[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018192464A1 - 一种车辆电源组件及其布置方法 - Google Patents

一种车辆电源组件及其布置方法 Download PDF

Info

Publication number
WO2018192464A1
WO2018192464A1 PCT/CN2018/083273 CN2018083273W WO2018192464A1 WO 2018192464 A1 WO2018192464 A1 WO 2018192464A1 CN 2018083273 W CN2018083273 W CN 2018083273W WO 2018192464 A1 WO2018192464 A1 WO 2018192464A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
battery
power supply
output
vehicle power
Prior art date
Application number
PCT/CN2018/083273
Other languages
English (en)
French (fr)
Inventor
查为
格桑·旺杰
Original Assignee
乾碳国际公司
查为
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 乾碳国际公司, 查为 filed Critical 乾碳国际公司
Priority to US16/606,009 priority Critical patent/US11235714B2/en
Publication of WO2018192464A1 publication Critical patent/WO2018192464A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/20Semi-lead accumulators, i.e. accumulators in which only one electrode contains lead
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a power supply unit for use in a vehicle, and a power supply system including the power supply assembly, and a vehicle including the power supply system.
  • the invention also relates to a method of arranging the power supply assembly on a vehicle.
  • DC power is required during vehicle use.
  • the battery when the vehicle starts, it needs the battery to provide hundreds of amps of high current in a short time (several seconds), drive the kilowatt-level starter motor to drive the engine (using gasoline, diesel or natural gas internal combustion engine) to reach a certain speed, then ignite (gasoline engine) or Compression ignition (diesel) engine.
  • gasoline, diesel or natural gas internal combustion engine using gasoline, diesel or natural gas internal combustion engine
  • propane gasoline engine
  • Compression ignition diesel
  • Lead-acid batteries have been the only choice for vehicles to start batteries for nearly a hundred years with excellent low-temperature discharge performance and high cost performance.
  • the maximum current of the passenger car power system should generally be controlled below 250 amps.
  • the upper limit of the steady-state output power of the 12 volt lead-acid battery of the passenger car is generally 3.0 kW.
  • the starter motors of large commercial vehicles have DC power requirements much higher than 3.0 kW, so large commercial vehicles use 24 volt lead-acid batteries.
  • the automotive industry turned to higher-voltage vehicle power supplies, and the 48V/12V dual-voltage power system is one of the more successful solutions. It uses a 48V lithium-ion battery with a 12V lead-acid battery, which meets the requirements of many 12V traditional sub-kilowatt low-power electrical equipment, maintains compatibility, and meets the needs of a variety of emerging kilowatt-class high-power electrical equipment.
  • the 48V power supply can support the power requirement of 12.0 kW power consumption when the system cable maximum current is maintained at 250 amps.
  • the 12V/48V dual-voltage power supply system was adopted in the LV148 for the 48V passenger car light-mixing technical specification formulated in 2011.
  • the development of this technical specification reflects another advantage of the 12V/48V dual-voltage power system, cost-effective and energy-saving emission reduction.
  • the 48V light-mixing system can achieve nearly 70% fuel-saving effect at 30% cost.
  • FIGS. 1a, 1b show an example 100 of the above described power supply system, wherein 106 represents a conventional 12V lead acid battery and 103 represents a newly added 48V lithium ion battery.
  • 101 is a motor generator that is powered by the engine or when the brake recovery energy mode is used to charge the lithium battery 103.
  • 102 is a DC/AC converter
  • 105 is a 48V/12V bidirectional DC converter
  • 104 is a battery management system for a lithium battery.
  • 107 is a 12V power distribution center for connecting power to each 12V electrical device.
  • the 108 is a 48V power distribution center for connecting power to various 48V electrical equipment.
  • the 12V power supply is connected to the traditional load, such as lighting, ignition, entertainment, sound system and electronic module, etc., so that the traditional vehicle electrical equipment can be directly modified without any modification.
  • the new 48V power supply is mainly used to support active chassis systems, air conditioning compressors, and kilowatt-class high-power electrical equipment such as regenerative braking systems.
  • the above 12V/48V dual voltage power supply system also has technical defects that need to be improved.
  • most lithium-ion batteries are sensitive to the working environment temperature, both cold and hot, and generally have a charging and discharging working environment temperature range of 0 degrees Celsius to 50 degrees Celsius.
  • the vehicle is parked outside for a long time in the cold winter (the ambient temperature is below zero degrees Celsius), and the lithium battery has a severely reduced charge and discharge capacity at a low temperature. This will have two direct effects: on the one hand, in order to protect the lithium-ion battery from the impact of high and low temperature environment, it needs to be placed in the vehicle cab or trunk away from the engine.
  • the 12V lead-acid battery can work well in the working environment temperature range of -20 degrees Celsius to +90 degrees Celsius, the 12V lead-acid battery has been placed under the hood of the vehicle for nearly 100 years, next to the engine.
  • the 48V motor/generator is also under the hood.
  • two copper cables of several meters long are needed to ensure the safety of hundreds of amps of high current. Transmission, which increases system weight and cost. Compared with the traditional 12V vehicle system, the high cost increase is the most important reason that affects the 48V light-mix system being widely adopted immediately.
  • a vehicle power supply assembly comprising: a battery system, the battery system including a first output end and a second output end,
  • the battery system is coupled to a DC/AC converter of the vehicle, the DC/AC converter including a DC terminal and an AC terminal, the DC terminal being coupled to the first output of the battery system
  • the AC end is coupled to a motor generator of the vehicle that mates with the power component to form a first output
  • the second output is coupled to a power distribution center of the vehicle to form a second output
  • the battery system includes a carbon lead battery.
  • a carbon-lead battery is used in place of the lithium ion battery and battery management system of the prior art. Since the carbon lead battery is very little affected by the working environment temperature, the degree of freedom in the placement of the carbon lead battery is increased, the carbon lead battery no longer needs to be far away from the engine arrangement, or an additional consideration of the insulation factor is required, and it can be placed under the hood. Or next to the engine. Thus, the length of the required connecting cable will be greatly shortened, thereby effectively reducing the manufacturing cost.
  • the carbon lead battery is essentially an asymmetric supercapacitor energy storage device, which is very suitable for high-rate partial charge and discharge applications.
  • the carbon lead battery and the valve-controlled AGM lead-acid battery are identical in terms of battery structure, positive electrode, electrolyte, diaphragm, box body, and production process.
  • the biggest difference between the carbon lead battery and the AGM lead acid battery is that the negative active material is all activated carbon.
