 has a function of preventing foreign matter such as rainwater and birds from entering the auxiliary machine chamber 12 through the ceiling hole portion 13. In addition, it is preferable that a hole or a groove for draining rainwater is formed in the lower portion of the ceiling chamber 60.
天井室60の上面は、例えば、パンチングメタル等により多数の孔が形成された排気孔(最終排気孔)61となっている。天井室60の下面は、平面視したときに補機室12の天井孔部13よりも大きく当該天井孔部13を含むように構成されている。
The upper surface of the ceiling chamber 60 is an exhaust hole (final exhaust hole) 61 in which a number of holes are formed by punching metal or the like, for example. The lower surface of the ceiling chamber 60 is configured to include the ceiling hole portion 13 larger than the ceiling hole portion 13 of the auxiliary machine chamber 12 when viewed in plan.
上述したように、補機室12の天井孔部13は、パンチングメタル等により多数の孔が形成されたものであり、天井孔部13の中央部には貫通孔14が形成されている。この貫通孔14を貫通するようにして、主機室11のSOFC20から補機室12の排熱回収熱交換器50を経て延びてきた排出ガス誘導管30が上方に突出している。すなわち、排出ガス誘導管30の先端部が天井室60の内部に入り込んでいる。
As described above, the ceiling hole portion 13 of the auxiliary machine chamber 12 has a large number of holes formed by punching metal or the like, and a through hole 14 is formed at the center of the ceiling hole portion 13. An exhaust gas induction pipe 30 extending from the SOFC 20 in the main engine room 11 through the exhaust heat recovery heat exchanger 50 in the auxiliary machine room 12 protrudes upward through the through hole 14. That is, the distal end portion of the exhaust gas guiding pipe 30 enters the ceiling chamber 60.
天井室60の内部には、天井室60の平面視形状に対応した平面視略H形状をなす第1の邪魔板62が配設されている。第1の邪魔板62は、前後方向に延びる左右一対の対向辺62Aと、この一対の対向辺62Aの前後方向の中間部を接続する左右方向に延びる接続辺62Bとを有している。接続辺62Bの前後の両側には、主に冷却空気の流通路となる空隙部62Cが形成されている。第1の邪魔板62の中央部には貫通孔62Dが形成されており、この貫通孔62Dを貫通して、排出ガス誘導管30が上方に突出している。このようにして、第1の邪魔板62は、天井孔部13より上方で排出ガス誘導管30を取り囲むように配置されている。なお、第1の邪魔板62は、排出ガス誘導管30を天井室60の内部に位置決め固定する機能を持つ。
A first baffle plate 62 having a substantially H shape in plan view corresponding to the shape in plan view of the ceiling chamber 60 is disposed inside the ceiling chamber 60. The first baffle plate 62 has a pair of left and right opposing sides 62A extending in the front-rear direction, and a connection side 62B extending in the left-right direction connecting intermediate portions of the pair of opposing sides 62A in the front-rear direction. On both sides before and after the connecting side 62B, a gap 62C that mainly serves as a flow path for cooling air is formed. A through hole 62D is formed in the central portion of the first baffle plate 62, and the exhaust gas guiding pipe 30 protrudes upward through the through hole 62D. In this way, the first baffle plate 62 is disposed so as to surround the exhaust gas guiding pipe 30 above the ceiling hole portion 13. The first baffle plate 62 has a function of positioning and fixing the exhaust gas guiding pipe 30 inside the ceiling chamber 60.
