WO2018188321A1 - 一种增强电池状态估计鲁棒性的方法 - Google Patents
一种增强电池状态估计鲁棒性的方法 Download PDFInfo
- Publication number
- WO2018188321A1 WO2018188321A1 PCT/CN2017/108286 CN2017108286W WO2018188321A1 WO 2018188321 A1 WO2018188321 A1 WO 2018188321A1 CN 2017108286 W CN2017108286 W CN 2017108286W WO 2018188321 A1 WO2018188321 A1 WO 2018188321A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- state
- estimation
- model
- mathematical model
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
Definitions
- the invention belongs to the technical field of batteries, and in particular relates to a method for enhancing the robustness of battery state estimation.
- the battery management system collects the temperature, voltage, current and other parameters of the battery in real time, and based on the preset algorithm, avoids overcharging and overdischarging of the battery.
- the state of the battery is estimated to be at the heart of the battery management system. Its accurate estimation on the one hand improves the ease of use of the system at the user level, the driver can drive and maintain the car body within a reasonable time range; on the other hand, on the internal level of the battery, it can avoid possible permanent damage to the battery. Extends the service life of lithium-ion battery.
- the battery state estimation is originally expected to be performed by measuring the voltage of the battery, because the state of charge of the battery has a monotonous correspondence with its open circuit voltage.
- the accuracy of estimating the state of the battery by voltage is very high. Low, it is difficult to meet the practical needs. For this reason, estimating the battery state by modeling the battery and combining the voltage and current signals of the battery is currently the main method for improving the accuracy of BMS estimation.
- the method of battery state estimation can be divided into model-based and non-model-based methods from a model-based perspective.
- a typical non-model-based approach is the chrono-integration method.
- the types of models in the model-based approach include electrochemical models, neural network models, empirical formula models, and circuit models.
- the circuit model has received a lot of attention because it can reflect the polarization dynamic characteristics of the battery to a certain extent, and the related battery state estimation methods are basically concentrated.
- the Kalman filter method and its deformation method In the expansion of the Kalman filter method and its deformation method.
- model-based battery state estimation methods have estimated bias due to model bias.
- model deviation is large due to the influence of temperature and charge and discharge depth, the accuracy of the battery state is significantly reduced.
- the noise of the actual working conditions is also difficult to accurately model, and the battery state estimation will also have obvious adverse effects.
- the present invention proposes a method for enhancing the robustness of battery state estimation, aiming to overcome the shortcomings of existing methods for model deviation and system noise, even in the presence of model deviation and system noise.
- the battery state can be estimated with high accuracy, and the robustness of the estimation can be improved.
- the technical solution adopted by the present invention to solve the technical problem thereof is: a method for enhancing the robustness of battery state estimation, comprising the following steps:
- Step 1 Establish a mathematical model of the battery according to the characteristics of the battery
- Step 2 Adjust the battery mathematical model by adding redundant state variables
- Step 3 Perform online estimation of all state variables in the adjusted battery mathematical model by using the system state estimation method.
- the positive effect of the present invention is that the present invention adds one or several system state variables having physical meaning or no physical meaning to the battery model.
- the mathematical model equation of the battery should be changed, and the accuracy of the battery state estimation, the convergence rate of the estimated deviation, and the parameter adaptability of the estimation algorithm can be effectively improved in the presence of model deviation and system noise.
- the present invention achieves a good estimation effect, and the effectiveness of the method of the present invention is verified by tests.
- Figure 1 shows the battery equivalent circuit model
- Figure 2 shows the robustness of the robust enhancement to model bias.
- Figure 3 shows the fault tolerance of robust enhancements to estimate state deviations.
- Figure 4 shows the effect of robust enhancement on the parameter fit of the estimation method.
- a method for enhancing battery state estimation robustness includes the following steps:
- Step 1 Establish a mathematical model of the battery:
- x k+1 f(x k ,u k , ⁇ )+w k
- Step 2 Add redundant state variables to the battery mathematical model and adjust the battery mathematical model accordingly:
- the s in the equation is the augmented state variable, and the battery model is adjusted accordingly as follows:
- Step 3 Perform online estimation of all state variables in the adjusted battery mathematical model by using the system state estimation method:
- m k is the measured value of the battery output at the sampling instant k
- L k is the feedback gain of the estimation method used.
- the battery model of the present invention is not limited to any form, and may be a battery equivalent circuit model, an electrochemical model, or the like.
- the redundant state variable added to the battery model of the present invention does not limit the number of redundant state variables, and may be one or more, and does not limit the physical meaning of the redundant variable, and may be a variable having a specific physical meaning, It can be a variable without specific physical meaning.
