[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018186313A1 - Silicon carbide semiconductor device - Google Patents

Silicon carbide semiconductor device Download PDF

Info

Publication number
WO2018186313A1
WO2018186313A1 PCT/JP2018/013935 JP2018013935W WO2018186313A1 WO 2018186313 A1 WO2018186313 A1 WO 2018186313A1 JP 2018013935 W JP2018013935 W JP 2018013935W WO 2018186313 A1 WO2018186313 A1 WO 2018186313A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
type
diode
sbd
ron
Prior art date
Application number
PCT/JP2018/013935
Other languages
French (fr)
Japanese (ja)
Inventor
友生 森野
永岡 達司
一平 高橋
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Publication of WO2018186313A1 publication Critical patent/WO2018186313A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Definitions

  • the present disclosure relates to a silicon carbide (hereinafter referred to as SiC) semiconductor device having a junction barrier Schottky diode (hereinafter referred to as JBS) in which a PN diode is added to a Schottky barrier diode (hereinafter referred to as SBD).
  • SiC silicon carbide
  • JBS junction barrier Schottky diode
  • SBD Schottky barrier diode
  • Patent Document 1 an SiC semiconductor device having JBS in which a PN diode is further added to SBD has been proposed.
  • an SBD is formed by forming a Schottky electrode on the surface of an n ⁇ type epitaxial layer made of SiC.
  • a PN diode is configured by forming a p-type layer in the surface layer portion of the n ⁇ -type epitaxial layer and bringing a Schottky electrode into ohmic contact with the surface of the p-type layer.
  • a SiC semiconductor device having JBS in which a PN diode is further added to SBD is configured.
  • a reverse leakage current is suppressed and a high breakdown voltage can be obtained by a depletion layer formed at a PN junction constituting the PN diode.
  • the PN diode is also operated in the forward direction through the p-type layer that is in ohmic contact with the Schottky electrode.
  • the depletion layer spreading around the p-type layer does not return at the time of reverse bias, and the on-resistance is deteriorated.
  • This disclosure is intended to provide a SiC semiconductor device having a JBS that can suppress a surge during reverse recovery and can suppress deterioration of on-resistance.
  • An SiC semiconductor device includes a first conductivity type substrate made of SiC having a main surface and a back surface, and a first conductivity type substrate formed on the main surface and having a lower impurity concentration than the substrate.
  • a plurality of second conductivity type layers formed on the surface layer portion of the drift layer and in contact with the Schottky electrode and arranged apart from each other.
  • an SBD having a Schottky electrode, a drift layer, a substrate, and an ohmic electrode, and a plurality of second conductivity type layers and drift layers.
  • JBS is configured.
  • the on-resistance Ron (SBD) of the SBD and the on-resistance Ron (PND) of the PN diode satisfy a relationship of Ron (SBD) ⁇ 10 5 ⁇ Ron (PND).
  • the specific resistance of the second conductivity type layer is 1 ⁇ cm or less.
  • the contact between the surface of the second conductivity type layer and the Schottky electrode can be prevented from being in an insulating state.
  • the depletion layer that has spread at the time of reverse bias can be returned and reduced, and an effect of suppressing deterioration of the on-resistance can be obtained.
  • FIG. 2 is a top surface layout diagram of the SiC semiconductor device shown in FIG. 1. It is the circuit diagram of the model used for the operation simulation of a SiC semiconductor device. It is the figure which showed the change of the voltage and electric current between both ends of SW1, SW2, or JBS connected in parallel when SW1 and SW2 are switched on and off. It is sectional drawing which showed the state of the carrier in a PN diode. It is sectional drawing which showed the state of the carrier in a PN diode. It is sectional drawing which showed the state of the carrier in a PN diode. It is sectional drawing which showed the state of the carrier in a PN diode. It is sectional drawing which showed the state of the carrier in a PN diode.
  • FIGS. 1 corresponds to a cross-sectional view taken along the line II in FIG. 2 and FIG. Further, FIG. 2 is not a cross-sectional view, but is partially hatched for easy understanding of the drawing.
  • the SiC semiconductor device is formed using an n + type substrate 1 made of SiC.
  • the n + type substrate 1 has an impurity concentration of about 2 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3 , for example.
  • the main surface 1a is made of SiC having a lower dopant concentration than the n + type substrate 1.
  • An n ⁇ type epitaxial layer 2 corresponding to the drift layer is stacked.
  • the n ⁇ type epitaxial layer 2 has an impurity concentration of, for example, about 1 ⁇ 10 14 to 1 ⁇ 10 17 cm ⁇ 3 .
  • the JBS having the SBD 10 and the PN diode is formed in the cell portion of the SiC semiconductor substrate constituted by the n + type substrate 1 and the n ⁇ type epitaxial layer 2, and the termination structure is formed in the outer peripheral region.
  • An SiC semiconductor device is configured.
  • n + type substrate 1 a SiC substrate having a main surface 1a having an off angle with respect to the (0001) plane is used.
  • the off direction is the (11-20) direction
  • An n ⁇ type epitaxial layer 2 is formed thereon by epitaxial growth, and the n ⁇ type epitaxial layer 2 is also a crystal whose (11-20) direction is the off direction.
  • an insulating film 3 made of, for example, a silicon oxide film is formed on the surface of the n ⁇ type epitaxial layer 2.
  • an opening 3a is partially formed in the cell portion, and a Schottky electrode 4 in contact with the n ⁇ type epitaxial layer 2 is formed in the opening 3a of the insulating film 3.
  • the Schottky electrode 4 is made of a metal material that is in Schottky contact with the n ⁇ -type epitaxial layer 2 and that does not contact with a p-type layer 11 constituting a PN diode described later.
  • the Schottky electrode 4 is made of, for example, Mo (molybdenum).
  • An ohmic electrode 5 is formed so as to be in contact with the back surface of the n + type substrate 1.
  • the ohmic electrode 5 is also formed by a laminated structure of a plurality of layers, and is constituted by, for example, a Ni silicide layer, a Ti layer, a Ni layer, and an Au layer in order from the n + type substrate 1 side.
  • the cell structure of the SBD 10 is configured. Any layout may be used for the top surface of the SBD 10, but in the present embodiment, each corner is rounded as shown in FIG.
  • a p-type RESURF layer 6 is formed on the surface layer portion of the n ⁇ -type epitaxial layer 2 at the outer edge portion of the Schottky electrode 4 so as to be in contact with the Schottky electrode 4. ing.
  • a plurality of p-type guard ring layers 7 are arranged so as to further surround the outer periphery of the p-type RESURF layer 6.
  • the p-type RESURF layer 6 and the p-type guard ring layer 7 form a termination structure.
  • the p-type RESURF layer 6 and the p-type guard ring layer 7 are formed using, for example, Al as an impurity.
  • the p-type RESURF layer 6 and the p-type guard ring layer 7 are formed with an impurity concentration of about 5 ⁇ 10 16 to 1 ⁇ 10 19 cm ⁇ 3. Yes.
  • the electric field can extend over a wide range on the outer periphery of the SBD 10, and the electric field concentration can be reduced. For this reason, a proof pressure can be improved.
  • the SBD 10 is configured.
  • a surface electrode structure 8 in which a bonding electrode 8a serving as a barrier layer, a surface electrode 8b for external connection, a plating layer 8c, and the like are sequentially laminated on the surface of the Schottky electrode 4 is configured.
  • the bonding electrode 8a is Ti (titanium)
  • the surface electrode 8b is Al—Si / TiN (arsili / titanium nitride)
  • the plating layer 8c is a film in which an Au (gold) layer is laminated on a Ni (nickel) layer.
  • the surface electrode structure 8 is configured.
  • the surface protection of the SBD 10 is performed by providing a protective film 9 made of PIQ (polyimide) or the like so as to surround the surface electrode structure 8.
  • the portion formed in the surface layer portion of the n ⁇ -type epitaxial layer 2 and further on the inner side than the inner end portion of the p-type RESURF layer 6 located closest to the cell portion among the portions constituting the termination structure and shot A p-type layer 11 configured to be in contact with the key electrode 4 is formed.
  • the p-type layer 11 has a stripe shape in which a plurality of strips having the same direction as the off direction as the longitudinal direction are arranged in the (1-100) direction.
  • the p-type layers 11 are arranged so that the p-type layers 11 are spaced at equal intervals so as to be arranged symmetrically with respect to the center of the cell portion.
  • the layer 11 has the same width.
  • Such a p-type layer 11 is configured with an impurity concentration at which the specific resistance is 1 ⁇ cm or less, for example.
  • the interval between the p-type layers 11 is, for example, 2.0 ⁇ 1.0 ⁇ m.
  • the width of each p-type layer 11 is, for example, not less than 0.1 ⁇ m and not more than 3 ⁇ m.
  • the depth of each p-type layer 11 is, for example, not less than 0.3 ⁇ m and not more than 1.0 ⁇ m.
  • the p-type layer 11 thus configured forms a PN diode with the n ⁇ -type epitaxial layer 2.
  • the contact between the surface of the p-type layer 11 and the Schottky electrode 4 is not brought into an insulating state based on the adjustment of the specific resistance of the p-type layer 11.
  • the contact between the Schottky electrode 4 and the p-type layer 11 or the n ⁇ -type epitaxial layer 2 is such that the on-resistance Ron (SBD) at the SBD 10 and the on-resistance Ron (PND) at the PN diode are Ron (SBD). It is set to satisfy the relationship of ⁇ 10 5 ⁇ Ron (PND).
  • the material of the Schottky electrode 4 is selected, the specific resistance is adjusted based on the impurity concentration of the p-type layer 11, and the area between the p-type layer 11 and the n ⁇ -type epitaxial layer 2 at the contact point with the Schottky electrode 4. The above relationship is satisfied based on the ratio and the like.
  • a JBS provided with a PN diode in addition to the SBD 10 is configured.
  • the Schottky electrode 4 functions as an anode and the ohmic electrode 5 functions as a cathode.
  • a voltage exceeding the Schottky barrier to the Schottky electrode 4
  • a current flows between the Schottky electrode 4 and the ohmic electrode 5.
  • the p-type RESURF layer 6 and the p-type guard ring layer 7 are provided for the outer peripheral region, the equipotential lines can be extended over a wide range without deviation. As a result, a high breakdown voltage element can be obtained.
  • FIG. 3 is a circuit diagram of a model used for the simulation.
  • a model is used in which the JBS of this embodiment is connected in parallel to MOSFETs constituting SW1 and SW2 provided in the upper arm and the lower arm, respectively.
  • SW1 and SW2 were alternately switched on and off, and changes in voltage and current between both ends of SW1 and SW2 or JBS connected in parallel at that time were examined.
  • FIG. 4 shows the result.
  • 5A to 5D show the state of the PN diode in the JBS connected in parallel to SW1 when SW1 is switched off and SW2 is switched on.
  • SW1 With respect to SW1, a current flows while it is on, and the voltage of SW1 becomes a low voltage value corresponding to the voltage drop corresponding to the on resistance of SW1.
  • This region is a region where forward loss occurs as shown in FIG.
  • SW1 When SW1 is switched from on to off, reverse recovery occurs in the PN diode of JBS connected in parallel to SW1.
  • the amount of change dir / dt in the recovery current during reverse recovery that is, the change from when the recovery current reaches the peak to zero is applied to the PN diode of the SiC semiconductor device connected in parallel to SW1.
  • the steeper the slope the greater the surge. For this reason, reducing the amount of change dir / dt is important for suppressing the surge.
  • the relationship of Ron (SBD) ⁇ 10 5 ⁇ Ron (PND) is satisfied. That is, the p-type layer 11 and the Schottky electrode 4 are connected with a high contact resistance. By doing so, the injection of holes from the p-type layer 11 is suppressed, and the forward operation is suppressed. And since there is little injection
  • the amount of holes injected is basically determined by the on-resistance Ron (SBD) of the SBD 10 and the on-resistance Ron (PND) of the PN diode.
  • the result that the effect 1 is obtained satisfactorily is obtained in a range satisfying at least the relationship of Ron (SBD) ⁇ 10 5 ⁇ Ron (PND).
  • the contact between the Schottky electrode 4 and the p-type layer 11 is set so as to satisfy the relationship of Ron (SBD) ⁇ 10 5 ⁇ Ron (PND).
  • the contact resistance between the Schottky electrode 4 and the p-type layer 11 increases.
  • the waveform of current [A] with respect to voltage [V] when forward current flows through JBS is the waveform shown in FIG.
  • the slope of this waveform is 1 / Ron (SBD) for the SBD 10 and 1 / Ron (PND) for the PN diode. Therefore, each of the on-resistances Ron (SBD) and Ron (PND) can be obtained based on characteristics when a forward current flows.
  • the contact between the surface of the p-type layer 11 and the Schottky electrode 4 is prevented from being in an insulating state.
  • the contact between the surface of the p-type layer 11 and the Schottky electrode 4 is in an insulating state, as shown in FIG. 7A, the depletion layer spreading at the time of reverse bias does not return and the depletion layer remains in a wide range. It becomes the state of. For this reason, the current path is narrowed by the depletion layer, and the on-resistance Ron (SBD) of the SBD 10 is increased.
  • SBD on-resistance Ron
  • the depletion layer that has spread at the time of reverse bias returns as shown in FIG. 7B. Reduced. For this reason, the range in which the current path is narrowed by the depletion layer is reduced, an increase in the on-resistance Ron (SBD) of the SBD 10 is suppressed, and an effect 2 that the deterioration of the on-resistance is suppressed is obtained.
  • SBD on-resistance Ron
  • the SiC semiconductor device having the JBS of the present embodiment since the relationship of Ron (SBD) ⁇ 10 5 ⁇ Ron (PND) is satisfied, the rise of the recovery current can be moderated, The amount of change dir / dt in the recovery current can be reduced. For this reason, the effect 1 that generation
  • the contact between the surface of the p-type layer 11 and the Schottky electrode 4 is not in an insulating state, the depletion layer that has spread at the time of reverse bias can be returned and reduced, and the on-resistance can be deteriorated. The effect 2 of being suppressed can be acquired.
  • the layout of the p-type layer 11 described in the above embodiment is arbitrary, and other layouts, for example, the circular p-type layer 11 is arranged at the center position of the cell portion, and a plurality of layers are formed around that.
  • positioned the p-type layer 11 concentrically may be sufficient.
  • the case where the first conductivity type is n-type and the second conductivity type is p-type has been described.
  • an SiC semiconductor device in which each conductivity type is reversed may be used.
  • a bar (-) should be attached on a desired number, but there is a limitation in terms of expression based on an electronic application. A bar shall be placed in front of the number.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

According to the present invention, an on-resistance Ron(SBD) of an SBD (10) and an on-resistance Ron(PND) of a PN diode are set so that the relationship Ron(SBD) × 105 < Ron(PND) is satisfied in a contact between a Schottky electrode (4) and a second conductive layer (11) or a drift layer (2). In addition, the contact between the outer surface of the second conductive layer (11) and the Schottky electrode (4) is configured to not enter an insulated state.

