WO2018190243A1 - Radiation imaging device, image processing device, and image processing program - Google Patents
Radiation imaging device, image processing device, and image processing program Download PDFInfo
- Publication number
- WO2018190243A1 WO2018190243A1 PCT/JP2018/014604 JP2018014604W WO2018190243A1 WO 2018190243 A1 WO2018190243 A1 WO 2018190243A1 JP 2018014604 W JP2018014604 W JP 2018014604W WO 2018190243 A1 WO2018190243 A1 WO 2018190243A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radiation
- unit
- image
- distribution
- subject
- Prior art date
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 323
- 238000012545 processing Methods 0.000 title claims abstract description 144
- 238000003384 imaging method Methods 0.000 title claims description 74
- 238000009826 distribution Methods 0.000 claims abstract description 197
- 238000004364 calculation method Methods 0.000 claims abstract description 54
- 238000000605 extraction Methods 0.000 claims abstract description 51
- 230000005540 biological transmission Effects 0.000 claims description 63
- 239000000284 extract Substances 0.000 claims description 16
- 238000004891 communication Methods 0.000 claims description 15
- 238000012937 correction Methods 0.000 claims description 15
- 238000001514 detection method Methods 0.000 claims description 14
- 229920006395 saturated elastomer Polymers 0.000 claims description 9
- 230000006870 function Effects 0.000 description 51
- 238000000034 method Methods 0.000 description 28
- 238000010586 diagram Methods 0.000 description 23
- 238000006243 chemical reaction Methods 0.000 description 15
- 230000014509 gene expression Effects 0.000 description 14
- 238000009792 diffusion process Methods 0.000 description 9
- 230000033001 locomotion Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 230000002238 attenuated effect Effects 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 230000008602 contraction Effects 0.000 description 4
- 238000009499 grossing Methods 0.000 description 4
- 238000012804 iterative process Methods 0.000 description 4
- 230000015654 memory Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000002594 fluoroscopy Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
Definitions
- the present invention relates to a technique for processing data obtained by detecting radiation that has passed through a subject, and more particularly to a technique for correcting fluctuations caused by radiation scattering.
- the radiation primary transmitted through the subject linearly
- the radiation is added to the primary line image obtained from the radiation (scattered rays) scattered inside the subject etc., so that the contrast of the acquired transmitted image is reduced and the sharpness is reduced. It is generally known that image quality fluctuations occur.
- a plate called a grid which consists of thin and alternating layers of a material with high radiation absorption and a material with low absorption, is placed between the subject and the detector, and enters the detector.
- An imaging method that keeps the scattered dose low is generally used.
- the grid when the grid is installed, the primary dose incident on the detector is also attenuated by the grid, so that it is necessary to irradiate the subject with stronger radiation than when the grid is not used, and the exposure amount of the subject increases.
- a body thickness distribution of a subject is estimated to obtain a virtual model of the subject, and an estimated primary line image and an estimated scattered ray estimated from the virtual model
- An estimated transmission image is generated by combining the images, and the body thickness distribution of the virtual model is corrected so that the difference between the estimated transmission image and the actually acquired transmission image is reduced.
- a transmission image in which image quality fluctuation due to scattered radiation is suppressed is obtained.
- the body thickness distribution of the virtual model is corrected using iterative processing so that the difference between the estimated transmission image and the actually acquired transmission image becomes small.
- Patent Document 1 when iterative processing as in Patent Document 1 is performed, considerable processing time is required until a final image is obtained, and as a result, the number of images obtained per unit time is reduced. For this reason, when it is desired to display a transmission image as a moving image as in the case of fluoroscopic imaging of an X-ray imaging apparatus, the technique of Patent Document 1 may result in an unnatural moving image in which the movement of the subject is jerky. Further, it is possible to increase the number of images obtained per unit time by using a special calculation resource capable of executing high-speed processing, but in this case, the apparatus becomes expensive.
- the present invention has been made in view of such a situation, and it is possible to obtain an image in which image quality variation due to scattered rays is suppressed in a short time while not performing iterative processing or greatly reducing the number of iterations of processing. It is in.
- a typical radiation imaging apparatus includes a radiation source that irradiates a subject with radiation, a radiation detector that detects an intensity distribution of the radiation that has passed through the subject, and a spatial intensity direction and a time axis direction for the radiation intensity distribution.
- An extraction unit that extracts at least one high-frequency component; and a thickness distribution calculation unit that obtains a thickness distribution of the subject based on the high-frequency component extracted by the extraction unit.
- the present invention it is possible to obtain a radiation image in which image quality fluctuation due to scattered rays is suppressed in a short time.
- FIG. 1 is a block diagram illustrating an example of a configuration of a radiation imaging apparatus in a specific embodiment 1.
- FIG. (a) And (b) is explanatory drawing explaining the primary ray and scattered ray of the radiation which permeate
- FIG. (A)-(d) is a block diagram which shows an example of a structure of the high frequency component extraction part of the image processing part of FIG. 4, respectively.
- FIG. 5 is a block diagram illustrating an example of a configuration of a body thickness distribution calculation unit of the image processing unit in FIG. 4.
- FIG. 10 is a block diagram illustrating an example of a configuration of an image processing unit included in a radiation imaging apparatus according to Embodiment 3.
- FIG. 10 is a block diagram illustrating an example of a configuration of a radiation imaging apparatus in a fourth embodiment.
- the present invention provides a technique for obtaining a radiation image in which image quality fluctuation due to scattered radiation is suppressed in a short time.
- all functions may be implemented by hardware, or a part or all of the functions may be implemented by software running on a general-purpose computer.
- FIG. 1 is a block diagram showing a radiation imaging apparatus according to an embodiment of the present invention.
- the radiation imaging apparatus of the present embodiment includes a radiation source 102 that irradiates a subject 108 with radiation, a radiation detector 111 that detects an intensity distribution of radiation that has passed through the subject 108, and a radiation detector 111. 2 extracts an at least one high-frequency component in the spatial axis direction and the time-axis direction, and obtains the thickness distribution of the subject 108 based on the high-frequency component extracted by the extraction unit 301. And a thickness distribution calculation unit 302.
- the thickness distribution is referred to as a body thickness distribution
- the thickness distribution calculation unit 302 is referred to as a body thickness distribution calculation unit 302. Is not limited to a human body imaged.
- the radiation detector 111 includes a plurality of detection elements arranged one-dimensionally or two-dimensionally, and detects a spatial intensity distribution of radiation in the arrangement direction of the plurality of detection elements, that is, a radiation image.
- the high-frequency component of the radiation intensity distribution detected by the radiation detector 111 means at least one high-frequency component in the spatial axis direction and the time axis direction of the radiation intensity distribution (radiation image).
- the high frequency component is a frequency component in a band in which the intensity of the frequency component constituting the radiation (scattered ray) scattered inside the subject 108 is relatively attenuated among the frequency component bands constituting the radiation intensity distribution. If it is.
- the intensity distribution of the radiation detected by the radiation detector 111 is represented by the sum of the intensity distribution of the primary line linearly transmitted through the subject 108 and the intensity distribution of the radiation scattered inside the subject 108 (scattered rays). .
- the intensity distribution of the primary line corresponds to the thickness distribution of the subject.
- a part of the temporal and spatial high-frequency components included in the radiation irradiated from the radiation source 102 to the subject 108 is transmitted linearly through the subject 108 and the other is scattered inside the subject 108. Since the scattered high-frequency component is greatly attenuated in the subject 108, the high-frequency component included in the radiation intensity distribution detected by the radiation detector 111 is almost equal to the high-frequency component of the primary line that has passed through the subject 108 linearly.
- the extraction unit 301 extracts at least one high-frequency component in the spatial axis direction and the time-axis direction included in the intensity distribution of the radiation detected by the radiation detector 111, thereby obtaining the intensity distribution of the primary line (the intensity of the high-frequency component). Distribution).
- the body thickness distribution calculation unit 302 can calculate the body thickness distribution of the subject 108 from the extracted intensity distribution of the high frequency component.
- the radiation imaging apparatus of the present embodiment can calculate the body thickness distribution of the subject 108 from the intensity distribution of the high frequency component, the intensity distribution of the scattered radiation is obtained based on the body thickness distribution of the subject 108, The influence of scattered radiation can be removed from the radiation intensity distribution detected by the radiation detector. Therefore, it is possible to obtain an image in which image quality fluctuation due to scattered radiation is suppressed in a short time without performing iterative processing.
- the body thickness distribution calculation unit 302 can be configured to obtain the thickness of the subject 108 corresponding to the strength of the high frequency component, for example, from the relationship between the body thickness obtained in advance and the strength of the high frequency component.
- the radiation imaging apparatus has a scattered radiation distribution estimation unit that obtains a distribution of scattered radiation caused by radiation passing through the subject 108 from the body thickness distribution of the subject 108 obtained by the body thickness distribution calculation unit 302. 303 may be provided.
- the radiation imaging apparatus 101 may further include a scattered radiation distribution removing unit 304 that removes the scattered radiation distribution obtained by the scattered radiation distribution estimation unit 303 from the intensity distribution of the radiation detected by the radiation detector 111.
- the scattered radiation distribution removing unit 304 generates a scattered radiation distribution equivalent to the scattered radiation distribution generated when a grid is arranged between the subject 108 and the radiation detector 111 based on the body thickness distribution of the subject, You may add with respect to the radiation distribution from which the scattered radiation distribution which the scattered radiation distribution estimation part 303 calculated
- the radiation detector 111 uses a two-dimensional array of X-ray detection elements. Thereby, the radiation detector 111 detects a two-dimensional X-ray distribution and obtains an X-ray image of the subject.
- the radiation imaging apparatus of the present embodiment is not limited to the X-ray imaging apparatus that acquires a two-dimensional X-ray image, and uses an X-ray detector in which X-ray detection elements are arranged at least in one dimension.
- the present embodiment can also be applied to an X-ray CT apparatus.
- the scattered radiation distribution estimation unit 303 obtains a scattered radiation image of the subject as the scattered radiation distribution.
- Embodiment 1 A radiation imaging apparatus according to Embodiment 1 of the present invention will be described.
- FIG. 2 is a block diagram showing an example of the configuration of the radiation imaging apparatus according to Embodiment 1 of the present invention.
- the radiation imaging apparatus (101) is electrically connected to an X-ray tube (radiation source) (102) that generates X-rays and irradiates the subject, and the X-ray tube (102). And a high voltage generator (103) and an X-ray controller (104) electrically connected to the high voltage generator (103).
- an aperture (105), an X-ray compensation filter (106), and a table (109) are sequentially arranged.
- a mechanism control unit (110) is connected to the table (109).
- a diaphragm / filter control unit (107) is connected to the diaphragm (105) and the X-ray compensation filter (106).
- an X-ray detector (111) is disposed at a position facing the diaphragm (105), the X-ray compensation filter (106), and the table (109).
- a detector control unit (112) is connected to the X-ray detector (111), and an image processing unit (115) is connected to the detector control unit (112).
- a central processing unit (114) is connected to the X-ray control unit (104), the diaphragm / filter control unit (107), the mechanism control unit (110), and the detector control unit (112), and the central processing unit (114).
- a storage unit (113), an input unit (116), and a display unit (117) are connected to this.
- the high voltage generator (103) generates a high voltage applied to the X-ray tube (102).
- the X-ray tube (102) irradiates the subject (108) disposed on the table (109) with X-rays.
- the X-ray control unit (104) controls the high voltage generation unit (103), and controls the dose and quality of X-rays emitted from the X-ray tube (102).
- the diaphragm (105) controls the region irradiated with X-rays generated by the X-ray tube (102) by opening and closing a metal having a high X-ray absorption rate.
- the X-ray compensation filter (106) is made of a substance having a high X-ray absorption rate, and reduces halation by attenuating X-rays that reach a portion of the subject (108) having a low X-ray absorption rate.
- the table (109) is a bed on which the subject (108) is placed.
- the mechanism control unit (110) moves the table (109) and controls the subject (108) to move to a position suitable for photographing.
- the X-ray control unit (111) may be configured to move integrally with the table (109).
- the X-ray detection unit (111) has a configuration in which X-ray detection elements are two-dimensionally arranged and functions as an image generation unit. That is, the X-ray detection unit (111) detects the X-rays irradiated from the X-ray tube (102) and transmitted through the subject (108) by the X-ray detection elements, respectively, so that an image corresponding to the X-ray intensity distribution is obtained. Data (radiation image, hereinafter referred to as transmission image) is output.
- the X-rays transmitted through the subject (108) are the X-rays that linearly pass through the subject (108) and reach the X-ray detection unit (11), and are scattered within the subject (108) and X X-rays reaching the line detection unit (111).
- the transmission image is the sum of an image of a primary line that has been linearly transmitted through the subject (108) and an image of scattered rays scattered inside the subject (108).
- the detector control unit (112) controls the X-ray detection unit (111) to acquire transmission image data, and inputs the acquired data to the image processing unit (115).
- the X-ray detector (111) can also generate a transmission image as a still image. It is also possible to generate a plurality of transmission images taken at different timings and generate them as moving images. At this time, in general, images are often taken at a constant time interval such as 30 frames per second or 15 frames per second, but the time interval is not limited thereto.
- the image processing unit (115) receives the transmission image (input image) output from the X-ray detector (111) via the detector control unit (112), and performs image processing such as extracting high-frequency components. .
- the display unit (117) displays the image (output image) after being processed by the image processing unit (115).
- the storage unit (113) includes a recording medium such as a semiconductor memory or a magnetic disk, and may store images, image acquisition conditions, various characteristics and parameters described later as data, and a software program described below. it can. Note that the type of the recording medium is not limited to this.
- the input unit (116) is a user interface for the user to set image acquisition conditions and the like. As this input unit (116), a keyboard, a mouse, a control button, or the like may be provided, or a sensor or the like for performing voice input or gesture input may be provided.
- the central processing unit (114) controls each unit electrically connected.
- a general computer configuration represented by a personal computer usually includes a central processing unit (114) called a CPU, a storage unit (113), an input unit (116), and a display unit (117).
- the X-ray control unit (104), the diaphragm / filter control unit (107), the mechanism control unit (110), the detector control unit (112), and the image processing unit (115) can be realized by a software program. . Therefore, central processing unit (114), storage unit (113), input unit (116), display unit (117), X-ray control unit (104), aperture / filter control unit (107), mechanism control unit (110)
- the detector control unit (112) and the image processing unit (115) may be configured by a computer.
- the function of the image processing unit (115) may be realized using dedicated hardware, an image processing processor, or the like. The details of the image processing unit (115) will be described later in detail.
- FIG. 3 is an explanatory diagram for explaining primary rays and scattered rays of radiation that passes through the subject.
- FIG. 3 is a diagram used only for explaining primary rays and scattered rays in the radiation imaging apparatus, and is not a diagram for explaining operations in a normal use state.
- Equation (1) indicates that the transmission image Im (x, y) is represented by the sum of the primary line image Ip (x, y) and the scattered line image Is (x, y).
- Expression (2) indicates that the intensity of the primary line image Ip (x, y) exponentially attenuates according to the thickness T (x, y) of the subject.
- Io (x, y) represents the incident dose at the position (x, y)
- ⁇ represents the X-ray attenuation rate (linear attenuation coefficient) per unit thickness.
- Equation (3) is expressed by a convolution operation (*) where the intensity of the scattered line image Is (x, y) is the intensity of the primary line image Ip (x, y) and the point diffusion function S ⁇ (T (x, y)). This point diffusion function S ⁇ (T (x, y)) changes according to the thickness T (x, y) of the subject.
- FIG. 3 (a) an experiment is performed in which the irradiation region of X-rays irradiated from the X-ray tube (102) is controlled by a diaphragm (201 (a)) and irradiated to a subject (202) placed on a table (109). It shows how it went.
- the diaphragm (201 (a)) may be the same as the diaphragm (105) shown in FIG. 2, but it is different from the diaphragm (105) shown in FIG.
- the metal has a high X-ray absorption rate.
- the subject (202) is assumed to be an object having a constant value (T) regardless of the position (x, y), such as an acrylic plate.
- the intensity distribution Im (x, y) of the transmission image changes, and the value is smaller overall than the intensity distribution Im (x, y) shown in FIG. 3 (a1).
- This phenomenon is caused by the absence of X-rays scattered from the left side to the right side of the subject (202) because the X-rays irradiated to the left side of the subject (202) are shielded.
- the intensity distribution Im (x, y) of the transmission image changes when the position or area of the region irradiated with X-rays changes.
- the intensity distribution Im (x, y) of the transmission image changes more complicatedly.
- Ip (x, y) shown in (2) and Is (x, y) shown in equation (3) cannot be calculated easily. Therefore, until now, it has been necessary to calculate the thickness T (x, y) of the subject (202) using an iterative process or the like as described in Patent Document 1.
- FIGS. 3 (a1) and 3 (b1) attention is paid to the noise shown in FIGS. 3 (a1) and 3 (b1).
- This noise is included in the transmission image, and in the X-ray tube (102), when an X-ray is generated by colliding an electron beam against a target metal (anode) (not shown) in a vacuum, This occurs because the time interval changes probabilistic each time, and it is essentially difficult to eliminate this noise. That is, such noise is normally generated.
- this noise often has an impulse-like waveform, and includes many high-frequency components spatially and temporally.
- the intensity of the scattered line image is expressed as a convolution operation of the intensity of the primary line image Ip (x, y) and the point spread function S ⁇ (T (x, y)), that is, a low-pass filter operation. Therefore, the high frequency component included in the noise is greatly attenuated. In other words, the noise (high-frequency component) remaining in the transmission image shown in FIGS. 3 (a1) and 3 (b1) is not caused by scattered rays but mostly by primary lines. It can be said.
- the high-frequency component is as shown in FIG. 3 (a2)
- the low-frequency component is as shown in FIG. 3 (a3).
- the high frequency component becomes as shown in FIG. 3 (b2)
- the low frequency component becomes as shown in FIG. 3 (b3).
- most of the high-frequency components are caused by the primary line. Therefore, from the above equation (2), the high-frequency components shown in FIGS. 3 (a2) and 3 (b2) are Shows substantially the same intensity distribution according to the thickness of the subject.
- equation (4) can be derived from equation (2), and the incident dose Io (x, y) can be calculated in advance. If measured, the thickness T (x, y) of the subject can be calculated in a short time without using an iterative process.
- 3 (a2) and 3 (b2) show spatial high-frequency components, the same applies to the high-frequency components in the time axis direction.
- the intensity Ip (x, y) of the primary line is expressed by the position (x + dx, y + dy) may be significantly different from the intensity Ip (x + dx, y + dy) of the primary line, but the intensity Is (x, y) of the scattered radiation is the intensity Is ( x + dx, y + dy) is used.
- Equation (5) by obtaining the intensity difference (Im (x + dx, y + dy) -Im (x, y), that is, a high frequency component) with neighboring pixels in the transmission image Im,
- the intensity Is of scattered radiation can be canceled (Is (x + dx, y + dy) -Is (x, y) ⁇ 0), and the difference in intensity from neighboring pixels in the primary line image Ip (Ip (x + dx, y + dy) -Ip (x, y)).
- the thickness T (x, y) of the subject can be obtained from the expression (2) or the expression (4) without being affected by the scattered radiation Is (x, y) in the expressions (1) and (3). Can be calculated in a short time.
- FIG. 4 is a block diagram showing an example of the configuration of the image processing unit (115) included in the radiation imaging apparatus of FIG.
- the image processing unit (115) includes a high frequency component extraction unit (301), a body thickness distribution calculation unit (302), a scattered radiation image estimation unit (303), and a scattered radiation image removal unit ( 304).
- the high-frequency component extraction unit (301) extracts at least one high-frequency component in the spatial axis direction and the time-axis direction from the transmission image (input image) output from the X-ray detector (111), and uses the extracted result as the high-frequency component.
- Information is input to the body thickness distribution calculation unit (302). This will be described in detail later with reference to FIG.
- the body thickness distribution calculation unit (302) calculates body thickness information based on the high frequency component information extracted by the high frequency component extraction unit (301), and calculates a scattered radiation image estimation unit (scattered radiation distribution estimation unit) (303 ). This will be described in detail later with reference to FIG.
- the scattered radiation image estimation unit (303) generates a scattered radiation image (estimated scattered radiation image) that is estimated to be included in the input image based on the input image and the body thickness information from the body thickness distribution calculation unit (302).
- the calculated value is input to the scattered radiation image removal unit (304). This will be described in detail later with reference to FIG.
- the scattered radiation image removal unit (304) removes the estimated scattered radiation image obtained by the scattered radiation image estimation unit (303) from the input image, and calculates an output image. This will be described in detail later with reference to FIG.
- the image acquisition conditions set in the image processing unit (115) will be described in detail later.
- FIG. 5 is a block diagram showing an example of the configuration of the high frequency component extraction unit (301) included in the image processing unit (115) of FIG.
- the high-frequency component extraction unit (301) extracts at least one high-frequency component in the spatial axis direction and the time-axis direction from the transmission image (input image) output from the X-ray detector (111), and uses the extracted result as the high-frequency component.
- Information is input to the body thickness distribution calculation unit (302).
- FIG. 5 (a) shows an example (301 (a)) in which the high-frequency component extraction unit (301) is configured with an intra-frame high-pass filter (401).
- the intra-frame high-pass filter (401) is a filter that uses only one (one frame) input image to extract a high-frequency component of the intensity distribution in the spatial axis direction of each pixel value constituting the input image.
- a general one-dimensional or two-dimensional high-pass filter can be used as it is.
- a high-pass filter is a filter having a frequency characteristic in which the amount of attenuation of low-frequency components including direct current is larger than the amount of attenuation of high-frequency components.
- a general horizontal high-pass filter or vertical high-pass filter can be used as the intra-frame high-pass filter (401) as it is.
- a general horizontal high-pass filter and a vertical high-pass filter may be connected in series or in parallel to form a two-dimensional high-pass filter, which may be used as an intra-frame high-pass filter (401).
- the intra-frame high-pass filter (401) is not limited to the configuration described here. As described above with reference to FIG. 3, the scattered radiation image (low frequency component including direct current) is greatly increased. It only needs to have a frequency characteristic that attenuates.
- FIG. 5 (b) shows another configuration example (301 (b)) of the high-frequency component extraction unit (301).
- the high frequency component extraction unit (301 (b)) includes an expansion processing unit (402), a contraction processing unit (403), and a subtracter (404).
- the expansion processing in the expansion processing unit (402) is generally known as dilate processing, and is in the vicinity of the target position (pixel) (x, y) (for example, nine pixels centered on the pixel of the target position). ) Is used as the output signal (pixel value) at the target position.
- the contraction process in the contraction processing unit (403) is generally known as an erode process, and the minimum value of the input signal (pixel value) in the vicinity of the target position (x, y) is used as the output signal of the target position. (Pixel value).
- the “neighbor” is set is arbitrary, and when using the X-ray tube (102) with a small half-value width of noise included in the X-ray, the number of pixels (for example, When the X-ray tube (102) having a large half-value width of noise is used, the “neighboring” may be a large number of pixels (for example, horizontal 7 pixels ⁇ vertical 7 pixels).
- FIG. 5 (c) shows still another configuration example (301 (c)) of the high-frequency component extraction unit (301).
- the high-frequency component extraction unit (301 (c)) includes a frame memory (405) and a subtracter (406) .
- the difference between the current input image and the input image one frame before (that is, in the time direction) (High frequency component) is output.
- a noise component can be extracted when the subject is stationary.
- the configuration for extracting high-frequency components in the time direction is not limited to the configuration described here, and the number of frame memories (405) may be increased to obtain a difference between a plurality of frames.
- the high frequency component extraction unit (301 (c)) only needs to have a frequency characteristic that greatly attenuates the low frequency component including the direct current at the time frequency.
- the ergodic property is a property in which the time average and the set average statistically match, and here, the average value of scattered radiation between frames (time average) and the average value within one frame (set average) Represents a statistically consistent property.
- FIG. 5 (d) shows still another configuration example (301 (d)) of the high-frequency component extraction unit (301).
- the high-frequency component extraction unit (301 (d)) includes a high-frequency component extraction unit (301 (a)) that extracts a high-frequency component in the spatial axis direction shown in FIG. 5 (a) and a high-frequency component extraction unit (301 (d)) shown in FIG.
- the configuration and operation of the high-frequency component extraction unit (301 (a)) are as described above, and the high-frequency component in the spatial axis direction in the frame is extracted from the input image and output.
- the configuration and operation of the high-frequency component extraction unit (301 (c)) are as described above, and high-frequency components between frames (in the time axis direction) are extracted from the input image and output.
- the high frequency component extraction unit (301 (a)) that extracts the high frequency component in the spatial axis direction extracts not only the noise component (high frequency component) but also the contour component of the subject included in the input image. In the contour portion, an error is included in the thickness T (x, y) of the subject calculated using the formula (2) or the formula (4).
- the high-frequency component extraction unit (301 (c)) that extracts high-frequency components in the time axis direction extracts only noise components (high-frequency components) regardless of the outline of the subject in the area where the subject is stationary.
- the noise component in the area where the subject is moving, not only the noise component but also the component that changes according to the difference in the subject's thickness T (x, y) at each position (x, y) is extracted. End up. Therefore, in the region where the subject moves, an error is included in the subject thickness T (x, y) calculated using Equation (2) or Equation (4).
- the motion information k (x, y) of the subject is detected using the motion detector (407), and the high-frequency component extraction unit (301 (a)) is used in a region where the motion of the subject is large as shown in Equation (6).
- Result (A (x, y)) as high-frequency component information Y (x, y), and in a region where the movement of the subject is small, the result (B (x, y)) of the high-frequency component extraction unit (301 (c)) Is controlled to be high-frequency component information Y (x, y).
- the motion detector (407) is a known technique using, for example, an operation for obtaining an absolute value of the frame difference for each position (x, y) and a divider for normalization (division by a constant). Since it is realizable by, it abbreviate
- FIG. 6 is a block diagram illustrating an example of a configuration in the body thickness distribution calculation unit (302) included in the image processing unit (115) in FIG.
- the body thickness distribution calculation unit (302) calculates body thickness information based on the high frequency component information extracted by the high frequency component extraction unit (301), and inputs the body thickness information to the scattered radiation image estimation unit (303).
- the body thickness distribution calculation unit (302) includes an absolute value calculation unit (501), a smoothing processing unit (502), and a lookup table (503).
- the look-up table (503) the relationship between the average value of the noise component (high frequency component) intensity and the body thickness (conversion characteristics (504)) obtained in advance is determined based on the image acquisition conditions (tube voltage value, tube current). And combinations of aperture values and the like).
- the high-frequency component information input from the high-frequency component extraction unit (301) to the body thickness distribution calculation unit (302) has both positive and negative polarities and has an impulse waveform as shown in FIG. Many. Therefore, the absolute value calculation unit (501) takes the absolute value of the high frequency component information received from the high frequency component extraction unit (301), and the smoothing processing unit (502) performs a low pass filter process, thereby The average value of the noise component in the vicinity of (pixel) (x, y) is calculated. Thereafter, the body thickness distribution calculation unit (302) performs the image acquisition conditions (tube voltage value, tube current value, tube current value, set in the X-ray control unit (104) and the diaphragm / filter control unit (107) shown in FIG.
- the smoothing processing unit (502) calculates the aperture value by referring to the relationship between the average value of the noise component intensity and the body thickness under the image acquisition conditions stored in the lookup table (503).
- the average value of the noise component intensity near the target position (x, y) is converted into body thickness information at the position (x, y) and output.
- the method for obtaining the relationship (conversion characteristics (504)) between the average value of the noise component intensity stored in the lookup table (503) and the body thickness will be described.
- the transmission image shown in FIG. 3A1 is acquired while variously changing the image acquisition conditions and the thickness of the subject 202 having a constant thickness.