天井室60の内部には、第1の邪魔板62の上方に位置させて、天井室60の平面視形状に対応した平面視略H形状をなす第2の邪魔板63が配設されている。第2の邪魔板63は、左右方向に延びる前後一対の対向辺63Aと、この一対の対向辺63Aの左右方向の中間部を接続する前後方向に延びる接続辺63Bとを有している。接続辺63Bの左右の両側には、主に排出ガスと冷却空気の混合ガスの流通路となる空隙部63Cが形成されている。第2の邪魔板63は、天井孔部13より上方で排出ガス誘導管30の先端に対向するように配置されている。
Inside the ceiling chamber 60, a second baffle plate 63 having a substantially H shape in plan view corresponding to the plan view shape of the ceiling chamber 60 is disposed above the first baffle plate 62. . The second baffle plate 63 has a pair of front and rear opposing sides 63A extending in the left-right direction, and a connecting side 63B extending in the front-rear direction connecting the intermediate portions of the pair of opposing sides 63A in the left-right direction. On both the left and right sides of the connection side 63B, gaps 63C that mainly serve as a flow path for the mixed gas of the exhaust gas and the cooling air are formed. The second baffle plate 63 is disposed so as to face the tip of the exhaust gas guiding pipe 30 above the ceiling hole portion 13.
共に平面視略H形状をなす第1の邪魔板62と第2の邪魔板63は、互いの位相が90°ずれて配置されている。このため、第1の邪魔板62の空隙部62Cと第2の邪魔板63の空隙部63Cは、上下方向に連通することはなく、平面視したときには、天井室60の四辺に対応させて、各2つの空隙部62Cと空隙部63Cが位置することになる。
The first baffle plate 62 and the second baffle plate 63, both of which are substantially H-shaped in plan view, are arranged with their phases shifted by 90 °. For this reason, the gap portion 62C of the first baffle plate 62 and the gap portion 63C of the second baffle plate 63 do not communicate in the vertical direction, and correspond to the four sides of the ceiling chamber 60 when viewed in plan, Each of the two gap portions 62C and the gap portion 63C is located.
以上のように構成された燃料電池システム1では、冷却ファン40が取り込んだ冷却空気が、補機室12の内部に充満する形で広がって駆動時の補機(図示略)を冷却した後に、天井孔部13を介して天井室60の内部に入り込む。一方、SOFC20からの排出ガスは、排出ガス誘導管30によって天井孔部13まで誘導され、天井室60の内部の第1の邪魔板62と第2の邪魔板63の間で排出される。この間、補機室12の内部では、冷却ファン40が取り込んだ冷却空気が、排出ガス誘導管30の周囲に位置しているので、当該排出ガス誘導管30の内部を誘導されるSOFC20からの排出ガスが冷却される。しかも、補機室12の内部では、排出ガス誘導管30が誘導するSOFC20からの排出ガスと冷却ファン40が取り込んだ冷却空気が非接触なので、補機室12の内部における圧力損失の増加を防止することができる。
In the fuel cell system 1 configured as described above, the cooling air taken in by the cooling fan 40 spreads in a form that fills the interior of the auxiliary machine chamber 12 and cools the auxiliary machine (not shown) during driving. It enters the ceiling chamber 60 through the ceiling hole 13. On the other hand, the exhaust gas from the SOFC 20 is guided to the ceiling hole 13 by the exhaust gas guiding pipe 30 and is discharged between the first baffle plate 62 and the second baffle plate 63 inside the ceiling chamber 60. During this time, the cooling air taken in by the cooling fan 40 is located around the exhaust gas guide pipe 30 in the auxiliary machine chamber 12, so that the exhaust from the SOFC 20 guided inside the exhaust gas guide pipe 30 is performed. The gas is cooled. Moreover, since the exhaust gas from the SOFC 20 guided by the exhaust gas guide pipe 30 and the cooling air taken in by the cooling fan 40 are not in contact with each other inside the auxiliary machine chamber 12, an increase in pressure loss in the auxiliary machine chamber 12 is prevented. can do.