Description

炭化珪素半導体装置Silicon carbide semiconductor device 関連出願への相互参照Cross-reference to related applications
 本出願は、2017年4月4日に出願された日本特許出願番号2017-74624号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2017-74624 filed on April 4, 2017, the contents of which are incorporated herein by reference.
 本開示は、ショットキーバリアダイオード(以下、SBDという)にPNダイオードを加えたジャンクションバリアショットキーダイオード(以下、JBSという)を有する炭化珪素(以下、SiCという)半導体装置に関する。 The present disclosure relates to a silicon carbide (hereinafter referred to as SiC) semiconductor device having a junction barrier Schottky diode (hereinafter referred to as JBS) in which a PN diode is added to a Schottky barrier diode (hereinafter referred to as SBD).
 従来、特許文献1において、SBDに更にPNダイオードを加えたJBSを有するSiC半導体装置が提案されている。このSiC半導体装置では、SiCにて構成されたn型エピタキシャル層の表面にショットキー電極を形成することでSBDを構成している。また、n型エピタキシャル層の表層部にp型層を形成すると共にp型層の表面にショットキー電極をオーミック接触させることでPNダイオードを構成している。このような構造により、SBDに更にPNダイオードを加えたJBSを有するSiC半導体装置が構成されている。このような構成とすることで、PNダイオードを構成するPN接合部にて形成される空乏層により、逆方向リーク電流を抑え、高耐圧が得られるようにしている。そして、SBDを順方向動作させる際には、ショットキー電極に対してオーミック接触させられたp型層を通じてPNダイオードも順方向動作が行われるようにしている。 Conventionally, in Patent Document 1, an SiC semiconductor device having JBS in which a PN diode is further added to SBD has been proposed. In this SiC semiconductor device, an SBD is formed by forming a Schottky electrode on the surface of an n type epitaxial layer made of SiC. In addition, a PN diode is configured by forming a p-type layer in the surface layer portion of the n -type epitaxial layer and bringing a Schottky electrode into ohmic contact with the surface of the p-type layer. With such a structure, a SiC semiconductor device having JBS in which a PN diode is further added to SBD is configured. By adopting such a configuration, a reverse leakage current is suppressed and a high breakdown voltage can be obtained by a depletion layer formed at a PN junction constituting the PN diode. When the SBD is operated in the forward direction, the PN diode is also operated in the forward direction through the p-type layer that is in ohmic contact with the Schottky electrode.
 また、従来、JBSを有するSiC半導体装置において、PNダイオードを構成するp型層をショットキー電極に対して絶縁状態で接触させる構造も提案されている。このSiC半導体装置では、ショットキー電極に対して絶縁状態で接触させるp型層に結晶欠陥が含まれるようにしている。このようにp型層をショットキー電極に対して絶縁状態で接触させるようにしつつ結晶欠陥がp型層に含まれるようにすることで、結晶欠陥の影響を抑制でき、SiC半導体装置の特性を良好にすることが可能になる。 Also, conventionally, in a SiC semiconductor device having JBS, a structure in which a p-type layer constituting a PN diode is brought into contact with a Schottky electrode in an insulating state has been proposed. In this SiC semiconductor device, crystal defects are included in the p-type layer that is brought into contact with the Schottky electrode in an insulating state. In this way, by causing the p-type layer to be in contact with the Schottky electrode in an insulated state so that the crystal defect is included in the p-type layer, the influence of the crystal defect can be suppressed, and the characteristics of the SiC semiconductor device can be improved. It becomes possible to make it good.
特開2010-50267号公報JP 2010-50267 A
 しかしながら、PNダイオードを構成するためのp型層をショットキー電極に対してオーミック接触させている場合、PNダイオードがバイポーラデバイスであるために、逆回復時に急激なホール欠乏が生じる。これにより、リカバリ電流の立ち上がりが急峻になり、リカバリ電流の変化量dir/dtが大きくなる。このため、回路全体のリアクタンスLとリカバリ電流の変化量dir/dtの積によって決まるサージ電圧ΔV(=L・dir/dt)が大きくなり、逆回復時に大きなサージを発生させることになる。 However, when the p-type layer for forming the PN diode is in ohmic contact with the Schottky electrode, since the PN diode is a bipolar device, a sudden hole deficiency occurs during reverse recovery. As a result, the recovery current rises sharply and the recovery current change amount dir / dt increases. For this reason, the surge voltage ΔV (= L · dir / dt) determined by the product of the reactance L of the entire circuit and the amount of change dir / dt of the recovery current increases, and a large surge is generated during reverse recovery.
 また、ショットキー電極に対してp型層を絶縁状態で接触させる構造の場合、逆バイアス時にp型層の周囲に広がった空乏層が戻らず、オン抵抗の悪化を招く。 Also, in the case where the p-type layer is in contact with the Schottky electrode in an insulating state, the depletion layer spreading around the p-type layer does not return at the time of reverse bias, and the on-resistance is deteriorated.
 本開示は、逆回復時のサージを抑制することが可能で、かつ、オン抵抗の悪化を抑制できるJBSを有するSiC半導体装置を提供することを目的とする。 This disclosure is intended to provide a SiC semiconductor device having a JBS that can suppress a surge during reverse recovery and can suppress deterioration of on-resistance.
  本開示の1つの観点におけるSiC半導体装置は、主表面および裏面を有するSiCからなる第1導電型の基板と、主表面上に形成され、基板よりも低不純物濃度とされた第1導電型のSiCからなるドリフト層と、ドリフト層の上に配置され、セル部が開口部とされた絶縁膜と、セル部に形成され、絶縁膜の開口部を通じて、ドリフト層の表面とショットキー接触させられたショットキー電極と、基板の裏面に形成されたオーミック電極と、ドリフト層の表層部に形成されると共にショットキー電極と接触させられ、かつ、互いに離れて配置された複数の第2導電型層と、を備え、ショットキー電極とドリフト層と基板およびオーミック電極とを有してSBDが構成されていると共に、複数の第2導電型層とドリフト層とによりPNダイオードが構成されることで、JBSが構成されている。このような構成において、SBDのオン抵抗Ron(SBD)とPNダイオードのオン抵抗Ron(PND)とが、Ron(SBD)×10<Ron(PND)の関係を満たすようにする。 An SiC semiconductor device according to one aspect of the present disclosure includes a first conductivity type substrate made of SiC having a main surface and a back surface, and a first conductivity type substrate formed on the main surface and having a lower impurity concentration than the substrate. A drift layer made of SiC, an insulating film disposed on the drift layer and having a cell portion as an opening, and formed in the cell portion, and brought into Schottky contact with the surface of the drift layer through the opening of the insulating film. A plurality of second conductivity type layers formed on the surface layer portion of the drift layer and in contact with the Schottky electrode and arranged apart from each other. And an SBD having a Schottky electrode, a drift layer, a substrate, and an ohmic electrode, and a plurality of second conductivity type layers and drift layers. By de is configured, JBS is configured. In such a configuration, the on-resistance Ron (SBD) of the SBD and the on-resistance Ron (PND) of the PN diode satisfy a relationship of Ron (SBD) × 10 5 <Ron (PND).
 このように、Ron(SBD)×10<Ron(PND)の関係を満たすようにしていることから、リカバリ電流の立ち上がりを緩やかにでき、リカバリ電流の変化量dir/dtを小さくできる。このため、逆回復時のサージの発生が抑制されるという効果が得られる。 Thus, since the relationship of Ron (SBD) × 10 5 <Ron (PND) is satisfied, the rise of the recovery current can be moderated and the change amount dir / dt of the recovery current can be reduced. For this reason, the effect that generation | occurrence | production of the surge at the time of reverse recovery is suppressed is acquired.