- the high frequency component information is extracted by the function of the high frequency component extraction unit (301) shown in FIG. 4, and the position of interest (by the functions of the absolute value calculation unit (501) and the smoothing processing unit (502) shown in FIG.
- the average value of noise component intensities near x, y) is calculated.
- the tube voltage value at each thickness is 60kV, 70KV, 80KV, 90KV, 100KV, etc.
- the tube current value is 1 mA, 2 mA, 4 mA, 8 mA, etc. for each tube voltage value.
- X-ray detectors 111 (111 ( By obtaining the average value of the noise component intensity at the position corresponding to the central part of a)), the conversion characteristic (504) from the average value of the noise component intensity to the thickness can be obtained.
- a lookup table (503) storing the conversion characteristics (504) is created.
- each value shown here is an example for description, It is not limited to this.
- FIG. 7 is a block diagram illustrating an example of the configuration of the scattered radiation image estimation unit (303) included in the image processing unit (115) of FIG.
- the scattered radiation image estimation unit (303) generates a scattered radiation image (estimated scattered radiation image) that is estimated to be included in the input image based on the input image and the body thickness information from the body thickness distribution calculation unit (302). calculate.
- Expression (7) By replacing the first term on the right side of Expression (7) with Is (x, y) using Expression (3) and rearranging, Expression (7) can be converted into Expression (8).
- the point spread function S ⁇ (T (x, y)) is further convolved with the scattered radiation image (Is (x, y)).
- the second term of the equation (8) is set to a constant value (independent of the position (x, y)).
- (DC image) may be approximated.
- the intensity of the constant value (DC image) is considered to be extremely small, and the second term of Expression (8) may be set to 0 by simplifying.
- the scattered radiation image estimation unit (303) is configured to calculate the right side of Equation (9) and output it as an estimated scattered radiation image.
- the scattered radiation image estimation unit (303) can be variously modified.
- these configurations and operations will be described one by one.
- FIG. 7 (a) shows an example (303 (a)) in which the scattered radiation image estimation unit (303) is configured as a two-dimensional low-pass filter (601).
- the two-dimensional low-pass filter (601) convolves the scattered image point spread function S ⁇ (T (x, y)) (602) shown in Equation (3) with the input image, and generates an estimated scattered radiation image. To get.
- the characteristics of the two-dimensional low-pass filter (601) are the same as the characteristics of the look-up table (503) described above, using the configuration shown in FIG.
- the transmission image shown in FIG. 3 (a1) was acquired and obtained while changing the image acquisition conditions in various ways.
- the scattered radiation not including the primary line Therefore, the point diffusion function S ⁇ (T (x, y)) (602) of the scattered radiation can be obtained using this intensity distribution.
- the X-ray irradiated to the subject (202) is a step input in which the dose outside the end is 0 and the dose inside the end is 1, the response due to scattering in the subject ( Since the step response is obtained as the intensity distribution of the transmission image, the impulse response (that is, the point spread function S ⁇ (T (x, y)) (602) can be obtained by differentiating the step response.
- FIG. 7B shows an example (303 (b)) in which the scattered radiation image estimation unit (303) is configured by a multiplier (603), a lookup table (604), and a two-dimensional low-pass filter (605). Show.
- the point diffusion function S ⁇ (606) of the two-dimensional low-pass filter (605) has a characteristic that is invariable with respect to the thickness T (x, y). 601).
- the intensity of scattered radiation is weak where the body thickness is thin, and the intensity of scattered radiation increases as the body thickness increases.
- the primary line transmitted through the subject becomes weak, so that the scattered radiation generated from the primary line also becomes weak. This characteristic is obtained in advance in the same manner as when obtaining the characteristic of the two-dimensional low-pass filter (601) described above.
- the transmission image shown in FIG. 3A1 is acquired while the thickness of the subject 202 and the image acquisition conditions are changed variously, and FIG. ) Is obtained.
- the thickness when the point spread function S ⁇ (T (x, y)) (602) is most expanded is obtained by the configuration of FIG. 7A, and the point spread function S ⁇ (T (x, y, y)) (602) is fixed as the point spread function S ⁇ (606) of the two-dimensional low-pass filter (605).
- the output of the two-dimensional low-pass filter (601) shown in FIG. 7A and the result of the two-dimensional low-pass filter (605) shown in FIG. Determine the strength factor to be used.
- a conversion function that approximately represents the conversion characteristic (607) is obtained, and parameters (coefficients, etc.) of the conversion function are stored in the lookup table (604). It may be stored.
- Each value shown in the conversion characteristic (607) is an example for explanation, and the present invention is not limited to this.
- FIG. 7 (b) An estimated scattered radiation image similar to the output of the scattered radiation image estimation unit (303 (a)) shown in (a) can be approximately obtained.
- FIG. 7 (c) shows a scattered radiation image estimation unit (303), multipliers (608) and (609), a mask information generation unit (612), and a scattered radiation image estimation unit (303 (b) -1) -1 ( An example (303 (c)) composed of 303 (b) -2) and an adder (613) is shown.
- a transmission image of the subject (108) smaller than the X-ray detector (111) may be acquired.
- the X-rays irradiated from the X-ray tube (102) enter the X-ray detector directly through only the air layer. Even in the air layer, X-rays are scattered, but the degree of scattering is smaller than in the interior of the subject (108).
- the image estimation unit (303 (b) -2) is provided separately, and is generated by the mask information generation unit (612) and the mask information (610) indicating the inner area of the subject generated by the mask information generation unit (612).
- the input image is divided into each area, and then the scattered radiation image estimation unit (303 (b) -1) (303 (b) -2) Obtain each estimated scattered radiation image, and finally adder (613) adds both estimated scattered radiation images and outputs the final estimated scattered radiation image. .
- the mask information (610) indicating the inner region of the subject has a value of 1 at the position (x, y) of the inner region of the subject and 0 at the position (x, y) of the outer region of the subject.
- Information In the mask information generation unit (612), an area where the luminance value of the input image is smaller than a predetermined threshold is set as an inner area of the subject, and an area where the luminance value of the input image is larger than the predetermined threshold is set as an outer area of the subject.
- Information (610) is generated.
- the mask information (610) generated by binarization in this way is low-pass filtered so that the value is an intermediate value between 0 and 1 at the position (x, y) of the inner and outer boundary regions. Also good.
- the mask information (611) indicating the outer area of the subject may be a value complementary to the mask information (610) indicating the inner area of the subject, and each value of the mask information (610) and the mask information (611) May be set to 1 by adding for each position (x, y).
- the configuration of the scattered radiation image estimation unit (303 (b) -1) (303 (b) -2) is the same as that of the scattered radiation image estimation unit (303 (b)) shown in FIG.
- the two-dimensional low-pass filters (605-1) and (605-2) have different characteristics. That is, the two-dimensional low-pass filter (605-1) performs a convolution operation of the point diffusion function S ⁇ (606-1) that simulates scattering in the inner area of the subject, and the two-dimensional low-pass filter (605-2) Convolution of a point diffusion function S ⁇ (606-2) that simulates scattering in a region is performed.
- the point spread function S ⁇ (606-1) and the lookup table (604-1) are the same as the point spread function S ⁇ (606) and the lookup table (604) shown in FIG. Characteristic is sufficient.
- the procedure similar to the above is performed after the subject (202) is not installed in the configuration of FIG.
- each characteristic of the point spread function S ⁇ (606-2) and the look-up table (604-2) may be obtained.
- the scattered radiation image estimation unit (303 (b) -1) in the configuration of FIG. 7C may be subdivided.
- a scattered radiation image estimation unit for a region with a small body thickness such as the lung for a region with a large amount of X-ray transmission
- a scattered radiation image estimation for a region with a small amount of X-ray transmission such as bone
- a scattered radiation image estimation unit for other regions built-in or for muscles.
- the subject (202) is replaced with a subject simulating the characteristics of each region, and the point spread function S ⁇ (606) and the look-up table (604) are obtained in the same procedure as described above. )
- the mask information generation unit (612) may be configured to generate mask information for each area according to the luminance value of the input image.
- the contents of the lookup tables (503) and (604) and the characteristics of the point spread function (602) and (606) are obtained in advance and recorded in the storage unit (113) shown in FIG. 2 may be controlled by the central processing unit (114) shown in FIG. 2 so that each content is read out from the storage unit (113) and set in each unit when used.
- FIG. 8 is a block diagram showing an example of the configuration of the scattered radiation image removal unit (304) included in the image processing unit (115) of FIG.
- the scattered radiation image removal unit (304) removes the estimated scattered radiation image obtained by the scattered radiation image estimation unit (303) from the input image, and calculates an output image.
- the scattered radiation image removing unit 304 can have various modifications. Hereinafter, these configurations and operations will be described one by one.
- FIG. 8 (a) an example (scattered ray image removing unit (304 (a)) in which the scattered radiation image removing unit (304) is configured by only a subtractor (701) is shown.
- Equation (1) described above is solved for Ip (x, y)
- Equation (10) is obtained.
- the estimated scattered radiation image is subtracted from the input image by the subtractor (701), and the estimated primary radiation image is obtained. Is output as an output image. As a result, an output image (estimated primary line image) in which image quality fluctuations due to scattered rays are suppressed can be obtained.
- the estimated primary line image obtained in this way does not include a scattered radiation image
- the user may have an impression that the image quality is significantly different from the grid image described as the background art. The reason is that even if the grid is used, the scattered radiation cannot be completely suppressed, so the user is accustomed to the grid image in which a part of the scattered radiation remains and may not be accustomed to the estimated primary line image. is there.
- an equivalent scattered ray image generated when the grid is arranged is generated and added to the estimated primary line image.
- an output image equivalent to the case of using the grid is obtained. That is, in the configuration of FIG. 8 (b), the configuration (304 (a)) of FIG. 8 (a) and the second scattered radiation image estimation unit (304 (b)) and the second scattered radiation image estimation unit (304 (b)) 303), a multiplier (702), and an adder (703).
- the estimated primary line image output from the scattered radiation image removal unit (304 (a)) is input to the second scattered radiation image estimation unit (303), and the output (estimated scattered radiation image) is multiplied.
- the grid loss coefficient is multiplied to generate a scattered radiation image equivalent to the case where the grid is arranged.
- This scattered radiation image is added to the output (estimated primary line image) of the scattered radiation image removal unit (304 (a)) using an adder (703) to obtain an output image (an image simulating a grid image).
- the grid loss coefficient is a coefficient indicating the rate at which scattered radiation is attenuated by the grid, and may be a constant value regardless of the position (x, y) of the image.
- This grid loss coefficient is the end (left edge) when the grid is inserted between the table (109) and the X-ray detector (111 (a)) and when it is not inserted in the configuration shown in FIG. Alternatively, it may be obtained by measuring the ratio of scattered radiation intensity outside the right end).
- FIG. 9 is a flowchart showing an example of processing operations in the units (301) to (304) of the image processing unit (115).
- the image processing unit (115) described above is constituted by a computer including a calculation unit such as a CPU and a storage unit in which a program is stored in advance, and the calculation unit reads and executes the program in the storage unit,
- the configuration may be such that the functions of the units (301) to (304) are realized by software processing, or some or all of the functions of the units (301) to (304) of the image processing unit (115) may be implemented by an ASIC (
- the configuration may be realized by hardware such as Application (Specific Integrated Circuit) or FPGA (Field-Programmable Gate Array).
- the central processing unit 114 has an X-ray control unit (104), an aperture / filter control unit (107), a mechanism control unit (110), according to the image acquisition conditions received from the user via the input unit (116), By controlling the detector control unit (112), the X-ray tube (102) irradiates the subject (108) with X-rays, and the X-rays that have passed through the subject (108) become X-ray detector (111). By detecting this, a transmission image is generated.
- the image processing unit (115) starts the following processing by operating the functions of the units (301) to (304) when the calculation unit reads and executes the program in the storage unit in step (1001) of FIG.
- the image processing unit (115) acquires a transmission image (hereinafter also referred to as an input image) generated by the X-ray detector (111) via the detector control unit (112).
- step (1003) the high frequency component extraction unit (301) of the image processing unit (115) extracts at least one high frequency component in the spatial axis direction and the time axis direction from the input image.
- step (1004) the body thickness distribution calculation unit (302) calculates the body thickness distribution from the high frequency component.
- step (1005) the scattered radiation image estimation unit (303) estimates a scattered radiation image from the body thickness distribution calculated in step (1004).
- step (1006) the scattered radiation image removal unit (304) generates an output image by subtracting the scattered radiation image estimated in step (1005) from the input image.
- step (1007) the image processing unit (115) outputs the output image generated in step (1006), and the process ends in step (1008).
- a software program that operates on a general computer configuration represented by a personal computer (PC) can obtain an image in which image quality fluctuation due to scattered radiation is suppressed in a short time.
- PC personal computer
- Embodiment 2 A radiation imaging apparatus according to Embodiment 2 of the present invention will be described.
- the radiation imaging apparatus according to the second embodiment has a configuration in which the image processing unit (115) in the radiation imaging apparatus according to the first embodiment shown in FIG. 2 is replaced with an image processing unit (801) shown in FIG. Description of blocks common to FIG. 2 is omitted, and the image processing unit (801) after replacement will be described below.
- FIG. 10 is a block diagram showing an example of the configuration of the image processing unit (801) included in the radiation imaging apparatus according to the second embodiment.
- the image processing unit (801) of the second embodiment suppresses the influence even when halation (out-of-white) due to saturation of the X-ray detector (111) occurs in the transmission image, thereby reducing the body thickness. Find the distribution. That is, when the X-ray detector that detects the transmission image is saturated with X-rays and the X-ray detector (111) is saturated, the body thickness distribution at the saturated position
- the replacement unit replaces the body thickness calculated by the calculation unit (302) with a different value.
- the radiation imaging apparatus pays attention to the X-ray noise (high frequency component) as shown in FIGS. 3 (a1) and 3 (b1).
- the transmission image was separated into a high frequency component and a low frequency component, and a body thickness distribution was obtained from the intensity of the high frequency component.
- the intensity of X-rays emitted from the X-ray tube (102) is too strong, the X-ray detector (111) will be saturated, causing halation (whiteout) in the brightness of the transmitted image, and high-frequency components May seem to disappear.
- the average value of the noise component intensity is 0, and the body thickness distribution calculation unit (302) shown in FIG.
- the image processing unit (115) shown in FIG. 4 may result in an incorrect output image.
- the image processing unit (801) shown in FIG. 10 (a) the high-frequency component extracting unit (301), the body thickness distribution calculating unit (302), and the scattered radiation constituting the image processing unit (115) shown in FIG.
- a new body thickness distribution calculation unit (802), a comparator (detection unit) (803), and a switch (replacement unit) ( 804) is added.
- the operation of each unit will be described.
- the body thickness distribution calculation unit (802) calculates the body thickness distribution for each position (x, y) using the luminance value of the input image instead of the high frequency component. More specifically, the relationship (conversion characteristics) between the subject thickness and the average value of the luminance values of the input images obtained in advance in each image acquisition condition is stored in a lookup table (not shown), and the body thickness The distribution calculation unit (802) refers to the conversion characteristics of the lookup table, obtains the body thickness from the luminance value of the input image for each position (x, y), and outputs the obtained body thickness distribution as body thickness information. To do.
- the relationship between the thickness of the subject and the average value of the luminance values of the input image is as shown in FIG. 3 for each image acquisition condition while appropriately changing the thickness of the subject (202) using the configuration shown in FIG. After acquiring the transmission image shown in a1), the relationship between the thickness under each image acquisition condition and the average value of the luminance values of the input image may be obtained.
- the comparator (803) compares the body thickness information calculated by the body thickness distribution calculation unit (802) with a predetermined threshold for each position (xy), and the body thickness at each position is less than the threshold. When it is small (thin), it is determined that there is a possibility that the transmitted image at the position (x, y) is whiteout. Using this determination result, the switch (804) uses the body thickness information output from the body thickness estimation unit (302) for the position (x, y) where the transmission image may be whiteout. Instead, the body thickness information output from the body thickness estimation unit (802) is input to the scattered radiation image estimation unit (303).
- the scattered radiation image estimation unit (303) allows the X-ray detector (111) to saturate, and even if halation occurs in the brightness of the transmitted image, Since the body thickness information obtained from the luminance value of the transmission image can be used, the scattered radiation image can be estimated based on the body thickness without being affected by the whiteout.
- the image processing unit (805) illustrated in FIG. 10B is a configuration example in which the configuration of the image processing unit (804) illustrated in FIG.
- the image processing unit (805) includes a high frequency component extraction unit (301), a body thickness distribution calculation unit (302), a scattered radiation image estimation unit (303), and the image processing unit (115) shown in FIG. Based on the scattered radiation image removal unit (304), a comparator (806) and a switch (807) are newly added. The operation of each added part will be described below.
- the scattered radiation image estimation unit (303) can use a predetermined body thickness setting value for the position at which whiteout occurs even when halation (whiteout) occurs in the brightness of the transmitted image. Therefore, it is possible to estimate a scattered radiation image in which the influence of whiteout is reduced.
- the radiation imaging apparatus according to the third embodiment has a configuration in which the image processing unit (115) in the radiation imaging apparatus according to the first embodiment shown in FIG. 2 is replaced with an image processing unit (901) shown in FIG. Description of blocks common to FIG. 2 will be omitted, and the image processing unit (901) after replacement will be described below.
- FIG. 11 is a block diagram illustrating an example of a configuration in the image processing unit (901) of the third embodiment.
- the body thickness distribution is calculated by putting some approximations, so errors due to the approximation may be mixed in the output image.
- errors due to the approximation may be mixed in the output image.
- X-ray fluoroscopy X-ray fluoroscopy
- still image X-ray imaging
- the body thickness distribution correction unit (902) for correcting the body thickness value calculated by the body thickness distribution calculation unit (302) and the correction unit (902) output An estimated transmission line image (estimated input image) generation unit (904) that generates an estimated transmission line image based on the corrected body thickness and a transmission image (input image, that is, radiation) output from the X-ray detector (111)
- the correction unit (902) adjusts the correction amount based on the output of the comparison unit (905).
- the image processing unit (901) newly includes a body thickness distribution correction unit (902), a switch (903), an estimated input image generation unit (904), and a comparator (905). to add.
- a parameter acquisition method prepared in advance will be described before the operation of each unit is described.
- body thickness information (T (x, y)) is obtained from the input image via the high frequency component extraction unit (301) and the body thickness distribution calculation unit (302).
- the operation so far (initial operation) is the same as the operation of each unit in the image processing unit (115) shown in FIG.
- body thickness information (x, y) is input to the estimated input image generation unit (904) via the switch (903) switched to the upper path in FIG. Based on this body thickness information (T (x, y)), the estimated input image generation unit (904) generates an estimated input image using the above-described equations (1), (2), and (3).
- the estimated primary line image Ip (x , y) using the previously obtained linear attenuation coefficient ⁇ , body thickness information (T (x, y)) and dose Io (x, y), the estimated primary line image Ip (x , y). Also, using this estimated primary line image Ip (x, y) and the point diffusion function S ⁇ (T (x, y)) or the point diffusion function S ⁇ obtained in advance, the estimated scattered radiation image from Equation (3) Find Is (x, y). Subsequently, an estimated input image Im (x, y) is obtained from Expression (1) using the obtained estimated primary line image Ip (x, y) and estimated scattered radiation image Is (x, y).
- the luminance value of the estimated input image Im (x, y) thus obtained and the luminance value of the actual input image are compared for each position (x, y) by the comparator (905), and the difference between both images is compared.
- ⁇ (x, y) is obtained, and this difference ⁇ (x, y) is input to the body thickness distribution correction unit (902).
- the body thickness distribution correction unit (902) corrects the body thickness information T (x, y) based on the sign (positive / negative) of the value of the difference ⁇ (x, y). If the difference ⁇ (x, y) is positive (i.e., if the luminance value of the estimated input image is larger than the luminance value of the actual input image (x, y)), the position (x, y ) Body thickness information T (x, y) is corrected to a slightly larger value (T (x, y) + ⁇ , where ⁇ is a positive value).
- the position ( The body thickness information T (x, y) of x, y) is corrected to a slightly smaller value (T (x, y) ⁇ , where ⁇ is a positive value).
- the corrected body thickness information (T (x, y) ⁇ ⁇ ) is output as new body thickness information T (x, y) from the body thickness distribution correction unit (902).
- the switch (903) is switched to the lower path in FIG. 11, and the estimated input image (904), the comparator (905), the body thickness distribution correction unit ( When the operations in 902) are repeated, the absolute value of the difference ⁇ (x, y) between the luminance value of the estimated input image and the luminance value of the actual input image gradually decreases.
- the absolute value of the difference ⁇ (x, y) is smaller than a predetermined threshold value at all positions (x, y) or when a predetermined number of repetitions is reached, a corrected body
- the thickness information T (x, y) is regarded as final body thickness information T (x, y), and the iterative process is terminated.
- the scattered radiation image estimation unit (303) obtains an estimated scattered radiation image
- the scattered radiation image removal unit (304) estimates the scattered light from the input image.
- the line image is subtracted to obtain an output image of the image processing unit (901).
- the switch (903) is switched to the upper path in FIG. 11 to return to the initial operation.
- the image processing unit (901) of the third embodiment can reduce errors included in the body thickness calculated by the body thickness distribution calculating unit (302) by performing iterative processing.
- the body thickness distribution correction unit (902), the estimated input image generation unit (904), and the comparator (905) are controlled so as not to function. If the switch (903) is left switched to the upper path in FIG. 11, the output of the body thickness distribution calculation unit (302) is input to the scattered radiation image estimation unit (303).
- the image processing unit (901) shown in FIG. 11 has the same function as the image processing unit (115) shown in FIG. In this way, by configuring the path of body thickness information to be switched, the function can be switched between the application where the user observes the movie (X-ray fluoroscopy) and the application where the user observes the still image (X-ray imaging). Can be used.
- the initial value of the body thickness information T (x, y) (that is, the body thickness information T (x, y) output from the body thickness distribution calculation unit (302))
- the body thickness information is estimated from the noise (high frequency component) included in the transmission image. Therefore, the body thickness is determined from the intensity distribution Im (x, y) of the transmission image.
- the radiation imaging apparatus can reduce errors mixed in the output image due to errors included in the calculated body thickness.
- the number of processing iterations can be greatly reduced, and an image in which fluctuations in image quality due to scattered rays are suppressed can be obtained in a short time.
- FIG. 12 is a block diagram illustrating an example of a configuration of the radiation imaging apparatus according to the fourth embodiment.
- each unit configuring this apparatus is incorporated into the same apparatus or a plurality of apparatuses arranged close to each other. Therefore, it is necessary to incorporate an image processing unit for each apparatus.
- the radiation imaging apparatus (1101) is separated into a client unit (1102) that acquires and displays a transmission image and a server unit (1105) that performs image processing.
- the two are connected by a communication network (1104).
- the client unit (1102) removes the image processing unit (115) from the configuration example of the radiation imaging apparatus according to the first embodiment shown in FIG. 2, and is provided with a network interface (I / F) unit (1103) instead. It is a configuration.
- the components other than the network I / F unit (1103) are the same as the configuration and operation of each unit shown in FIG.
- the network I / F unit (1103) included in the client unit (1102) includes a network transmission I / F unit (not shown) for transmitting image data to the communication network (1104), and includes HTTP (HyperText Transfer Protocol) and FTP ( Using a general network protocol such as File (Transfer Protocol), the transmission image (input image) detected by the X-ray detection unit (111) is transmitted to the server unit (1105) via the communication network (1104).
- the network I / F unit (1103) includes a network reception I / F unit (not shown) for receiving image data from the communication network (1104), and an image (output image) processed by the server unit (1105). Is transmitted via the communication network (1104) and sent to the display unit (117).
- the network I / F unit (1103) may be configured to be connected to and controlled by the central processing unit (114). Since the network I / F unit (1103) can be realized by a general technique, detailed description thereof is omitted.
- the communication network (1104) may be a general Internet or an intranet, a private network closed in a facility, a public network such as a fixed telephone line or a wireless telephone line, or a wireless LAN or BlueTooth (registration). (Trademark) or the like.
- the server unit (1105) includes a network I / F unit (1106), an image processing unit (1107), a central processing unit (1108), and a storage unit (1109).
- the network I / F unit (1106) included in the server unit (1105) includes a network reception I / F unit (not shown) for receiving image data from the communication network (1104), and includes HTTP (HyperText Transfer Protocol) and FTP (The input image transmitted from the client unit is received via the communication network (1104) using a general network protocol typified by File (Transfer Protocol).
- a network transmission I / F unit (not shown) for transmitting image data to the communication network (1104) is provided, and an image processed by the image processing unit (1107) is transferred to the client unit (1102) via the communication network (1104).
- the network I / F unit (1106) may be configured to be connected to and controlled by the central processing unit (1108). Since the network I / F unit (1106) can be realized by a general technique, detailed description thereof is omitted.
- the image processing unit (1107) receives the input image received from the client (1102) via the network I / F unit (1106) (that is, the radiation intensity distribution obtained by detecting the radiation that has passed through the subject (108)).
- the extraction unit (301) for extracting at least one high-frequency component in the spatial axis direction and the time-axis direction, and the thickness distribution calculation for obtaining the thickness distribution of the subject based on the high-frequency component extracted by the extraction unit (301) Part (body thickness distribution calculation unit) (302) and a scattered ray distribution for obtaining a distribution of scattered rays generated by radiation passing through the subject based on the thickness distribution of the subject calculated by the thickness distribution calculation unit (302)
- An estimation unit (303) and a scattered radiation distribution removal unit (304) that removes the scattered radiation distribution obtained by the scattered radiation distribution estimation unit (303) from the input image.
- the image processing unit (1107) includes the image processing unit (115) shown in FIGS. 2 and 4, the image processing units (801) and (805) shown in FIG. 10, and the image processing unit (901) shown in FIG. Of these, the same configuration can be realized. Further, by using the program shown in the flowchart shown in FIG. 9, the computer functions as an extraction unit (extraction unit) (301), a body thickness distribution calculation unit (body thickness distribution calculation unit) (302), and the like. Also good.
- the image processing unit (1107) may be configured to be connected to and controlled by the central processing unit (1108).
- the storage unit (1109) is connected to the central processing unit (1109), and the contents of the aforementioned look-up tables (503) and (604) and the characteristics of the point spread function (602) necessary for the operation of the image processing unit (1107). ) (606) is stored.
- the radiation imaging apparatus (1101) is separated into a client unit (1102) that acquires and displays a transmission image and a server unit (1105) that performs image processing, and both are connected by a communication network (1104).
- a connection configuration By adopting a connection configuration, the following effects can be obtained.
- the client unit (1102) and the server unit (1105) can be installed at remote locations.
- a login control unit (not shown) is provided in the client unit (1102) and a user authentication / management unit and a billing processing unit (not shown) are provided in the server unit (1105), the client unit (1102) is operated.
- a billing business using the server unit (1105) can be implemented for the user.
- the login control unit is software program processing executed by the central processing unit (114) of the client unit (1102), and the user authentication / management unit and billing processing unit are executed by the central processing unit (1108) of the server unit (1105). If the software program processing is performed, each part can be easily realized by using a generally known technique, and a detailed description of each part will be omitted.
- the radiation source that irradiates the subject with radiation
- the radiation detector that detects the intensity distribution of the radiation that has passed through the subject
- the radiation intensity distribution in the spatial axis direction And an extraction unit that extracts at least one high-frequency component in the time axis direction, and a body thickness distribution calculation unit that obtains the thickness distribution of the subject based on the high-frequency component extracted by the extraction unit
- a radiation transmission image with suppressed fluctuations can be obtained in a short time.