天井孔部13を介して天井室60の内部に入り込んだ冷却空気は、その大部分が第1の邪魔板62の下面にぶつかった後に空隙部62Cを介して上昇し、その小部分が第1の邪魔板62の下面にぶつかることなく空隙部62Cを介して上昇する。そして、第1の邪魔板62と第2の邪魔板63の間で、空隙部62Cを介して上昇してきた冷却空気と、排出ガス誘導管30から排出されたSOFC20からの排出ガスとが撹拌混合(希釈)されて混合ガスとなる。ここで、第1の邪魔板62と第2の邪魔板63の位相が90°ずれているので(空隙部62Cと空隙部63Cが上下方向に連通していないので)、第1の邪魔板62と第2の邪魔板63の間における冷却空気と排出ガスの滞留時間を長く稼いで、優れた冷却効率(希釈効率)を得ることが可能になる。
Most of the cooling air that has entered the interior of the ceiling chamber 60 through the ceiling hole portion 13 hits the lower surface of the first baffle plate 62 and then rises through the gap portion 62C. Ascends through the gap 62C without hitting the lower surface of the baffle plate 62. Then, between the first baffle plate 62 and the second baffle plate 63, the cooling air rising through the gap 62C and the exhaust gas from the SOFC 20 discharged from the exhaust gas guide pipe 30 are mixed by stirring. (Diluted) to become a mixed gas. Here, since the phases of the first baffle plate 62 and the second baffle plate 63 are shifted by 90 ° (since the gap portion 62C and the gap portion 63C do not communicate in the vertical direction), the first baffle plate 62 It is possible to obtain a longer cooling air and exhaust gas residence time between the first baffle plate 63 and the second baffle plate 63 and to obtain excellent cooling efficiency (dilution efficiency).
排出ガス誘導管30から排出されるSOFC20からの排出ガスの温度は、例えば、排熱回収熱交換器50の駆動状態(コジェネ運転時)で90℃程度であり、排熱回収熱交換器50の非駆動状態(モノジェネ運転時)で360℃程度である。これに対し、補機室12から天井孔部13を介して天井室60の内部に入り込む冷却空気の温度は、例えば60℃程度である。ここで、冷却空気の流量は排出ガスの流量よりもかなり大きいので、冷却空気と排出ガスを撹拌混合(希釈)した混合ガスの温度は、排熱回収熱交換器50の非駆動状態であっても、260℃より十分に低くすることができる(例えば最高でも80℃程度にまで抑えることができる)。
The temperature of the exhaust gas discharged from the SOFC 20 discharged from the exhaust gas induction pipe 30 is, for example, about 90 ° C. when the exhaust heat recovery heat exchanger 50 is driven (during cogeneration operation), and the exhaust heat recovery heat exchanger 50 It is about 360 ° C. in a non-driven state (during monogeneration operation). On the other hand, the temperature of the cooling air that enters the ceiling chamber 60 from the auxiliary machine chamber 12 through the ceiling hole 13 is, for example, about 60 ° C. Here, since the flow rate of the cooling air is considerably larger than the flow rate of the exhaust gas, the temperature of the mixed gas obtained by stirring and mixing (diluting) the cooling air and the exhaust gas is the non-driven state of the exhaust heat recovery heat exchanger 50. Can be sufficiently lower than 260 ° C. (for example, it can be suppressed to about 80 ° C. at the highest).
第1の邪魔板62と第2の邪魔板63の間で撹拌混合(希釈)された混合ガスは、第2の邪魔板63の空隙部63Cを介して上昇して、排気孔61から外部に排気される。
The mixed gas agitated and mixed (diluted) between the first baffle plate 62 and the second baffle plate 63 rises through the gap 63C of the second baffle plate 63 and passes through the exhaust hole 61 to the outside. Exhausted.
補機室12の天井孔部13の近傍(例えば天井室60の内部)には、空気温度(例えば天井室60の内部で撹拌混合(希釈)された混合ガスの温度)を検出する温度検出部70が設けられている。また、補機室12の内部には、温度検出部70による検出結果に基づいて冷却ファン40を制御する制御部80が設けられている。制御部80による制御方式としては、例えば、VVVF(Variable Voltage Variable Frequency)制御を用いることができる。制御部80は、温度検出部70による検出温度が所定の温度閾値(例えば260℃)以下となるように、冷却ファン40のオンオフ状態や排気流量などを制御する。
In the vicinity of the ceiling hole 13 of the auxiliary machine room 12 (for example, inside the ceiling room 60), a temperature detection unit that detects the air temperature (for example, the temperature of the mixed gas that is stirred and mixed (diluted) inside the ceiling room 60). 70 is provided. In addition, a control unit 80 that controls the cooling fan 40 based on the detection result of the temperature detection unit 70 is provided in the auxiliary machine chamber 12. As a control method by the control unit 80, for example, VVVF (Variable Voltage Variable Frequency) control can be used. The control unit 80 controls the on / off state of the cooling fan 40 and the exhaust gas flow rate so that the temperature detected by the temperature detection unit 70 is equal to or lower than a predetermined temperature threshold (for example, 260 ° C.).