  • the production process and equipment of carbon-lead batteries and AGM lead-acid batteries are basically the same.
  • the cost of the carbon lead battery (yuan/KWh) is between the AGM lead acid battery and the power type lithium battery pack.
  • the use of carbon-lead batteries has the advantage over the prior art of using lithium batteries + lead-acid batteries to further reduce the total system cost while maintaining system performance.
  • the power supply rated voltage of the first output may be 48V.
  • the power supply network with rated voltage of 48V can provide four times higher output power than the rated voltage of 12V power supply network when the maximum current limit is constant, meeting the increasing demand for comprehensive electrical equipment of modern vehicles.
  • the "power supply rated voltage” refers to the optimum voltage when various electrical equipment connected to the power supply network is in normal operation for a long time.
  • the actual voltage of the power system can float within a certain range of its rated voltage.
  • the nominal voltage of the battery at the first output is 60V.
  • Battery nominal voltage refers to the open circuit voltage when the battery's normal operating charge state is close to 100%.
  • the actual operating voltage of a carbon-lead battery, with its nominal voltage as the upper limit, can be measured down to 25% of its nominal voltage.
  • the carbon lead battery varies with the state of charge, and its actual output voltage fluctuates within a certain range, so that there is a big difference from the nominal voltage. Therefore, even if the actually measured battery voltage does not coincide with the nominal voltage claimed by the present invention, it should be considered to fall within the protection range.
  • the equivalent internal resistance of the battery changes with the state of charge of the battery in a U-shaped curve, as shown in FIG.
  • the carbon lead battery has a small resistance in a part of the charge interval, and the high current charge and discharge performance is good.
  • the 48V rated voltage power supply system has a wide operating voltage window, the power supply voltage is 36V ⁇ 52V, to achieve all functions; 24V ⁇ 36V or 52V ⁇ 54V, to achieve some functions.
  • the carbon lead battery pack with a battery nominal voltage of 60V has a charge state of 40% to 80% when the full-function operating voltage window is 36V to 52V, which is the minimum internal resistance of the carbon lead battery.
  • This solution fits well with the spacious operating voltage window of the LV148 specification, which is a major technical advantage of this solution.
  • the power supply rated voltage of the second output is 12V. Similar to the previous one, when the actual battery output voltage fluctuates within a certain range, there will be a certain deviation from the 12V rated voltage. Most of the various electrical equipment with a rated voltage of 12V on the vehicle can work normally within the voltage range of 9V to 16V. Preferably, a carbon lead battery having a battery nominal voltage of 16V is matched with a power supply network having a rated voltage of 12V.
  • the second output can be implemented with a 60V carbon lead battery pack tap.
  • the second output of the carbon lead battery is directly connected to a power distribution center of the vehicle.
  • “Direct” here means that there is no longer a 12V lead-acid battery in the original 12V/48V dual-voltage power system between the carbon lead battery and the power distribution center, instead of the carbon lead battery that can only be connected through a single wire.
  • the power distribution center To the power distribution center.
  • those skilled in the art can understand that it is possible to provide an auxiliary circuit component other than a 12V lead-acid battery between the carbon lead battery and the power distribution center according to actual application requirements, and the addition of these auxiliary circuit components does not affect the present.
  • the implementation of the inventive solution should therefore also be included in the scope of the invention.
  • the carbon lead battery is very affected by the working environment temperature, it can effectively ensure that it can output a hundred ampere level current to the starter motor at a temperature of minus 18 degrees Celsius to achieve a cold start of the engine.
  • the 12V lead-acid battery in the existing 12V/48V dual-voltage power system is no longer essential, and its power supply function can be completely replaced by the second output from the carbon-lead battery module.
  • the cost of the vehicle power system can be further significantly reduced.
  • the removal of the 12V lead-acid battery can also save the space it takes up, thereby increasing the freedom of vehicle design. It also reduces the total weight of the vehicle to reduce fuel consumption and reduce the maintenance cost of the power system.
  • the vehicle power supply assembly further includes a DC converter disposed between the second output and the power distribution center.
  • the carbon lead battery can have only one output voltage, and then the output voltage is stepped down by a DC converter to form a second voltage.
  • the structure of the carbon lead battery can be made simpler.
  • the output voltage can be stabilized (for example, 12V), which is suitable for various types. 12V vehicle electrical equipment power supply.
  • the vehicle power supply assembly further includes a diode and a lead acid battery, which are sequentially disposed between the second output and the power distribution center.
  • the diode when the voltage at the second output is high, the diode is conducting a charge to the lead acid battery and limiting its charging current.
  • the output voltage of the second output terminal drops significantly, which is lower than the voltage of the lead-acid battery, causing the diode to be reversely disconnected, thereby achieving effective electrical isolation between the power sources of different voltages.
  • the carbon lead battery includes a first battery pack and a second battery pack disposed in series, the first output end being connected to an end of the second battery pack not connected to the first battery pack, The second output is connected between the first battery pack and the second battery pack.
  • carbon lead batteries can be supplied in two different rated voltages for different electrical equipment.
  • a vehicle power supply system including any of the above-described vehicle power supply components, and a DC/AC converter and a motor generator of the vehicle are provided.
  • a vehicle that includes the vehicle power system described above.
  • the vehicle further includes a transmission system that can be disposed at a P0, P1, P2, P3, or P4 position of the vehicle transmission system.
  • the P0 position is the end of the engine away from the gearbox, usually the belt is used to connect the motor generator to the engine;
  • the P1 position is at the end of the engine near the gearbox, the motor generator is directly integrated on the engine crankshaft;
  • the P2 position is in the engine and the gearbox In the middle, after the clutch K0 or after K1;
  • P3 is at the output of the gearbox, front of the axle;
  • P4 is between the axle and the hub.
  • a method of arranging a vehicle power supply assembly comprising the steps of:
  • a vehicle power supply assembly comprising a battery system comprising a carbon lead battery, a first output and a second output;
  • the DC terminal is connected to the first output terminal, and the AC terminal is connected to the motor generator to form a first output,