 また、本開示のもう1つの観点におけるSiC半導体装置では、第2導電型層の比抵抗を1Ωcm以下としている。このように、第2導電型層の比抵抗を1Ωcm以下にすると、第2導電型層の表面とショットキー電極とのコンタクトが絶縁状態にならないようにできる。これにより、逆バイアス時に広がった空乏層が戻って縮小されるようにでき、オン抵抗の悪化が抑制されるという効果が得られる。 In the SiC semiconductor device according to another aspect of the present disclosure, the specific resistance of the second conductivity type layer is 1 Ωcm or less. Thus, when the specific resistance of the second conductivity type layer is 1 Ωcm or less, the contact between the surface of the second conductivity type layer and the Schottky electrode can be prevented from being in an insulating state. As a result, the depletion layer that has spread at the time of reverse bias can be returned and reduced, and an effect of suppressing deterioration of the on-resistance can be obtained.
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 Note that reference numerals with parentheses attached to each component and the like indicate an example of a correspondence relationship between the component and the like and specific components described in the embodiments described later.
第1実施形態にかかるJBSを備えたSiC半導体装置の断面図である。It is sectional drawing of the SiC semiconductor device provided with JBS concerning 1st Embodiment. 図1に示すSiC半導体装置の上面レイアウト図である。FIG. 2 is a top surface layout diagram of the SiC semiconductor device shown in FIG. 1. SiC半導体装置の動作シミュレーションに用いたモデルの回路図である。It is the circuit diagram of the model used for the operation simulation of a SiC semiconductor device. SW1、SW2のオンオフの切り替えを行ったときのSW1、SW2もしくはこれらに並列接続されたJBSの両端間の電圧および電流の変化を示した図である。It is the figure which showed the change of the voltage and electric current between both ends of SW1, SW2, or JBS connected in parallel when SW1 and SW2 are switched on and off. PNダイオード中のキャリアの状態を示した断面図である。It is sectional drawing which showed the state of the carrier in a PN diode. PNダイオード中のキャリアの状態を示した断面図である。It is sectional drawing which showed the state of the carrier in a PN diode. PNダイオード中のキャリアの状態を示した断面図である。It is sectional drawing which showed the state of the carrier in a PN diode. PNダイオード中のキャリアの状態を示した断面図である。It is sectional drawing which showed the state of the carrier in a PN diode. JBSに順方向電流が流れるときの電圧[V]に対する電流[A]の波形を示した図である。It is the figure which showed the waveform of electric current [A] with respect to voltage [V] when a forward current flows into JBS. p型層が絶縁状態となる場合における逆バイアス時に広がった空乏層の状態を示した断面図である。It is sectional drawing which showed the state of the depletion layer extended at the time of reverse bias in case a p-type layer will be in an insulation state. p型層が絶縁状態とならない場合における逆バイアス時に広がった空乏層の状態を示した断面図である。It is sectional drawing which showed the state of the depletion layer extended at the time of reverse bias when a p-type layer does not become an insulation state.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other will be described with the same reference numerals.
 (第1実施形態)
 本開示の第1実施形態について説明する。まず、本実施形態にかかるSiC半導体装置の構造について、図1~図2を参照して説明する。なお、図1は、図2および図2のI-I断面図に相当している。また、図2は断面図ではないが、図を見易くするために部分的にハッチングを示してある。
(First embodiment)
A first embodiment of the present disclosure will be described. First, the structure of the SiC semiconductor device according to the present embodiment will be described with reference to FIGS. 1 corresponds to a cross-sectional view taken along the line II in FIG. 2 and FIG. Further, FIG. 2 is not a cross-sectional view, but is partially hatched for easy understanding of the drawing.
 図1に示すように、SiC半導体装置は、SiCからなるn型基板1を用いて形成されている。n型基板1は、例えば2×1018~1×1021cm-3程度の不純物濃度とされている。このn型基板1の上面を主表面1a、主表面1aの反対面である下面を裏面1bとすると、主表面1a上には、n型基板1よりも低いドーパント濃度のSiCで構成されたドリフト層に相当するn型エピタキシャル層2が積層されている。n型エピタキシャル層2は、例えば1×1014~1×1017cm-3程度の不純物濃度とされている。これらn型基板1およびn型エピタキシャル層2によって構成されたSiC半導体基板のセル部にSBD10およびPNダイオードを有するJBSが形成されていると共に、その外周領域に終端構造が形成されることでSiC半導体装置が構成されている。 As shown in FIG. 1, the SiC semiconductor device is formed using an n + type substrate 1 made of SiC. The n + type substrate 1 has an impurity concentration of about 2 × 10 18 to 1 × 10 21 cm −3 , for example. When the upper surface of the n + type substrate 1 is the main surface 1a and the lower surface opposite to the main surface 1a is the back surface 1b, the main surface 1a is made of SiC having a lower dopant concentration than the n + type substrate 1. An n type epitaxial layer 2 corresponding to the drift layer is stacked. The n type epitaxial layer 2 has an impurity concentration of, for example, about 1 × 10 14 to 1 × 10 17 cm −3 . The JBS having the SBD 10 and the PN diode is formed in the cell portion of the SiC semiconductor substrate constituted by the n + type substrate 1 and the n type epitaxial layer 2, and the termination structure is formed in the outer peripheral region. An SiC semiconductor device is configured.
 具体的には、n型基板1として、主表面1aが例えば(0001)面に対してオフ角を有するSiC基板を用いている。本実施形態の場合、図2に示すようにオフ方向が(11-20)方向とされ、例えば4°のオフ角を有するSiC基板をn型基板1として用いている。そして、その上にエピタキシャル成長によりn型エピタキシャル層2が形成させられており、n型エピタキシャル層2についても、(11-20)方向がオフ方向とされた結晶となっている。 Specifically, as the n + type substrate 1, a SiC substrate having a main surface 1a having an off angle with respect to the (0001) plane is used. In the present embodiment, as shown in FIG. 2, the off direction is the (11-20) direction, and an SiC substrate having an off angle of 4 °, for example, is used as the n + type substrate 1. An n type epitaxial layer 2 is formed thereon by epitaxial growth, and the n type epitaxial layer 2 is also a crystal whose (11-20) direction is the off direction.
 このn型エピタキシャル層2の表面には、例えばシリコン酸化膜などで構成された絶縁膜3が形成されている。絶縁膜3には、セル部において部分的に開口部3aが形成されており、この絶縁膜3の開口部3aにおいてn型エピタキシャル層2と接触させられたショットキー電極4が形成されている。ショットキー電極4は、n型エピタキシャル層2に対してショットキー接触し、後述するPNダイオードを構成するp型層11とのコンタクトが絶縁状態にはならない金属材料を用いて構成されている。ここでは、ショットキー電極4を例えばMo(モリブデン)によって構成している。 On the surface of the n type epitaxial layer 2, an insulating film 3 made of, for example, a silicon oxide film is formed. In the insulating film 3, an opening 3a is partially formed in the cell portion, and a Schottky electrode 4 in contact with the n type epitaxial layer 2 is formed in the opening 3a of the insulating film 3. . The Schottky electrode 4 is made of a metal material that is in Schottky contact with the n -type epitaxial layer 2 and that does not contact with a p-type layer 11 constituting a PN diode described later. Here, the Schottky electrode 4 is made of, for example, Mo (molybdenum).
 また、n型基板1の裏面と接触するように、オーミック電極5が形成されている。オーミック電極5も、複数層の積層構造によって形成されており、例えばn型基板1側から順にNiシリサイド層、Ti層、Ni層、Au層によって構成されている。 An ohmic electrode 5 is formed so as to be in contact with the back surface of the n + type substrate 1. The ohmic electrode 5 is also formed by a laminated structure of a plurality of layers, and is constituted by, for example, a Ni silicide layer, a Ti layer, a Ni layer, and an Au layer in order from the n + type substrate 1 side.
 これにより、SBD10のうちのセル構造が構成されている。SBD10の上面レイアウトはどのようなものであっても良いが、本実施形態では、図2に示すように各角部が丸められた正方形状となるようにしてある。 Thus, the cell structure of the SBD 10 is configured. Any layout may be used for the top surface of the SBD 10, but in the present embodiment, each corner is rounded as shown in FIG.