あるいは、補機室12の内部に温度検出部70を設けて、この温度検出部70の検出結果に基づいて、制御部80が冷却ファン40を制御することも可能である。この場合、制御部80は、天井室60の排気孔61から排気される混合ガスの温度が所定の温度閾値(例えば260℃)以下となるように、冷却ファン40のオンオフ状態や排気流量などを制御する。
Alternatively, it is also possible to provide the temperature detection unit 70 inside the auxiliary machine chamber 12 and control the cooling fan 40 by the control unit 80 based on the detection result of the temperature detection unit 70. In this case, the control unit 80 controls the on / off state of the cooling fan 40 and the exhaust flow rate so that the temperature of the mixed gas exhausted from the exhaust hole 61 of the ceiling chamber 60 becomes a predetermined temperature threshold (for example, 260 ° C.) or less. Control.
このように、第1実施形態による燃料電池システム1では、主機室11にSOFC(燃料電池)20が配設され、補機室12に冷却空気を取り込む冷却ファン(冷却機器)40が配設され、天井孔部(補機室出口部)13が、冷却ファン40によって補機室12に取り込まれた冷却空気を外部に排気し、排出ガス誘導管30が、SOFC20からの排出ガスを主機室11から補機室12を経て天井孔部13まで誘導する。これにより、天井孔部13の近傍でSOFC20からの排出ガスが冷却空気で冷却(希釈)されるので(冷却ファン40が取り込んだ冷却空気を利用してSOFC20からの排出ガスを冷却(希釈)するので)、SOFC20からの排出ガスの冷却を効率的かつ簡易な構成で実現することができる。すなわち、SOFC20からの排出ガスの冷却手段(例えば排熱利用が無い場合のラジエータや希釈用空気ブロア等)を別途設ける必要がなくなるので、機器点数を少なくするとともに、装置の小型化や低コスト化を図り、補機動力を抑制して発電効率を向上させることが可能になる。
As described above, in the fuel cell system 1 according to the first embodiment, the SOFC (fuel cell) 20 is disposed in the main engine room 11, and the cooling fan (cooling device) 40 that takes in cooling air into the auxiliary machine room 12 is disposed. The ceiling hole (auxiliary chamber outlet) 13 exhausts the cooling air taken into the auxiliary chamber 12 by the cooling fan 40 to the outside, and the exhaust gas guide pipe 30 discharges the exhaust gas from the SOFC 20 to the main engine chamber 11. To the ceiling hole 13 through the auxiliary machine room 12. Thereby, the exhaust gas from the SOFC 20 is cooled (diluted) with the cooling air in the vicinity of the ceiling hole portion 13 (the exhaust gas from the SOFC 20 is cooled (diluted) using the cooling air taken in by the cooling fan 40). Therefore, cooling of the exhaust gas from the SOFC 20 can be realized with an efficient and simple configuration. That is, it is not necessary to separately provide a means for cooling the exhaust gas from the SOFC 20 (for example, a radiator or a dilution air blower when exhaust heat is not used), thereby reducing the number of equipment and reducing the size and cost of the apparatus. Therefore, it is possible to improve power generation efficiency by suppressing auxiliary machine power.