- the system state estimation method adopted by the present invention does not limit any type of estimation method, and may be Kalman estimation, H ⁇ estimation, sliding mode estimation, and the like.
- the method of the invention is also not limited to what type of battery.
- a method for enhancing battery state estimation robustness established by the present invention in conjunction with FIG. 1 includes the following steps:
- Step 1 Model the battery using an equivalent circuit model and establish a mathematical model of the battery
- Figure 1 shows a typical battery equivalent circuit model, including the Open Circuit Voltage (OCV) controlled by the State of Charge (SoC), which is OCV (SoC); describes the battery equivalent The internal resistance R 0 , which describes the second-order RC model of the electrochemical polarization and concentration polarization of the battery, namely R 1 C 1 and R 2 C 2 .
- OCV Open Circuit Voltage
- R 0 which describes the second-order RC model of the electrochemical polarization and concentration polarization of the battery, namely R 1 C 1 and R 2 C 2 .
- w k is the process noise (ie current measurement noise)
- v k is the voltage measurement noise
- y k is the system output, which is the port voltage of the circuit shown in Figure 1 calculated using the system state.
- Cap is the battery capacity
- ⁇ 1 R 1 C 1
- ⁇ 2 R 2 C 2
- ⁇ t is the system sampling period.
- Step 2 increase the redundant state variables of the mathematical model, and adjust the battery mathematical model accordingly, as follows:
- the battery SoC is the integral of the current I, and the measured value of I contains the bias current I b which affects the accuracy of the SoC estimation, and is augmented as the state of the system, and is estimated online, the circuit model
- the system state variable is taken as:
- a a , B a and F a in equations (8) and (9) are:
- Step 3 At each sampling instant, use the H ⁇ observer to estimate the battery status, as follows:
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
Abstract
一种增强电池状态估计鲁棒性的方法,包括如下步骤:步骤一、根据电池特性建立电池数学模型;步骤二、通过增加冗余状态变量对电池数学模型进行调整;步骤三、采用系统状态估计方法对调整后的电池数学模型中的所有状态变量进行在线估计。该方法通过对电池模型增加一个或几个、有物理意义或没有物理意义的系统状态变量,并相应改变电池数学模型方程,可以在存在模型偏差和系统噪声的情况下,有效提高电池状态估计精度、加快估计偏差的收敛速率和增强估计算法的参数适配性,获得了很好的估计效果,且通过测试验证了该方法的有效性。
Description
本发明属于电池技术领域,具体涉及一种增强电池状态估计鲁棒性的方法。
电池管理系统对电池的温度、电压、电流等参数进行实时的采集,并基于预设的算法,避免电池的过充、过放。电池的状态估计是电池管理系统的核心内容。其准确估计一方面在用户层面提高了系统的易用性,汽车驾驶员可以在合理的时间范围内驾驶、保养车体;另一方面在电池内部层面,它可避免电池可能的永久性伤害,延长了锂离子动力电池的使用寿命。
电池状态估计最初是希望通过测量电池的电压来进行,因为电池的荷电状态与其开路电压有单调性的对应关系,然而由于电池极化动态等复杂特性的存在使得以电压估计电池状态的精度很低,难以满足实用性需求。为此,通过对电池进行建模并结合电池的电压和电流信号来估计电池状态是目前提高BMS估计精度的主要方法。