 また、SBD10の外周領域に形成された終端構造として、ショットキー電極4の外縁部におけるn型エピタキシャル層2の表層部に、ショットキー電極4と接するように、p型リサーフ層6が形成されている。また、p型リサーフ層6の外周をさらに囲むように複数個のp型ガードリング層7等が配置されている。これらp型リサーフ層6およびp型ガードリング層7等により、終端構造が構成されている。p型リサーフ層6やp型ガードリング層7は、例えばAlを不純物として用いて構成されたものであり、例えば、5×1016~1×1019cm-3程度の不純物濃度で構成されている。これらp型リサーフ層6やp型ガードリング層7を配置することにより、SBD10の外周において電界が広範囲に延びるようにでき、電界集中を緩和できる。このため、耐圧を向上させることができる。このような構造により、SBD10が構成されている。 As a termination structure formed in the outer peripheral region of the SBD 10, a p-type RESURF layer 6 is formed on the surface layer portion of the n -type epitaxial layer 2 at the outer edge portion of the Schottky electrode 4 so as to be in contact with the Schottky electrode 4. ing. A plurality of p-type guard ring layers 7 are arranged so as to further surround the outer periphery of the p-type RESURF layer 6. The p-type RESURF layer 6 and the p-type guard ring layer 7 form a termination structure. The p-type RESURF layer 6 and the p-type guard ring layer 7 are formed using, for example, Al as an impurity. For example, the p-type RESURF layer 6 and the p-type guard ring layer 7 are formed with an impurity concentration of about 5 × 10 16 to 1 × 10 19 cm −3. Yes. By disposing the p-type RESURF layer 6 and the p-type guard ring layer 7, the electric field can extend over a wide range on the outer periphery of the SBD 10, and the electric field concentration can be reduced. For this reason, a proof pressure can be improved. With such a structure, the SBD 10 is configured.
 なお、ショットキー電極4の表面に、バリア層となる接合用電極8aや外部接続用の表面電極8bおよびメッキ層8c等を順に積層した表面電極構造8を構成している。例えば、接合用電極8aをTi(チタン)、表面電極8bをAl-Si/TiN(アルシリ/チタンナイトライド)、メッキ層8cをNi(ニッケル)層の上にAu(金)層を積層した膜とすることによって表面電極構造8を構成している。このような表面電極構造8を形成することで、良好にボンディングワイヤ等と接続することが可能となり、SBD10と外部との電気的接続を図ることができる。また、表面電極構造8の周囲を囲むようにPIQ(ポリイミド)などで構成される保護膜9を備えることで、SBD10の表面保護を行ってある。 Note that a surface electrode structure 8 in which a bonding electrode 8a serving as a barrier layer, a surface electrode 8b for external connection, a plating layer 8c, and the like are sequentially laminated on the surface of the Schottky electrode 4 is configured. For example, the bonding electrode 8a is Ti (titanium), the surface electrode 8b is Al—Si / TiN (arsili / titanium nitride), and the plating layer 8c is a film in which an Au (gold) layer is laminated on a Ni (nickel) layer. Thus, the surface electrode structure 8 is configured. By forming such a surface electrode structure 8, it is possible to satisfactorily connect to a bonding wire or the like, and electrical connection between the SBD 10 and the outside can be achieved. Moreover, the surface protection of the SBD 10 is performed by providing a protective film 9 made of PIQ (polyimide) or the like so as to surround the surface electrode structure 8.
 さらに、終端構造を構成する部分のうち最もセル部側に位置しているp型リサーフ層6の内側の端部よりもさらに内側において、n型エピタキシャル層2の表層部に形成されると共にショットキー電極4と接触するように構成されたp型層11が形成されている。p型層11は、図2に示すように、オフ方向と同方向を長手方向とする短冊状のものが(1-100)方向に複数本並べられたストライプ状とされている。各p型層11は、図1に示すように、セル部の中心に対して対称的に配置されるように、各p型層11が等しい間隔だけ空けた配置とされ、かつ、各p型層11の幅も等しくされた構造とされている。このようなp型層11は、例えば、比抵抗が1Ωcm以下となる不純物濃度で構成されている。各p型層11の間隔は、例えば2.0±1.0μmとされている。各p型層11の幅は、例えば0.1μm以上3μm以下とされている。また、各p型層11の深さは、例えば0.3μm以上1.0μm以下とされている。 Further, the portion formed in the surface layer portion of the n -type epitaxial layer 2 and further on the inner side than the inner end portion of the p-type RESURF layer 6 located closest to the cell portion among the portions constituting the termination structure and shot A p-type layer 11 configured to be in contact with the key electrode 4 is formed. As shown in FIG. 2, the p-type layer 11 has a stripe shape in which a plurality of strips having the same direction as the off direction as the longitudinal direction are arranged in the (1-100) direction. As shown in FIG. 1, the p-type layers 11 are arranged so that the p-type layers 11 are spaced at equal intervals so as to be arranged symmetrically with respect to the center of the cell portion. The layer 11 has the same width. Such a p-type layer 11 is configured with an impurity concentration at which the specific resistance is 1 Ωcm or less, for example. The interval between the p-type layers 11 is, for example, 2.0 ± 1.0 μm. The width of each p-type layer 11 is, for example, not less than 0.1 μm and not more than 3 μm. Further, the depth of each p-type layer 11 is, for example, not less than 0.3 μm and not more than 1.0 μm.
 このように構成されるp型層11により、n型エピタキシャル層2との間においてPNダイオードが構成される。p型層11の表面とショットキー電極4とのコンタクトについては、p型層11の比抵抗の調整に基づいて絶縁状態にならないようにしている。また、ショットキー電極4とp型層11やn型エピタキシャル層2とのコンタクトは、SBD10でのオン抵抗Ron(SBD)とPNダイオードでのオン抵抗Ron(PND)とが、Ron(SBD)×10<Ron(PND)の関係を満たす設定とされている。例えば、ショットキー電極4の材料の選定、p型層11の不純物濃度に基づく比抵抗の調整、さらにはショットキー電極4との接触箇所におけるp型層11とn型エピタキシャル層2との面積比などに基づいて、上記関係を満たすようにしている。 The p-type layer 11 thus configured forms a PN diode with the n -type epitaxial layer 2. The contact between the surface of the p-type layer 11 and the Schottky electrode 4 is not brought into an insulating state based on the adjustment of the specific resistance of the p-type layer 11. The contact between the Schottky electrode 4 and the p-type layer 11 or the n -type epitaxial layer 2 is such that the on-resistance Ron (SBD) at the SBD 10 and the on-resistance Ron (PND) at the PN diode are Ron (SBD). It is set to satisfy the relationship of × 10 5 <Ron (PND). For example, the material of the Schottky electrode 4 is selected, the specific resistance is adjusted based on the impurity concentration of the p-type layer 11, and the area between the p-type layer 11 and the n -type epitaxial layer 2 at the contact point with the Schottky electrode 4. The above relationship is satisfied based on the ratio and the like.
 このようにして、SBD10に加えてPNダイオードが備えられたJBSが構成されている。このような構造のJBSを備えたSiC半導体装置では、ショットキー電極4をアノード、オーミック電極5をカソードとして機能する。具体的には、ショットキー電極4に対してショットキー障壁を超える電圧を印加することにより、ショットキー電極4とオーミック電極5との間に電流を流す。また、外周部領域に関しては、p型リサーフ層6やp型ガードリング層7を備えてあるため、等電位線が偏り無く広範囲で延びるようにすることができる。これにより、高耐圧素子とすることが可能となる。 Thus, a JBS provided with a PN diode in addition to the SBD 10 is configured. In the SiC semiconductor device provided with the JBS having such a structure, the Schottky electrode 4 functions as an anode and the ohmic electrode 5 functions as a cathode. Specifically, by applying a voltage exceeding the Schottky barrier to the Schottky electrode 4, a current flows between the Schottky electrode 4 and the ohmic electrode 5. In addition, since the p-type RESURF layer 6 and the p-type guard ring layer 7 are provided for the outer peripheral region, the equipotential lines can be extended over a wide range without deviation. As a result, a high breakdown voltage element can be obtained.