  • the second output is directly connected to a power distribution center of the vehicle.
  • a diode (D) and a lead acid battery (LAB) may also be provided, in the step of connecting the second output (Out 2) to the power distribution center (27) of the vehicle, A second output (Out 2) sequentially passes through the diode (D) and the lead acid battery (LAB) and then communicates with the power distribution center (27).
  • Figure 1a shows a schematic diagram of an existing vehicle power system using a 12V/48V dual voltage power system
  • Figure 1b shows a circuit schematic of the vehicle power system shown in Figure 1a;
  • FIG. 2a shows a schematic diagram of one embodiment of a vehicle power system in accordance with the present invention
  • Figure 2b shows a circuit schematic of the vehicle power system shown in Figure 2a;
  • Figure 3a shows a schematic view of a second embodiment of a vehicle power system in accordance with the present invention
  • Figure 3b shows a circuit schematic of the vehicle power system shown in Figure 3a;
  • Figure 4 shows a schematic view of a third embodiment of a vehicle power system in accordance with the present invention.
  • Figure 5 shows the access position of the motor generator of the vehicle power supply system according to the present invention in the transmission system of the vehicle
  • Figure 6 shows a plot of the equivalent internal resistance of a carbon lead battery as a function of battery charge state.
  • FIGS 2a, 2b show a first embodiment of a vehicle power system in accordance with the present invention. Among them, in addition to the power supply system 10 of the vehicle, the engine 19, 48V power distribution center 18 and 12V power distribution center 17 of the vehicle are also shown.
  • the power supply system 10 mainly includes a motor generator 11, a battery system 13, and a DC/AC converter 12.
  • the motor generator 11 can generate electricity when the engine is driven or when regenerative braking energy is recovered, powering the 48V power supply network and charging the battery system 13; on the other hand, by supplying power to the battery system 13, the engine 19 can be started or torque assisted. .
  • battery system 13 includes a carbon lead battery pack having a nominal voltage of 60V.
  • the battery pack has a first output terminal Out 1 and a second output terminal Out 2, providing two different rated voltages of 48V and 12V.
  • the first output terminal Out 1 has a rated voltage of 48V and an output voltage range of 24V to 54V; and the second output terminal Out 2 has a rated voltage of 12V and an output voltage range of 9V to 16V.
  • the first output Out 1 of the battery system 13 is connected to the DC terminal DC of the DC/AC converter 12, and the AC terminal AC of the DC/AC converter 12 is connected to the starter/generator 11 so that A first output i 1 is formed.
  • the function of the DC/AC converter 12 is to rectify the alternating current generated by the starter/generator 11 into a direct current, to power the 48V power supply network and charge the 60V carbon lead battery pack; on the other hand, the direct current of the carbon lead battery can also be used.
  • the inverter is AC, drives the starter/generator 11, starts the engine 19 or provides engine torque boost.
  • the second output Out 2 of the battery system 13 is connected to the power distribution center 17 of the vehicle to form a second output i 2 .
  • the role of the 12V power distribution center 17 is to distribute the DC power to various 12V rated voltage electrical equipment on the vehicle and provide short-circuit overcurrent protection.
  • the circuit structure of the battery system 13 is as shown in Fig. 2b, which includes two carbon lead batteries PbC1 and PbC2 connected in series.
  • the nominal voltage of the second carbon lead battery PbC2 is 44V
  • the nominal voltage of the first carbon lead battery PbC1 is 16V, so that the second output end is taken out from between the first carbon lead battery PbC1 and the second carbon lead battery PbC2.
  • 2 and the rated voltages of the two power supply networks connected from the first output terminal Out 1 from the end where the second carbon-lead battery PbC2 is not connected to the first carbon-lead battery PbC1 are 12V and 48V, respectively.
  • This provides a convenient solution to achieve a dual voltage output of 12V/48V.
  • the 48V/12V bidirectional DC converter is not required to convert the output DC voltage, which can further reduce the system cost.
  • FIGS 3a, 3b show a second embodiment of a vehicle power system in accordance with the present invention.
  • the vehicle power supply system 20 is similar in structure and arrangement to the vehicle power supply system 10 in the first embodiment. These approximations are not extended here for a detailed description.
  • the main difference between the vehicle power system 20 and the vehicle power system 10 is that it also includes a high power diode D and a 12V nominal voltage lead acid battery LAB.
  • the high power diode D is disposed between the second output terminal Out 2 and the lead acid battery LAB.
  • the lead acid battery LAB can be charged through the diode D and the charging current is limited.
  • the battery system 23 discharges a large current to the 48V power supply network, the output voltage of the first carbon lead battery PbC1 drops significantly, which is lower than the 12V voltage of the lead acid battery LAB, causing the diode D to be disconnected, thereby achieving a between 48V power supply and 12V power supply. Effective electrical isolation.
  • FIG. 4 shows a schematic diagram of a third embodiment of a vehicle power system 30 of a vehicle power system in accordance with the present invention. Likewise, the same components as those of the vehicle power systems 10 and 20 in the first two embodiments will not be further described herein.
  • the vehicle power system 30 is characterized in that the battery system 33 provides only a 48V rated voltage output and the 12V rated voltage output is provided by a 48V/12V DC converter 35.
  • a DC converter 35 is added, since the battery system 33 does not need to provide two voltage outputs, the complexity of the battery system 33 can be reduced.
  • the DC converter 35 is added, its input operating voltage range can be wider. For example, when the operating voltage fluctuation of the actual 48V power supply network is expanded to 24V to 54V, the DC converter 35 can still maintain a stable 12V output voltage.
  • the present embodiment further reduces the total cost of the 48V light mixing system under the premise of maintaining various performances of the system.
  • FIG 5 shows the access location of the starter/generator in the vehicle's power system with the vehicle power systems 10, 20 and 30 in the embodiment.
  • the starter/generator is connected to the P0 position.
  • the starter/generator associated with the vehicle power system in accordance with the present invention may also be coupled to the P1, P2, P3 or P4 position of the vehicle assembly power system.
  • the application flexibility and freedom of the technique of the present invention is very high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种车辆电源组件,包括:电池系统(13),电池系统(13)包括第一输出端(Out 1)和第二输出端(Out 2),电池系统(13)与车辆的一个直流/交流转换器(12)相连,直流/交流转换器(12)包括一个直流端(DC)和一个交流端(AC),直流端(DC)与电池系统(13)的第一输出端(Out 1)相连,交流端(AC))连接至与电源组件(10)配合的车辆的电机发电机(11),从而形成第一输出(i 1),第二输出端(Out 2)连接至车辆的电源分配中心(17),从而形成第二输出(i 2),电池系统(13)包括碳铅电池。还公开了一种包括车辆电源组件的电源系统,包括车辆电源系统的车辆以及车辆电源组件的布置方法。采用碳铅电池代替现有技术中的锂离子电池及电池管理系统。由于碳铅电池受工作环境温度的影响非常小,因此,碳铅电池布置位置的自由度提升,碳铅电池不再需要远离发动机布置,或者是需要额外考虑保温因素,可以就近布置在发动机罩下或发动机旁边。这样,所需连接电缆的长度将大大缩短,从而有效减小制造成本。