- a storage medium in which the program codes are recorded is provided to an apparatus or device, and the apparatus or a computer (or CPU or MPU) of the apparatus stores the program code stored in the storage medium. read out.
- the program code itself read from the storage medium realizes the functions of the above-described embodiments, and the program code itself and the storage medium storing the program code constitute the present invention.
- a storage medium for supplying such program code for example, a flexible disk, CD-ROM, DVD-ROM, hard disk, optical disk, magneto-optical disk, CD-R, magnetic tape, nonvolatile memory card, ROM Etc. are used.
- an OS operating device
- the computer performs part or all of the actual processing, and the functions of the above-described embodiments are realized by the processing. May be. Further, after the program code read from the storage medium is written in the memory on the computer, the computer CPU or the like performs part or all of the actual processing based on the instruction of the program code. Thus, the functions of the above-described embodiments may be realized.
- the program code is stored in a device or a storage means such as a hard disk or a memory, or a storage medium such as a CD-RW or CD-R.
- the device or the computer (or CPU or MPU) of the device may read and execute the program code stored in the storage means or the storage medium when used.
- the described hardware may be implemented by ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), etc., and the described software is assembler, C / C ++, perl, Shell, PHP, Python. , Java (registered trademark) or a wide range of programs or script languages may be used.
- ASIC Application Specific Integrated Circuit
- FPGA Field-Programmable Gate Array
- Java registered trademark
- a wide range of programs or script languages may be used.
- control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. All the components may be connected to each other.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Engineering & Computer Science (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Through the present invention, an image in which image quality fluctuation due to scattered radiation is suppressed is obtained in a short time while repeated processing is not performed or the number of repetitions of processing is significantly reduced. The present invention has a radiation source for radiating radiation to a subject, a radiation detector for detecting an intensity distribution of radiation passing through the subject, an extraction unit for extracting a high-frequency component of a spatial axis direction and/or a time axis direction for the radiation intensity distribution, and a thickness distribution calculation unit for obtaining a thickness distribution of the subject on the basis of the high-frequency component extracted by the extraction unit.
Description
本発明は、被写体を通過した放射線を検出したデータを処理する技術に関し、特に、放射線の散乱に起因する変動を補正する技術に関するものである。
The present invention relates to a technique for processing data obtained by detecting radiation that has passed through a subject, and more particularly to a technique for correcting fluctuations caused by radiation scattering.
人体等の被写体に対してX線等の放射線を照射し、被写体を透過した放射線の強度分布を検出器で検出して透過画像を撮像する技術においては、被写体を直線的に透過した放射線(一次線)から得られる一次線像に、被写体の内部等で散乱した放射線(散乱線)から得られる散乱線像が加わるため、取得した透過画像のコントラストが低下したり鮮鋭度が低下したりするような画質変動が生じることが一般に知られている。
In a technique for irradiating a subject such as a human body with radiation such as X-rays, detecting the intensity distribution of the radiation transmitted through the subject with a detector and capturing a transmission image, the radiation (primary transmitted through the subject linearly) Line) is added to the primary line image obtained from the radiation (scattered rays) scattered inside the subject etc., so that the contrast of the acquired transmitted image is reduced and the sharpness is reduced. It is generally known that image quality fluctuations occur.
この画質変動を抑えるために、被写体と検出器の間に、グリッドと呼ばれる、放射線の吸収率が高い物質と吸収率が低い物質とを薄く交互に積層した板を設置し、検出器に入射する散乱線量を低く抑える撮像方法が一般に用いられている。しかし、グリッドを設置した場合、検出器に入射する一次線量もグリッドによって減衰するため、グリッドを用いないときよりも強い放射線を被写体に照射する必要があり、被写体の被曝量が増加する。
In order to suppress this variation in image quality, a plate called a grid, which consists of thin and alternating layers of a material with high radiation absorption and a material with low absorption, is placed between the subject and the detector, and enters the detector. An imaging method that keeps the scattered dose low is generally used. However, when the grid is installed, the primary dose incident on the detector is also attenuated by the grid, so that it is necessary to irradiate the subject with stronger radiation than when the grid is not used, and the exposure amount of the subject increases.
そこで、グリッドを用いないで取得した透過画像(グリッドレス画像)に信号処理を行うことにより、グリッドを用いて取得した透過画像(グリッド画像)と同等の画質を得る技術が、これまでに数多く提案されている。
Therefore, many technologies have been proposed so far that perform signal processing on transparent images acquired without using a grid (gridless images) to obtain image quality equivalent to that of transparent images acquired using a grid (grid image). Has been.
例えば、特許文献1に記載の技術では、透過画像を解析することによって、被写体の体厚分布を推定して被写体の仮想モデルを取得し、この仮想モデルから推定した推定一次線像と推定散乱線像とを合成して推定透過画像を生成し、この推定透過画像と実際に取得した透過画像の違いが小さくなるように仮想モデルの体厚分布を修正する。これにより、散乱線による画質変動を抑えた透過画像を得ている。このとき、修正後の体厚分布を用いても推定透過画像と実際に取得した透過画像の違いが残る場合には、この違いがさらに小さくなるように仮想モデルの体厚分布を繰り返し修正する反復処理を行う。
For example, in the technique described in Patent Document 1, by analyzing a transmission image, a body thickness distribution of a subject is estimated to obtain a virtual model of the subject, and an estimated primary line image and an estimated scattered ray estimated from the virtual model An estimated transmission image is generated by combining the images, and the body thickness distribution of the virtual model is corrected so that the difference between the estimated transmission image and the actually acquired transmission image is reduced. As a result, a transmission image in which image quality fluctuation due to scattered radiation is suppressed is obtained. At this time, if the difference between the estimated transmission image and the actually acquired transmission image remains even if the corrected body thickness distribution is used, iteratively repeatedly corrects the body thickness distribution of the virtual model so that this difference is further reduced. Process.
特許文献1記載の技術では、前述したように、推定透過画像と実際に取得した透過画像の違いが小さくなるように、反復処理を用いて、仮想モデルの体厚分布を修正する。
In the technique described in Patent Document 1, as described above, the body thickness distribution of the virtual model is corrected using iterative processing so that the difference between the estimated transmission image and the actually acquired transmission image becomes small.
しかしながら、特許文献1のような反復処理を行うと、最終的な画像が得られるまでに相当の処理時間が必要となり、結果的に、単位時間あたりに得られる画像枚数が減ってしまう。このため、X線撮像装置の透視撮像のように、透過画像を動画像として表示したい場合、特許文献1の技術では、被写体の動きがギクシャクした不自然な動画になる可能性がある。また、高速な処理を実行できる特別な計算リソースを用いて、単位時間当たりに得られる画像枚数を増加させることも可能であるが、その場合には装置が高額になる。
However, when iterative processing as in Patent Document 1 is performed, considerable processing time is required until a final image is obtained, and as a result, the number of images obtained per unit time is reduced. For this reason, when it is desired to display a transmission image as a moving image as in the case of fluoroscopic imaging of an X-ray imaging apparatus, the technique of Patent Document 1 may result in an unnatural moving image in which the movement of the subject is jerky. Further, it is possible to increase the number of images obtained per unit time by using a special calculation resource capable of executing high-speed processing, but in this case, the apparatus becomes expensive.
本発明は、このような状況に鑑みてなされたものであり、反復処理を行わないか、あるいは処理の反復回数を大きく削減しながら、散乱線による画質変動を抑えた画像を短時間で得ることにある。
The present invention has been made in view of such a situation, and it is possible to obtain an image in which image quality variation due to scattered rays is suppressed in a short time while not performing iterative processing or greatly reducing the number of iterations of processing. It is in.
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。すなわち、代表的な放射線撮像装置は、被写体に放射線を照射する放射線源と、被写体を通過した放射線の強度分布を検出する放射線検出器と、放射線の強度分布について、空間軸方向および時間軸方向の少なくとも一方の高周波成分を抽出する抽出部と、抽出部が抽出した高周波成分に基づいて被写体の厚さの分布を求める厚さ分布算出部とを有する。
Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows. That is, a typical radiation imaging apparatus includes a radiation source that irradiates a subject with radiation, a radiation detector that detects an intensity distribution of the radiation that has passed through the subject, and a spatial intensity direction and a time axis direction for the radiation intensity distribution. An extraction unit that extracts at least one high-frequency component; and a thickness distribution calculation unit that obtains a thickness distribution of the subject based on the high-frequency component extracted by the extraction unit.
本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、本発明の態様は、要素及び多様な要素の組み合わせ及び以降の詳細な記述と添付される特許請求の範囲の様態により達成され実現される。
Further features related to the present invention will become apparent from the description of the present specification and the accompanying drawings. The embodiments of the present invention can be achieved and realized by elements and combinations of various elements and the following detailed description and appended claims.
本発明によれば、散乱線による画質変動を抑えた放射線画像を短時間で得ることが可能になる。
According to the present invention, it is possible to obtain a radiation image in which image quality fluctuation due to scattered rays is suppressed in a short time.
本発明は、散乱線による画質変動を抑えた放射線画像を短時間で得ることを実現する技術を提供するものである。
The present invention provides a technique for obtaining a radiation image in which image quality fluctuation due to scattered radiation is suppressed in a short time.
以下、添付図面を参照して本発明の実施形態について説明する。なお、添付図面は本発明の原理に則った具体的な実施形態を示しているが、これらは本発明の理解のためのものであり、決して本発明を限定的に解釈するために用いられるものではない。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The accompanying drawings show specific embodiments in accordance with the principle of the present invention, but these are for the understanding of the present invention, and are never used to limit the interpretation of the present invention. is not.
本実施形態では、当業者が本発明を実施するのに十分詳細にその説明がなされているが、他の実装・形態も可能で、本発明の技術的思想の範囲と精神を逸脱することなく構成・構造の変更や多様な要素の置き換えが可能であることを理解する必要がある。従って、以降の記述をこれに限定して解釈してはならない。
This embodiment has been described in sufficient detail for those skilled in the art to practice the present invention, but other implementations and configurations are possible without departing from the scope and spirit of the technical idea of the present invention. It is necessary to understand that the configuration and structure can be changed and various elements can be replaced. Therefore, the following description should not be interpreted as being limited to this.
更に、本発明の実施形態は、すべての機能をハードウェアで実装してもよいし、機能の一部または全部を汎用コンピュータ上で稼動するソフトウェアで実装しても良い。
Furthermore, in the embodiment of the present invention, all functions may be implemented by hardware, or a part or all of the functions may be implemented by software running on a general-purpose computer.
また、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
In all the drawings for explaining the embodiments, the same members are, in principle, given the same reference numerals, and the repeated explanation thereof is omitted.
以下、本発明の実施の形態を説明する。
Hereinafter, embodiments of the present invention will be described.
図1は、本発明の実施の形態の放射線撮像装置を示すブロック図である。図1に示すように、本実施形態の放射線撮像装置は、被写体108に放射線を照射する放射線源102と、被写体108を通過した放射線の強度分布を検出する放射線検出器111と、放射線検出器111が検出した放射線の強度分布について、空間軸方向および時間軸方向の少なくとも一方の高周波成分を抽出する抽出部301と、抽出部301が抽出した高周波成分に基づいて被写体108の厚さの分布を求める厚さ分布算出部302とを有する。以下、被写体108として、一例として人体である場合を考え、厚さの分布を体厚分布と呼び、厚さ分布算出部302を体厚分布算出部302と呼ぶが、本実施形態の放射線撮像装置は、人体を撮像対象とするものに限定されるものではない。
FIG. 1 is a block diagram showing a radiation imaging apparatus according to an embodiment of the present invention. As shown in FIG. 1, the radiation imaging apparatus of the present embodiment includes a radiation source 102 that irradiates a subject 108 with radiation, a radiation detector 111 that detects an intensity distribution of radiation that has passed through the subject 108, and a radiation detector 111. 2 extracts an at least one high-frequency component in the spatial axis direction and the time-axis direction, and obtains the thickness distribution of the subject 108 based on the high-frequency component extracted by the extraction unit 301. And a thickness distribution calculation unit 302. Hereinafter, considering the case where the subject 108 is a human body as an example, the thickness distribution is referred to as a body thickness distribution, and the thickness distribution calculation unit 302 is referred to as a body thickness distribution calculation unit 302. Is not limited to a human body imaged.
放射線検出器111は、1次元または2次元に配列された複数の検出素子を含み、複数の検出素子の配列方向についての放射線の空間的な強度分布、すなわち、放射線像を検出する。また、放射線検出器111が検出した放射線の強度分布の高周波成分とは、放射線の強度分布(放射線像)についての空間軸方向および時間軸方向の少なくとも一方の高周波成分を言う。高周波成分は、放射線の強度分布を構成する周波数成分の帯域のうち、被写体108の内部で散乱された放射線(散乱線)を構成する周波数成分の強度が相対的に減衰している帯域の周波数成分であればよい。
The radiation detector 111 includes a plurality of detection elements arranged one-dimensionally or two-dimensionally, and detects a spatial intensity distribution of radiation in the arrangement direction of the plurality of detection elements, that is, a radiation image. The high-frequency component of the radiation intensity distribution detected by the radiation detector 111 means at least one high-frequency component in the spatial axis direction and the time axis direction of the radiation intensity distribution (radiation image). The high frequency component is a frequency component in a band in which the intensity of the frequency component constituting the radiation (scattered ray) scattered inside the subject 108 is relatively attenuated among the frequency component bands constituting the radiation intensity distribution. If it is.
放射線検出器111が検出する放射線の強度分布は、被写体108を直線的に透過した一次線の強度分布と、被写体108の内部で散乱された放射線(散乱線)の強度分布の和で表される。一次線の強度分布は、被写体の厚さの分布に対応する。このとき、放射線源102から被写体108に照射された放射線に含まれる時間的および空間的な高周波成分は、一部が直線的に被写体108を透過し、他は被写体108の内部で散乱される。散乱された高周波成分は、被写体108内で大きく減衰するため、放射線検出器111で検出された放射線の強度分布に含まれる高周波成分は、直線的に被写体108を透過した一次線の高周波成分にほぼ起因している。よって、抽出部301が、放射線検出器111が検出した放射線の強度分布に含まれる空間軸方向および時間軸方向の少なくとも一方の高周波成分を抽出することにより、一次線の強度分布(高周波成分の強度分布)を求めることができる。体厚分布算出部302は、抽出された高周波成分の強度分布から、被写体108の体厚分布を算出することができる。
The intensity distribution of the radiation detected by the radiation detector 111 is represented by the sum of the intensity distribution of the primary line linearly transmitted through the subject 108 and the intensity distribution of the radiation scattered inside the subject 108 (scattered rays). . The intensity distribution of the primary line corresponds to the thickness distribution of the subject. At this time, a part of the temporal and spatial high-frequency components included in the radiation irradiated from the radiation source 102 to the subject 108 is transmitted linearly through the subject 108 and the other is scattered inside the subject 108. Since the scattered high-frequency component is greatly attenuated in the subject 108, the high-frequency component included in the radiation intensity distribution detected by the radiation detector 111 is almost equal to the high-frequency component of the primary line that has passed through the subject 108 linearly. Is attributed. Therefore, the extraction unit 301 extracts at least one high-frequency component in the spatial axis direction and the time-axis direction included in the intensity distribution of the radiation detected by the radiation detector 111, thereby obtaining the intensity distribution of the primary line (the intensity of the high-frequency component). Distribution). The body thickness distribution calculation unit 302 can calculate the body thickness distribution of the subject 108 from the extracted intensity distribution of the high frequency component.
このように、本実施形態の放射線撮像装置は、高周波成分の強度分布から被写体108の体厚分布を算出することができるため、被写体108の体厚分布に基づいて散乱線の強度分布を求め、放射線検出器が検出した放射線強度分布から散乱線の影響を除去することができる。よって、反復処理を行うことなく、散乱線による画質変動を抑えた画像を短時間で得ることが可能になる。
As described above, since the radiation imaging apparatus of the present embodiment can calculate the body thickness distribution of the subject 108 from the intensity distribution of the high frequency component, the intensity distribution of the scattered radiation is obtained based on the body thickness distribution of the subject 108, The influence of scattered radiation can be removed from the radiation intensity distribution detected by the radiation detector. Therefore, it is possible to obtain an image in which image quality fluctuation due to scattered radiation is suppressed in a short time without performing iterative processing.
なお、体厚分布算出部302は、例えば、予め求めておいた体厚と高周波成分の強度との関係から、高周波成分の強度に対応する被写体108の厚さを求める構成とすることができる。
It should be noted that the body thickness distribution calculation unit 302 can be configured to obtain the thickness of the subject 108 corresponding to the strength of the high frequency component, for example, from the relationship between the body thickness obtained in advance and the strength of the high frequency component.
また、図1のように放射線撮像装置は、体厚分布算出部302が求めた被写体108の体厚分布から、被写体108を放射線が通過することによって生じる散乱線の分布を求める散乱線分布推定部303を備えてもよい。また、放射線撮像装置101は、散乱線分布推定部303が求めた散乱線分布を放射線検出器111が検出した放射線の強度分布から除去する散乱線分布除去部304をさらに備えてもよい。
In addition, as shown in FIG. 1, the radiation imaging apparatus has a scattered radiation distribution estimation unit that obtains a distribution of scattered radiation caused by radiation passing through the subject 108 from the body thickness distribution of the subject 108 obtained by the body thickness distribution calculation unit 302. 303 may be provided. The radiation imaging apparatus 101 may further include a scattered radiation distribution removing unit 304 that removes the scattered radiation distribution obtained by the scattered radiation distribution estimation unit 303 from the intensity distribution of the radiation detected by the radiation detector 111.
なお、散乱線分布除去部304は、被写体108と放射線検出器111との間にグリッドを配置した場合に生じる散乱線分布と同等な散乱線分布を、被写体の体厚分布に基づいて生成し、散乱線分布推定部303が求めた散乱線分布を除去した放射線分布に対して加算してもよい。これにより、グリッドを配置して撮像した場合と同等の放射線分布をユーザ(医師や放射線技師、等)に対して表示することができる。
The scattered radiation distribution removing unit 304 generates a scattered radiation distribution equivalent to the scattered radiation distribution generated when a grid is arranged between the subject 108 and the radiation detector 111 based on the body thickness distribution of the subject, You may add with respect to the radiation distribution from which the scattered radiation distribution which the scattered radiation distribution estimation part 303 calculated | required was removed. Thereby, the radiation distribution equivalent to the case where imaging is performed with the grid arranged can be displayed to the user (physician, radiologist, etc.).
以下、本発明のさらに具体的な実施の形態について説明する。なお、以下の説明においては、放射線としてX線を用い、放射線検出器111は、2次元にX線検出素子が配列されたものを用いる。これにより、放射線検出器111は、X線の2次元分布を検出して被写体のX線画像を得る。ただし、本実施形態の放射線撮像装置は、2次元のX線画像を取得するX線撮像装置に限定されるものではなく、少なくとも1次元にX線検出素子が配列されたX線検出器を用いるX線CT装置にも本実施形態を適用することが可能である。また、以下の説明において、散乱線分布推定部303は、散乱線分布として被写体の散乱線像を求める。
Hereinafter, more specific embodiments of the present invention will be described. In the following description, X-rays are used as radiation, and the radiation detector 111 uses a two-dimensional array of X-ray detection elements. Thereby, the radiation detector 111 detects a two-dimensional X-ray distribution and obtains an X-ray image of the subject. However, the radiation imaging apparatus of the present embodiment is not limited to the X-ray imaging apparatus that acquires a two-dimensional X-ray image, and uses an X-ray detector in which X-ray detection elements are arranged at least in one dimension. The present embodiment can also be applied to an X-ray CT apparatus. In the following description, the scattered radiation distribution estimation unit 303 obtains a scattered radiation image of the subject as the scattered radiation distribution.
(実施の形態1)
本発明の実施の形態1の放射線撮像装置について説明する。 (Embodiment 1)
A radiation imaging apparatus according toEmbodiment 1 of the present invention will be described.
本発明の実施の形態1の放射線撮像装置について説明する。 (Embodiment 1)
A radiation imaging apparatus according to
<放射線撮像装置の構成例>
図2は、本発明の実施の形態1による放射線撮像装置における構成の一例を示すブロック図である。 <Configuration example of radiation imaging apparatus>
FIG. 2 is a block diagram showing an example of the configuration of the radiation imaging apparatus according toEmbodiment 1 of the present invention.
図2は、本発明の実施の形態1による放射線撮像装置における構成の一例を示すブロック図である。 <Configuration example of radiation imaging apparatus>
FIG. 2 is a block diagram showing an example of the configuration of the radiation imaging apparatus according to
図2に示すように、放射線撮像装置(101)は、X線を発生して被写体に向けて照射するX線管(放射線源)(102)と、X線管(102)と電気的に接続される高電圧発生部(103)と、高電圧発生部(103)と電気的に接続されるX線制御部(104)とを備えている。X線管(102)のX線照射方向には、絞り(105)、X線補償フィルタ(106)およびテーブル(109)が順に配置されている。テーブル(109)には、機構制御部(110)が接続されている。絞り(105)およびX線補償フィルタ(106)には、絞り・フィルタ制御部(107)が接続されている。X線管(102)には、絞り(105)、X線補償フィルタ(106)およびテーブル(109)を挟んで対向する位置に、X線検出器(111) が配置されている。X線検出器(111)には、検出器制御部(112)が接続され、検出器制御部(112)には、画像処理部(115)が接続されている。X線制御部(104)、絞り・フィルタ制御部(107)、機構制御部(110)および検出器制御部(112)には、中央処理部(114)が接続され、中央処理部(114)には、記憶部(113)、入力部(116)および表示部(117)が接続されている。
As shown in FIG. 2, the radiation imaging apparatus (101) is electrically connected to an X-ray tube (radiation source) (102) that generates X-rays and irradiates the subject, and the X-ray tube (102). And a high voltage generator (103) and an X-ray controller (104) electrically connected to the high voltage generator (103). In the X-ray irradiation direction of the X-ray tube (102), an aperture (105), an X-ray compensation filter (106), and a table (109) are sequentially arranged. A mechanism control unit (110) is connected to the table (109). A diaphragm / filter control unit (107) is connected to the diaphragm (105) and the X-ray compensation filter (106). In the X-ray tube (102), an X-ray detector (111) is disposed at a position facing the diaphragm (105), the X-ray compensation filter (106), and the table (109). A detector control unit (112) is connected to the X-ray detector (111), and an image processing unit (115) is connected to the detector control unit (112). A central processing unit (114) is connected to the X-ray control unit (104), the diaphragm / filter control unit (107), the mechanism control unit (110), and the detector control unit (112), and the central processing unit (114). A storage unit (113), an input unit (116), and a display unit (117) are connected to this.
高電圧発生部(103)は、X線管(102)に与える高電圧を発生する。X線管(102)は、テーブル(109)の上に配置された被写体(108)に向けて、X線を照射する。X線制御部(104)は、高電圧発生部(103)を制御し、X線管(102)から照射されるX線の線量や線質を制御する。絞り(105)は、X線管(102)で発生したX線が照射される領域を、X線吸収率の高い金属の開閉によって制御する。X線補償フィルタ(106)は、X線吸収率の高い物質で構成され、被写体(108)のX線吸収率の低い部位に到達するX線を減衰させることで、ハレーションを軽減する。テーブル(109)は、被写体(108)を乗せる寝台である。機構制御部(110)は、テーブル(109)を移動して、被写体(108)を撮影に適した位置へ移動するように制御する。このとき、X線制御部(111)についても、テーブル(109)と一体的に移動する構造としてもよい。
The high voltage generator (103) generates a high voltage applied to the X-ray tube (102). The X-ray tube (102) irradiates the subject (108) disposed on the table (109) with X-rays. The X-ray control unit (104) controls the high voltage generation unit (103), and controls the dose and quality of X-rays emitted from the X-ray tube (102). The diaphragm (105) controls the region irradiated with X-rays generated by the X-ray tube (102) by opening and closing a metal having a high X-ray absorption rate. The X-ray compensation filter (106) is made of a substance having a high X-ray absorption rate, and reduces halation by attenuating X-rays that reach a portion of the subject (108) having a low X-ray absorption rate. The table (109) is a bed on which the subject (108) is placed. The mechanism control unit (110) moves the table (109) and controls the subject (108) to move to a position suitable for photographing. At this time, the X-ray control unit (111) may be configured to move integrally with the table (109).
X線検出部(111)は、X線検出素子を2次元に配列した構成であり、画像生成部として機能する。すなわち、X線検出部(111)は、X線管(102)から照射され被写体(108)を透過したX線をX線検出素子でそれぞれ検出することにより、X線の強度分布に応じた画像(放射線像、以下、透過画像と呼ぶ)のデータを出力する。ここでいう被写体(108)を透過したX線には、被写体(108)を直線的に透過してX線検出部(11)に到達したX線と、被写体(108)内で散乱されてX線検出部(111)に到達したX線とを含む。よって、透過画像は、被写体(108)を直線的に透過した一次線の像と、被写体(108)内部で散乱された散乱線の像の和である。検出器制御部(112)は、X線検出部(111)を制御して透過画像のデータを取得し、画像処理部(115)に入力する。検出器制御部(112)がX線検出器(111)を制御することにより、X線検出器(111)は、透過画像を静止画として生成することも可能である。また、時間的に異なるタイミングで撮影した複数の透過画像を生成し、動画像として生成することも可能である。このとき、一般には毎秒30フレームや毎秒15フレームなどの一定の時間間隔で撮影されることが多いが、この時間間隔に限定されるものではない。画像処理部(115)は、検出器制御部(112)を介して、X線検出器(111)の出力する透過画像(入力画像)を受け取って、高周波成分を抽出する等の画像処理を行う。表示部(117)は、画像処理部(115)の処理後の画像(出力画像)を表示する。記憶部(113)は、半導体メモリや磁気ディスク等の記録媒体を備え、画像、画像取得条件、後述する各種特性やパラメータ等をデータとして記憶したり、後述するソフトウェアプログラムを記憶したりすることができる。なお、記録媒体の種類は、これに限定されるものではない。入力部(116)は、使用者が画像取得条件等を設定するためのユーザインターフェースである。この入力部(116)として、キーボード、マウス、制御用ボタン等を備えてもよいし、音声入力やジェスチャー入力などを行うためのセンサー等を備えてもよい。中央処理部(114)は、電気的に接続されている各部を制御する。
The X-ray detection unit (111) has a configuration in which X-ray detection elements are two-dimensionally arranged and functions as an image generation unit. That is, the X-ray detection unit (111) detects the X-rays irradiated from the X-ray tube (102) and transmitted through the subject (108) by the X-ray detection elements, respectively, so that an image corresponding to the X-ray intensity distribution is obtained. Data (radiation image, hereinafter referred to as transmission image) is output. The X-rays transmitted through the subject (108) here are the X-rays that linearly pass through the subject (108) and reach the X-ray detection unit (11), and are scattered within the subject (108) and X X-rays reaching the line detection unit (111). Therefore, the transmission image is the sum of an image of a primary line that has been linearly transmitted through the subject (108) and an image of scattered rays scattered inside the subject (108). The detector control unit (112) controls the X-ray detection unit (111) to acquire transmission image data, and inputs the acquired data to the image processing unit (115). When the detector control unit (112) controls the X-ray detector (111), the X-ray detector (111) can also generate a transmission image as a still image. It is also possible to generate a plurality of transmission images taken at different timings and generate them as moving images. At this time, in general, images are often taken at a constant time interval such as 30 frames per second or 15 frames per second, but the time interval is not limited thereto. The image processing unit (115) receives the transmission image (input image) output from the X-ray detector (111) via the detector control unit (112), and performs image processing such as extracting high-frequency components. . The display unit (117) displays the image (output image) after being processed by the image processing unit (115). The storage unit (113) includes a recording medium such as a semiconductor memory or a magnetic disk, and may store images, image acquisition conditions, various characteristics and parameters described later as data, and a software program described below. it can. Note that the type of the recording medium is not limited to this. The input unit (116) is a user interface for the user to set image acquisition conditions and the like. As this input unit (116), a keyboard, a mouse, a control button, or the like may be provided, or a sensor or the like for performing voice input or gesture input may be provided. The central processing unit (114) controls each unit electrically connected.