 そして、上記したように、Ron(SBD)×10<Ron(PND)の関係を満たすようにしている。このため、リカバリ電流の立ち上がりを緩やかにでき、リカバリ電流の変化量dir/dtを小さくできて、逆回復時のサージの発生が抑制されるという効果が得られる(以下、効果1という)。また、p型層11の表面とショットキー電極4とのコンタクトが絶縁状態にならないようにされている。このため、逆バイアス時に広がった空乏層が戻って縮小されるようにでき、オン抵抗の悪化が抑制されるという効果が得られる(以下、効果2という)。以下、これら効果1、2が得られる理由について、図を参照して説明する。 As described above, the relationship of Ron (SBD) × 10 5 <Ron (PND) is satisfied. For this reason, the rise of the recovery current can be moderated, the amount of change dir / dt of the recovery current can be reduced, and the effect of suppressing the occurrence of surge during reverse recovery can be obtained (hereinafter referred to as effect 1). Further, the contact between the surface of the p-type layer 11 and the Schottky electrode 4 is prevented from being in an insulating state. For this reason, the depletion layer that has spread at the time of reverse bias can be returned and reduced, and an effect of suppressing deterioration of the on-resistance can be obtained (hereinafter referred to as effect 2). The reason why these effects 1 and 2 are obtained will be described below with reference to the drawings.
 まず、効果1が得られる理由について、図3~図6を参照して説明する。 First, the reason why Effect 1 is obtained will be described with reference to FIGS.
 上記の構造のJBSを備えたSiC半導体装置をブリッジ回路に適用したときのシミュレーションモデルを用いて、SiC半導体装置の動作シミュレーションを行った。図3は、そのシミュレーションに用いたモデルの回路図である。この図に示されるように、上アームと下アームそれぞれに備えられたSW1、SW2を構成するMOSFETに対して並列に本実施形態のJBSを接続したモデルを用いている。このモデルを用いて、SW1、SW2のオンオフを交互に切替え、そのときのSW1、SW2もしくはこれらに並列接続されたJBSの両端間の電圧および電流の変化を調べた。図4は、その結果を示している。また、図5A~図5Dは、SW1をオフ、SW2をオンに切替えたときのSW1に並列接続されたJBSにおけるPNダイオードの様子を示している。 An operation simulation of the SiC semiconductor device was performed using a simulation model when the SiC semiconductor device including the JBS having the above structure was applied to a bridge circuit. FIG. 3 is a circuit diagram of a model used for the simulation. As shown in this figure, a model is used in which the JBS of this embodiment is connected in parallel to MOSFETs constituting SW1 and SW2 provided in the upper arm and the lower arm, respectively. Using this model, SW1 and SW2 were alternately switched on and off, and changes in voltage and current between both ends of SW1 and SW2 or JBS connected in parallel at that time were examined. FIG. 4 shows the result. 5A to 5D show the state of the PN diode in the JBS connected in parallel to SW1 when SW1 is switched off and SW2 is switched on.
 図3に示すモデルにおいて、SW1がオンされている状態からオフへ、これと同時にSW2をオフされている状態からオンへ、それぞれ切替えるとする。この場合、SW1、SW2もしくはこれらに並列接続されたJBSの両端間の電圧および電流は、図4中の期間t1および期間t2のように変化する。なお、図4に示した電圧、電流の極性については、図3中に示したようにSW1、SW2の中間位置をプラスとしている。 In the model shown in FIG. 3, it is assumed that SW1 is switched from the on state to off, and at the same time, SW2 is switched from the off state to on. In this case, the voltage and current between both ends of SW1, SW2 or JBS connected in parallel to these change as shown in period t1 and period t2 in FIG. As for the polarity of the voltage and current shown in FIG. 4, the intermediate position between SW1 and SW2 is positive as shown in FIG.
 SW2がオンになると、SW2を構成するMOSFETに徐々に電流が流れ込むことになり、電流が徐々に増加していく。 When SW2 is turned on, the current gradually flows into the MOSFET that constitutes SW2, and the current gradually increases.
 一方、SW1については、オン中には電流が流れ、SW1の電圧はSW1のオン抵抗に応じた電圧降下分の低い電圧値となる。この領域は図4中に示したように順方向損失が生じる領域となる。そして、SW1がオンからオフに切り替わると、SW1に並列接続されたJBSのPNダイオードで逆回復が発生する。 On the other hand, with respect to SW1, a current flows while it is on, and the voltage of SW1 becomes a low voltage value corresponding to the voltage drop corresponding to the on resistance of SW1. This region is a region where forward loss occurs as shown in FIG. When SW1 is switched from on to off, reverse recovery occurs in the PN diode of JBS connected in parallel to SW1.
 具体的には、順バイアスで定常に通電していた状態においては、図5Aに示すように、負極からN型半導体となるn型エピタキシャル層2に電子が供給され、正極からはP型半導体となるp型層11にホールが供給された状態となっている。さらに、電源20からのバイアスによる電界によって電子とホールが移動し、n型エピタキシャル層2およびp型層11にキャリアが満たされている状態になっている。この状態からSW1がオフに切替えられることで逆バイアスが与えられるため、図5Bに示すように、各キャリアが順バイアス時に移動していた方向とは反対方向に逆流させられる。このため、図4の期間t2、つまりSW1においてはターンオフ期間中にPNダイオードに逆方向の電流が流れることになり、大きなサージとなってSW1の電圧が逆方向に突出した形になる。この領域においてリカバリ損失が生じる。 Specifically, in a state in which current is normally supplied with a forward bias, as shown in FIG. 5A, electrons are supplied from the negative electrode to the n -type epitaxial layer 2 that becomes an N-type semiconductor, and from the positive electrode, a P-type semiconductor. In this state, holes are supplied to the p-type layer 11. Furthermore, electrons and holes move due to the electric field generated by the bias from the power supply 20, and the n type epitaxial layer 2 and the p type layer 11 are filled with carriers. Since the reverse bias is applied by switching off SW1 from this state, as shown in FIG. 5B, each carrier is caused to flow backward in the direction opposite to the direction in which the carrier was moving at the time of forward bias. For this reason, in the period t2 of FIG. 4, that is, SW1, a current in the reverse direction flows through the PN diode during the turn-off period, and the voltage of SW1 protrudes in the reverse direction as a large surge. Recovery loss occurs in this area.
 この後、負極や正極からのキャリアの供給がなく、また、ホールが負極へ引き寄せられ、電子が正極に引き寄せられるため、図5Cに示すように、PN接合部近傍にキャリア濃度が低くなって空乏化した空乏層が形成されていく。そして、キャリアの逆流が収まると、図5Dに示すように、PN接合部近傍に形成された空乏層により、ダイオードが通電しない状態になる。 Thereafter, there is no supply of carriers from the negative electrode or the positive electrode, and holes are attracted to the negative electrode and electrons are attracted to the positive electrode. Therefore, as shown in FIG. A depleted layer is formed. When the backflow of the carriers is settled, as shown in FIG. 5D, the diode is not energized by the depletion layer formed in the vicinity of the PN junction.
 そして、この逆回復時間中に、SW2を構成するMOSFETに突入電流が流れる。これがターンオン損失となる。また、電圧はSW2のオン抵抗に応じた電圧降下分の低い電圧値となり、SW2がオンした後にはオン定常損失が発生するだけとなる。 And during this reverse recovery time, an inrush current flows through the MOSFET constituting SW2. This is a turn-on loss. In addition, the voltage becomes a low voltage value corresponding to the voltage drop corresponding to the ON resistance of SW2, and only the steady steady loss occurs after SW2 is turned on.
 このような動作を行うに際し、SW1に並列接続されたSiC半導体装置のPNダイオードに、逆回復時のリカバリ電流の変化量dir/dt、すなわちリカバリ電流がピークに達してから0になるまでの変化勾配が急峻な程、大きなサージが発生する。このため、変化量dir/dtを小さくすることがサージの抑制に重要である。 When such an operation is performed, the amount of change dir / dt in the recovery current during reverse recovery, that is, the change from when the recovery current reaches the peak to zero is applied to the PN diode of the SiC semiconductor device connected in parallel to SW1. The steeper the slope, the greater the surge. For this reason, reducing the amount of change dir / dt is important for suppressing the surge.