Description

一种车辆电源组件及其布置方法 技术领域
本发明涉及一种车辆使用的电源组件,以及包含该电源组件的电源系统,以及包含该电源系统的车辆。本发明还涉及一种在车辆上布置该电源组件的方法。
背景技术
车辆使用过程中,需要使用直流电源(即“蓄电池”)。例如在车辆启动时,需要蓄电池在短时间(数秒)提供数百安培大电流,驱动千瓦级启动马达来带动发动机(使用汽油,柴油或天燃气的内燃机)达到特定转速后,点燃(汽油机)或压燃(柴油机)发动机。长期以来,全球道路轻型车辆(总重3.5吨以下,又称“乘用车”)一直使用的是12伏铅酸电池。铅酸电池以卓越低温放电性能和高性价比,近百年来一直是车辆启动电池的唯一选择。从性能,成本和安全性多方面综合考虑,乘用车电源系统最大电流一般应控制在250安培以下,相应地,乘用车的12伏铅酸电池的稳态输出功率的上限一般为3.0千瓦。大型商用车(中/重卡和大客车等)的启动马达对直流电源功率要求远高于3.0千瓦,所以大型商用车多使用24伏铅酸电池。
而随着近年来汽车技术的不断发展,汽车制造商已经用越来越多的新电气设备取代传统的机械零件,使得车辆上的电气设备越来越多。主动悬架、电动助力转向、电动制动真空泵、电动暖风、前排座椅加热、可加热式挡风玻璃、后避震器、信息娱乐系统、自适应巡航控制、车道偏离警示系统、盲点监测、微混系统等技术都需要使用到车载电源。这些电气设备累计电功耗需求远大于3.0千瓦,使得传统的12伏电源系统遇上功率天花板,很难满足现代车辆日益增长的电力供应需求。
为此,汽车产业转而寻求更高电压的车载电源,48V/12V双电压电源系统是其中比较成功的一个方案。其使用一个48V的锂离子电池配上一个 12V铅酸电池,既兼顾众多12V传统亚千瓦低功率电气设备的要求,保持兼容性,又能满足多种新兴千瓦级高功率电气设备的需求。在系统电缆最大电流保持在250安培情况下,48V电源可支持12.0千瓦功耗的电力要求。
由德国的五大汽车厂商牵头,在2011年制定的48V乘用车轻混技术规范LV148中,就采用了上述12V/48V双电压电源系统。该技术规范的制定体现出了12V/48V双电压电源系统的另一个优点,高性价比节能减排。对比高电压(大于100V)的车辆深混系统,48V轻混系统以30%的成本可以实现近70%的节油效果。
2013年6月,欧盟批准了2020年二氧化碳排放标准,该标准要求到2020年新车平均二氧化碳排放水平控制在95克/公里(对应4.0L/100KM)。这种强制性的标准促使整车厂和零部件供应商从不同技术路线降低车辆的油耗,而48V轻混技术方案被视为其中的重要一环。美国轻型车2025年法规要求燃油经济性54.5英里/加仑(对应3.9L/100KM)。与此同时,为满足中国2020年平均油耗5.0L/100KM的要求,多数在华生产/销售乘用车的主机厂都计划在近几年纷纷推出48V轻混系统。从2017年起,全球主要汽车集团,也纷纷在欧美推出48V轻混车型。预计到2025年,大部分在欧洲,北美和中国销售的轻混车辆都将使用48V系统。
如上文所述,目前常用的12V/48V双电压电源系统是在传统的12V铅酸电池以外,额外增加一个新的48V的锂离子电池。图1a、1b显示了上述电源系统的一个例子100,其中,106表示传统的12V铅酸电池,103表示新加入的48V锂离子电池。101为电机发电机,其通过发动机驱动或者是在刹车回收能量模式时给锂电池103充电。102是直流/交流转换器,105是48V/12V双向直流转换器,104是锂电池的电池管理系统。107是12V电源分配中心,用于将电源连接到各个12V电气设备。108是48V电源分配中心,用于将电源连接到各个48V电气设备。从图中可以看出,在该方案中,12V电源连接传统负载,如照明、点火、娱乐、音响系统与电子模组等瓦级低功率电气设备,这样传统车辆电气设备无需做任何修改可以直接与12V电源连接。新的48V电源主要用于支持主动式底盘系统、空调压缩机,以及再生制动系统等千瓦级大功率电气设备。
发明内容
然而,上述12V/48V双电压电源系统也存在需要改进的技术缺陷。首先,绝大多数锂离子电池对于工作环境温度敏感,既怕冷又怕热,一般其充放电工作环境温度范围0摄氏度到50摄氏度之间。车辆在寒冷冬季长期停在外边,(环境温度在零摄氏度以下),锂电池在低温状态大电流充放电能力严重降低。这将带来两方面的直接影响:一方面,为了保护锂离子电池尽量少受到高低温环境影响,需要将其布置在远离发动机的车辆驾驶室或后备箱内。然而,由于12V铅酸电池可在工作环境温度-20摄氏度到+90摄氏度大范围内正常工作,因此,近百年来12V铅酸电池一直都被放置在车辆发动机罩下,位于发动机旁边。此外,48V电动/发电机也在发动机罩下。这样,为了将后面的48V锂电池包和前面发动机罩下的电动/发电机和12V铅酸电池连接在一起,需要使用两根数米长的粗铜电缆,以确保数百安培大电流的安全传输,这会增加系统重量及成本。而相对传统12V车辆系统成本增量高恰恰是影响48V轻混系统被立即广泛采用的最主要原因。
为确保车辆冷启动,所有主机厂都要求启动电池在零下18摄氏度环境温度下,提供数百安培的冷启动电流(CCA)。现有主流磷酸铁锂或三元锂电池,无法满足CCA要求;钛酸锂电池虽能满足CCA要求,但钛酸锂电池的成本比铅酸电池高一个数量级,难推广。根据现有锂电池技术性能和成本,在近十几年内,无法取代内燃机车辆的12V铅酸电池。这些都限制了技术改进的空间和自由度。
因此,人们希望能够进一步改进现有的12V/48V双电压电源系统,以至少克服上面提到的一项技术缺陷。
根据本发明的一个方面,提供一种车辆电源组件,包括:电池系统,所述电池系统包括第一输出端和第二输出端,
所述电池系统与所述车辆的一个直流/交流转换器相连,所述直流/交流转换器包括一个直流端和一个交流端,所述直流端与所述电池系统的所述第一输出端相连,所述交流端连接至与所述电源组件配合的所述车辆的 电机发电机,从而形成第一输出,
所述第二输出端连接至所述车辆的电源分配中心,从而形成第二输出,