なお、パーソナルコンピュータ(PC)を代表とする一般的なコンピュータ構成は、通常、CPUと呼ばれる中央処理部(114)に加え、記憶部(113)、入力部(116)、表示部(117)を備えるとともに、X線制御部(104)、絞り・フィルタ制御部(107)、機構制御部(110)、検出器制御部(112)、画像処理部(115)をソフトウェアプログラムによって実現することができる。よって、中央処理部(114)、記憶部(113)、入力部(116)、表示部(117)、X線制御部(104)、絞り・フィルタ制御部(107)、機構制御部(110)、検出器制御部(112)および画像処理部(115)をコンピュータによって構成してもよい。また、画像処理部(115)の機能は、専用ハードウェアや画像処理プロセッサ等を用いて実現してもよい。なお,画像処理部(115)の詳細については、後ほど詳しく述べる。
Note that a general computer configuration represented by a personal computer (PC) usually includes a central processing unit (114) called a CPU, a storage unit (113), an input unit (116), and a display unit (117). In addition, the X-ray control unit (104), the diaphragm / filter control unit (107), the mechanism control unit (110), the detector control unit (112), and the image processing unit (115) can be realized by a software program. . Therefore, central processing unit (114), storage unit (113), input unit (116), display unit (117), X-ray control unit (104), aperture / filter control unit (107), mechanism control unit (110) The detector control unit (112) and the image processing unit (115) may be configured by a computer. The function of the image processing unit (115) may be realized using dedicated hardware, an image processing processor, or the like. The details of the image processing unit (115) will be described later in detail.
<放射線撮像装置の一次線と散乱線>
図3は、被写体を透過する放射線の一次線と散乱線を説明する説明図である。なお、図3は、放射線撮像装置における一次線と散乱線を説明するためだけに用いる図であり、通常の使用状態における動作を説明する図ではない。 <Primary rays and scattered rays of radiation imaging equipment>
FIG. 3 is an explanatory diagram for explaining primary rays and scattered rays of radiation that passes through the subject. FIG. 3 is a diagram used only for explaining primary rays and scattered rays in the radiation imaging apparatus, and is not a diagram for explaining operations in a normal use state.
図3は、被写体を透過する放射線の一次線と散乱線を説明する説明図である。なお、図3は、放射線撮像装置における一次線と散乱線を説明するためだけに用いる図であり、通常の使用状態における動作を説明する図ではない。 <Primary rays and scattered rays of radiation imaging equipment>
FIG. 3 is an explanatory diagram for explaining primary rays and scattered rays of radiation that passes through the subject. FIG. 3 is a diagram used only for explaining primary rays and scattered rays in the radiation imaging apparatus, and is not a diagram for explaining operations in a normal use state.
ここでまず、被写体を透過したX線を検出することにより得られる透過画像の画素ごとの強度(強度分布)Im(x,y)、一次線像の強度分布Ip(x,y)および散乱線像の強度分布Is(x,y)について、一般に知られている特性を説明する。なお、以下の式中の(x,y)は画素の位置を示す。
Here, first, the intensity (intensity distribution) Im (x, y) for each pixel of the transmission image obtained by detecting the X-rays transmitted through the subject, the intensity distribution Ip (x, y) of the primary line image, and the scattered radiation The generally known characteristics of the image intensity distribution Is (x, y) will be described. Note that (x, y) in the following expression indicates the position of a pixel.
式(1)は、透過画像Im(x,y)が一次線像Ip (x,y)と散乱線像Is(x,y)の和で表されることを示す。式(2)は、一次線像Ip (x,y)の強度が被写体の厚みT(x,y)に応じて指数的に減衰することを示す。ここで、Io (x,y)は位置(x,y)における入射線量を示し、μは単位厚みあたりのX線減衰率(線減弱係数)を示す。式(3)は、散乱線像Is(x,y)の強度が一次線像Ip(x,y)の強度と点拡散関数Sσ(T(x,y))の畳み込み演算(*)で表されることを示しており、この点拡散関数Sσ(T(x,y))は被写体の厚みT(x,y)に応じて変化することを示す。なお、これらの式(1)(2)(3)は、前述した特許文献1に記載された内容に基づく数式である。
Equation (1) indicates that the transmission image Im (x, y) is represented by the sum of the primary line image Ip (x, y) and the scattered line image Is (x, y). Expression (2) indicates that the intensity of the primary line image Ip (x, y) exponentially attenuates according to the thickness T (x, y) of the subject. Here, Io (x, y) represents the incident dose at the position (x, y), and μ represents the X-ray attenuation rate (linear attenuation coefficient) per unit thickness. Equation (3) is expressed by a convolution operation (*) where the intensity of the scattered line image Is (x, y) is the intensity of the primary line image Ip (x, y) and the point diffusion function Sσ (T (x, y)). This point diffusion function Sσ (T (x, y)) changes according to the thickness T (x, y) of the subject. These equations (1), (2), and (3) are equations based on the contents described in Patent Document 1 described above.
図3(a)において、X線管(102)から照射されたX線の照射領域を絞り(201(a))によって制御し、テーブル(109)に乗せた被写体(202)に照射する実験を行ったときの様子を示している。このとき、絞り(201(a))は、図2に示した絞り(105)と同じものでもよいが、動作原理説明のため、図2に示した絞り(105)とは別のものとし、X線吸収率の高い金属であるとする。また、被写体(202)は、動作原理説明のため、例えばアクリル板のように、厚みT(x,y)が位置(x,y)によらず一定値(T)の物体とする。
In FIG. 3 (a), an experiment is performed in which the irradiation region of X-rays irradiated from the X-ray tube (102) is controlled by a diaphragm (201 (a)) and irradiated to a subject (202) placed on a table (109). It shows how it went. At this time, the diaphragm (201 (a)) may be the same as the diaphragm (105) shown in FIG. 2, but it is different from the diaphragm (105) shown in FIG. It is assumed that the metal has a high X-ray absorption rate. For the purpose of explaining the operation principle, the subject (202) is assumed to be an object having a constant value (T) regardless of the position (x, y), such as an acrylic plate.
この被写体(202)とテーブル(109)を透過したX線の強度分布をX線検出器(111(a))で検出すると、図3(a1)に示すように、中央部が盛り上がった形状の強度分布Im(x,y)が得られる。これは、X線検出器(111(a))の中央部と比べて端部(左端と右端)のほうが、被写体(202)をX線が通過するときの経路が若干長くなることも原因のひとつであるが、それ以上に、散乱線の強度分布Is(x,y)が、X線照射領域の中央部と端部で異なることによる影響が大きい。すなわち、X線照射領域の中央部では、その両側(左側と右側)の散乱線がX線検出器(111(a))に入射するのに対し、端部(左端と右端)では片側(左端ではその右側、右端ではその左側)の散乱線だけがX線検出器(111(a))に入射することになるため、中央部のほうが端部よりも入射するX線の強度が強くなることに起因する。
When the intensity distribution of X-rays transmitted through the subject (202) and the table (109) is detected by the X-ray detector (111 (a)), as shown in FIG. An intensity distribution Im (x, y) is obtained. This is because the path when the X-ray passes through the subject (202) is slightly longer at the end (left and right ends) than at the center of the X-ray detector (111 (a)). One, but more than that, the influence of the intensity distribution Is (x, y) of the scattered radiation being different between the central portion and the end portion of the X-ray irradiation region is great. That is, at the center of the X-ray irradiation area, scattered rays on both sides (left and right sides) are incident on the X-ray detector (111 (a)), whereas at the end (left end and right end) one side (left end) Then, only the scattered radiation on the right side and the left side on the right end is incident on the X-ray detector (111 (a)), so the intensity of the incident X-ray is stronger at the center than at the end. caused by.
この現象は、図3(b)に示すように、絞り(201(b))の位置を絞り(201(a))と異なる位置に動かすことによって、実験的に確認することができる。図3(b)に示す例では、絞り(201(b))の片側(向かって左側)の金属板を動かし、X線管(102)の左側に照射されるX線を遮蔽した様子を示している。すると、X線管(102)、被写体(202)、およびX線検出器(111(b))の位置関係や被写体(202)の厚みを図3(a)と変えていないにも関わらず、図3(b1)に示すように透過画像の強度分布Im(x,y)が変化し、図3(a1)に示した強度分布Im(x,y)よりも、全体に値が小さくなる。この現象は、被写体(202)の左側に照射されるX線を遮蔽されたため、被写体(202)の左側から右側に向けて散乱するX線が無くなったことに起因する。
This phenomenon can be confirmed experimentally by moving the position of the diaphragm (201 (b)) to a position different from that of the diaphragm (201 (a)) as shown in FIG. 3 (b). In the example shown in Fig. 3 (b), the metal plate on one side (left side toward the left) of the diaphragm (201 (b)) is moved to block the X-rays irradiated to the left side of the X-ray tube (102). ing. Then, although the positional relationship of the X-ray tube (102), the subject (202), and the X-ray detector (111 (b)) and the thickness of the subject (202) are not changed from FIG. 3 (a), As shown in FIG. 3 (b1), the intensity distribution Im (x, y) of the transmission image changes, and the value is smaller overall than the intensity distribution Im (x, y) shown in FIG. 3 (a1). This phenomenon is caused by the absence of X-rays scattered from the left side to the right side of the subject (202) because the X-rays irradiated to the left side of the subject (202) are shielded.
このように、被写体(202)の厚みが一定値であったとしても、X線が照射される領域の位置や面積が変化すると、透過画像の強度分布Im(x,y)が変化する。人体のように、局所的に厚みが異なる被写体の場合には、より複雑に透過画像の強度分布Im(x,y)が変化する。このため、従来の技術では、ある位置(x,y)の透過画像の強度分布Im(x,y)だけから、その位置の厚みT(x,y)を算出することが困難であり、式(2)に示したIp(x,y)と、式(3)に示したIs(x,y)を簡単に算出することができない。従って、これまでは特許文献1に記載されているような反復処理等を用いて、被写体(202)の厚みT(x,y)を算出せざるを得えなかった。
Thus, even if the thickness of the subject (202) is a constant value, the intensity distribution Im (x, y) of the transmission image changes when the position or area of the region irradiated with X-rays changes. In the case of a subject having a locally different thickness, such as a human body, the intensity distribution Im (x, y) of the transmission image changes more complicatedly. For this reason, in the conventional technique, it is difficult to calculate the thickness T (x, y) at the position from only the intensity distribution Im (x, y) of the transmission image at the position (x, y). Ip (x, y) shown in (2) and Is (x, y) shown in equation (3) cannot be calculated easily. Therefore, until now, it has been necessary to calculate the thickness T (x, y) of the subject (202) using an iterative process or the like as described in Patent Document 1.
一方、本発明の実施の形態1による放射線撮像装置では、図3(a1)および図3(b1)に示すノイズに着目する。このノイズは透過画像に含まれ、X線管(102)の中において、図示しないターゲット金属(陽極)に真空中で電子ビームを衝突させてX線を発生させる際に、電子が衝突する位置や時間間隔が確率的に毎回変化することによって発生するものであり、このノイズを無くすことは本質的に困難である。すなわち、このようなノイズは、通常的に発生している。また、このノイズは、インパルス状の波形になることが多く、空間的および時間的に高周波成分を多く含む。
On the other hand, in the radiation imaging apparatus according to Embodiment 1 of the present invention, attention is paid to the noise shown in FIGS. 3 (a1) and 3 (b1). This noise is included in the transmission image, and in the X-ray tube (102), when an X-ray is generated by colliding an electron beam against a target metal (anode) (not shown) in a vacuum, This occurs because the time interval changes probabilistic each time, and it is essentially difficult to eliminate this noise. That is, such noise is normally generated. In addition, this noise often has an impulse-like waveform, and includes many high-frequency components spatially and temporally.
このようなノイズを含むX線が、X線管(102)から被写体(202)に対して照射されると、被写体(202)を透過している間に、そのノイズの一部が散乱する。式(3)によると、散乱線像の強度は、一次線像Ip(x,y)の強度と点拡散関数Sσ(T(x,y))の畳み込み演算、すなわちローパスフィルタ演算として表されるため、ノイズに含まれる高周波成分は大きく減衰する。逆に言えば、図3(a1)および図3(b1)に示す透過画像に残留するノイズ(高周波成分)は、散乱線に起因するのではなく、そのほとんどが一次線に起因するものであると言える。
When X-rays containing such noise are irradiated from the X-ray tube (102) to the subject (202), part of the noise is scattered while passing through the subject (202). According to Equation (3), the intensity of the scattered line image is expressed as a convolution operation of the intensity of the primary line image Ip (x, y) and the point spread function Sσ (T (x, y)), that is, a low-pass filter operation. Therefore, the high frequency component included in the noise is greatly attenuated. In other words, the noise (high-frequency component) remaining in the transmission image shown in FIGS. 3 (a1) and 3 (b1) is not caused by scattered rays but mostly by primary lines. It can be said.
ここで、図3(a1)に示す透過画像を空間的な高周波成分と低周波成分に分離すると、高周波成分は図3(a2)のようになり、低周波成分は図3(a3)のようになる。同様に、図3(b1)に示す透過画像を高周波成分と低周波成分に分離すると、高周波成分は図3(b2)のようになり、低周波成分は図3(b3)のようになる。このとき、前述したように、高周波成分はそのほとんどが一次線に起因するものであるから、前述した式(2)から、図3(a2)と図3(b2)に示された高周波成分は、被写体の厚みに応じたほぼ同じ強度分布を示す。図3(a2)と図3(b2)の各強度分布をIp(x,y)とおけば、式(2)から式(4)を導出でき、入射線量Io(x,y)を事前に測定しておけば、反復処理を用いることなく被写体の厚みT(x,y)を短時間で算出することができる。なお、図3(a2)、(b2)では、空間的な高周波成分を示したが、時間軸方向の高周波成分についても同様である。
Here, when the transmission image shown in FIG. 3 (a1) is separated into a spatial high-frequency component and a low-frequency component, the high-frequency component is as shown in FIG. 3 (a2), and the low-frequency component is as shown in FIG. 3 (a3). become. Similarly, when the transmission image shown in FIG. 3 (b1) is separated into a high frequency component and a low frequency component, the high frequency component becomes as shown in FIG. 3 (b2) and the low frequency component becomes as shown in FIG. 3 (b3). At this time, as described above, most of the high-frequency components are caused by the primary line. Therefore, from the above equation (2), the high-frequency components shown in FIGS. 3 (a2) and 3 (b2) are Shows substantially the same intensity distribution according to the thickness of the subject. If each intensity distribution in Fig. 3 (a2) and Fig. 3 (b2) is Ip (x, y), then equation (4) can be derived from equation (2), and the incident dose Io (x, y) can be calculated in advance. If measured, the thickness T (x, y) of the subject can be calculated in a short time without using an iterative process. 3 (a2) and 3 (b2) show spatial high-frequency components, the same applies to the high-frequency components in the time axis direction.
以上説明した動作原理を換言すると、ある位置(x,y)の透過画像の強度Im(x,y)に着目すると、一次線の強度Ip(x,y)は、その近傍の位置(x+dx,y+dy)の一次線の強度Ip(x+dx,y+dy)と大きく異なる可能性があるが、散乱線の強度Is(x,y)はその近傍の散乱線の強度Is(x+dx,y+dy)とほぼ等しくなる、という性質を利用している。すなわち、式(5)に示すように、透過画像Imにおける近傍画素との強度の差(Im(x+dx,y+dy)-Im(x,y)、すなわち高周波成分)を求めることによって、散乱線の強度Isをキャンセルでき(Is(x+dx,y+dy)-Is(x,y)≒0)、一次線像Ipにおける近傍画素との強度の差(Ip(x+dx,y+dy)-Ip(x,y))が得られる。これを利用して、式(1)および式(3)における散乱線Is(x,y)の影響を受けることなく、式(2)あるいは式(4)から被写体の厚みT(x,y)を短時間で算出することができる。
In other words, when focusing on the intensity Im (x, y) of the transmission image at a certain position (x, y), the intensity Ip (x, y) of the primary line is expressed by the position (x + dx, y + dy) may be significantly different from the intensity Ip (x + dx, y + dy) of the primary line, but the intensity Is (x, y) of the scattered radiation is the intensity Is ( x + dx, y + dy) is used. That is, as shown in Equation (5), by obtaining the intensity difference (Im (x + dx, y + dy) -Im (x, y), that is, a high frequency component) with neighboring pixels in the transmission image Im, The intensity Is of scattered radiation can be canceled (Is (x + dx, y + dy) -Is (x, y) ≒ 0), and the difference in intensity from neighboring pixels in the primary line image Ip (Ip (x + dx, y + dy) -Ip (x, y)). By utilizing this, the thickness T (x, y) of the subject can be obtained from the expression (2) or the expression (4) without being affected by the scattered radiation Is (x, y) in the expressions (1) and (3). Can be calculated in a short time.
<画像処理部の構成例>
図4は、図2の放射線撮像装置が有する画像処理部(115)における構成の一例を示すブロック図である。 <Configuration Example of Image Processing Unit>
FIG. 4 is a block diagram showing an example of the configuration of the image processing unit (115) included in the radiation imaging apparatus of FIG.
図4は、図2の放射線撮像装置が有する画像処理部(115)における構成の一例を示すブロック図である。 <Configuration Example of Image Processing Unit>
FIG. 4 is a block diagram showing an example of the configuration of the image processing unit (115) included in the radiation imaging apparatus of FIG.
図4に示すように、画像処理部(115)は、高周波成分抽出部(301)と、体厚分布算出部(302)と、散乱線像推定部(303)と、散乱線像除去部(304)で構成される。
As shown in FIG. 4, the image processing unit (115) includes a high frequency component extraction unit (301), a body thickness distribution calculation unit (302), a scattered radiation image estimation unit (303), and a scattered radiation image removal unit ( 304).
高周波成分抽出部(301)は、X線検出器(111)の出力する透過画像(入力画像)について、空間軸方向および時間軸方向の少なくとも一方の高周波成分を抽出し、この抽出結果を高周波成分情報として体厚分布算出部(302)に入力する。この詳細については、図5を用いて後ほど詳しく述べる。
The high-frequency component extraction unit (301) extracts at least one high-frequency component in the spatial axis direction and the time-axis direction from the transmission image (input image) output from the X-ray detector (111), and uses the extracted result as the high-frequency component. Information is input to the body thickness distribution calculation unit (302). This will be described in detail later with reference to FIG.
体厚分布算出部(302)は、高周波成分抽出部(301)で抽出した高周波成分情報をもとに、体厚情報を算出して、散乱線像推定部(散乱線分布推定部)(303)に入力する。この詳細については、図6を用いて後ほど詳しく述べる。
The body thickness distribution calculation unit (302) calculates body thickness information based on the high frequency component information extracted by the high frequency component extraction unit (301), and calculates a scattered radiation image estimation unit (scattered radiation distribution estimation unit) (303 ). This will be described in detail later with reference to FIG.
散乱線像推定部(303)は、入力画像と体厚分布算出部(302)からの体厚情報をもとに、入力画像に含まれると推定される散乱線像(推定散乱線像)を算出し、散乱線像除去部(304)に入力する。この詳細については、図7を用いて後ほど詳しく述べる。
The scattered radiation image estimation unit (303) generates a scattered radiation image (estimated scattered radiation image) that is estimated to be included in the input image based on the input image and the body thickness information from the body thickness distribution calculation unit (302). The calculated value is input to the scattered radiation image removal unit (304). This will be described in detail later with reference to FIG.
散乱線像除去部(304)は、散乱線像推定部(303)が求めた推定散乱線像を入力画像から除去し、出力画像を算出する。この詳細については、図8を用いて後ほど詳しく述べる。
なお、画像処理部(115)に設定される画像取得条件については、後ほど詳しく述べる。 The scattered radiation image removal unit (304) removes the estimated scattered radiation image obtained by the scattered radiation image estimation unit (303) from the input image, and calculates an output image. This will be described in detail later with reference to FIG.
The image acquisition conditions set in the image processing unit (115) will be described in detail later.
なお、画像処理部(115)に設定される画像取得条件については、後ほど詳しく述べる。 The scattered radiation image removal unit (304) removes the estimated scattered radiation image obtained by the scattered radiation image estimation unit (303) from the input image, and calculates an output image. This will be described in detail later with reference to FIG.
The image acquisition conditions set in the image processing unit (115) will be described in detail later.
<高周波成分抽出部の構成例>
図5は、図4の画像処理部(115)が有する高周波成分抽出部(301)の構成の一例を示すブロック図である。高周波成分抽出部(301)は、X線検出器(111)の出力する透過画像(入力画像)について、空間軸方向および時間軸方向の少なくとも一方の高周波成分を抽出し、この抽出結果を高周波成分情報として体厚分布算出部(302)に入力する。 <Configuration example of high-frequency component extraction unit>
FIG. 5 is a block diagram showing an example of the configuration of the high frequency component extraction unit (301) included in the image processing unit (115) of FIG. The high-frequency component extraction unit (301) extracts at least one high-frequency component in the spatial axis direction and the time-axis direction from the transmission image (input image) output from the X-ray detector (111), and uses the extracted result as the high-frequency component. Information is input to the body thickness distribution calculation unit (302).
図5は、図4の画像処理部(115)が有する高周波成分抽出部(301)の構成の一例を示すブロック図である。高周波成分抽出部(301)は、X線検出器(111)の出力する透過画像(入力画像)について、空間軸方向および時間軸方向の少なくとも一方の高周波成分を抽出し、この抽出結果を高周波成分情報として体厚分布算出部(302)に入力する。 <Configuration example of high-frequency component extraction unit>
FIG. 5 is a block diagram showing an example of the configuration of the high frequency component extraction unit (301) included in the image processing unit (115) of FIG. The high-frequency component extraction unit (301) extracts at least one high-frequency component in the spatial axis direction and the time-axis direction from the transmission image (input image) output from the X-ray detector (111), and uses the extracted result as the high-frequency component. Information is input to the body thickness distribution calculation unit (302).
図5(a)~(d)に示すように、高周波成分抽出部(301)には、いろいろな変形例が考えられる。以下、これらの構成と動作について、ひとつずつ説明する。
As shown in FIGS. 5 (a) to 5 (d), various modifications can be considered for the high-frequency component extraction unit (301). Hereinafter, these configurations and operations will be described one by one.
図5(a)は、高周波成分抽出部(301)をフレーム内ハイパスフィルタ(401)で構成した例(301(a))を示す。ここで、フレーム内ハイパスフィルタ(401)は、1枚(1フレーム)の入力画像だけを用いて、入力画像を構成する各画素値の空間軸方向の強度分布の高周波成分を抽出するフィルタであり、一般的な1次元あるいは2次元のハイパスフィルタをそのまま用いることができる。ハイパスフィルタとは、高周波成分の減衰量よりも直流を含む低周波成分の減衰量が多い周波数特性を持つフィルタのことである。例えば、一般的な水平ハイパスフィルタあるいは垂直ハイパスフィルタ(いずれも1次元ハイパスフィルタ)を、フレーム内ハイパスフィルタ(401)としてそのまま用いることができる。また、一般的な水平ハイパスフィルタと垂直ハイパスフィルタを、直列あるいは並列に接続して2次元ハイパスフィルタを構成し、フレーム内ハイパスフィルタ(401)としてもよい。なお、フレーム内ハイパスフィルタ(401)は、ここで述べた構成に限定されるわけではなく、先ほど図3を用いて動作原理説明したように、散乱線像(直流を含む低周波成分)を大きく減衰するような周波数特性を持っていればよい。
FIG. 5 (a) shows an example (301 (a)) in which the high-frequency component extraction unit (301) is configured with an intra-frame high-pass filter (401). Here, the intra-frame high-pass filter (401) is a filter that uses only one (one frame) input image to extract a high-frequency component of the intensity distribution in the spatial axis direction of each pixel value constituting the input image. A general one-dimensional or two-dimensional high-pass filter can be used as it is. A high-pass filter is a filter having a frequency characteristic in which the amount of attenuation of low-frequency components including direct current is larger than the amount of attenuation of high-frequency components. For example, a general horizontal high-pass filter or vertical high-pass filter (both are one-dimensional high-pass filters) can be used as the intra-frame high-pass filter (401) as it is. In addition, a general horizontal high-pass filter and a vertical high-pass filter may be connected in series or in parallel to form a two-dimensional high-pass filter, which may be used as an intra-frame high-pass filter (401). Note that the intra-frame high-pass filter (401) is not limited to the configuration described here. As described above with reference to FIG. 3, the scattered radiation image (low frequency component including direct current) is greatly increased. It only needs to have a frequency characteristic that attenuates.
図5(b)は、高周波成分抽出部(301)の別の構成例(301(b))を示す。この高周波成分抽出部(301(b))は、膨張処理部(402)と、収縮処理部(403)と、減算器(404)で構成される。ここで、膨張処理部(402)における膨張処理は、一般にディレート(dilate)処理として知られており、注目位置(画素)(x,y)の近傍(例えば注目位置の画素を中心とする9画素)の入力信号(画像値)の最大値を注目位置の出力信号(画素値)とする処理である。また、収縮処理部(403)における収縮処理は、一般にエロード(erode)処理として知られており、注目位置(x,y)の近傍の入力信号(画素値)の最小値を注目位置の出力信号(画素値)とする処理である。
FIG. 5 (b) shows another configuration example (301 (b)) of the high-frequency component extraction unit (301). The high frequency component extraction unit (301 (b)) includes an expansion processing unit (402), a contraction processing unit (403), and a subtracter (404). Here, the expansion processing in the expansion processing unit (402) is generally known as dilate processing, and is in the vicinity of the target position (pixel) (x, y) (for example, nine pixels centered on the pixel of the target position). ) Is used as the output signal (pixel value) at the target position. The contraction process in the contraction processing unit (403) is generally known as an erode process, and the minimum value of the input signal (pixel value) in the vicinity of the target position (x, y) is used as the output signal of the target position. (Pixel value).
したがって、減算器(404)によって膨張処理部(402)と収縮処理部(403)からの各出力信号の差を取ると、注目位置(x,y)の近傍の入力信号の最大値と最小値の差分が得られるため、式(5)に示したように、一次線像Ipにおける近傍画素との強度の差(Ip(x+dx,y+dy)-Ip(x,y))を抽出したことになり、近傍画素との強度の差が小さい散乱線像を減衰させることができる。
Therefore, when the difference between the output signals from the expansion processing unit (402) and the contraction processing unit (403) is taken by the subtractor (404), the maximum value and the minimum value of the input signal in the vicinity of the target position (x, y) Therefore, as shown in Equation (5), the difference in intensity from neighboring pixels (Ip (x + dx, y + dy) -Ip (x, y)) in the primary line image Ip is extracted. As a result, a scattered radiation image having a small intensity difference from neighboring pixels can be attenuated.
なお、上記「近傍」を何画素分に設定するかは任意であり、X線に含まれるノイズの半値幅が小さいX線管(102)を用いる場合には「近傍」を少ない画素数(例えば水平3画素×垂直3画素)とし、ノイズの半値幅が大きいX線管(102)を用いる場合には「近傍」を多くの画素数(例えば水平7画素×垂直7画素)とすればよい。
It should be noted that how many pixels the “neighbor” is set is arbitrary, and when using the X-ray tube (102) with a small half-value width of noise included in the X-ray, the number of pixels (for example, When the X-ray tube (102) having a large half-value width of noise is used, the “neighboring” may be a large number of pixels (for example, horizontal 7 pixels × vertical 7 pixels).