 これに対して、本実施形態の場合、Ron(SBD)×10<Ron(PND)の関係を満たすようにしている。すなわち、p型層11とショットキー電極4とが高いコンタクト抵抗で接続されるようにしている。このようにすることで、p型層11からのホールの注入が抑制され、順方向動作が抑制される。そして、ホールの注入が少ないために、リカバリ動作が少なくなり、リカバリ電流の立ち上がりを緩やかにできる。したがって、リカバリ電流の変化量dir/dtを小さくでき、逆回復時のサージの発生が抑制されるという効果1が得られる。 On the other hand, in the case of the present embodiment, the relationship of Ron (SBD) × 10 5 <Ron (PND) is satisfied. That is, the p-type layer 11 and the Schottky electrode 4 are connected with a high contact resistance. By doing so, the injection of holes from the p-type layer 11 is suppressed, and the forward operation is suppressed. And since there is little injection | pouring of a hole, recovery operation | movement decreases and the rise of a recovery current can be made loose. Therefore, the effect 1 that the amount of change dir / dt of the recovery current can be reduced and the occurrence of surge during reverse recovery is suppressed is obtained.
 ここで、ホールの注入量については、基本的にはSBD10のオン抵抗Ron(SBD)とPNダイオードのオン抵抗Ron(PND)とによって決まる。シミュレーションでは、少なくともRon(SBD)×10<Ron(PND)の関係を満たす範囲内において、良好に効果1が得られるという結果が得られている。このため、Ron(SBD)×10<Ron(PND)の関係を満たすように、ショットキー電極4とp型層11とのコンタクトを設定している。 Here, the amount of holes injected is basically determined by the on-resistance Ron (SBD) of the SBD 10 and the on-resistance Ron (PND) of the PN diode. In the simulation, the result that the effect 1 is obtained satisfactorily is obtained in a range satisfying at least the relationship of Ron (SBD) × 10 5 <Ron (PND). For this reason, the contact between the Schottky electrode 4 and the p-type layer 11 is set so as to satisfy the relationship of Ron (SBD) × 10 5 <Ron (PND).
 具体的には、ショットキー電極4とp型層11とのコンタクト抵抗が大きいほど、PNダイオードのオン抵抗Ron(PND)は大きくなる。また、ショットキー電極4とp型層11との接触面積が小さいほど、PNダイオードのオン抵抗Ron(PND)は大きくなる。これらに基づいて、上記関係を満たすように、例えばp型層11の接触面積が大きいほどホール注入をより抑えられるようにコンタクト抵抗を大きくしている。 Specifically, as the contact resistance between the Schottky electrode 4 and the p-type layer 11 increases, the on-resistance Ron (PND) of the PN diode increases. Further, the smaller the contact area between the Schottky electrode 4 and the p-type layer 11, the larger the on-resistance Ron (PND) of the PN diode. Based on these, in order to satisfy the above relationship, for example, as the contact area of the p-type layer 11 increases, the contact resistance is increased so that hole injection can be further suppressed.
 なお、JBSを備えたSiC半導体装置では、JBSに順方向電流が流れるときの電圧[V]に対する電流[A]の波形が図6に示される波形となる。この波形の傾きがSBD10については1/Ron(SBD)となり、PNダイオードについては1/Ron(PND)となる。このため、順方向電流が流れるときの特性に基づいて、各オン抵抗Ron(SBD)、Ron(PND)を求めることができる。 In the SiC semiconductor device provided with JBS, the waveform of current [A] with respect to voltage [V] when forward current flows through JBS is the waveform shown in FIG. The slope of this waveform is 1 / Ron (SBD) for the SBD 10 and 1 / Ron (PND) for the PN diode. Therefore, each of the on-resistances Ron (SBD) and Ron (PND) can be obtained based on characteristics when a forward current flows.
 次に、効果2が得られる理由について、図7Aおよび図7Bを参照して説明する。 Next, the reason why Effect 2 is obtained will be described with reference to FIGS. 7A and 7B.
 上記したように、p型層11の表面とショットキー電極4とのコンタクトが絶縁状態にならないようにされている。p型層11の表面とショットキー電極4とのコンタクトが絶縁状態になっている場合、図7Aに示すように、逆バイアス時に広がった空乏層が戻らずに、広範囲に空乏層が残ったままの状態になる。このため、空乏層によって電流通路が狭められ、SBD10のオン抵抗Ron(SBD)を増加させることになる。 As described above, the contact between the surface of the p-type layer 11 and the Schottky electrode 4 is prevented from being in an insulating state. When the contact between the surface of the p-type layer 11 and the Schottky electrode 4 is in an insulating state, as shown in FIG. 7A, the depletion layer spreading at the time of reverse bias does not return and the depletion layer remains in a wide range. It becomes the state of. For this reason, the current path is narrowed by the depletion layer, and the on-resistance Ron (SBD) of the SBD 10 is increased.
 これに対して、本実施形態のようにp型層11の表面とショットキー電極4とのコンタクトが絶縁状態になっている場合、図7Bに示すように、逆バイアス時に広がった空乏層が戻って縮小される。このため、空乏層によって電流通路が狭められる範囲が少なくなり、SBD10のオン抵抗Ron(SBD)の増加が抑えられ、オン抵抗の悪化が抑制されるという効果2が得られる。 On the other hand, when the contact between the surface of the p-type layer 11 and the Schottky electrode 4 is in an insulating state as in the present embodiment, the depletion layer that has spread at the time of reverse bias returns as shown in FIG. 7B. Reduced. For this reason, the range in which the current path is narrowed by the depletion layer is reduced, an increase in the on-resistance Ron (SBD) of the SBD 10 is suppressed, and an effect 2 that the deterioration of the on-resistance is suppressed is obtained.
 以上説明したように、本実施形態のJBSを有するSiC半導体装置では、Ron(SBD)×10<Ron(PND)の関係を満たすようにしていることから、リカバリ電流の立ち上がりを緩やかにでき、リカバリ電流の変化量dir/dtを小さくできる。このため、逆回復時のサージの発生が抑制されるという効果1を得ることができる。また、p型層11の表面とショットキー電極4とのコンタクトが絶縁状態にならないようにされているため、逆バイアス時に広がった空乏層が戻って縮小されるようにでき、オン抵抗の悪化が抑制されるという効果2を得ることができる。 As described above, in the SiC semiconductor device having the JBS of the present embodiment, since the relationship of Ron (SBD) × 10 5 <Ron (PND) is satisfied, the rise of the recovery current can be moderated, The amount of change dir / dt in the recovery current can be reduced. For this reason, the effect 1 that generation | occurrence | production of the surge at the time of reverse recovery is suppressed can be acquired. In addition, since the contact between the surface of the p-type layer 11 and the Schottky electrode 4 is not in an insulating state, the depletion layer that has spread at the time of reverse bias can be returned and reduced, and the on-resistance can be deteriorated. The effect 2 of being suppressed can be acquired.
 (他の実施形態)
 本開示は、上記した実施形態に準拠して記述されたが、当該実施形態に限定されるものではなく、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
(Other embodiments)
Although the present disclosure has been described based on the above-described embodiment, the present disclosure is not limited to the embodiment, and includes various modifications and modifications within an equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.
 例えば、上記実施形態で説明したp型層11のレイアウトについては任意であり、他のレイアウト、例えばセル部の中心位置に円形状のp型層11を配置し、さらにそれを中心として複数本のp型層11を同心円状に配置した構造等であっても良い。 For example, the layout of the p-type layer 11 described in the above embodiment is arbitrary, and other layouts, for example, the circular p-type layer 11 is arranged at the center position of the cell portion, and a plurality of layers are formed around that. The structure etc. which arrange | positioned the p-type layer 11 concentrically may be sufficient.
 また、上記実施形態では、第1導電型をn型、第2導電型をp型とする場合について説明したが、各導電型が逆となる関係のSiC半導体装置としても構わない。 In the above-described embodiment, the case where the first conductivity type is n-type and the second conductivity type is p-type has been described. However, an SiC semiconductor device in which each conductivity type is reversed may be used.
 なお、結晶の方位を示す場合、本来ならば所望の数字の上にバー(-)を付すべきであるが、電子出願に基づく表現上の制限が存在するため、本明細書においては、所望の数字の前にバーを付すものとする。 It should be noted that when indicating the orientation of a crystal, a bar (-) should be attached on a desired number, but there is a limitation in terms of expression based on an electronic application. A bar shall be placed in front of the number.