其特征在于,所述电池系统包括碳铅电池。
在上述方案中,采用碳铅电池代替了现有技术中的锂离子电池及电池管理系统。由于碳铅电池受工作环境温度的影响非常小,因此,碳铅电池布置位置的自由度提升,碳铅电池不再需要远离发动机布置,或者是需要额外考虑保温因素,可以就近布置在发动机罩下或发动机旁边。这样,所需连接电缆的长度将大大缩短,从而有效减小制造成本。
碳铅电池实质上是一种非对称超级电容器储能装置,非常适合高倍率部分充放电应用。碳铅电池与阀控AGM铅酸电池在电池结构,正极,电解液,隔膜,盒体,生产工艺等方面相同。碳铅电池与AGM铅酸电池最大的差异点在于其负极活性材料全部为活性炭。
另外,除全碳负极生产为新工艺之外,碳铅电池和AGM铅酸电池的生产工艺和设备基本相同。碳铅电池的成本(元/KWh)在AGM铅酸电池与功率型锂电池包之间。采用碳铅电池,比采用锂电池+铅酸电池的现有技术的优势为在保持系统性能不变的前提下,进一步价低系统总成本。
所述第一输出端的电源额定电压可以是48V。额定电压48V的电源网在最大电流上限不变时,可以提供比额定电压12V电源网高四倍的输出功率,满足现代车辆日益增长的各种电气设备综合用电需求。
这里,“电源额定电压”是指连接在电源网上各种电气设备长时间正常工作时的最佳电压。电源系统实际电压可在其额定电压上下一定范围内浮动。
优选地,所述第一输出端的电池标称电压是60V。“电池标称电压”是指电池正常工作电荷状态接近100%时的开路电压。碳铅电池的实际工作电压,以其标称电压为上限,可下探至其标称电压的25%。本领域技术人员可以理解,碳铅电池随电荷状态变化,其实际的输出电压在一定范围内波动,从而与标称电压存在较大差异。因此,即使实际测得的电池电压与本发明主张的标称电压不一致,也应当被认为落入保护范围。
碳铅电池的一个特点是电池的等效内阻随电池电荷状态变化呈U型曲线,如图6所示。碳铅电池在部分电荷区间内阻小,大电流充放电性能好。根据LV148技术规范,48V额定电压电源系统的工作电压窗口很宽,电源电压在36V~52V,实现全部功能;24V~36V或52V~54V,实现部分功能。而采用电池标称电压60V的碳铅电池组,在实现前述全功能工作电压窗口36V~52V时,对应的碳铅电池电荷状态为40%~80%,恰是碳铅电池内阻最小,大功率充放电性能最佳的工作区间。该方案与LV148技术规范的宽敞工作电压窗口非常吻合,这也是本方案的一大技术优势。
所述第二输出端的电源额定电压是12V。与前面相似的是,当实际的电池输出电压在一定范围内波动时,会与12V额定电压存在一定偏差。车辆上12V额定电压的各种电气设备,绝大多数在电压范围9V~16V内可正常工作。优选地,采用电池标称电压16V的碳铅电池和额定电压12V的电源网相匹配。第二输出端可以通过60V碳铅电池组抽头来实现。
在一个方案中,所述碳铅电池的所述第二输出端直接连接至所述车辆的电源分配中心。这里的“直接”是指在碳铅电池与电源分配中心之间不再具有原有的12V/48V双电压电源系统中的12V铅酸电池,而不是指碳铅电池只能通过单一根导线连接至电源分配中心。事实上,本领域技术人员可以明白,有可能根据实际应用需要在碳铅电池与电源分配中心之间设置除12V铅酸电池以外的辅助电路元件,而这些辅助电路元件的加入并不会影响本发明方案的实施,因此也应当包括在本发明的保护范围中。
因为碳铅电池受工作环境温度的影响非常小,可以有效保证其在零下18摄氏度低温环境下仍可输出百安培级电流给启动马达,实现发动机的冷启动。这样,现有的12V/48V双电压电源系统中的12V铅酸电池就不再是必不可少的,其电源功能完全可以通过由碳铅电池模块引出的第二输出代替。这样,在将12V铅酸电池和48V/12V直流变换器去掉以后,可以进一步显著地降低车辆电源系统的成本。
与此同时,去掉12V铅酸电池还能节省出其所占用的空间,从而提高车辆设计的自由度。并且还可以降低车辆总重从而降低油耗,以及降低电源系统的维护成本。
在另一个方案中,车辆电源组件还包括直流转换器,其设置在所述第二输出端与所述电源分配中心之间。在这种方案中,碳铅电池可以只有一个输出电压,然后通过直流转换器将该输出电压降压,形成第二个电压。一方面,碳铅电池的结构可以更加简单,另一方面,即使直流变换器的输入电压在较大范围内浮动(例如24V~54V),输出电压仍然能够稳定(例如12V),适合为各种12V车载电气设备供电。
可选地,车辆电源组件还包括二极管和铅酸电池,它们依次设置在所述第二输出端与电源分配中心之间。这样,当第二输出端电压较高时,二极管正向导通给铅酸电池充电,并限制其充电电流。而当电池系统进行大电流放电时,第二输出端的输出电压显著下降,低于铅酸电池的电压,导致二极管反向断开,从而实现不同电压的电源之间有效电隔离。
可选地,所述碳铅电池包括串联设置的第一电池包和第二电池包,所述第一输出端连接至所述第二电池包未与所述第一电池包相连的一端,所述第二输出端连接至所述第一电池包和第二电池包之间。这样,碳铅电池可以提供两种不同的额定电压,用于不同的电气设备供电需要。
根据本发明的另一个方面,提供一种车辆电源系统,其包括上述任意一种车辆电源组件,以及车辆的直流/交流转换器和电机发电机。
根据本发明的又一个方面,提供一种车辆,其包括上述的车辆电源系统。
进一步地,该车辆还包括传动系统,所述电机发电机可设置在所述车辆传动系统的P0,P1,P2,P3或P4位置。其中,P0位置是发动机远离变速箱的一端,通常采用皮带将电动发电机与发动机连接;P1位置在发动机靠近变速箱的一端,电动发电机直接集成在发动机曲轴上;P2位置在发动机和变速箱中间,离合器K0后或K1后;P3位置在变速箱输出端,半轴前;P4位置在半轴与轮毂之间。
根据本发明的第四个方面,提供一种车辆电源组件的布置方法,包括以下步骤:
-提供车辆电源组件,其包括电池系统,所述电池系统包括碳铅电池、第一输出端和第二输出端;
-将所述车辆电源组件连接至与所述电源系统配合的直流/交流转换器和电机发电机,其中所述直流/交流转换器包括一个直流端和一个交流端;