电池状态估计的方法从是否基于模型的角度讲,可分基于模型和非基于模型的方法。典型的非基于模型的方法是安时积分法,基于模型的方法中模型的类型包括电化学模型、神经网络模型、经验公式模型和电路模型。其中电路模型因能够一定程度上体现了电池的极化动态特性受到的关注较多,与其相关的电池状态估计方法基本上都集中
在拓展卡尔曼滤波方法和其变形方法上。
鉴于电池特性的高度复杂性,任何电池模型都难以精确描述电池的特性,因为基于模型的电池状态估计方法,会因模型偏差而存在估计偏差。当受温度、充放电深度影响导致模型偏差较大时,电池状态的精度会明显降低。再者实际工况的噪声也难以精确建模,对电池状态估计也会带来明显的不利影响。鉴于此,需要找到一种强鲁棒性的电池状态估计方法,使得在即使存在模型偏差和噪声的情况下,也具有较高的估计精度。
发明内容
为了克服现有技术的上述缺点,本发明提出了一种增强电池状态估计鲁棒性的方法,旨在克服现有方法对模型偏差和系统噪声敏感的缺点,在即使存在模型偏差和系统噪声的情况下,也能对电池状态进行高精度的估计,提高估计的鲁棒性。
本发明解决其技术问题所采用的技术方案是:一种增强电池状态估计鲁棒性的方法,包括如下步骤:
步骤一、根据电池特性建立电池数学模型;
步骤二、通过增加冗余状态变量对电池数学模型进行调整;
步骤三、采用系统状态估计方法对调整后的电池数学模型中的所有状态变量进行在线估计。
与现有技术相比,本发明的积极效果是:本发明通过对电池模型增加一个或几个、有物理意义或没有物理意义的系统状态变量,并相
应改变电池数学模型方程,可以在存在模型偏差和系统噪声的情况下,有效提高电池状态估计精度、加快估计偏差的收敛速率和增强估计算法的参数适配性。本发明获得了很好的估计效果,且通过测试验证了本发明方法的有效性。
本发明将通过例子并参照附图的方式说明,其中:
图1为电池等效电路模型。
图2为鲁棒增强对模型偏差的容错能力。
图3为鲁棒增强对估计状态偏差的容错能力。
图4为鲁棒增强对估计方法参数适配性的影响。
一种增强电池状态估计鲁棒性的方法,包括如下步骤:
步骤一、建立电池数学模型:
根据电池特性,建立合适的模型状态变量x,输入变量u,过程噪声w,量测噪声和模型参数θ,并建立电池系统方程:
y=g(t,x,u,θ,v)
并进而转换成离散的形式:
xk+1=f(xk,uk,θ)+wk
yk=g(xk,uk,θ)+vk
步骤二、给电池数学模型增加冗余态变量,并相应地调整电池数学模型:
对状态变量x进行增广:
式中的s为增广的状态变量,并相应调整电池模型如下:
步骤三、采用系统状态估计方法对调整后的电池数学模型中的所有状态变量进行在线估计:
式中mk为采样时刻k时的电池输出量的测量值,Lk为所用估计方法的反馈增益。
需要说明的是:
本发明的电池模型,不限于任何形式,可以为电池等效电路模型、电化学模型等。
本发明给电池模型增加的冗余状态变量,不限定冗余状态变量的个数,可以为1个或多个,且不限定冗余变量的物理意义,可以是有具体物理意义的变量,也可以是无具体物理意义的变量。
本发明采用的系统状态估计方法,不限定任何类型的估计方法,可以是Kalman估计、H∞估计、滑模估计等。
本发明方法亦不限于哪种类型的电池。
为了详细说明本发明的技术内容,算法特点,实现目的与效果,下面将结合具体实施方式对系统运行流程进行详细说明。
结合图1本发明建立的增强电池状态估计鲁棒性的方法,包括以下步骤:
步骤1,采用等效电路模型对电池进行建模,并建立电池数学模型;
如图1所示为典型的电池等效电路模型,包括受电池荷电状态(State of Charge,SoC)控制的电池开路电压(Open Circuit Voltage,OCV),即OCV(SoC);描述电池等效内阻的R0,描述电池电化学极化和浓差极化的二阶RC模型,即R1C1和R2C2。建立该电路模型对应的电池离散系统数学模型,其状态为:
数学模型的状态空间方程和输出方程分别为:
xk+1=Axk+BIk+Fwk (2)
其中wk为过程噪声(即电流测量噪声),vk为电压测量噪声,yk为系统输出,是用系统状态计算的图1所示电路的端口电压。结合图1中的电路模型,将SoC的变化范围取为0~100(以百分数表示),式(2)中的各个矩阵如下所示:
其中Cap为电池容量,τ1=R1C1,τ2=R2C2,Δt为系统采样周期。
对某种电池,该模型所需的参数及数值如表1所示:
表1模型阻容参数
步骤2,增加数学模型的冗余状态变量,并相应地调整电池数学模型,具体如下:
电池SoC是电流I的积分,而I的测量值中包含会影响SoC估计精度的偏置电流Ib,将其作为系统的状态对原状态进行增广,并对其进行在线估计,该电路模型的系统状态变量取为:
相应地调整电池模型,式(8)和式(9)中的Aa,Ba和Fa分别为:
步骤3,在每个采样时刻,采用H∞观测器对电池状态进行估计,具体如下:
通过对该方法进行测试验证,测试结果如图2-4所示。从图2可以看出,当存在明显的模型偏差时,增强后对模型偏差的容错能力明显优于增强前,说明该增强鲁棒性的方法对模型偏差有很强的容错能力。从图3可以看出,当存在初始电池状态偏差时,增强后使估计值向实际值收敛的速度更快。如果估计器的估计效果对其参数值很敏感,则意味着该估计器在实际应用时容易出现调试困难或工作不稳定现象,因此可工程化的估计器其参数可用范围越宽越好,这就是参数适配性的问题。从图4可以看出,没有鲁棒增强时,某个参数W的取值合适与否严重影响电池状态的估计精度;而在鲁棒增强后,在W很宽的取值范围内,电池状态的估计精度几乎不受影响,说明该鲁棒增强方法会明显加大估计器参数取值范围,进而有效增加估计的参数适配性。
Claims (7)
- 一种增强电池状态估计鲁棒性的方法,其特征在于:包括如下步骤:步骤一、根据电池特性建立电池数学模型;步骤二、通过增加冗余状态变量对电池数学模型进行调整;步骤三、采用系统状态估计方法对调整后的电池数学模型中的所有状态变量进行在线估计。
- 根据权利要求1所述的一种增强电池状态估计鲁棒性的方法,其特征在于:所述电池模型包括电池等效电路模型、电化学模型。
- 根据权利要求4所述的一种增强电池状态估计鲁棒性的方法,其特征在于:所述系统状态估计方法包括Kalman估计方法、H∞估计方法、滑模估计 方法。