Claims (2)

  1.  ジャンクションバリアショットキーダイオードが形成されたセル部を有する炭化珪素半導体装置であって、
     主表面(1a)および裏面(1b)を有する炭化珪素からなる第1導電型の基板(1)と、
     前記主表面上に形成され、前記基板よりも低不純物濃度とされた第1導電型の炭化珪素からなるドリフト層(2)と、
     前記ドリフト層の上に配置され、前記セル部が開口部(3a)とされた絶縁膜(3)と、
     前記セル部に形成され、前記絶縁膜の開口部を通じて、前記ドリフト層の表面とショットキー接触させられたショットキー電極(4)と、
     前記基板の裏面に形成されたオーミック電極(5)と、
     前記ドリフト層の表層部に形成されると共に前記ショットキー電極と接触させられ、かつ、互いに離れて配置された複数の第2導電型層(11)と、を備え、
     前記ショットキー電極と前記ドリフト層と前記基板および前記オーミック電極とを有してショットキーバリアダイオード(10)が構成されていると共に、前記複数の第2導電型層と前記ドリフト層とによりPNダイオードが構成されることで、前記ジャンクションバリアショットキーダイオードが構成され、
     前記ショットキーバリアダイオードのオン抵抗Ron(SBD)と前記PNダイオードのオン抵抗Ron(PND)とが、Ron(SBD)×10<Ron(PND)の関係を満たしている炭化珪素半導体装置。
    A silicon carbide semiconductor device having a cell portion in which a junction barrier Schottky diode is formed,
    A first conductivity type substrate (1) made of silicon carbide having a main surface (1a) and a back surface (1b);
    A drift layer (2) made of silicon carbide of the first conductivity type formed on the main surface and having a lower impurity concentration than the substrate;
    An insulating film (3) disposed on the drift layer and having the cell portion as an opening (3a);
    A Schottky electrode (4) formed in the cell portion and brought into Schottky contact with the surface of the drift layer through the opening of the insulating film;
    An ohmic electrode (5) formed on the back surface of the substrate;
    A plurality of second conductivity type layers (11) formed on a surface layer portion of the drift layer and in contact with the Schottky electrode and arranged apart from each other,
    The Schottky barrier diode (10) is configured by including the Schottky electrode, the drift layer, the substrate, and the ohmic electrode, and a PN diode is formed by the plurality of second conductivity type layers and the drift layer. Is configured, the junction barrier Schottky diode is configured,
    A silicon carbide semiconductor device in which the on-resistance Ron (SBD) of the Schottky barrier diode and the on-resistance Ron (PND) of the PN diode satisfy a relationship of Ron (SBD) × 10 5 <Ron (PND).
  2.  前記第2導電型層の比抵抗が1Ωcm以下となっている請求項1に記載の炭化珪素半導体装置。 The silicon carbide semiconductor device according to claim 1, wherein a specific resistance of the second conductivity type layer is 1 Ωcm or less.
PCT/JP2018/013935 2017-04-04 2018-03-30 Silicon carbide semiconductor device WO2018186313A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017074624A JP2018181917A (en) 2017-04-04 2017-04-04 Silicon carbide semiconductor device
JP2017-074624 2017-04-04