-具体来说,将所述直流端与第一输出端相连,所述交流端连接至所述电机发电机,从而形成第一输出,
-将所述第二输出端连接至所述车辆的电源分配中心,从而形成第二输出。
可选地,在将所述第二输出端连接至所述车辆的电源分配中心的步骤中,是将所述第二输出端直接连接至所述车辆的电源分配中心。
可选地,还可以提供二极管(D)和铅酸电池(LAB),在将所述第二输出端(Out 2)连接至所述车辆的电源分配中心(27)的步骤中,将所述第二输出端(Out 2)依次通过所述二极管(D)和所述铅酸电池(LAB),然后与所述电源分配中心(27)连通。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1a显示了一种现有的车辆电源系统的示意图,其中采用的是12V/48V双电压电源系统;
图1b显示了图1a中示出的车辆电源系统的电路示意图;
图2a显示了根据本发明的车辆电源系统的一个实施例的示意图;
图2b显示了图2a中所示车辆电源系统的电路示意图;
图3a显示了根据本发明的车辆电源系统的第二个实施例的示意图;
图3b显示了图3a中所示车辆电源系统的电路示意图;
图4显示了根据本发明的车辆电源系统的第三个实施例的示意图;
图5显示了根据本发明的车辆电源系统的电机发电机在车辆的传动系统中的接入位置;以及
图6显示了碳铅电池的等效内阻随电池电荷状态变化的曲线。
具体实施方式
下面将结合本发明实施例中的附图,对本发明作进一步详细描述。应当理解,此处所描述的实施例仅用于说明和解释本发明,并不用于限定本发明。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动的情况下所获得的其他实施例,都属于本发明保护的范围。
图2a、2b显示了根据本发明的车辆电源系统的第一个实施例。其中,除了车辆的电源系统10以外,还显示了车辆的发动机19、48V电源配电中心18和12V电源配电中心17。
电源系统10主要包括电机发电机11、电池系统13和直流/交流转换器12。
电机发电机11一方面可以在发动机驱动时或回收再生制动能量时发电,给48V电源网供电并给电池系统13充电;另一方面,通过电池系统13供电,可以启动发动机19或提供扭矩助力。
本实施例中,电池系统13包括标称电压60V的碳铅电池组。该电池组具有第一输出端Out 1和第二输出端Out 2,提供48V及12V两种不同的额定电压。例如,第一输出端Out 1的额定电压48V,输出电压范围为24V~54V;而第二输出端Out 2的额定电压12V,输出电压范围是9V~16V。
如图2a中所示,电池系统13的第一输出端Out 1与直流/交流转换器12的直流端DC相连,而直流/交流转换器12的交流端AC与启动/发电机11相连,从而形成第一输出i 1。直流/交流转换器12的作用在于一方面可将启动/发电机11发出的交流电整流成直流电,给48V电源网供电并给60V碳铅电池组充电;另一方面也可将碳铅电池的直流电逆变为交流电,驱动启动/发电机11,启动发动机19或提供发动机扭矩助力。
电池系统13的第二输出端Out 2与车辆的电源分配中心17相连,从而形成第二输出i 2。12V电源配电中心17的作用在于将直流电分配给车辆上各种12V额定电压的电气设备,并提供短路过流保护功能。
电池系统13的电路结构如图2b所示,其中包括两个串联的碳铅电池PbC1和PbC2。第二碳铅电池PbC2的标称电压为44V,第一碳铅电池PbC1的标称电压为16V,这样,从第一碳铅电池PbC1和第二碳铅电池PbC2之间抽出第二输出端Out 2和从第二碳铅电池PbC2未与第一碳铅电池 PbC1相连的一端引出的第一输出端Out 1所连接的两个电源网的额定电压分别为12V和48V。从而提供了一种便利的方案以实现12V/48V的双电压输出。在这一方案中,无需设置48V/12V双向直流变换器来转换输出直流电压,从而可以进一步降低系统成本。
图3a、3b显示了根据本发明的车辆电源系统的第二个实施例。从图中可以看出,该车辆电源系统20与实施例1中的车辆电源系统10的结构和布置方式比较近似。这些近似部分这里不再展开做具体描述。
与车辆电源系统10相比,车辆电源系统20的主要区别在于,还包括大功率二极管D和12V标称电压的铅酸电池LAB。其中,大功率二极管D设置在第二输出端Out 2与铅酸电池LAB之间。当第一碳铅电池PbC1电荷状态高于60%时,可通过二极管D导通给铅酸电池LAB充电,并限制其充电电流。当电池系统23向48V电源网大电流放电时,第一碳铅电池PbC1的输出电压显著下降,低于铅酸电池LAB的12V电压,导致二极管D断开,从而实现48V电源和12V电源之间有效电隔离。
图4显示了根据本发明的车辆电源系统的第三个实施例车辆电源系统30的示意图。同样地,与前两个实施例中的车辆电源系统10和20的结构和布置方式相同的部分这里都不再展开做具体描述。
车辆电源系统30的特点在于,电池系统33只提供48V额定电压输出,12V额定电压输出通过48V/12V直流转换器35提供。虽然增加了一个直流变换器35,但是由于电池系统33无需设置两路电压输出,因此可以降低电池系统33的复杂程度。此外,由于增加了直流转换器35,其输入工作电压范围可以更宽,例如当实际48V电源网的工作电压波动扩大到24V~54V时,直流转换器35仍然能够维持稳定的12V输出电压。相比图1a、1b的现有技术,本实施例在维持系统各项性能的前提条件下,进一步降低48V轻混系统总成本。
图5显示了与实施例中的车辆电源系统10,20和30中的启动/发电机在车辆的动力系统中的接入位置。在图2a、3a和图4中,该启动/发电机都是接入在P0位置。但是实际上,与根据本发明的车辆电源系统相连的启动/发电机还可以接入在车辆总成动力系统的P1,P2,P3或P4位置。 本发明的技术的应用灵活性和自由度非常高。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的。