≪第2実施形態≫
図4を参照して、第2実施形態による燃料電池システム1について説明する。この第2実施形態では、補機室12の内部に、冷却ファン40が取り込んだ冷却空気を天井孔部13まで誘導する冷却空気誘導管15を設けている。そして、排出ガス誘導管30と冷却空気誘導管15が、内側に排出ガス誘導管30が配置され且つ外側に冷却空気誘導管15が配置された二重配管構造を有している。これにより、補機室12の内部におけるSOFC20からの排出ガスと冷却空気の熱交換効率(冷却効率)を向上させることができる。 << Second Embodiment >>
With reference to FIG. 4, thefuel cell system 1 by 2nd Embodiment is demonstrated. In the second embodiment, a cooling air guide pipe 15 that guides the cooling air taken in by the cooling fan 40 to the ceiling hole 13 is provided in the auxiliary machine chamber 12. The exhaust gas guide pipe 30 and the cooling air guide pipe 15 have a double pipe structure in which the exhaust gas guide pipe 30 is disposed on the inner side and the cooling air guide pipe 15 is disposed on the outer side. Thereby, the heat exchange efficiency (cooling efficiency) of the exhaust gas from the SOFC 20 and the cooling air in the auxiliary machine chamber 12 can be improved.
図4を参照して、第2実施形態による燃料電池システム1について説明する。この第2実施形態では、補機室12の内部に、冷却ファン40が取り込んだ冷却空気を天井孔部13まで誘導する冷却空気誘導管15を設けている。そして、排出ガス誘導管30と冷却空気誘導管15が、内側に排出ガス誘導管30が配置され且つ外側に冷却空気誘導管15が配置された二重配管構造を有している。これにより、補機室12の内部におけるSOFC20からの排出ガスと冷却空気の熱交換効率(冷却効率)を向上させることができる。 << Second Embodiment >>
With reference to FIG. 4, the
なお、本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。上記実施の形態において、添付図面に図示されている構成要素の大きさや形状、機能などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。
It should be noted that the present invention is not limited to the above embodiment, and can be implemented with various modifications. In the above-described embodiment, the size, shape, function, and the like of the components illustrated in the accompanying drawings are not limited thereto, and can be appropriately changed within a range in which the effects of the present invention are exhibited. In addition, various modifications can be made without departing from the scope of the object of the present invention.
例えば、上記実施の形態では、排出ガス誘導管30が補機室12の天井孔部13より上方に突出している(天井室60の内部に入り込んでいる)場合を例示して説明した。しかし、排出ガス誘導管30は、補機室12の天井孔部13と同じ高さ位置かそれより若干低い高さ位置まで延びていてもよい(天井室60の内部に入り込まずに補機室12の内部に留まっていてもよい)。この場合であっても、排出ガス誘導管30は、SOFC20からの排出ガスを主機室11から補機室12を経て天井孔部13まで誘導することができる。
For example, in the above embodiment, the case where the exhaust gas guide pipe 30 protrudes upward from the ceiling hole portion 13 of the auxiliary machine room 12 (enters the inside of the ceiling room 60) has been described as an example. However, the exhaust gas guide pipe 30 may extend to the same height position as the ceiling hole portion 13 of the auxiliary machine room 12 or a slightly lower height position (the auxiliary machine room without entering the ceiling room 60). 12 may stay inside). Even in this case, the exhaust gas guide pipe 30 can guide the exhaust gas from the SOFC 20 from the main engine room 11 through the auxiliary machine room 12 to the ceiling hole 13.
例えば、上記実施の形態では、天井室60の内部に第1の邪魔板62と第2の邪魔板63を配設した場合を例示したが、第1の邪魔板62と第2の邪魔板63を省略することも可能である。また、天井室60を省略して、補機室12の天井孔部13の近傍で、排出ガス誘導管30が誘導したSOFC20からの排出ガスと冷却ファン40が取り込んだ冷却空気を混合して希釈することも可能である。
For example, in the above-described embodiment, the case where the first baffle plate 62 and the second baffle plate 63 are disposed inside the ceiling chamber 60 is illustrated, but the first baffle plate 62 and the second baffle plate 63 are illustrated. Can be omitted. Further, the ceiling chamber 60 is omitted, and the exhaust gas from the SOFC 20 guided by the exhaust gas induction pipe 30 and the cooling air taken in by the cooling fan 40 are mixed and diluted in the vicinity of the ceiling hole portion 13 of the auxiliary machine chamber 12. It is also possible to do.