図5(c)は、高周波成分抽出部(301)のさらに別の構成例(301(c))を示す。この高周波成分抽出部(301(c))は、フレームメモリ(405)と、減算器(406)で構成され、現在の入力画像と、1フレーム前の入力画像との差分(すなわち、時間方向の高周波成分)を出力する構成になっている。この構成により、被写体が静止している場合には、ノイズ成分を抽出することができる。なお、時間方向の高周波成分を抽出する構成は、ここで述べた構成に限定されるわけではなく、フレームメモリ(405)の数を増やして複数フレーム間の差分をとってもよい。被写体が静止している場合には、一次線の強度がノイズによってフレーム間で大きく変化する可能性があるのに対し、散乱線の強度は1フレーム内の近傍間で平均化されるためエルゴード性によってフレーム間であまり変化しない性質を利用し、高周波成分抽出部(301(c))は、時間周波数における直流を含む低周波成分を大きく減衰するような周波数特性を持っていればよい。なお、エルゴード性とは、時間平均と集合平均が統計的に一致する性質のことであり、ここでは、散乱線のフレーム間の平均値(時間平均)と1フレーム内の平均値(集合平均)が統計的に一致する性質のことを表している。
FIG. 5 (c) shows still another configuration example (301 (c)) of the high-frequency component extraction unit (301). The high-frequency component extraction unit (301 (c)) includes a frame memory (405) and a subtracter (406) .The difference between the current input image and the input image one frame before (that is, in the time direction) (High frequency component) is output. With this configuration, a noise component can be extracted when the subject is stationary. Note that the configuration for extracting high-frequency components in the time direction is not limited to the configuration described here, and the number of frame memories (405) may be increased to obtain a difference between a plurality of frames. When the subject is stationary, the intensity of the primary line may vary greatly from frame to frame due to noise, whereas the intensity of the scattered line is averaged between the neighborhoods in one frame, so it is ergodic. Therefore, the high frequency component extraction unit (301 (c)) only needs to have a frequency characteristic that greatly attenuates the low frequency component including the direct current at the time frequency. The ergodic property is a property in which the time average and the set average statistically match, and here, the average value of scattered radiation between frames (time average) and the average value within one frame (set average) Represents a statistically consistent property.
図5(d)は、高周波成分抽出部(301)のさらに別の構成例(301(d))を示す。この高周波成分抽出部(301(d))は、図5(a)に示した空間軸方向の高周波成分を抽出する高周波成分抽出部(301(a))と、図5(c)に示した時間軸方向の高周波成分を抽出する高周波成分抽出部(301(c))と、動き検出器(407)と、混合器(408)で構成される。
FIG. 5 (d) shows still another configuration example (301 (d)) of the high-frequency component extraction unit (301). The high-frequency component extraction unit (301 (d)) includes a high-frequency component extraction unit (301 (a)) that extracts a high-frequency component in the spatial axis direction shown in FIG. 5 (a) and a high-frequency component extraction unit (301 (d)) shown in FIG. A high-frequency component extraction unit (301 (c)) that extracts high-frequency components in the time axis direction, a motion detector (407), and a mixer (408).
高周波成分抽出部(301(a))の構成および動作は前述したとおりであり、入力画像からフレーム内の空間軸方向の高周波成分を抽出して出力する。高周波成分抽出部(301(c))の構成および動作は前述したとおりであり、入力画像からフレーム間(時間軸方向)の高周波成分を抽出して出力する。ここで、空間軸方向の高周波成分を抽出する高周波成分抽出部(301(a))では、ノイズ成分(高周波成分)だけでなく、入力画像に含まれる被写体の輪郭成分も抽出してしまうため、輪郭部分では式(2)あるいは式(4)を用いて算出した被写体の厚みT(x,y)に誤差が含まれることになる。一方、時間軸方向の高周波成分を抽出する高周波成分抽出部(301(c))では、被写体が静止している領域では、被写体の輪郭の有無によらずにノイズ成分(高周波成分)だけを抽出することができるのに対し、被写体が動いている領域では、ノイズ成分だけでなく、位置(x,y)ごとの被写体の厚みT(x,y)の差に応じて変化する成分も抽出してしまう。したがって、被写体が動く領域では、式(2)あるいは式(4)を用いて算出した被写体の厚みT(x,y)に誤差が含まれることになる。
The configuration and operation of the high-frequency component extraction unit (301 (a)) are as described above, and the high-frequency component in the spatial axis direction in the frame is extracted from the input image and output. The configuration and operation of the high-frequency component extraction unit (301 (c)) are as described above, and high-frequency components between frames (in the time axis direction) are extracted from the input image and output. Here, the high frequency component extraction unit (301 (a)) that extracts the high frequency component in the spatial axis direction extracts not only the noise component (high frequency component) but also the contour component of the subject included in the input image. In the contour portion, an error is included in the thickness T (x, y) of the subject calculated using the formula (2) or the formula (4). On the other hand, the high-frequency component extraction unit (301 (c)) that extracts high-frequency components in the time axis direction extracts only noise components (high-frequency components) regardless of the outline of the subject in the area where the subject is stationary. On the other hand, in the area where the subject is moving, not only the noise component but also the component that changes according to the difference in the subject's thickness T (x, y) at each position (x, y) is extracted. End up. Therefore, in the region where the subject moves, an error is included in the subject thickness T (x, y) calculated using Equation (2) or Equation (4).
そこで、動き検出器(407)を用いて被写体の動き情報k(x,y)を検出し、式(6)に示すように、被写体の動きが大きい領域では高周波成分抽出部(301(a))の結果(A(x,y))を高周波成分情報Y(x,y)とし、被写体の動きが小さい領域では高周波成分抽出部(301(c))の結果(B(x,y))を高周波成分情報Y(x,y)とするように混合器(408)を制御する。これにより、厚みT(x,y)の誤差が少なくなるような高周波成分を抽出することができる。
ここで、動き情報k(x,y)は、位置(x,y)ごとのフレーム差の大小を表す情報であり、0(静止)<=k(x,y)<=1(動き)となるように正規化しておく。
Therefore, the motion information k (x, y) of the subject is detected using the motion detector (407), and the high-frequency component extraction unit (301 (a)) is used in a region where the motion of the subject is large as shown in Equation (6). ) Result (A (x, y)) as high-frequency component information Y (x, y), and in a region where the movement of the subject is small, the result (B (x, y)) of the high-frequency component extraction unit (301 (c)) Is controlled to be high-frequency component information Y (x, y). As a result, it is possible to extract a high frequency component that reduces an error in the thickness T (x, y).
Here, the motion information k (x, y) is information indicating the magnitude of the frame difference for each position (x, y), and 0 (still) <= k (x, y) <= 1 (motion) Normalize so that
なお、動き検出器(407)は、たとえば、位置(x,y)ごとにフレーム差分の絶対値をとる演算と、正規化のための除算器(定数での除算)など用いて、公知の技術で実現することができるため、図示を省略する。
The motion detector (407) is a known technique using, for example, an operation for obtaining an absolute value of the frame difference for each position (x, y) and a divider for normalization (division by a constant). Since it is realizable by, it abbreviate | omits illustration.
<体厚分布算出部の構成例>
図6は、図4の画像処理部(115)が有する体厚分布算出部(302)における構成の一例を示すブロック図である。体厚分布算出部(302)は、高周波成分抽出部(301)で抽出した高周波成分情報をもとに、体厚情報を算出して、散乱線像推定部 (303)に入力する。 <Configuration example of body thickness distribution calculation unit>
FIG. 6 is a block diagram illustrating an example of a configuration in the body thickness distribution calculation unit (302) included in the image processing unit (115) in FIG. The body thickness distribution calculation unit (302) calculates body thickness information based on the high frequency component information extracted by the high frequency component extraction unit (301), and inputs the body thickness information to the scattered radiation image estimation unit (303).
図6は、図4の画像処理部(115)が有する体厚分布算出部(302)における構成の一例を示すブロック図である。体厚分布算出部(302)は、高周波成分抽出部(301)で抽出した高周波成分情報をもとに、体厚情報を算出して、散乱線像推定部 (303)に入力する。 <Configuration example of body thickness distribution calculation unit>
FIG. 6 is a block diagram illustrating an example of a configuration in the body thickness distribution calculation unit (302) included in the image processing unit (115) in FIG. The body thickness distribution calculation unit (302) calculates body thickness information based on the high frequency component information extracted by the high frequency component extraction unit (301), and inputs the body thickness information to the scattered radiation image estimation unit (303).
図6に示すように、体厚分布算出部(302)は、絶対値演算部(501)と、平滑化処理部(502)と、ルックアップテーブル(503)とを備えて構成される。ルックアップテーブル(503)には、予め求めておいた、ノイズ成分(高周波成分)強度の平均値と体厚との関係(変換特性(504))が、画像取得条件(管電圧値、管電流および絞り値等の組み合わせ)ごとに格納されている。
As shown in FIG. 6, the body thickness distribution calculation unit (302) includes an absolute value calculation unit (501), a smoothing processing unit (502), and a lookup table (503). In the look-up table (503), the relationship between the average value of the noise component (high frequency component) intensity and the body thickness (conversion characteristics (504)) obtained in advance is determined based on the image acquisition conditions (tube voltage value, tube current). And combinations of aperture values and the like).
高周波成分抽出部(301)から体厚分布算出部(302)に入力される高周波成分情報は、正負両方の極性を持つとともに、図3に示したようにインパルス性の波形となっていることが多い。そこで、絶対値演算部(501)は、高周波成分抽出部(301)から受け取った高周波成分情報の絶対値をとり、平滑化処理部(502)は、ローパスフィルタ処理を行うことにより、注目位置(画素)(x,y)の近傍のノイズ成分強度の平均値を算出する。その後、体厚分布算出部(302)は、図2に示したX線制御部(104)および絞り・フィルタ制御部(107)に設定されている画像取得条件(管電圧値、管電流値、絞り値など)を読み込み、ルックアップテーブル(503)に格納されているその画像取得条件におけるノイズ成分強度の平均値と体厚との関係を参照することにより、平滑化処理部(502)が算出した注目位置(x,y)の近傍のノイズ成分強度の平均値を、その位置(x,y)の体厚情報に変換して出力する。
The high-frequency component information input from the high-frequency component extraction unit (301) to the body thickness distribution calculation unit (302) has both positive and negative polarities and has an impulse waveform as shown in FIG. Many. Therefore, the absolute value calculation unit (501) takes the absolute value of the high frequency component information received from the high frequency component extraction unit (301), and the smoothing processing unit (502) performs a low pass filter process, thereby The average value of the noise component in the vicinity of (pixel) (x, y) is calculated. Thereafter, the body thickness distribution calculation unit (302) performs the image acquisition conditions (tube voltage value, tube current value, tube current value, set in the X-ray control unit (104) and the diaphragm / filter control unit (107) shown in FIG. The smoothing processing unit (502) calculates the aperture value by referring to the relationship between the average value of the noise component intensity and the body thickness under the image acquisition conditions stored in the lookup table (503). The average value of the noise component intensity near the target position (x, y) is converted into body thickness information at the position (x, y) and output.
このルックアップテーブル(503)に格納されているノイズ成分強度の平均値と体厚との関係(変換特性(504))の求め方について説明する。例えば、図3(a)に示した構成を用いて、画像取得条件と厚み一定の被写体(202)の厚みを様々に変更しながら、図3(a1)に示す透過画像を取得する。その後、図4に示した高周波成分抽出部(301)の機能により高周波成分情報を抽出し、図6に示す絶対値演算部(501)と平滑化処理部(502)の機能により、注目位置(x,y)の近傍のノイズ成分強度の平均値を算出する。具体的には、被写体(202)の厚みをT=0cm、5cm、10cm、15cm、20cm、25cm、30cmなどと変更しながら、各厚みにおいて管電圧値を60kV、70KV、80KV、90KV、100KVなどと変更し、さらに各管電圧値において管電流値を1mA、2mA、4mA、8mAなどと変更することにより、合計140種類(=7×5×4)の条件で、X線検出器(111(a))の中央部に対応する位置のノイズ成分強度の平均値を求めることによって、ノイズ成分強度の平均値から厚みへの変換特性(504)を求めることができる。この変換特性(504)を格納したルックアップテーブル(503)を作成する。
The method for obtaining the relationship (conversion characteristics (504)) between the average value of the noise component intensity stored in the lookup table (503) and the body thickness will be described. For example, using the configuration shown in FIG. 3A, the transmission image shown in FIG. 3A1 is acquired while variously changing the image acquisition conditions and the thickness of the subject 202 having a constant thickness. Thereafter, the high frequency component information is extracted by the function of the high frequency component extraction unit (301) shown in FIG. 4, and the position of interest (by the functions of the absolute value calculation unit (501) and the smoothing processing unit (502) shown in FIG. The average value of noise component intensities near x, y) is calculated. Specifically, while changing the thickness of the subject (202) to T = 0cm, 5cm, 10cm, 15cm, 20cm, 25cm, 30cm, etc., the tube voltage value at each thickness is 60kV, 70KV, 80KV, 90KV, 100KV, etc. In addition, by changing the tube current value to 1 mA, 2 mA, 4 mA, 8 mA, etc. for each tube voltage value, X-ray detectors (111 (111 ( By obtaining the average value of the noise component intensity at the position corresponding to the central part of a)), the conversion characteristic (504) from the average value of the noise component intensity to the thickness can be obtained. A lookup table (503) storing the conversion characteristics (504) is created.
このとき、被写体(202)として、線減弱係数や散乱特性が人体と類似した特性を持つアクリル板などを用いれば、前述した厚みを、そのまま体厚と読み替えることができる。なお、ここで示した各値は、説明のための一例であり、これに限定されるものではない。また、事前に設定しなかった値(例えば、管電圧値=63KV)は、その近傍の値におけるノイズ成分強度の平均値を用いて補間すればよい。例えば、管電圧値=63KVにおけるノイズ成分強度の平均値は、管電圧値=60KVにおけるノイズ成分強度の平均値と管電圧値=70KVにおけるノイズ成分強度の平均値を7:3に内分して求めればよい。また、一般に知られている曲線フィッティング等の技術を用いて、変換特性(504)を近似的に表す変換関数を求めておき、その変換関数のパラメータ(係数等)をルックアップテーブル(503)に格納してもよい。
At this time, if an acrylic plate having a linear attenuation coefficient and scattering characteristics similar to those of the human body is used as the subject (202), the above-described thickness can be read as the body thickness as it is. In addition, each value shown here is an example for description, It is not limited to this. Further, a value not set in advance (for example, tube voltage value = 63 KV) may be interpolated using an average value of noise component intensities in the vicinity thereof. For example, the average value of the noise component intensity at the tube voltage value = 63KV is divided into 7: 3 by dividing the average value of the noise component intensity at the tube voltage value = 60KV and the average value of the noise component intensity at the tube voltage value = 70KV. Find it. Also, using a generally known technique such as curve fitting, a conversion function approximately representing the conversion characteristic (504) is obtained, and parameters (coefficients, etc.) of the conversion function are stored in the lookup table (503). It may be stored.
<散乱線像推定部の構成例>
図7は、図4の画像処理部(115)が有する散乱線像推定部(303)における構成の一例を示すブロック図である。散乱線像推定部(303)は、入力画像と体厚分布算出部(302)からの体厚情報をもとに、入力画像に含まれると推定される散乱線像(推定散乱線像)を算出する。 <Configuration example of scattered radiation image estimation unit>
FIG. 7 is a block diagram illustrating an example of the configuration of the scattered radiation image estimation unit (303) included in the image processing unit (115) of FIG. The scattered radiation image estimation unit (303) generates a scattered radiation image (estimated scattered radiation image) that is estimated to be included in the input image based on the input image and the body thickness information from the body thickness distribution calculation unit (302). calculate.
図7は、図4の画像処理部(115)が有する散乱線像推定部(303)における構成の一例を示すブロック図である。散乱線像推定部(303)は、入力画像と体厚分布算出部(302)からの体厚情報をもとに、入力画像に含まれると推定される散乱線像(推定散乱線像)を算出する。 <Configuration example of scattered radiation image estimation unit>
FIG. 7 is a block diagram illustrating an example of the configuration of the scattered radiation image estimation unit (303) included in the image processing unit (115) of FIG. The scattered radiation image estimation unit (303) generates a scattered radiation image (estimated scattered radiation image) that is estimated to be included in the input image based on the input image and the body thickness information from the body thickness distribution calculation unit (302). calculate.
ここでまず、図4の画像処理部(115)が有する散乱線像推定部(303)において、体厚から推定散乱線像の算出する原理について以下説明する。
First, the principle of calculating the estimated scattered radiation image from the body thickness in the scattered radiation image estimating section (303) of the image processing section (115) in FIG. 4 will be described below.
前述した式(1)の両辺に、点拡散関数Sσ(T(x,y))を畳み込むと式(7)が得られる。
When the point spread function Sσ (T (x, y)) is convoluted with both sides of the above-described equation (1), equation (7) is obtained.
式(3)を用いて式(7)の右辺第1項をIs(x,y)に置換し、整理すると、式(7)は式(8)のように変換できる。
By replacing the first term on the right side of Expression (7) with Is (x, y) using Expression (3) and rearranging, Expression (7) can be converted into Expression (8).
ここで、式(8)の第2項に着目すると、散乱線像(Is(x,y))に対してさらに点拡散関数Sσ(T(x,y))を畳み込んだ形になっており、一次線像Ip(x,y)と比較すると、高周波成分が著しく減衰していると考えることができ、式(8)の第2項を位置(x,y)によらない一定値(直流画像)で近似してもよい。さらに、この一定値(直流画像)の強度は極めて小さいものとみなし、より簡単化して式(8)の第2項を0としてもよい。この簡単化により、式(8)から式(9)の近似式が得られる。
Here, paying attention to the second term of equation (8), the point spread function Sσ (T (x, y)) is further convolved with the scattered radiation image (Is (x, y)). Compared with the primary line image Ip (x, y), it can be considered that the high-frequency component is significantly attenuated, and the second term of the equation (8) is set to a constant value (independent of the position (x, y)). (DC image) may be approximated. Further, the intensity of the constant value (DC image) is considered to be extremely small, and the second term of Expression (8) may be set to 0 by simplifying. By this simplification, an approximate expression of Expression (9) can be obtained from Expression (8).
よって、散乱線像推定部(303)は、式(9)の右辺を算出し、推定散乱線像として出力するように構成される。
Therefore, the scattered radiation image estimation unit (303) is configured to calculate the right side of Equation (9) and output it as an estimated scattered radiation image.
図7(a)~(c)に示すように、散乱線像推定部(303)には、いろいろな変形例が考えられる。以下、これらの構成と動作について、ひとつずつ説明する。
As shown in FIGS. 7 (a) to (c), the scattered radiation image estimation unit (303) can be variously modified. Hereinafter, these configurations and operations will be described one by one.
図7(a)は、散乱線像推定部(303)を2次元ローパスフィルタ(601)構成した例(303(a))を示す。ここで、2次元ローパスフィルタ(601)は、式(3)に示した散乱線の点拡散関数Sσ(T(x,y))(602)を入力画像に畳み込んで、推定散乱線像を得るものである。
FIG. 7 (a) shows an example (303 (a)) in which the scattered radiation image estimation unit (303) is configured as a two-dimensional low-pass filter (601). Here, the two-dimensional low-pass filter (601) convolves the scattered image point spread function Sσ (T (x, y)) (602) shown in Equation (3) with the input image, and generates an estimated scattered radiation image. To get.
この2次元ローパスフィルタ(601)の特性は、前述したルックアップテーブル(503)の特性を求めたときと同様に、図3(a)に示した構成を用いて、被写体(202)の厚みと画像取得条件を様々に変更しながら、図3(a1)に示す透過画像を取得して求めておいたものである。このとき、X線検出器(111(a))の端部(左端あるいは右端)の外側(X線が絞り(201(a))によって遮蔽されている部分)では、一次線を含まない散乱線だけの像が得られるため、この強度分布を用いて散乱線の点拡散関数Sσ(T(x,y))(602)を求めることができる。具体的には、被写体(202)に照射されるX線が、端部の外側の線量が0、端部の内側の線量を1としたステップ入力である場合、被写体内での散乱による応答(ステップ応答)が透過画像の強度分布として得られるため、このステップ応答を微分することより、インパルス応答(すなわち、点拡散関数Sσ(T(x,y))(602)を得ることができる。
The characteristics of the two-dimensional low-pass filter (601) are the same as the characteristics of the look-up table (503) described above, using the configuration shown in FIG. The transmission image shown in FIG. 3 (a1) was acquired and obtained while changing the image acquisition conditions in various ways. At this time, on the outside of the end (left end or right end) of the X-ray detector (111 (a)) (the portion where the X-ray is shielded by the diaphragm (201 (a))), the scattered radiation not including the primary line Therefore, the point diffusion function Sσ (T (x, y)) (602) of the scattered radiation can be obtained using this intensity distribution. Specifically, when the X-ray irradiated to the subject (202) is a step input in which the dose outside the end is 0 and the dose inside the end is 1, the response due to scattering in the subject ( Since the step response is obtained as the intensity distribution of the transmission image, the impulse response (that is, the point spread function Sσ (T (x, y)) (602) can be obtained by differentiating the step response.
この図7(a)に示した構成では、体厚が位置(x,y)に応じて変化する被写体の場合に、点拡散関数Sσ(T(x,y))(602)も位置(x,y)に応じて変更する必要があり、処理が煩雑になる。そこで、次に述べる図7(b)に示す構成によって、近似的に代替する。
In the configuration shown in FIG. 7A, in the case of a subject whose body thickness changes in accordance with the position (x, y), the point spread function Sσ (T (x, y)) (602) is also in the position (x , y), the process becomes complicated. Therefore, the configuration shown in FIG.
図7(b)は、散乱線像推定部(303)を、乗算器(603)と、ルックアップテーブル(604)と、2次元ローパスフィルタ(605)で構成した例(303(b))を示している。ここで、2次元ローパスフィルタ(605)の点拡散関数Sσ(606)を、厚みT(x,y)に対して不変の特性とするところが、図7(a)に示した2次元ローパスフィルタ(601)と異なる。
FIG. 7B shows an example (303 (b)) in which the scattered radiation image estimation unit (303) is configured by a multiplier (603), a lookup table (604), and a two-dimensional low-pass filter (605). Show. Here, the point diffusion function Sσ (606) of the two-dimensional low-pass filter (605) has a characteristic that is invariable with respect to the thickness T (x, y). 601).
散乱線の一般的な特徴として、体厚が薄いところでは散乱線の強度が弱く、体厚が厚くなるにしたがって散乱線の強度が強くなる。一方、体厚がある程度以上に厚くなると、被写体を透過してくる一次線が弱くなるため、その一次線から生じる散乱線も弱くなる。この特性を、前述した2次元ローパスフィルタ(601)の特性を求めたときと同様に予め求めておく。
As a general feature of scattered radiation, the intensity of scattered radiation is weak where the body thickness is thin, and the intensity of scattered radiation increases as the body thickness increases. On the other hand, when the body thickness is thicker than a certain level, the primary line transmitted through the subject becomes weak, so that the scattered radiation generated from the primary line also becomes weak. This characteristic is obtained in advance in the same manner as when obtaining the characteristic of the two-dimensional low-pass filter (601) described above.
すなわち、図3(a)に示した構成を用いて、被写体(202)の厚みと画像取得条件を様々に変更しながら、図3(a1)に示す透過画像を取得して、図7(b)に示すルックアップテーブル(604)を求める。このとき、点拡散関数Sσ(T(x,y))(602)が最も広がったときの厚みを図7(a)の構成によって求めておき、このときの点拡散関数Sσ(T(x,y))(602)を2次元ローパスフィルタ(605)の点拡散関数Sσ(606)として固定する。続いて、図7(a)に示す2次元ローパスフィルタ(601)の出力と図7(b)に示す2次元ローパスフィルタ(605)の結果ができるだけ一致するように、乗算器(603)に入力する強度係数を決定する。体厚(厚み)を適宜変更しながら、体厚(厚み)と強度係数の関係を求め、体厚(厚み)から強度係数に変換する変換特性(607)として、ルックアップテーブル(604)に格納する。
That is, using the configuration shown in FIG. 3A, the transmission image shown in FIG. 3A1 is acquired while the thickness of the subject 202 and the image acquisition conditions are changed variously, and FIG. ) Is obtained. At this time, the thickness when the point spread function Sσ (T (x, y)) (602) is most expanded is obtained by the configuration of FIG. 7A, and the point spread function Sσ (T (x, y, y)) (602) is fixed as the point spread function Sσ (606) of the two-dimensional low-pass filter (605). Subsequently, the output of the two-dimensional low-pass filter (601) shown in FIG. 7A and the result of the two-dimensional low-pass filter (605) shown in FIG. Determine the strength factor to be used. While appropriately changing the body thickness (thickness), obtain the relationship between the body thickness (thickness) and the strength coefficient, and store it in the lookup table (604) as the conversion characteristic (607) that converts the body thickness (thickness) to the strength coefficient To do.
また、一般に知られている曲線フィッティング等の技術を用いて、変換特性(607)を近似的に表す変換関数を求めておき、その変換関数のパラメータ(係数等)をルックアップテーブル(604)に格納してもよい。なお、変換特性(607)に示した各値は、説明のための一例であり、これに限定されるものではない。
Also, using a generally known technique such as curve fitting, a conversion function that approximately represents the conversion characteristic (607) is obtained, and parameters (coefficients, etc.) of the conversion function are stored in the lookup table (604). It may be stored. Each value shown in the conversion characteristic (607) is an example for explanation, and the present invention is not limited to this.
以上のように、図7(b)に示す散乱線像推定部(303(b))における2次元ローパスフィルタ(605)の特性を厚みT(x,y)に対して不変としても、図7(a)に示した散乱線像推定部(303(a))の出力と同様の推定散乱線像を近似的に得ることができる。
As described above, even if the characteristic of the two-dimensional low-pass filter (605) in the scattered radiation image estimation unit (303 (b)) shown in FIG. 7 (b) is not changed with respect to the thickness T (x, y), FIG. An estimated scattered radiation image similar to the output of the scattered radiation image estimation unit (303 (a)) shown in (a) can be approximately obtained.
図7(c)は、散乱線像推定部(303)を、乗算器(608)(609)と、マスク情報生成部(612)と、散乱線像推定部(303(b)-1) (303(b)-2)と、加算器(613)で構成した例(303(c))を示す。
7 (c) shows a scattered radiation image estimation unit (303), multipliers (608) and (609), a mask information generation unit (612), and a scattered radiation image estimation unit (303 (b) -1) -1 ( An example (303 (c)) composed of 303 (b) -2) and an adder (613) is shown.
図2の放射線撮像装置を実際に使用する際に、X線検出器(111)よりも小さい被写体(108)の透過画像を取得する場合がある。この場合、被写体の外側は、X線管(102)から照射されたX線が、空気層だけを通って直接的にX線検出器に入射する。空気層においてもX線は散乱するが、被写体(108)の内部よりも散乱の度合いが小さい。
When actually using the radiation imaging apparatus of FIG. 2, a transmission image of the subject (108) smaller than the X-ray detector (111) may be acquired. In this case, outside the subject, the X-rays irradiated from the X-ray tube (102) enter the X-ray detector directly through only the air layer. Even in the air layer, X-rays are scattered, but the degree of scattering is smaller than in the interior of the subject (108).