Claims (15)

  1. 一种车辆电源组件,包括:电池系统(13),所述电池系统(13)包括第一输出端(Out 1)和第二输出端(Out 2),
    所述电池系统(13)与所述车辆的一个直流/交流转换器(12)相连,所述直流/交流转换器(12)包括一个直流端(DC)和一个交流端(AC),所述直流端(DC)与所述电池系统(13)的所述第一输出端(Out 1)相连,所述交流端(AC)连接至与所述电源组件(10)配合的所述车辆的电机发电机(11),从而形成第一输出(i 1),
    所述第二输出端(Out 2)连接至所述车辆的电源分配中心(17),从而形成第二输出(i 2),
    其特征在于,所述电池系统(13)包括碳铅电池。
  2. 根据权利要求1所述的车辆电源组件,其特征在于,所述第一输出端(Out 1)的电源额定电压是48V。
  3. 根据权利要求2所述的车辆电源组件,其特征在于,所述第一输出端(Out 1)的电池标称电压是60V。
  4. 根据权利要求1所述的车辆电源组件,其特征在于,所述第二输出端(Out 2)的电源额定电压是12V。
  5. 根据权利要求4所述的车辆电源组件,其特征在于,所述第二输出端(Out 2)的电池标称电压是16V。
  6. 根据权利要求1所述的车辆电源组件,其特征在于,所述碳铅电池的所述第二输出端(Out 2)直接连接至所述车辆的电源分配中心(17)。
  7. 根据权利要求1所述的车辆电源组件,其特征在于,还包括直流转 换器(35),其设置在所述第二输出端(Out 2)与所述电源分配中心之间。
  8. 根据权利要求1所述的车辆电源组件,其特征在于,还包括二极管(D)和铅酸电池(LAB),它们依次设置在所述第二输出端(Out 2)与电源分配中心(27)之间。
  9. 根据权利要求1所述的车辆电源组件,其特征在于,所述碳铅电池组包括串联设置的第一电池包(PbC1)和第二电池包(PbC2),所述第一输出端(Out 1)连接至所述第二电池包(PbC2)未与所述第一电池包(PbC1)相连的一端,所述第二输出端(Out 2)连接至所述第一电池包(PbC1)和第二电池包(PbC2)之间。
  10. 一种车辆电源系统(10,20,30),包括如前述权利要求1-9中任意一项的车辆电源组件,以及所述直流/交流转换器(12)和所述电机发电机(11)。
  11. 一种车辆,包括如前述权利要求10所述的车辆电源系统(10,20,30)。
  12. 根据权利要求11所述的车辆,其特征在于,包括传动系统,所述电机发电机(11)设置在所述传动系统的P0,P1,P2,P3或P4位置。
  13. 一种车辆电源组件的布置方法,包括以下步骤:
    -提供车辆电源组件,其包括电池系统(13),所述电池系统(13)包括碳铅电池、第一输出端(Out 1)和第二输出端(Out 2);
    -将所述车辆电源组件(10)连接至与所述电源系统(10)配合的直流/交流转换器(12)和电机发电机(11),其中所述直流/交流转换器(12)包括一个直流端(DC)和一个交流端(AC);
    -具体来说,将所述直流端(DC)与第一输出端(Out 1)相连,所 述交流端(AC)连接至所述电机发电机(11),从而形成第一输出(i 1),
    -将所述第二输出端(Out 2)连接至所述车辆的电源分配中心(17),从而形成第二输出(i 2)。
  14. 根据权利要求13所述的车辆电源系统的布置方法,其中,在将所述第二输出端(Out 2)连接至所述车辆的电源分配中心(17)的步骤中,是将所述第二输出端(Out 2)直接连接至所述车辆的电源分配中心(17)。
  15. 根据权利要求13所述的车辆电源系统的布置方法,其中,还提供二极管(D)和铅酸电池组(LAB),在将所述第二输出端(Out 2)连接至所述车辆的电源分配中心(27)的步骤中,将所述第二输出端(Out 2)依次通过所述二极管(D)和所述铅酸电池组(LAB),然后与所述电源分配中心(27)连通。
PCT/CN2018/083273 2017-04-17 2018-04-17 一种车辆电源组件及其布置方法 WO2018192464A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/606,009 US11235714B2 (en) 2017-04-17 2018-04-17 Vehicle power supply module and arrangement method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710251073.1 2017-04-17
CN201710251073.1A CN108725356B (zh) 2017-04-17 2017-04-17 一种车辆电源组件及其布置方法