例えば、上記実施の形態では、燃料電池として固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)を用いた場合を例示したが、他の種類の燃料電池(例えば固体高分子形燃料電池やリン酸形燃料電池など)を用いることも可能である。
For example, in the above-described embodiment, a case where a solid oxide fuel cell (SOFC) is used as the fuel cell is illustrated, but other types of fuel cells (for example, solid polymer fuel cells and phosphorous cells) are used. It is also possible to use an acid fuel cell or the like.
例えば、上記実施の形態では、冷却機器として冷却ファンを用いた場合を例示したが、補機室の内部に冷却空気を取り込めるものであれば、他の種類の冷却機器を用いることも可能である。
For example, in the above-described embodiment, the case where the cooling fan is used as the cooling device is illustrated, but other types of cooling devices can be used as long as the cooling air can be taken into the auxiliary machine room. .
本発明の燃料電池システムは、家庭用、業務用、その他のあらゆる産業分野の燃料電池システムに適用して好適である。
The fuel cell system of the present invention is suitable for application to fuel cell systems for household, business, and other industrial fields.
1 燃料電池システム
10 筐体ユニット
11 主機室
12 補機室
13 天井孔部(補機室出口部)
14 貫通孔
15 冷却空気誘導管
20 固体酸化物形燃料電池(燃料電池)(SOFC:Solid Oxide Fuel Cell)
30 排出ガス誘導管
40 冷却ファン(補機室換気ファン、冷却機器、冷却装置)
50 排熱回収熱交換器(温水熱交換器)
51 排熱回収循環ライン
51A 下りライン
51B 上りライン
60 天井室(排気ダクト)
61 排気孔(最終排気孔)
62 第1の邪魔板
62A 対向辺
62B 接続辺
62C 空隙部
62D 貫通孔
63 第2の邪魔板
63A 対向辺
63B 接続辺
63C 空隙部
70 温度検出部
80 制御部 DESCRIPTION OFSYMBOLS 1 Fuel cell system 10 Case unit 11 Main machine room 12 Auxiliary machine room 13 Ceiling hole part (auxiliary machine room exit part)
14 Through-hole 15 Cooling air induction tube 20 Solid oxide fuel cell (SOFC)
30 Exhaustgas guide pipe 40 Cooling fan (auxiliary room ventilation fan, cooling equipment, cooling device)
50 Waste heat recovery heat exchanger (hot water heat exchanger)
51 Waste heat recovery circulation line 51A Down line 51B Upline 60 Ceiling room (exhaust duct)
61 Exhaust hole (final exhaust hole)
621st baffle plate 62A Opposite side 62B Connection side 62C Cavity part 62D Through hole 63 2nd baffle plate 63A Opposition side 63B Connection side 63C Cavity part 70 Temperature detection part 80 Control part
10 筐体ユニット
11 主機室
12 補機室
13 天井孔部(補機室出口部)
14 貫通孔
15 冷却空気誘導管
20 固体酸化物形燃料電池(燃料電池)(SOFC:Solid Oxide Fuel Cell)
30 排出ガス誘導管
40 冷却ファン(補機室換気ファン、冷却機器、冷却装置)
50 排熱回収熱交換器(温水熱交換器)
51 排熱回収循環ライン
51A 下りライン
51B 上りライン
60 天井室(排気ダクト)
61 排気孔(最終排気孔)
62 第1の邪魔板
62A 対向辺
62B 接続辺
62C 空隙部
62D 貫通孔
63 第2の邪魔板
63A 対向辺
63B 接続辺
63C 空隙部
70 温度検出部
80 制御部 DESCRIPTION OF
14 Through-
30 Exhaust
50 Waste heat recovery heat exchanger (hot water heat exchanger)
51 Waste heat recovery circulation line 51A Down line 51B Up
61 Exhaust hole (final exhaust hole)
62
Claims (4)
- 燃料電池が配設される主機室と、
冷却空気を取り込む冷却機器が配設される補機室と、
前記冷却機器によって前記補機室に取り込まれた前記冷却空気を外部に排気する、前記補機室に設けられた天井孔部と、
前記燃料電池からの排出ガスを前記主機室から前記補機室を経て前記天井孔部まで誘導するとともに、前記天井孔部より上方に突出する排出ガス誘導管と、
前記天井孔部より上方で前記排出ガス誘導管を取り囲むように配置された第1の邪魔板と、
前記天井孔部より上方で前記排出ガス誘導管の先端に対向するように配置された第2の邪魔板と、
を有することを特徴とする燃料電池システム。 A main engine room in which a fuel cell is disposed;
An auxiliary machine room in which cooling equipment for taking in cooling air is arranged;
A ceiling hole provided in the auxiliary machine room for exhausting the cooling air taken into the auxiliary machine room by the cooling device;
An exhaust gas guide pipe that guides exhaust gas from the fuel cell from the main engine room to the ceiling hole through the auxiliary machine room, and projects upward from the ceiling hole,
A first baffle plate disposed so as to surround the exhaust gas guide pipe above the ceiling hole portion;
A second baffle plate disposed so as to face the tip of the exhaust gas guide pipe above the ceiling hole portion;
A fuel cell system comprising: - 前記第1、第2の邪魔板は、平面視略H形状をなしており且つ互いの位相が90°ずれて配置されている、
ことを特徴とする請求項1に記載の燃料電池システム。 The first and second baffle plates have a substantially H shape in plan view and are arranged with their phases shifted by 90 °.