そこで、図7(c)に示すように、被写体内部での散乱を推定する散乱線像推定部(303(b)-1)と、被写体の外側(空気層)での散乱を推定する散乱線像推定部(303(b)-2)を別々に設け、マスク情報生成部(612)によって生成された被写体の内側領域を示すマスク情報(610)と、マスク情報生成部(612)によって生成された被写体の外側領域を示すマスク情報(611)と、乗算器(608)(609)を用いて、入力画像を各領域に分割したのちに、散乱線像推定部(303(b)-1)(303(b)-2)でそれぞれの推定散乱線像を求め、最後に加算器(613)で両方の推定散乱線像を加算して、最終的な推定散乱線像を出力する構成とする。
Therefore, as shown in FIG. 7 (c), the scattered radiation image estimation unit (303 (b) -1) for estimating the scattering inside the subject and the scattered radiation for estimating the scattering outside the subject (air layer). The image estimation unit (303 (b) -2) is provided separately, and is generated by the mask information generation unit (612) and the mask information (610) indicating the inner area of the subject generated by the mask information generation unit (612). Using the mask information (611) indicating the outer area of the subject and the multipliers (608) and (609), the input image is divided into each area, and then the scattered radiation image estimation unit (303 (b) -1) (303 (b) -2) Obtain each estimated scattered radiation image, and finally adder (613) adds both estimated scattered radiation images and outputs the final estimated scattered radiation image. .
ここで、被写体の内側領域を示すマスク情報(610)は、被写体の内側領域の位置(x,y)では値を1とし、被写体の外側領域の位置(x,y)では値を0とした情報である。マスク情報生成部(612)では、入力画像の輝度値が所定の閾値よりも小さい領域を被写体の内側領域、入力画像の輝度値が所定の閾値よりも大きい領域を被写体の外側領域として、前記マスク情報(610)を生成する。
Here, the mask information (610) indicating the inner region of the subject has a value of 1 at the position (x, y) of the inner region of the subject and 0 at the position (x, y) of the outer region of the subject. Information. In the mask information generation unit (612), an area where the luminance value of the input image is smaller than a predetermined threshold is set as an inner area of the subject, and an area where the luminance value of the input image is larger than the predetermined threshold is set as an outer area of the subject. Information (610) is generated.
なお、このように二値化して生成したマスク情報(610)をローパスフィルタ処理して、内側と外側の境界領域の位置(x,y)では値を0と1の中間値となるようにしてもよい。
Note that the mask information (610) generated by binarization in this way is low-pass filtered so that the value is an intermediate value between 0 and 1 at the position (x, y) of the inner and outer boundary regions. Also good.
また、被写体の外側領域を示すマスク情報(611)は、被写体の内側領域を示すマスク情報(610)と相補的な値とすればよく、マスク情報(610)とマスク情報(611)の各値を位置(x,y)ごとに加算すると1になるように設定すればよい。
The mask information (611) indicating the outer area of the subject may be a value complementary to the mask information (610) indicating the inner area of the subject, and each value of the mask information (610) and the mask information (611) May be set to 1 by adding for each position (x, y).
散乱線像推定部(303(b)-1)(303(b)-2)の構成は、図7(b)に示した散乱線像推定部(303(b))と同様の構成であるが、2次元ローパスフィルタ(605-1)(605-2)は、特性が互いに異なる。すなわち、2次元ローパスフィルタ(605-1)は被写体の内側領域での散乱を模擬した点拡散関数Sσ(606-1)の畳み込み演算を行い、2次元ローパスフィルタ(605-2)は被写体の外側領域での散乱を模擬した点拡散関数Sσ(606-2)の畳み込みを行う。
The configuration of the scattered radiation image estimation unit (303 (b) -1) (303 (b) -2) is the same as that of the scattered radiation image estimation unit (303 (b)) shown in FIG. However, the two-dimensional low-pass filters (605-1) and (605-2) have different characteristics. That is, the two-dimensional low-pass filter (605-1) performs a convolution operation of the point diffusion function Sσ (606-1) that simulates scattering in the inner area of the subject, and the two-dimensional low-pass filter (605-2) Convolution of a point diffusion function Sσ (606-2) that simulates scattering in a region is performed.
点拡散関数Sσ(606-1)およびルックアップテーブル(604-1)については、前述した図7(b)に示した点拡散関数Sσ(606)およびルックアップテーブル(604)と、それぞれ同一の特性でよい。一方、点拡散関数Sσ(606-2)およびルックアップテーブル(604-2)については、図3(a)の構成において、被写体(202)を設置しない状態にしたのちに、前述と同様の手順で、点拡散関数Sσ(606-2)およびルックアップテーブル(604-2)の各特性を求めればよい。
The point spread function Sσ (606-1) and the lookup table (604-1) are the same as the point spread function Sσ (606) and the lookup table (604) shown in FIG. Characteristic is sufficient. On the other hand, for the point spread function Sσ (606-2) and the look-up table (604-2), the procedure similar to the above is performed after the subject (202) is not installed in the configuration of FIG. Thus, each characteristic of the point spread function Sσ (606-2) and the look-up table (604-2) may be obtained.
なお、図示していないが、図7(c)の構成における散乱線像推定部(303(b)-1)を細分化してもよい。このとき例えば、肺のように体厚が薄い領域用(X線の透過量が多い領域用)の散乱線像推定部、骨のようにX線の透過量が少ない領域用の散乱線像推定部、その他の領域用(内蔵や筋肉用)の散乱線像推定部、などのように細分化してもよい。その場合、例えば図3(a)の構成において、被写体(202)を各領域の特性を模擬した被写体に置き換えて、前述と同様の手順で、点拡散関数Sσ(606)およびルックアップテーブル(604)の各特性を求めればよい。また、マスク情報生成部(612)では、入力画像の輝度値に応じて各領域用のマスク情報を生成する構成にすればよい。
Although not shown, the scattered radiation image estimation unit (303 (b) -1) in the configuration of FIG. 7C may be subdivided. At this time, for example, a scattered radiation image estimation unit for a region with a small body thickness such as the lung (for a region with a large amount of X-ray transmission), a scattered radiation image estimation for a region with a small amount of X-ray transmission such as bone Or a scattered radiation image estimation unit for other regions (built-in or for muscles). In that case, for example, in the configuration of FIG. 3A, the subject (202) is replaced with a subject simulating the characteristics of each region, and the point spread function Sσ (606) and the look-up table (604) are obtained in the same procedure as described above. ) For each characteristic. The mask information generation unit (612) may be configured to generate mask information for each area according to the luminance value of the input image.
なお、前述したルックアップテーブル(503)(604)の内容や点拡散関数の特性(602)(606)などは、事前に求めておき、図2に示す記憶部(113)に記録し、実際の使用時に記憶部(113)から各内容を読み出して、各部に設定するように、図2に示す中央処理部(114)で制御すればよい。
The contents of the lookup tables (503) and (604) and the characteristics of the point spread function (602) and (606) are obtained in advance and recorded in the storage unit (113) shown in FIG. 2 may be controlled by the central processing unit (114) shown in FIG. 2 so that each content is read out from the storage unit (113) and set in each unit when used.
<散乱線像除去部の構成例>
図8は、図4の画像処理部(115)が有する散乱線像除去部(304)における構成の一例を示すブロック図である。散乱線像除去部(304)は、散乱線像推定部(303)が求めた推定散乱線像を入力画像から除去し、出力画像を算出する。 <Configuration example of scattered radiation image removing unit>
FIG. 8 is a block diagram showing an example of the configuration of the scattered radiation image removal unit (304) included in the image processing unit (115) of FIG. The scattered radiation image removal unit (304) removes the estimated scattered radiation image obtained by the scattered radiation image estimation unit (303) from the input image, and calculates an output image.
図8は、図4の画像処理部(115)が有する散乱線像除去部(304)における構成の一例を示すブロック図である。散乱線像除去部(304)は、散乱線像推定部(303)が求めた推定散乱線像を入力画像から除去し、出力画像を算出する。 <Configuration example of scattered radiation image removing unit>
FIG. 8 is a block diagram showing an example of the configuration of the scattered radiation image removal unit (304) included in the image processing unit (115) of FIG. The scattered radiation image removal unit (304) removes the estimated scattered radiation image obtained by the scattered radiation image estimation unit (303) from the input image, and calculates an output image.
図8(a)(b)に示すように、散乱線像除去部(304)には、いろいろな変形例が考えられる。以下、これらの構成と動作について、ひとつずつ説明する。
As shown in FIGS. 8A and 8B, the scattered radiation image removing unit 304 can have various modifications. Hereinafter, these configurations and operations will be described one by one.
図8(a)に示すように、散乱線像除去部(304)を減算器(701)だけで構成した例(散乱線像除去部(304(a))を示す。
As shown in FIG. 8 (a), an example (scattered ray image removing unit (304 (a)) in which the scattered radiation image removing unit (304) is configured by only a subtractor (701) is shown.
ここで、前述した式(1)をIp(x,y)について解くと、式(10)が得られる。
Here, when Equation (1) described above is solved for Ip (x, y), Equation (10) is obtained.
式(10)の第2項(Is(x,y))を、図7に示した散乱線像推定部(303)の出力(すなわち、推定散乱線像)で近似することにより、推定一次線像(Ip(x,y))を得ることができる。
By approximating the second term (Is (x, y)) of equation (10) with the output (ie, estimated scattered radiation image) of the scattered radiation image estimating unit (303) shown in FIG. An image (Ip (x, y)) can be obtained.
この式(10)に従い、図8(a)に示す散乱線像除去部(304(a))の構成では、入力画像から推定散乱線像を減算器(701)によって減算し、推定一次線像を出力画像として出力する。これにより、散乱線による画質変動を抑えた出力画像(推定一次線像)を得ることができる。
In accordance with this equation (10), in the configuration of the scattered radiation image removal unit (304 (a)) shown in FIG. 8 (a), the estimated scattered radiation image is subtracted from the input image by the subtractor (701), and the estimated primary radiation image is obtained. Is output as an output image. As a result, an output image (estimated primary line image) in which image quality fluctuations due to scattered rays are suppressed can be obtained.
このようにして求めた推定一次線像は、散乱線像を含まないため、背景技術として述べたグリッド画像と、画質が大きく異なった印象をユーザが持ってしまう可能性がある。その理由は、グリッドを用いても散乱線を完全に抑えることができないため、ユーザは散乱線の一部が残留したグリッド画像を見慣れており、推定一次線像を見慣れていない場合があるからである。
Since the estimated primary line image obtained in this way does not include a scattered radiation image, the user may have an impression that the image quality is significantly different from the grid image described as the background art. The reason is that even if the grid is used, the scattered radiation cannot be completely suppressed, so the user is accustomed to the grid image in which a part of the scattered radiation remains and may not be accustomed to the estimated primary line image. is there.
そこで、図8(b)の構成では、グリッドを配置した場合に生じるのを同等の散乱線像を生成し、推定一次線像に対して加算する。これにより、グリッドを用いた場合と同等の出力画像を得る。すなわち、図8(b)の構成では、散乱線像除去部(304(b))の内部に、図8(a)の構成(304(a))と、第2の散乱線像推定部(303)と、乗算器(702)と、加算器(703)を備えている。そして、散乱線像除去部(304(a))の出力する推定一次線像を、第2の散乱線像推定部(303)に入力し、その出力(推定散乱線像)に対して、乗算器(702)を用いてグリッド損失係数を乗じ、グリッドを配置した場合と同等程度の散乱線像を生成する。
Therefore, in the configuration of FIG. 8B, an equivalent scattered ray image generated when the grid is arranged is generated and added to the estimated primary line image. Thereby, an output image equivalent to the case of using the grid is obtained. That is, in the configuration of FIG. 8 (b), the configuration (304 (a)) of FIG. 8 (a) and the second scattered radiation image estimation unit (304 (b)) and the second scattered radiation image estimation unit (304 (b)) 303), a multiplier (702), and an adder (703). Then, the estimated primary line image output from the scattered radiation image removal unit (304 (a)) is input to the second scattered radiation image estimation unit (303), and the output (estimated scattered radiation image) is multiplied. Using the device (702), the grid loss coefficient is multiplied to generate a scattered radiation image equivalent to the case where the grid is arranged.
この散乱線像を、加算器(703)を用いて散乱線像除去部(304(a))の出力(推定一次線像)に加算して、出力画像(グリッド画像を模擬した画像)を得る。ここで、グリッド損失係数は、散乱線がグリッドによって減衰する割合を示す係数であり、画像の位置(x,y)によらず一定の値とすればよい。このグリッド損失係数は、図3(a)に示した構成において、テーブル(109)とX線検出器(111(a))の間にグリッドを挿入したときと挿入しないときの、端部(左端あるいは右端)の外側の散乱線強度の比を測定して求めればよい。
This scattered radiation image is added to the output (estimated primary line image) of the scattered radiation image removal unit (304 (a)) using an adder (703) to obtain an output image (an image simulating a grid image). . Here, the grid loss coefficient is a coefficient indicating the rate at which scattered radiation is attenuated by the grid, and may be a constant value regardless of the position (x, y) of the image. This grid loss coefficient is the end (left edge) when the grid is inserted between the table (109) and the X-ray detector (111 (a)) and when it is not inserted in the configuration shown in FIG. Alternatively, it may be obtained by measuring the ratio of scattered radiation intensity outside the right end).
<画像処理部の動作例>
図9は、画像処理部(115)の各部(301)~(304)における処理動作の一例を示すフローチャートである。 <Operation example of image processing unit>
FIG. 9 is a flowchart showing an example of processing operations in the units (301) to (304) of the image processing unit (115).
図9は、画像処理部(115)の各部(301)~(304)における処理動作の一例を示すフローチャートである。 <Operation example of image processing unit>
FIG. 9 is a flowchart showing an example of processing operations in the units (301) to (304) of the image processing unit (115).
上述してきた画像処理部(115)は、CPU等の演算部と、予めプログラムが格納された記憶部とを備えたコンピュータにより構成し、演算部が記憶部内のプログラムを読み込んで実行することにより、各部(301)~(304)の機能をソフトウェア処理により実現する構成であってもよいし、画像処理部(115)の各部(301)~(304)の機能の一部または全部を、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)等ハードウェアにより実現する構成としてもよい。
The image processing unit (115) described above is constituted by a computer including a calculation unit such as a CPU and a storage unit in which a program is stored in advance, and the calculation unit reads and executes the program in the storage unit, The configuration may be such that the functions of the units (301) to (304) are realized by software processing, or some or all of the functions of the units (301) to (304) of the image processing unit (115) may be implemented by an ASIC ( The configuration may be realized by hardware such as Application (Specific Integrated Circuit) or FPGA (Field-Programmable Gate Array).
以下、図9のフローチャートを用いて、画像処理部(115)の処理動作を説明する。ここでは、画像処理部(115)の各部(301)~(304)の機能がソフトウェア処理により実現される場合を例に説明する。
Hereinafter, the processing operation of the image processing unit (115) will be described with reference to the flowchart of FIG. Here, a case where the functions of the units (301) to (304) of the image processing unit (115) are realized by software processing will be described as an example.
まず、中央処理部114が、入力部(116)を介してユーザから受け取った画像取得条件に応じてX線制御部(104)、絞り・フィルタ制御部(107)、機構制御部(110)、検出器制御部(112)を制御することにより、X線管(102)からX線が被写体(108)に対して照射され、被写体(108)を通過したX線がX線検出器(111)が検出することにより透過画像が生成される。
First, the central processing unit 114 has an X-ray control unit (104), an aperture / filter control unit (107), a mechanism control unit (110), according to the image acquisition conditions received from the user via the input unit (116), By controlling the detector control unit (112), the X-ray tube (102) irradiates the subject (108) with X-rays, and the X-rays that have passed through the subject (108) become X-ray detector (111). By detecting this, a transmission image is generated.
画像処理部(115)は、図9のステップ(1001)において演算部が記憶部内のプログラムを読み込んで実行することにより各部(301)~(304)の機能を動作させ以下の処理を開始する。ステップ(1002)において、画像処理部(115)は、検出器制御部(112)を介して、X線検出器(111)が生成した透過画像(以下、入力画像とも呼ぶ)を取得する。
The image processing unit (115) starts the following processing by operating the functions of the units (301) to (304) when the calculation unit reads and executes the program in the storage unit in step (1001) of FIG. In step (1002), the image processing unit (115) acquires a transmission image (hereinafter also referred to as an input image) generated by the X-ray detector (111) via the detector control unit (112).
ステップ(1003)において、画像処理部(115)の高周波成分抽出部(301)は、入力画像について空間軸方向および時間軸方向の少なくとも一方の高周波成分を抽出する。ステップ(1004)において、体厚分布算出部(302)は、高周波成分から体厚分布を算出する。ステップ(1005)において、散乱線像推定部(303)は、ステップ(1004)で算出した体厚分布から散乱線像を推定する。ステップ(1006)において、散乱線像除去部(304)は、ステップ(1005)で推定した散乱線像を入力画像から減算することにより出力画像を生成する。ステップ(1007)において、画像処理部(115)は、ステップ(1006)で生成した出力画像を出力して、ステップ(1008)で処理を終了する。
In step (1003), the high frequency component extraction unit (301) of the image processing unit (115) extracts at least one high frequency component in the spatial axis direction and the time axis direction from the input image. In step (1004), the body thickness distribution calculation unit (302) calculates the body thickness distribution from the high frequency component. In step (1005), the scattered radiation image estimation unit (303) estimates a scattered radiation image from the body thickness distribution calculated in step (1004). In step (1006), the scattered radiation image removal unit (304) generates an output image by subtracting the scattered radiation image estimated in step (1005) from the input image. In step (1007), the image processing unit (115) outputs the output image generated in step (1006), and the process ends in step (1008).
なお、これらの各ステップにおける処理の内容は、図2~図8を用いて説明した各部(301)~(304)の処理動作と同一であるため、詳細な説明を省略する。また、図9に具体的に示していない処理についても、図2~図8に示した構成における各部(301)~(304)の動作を、それぞれソフトウェアにより実現することが可能である。
Note that the content of the processing in each of these steps is the same as the processing operation of each unit (301) to (304) described with reference to FIG. 2 to FIG. Also for the processing not specifically shown in FIG. 9, the operations of the units (301) to (304) in the configuration shown in FIGS. 2 to 8 can be realized by software.
このように、パーソナルコンピュータ(PC)を代表とする一般的なコンピュータ構成上で動作するソフトウェアプログラムによって、散乱線による画質変動を抑えた画像を短時間で得ることが可能となる。
As described above, a software program that operates on a general computer configuration represented by a personal computer (PC) can obtain an image in which image quality fluctuation due to scattered radiation is suppressed in a short time.
<実施の形態1のまとめ>
以上述べたように、実施形態1の放射線撮像装置では、図2~図9に示した各部の構成および動作を用いることにより、反復処理を一切行うことなく、短時間で被写体の体厚分布を求めることができるとともに、この体厚分布を用いて、散乱線による画質変動を抑えた画像を得ることができるようになる。 <Summary ofEmbodiment 1>
As described above, in the radiation imaging apparatus of the first embodiment, by using the configuration and operation of each unit shown in FIGS. 2 to 9, the body thickness distribution of the subject can be obtained in a short time without performing any iterative process. In addition to this, it is possible to obtain an image in which image quality fluctuations due to scattered rays are suppressed by using this body thickness distribution.
以上述べたように、実施形態1の放射線撮像装置では、図2~図9に示した各部の構成および動作を用いることにより、反復処理を一切行うことなく、短時間で被写体の体厚分布を求めることができるとともに、この体厚分布を用いて、散乱線による画質変動を抑えた画像を得ることができるようになる。 <Summary of
As described above, in the radiation imaging apparatus of the first embodiment, by using the configuration and operation of each unit shown in FIGS. 2 to 9, the body thickness distribution of the subject can be obtained in a short time without performing any iterative process. In addition to this, it is possible to obtain an image in which image quality fluctuations due to scattered rays are suppressed by using this body thickness distribution.
(実施の形態2)
本発明の実施形態2の放射線撮像装置について説明する。 (Embodiment 2)
A radiation imaging apparatus according toEmbodiment 2 of the present invention will be described.
本発明の実施形態2の放射線撮像装置について説明する。 (Embodiment 2)
A radiation imaging apparatus according to
<画像処理部の他の構成例>
実施の形態2による放射線撮像装置は、図2に示した実施の形態1による放射線撮像装置における画像処理部(115)を、図10に示す画像処理部(801)に置き換えた構成である。図2と共通のブロックについては説明を省略し、以下、置き換えた後の画像処理部(801)について説明する。 <Another configuration example of the image processing unit>
The radiation imaging apparatus according to the second embodiment has a configuration in which the image processing unit (115) in the radiation imaging apparatus according to the first embodiment shown in FIG. 2 is replaced with an image processing unit (801) shown in FIG. Description of blocks common to FIG. 2 is omitted, and the image processing unit (801) after replacement will be described below.
実施の形態2による放射線撮像装置は、図2に示した実施の形態1による放射線撮像装置における画像処理部(115)を、図10に示す画像処理部(801)に置き換えた構成である。図2と共通のブロックについては説明を省略し、以下、置き換えた後の画像処理部(801)について説明する。 <Another configuration example of the image processing unit>
The radiation imaging apparatus according to the second embodiment has a configuration in which the image processing unit (115) in the radiation imaging apparatus according to the first embodiment shown in FIG. 2 is replaced with an image processing unit (801) shown in FIG. Description of blocks common to FIG. 2 is omitted, and the image processing unit (801) after replacement will be described below.
図10は、実施の形態2による放射線撮像装置が有する画像処理部(801)の構成の一例を示すブロック図である。実施形態2の画像処理部(801)は、X線検出器(111)の飽和に起因するハレーション(白飛び)が透過画像に生じた場合であっても、その影響を抑制して、体厚分布を求める。すなわち、透過像を検出したX線検出器がX線によって飽和しているかどうかを判定する検出部と、X線検出器(111)が飽和している場合、飽和している位置について体厚分布算出部(302)が算出した体厚を異なる値に置き換える置き換え部を有する。
FIG. 10 is a block diagram showing an example of the configuration of the image processing unit (801) included in the radiation imaging apparatus according to the second embodiment. The image processing unit (801) of the second embodiment suppresses the influence even when halation (out-of-white) due to saturation of the X-ray detector (111) occurs in the transmission image, thereby reducing the body thickness. Find the distribution. That is, when the X-ray detector that detects the transmission image is saturated with X-rays and the X-ray detector (111) is saturated, the body thickness distribution at the saturated position The replacement unit replaces the body thickness calculated by the calculation unit (302) with a different value.
図3を用いて説明したように、本発明の実施の形態1による放射線撮像装置は、図3(a1)および図3(b1)に示したようにX線のノイズ(高周波成分)に着目し、透過画像を高周波成分と低周波成分に分離して、高周波成分の強度から体厚分布を求めた。しかし、X線管(102)から照射されるX線の強度が強すぎると、X線検出器(111)が飽和してしまい、透過画像の輝度にハレーション(白飛び)が生じて、高周波成分が見かけ上無くなったようになることがある。この場合、ノイズ成分強度の平均値が0となり、図6に示した体厚分布算出部(302)は、ルックアップテーブル(503)の変換特性(504)を参照して、実際とは異なる体厚を算出してしまう。すなわち、X線の強度が強い領域(すなわち、体厚が薄い領域)であるにも関わらず、ノイズ成分強度の平均値が0であるために、体厚分布算出部(302)は、ノイズが透過しないような、極めて厚い体厚を算出する。そのため、図4に示した画像処理部(115)では結果的に誤った出力画像になってしまう可能性がある。
As described with reference to FIG. 3, the radiation imaging apparatus according to the first embodiment of the present invention pays attention to the X-ray noise (high frequency component) as shown in FIGS. 3 (a1) and 3 (b1). The transmission image was separated into a high frequency component and a low frequency component, and a body thickness distribution was obtained from the intensity of the high frequency component. However, if the intensity of X-rays emitted from the X-ray tube (102) is too strong, the X-ray detector (111) will be saturated, causing halation (whiteout) in the brightness of the transmitted image, and high-frequency components May seem to disappear. In this case, the average value of the noise component intensity is 0, and the body thickness distribution calculation unit (302) shown in FIG. 6 refers to the conversion characteristic (504) of the lookup table (503) and is different from the actual body. The thickness is calculated. That is, since the average value of the noise component intensity is 0 in spite of the region where the X-ray intensity is strong (i.e., the region where the body thickness is thin), the body thickness distribution calculation unit (302) An extremely thick body thickness that does not penetrate is calculated. Therefore, the image processing unit (115) shown in FIG. 4 may result in an incorrect output image.
そこで、図10(a)に示す画像処理部(801)では、図4に示した画像処理部(115)を構成する高周波成分抽出部(301)、体厚分布算出部(302)、散乱線像推定部(303)、および散乱線像除去部(304)をベースとして、新たに、体厚分布算出部(802)、比較器(検出部)(803)、および切り替え器(置き換え部)(804)を追加する。以下、各部の動作を説明する。
Therefore, in the image processing unit (801) shown in FIG. 10 (a), the high-frequency component extracting unit (301), the body thickness distribution calculating unit (302), and the scattered radiation constituting the image processing unit (115) shown in FIG. Based on the image estimation unit (303) and the scattered radiation image removal unit (304), a new body thickness distribution calculation unit (802), a comparator (detection unit) (803), and a switch (replacement unit) ( 804) is added. Hereinafter, the operation of each unit will be described.
まず、体厚分布算出部(802)は、高周波成分ではなく、入力画像の輝度値を用いて、位置(x,y)ごとの体厚分布を算出する。具体的には、予め求めておいた、各画像取得条件における被写体の厚みと入力画像の輝度値の平均値との関係(変換特性)を、図示しないルックアップテーブルに格納しておき、体厚分布算出部(802)は、このルックアップテーブルの変換特性を参照して、位置(x,y)ごとに入力画像の輝度値から体厚を求め、求めた体厚分布を体厚情報として出力する。被写体の厚みと入力画像の輝度値の平均値との関係は、図3(a)に示した構成を用いて、被写体(202)の厚みを適宜変更しながら、画像取得条件ごとに図3(a1)に示す透過画像を取得したのちに、各画像取得条件における厚みと入力画像の輝度値の平均値との関係を求めればよい。
First, the body thickness distribution calculation unit (802) calculates the body thickness distribution for each position (x, y) using the luminance value of the input image instead of the high frequency component. More specifically, the relationship (conversion characteristics) between the subject thickness and the average value of the luminance values of the input images obtained in advance in each image acquisition condition is stored in a lookup table (not shown), and the body thickness The distribution calculation unit (802) refers to the conversion characteristics of the lookup table, obtains the body thickness from the luminance value of the input image for each position (x, y), and outputs the obtained body thickness distribution as body thickness information. To do. The relationship between the thickness of the subject and the average value of the luminance values of the input image is as shown in FIG. 3 for each image acquisition condition while appropriately changing the thickness of the subject (202) using the configuration shown in FIG. After acquiring the transmission image shown in a1), the relationship between the thickness under each image acquisition condition and the average value of the luminance values of the input image may be obtained.
続いて、比較器(803)は、体厚分布算出部(802)が算出した体厚情報と、予め定めた閾値とを位置(x.y)ごとに比較し、各位置の体厚が閾値よりも小さい(薄い)ときには、その位置(x,y)の透過画像が白飛びしている可能性があると判定する。この判定結果を用いて、切り替え器(804)は、透過画像が白飛びしている可能性がある位置(x,y)については、体厚推定部(302)から出力された体厚情報の替わりに、体厚推定部(802)から出力された体厚情報を散乱線像推定部(303)に入力する。
Subsequently, the comparator (803) compares the body thickness information calculated by the body thickness distribution calculation unit (802) with a predetermined threshold for each position (xy), and the body thickness at each position is less than the threshold. When it is small (thin), it is determined that there is a possibility that the transmitted image at the position (x, y) is whiteout. Using this determination result, the switch (804) uses the body thickness information output from the body thickness estimation unit (302) for the position (x, y) where the transmission image may be whiteout. Instead, the body thickness information output from the body thickness estimation unit (802) is input to the scattered radiation image estimation unit (303).