Publications (1)

Publication Number Publication Date
WO2018186313A1 true WO2018186313A1 (en) 2018-10-11

Family

ID=63712441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013935 WO2018186313A1 (en) 2017-04-04 2018-03-30 Silicon carbide semiconductor device

Country Status (2)

Country Link
JP (1) JP2018181917A (en)
WO (1) WO2018186313A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022140933A (en) 2021-03-15 2022-09-29 株式会社東芝 Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016603A (en) * 2007-07-05 2009-01-22 Denso Corp Silicon carbide semiconductor device with junction barrier schottky diode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016603A (en) * 2007-07-05 2009-01-22 Denso Corp Silicon carbide semiconductor device with junction barrier schottky diode

Also Published As

Publication number Publication date
JP2018181917A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
JP6274154B2 (en) Reverse conducting IGBT
US9887285B1 (en) Semiconductor device
JP5940235B1 (en) Semiconductor device
JP5175872B2 (en) Semiconductor rectifier
JP5550589B2 (en) Semiconductor device
JP6649183B2 (en) Semiconductor device
US10658467B2 (en) Semiconductor device
JP2019169597A (en) Semiconductor device
JP2008251772A (en) Semiconductor device
JP2012231019A (en) Silicon carbide diode
TW201711184A (en) Semiconductor device and method for driving same
WO2016185526A1 (en) Power semiconductor element and power semiconductor module using same
US20150287840A1 (en) Semiconductor device
US10304969B2 (en) Semiconductor device
JP2017152523A (en) Power semiconductor element and power semiconductor module using the same
CN104916663A (en) Semiconductor device
JP2019054193A (en) Semiconductor device
JP2015162572A (en) Wide bandgap semiconductor device
CN109524458B (en) Semiconductor device with a plurality of semiconductor chips
WO2018186313A1 (en) Silicon carbide semiconductor device
US11955543B2 (en) Semiconductor device
JP7196265B2 (en) semiconductor equipment
US20230092171A1 (en) Semiconductor device
JP6550995B2 (en) Semiconductor device
JP2020074426A (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18781547

Country of ref document: EP

Kind code of ref document: A1