- 根据权利要求1所述的一种增强电池状态估计鲁棒性的方法,其特征在于:所述冗余状态变量为1个或多个,为有具体物理意义的变量或无具体物理意义的变量。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710239112.6 | 2017-04-13 | ||
CN201710239112.6A CN107064816A (zh) | 2017-04-13 | 2017-04-13 | 一种增强电池状态估计鲁棒性的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018188321A1 true WO2018188321A1 (zh) | 2018-10-18 |
Family
ID=59600219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/108286 WO2018188321A1 (zh) | 2017-04-13 | 2017-10-30 | 一种增强电池状态估计鲁棒性的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107064816A (zh) |
WO (1) | WO2018188321A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111220920A (zh) * | 2019-11-22 | 2020-06-02 | 国网浙江省电力有限公司台州供电公司 | 基于h∞无迹卡尔曼滤波算法的退役锂离子电池荷电状态计算方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107064816A (zh) * | 2017-04-13 | 2017-08-18 | 绵阳世睿科技有限公司 | 一种增强电池状态估计鲁棒性的方法 |
CN107255786B (zh) * | 2017-05-18 | 2020-06-30 | 中山职业技术学院 | 一种磷酸铁锂电池loc模型 |
CN109001640B (zh) * | 2018-06-29 | 2021-08-20 | 深圳市科列技术股份有限公司 | 一种动力电池的数据处理方法和装置 |
CN109633473B (zh) * | 2019-01-23 | 2021-03-09 | 刘平 | 一种分布式电池组荷电状态估计算法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004245627A (ja) * | 2003-02-12 | 2004-09-02 | Nissan Motor Co Ltd | 二次電池の充電率推定装置 |
CN103558556A (zh) * | 2013-10-31 | 2014-02-05 | 重庆长安汽车股份有限公司 | 一种动力电池soh估算方法 |
CN104007390A (zh) * | 2013-02-24 | 2014-08-27 | 快捷半导体(苏州)有限公司 | 电池电荷状态跟踪、等效电路选择及基准测试方法及系统 |
CN104181470A (zh) * | 2014-09-10 | 2014-12-03 | 山东大学 | 一种基于非线性预测扩展卡尔曼滤波的电池soc估计方法 |
CN105203826A (zh) * | 2015-09-11 | 2015-12-30 | 同济大学 | 一种冗余电流传感器动力电池系统的电流检测方法 |
GB2532726A (en) * | 2014-11-24 | 2016-06-01 | Thunot Andre | Cell internal impedance diagnostic system |
CN107064816A (zh) * | 2017-04-13 | 2017-08-18 | 绵阳世睿科技有限公司 | 一种增强电池状态估计鲁棒性的方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8170818B2 (en) * | 2010-03-10 | 2012-05-01 | GM Global Technology Operations LLC | Battery state estimator using multiple sampling rates |
US8890484B2 (en) * | 2012-05-08 | 2014-11-18 | GM Global Technology Operations LLC | Battery state-of-charge estimator using robust H∞ observer |
CN103116136B (zh) * | 2013-01-21 | 2015-07-15 | 天津大学 | 基于有限差分扩展卡尔曼算法的锂电池荷电状态估计方法 |
CN104977545B (zh) * | 2015-08-03 | 2017-12-19 | 电子科技大学 | 一种动力电池的荷电状态估计方法及系统 |
-
2017
- 2017-04-13 CN CN201710239112.6A patent/CN107064816A/zh active Pending
- 2017-10-30 WO PCT/CN2017/108286 patent/WO2018188321A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004245627A (ja) * | 2003-02-12 | 2004-09-02 | Nissan Motor Co Ltd | 二次電池の充電率推定装置 |
CN104007390A (zh) * | 2013-02-24 | 2014-08-27 | 快捷半导体(苏州)有限公司 | 电池电荷状态跟踪、等效电路选择及基准测试方法及系统 |