これにより、散乱線像推定部(303)は、X線検出器(111)が飽和して、透過画像の輝度にハレーション(白飛び)が生じている場合でも、白飛びが生じた位置については、透過画像の輝度値から求めた体厚情報を用いることができるため、白飛びの影響を受けることなく、体厚に基づいて散乱線像を推定することができる。
As a result, the scattered radiation image estimation unit (303) allows the X-ray detector (111) to saturate, and even if halation occurs in the brightness of the transmitted image, Since the body thickness information obtained from the luminance value of the transmission image can be used, the scattered radiation image can be estimated based on the body thickness without being affected by the whiteout.
一方、図10(b)に示す画像処理部(805)は、前述した図10(a)に示す画像処理部(804)の構成を簡単化した構成例である。この画像処理部(805)は、図4に示した画像処理部(115)を構成する高周波成分抽出部(301)、体厚分布算出部(302)、散乱線像推定部(303)、および散乱線像除去部(304)をベースとして、新たに、比較器(806)と切り替え器(807)を追加する。以下、追加した各部の動作を説明する。
On the other hand, the image processing unit (805) illustrated in FIG. 10B is a configuration example in which the configuration of the image processing unit (804) illustrated in FIG. The image processing unit (805) includes a high frequency component extraction unit (301), a body thickness distribution calculation unit (302), a scattered radiation image estimation unit (303), and the image processing unit (115) shown in FIG. Based on the scattered radiation image removal unit (304), a comparator (806) and a switch (807) are newly added. The operation of each added part will be described below.
比較器(806)は、入力画像の輝度値と、予め定めた閾値とを位置(x,y)ごとに比較し、各位置の輝度値が閾値よりも大きいときには、その位置(x,y)の透過画像が白飛びしている可能性があると判定する。この判定結果を用いて、透過画像が白飛びしている可能性がある位置(x,y)では、切り替え器(807)により、体厚推定部(302)から出力された体厚情報の替わりに、体厚設定値を散乱線像推定部(303)に入力する。このとき、体厚設定値は、予め定めた定数を用い、例えば体厚=0cmを表す設定値とすればよい。
The comparator (806) compares the luminance value of the input image with a predetermined threshold value for each position (x, y), and when the luminance value at each position is larger than the threshold value, the position (x, y) It is determined that there is a possibility that the transparent image is whiteout. Using this determination result, at the position (x, y) where the transmission image may be overexposed, the switch (807) replaces the body thickness information output from the body thickness estimation unit (302). Then, the body thickness setting value is input to the scattered radiation image estimation unit (303). At this time, as the body thickness setting value, a predetermined constant may be used, for example, a setting value representing body thickness = 0 cm.
これにより、散乱線像推定部(303)は、透過画像の輝度にハレーション(白飛び)が生じている場合でも、白飛びが生じた位置については、予め定めた体厚設定値を用いることができるため、白飛びの影響を低減した散乱線像を推定することができる。
Thereby, the scattered radiation image estimation unit (303) can use a predetermined body thickness setting value for the position at which whiteout occurs even when halation (whiteout) occurs in the brightness of the transmitted image. Therefore, it is possible to estimate a scattered radiation image in which the influence of whiteout is reduced.
<実施の形態2のまとめ>
以上のように画像処理部(801)あるいは画像処理部(805)を構成し、画像処理部(115)の替わりに使用すれば、透過画像の白飛びが原因となって、画像処理部(801)(805)から誤った画像が出力されることを無くすことができる。 <Summary ofEmbodiment 2>
If the image processing unit (801) or the image processing unit (805) is configured as described above and used instead of the image processing unit (115), the image processing unit (801 ) (805) can be prevented from outputting an incorrect image.
以上のように画像処理部(801)あるいは画像処理部(805)を構成し、画像処理部(115)の替わりに使用すれば、透過画像の白飛びが原因となって、画像処理部(801)(805)から誤った画像が出力されることを無くすことができる。 <Summary of
If the image processing unit (801) or the image processing unit (805) is configured as described above and used instead of the image processing unit (115), the image processing unit (801 ) (805) can be prevented from outputting an incorrect image.
(実施の形態3)
実施形態3の放射線撮像装置について説明する。
<画像処理部のさらに他の構成例>
実施の形態3による放射線撮像装置は、図2に示した実施の形態1による放射線撮像装置における画像処理部(115)を、図11に示す画像処理部(901)に置き換えた構成である。図2と共通のブロックについては説明を省略し、以下、置き換えた後の画像処理部(901)について説明する。 (Embodiment 3)
A radiation imaging apparatus according to Embodiment 3 will be described.
<Another configuration example of the image processing unit>
The radiation imaging apparatus according to the third embodiment has a configuration in which the image processing unit (115) in the radiation imaging apparatus according to the first embodiment shown in FIG. 2 is replaced with an image processing unit (901) shown in FIG. Description of blocks common to FIG. 2 will be omitted, and the image processing unit (901) after replacement will be described below.
実施形態3の放射線撮像装置について説明する。
<画像処理部のさらに他の構成例>
実施の形態3による放射線撮像装置は、図2に示した実施の形態1による放射線撮像装置における画像処理部(115)を、図11に示す画像処理部(901)に置き換えた構成である。図2と共通のブロックについては説明を省略し、以下、置き換えた後の画像処理部(901)について説明する。 (Embodiment 3)
A radiation imaging apparatus according to Embodiment 3 will be described.
<Another configuration example of the image processing unit>
The radiation imaging apparatus according to the third embodiment has a configuration in which the image processing unit (115) in the radiation imaging apparatus according to the first embodiment shown in FIG. 2 is replaced with an image processing unit (901) shown in FIG. Description of blocks common to FIG. 2 will be omitted, and the image processing unit (901) after replacement will be described below.
図11は、実施の形態3の画像処理部(901)における構成の一例を示すブロック図である。
FIG. 11 is a block diagram illustrating an example of a configuration in the image processing unit (901) of the third embodiment.
前述した実施の形態1および2の構成および動作では、いくつかの近似を入れて体厚分布を算出しているため、近似に起因する誤差が出力画像に混入することがある。ユーザが動画を観察する用途(X線透視)などでは、この誤差を許容して処理の高速性を優先すればよい。一方、ユーザが静止画を観察する用途(X線撮影)などでは、処理の高速性を若干犠牲にして、誤差を減らしたほうがよい場合もある。
In the configurations and operations of the first and second embodiments described above, the body thickness distribution is calculated by putting some approximations, so errors due to the approximation may be mixed in the output image. In applications where the user observes a moving image (X-ray fluoroscopy), it is sufficient to allow this error and give priority to high-speed processing. On the other hand, when the user observes a still image (X-ray imaging) or the like, it may be better to reduce the error at the expense of processing speed.
そこで、図11に示す画像処理部(901)では、体厚分布算出部(302)によって算出された体厚の値を補正する体厚分布補正部(902)と、補正部(902)が出力する補正後の体厚に基づいて推定透過線像を生成する推定透過線像(推定入力画像)生成部(904)と、X線検出器(111)の出力する透過画像(入力画像、すなわち放射線強度分布)と推定透過線像とを比較する比較部(905)とを有する。補正部(902)は、比較部(905)の出力に基づいて補正量を調整する。
Therefore, in the image processing unit (901) shown in FIG. 11, the body thickness distribution correction unit (902) for correcting the body thickness value calculated by the body thickness distribution calculation unit (302) and the correction unit (902) output An estimated transmission line image (estimated input image) generation unit (904) that generates an estimated transmission line image based on the corrected body thickness and a transmission image (input image, that is, radiation) output from the X-ray detector (111) A comparison unit (905) for comparing the intensity distribution) and the estimated transmission line image. The correction unit (902) adjusts the correction amount based on the output of the comparison unit (905).
具体的には、図4に示した画像処理部(115)を構成する高周波成分抽出部(301)、体厚分布算出部(302)、散乱線像推定部(303)、および散乱線像除去部(304)をベースとして、画像処理部(901)は、新たに、体厚分布補正部(902)、切り替え器(903)、推定入力画像生成部(904)、および比較器(905)を追加する。以下、各部の動作を説明する前に、事前に準備するパラメータ取得の方法について説明する。
Specifically, the high-frequency component extraction unit (301), the body thickness distribution calculation unit (302), the scattered radiation image estimation unit (303), and the scattered radiation image removal that constitute the image processing unit (115) shown in FIG. Based on the unit (304), the image processing unit (901) newly includes a body thickness distribution correction unit (902), a switch (903), an estimated input image generation unit (904), and a comparator (905). to add. Hereinafter, a parameter acquisition method prepared in advance will be described before the operation of each unit is described.
まず、図3(a)に示した構成を用いて、画像取得条件と被写体(202)の厚みを適宜変更しながら、X線検出器(111(a))で検出された透過画像の輝度値を取得し、式(2)に基づいて線減弱係数μを事前に求めておく。続いて、前述した方法を用いて、被写体(202)の中でX線が散乱する際の点拡散関数Sσ(T(x,y))(602)あるいは点拡散関数Sσ(606)を求めておく。
First, using the configuration shown in FIG. 3 (a), the brightness value of the transmitted image detected by the X-ray detector (111 (a)) while appropriately changing the image acquisition conditions and the thickness of the subject (202). And the line attenuation coefficient μ is obtained in advance based on the equation (2). Subsequently, using the method described above, the point spread function Sσ (T (x, y)) (602) or the point spread function Sσ (606) when the X-ray is scattered in the subject (202) is obtained. deep.
続いて、放射線撮像装置を実際に使用する際の各部の動作について説明する。
Subsequently, the operation of each part when the radiation imaging apparatus is actually used will be described.
画像処理部(901)において、入力画像から、高周波成分抽出部(301)と、体厚分布算出部(302)とを介して、体厚情報(T(x,y))を得る。ここまでの動作(初期動作)については、図4に示した画像処理部(115)における各部の動作と同じである。
In the image processing unit (901), body thickness information (T (x, y)) is obtained from the input image via the high frequency component extraction unit (301) and the body thickness distribution calculation unit (302). The operation so far (initial operation) is the same as the operation of each unit in the image processing unit (115) shown in FIG.
次に、初期動作では図11における上側の経路に切り替えた切り替え器(903)を介して、体厚情報(x,y)を推定入力画像生成部(904)に入力する。推定入力画像生成部(904)では、この体厚情報(T(x,y))に基づき、前述した式(1)(2)(3)を用いて、推定入力画像を生成する。
Next, in the initial operation, body thickness information (x, y) is input to the estimated input image generation unit (904) via the switch (903) switched to the upper path in FIG. Based on this body thickness information (T (x, y)), the estimated input image generation unit (904) generates an estimated input image using the above-described equations (1), (2), and (3).
具体的には、事前に求めた線減弱係数μと体厚情報(T(x,y))と線量Io(x,y)とを用いて、式(2)から推定一次線像Ip(x,y)を求める。また、この推定一次線像Ip(x,y)と、事前に求めた点拡散関数Sσ(T(x,y))あるいは点拡散関数Sσとを用いて、式(3)から推定散乱線像Is(x,y)を求める。続いて、求めた推定一次線像Ip(x,y)と推定散乱線像Is(x,y)とを用いて、式(1)から推定入力画像Im(x,y)を求める。
Specifically, using the previously obtained linear attenuation coefficient μ, body thickness information (T (x, y)) and dose Io (x, y), the estimated primary line image Ip (x , y). Also, using this estimated primary line image Ip (x, y) and the point diffusion function Sσ (T (x, y)) or the point diffusion function Sσ obtained in advance, the estimated scattered radiation image from Equation (3) Find Is (x, y). Subsequently, an estimated input image Im (x, y) is obtained from Expression (1) using the obtained estimated primary line image Ip (x, y) and estimated scattered radiation image Is (x, y).
このようにして求めた推定入力画像Im(x,y)の輝度値と実際の入力画像の輝度値とを、比較器(905)により位置(x,y)ごとに比較して両画像の差分δ(x,y)を求め、この差分δ(x,y)を体厚分布補正部(902)に入力する。
The luminance value of the estimated input image Im (x, y) thus obtained and the luminance value of the actual input image are compared for each position (x, y) by the comparator (905), and the difference between both images is compared. δ (x, y) is obtained, and this difference δ (x, y) is input to the body thickness distribution correction unit (902).
体厚分布補正部(902)では、差分δ(x,y)の値の符号(正負)に基づいて、体厚情報T(x,y)を補正する。差分δ(x,y)が正の場合(すなわち、推定入力画像の輝度値のほうが実際の入力画像の輝度値よりも大きい位置(x,y)の場合)には、その位置(x,y)の体厚情報T(x,y)の値を少し大きい値(T(x,y)+Δ、ただしΔは正値)に補正する。逆に、差分δ(x,y)が負の場合(すなわち、推定入力画像の輝度値のほうが実際の入力画像の輝度値よりも小さい位置(x,y)の場合)には、その位置(x,y)の体厚情報T(x,y)の値を少し小さい値(T(x,y)-Δ、ただしΔは正値)に補正する。補正した体厚情報(T(x,y)±Δ)を新たな体厚情報T(x,y)として、体厚分布補正部(902)から出力する。
The body thickness distribution correction unit (902) corrects the body thickness information T (x, y) based on the sign (positive / negative) of the value of the difference δ (x, y). If the difference δ (x, y) is positive (i.e., if the luminance value of the estimated input image is larger than the luminance value of the actual input image (x, y)), the position (x, y ) Body thickness information T (x, y) is corrected to a slightly larger value (T (x, y) + Δ, where Δ is a positive value). Conversely, when the difference δ (x, y) is negative (i.e., when the luminance value of the estimated input image is smaller than the luminance value of the actual input image (x, y)), the position ( The body thickness information T (x, y) of x, y) is corrected to a slightly smaller value (T (x, y) −Δ, where Δ is a positive value). The corrected body thickness information (T (x, y) ± Δ) is output as new body thickness information T (x, y) from the body thickness distribution correction unit (902).
ここで、切り替え器(903)を、図11における下側の経路に切り替え、上述した上側の経路の場合と同様に、推定入力画像(904)、比較器(905)、体厚分布補正部(902)の各動作を反復すると、推定入力画像の輝度値と実際の入力画像の輝度値の差分δ(x,y)の絶対値が徐々に小さくなっていく。この差分δ(x,y)の絶対値がすべての位置(x,y)で予め定めた閾値よりも小さくなるか、あるいは、予め定めた所定の反復回数に達したときに、補正後の体厚情報T(x,y)を最終的な体厚情報T(x,y)として、反復処理を終了する。
Here, the switch (903) is switched to the lower path in FIG. 11, and the estimated input image (904), the comparator (905), the body thickness distribution correction unit ( When the operations in 902) are repeated, the absolute value of the difference δ (x, y) between the luminance value of the estimated input image and the luminance value of the actual input image gradually decreases. When the absolute value of the difference δ (x, y) is smaller than a predetermined threshold value at all positions (x, y) or when a predetermined number of repetitions is reached, a corrected body The thickness information T (x, y) is regarded as final body thickness information T (x, y), and the iterative process is terminated.
この最終的な体厚情報T(x,y)と入力画像を用いて、散乱線像推定部(303)で推定散乱線像を求め、散乱線像除去部(304)で入力画像から推定散乱線像を減じて、画像処理部(901)の出力画像とする。
Using this final body thickness information T (x, y) and the input image, the scattered radiation image estimation unit (303) obtains an estimated scattered radiation image, and the scattered radiation image removal unit (304) estimates the scattered light from the input image. The line image is subtracted to obtain an output image of the image processing unit (901).
新たな入力画像を処理する前に、切り替え器(903)を図11における上側の経路に切り替えて、初期動作に戻す。
Before processing a new input image, the switch (903) is switched to the upper path in FIG. 11 to return to the initial operation.
このように、実施形態3の画像処理部(901)は、反復処理を行うことにより、体厚分布算出部(302)が算出した体厚に含まれる誤差を低減することができる。
As described above, the image processing unit (901) of the third embodiment can reduce errors included in the body thickness calculated by the body thickness distribution calculating unit (302) by performing iterative processing.
なお、図11に示す画像処理部(901)の構成例において、体厚分布補正部(902)、推定入力画像生成部(904)、および比較器(905)の各部が機能しないように制御し、切り替え器(903)を図11における上側の経路に切り替えたままにしておけば、体厚分布算出部(302)の出力が散乱線像推定部(303)に入力されるようになり、図11に示す画像処理部(901)は図4に示した画像処理部(115)と同じ機能を持つことになる。このように、体厚情報の経路が切り替えられる構成にすることにより、ユーザが動画を観察する用途(X線透視)と、ユーザが静止画を観察する用途(X線撮影)で、機能を切り替えて使用できるようになる。
In the configuration example of the image processing unit (901) shown in FIG. 11, the body thickness distribution correction unit (902), the estimated input image generation unit (904), and the comparator (905) are controlled so as not to function. If the switch (903) is left switched to the upper path in FIG. 11, the output of the body thickness distribution calculation unit (302) is input to the scattered radiation image estimation unit (303). The image processing unit (901) shown in FIG. 11 has the same function as the image processing unit (115) shown in FIG. In this way, by configuring the path of body thickness information to be switched, the function can be switched between the application where the user observes the movie (X-ray fluoroscopy) and the application where the user observes the still image (X-ray imaging). Can be used.
以上述べたような反復処理を用いた装置では、体厚情報T(x,y)の初期値(すなわち、体厚分布算出部(302)から出力する体厚情報T(x,y))の精度に応じて、反復の回数が大きく変化する。実施の形態3による放射線撮像装置では、前述したように、透過画像に含まれるノイズ(高周波成分)から体厚情報を推定しているため、透過画像の強度分布Im(x,y)から体厚情報を推定するよりも散乱線による影響を抑えることができ、体厚情報の精度を高く保つことができるため、反復回数を大きく削減でき、散乱線による画質変動を抑えた画像を短時間で得ることが可能となる。
In the apparatus using the iterative processing as described above, the initial value of the body thickness information T (x, y) (that is, the body thickness information T (x, y) output from the body thickness distribution calculation unit (302)) Depending on the accuracy, the number of iterations varies greatly. In the radiation imaging apparatus according to the third embodiment, as described above, the body thickness information is estimated from the noise (high frequency component) included in the transmission image. Therefore, the body thickness is determined from the intensity distribution Im (x, y) of the transmission image. Since the influence of scattered radiation can be suppressed rather than estimating information, and the accuracy of body thickness information can be kept high, the number of iterations can be greatly reduced, and an image in which fluctuations in image quality due to scattered radiation are suppressed can be obtained in a short time. It becomes possible.
<実施の形態3のまとめ>
以上述べたように、実施の形態3による放射線撮像装置では、算出した体厚に含まれる誤差に起因して出力画像に混入する誤差を減らすことができる。また、従来技術と比較して、処理の反復回数を大きく削減でき、散乱線による画質変動を抑えた画像を短時間で得ることが可能となる。 <Summary of Embodiment 3>
As described above, the radiation imaging apparatus according to Embodiment 3 can reduce errors mixed in the output image due to errors included in the calculated body thickness. In addition, compared with the prior art, the number of processing iterations can be greatly reduced, and an image in which fluctuations in image quality due to scattered rays are suppressed can be obtained in a short time.
以上述べたように、実施の形態3による放射線撮像装置では、算出した体厚に含まれる誤差に起因して出力画像に混入する誤差を減らすことができる。また、従来技術と比較して、処理の反復回数を大きく削減でき、散乱線による画質変動を抑えた画像を短時間で得ることが可能となる。 <Summary of Embodiment 3>
As described above, the radiation imaging apparatus according to Embodiment 3 can reduce errors mixed in the output image due to errors included in the calculated body thickness. In addition, compared with the prior art, the number of processing iterations can be greatly reduced, and an image in which fluctuations in image quality due to scattered rays are suppressed can be obtained in a short time.
(実施の形態4)
実施形態4の放射線撮像装置について説明する。
<放射線撮像装置の他の構成例>
図12は、実施の形態4による放射線撮像装置における構成の一例を示すブロック図である。 (Embodiment 4)
A radiation imaging apparatus according to Embodiment 4 will be described.
<Another configuration example of radiation imaging apparatus>
FIG. 12 is a block diagram illustrating an example of a configuration of the radiation imaging apparatus according to the fourth embodiment.
実施形態4の放射線撮像装置について説明する。
<放射線撮像装置の他の構成例>
図12は、実施の形態4による放射線撮像装置における構成の一例を示すブロック図である。 (Embodiment 4)
A radiation imaging apparatus according to Embodiment 4 will be described.
<Another configuration example of radiation imaging apparatus>
FIG. 12 is a block diagram illustrating an example of a configuration of the radiation imaging apparatus according to the fourth embodiment.
図2に示した実施の形態1による放射線撮像装置における構成例では、この装置を構成する各部が、同一の装置、あるいは近接して配置される複数の装置の中に組み込まれることを想定しているため、装置ごとに画像処理部を内蔵する必要がある。
In the configuration example of the radiation imaging apparatus according to Embodiment 1 shown in FIG. 2, it is assumed that each unit configuring this apparatus is incorporated into the same apparatus or a plurality of apparatuses arranged close to each other. Therefore, it is necessary to incorporate an image processing unit for each apparatus.
そこで、実施形態4では、図12に示すように、放射線撮像装置(1101)を、透過画像を取得して表示するクライアント部(1102)と、画像処理を行うサーバ部(1105)とに分離し、両者を通信ネットワーク(1104)で接続する構成にする。
Therefore, in the fourth embodiment, as shown in FIG. 12, the radiation imaging apparatus (1101) is separated into a client unit (1102) that acquires and displays a transmission image and a server unit (1105) that performs image processing. The two are connected by a communication network (1104).
クライアント部(1102)は、図2に示した実施の形態1による放射線撮像装置の構成例から、画像処理部(115)を外し、その替わりにネットワークインタフェース(I/F)部(1103)を設けた構成である。ネットワークI/F部(1103)以外の各部については、図2に示した各部の構成および動作と同じであるため、説明を省略する。
The client unit (1102) removes the image processing unit (115) from the configuration example of the radiation imaging apparatus according to the first embodiment shown in FIG. 2, and is provided with a network interface (I / F) unit (1103) instead. It is a configuration. The components other than the network I / F unit (1103) are the same as the configuration and operation of each unit shown in FIG.
クライアント部(1102)が備えるネットワークI/F部(1103)は、通信ネットワーク(1104)に画像データを送信するための図示しないネットワーク送信I/F部を備え、HTTP(HyperText Transfer Protocol)やFTP(File Transfer Protocol)などに代表される一般的なネットワークプロトコルを用いて、X線検出部(111)で検出した透過画像(入力画像)を通信ネットワーク(1104)経由でサーバ部(1105)に送信する。また、ネットワークI/F部(1103)は、通信ネットワーク(1104)から画像データを受信するための図示しないネットワーク受信I/F部を備え、サーバ部(1105)で処理された画像(出力画像)を、通信ネットワーク(1104)を経由して受信し、表示部(117)に送る。
The network I / F unit (1103) included in the client unit (1102) includes a network transmission I / F unit (not shown) for transmitting image data to the communication network (1104), and includes HTTP (HyperText Transfer Protocol) and FTP ( Using a general network protocol such as File (Transfer Protocol), the transmission image (input image) detected by the X-ray detection unit (111) is transmitted to the server unit (1105) via the communication network (1104). . The network I / F unit (1103) includes a network reception I / F unit (not shown) for receiving image data from the communication network (1104), and an image (output image) processed by the server unit (1105). Is transmitted via the communication network (1104) and sent to the display unit (117).
ネットワークI/F部(1103)は、中央処理部(114)と接続して制御するように構成してもよい。なお、ネットワークI/F部(1103)は、一般的な技術で実現できるため、詳細な説明を省略する。
The network I / F unit (1103) may be configured to be connected to and controlled by the central processing unit (114). Since the network I / F unit (1103) can be realized by a general technique, detailed description thereof is omitted.
通信ネットワーク(1104)は、一般的なインターネットやイントラネットでもよいし、施設内等に閉じた構内ネットワークでもよいし、固定電話回線や無線電話回線等の公衆網でもよいし、無線LANやBlueTooth(登録商標)等による無線ネットワークでもよい。
The communication network (1104) may be a general Internet or an intranet, a private network closed in a facility, a public network such as a fixed telephone line or a wireless telephone line, or a wireless LAN or BlueTooth (registration). (Trademark) or the like.
サーバ部(1105)は、ネットワークI/F部(1106)と、画像処理部 (1107)と、中央処理部(1108)と、記憶部(1109)で構成される。
The server unit (1105) includes a network I / F unit (1106), an image processing unit (1107), a central processing unit (1108), and a storage unit (1109).
サーバ部(1105)が備えるネットワークI/F部(1106)は、通信ネットワーク(1104)から画像データを受信するための図示しないネットワーク受信I/F部を備え、HTTP(HyperText Transfer Protocol)やFTP(File Transfer Protocol)などに代表される一般的なネットワークプロトコルを用いて、クライアント部から送信された入力画像を通信ネットワーク(1104)経由で受信する。また、通信ネットワーク(1104)に画像データを送信するための図示しないネットワーク送信I/F部を備え、画像処理部(1107)で処理された画像を、通信ネットワーク(1104)経由でクライアント部(1102)に送信する。ネットワークI/F部(1106)は、中央処理部(1108)と接続して制御するように構成してもよい。なお、ネットワークI/F部(1106)は、一般的な技術で実現できるため、詳細な説明を省略する。
The network I / F unit (1106) included in the server unit (1105) includes a network reception I / F unit (not shown) for receiving image data from the communication network (1104), and includes HTTP (HyperText Transfer Protocol) and FTP ( The input image transmitted from the client unit is received via the communication network (1104) using a general network protocol typified by File (Transfer Protocol). In addition, a network transmission I / F unit (not shown) for transmitting image data to the communication network (1104) is provided, and an image processed by the image processing unit (1107) is transferred to the client unit (1102) via the communication network (1104). ). The network I / F unit (1106) may be configured to be connected to and controlled by the central processing unit (1108). Since the network I / F unit (1106) can be realized by a general technique, detailed description thereof is omitted.
画像処理部(1107)は、ネットワークI/F部(1106)を介して、クライアント(1102)から受け取った入力画像(すなわち、被写体(108)を通過した放射線を検出して得た放射線強度分布)について、空間軸方向および時間軸方向の少なくとも一方の高周波成分を抽出する抽出部(301)と、抽出部(301)が抽出した高周波成分に基づいて被写体の厚さの分布を求める厚さ分布算出部(体厚分布算出部)(302)と、厚さ分布算出部(302)が算出した被写体の厚さ分布に基づいて被写体を放射線が通過することによって生じる散乱線の分布を求める散乱線分布推定部(303)と、散乱線分布推定部(303)が求めた散乱線分布を入力画像から除去する散乱線分布除去部(304)とを備える。画像処理部(1107)は、図2および図4に示した画像処理部(115)、図10に示した画像処理部(801)(805)、図11に示した画像処理部(901)のうち、いずれかと同じ構成で実現できる。また、図9に示したフローチャートに示したプログラムを用いて、コンピュータを抽出部(抽出手段)(301)と、体厚分布算出部(体厚分布算出手段)(302)等として機能させる構成としてもよい。なお、画像処理部(1107)は、中央処理部(1108)と接続して制御するように構成してもよい。
The image processing unit (1107) receives the input image received from the client (1102) via the network I / F unit (1106) (that is, the radiation intensity distribution obtained by detecting the radiation that has passed through the subject (108)). The extraction unit (301) for extracting at least one high-frequency component in the spatial axis direction and the time-axis direction, and the thickness distribution calculation for obtaining the thickness distribution of the subject based on the high-frequency component extracted by the extraction unit (301) Part (body thickness distribution calculation unit) (302) and a scattered ray distribution for obtaining a distribution of scattered rays generated by radiation passing through the subject based on the thickness distribution of the subject calculated by the thickness distribution calculation unit (302) An estimation unit (303) and a scattered radiation distribution removal unit (304) that removes the scattered radiation distribution obtained by the scattered radiation distribution estimation unit (303) from the input image. The image processing unit (1107) includes the image processing unit (115) shown in FIGS. 2 and 4, the image processing units (801) and (805) shown in FIG. 10, and the image processing unit (901) shown in FIG. Of these, the same configuration can be realized. Further, by using the program shown in the flowchart shown in FIG. 9, the computer functions as an extraction unit (extraction unit) (301), a body thickness distribution calculation unit (body thickness distribution calculation unit) (302), and the like. Also good. The image processing unit (1107) may be configured to be connected to and controlled by the central processing unit (1108).