Publications (1)

Publication Number Publication Date
WO2018192464A1 true WO2018192464A1 (zh) 2018-10-25

Family

ID=63856481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083273 WO2018192464A1 (zh) 2017-04-17 2018-04-17 一种车辆电源组件及其布置方法

Country Status (3)

Country Link
US (1) US11235714B2 (zh)
CN (1) CN108725356B (zh)
WO (1) WO2018192464A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7108139B2 (ja) * 2019-06-21 2022-07-27 ジヤトコ株式会社 車両の電源装置及びその制御方法
EP4091885A1 (en) * 2021-05-18 2022-11-23 Aptiv Technologies Limited Vehicle power distribution circuit and vehicle power system incorporating the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119856A (ja) * 1999-10-15 2001-04-27 Auto Network Gijutsu Kenkyusho:Kk 車両における給電方法及び装置
CN2935589Y (zh) * 2006-06-26 2007-08-15 上海耘硅电子有限公司 一种用于汽车交直流电源供应装置
CN101752886A (zh) * 2008-11-27 2010-06-23 杨小帆 一种混合动力电源控制系统
JP2013095246A (ja) * 2011-10-31 2013-05-20 Hitachi Automotive Systems Ltd 車両用電源装置
CN103174949A (zh) * 2013-04-08 2013-06-26 国家电网公司 一种便携式车载施工用应急照明装置
CN206049563U (zh) * 2016-09-20 2017-03-29 山东科技大学 一种公交车节能供电系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001136735A (ja) * 1999-11-02 2001-05-18 Toyota Autom Loom Works Ltd 電力変換供給方法及び電力変換供給装置並びに車両
JP4340843B2 (ja) * 2003-01-31 2009-10-07 サンケン電気株式会社 交流直流複合電源装置
US7352154B2 (en) * 2004-01-14 2008-04-01 Vanner, Inc. Electrical system control for a vehicle
US7157806B2 (en) * 2004-03-12 2007-01-02 C. E. Niehoff & Co. System and method for controlling and distributing electrical energy in a vehicle
JP4449940B2 (ja) * 2006-05-16 2010-04-14 トヨタ自動車株式会社 車両用二電源システム
US8640629B2 (en) * 2009-05-01 2014-02-04 Norfolk Southern Corporation Battery-powered all-electric and/or hybrid locomotive and related locomotive and train configurations
DE102012017674A1 (de) * 2012-09-07 2014-03-13 Audi Ag Kraftfahrzeug mit einem Mehrspannungs-Bordnetz und zugehöriges Verfahren
DE102012220549A1 (de) * 2012-11-12 2014-05-15 Siemens Aktiengesellschaft Elektro-Transportmittel, zugehöriges Verfahren und zugehöriger Akkumulator
CN202863172U (zh) * 2012-11-14 2013-04-10 江西联创通信有限公司 一种采用交流自发电系统供电的机动式指挥调度车
JP2017500835A (ja) * 2013-10-18 2017-01-05 マルー エムシーエス コー リミテッド 電動装置用バッテリーの電力モニタリングシステム
DE102014201346A1 (de) * 2014-01-27 2015-07-30 Robert Bosch Gmbh Bordnetz

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119856A (ja) * 1999-10-15 2001-04-27 Auto Network Gijutsu Kenkyusho:Kk 車両における給電方法及び装置
CN2935589Y (zh) * 2006-06-26 2007-08-15 上海耘硅电子有限公司 一种用于汽车交直流电源供应装置
CN101752886A (zh) * 2008-11-27 2010-06-23 杨小帆 一种混合动力电源控制系统
JP2013095246A (ja) * 2011-10-31 2013-05-20 Hitachi Automotive Systems Ltd 車両用電源装置
CN103174949A (zh) * 2013-04-08 2013-06-26 国家电网公司 一种便携式车载施工用应急照明装置
CN206049563U (zh) * 2016-09-20 2017-03-29 山东科技大学 一种公交车节能供电系统

Also Published As

Publication number Publication date
US20210138906A1 (en) 2021-05-13
CN108725356B (zh) 2022-12-13
US11235714B2 (en) 2022-02-01
CN108725356A (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
US10023072B2 (en) DC-DC converter for vehicle
US8378623B2 (en) Apparatus and method for charging an electric vehicle
CN102088197B (zh) 用于控制混合动力车用12v辅助电池的充电电压的方法
US8102142B2 (en) Double ended inverter system for a vehicle having two energy sources that exhibit different operating characteristics
CN201317281Y (zh) 汽车电气系统
EP2686199A2 (en) Systems and methods for overcharge protection and charge balance in combined energy source systems
US11097634B2 (en) Start control system of vehicle and vehicle having the same
CN101624007A (zh) 一种可插电式混合动力汽车
WO2018205331A1 (zh) 电动汽车的自循环充放电装置和动力总成系统
TWI750087B (zh) 智慧能量存儲系統
CN214189325U (zh) 一种车用充电宝系统
Kamachi et al. Development of power management system for electric vehicle “i-MiEV”
WO2018192464A1 (zh) 一种车辆电源组件及其布置方法
CN203974582U (zh) 一种混联式气电混合动力客车
CN114701397A (zh) 一种用于车辆的集成式48v系统、车辆及控制方法
US20140377596A1 (en) Hybrid battery system for electric and hybrid electric vehicles
CN114389323A (zh) 用于降低停车车辆的总功耗的方法
WO2022228247A1 (zh) 智能能量存储系统
Pesaran et al. Ultracapacitors and Batteries in Hybrid Vehicles
Zhao et al. Energy Management of Dual Energy Source of Hydrogen Fuel Cell Hybrid Electric Vehicles
CN114763068A (zh) 一种车用充电宝系统及充电方法
CN220172273U (zh) 一种电池包和车辆
KR20160118472A (ko) Phev의 충전 시스템 및 그 제어방법
CN110712608A (zh) 一种基于超级电容与小容量蓄电池组合的车辆供电装置
CN219789908U (zh) 双电机控制器、双电机驱动系统和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787474

Country of ref document: EP

Kind code of ref document: A1