The fuel cell system according to claim 1. - 前記補機室に取り込まれた前記冷却空気を前記天井孔部まで誘導する冷却空気誘導管をさらに有し、
前記排出ガス誘導管と前記冷却空気誘導管は、内側に前記排出ガス誘導管が配置され且つ外側に前記冷却空気誘導管が配置された二重配管構造を有する、
ことを特徴とする請求項1又は請求項2に記載の燃料電池システム。 A cooling air induction pipe for guiding the cooling air taken into the auxiliary machine room to the ceiling hole,
The exhaust gas induction pipe and the cooling air induction pipe have a double piping structure in which the exhaust gas induction pipe is arranged on the inside and the cooling air induction pipe is arranged on the outside.
The fuel cell system according to claim 1 or 2, characterized by the above. - 前記天井孔部の近傍における空気温度を検出する温度検出部と、前記温度検出部による検出結果に基づいて前記冷却機器を制御する制御部と、をさらに有する、
ことを特徴とする請求項1又は請求項2に記載の燃料電池システム。 A temperature detection unit that detects an air temperature in the vicinity of the ceiling hole, and a control unit that controls the cooling device based on a detection result by the temperature detection unit,
The fuel cell system according to claim 1 or 2, characterized by the above.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020197008875A KR102187720B1 (en) | 2017-04-19 | 2018-02-26 | Fuel cell system |
DE112018000106.7T DE112018000106T5 (en) | 2017-04-19 | 2018-02-26 | FUEL CELL SYSTEM |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-082434 | 2017-04-19 | ||
JP2017082434A JP6229808B1 (en) | 2017-04-19 | 2017-04-19 | Fuel cell system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018193716A1 true WO2018193716A1 (en) | 2018-10-25 |
Family
ID=60321168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/006873 WO2018193716A1 (en) | 2017-04-19 | 2018-02-26 | Fuel cell system |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6229808B1 (en) |
KR (1) | KR102187720B1 (en) |
DE (1) | DE112018000106T5 (en) |
WO (1) | WO2018193716A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102020130606A1 (en) | 2020-11-19 | 2022-05-19 | Audi Aktiengesellschaft | Solid oxide fuel cell device with a jet pump integrated in the exhaust pipe and fuel cell vehicle |
JP7487836B1 (en) | 2023-05-31 | 2024-05-21 | 富士電機株式会社 | Fuel Cell Systems |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08293316A (en) * | 1995-04-21 | 1996-11-05 | Tokyo Gas Co Ltd | Method for releasing exhaust gas of fuel cell generating device, and device therefor |
JP2004259491A (en) * | 2003-02-24 | 2004-09-16 | Toshiba Home Technology Corp | Fuel cell device |
JP2007048704A (en) * | 2005-08-12 | 2007-02-22 | Fuji Electric Holdings Co Ltd | Fuel cell apparatus |
JP2013229126A (en) * | 2012-04-24 | 2013-11-07 | Noritz Corp | Exhaust structure of fuel cell generator |
JP2015118843A (en) * | 2013-12-19 | 2015-06-25 | パナソニック株式会社 | Fuel cell system |
JP2016012526A (en) * | 2014-06-30 | 2016-01-21 | アイシン精機株式会社 | Fuel cell system |
JP2016012530A (en) * | 2014-06-30 | 2016-01-21 | アイシン精機株式会社 | Fuel cell system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6278653B2 (en) | 2013-10-04 | 2018-02-14 | 株式会社日本製鋼所 | Fuel cell system |