記憶部(1109)は、中央処理部(1109)と接続し、画像処理部(1107)の動作に必要な、前述したルックアップテーブル(503)(604)の内容や点拡散関数の特性(602)(606)を格納する。
The storage unit (1109) is connected to the central processing unit (1109), and the contents of the aforementioned look-up tables (503) and (604) and the characteristics of the point spread function (602) necessary for the operation of the image processing unit (1107). ) (606) is stored.
以上のように、放射線撮像装置(1101)を、透過画像を取得して表示するクライアント部(1102)と、画像処理を行うサーバ部(1105)とに分離し、両者を通信ネットワーク(1104)で接続する構成にすることにより、以下の効果を得ることができる。
As described above, the radiation imaging apparatus (1101) is separated into a client unit (1102) that acquires and displays a transmission image and a server unit (1105) that performs image processing, and both are connected by a communication network (1104). By adopting a connection configuration, the following effects can be obtained.
まず、複数のクライアント部(1102)に対して、ひとつのサーバ部(1105)を設置すればよくなるため、大規模な放射線撮像装置を経済的に構築できるようになる。
First, since it is only necessary to install one server unit (1105) for a plurality of client units (1102), a large-scale radiation imaging apparatus can be constructed economically.
また、通信ネットワーク(1104)としてインターネット等を用いることにより、クライアント部(1102)とサーバ部(1105)を、互いの遠隔地に設置できるようになる。
Also, by using the Internet or the like as the communication network (1104), the client unit (1102) and the server unit (1105) can be installed at remote locations.
さらに、クライアント部(1102)の中に図示しないログイン制御部を設け、サーバ部(1105)の中に図示しないユーザ認証・管理部と課金処理部を設ければ、クライアント部(1102)を操作するユーザに対して、サーバ部(1105)を用いた課金事業を実施することが可能になる。
Furthermore, if a login control unit (not shown) is provided in the client unit (1102) and a user authentication / management unit and a billing processing unit (not shown) are provided in the server unit (1105), the client unit (1102) is operated. A billing business using the server unit (1105) can be implemented for the user.
なお、ログイン制御部はクライアント部(1102)の中央処理部(114)で実行するソフトウェアプログラム処理とし、ユーザ認証・管理部と課金処理部はサーバ部(1105)の中央処理部(1108)で実行するソフトウェアプログラム処理とすれば、一般的に知られている技術を用いて各部を容易に実現できるため、各部の詳細な説明は省略する。
The login control unit is software program processing executed by the central processing unit (114) of the client unit (1102), and the user authentication / management unit and billing processing unit are executed by the central processing unit (1108) of the server unit (1105). If the software program processing is performed, each part can be easily realized by using a generally known technique, and a detailed description of each part will be omitted.
<実施の形態4のまとめ>
以上述べたように、実施の形態4による放射線撮像装置を用いれば、ネットワークを介して散乱線による画質変動を抑えた画像を得ることができるようになるとともに、大規模な放射線撮像装置を経済的に構築できるようになったり、遠隔地に設置できるようになったり、課金事業を実施することができるようになったりする。 <Summary of Embodiment 4>
As described above, if the radiation imaging apparatus according to the fourth embodiment is used, it is possible to obtain an image in which image quality fluctuations due to scattered rays are suppressed through a network, and a large-scale radiation imaging apparatus is economical. Can be constructed in a remote location, can be installed in a remote location, or can be charged.
以上述べたように、実施の形態4による放射線撮像装置を用いれば、ネットワークを介して散乱線による画質変動を抑えた画像を得ることができるようになるとともに、大規模な放射線撮像装置を経済的に構築できるようになったり、遠隔地に設置できるようになったり、課金事業を実施することができるようになったりする。 <Summary of Embodiment 4>
As described above, if the radiation imaging apparatus according to the fourth embodiment is used, it is possible to obtain an image in which image quality fluctuations due to scattered rays are suppressed through a network, and a large-scale radiation imaging apparatus is economical. Can be constructed in a remote location, can be installed in a remote location, or can be charged.
<全体のまとめ>
(i)以上説明した本発明の実施形態によれば、被写体に放射線を照射する放射線源と、被写体を通過した放射線の強度分布を検出する放射線検出器と、放射線の強度分布について、空間軸方向および時間軸方向の少なくとも一方の高周波成分を抽出する抽出部と、抽出部が抽出した高周波成分に基づいて被写体の厚さの分布を求める体厚分布算出部とを有することにより、散乱線による画質変動を抑えた放射線透過画像が、短時間で得られるようになる。
(ii)本発明は、実施形態の機能を実現するハードウェア、およびソフトウェアのプログラムコードによって実現できる。 <Overall summary>
(I) According to the embodiment of the present invention described above, the radiation source that irradiates the subject with radiation, the radiation detector that detects the intensity distribution of the radiation that has passed through the subject, and the radiation intensity distribution in the spatial axis direction And an extraction unit that extracts at least one high-frequency component in the time axis direction, and a body thickness distribution calculation unit that obtains the thickness distribution of the subject based on the high-frequency component extracted by the extraction unit A radiation transmission image with suppressed fluctuations can be obtained in a short time.
(Ii) The present invention can be realized by hardware and software program codes that implement the functions of the embodiments.
(i)以上説明した本発明の実施形態によれば、被写体に放射線を照射する放射線源と、被写体を通過した放射線の強度分布を検出する放射線検出器と、放射線の強度分布について、空間軸方向および時間軸方向の少なくとも一方の高周波成分を抽出する抽出部と、抽出部が抽出した高周波成分に基づいて被写体の厚さの分布を求める体厚分布算出部とを有することにより、散乱線による画質変動を抑えた放射線透過画像が、短時間で得られるようになる。
(ii)本発明は、実施形態の機能を実現するハードウェア、およびソフトウェアのプログラムコードによって実現できる。 <Overall summary>
(I) According to the embodiment of the present invention described above, the radiation source that irradiates the subject with radiation, the radiation detector that detects the intensity distribution of the radiation that has passed through the subject, and the radiation intensity distribution in the spatial axis direction And an extraction unit that extracts at least one high-frequency component in the time axis direction, and a body thickness distribution calculation unit that obtains the thickness distribution of the subject based on the high-frequency component extracted by the extraction unit A radiation transmission image with suppressed fluctuations can be obtained in a short time.
(Ii) The present invention can be realized by hardware and software program codes that implement the functions of the embodiments.
ソフトウェアのプログラムコードで実現する機能については、プログラムコードを記録した記憶媒体を装置或は装置に提供し、その装置或は装置のコンピュータ(又はCPUやMPU)が記憶媒体に格納されたプログラムコードを読み出す。この場合、記憶媒体から読み出されたプログラムコード自体が前述した実施形態の機能を実現することになり、そのプログラムコード自体、及びそれを記憶した記憶媒体は本発明を構成することになる。このようなプログラムコードを供給するための記憶媒体としては、例えば、フレキシブルディスク、CD-ROM、DVD-ROM、ハードディスク、光ディスク、光磁気ディスク、CD-R、磁気テープ、不揮発性のメモリカード、ROMなどが用いられる。
For functions implemented by software program codes, a storage medium in which the program codes are recorded is provided to an apparatus or device, and the apparatus or a computer (or CPU or MPU) of the apparatus stores the program code stored in the storage medium. read out. In this case, the program code itself read from the storage medium realizes the functions of the above-described embodiments, and the program code itself and the storage medium storing the program code constitute the present invention. As a storage medium for supplying such program code, for example, a flexible disk, CD-ROM, DVD-ROM, hard disk, optical disk, magneto-optical disk, CD-R, magnetic tape, nonvolatile memory card, ROM Etc. are used.
また、プログラムコードの指示に基づき、コンピュータ上で稼動しているOS(オペレーティング装置)などが実際の処理の一部又は全部を行い、その処理によって前述した実施の形態の機能が実現されるようにしてもよい。さらに、記憶媒体から読み出されたプログラムコードが、コンピュータ上のメモリに書きこまれた後、そのプログラムコードの指示に基づき、コンピュータのCPUなどが実際の処理の一部又は全部を行い、その処理によって前述した実施の形態の機能が実現されるようにしてもよい。
Further, based on the instruction of the program code, an OS (operating device) or the like running on the computer performs part or all of the actual processing, and the functions of the above-described embodiments are realized by the processing. May be. Further, after the program code read from the storage medium is written in the memory on the computer, the computer CPU or the like performs part or all of the actual processing based on the instruction of the program code. Thus, the functions of the above-described embodiments may be realized.
さらに、実施の形態の機能を実現するソフトウェアのプログラムコードを、ネットワークを介して配信することにより、それを装置又は装置のハードディスクやメモリ等の記憶手段又はCD-RW、CD-R等の記憶媒体に格納し、使用時にその装置又は装置のコンピュータ(又はCPUやMPU)が当該記憶手段や当該記憶媒体に格納されたプログラムコードを読み出して実行するようにしても良い。
Furthermore, by distributing the program code of the software that realizes the functions of the embodiments via a network, the program code is stored in a device or a storage means such as a hard disk or a memory, or a storage medium such as a CD-RW or CD-R. The device or the computer (or CPU or MPU) of the device may read and execute the program code stored in the storage means or the storage medium when used.
最後に、ここで述べた処理内容及び技術は本質的に如何なる特定の装置に関連することはなく、コンポーネントの如何なる相応しい組み合わせによってでも実装できることを理解する必要がある。更に、汎用目的の多様なタイプのデバイスがここで記述した教授に従って使用可能である。ここで述べた方法のステップを実行するのに、専用の装置を構築するのが有益であることが判るかもしれない。また、実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。本発明は、具体例に関連して記述したが、これらは、すべての観点に於いて限定の為ではなく説明の為である。
Finally, it should be understood that the processing content and techniques described here are not inherently related to any particular device, and can be implemented with any suitable combination of components. In addition, various types of devices for general purpose can be used in accordance with the teachings described herein. It may prove useful to build a dedicated device to perform the method steps described herein. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined. Although the present invention has been described with reference to specific examples, these are in all respects illustrative rather than restrictive.
本分野にスキルのある者には、本発明を実施するのに相応しいハードウェア、ソフトウェア、及びファームウエアの多数の組み合わせがあることが解るであろう。例えば、記述したハードウェアは、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)等で実装してもよく、記述したソフトウェアは、アセンブラ、C/C++、perl、Shell、PHP、Python、Java(登録商標)等の広範囲のプログラム又はスクリプト言語で実装してもよい。
Those skilled in the field will appreciate that there are numerous combinations of hardware, software, and firmware that are suitable for implementing the present invention. For example, the described hardware may be implemented by ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), etc., and the described software is assembler, C / C ++, perl, Shell, PHP, Python. , Java (registered trademark) or a wide range of programs or script languages may be used.
さらに、前述の実施形態において、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。全ての構成が相互に接続されていても良い。
Furthermore, in the above-described embodiment, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. All the components may be connected to each other.
加えて、本技術分野の通常の知識を有する者には、本発明のその他の実装がここに開示された本発明の明細書及び実施形態の考察から明らかになる。記述された実施形態の多様な態様及び/又はコンポーネントは、データを管理する機能を有するコンピュータ化ストレージ装置に於いて、単独又は如何なる組み合わせでも使用することが出来る。
In addition, other implementations of the invention will become apparent to those skilled in the art from consideration of the specification and embodiments of the invention disclosed herein. Various aspects and / or components of the described embodiments can be used alone or in any combination in a computerized storage device having the capability of managing data.
101,1101・・・放射線撮像装置
108,202・・・被写体
115,801,805,901,1106・・・画像処理部
301・・・高周波成分抽出部
302・・・体厚分布算出部
303・・・散乱線像推定部
304・・・散乱線像除去部
503,604・・・ルックアップテーブル
602,606・・・散乱線の点拡散関数
610,611・・・マスク情報
1102・・・クライアント部
1104・・・通信ネットワーク
1105・・・サーバ部 101, 1101 ... Radiation imaging devices 108, 202 ... Subjects 115, 801, 805, 901, 1106 ... Image processing unit 301 ... High frequency component extraction unit 302 ... Body thickness distribution calculation unit 303 .. Scattered ray image estimation unit 304... Scattered ray image removal units 503 and 604... Lookup tables 602 and 606... Scattered ray point diffusion functions 610 and 611. Unit 1104 ... Communication network 1105 ... Server unit
108,202・・・被写体
115,801,805,901,1106・・・画像処理部
301・・・高周波成分抽出部
302・・・体厚分布算出部
303・・・散乱線像推定部
304・・・散乱線像除去部
503,604・・・ルックアップテーブル
602,606・・・散乱線の点拡散関数
610,611・・・マスク情報
1102・・・クライアント部
1104・・・通信ネットワーク
1105・・・サーバ部 101, 1101 ...
Claims (15)
- 被写体に放射線を照射する放射線源と、前記被写体を通過した放射線の強度分布を検出する放射線検出器と、前記放射線の強度分布について、空間軸方向および時間軸方向の少なくとも一方の高周波成分を抽出する抽出部と、前記抽出部が抽出した高周波成分に基づいて前記被写体の厚さの分布を求める厚さ分布算出部とを有することを特徴とする放射線撮像装置。 A radiation source that irradiates the subject with radiation, a radiation detector that detects an intensity distribution of the radiation that has passed through the subject, and at least one high-frequency component in the spatial axis direction and the time axis direction are extracted from the radiation intensity distribution. A radiation imaging apparatus comprising: an extraction unit; and a thickness distribution calculation unit that obtains the thickness distribution of the subject based on the high-frequency component extracted by the extraction unit.
- 請求項1に記載の放射線撮像装置であって、前記厚さ分布算出部は、予め求めておいた被写体の厚さと高周波成分の強度との関係から、前記高周波成分の強度に対応する前記被写体の厚さを求めることを特徴とする放射線撮像装置。 The radiation imaging apparatus according to claim 1, wherein the thickness distribution calculation unit is configured to calculate the thickness of the subject corresponding to the strength of the high-frequency component based on the relationship between the thickness of the subject obtained in advance and the strength of the high-frequency component. A radiation imaging apparatus characterized by obtaining a thickness.
- 請求項1に記載の放射線撮像装置であって、前記厚さ分布算出部が求めた前記被写体の厚さの分布から、前記被写体を前記放射線が通過することによって生じる散乱線の分布を求める散乱線分布推定部をさらに有することを特徴とする放射線撮像装置。 2. The radiation imaging apparatus according to claim 1, wherein a scattered radiation for obtaining a distribution of scattered radiation generated by the radiation passing through the subject from the thickness distribution of the subject obtained by the thickness distribution calculating unit. A radiation imaging apparatus further comprising a distribution estimation unit.
- 請求項3に記載の放射線撮像装置であって、前記散乱線分布推定部が求めた前記散乱線分布を前記放射線検出器が検出した前記放射線の強度分布から除去する散乱線分布除去部をさらに有することを特徴とする放射線撮像装置。 The radiation imaging apparatus according to claim 3, further comprising a scattered radiation distribution removing unit that removes the scattered radiation distribution obtained by the scattered radiation distribution estimation unit from the intensity distribution of the radiation detected by the radiation detector. A radiation imaging apparatus.
- 請求項3に記載の放射線撮像装置であって、前記散乱線分布推定部は、被写体の位置ごとにその位置の被写体の厚さに応じた前記放射線の広がり度合を求めるフィルタを含むことを特徴とする放射線撮像装置。 4. The radiation imaging apparatus according to claim 3, wherein the scattered radiation distribution estimation unit includes a filter that obtains a degree of spread of the radiation according to a thickness of the subject at each position of the subject. A radiation imaging apparatus.
- 請求項4に記載の放射線撮像装置であって、前記散乱線分布除去部は、前記被写体と前記放射線検出器との間にグリッドを配置した場合に生じる散乱線分布と同等な散乱線分布を、前記被写体の厚さの分布に基づいて生成し、前記散乱線分布推定部が求めた散乱線分布を除去した前記放射線の強度分布に対して加算することを特徴とする放射線撮像装置。 The radiation imaging apparatus according to claim 4, wherein the scattered radiation distribution removing unit has a scattered radiation distribution equivalent to a scattered radiation distribution generated when a grid is disposed between the subject and the radiation detector. A radiation imaging apparatus, wherein the radiation imaging apparatus generates the radiation intensity distribution based on the distribution of the thickness of the subject and adds the radiation intensity distribution obtained by removing the scattered radiation distribution obtained by the scattered radiation distribution estimation unit.
- 請求項4に記載の放射線撮像装置であって、前記放射線の強度分布は、前記被写体の放射線像であり、前記散乱線分布は、前記被写体により生じる散乱線の像であり、前記散乱線分布除去部は、前記放射線像から前記散乱線の像を除去することを特徴とする放射線撮像装置。 5. The radiation imaging apparatus according to claim 4, wherein the radiation intensity distribution is a radiation image of the subject, the scattered radiation distribution is an image of scattered radiation generated by the subject, and the scattered radiation distribution is removed. The unit removes the image of the scattered radiation from the radiation image.
- 請求項1に記載の放射線撮像装置であって、前記放射線の強度分布を検出した前記放射線検出器が前記放射線によって飽和しているかどうかを判定する検出部と、
前記放射線検出器が飽和している場合、飽和している位置について前記厚さ分布算出部が算出した前記厚さを異なる値に置き換える置き換え部を有することを特徴とする放射線撮像装置。 The radiation imaging apparatus according to claim 1, wherein the detection unit determines whether the radiation detector that has detected the intensity distribution of the radiation is saturated with the radiation,
When the radiation detector is saturated, the radiation imaging apparatus further includes a replacement unit that replaces the thickness calculated by the thickness distribution calculation unit with a different value at a saturated position. - 請求項8に記載の放射線撮像装置であって、前記置き換え部は、前記飽和している位置の前記厚さを、前記放射線検出器が検出した放射線強度から求めた厚さに置き換えることを特徴とする放射線撮像装置。 The radiation imaging apparatus according to claim 8, wherein the replacement unit replaces the thickness at the saturated position with a thickness obtained from the radiation intensity detected by the radiation detector. A radiation imaging apparatus.
- 請求項8に記載の放射線撮像装置であって、前記置き換え部は、前記飽和している位置の前記厚さを、予め定めた値に置き換えることを特徴とする放射線撮像装置。 9. The radiation imaging apparatus according to claim 8, wherein the replacement unit replaces the thickness at the saturated position with a predetermined value.
- 請求項1に記載の放射線撮像装置であって、
前記厚さ分布算出部によって算出された前記厚さの値を補正する補正部と、
前記補正部が出力する補正後の前記厚さに基づいて推定透過線像を生成する推定透過線像生成部と、
前記放射線の強度分布と前記推定透過線像とを比較する比較部とをさらに有し、
前記補正部は、前記比較部の出力に基づいて前記補正部の前記厚さの値に対する補正量を調整する動作を1回以上繰り返すことを特徴とする放射線撮像装置。 The radiation imaging apparatus according to claim 1,
A correction unit for correcting the thickness value calculated by the thickness distribution calculation unit;
An estimated transmission line image generation unit that generates an estimated transmission line image based on the corrected thickness output by the correction unit;
A comparison unit that compares the intensity distribution of the radiation and the estimated transmission line image;
The correction unit repeats an operation of adjusting a correction amount for the thickness value of the correction unit based on an output of the comparison unit one or more times. - 請求項1に記載の放射線撮像装置であって、
前記抽出部は、前記放射線強度分布内の高周波成分を抽出するハイパスフィルタおよび異なる時刻に検出された複数の前記放射線強度分布間の高周波成分を抽出するハイパスフィルタの少なくとも一方を含むことを特徴とする放射線撮像装置。 The radiation imaging apparatus according to claim 1,
The extraction unit includes at least one of a high-pass filter that extracts high-frequency components in the radiation intensity distribution and a high-pass filter that extracts high-frequency components between the plurality of radiation intensity distributions detected at different times. Radiation imaging device. - 被写体を通過した放射線を検出して得た放射線強度分布を外部から受け取って、前記放射線強度分布について、空間軸方向および時間軸方向の少なくとも一方の高周波成分を抽出する抽出部と、前記抽出部が抽出した高周波成分に基づいて前記被写体の厚さの分布を求める厚さ分布算出部とを有することを特徴とする画像処理装置。 An extraction unit that receives a radiation intensity distribution obtained by detecting radiation that has passed through a subject from the outside, and extracts at least one high-frequency component in a spatial axis direction and a time axis direction for the radiation intensity distribution; and An image processing apparatus comprising: a thickness distribution calculation unit that obtains the thickness distribution of the subject based on the extracted high-frequency component.
- 請求項13に記載の画像処理装置であって、
前記放射線強度分布を通信ネットワーク経由で受信して取得するネットワーク受信インターフェース部と、
画像処理部と、
前記画像処理部が生成した画像を、前記通信ネットワーク経由で送信して出力するネットワーク送信インターフェース部とを有し、
前記画像処理部は、前記抽出部と、前記厚さ分布算出部と、前記厚さ分布算出部が算出した被写体の厚さ分布に基づいて前記被写体を前記放射線が通過することによって生じる散乱線の分布を求める散乱線分布推定部と、前記散乱線分布推定部が求めた前記散乱線分布を前記放射線強度分布から除去する散乱線分布除去部とを備え、前記散乱線分布除去部が前記散乱線分布を除去した前記放射線強度分布から画像を生成する、ことを特徴とする画像処理装置。 The image processing apparatus according to claim 13,
A network reception interface unit that receives and acquires the radiation intensity distribution via a communication network;
An image processing unit;
A network transmission interface unit that transmits and outputs the image generated by the image processing unit via the communication network;
The image processing unit is configured to detect scattered radiation generated by the radiation passing through the subject based on the thickness distribution of the subject calculated by the extracting unit, the thickness distribution calculating unit, and the thickness distribution calculating unit. A scattered radiation distribution estimation unit for obtaining a distribution; and a scattered radiation distribution removal unit for removing the scattered radiation distribution obtained by the scattered radiation distribution estimation unit from the radiation intensity distribution, wherein the scattered radiation distribution removal unit is the scattered radiation An image processing apparatus that generates an image from the radiation intensity distribution from which the distribution is removed. - コンピュータを
被写体を通過した放射線を検出して得た放射線強度分布を外部から受け取って、前記放射線強度分布について、空間軸方向および時間軸方向の少なくとも一方の高周波成分を抽出する抽出手段と、
前記抽出手段が抽出した高周波成分に基づいて前記被写体の厚さの分布を求める厚さ分布算出手段として機能させるための画像処理用プログラム。 An extraction means for receiving from the outside a radiation intensity distribution obtained by detecting radiation that has passed through the computer, and extracting at least one high-frequency component in the spatial axis direction and the time axis direction of the radiation intensity distribution;
An image processing program for functioning as a thickness distribution calculating means for obtaining a thickness distribution of the subject based on a high frequency component extracted by the extracting means.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-080011 | 2017-04-13 | ||
JP2017080011A JP6776171B2 (en) | 2017-04-13 | 2017-04-13 | Radiation imaging device, image processing device and image processing program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018190243A1 true WO2018190243A1 (en) | 2018-10-18 |
Family
ID=63793465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/014604 WO2018190243A1 (en) | 2017-04-13 | 2018-04-05 | Radiation imaging device, image processing device, and image processing program |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6776171B2 (en) |
WO (1) | WO2018190243A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020166203A1 (en) * | 2019-02-13 | 2020-08-20 | 株式会社島津製作所 | X-ray tube billing system |
JP7214557B2 (en) * | 2019-04-26 | 2023-01-30 | 富士フイルム株式会社 | radiography equipment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05303154A (en) * | 1992-04-24 | 1993-11-16 | Yokogawa Medical Syst Ltd | Radiograph display device |
JP2015181649A (en) * | 2014-03-24 | 2015-10-22 | 富士フイルム株式会社 | Radiographic image processing apparatus, method, and program |
JP2016198665A (en) * | 2013-03-28 | 2016-12-01 | 富士フイルム株式会社 | Radiation image processing apparatus and method, and program |
-
2017
- 2017-04-13 JP JP2017080011A patent/JP6776171B2/en active Active
-
2018
- 2018-04-05 WO PCT/JP2018/014604 patent/WO2018190243A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05303154A (en) * | 1992-04-24 | 1993-11-16 | Yokogawa Medical Syst Ltd | Radiograph display device |
JP2016198665A (en) * | 2013-03-28 | 2016-12-01 | 富士フイルム株式会社 | Radiation image processing apparatus and method, and program |
JP2015181649A (en) * | 2014-03-24 | 2015-10-22 | 富士フイルム株式会社 | Radiographic image processing apparatus, method, and program |
Also Published As
Publication number | Publication date |
---|---|
JP6776171B2 (en) | 2020-10-28 |
JP2018175457A (en) | 2018-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9907528B2 (en) | X-ray imaging apparatus, image processing apparatus and image processing method | |
US10702234B2 (en) | Image combining using images with different focal-spot sizes | |
US9791384B2 (en) | X-ray imaging apparatus and method for generating X-ray image | |
JP6362914B2 (en) | X-ray diagnostic apparatus and image processing apparatus | |
US10258305B2 (en) | Radiographic image processing device, method, and program | |
US8433154B2 (en) | Enhanced contrast for scatter compensation in X-ray imaging | |
US20140219423A1 (en) | Calibration free dual energy radiography method | |
JP7080025B2 (en) | Information processing equipment, information processing methods and programs | |
CN106572828B (en) | System and method for determining X-ray exposure parameters | |
JP6678541B2 (en) | Image processing apparatus, method and program | |
JP7317022B2 (en) | Methods, systems, apparatus, and computer program products for automatically determining exposure time for intraoral images | |
KR102126355B1 (en) | Radiography imaging apparatus and method for generating an radiographic image | |
KR20150122392A (en) | X-ray Imaging Apparatus and Image Processing Method of X-ray Imaging Apparatus | |
US8391577B2 (en) | Radiation image processing apparatus, image processing method, X-ray radioscopy apparatus and control method thereof | |
US20180160993A9 (en) | X-ray imaging apparatus and method for controlling the same | |
JP6392058B2 (en) | Radiation image processing apparatus and method, and program | |
US20220071578A1 (en) | Improved method of acquiring a radiographic scan of a region-of-interest in a metal containing object | |
WO2018190243A1 (en) | Radiation imaging device, image processing device, and image processing program | |
JP2008073342A (en) | Radiographic image capturing system and radiographic image capturing method | |
KR20160089762A (en) | An radiography apparatus, a method for controlling the radiography apparatus | |
JP5223266B2 (en) | X-ray imaging system | |
KR20150018665A (en) | X-ray imaging apparatus and control method for the same | |
KR102003197B1 (en) | Scatter-correction system and method for a single radiographic projection | |
JP2018149166A (en) | Radiation image processing device | |
JP6392391B2 (en) | Radiation image processing apparatus and method, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18783630 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18783630 Country of ref document: EP Kind code of ref document: A1 |