CN103558556A (zh) * | 2013-10-31 | 2014-02-05 | 重庆长安汽车股份有限公司 | 一种动力电池soh估算方法 |
CN104181470A (zh) * | 2014-09-10 | 2014-12-03 | 山东大学 | 一种基于非线性预测扩展卡尔曼滤波的电池soc估计方法 |
GB2532726A (en) * | 2014-11-24 | 2016-06-01 | Thunot Andre | Cell internal impedance diagnostic system |
CN105203826A (zh) * | 2015-09-11 | 2015-12-30 | 同济大学 | 一种冗余电流传感器动力电池系统的电流检测方法 |
CN107064816A (zh) * | 2017-04-13 | 2017-08-18 | 绵阳世睿科技有限公司 | 一种增强电池状态估计鲁棒性的方法 |
Non-Patent Citations (1)
Title |
---|
FENG DAIWEI ET AL.: "Battery state of charge online estimation based on H observer with current debasing and noise distributions", JOURNAL OF UNIVERSITY ELECTRONIC SCIENCE AND TECHNOOLOGY OF CHINA, vol. 46, no. 4, 31 July 2017 (2017-07-31), pages 547 - 553, ISSN: 1001-0548 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111220920A (zh) * | 2019-11-22 | 2020-06-02 | 国网浙江省电力有限公司台州供电公司 | 基于h∞无迹卡尔曼滤波算法的退役锂离子电池荷电状态计算方法 |
CN111220920B (zh) * | 2019-11-22 | 2023-04-25 | 国网浙江省电力有限公司台州供电公司 | 基于h∞无迹卡尔曼滤波算法的退役锂离子电池荷电状态计算方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107064816A (zh) | 2017-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110441694B (zh) | 基于多重渐消因子卡尔曼滤波锂电池荷电状态估计方法 | |
WO2018188321A1 (zh) | 一种增强电池状态估计鲁棒性的方法 | |
Duong et al. | Online state of charge and model parameters estimation of the LiFePO4 battery in electric vehicles using multiple adaptive forgetting factors recursive least-squares | |
CN104535932B (zh) | 一种锂离子电池荷电状态估计方法 | |
CN107402353B (zh) | 一种对锂离子电池的荷电状态进行滤波估计的方法及系统 | |
CN105607009B (zh) | 一种基于动态参数模型的动力电池soc估计方法和系统 | |
CN108693472B (zh) | 电池等效模型参数在线辨识方法 | |
CN105301509B (zh) | 锂离子电池荷电状态、健康状态与功率状态的联合估计方法 | |
WO2018161486A1 (zh) | 一种基于动态参数的动力电池soc估算方法及系统 | |
WO2015188610A1 (zh) | 电池荷电状态估算方法和装置 | |
CN113156321B (zh) | 一种锂离子电池荷电状态soc的估算方法 | |
CN111581904A (zh) | 考虑循环次数影响的锂电池soc及soh协同估算方法 | |
CN105425153B (zh) | 一种估计电动车辆的动力电池的荷电状态的方法 | |
CN110208703A (zh) | 基于温度修正的复合等效电路模型对荷电状态估计的方法 | |
CN108445402A (zh) | 一种锂离子动力电池荷电状态估计方法及系统 | |
CN109633479B (zh) | 基于嵌入式容积卡尔曼滤波的锂电池soc在线估算方法 | |
CN106019164A (zh) | 基于双重自适应无际卡尔曼滤波器的锂电池soc估计算法 | |
CN106324523A (zh) | 基于离散变结构观测器的锂电池soc估计方法 | |
CN112595979B (zh) | 一种考虑非充分激励的锂电池参数在线辨识方法及系统 | |
CN114184962B (zh) | 一种多算法融合的锂离子电池soc和soh联合估算方法 | |
CN111707953A (zh) | 一种基于后向平滑滤波框架的锂电池soc在线估计方法 | |
CN115656848A (zh) | 一种基于容量修正的锂电池soc估算方法 | |
CN112147514B (zh) | 基于rls的锂电池全工况自适应等效电路模型 | |
Chen et al. | A novel sliding mode observer for state of charge estimation of EV lithium batteries | |
CN109298340B (zh) | 一种基于可变时间尺度的电池容量在线估计方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17905766 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17905766 Country of ref document: EP Kind code of ref document: A1 |