KR102209710B1 (en) * | 2017-09-28 | 2021-01-29 | 주식회사 경동나비엔 | Dual structure fuel cell box and fuel cell system using thereof |
-
2017
- 2017-04-19 JP JP2017082434A patent/JP6229808B1/en active Active
-
2018
- 2018-02-26 DE DE112018000106.7T patent/DE112018000106T5/en active Pending
- 2018-02-26 KR KR1020197008875A patent/KR102187720B1/en active IP Right Grant
- 2018-02-26 WO PCT/JP2018/006873 patent/WO2018193716A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08293316A (en) * | 1995-04-21 | 1996-11-05 | Tokyo Gas Co Ltd | Method for releasing exhaust gas of fuel cell generating device, and device therefor |
JP2004259491A (en) * | 2003-02-24 | 2004-09-16 | Toshiba Home Technology Corp | Fuel cell device |
JP2007048704A (en) * | 2005-08-12 | 2007-02-22 | Fuji Electric Holdings Co Ltd | Fuel cell apparatus |
JP2013229126A (en) * | 2012-04-24 | 2013-11-07 | Noritz Corp | Exhaust structure of fuel cell generator |
JP2015118843A (en) * | 2013-12-19 | 2015-06-25 | パナソニック株式会社 | Fuel cell system |
JP2016012526A (en) * | 2014-06-30 | 2016-01-21 | アイシン精機株式会社 | Fuel cell system |
JP2016012530A (en) * | 2014-06-30 | 2016-01-21 | アイシン精機株式会社 | Fuel cell system |
Also Published As
Publication number | Publication date |
---|---|
JP2018181713A (en) | 2018-11-15 |
KR20190042683A (en) | 2019-04-24 |
DE112018000106T5 (en) | 2019-05-29 |
JP6229808B1 (en) | 2017-11-15 |
KR102187720B1 (en) | 2020-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6024704B2 (en) | Battery pack | |
JP6082417B2 (en) | Fuel cell system | |
US20110056453A1 (en) | Engine housing enclosure | |
CN109565061B (en) | Fuel cell device | |
JP2011204446A (en) | Solid oxide fuel cell system | |
JP6229808B1 (en) | Fuel cell system | |
JP2015046321A (en) | Battery cooling device | |
JP2008269844A (en) | Fuel cell system | |
JP2006073446A (en) | Fuel cell power generating device | |
US11495805B2 (en) | Container for reformer and fuel cell system | |
JP2006302606A (en) | Fuel cell housing case | |
JP6304601B2 (en) | Fuel cell cogeneration system | |
JP2002008687A (en) | Fuel cell power generator | |
JP5907331B2 (en) | Fuel cell power generator | |
JP6972910B2 (en) | Fuel cell system and fuel cell system control method | |
KR102120831B1 (en) | System for hydrogen fuel cell | |
KR102588375B1 (en) | Fuel cell system providing thermal solution | |
JP5079370B2 (en) | Packaged fuel cell | |
JP5171103B2 (en) | Fuel cell cogeneration system | |
JP6478208B2 (en) | Fuel cell cogeneration system | |
JP6472588B1 (en) | Fuel cell device | |
CN219287382U (en) | Inverter and layout structure thereof | |
CN220692930U (en) | Generator cooling device of wind turbine generator, generator and wind turbine generator system | |
JP6064427B2 (en) | Fuel cell system | |
JP2018181464A (en) | Fuel cell system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18787424 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197008875 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18787424 Country of ref document: EP Kind code of ref document: A1 |